Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
…integrations/document_loaders/ All document loaders section
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
…tionguard.ipynb
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
### Description
Added a note above the retriever overview table to clarify that the
descriptions are truncated for readability and how to view the full
version (via hover or click).
### Issue
Fixes#31311 — Users were confused by incomplete retriever descriptions
in the integration docs.
### Dependencies
None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
…rations/chat/ All chat models section
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
…ntegrations/chat/ All chat models section
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
…egrations/chat/ All chat models section
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
…tegrations/chat/ All chat models section
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
As part of core releases we run tests on the last released version of
some packages (including langchain-openai) using the new version of
langchain-core. We run langchain-openai's test suite as it was when it
was last released.
OpenAI has since updated their API— relaxing constraints on what schemas
are supported when `strict=True`— causing these tests to break. They
have since been fixed. But the old tests will continue to fail.
Will revert this change after we release OpenAI today.
Added support for new Exa API features. Updated Exa docs and python
package (langchain-exa).
Description
Added support for new Exa API features in the langchain-exa package:
- Added max_characters option for text content
- Added support for summary and custom summary prompts
- Added livecrawl option with "always", "fallback", "never" settings
- Added "auto" option for search type
- Updated documentation and tests
Dependencies
- No new dependencies required. Using existing features from exa-py.
twitter: @theishangoswami
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** ConversationChain has been deprecated, and the
documentation says to use RunnableWithMessageHistory in its place, but
the link at the top of the page to RunnableWithMessageHistory is broken
(it's rendering as "html()"). See here at the top of the page:
https://python.langchain.com/api_reference/langchain/chains/langchain.chains.conversation.base.ConversationChain.html.
This PR fixes the link.
**Issue**: N/A
**Dependencies**: N/A
**Twitter handle:**: If you're on Bluesky, I'm @vikramsaraph.com
Scheduled testing started failing today because the Responses API
stopped raising `BadRequestError` for a schema that was previously
invalid when `strict=True`.
Although docs still say that [some type-specific keywords are not yet
supported](https://platform.openai.com/docs/guides/structured-outputs#some-type-specific-keywords-are-not-yet-supported)
(including `minimum` and `maximum` for numbers), the below appears to
run and correctly respect the constraints:
```python
import json
import openai
maximums = list(range(1, 11))
arg_values = []
for maximum in maximums:
tool = {
"type": "function",
"name": "magic_function",
"description": "Applies a magic function to an input.",
"parameters": {
"properties": {
"input": {"maximum": maximum, "minimum": 0, "type": "integer"}
},
"required": ["input"],
"type": "object",
"additionalProperties": False
},
"strict": True
}
client = openai.OpenAI()
response = client.responses.create(
model="gpt-4.1",
input=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
tools=[tool],
)
function_call = next(item for item in response.output if item.type == "function_call")
args = json.loads(function_call.arguments)
arg_values.append(args["input"])
print(maximums)
print(arg_values)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# [1, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```
Until yesterday this raised BadRequestError.
The same is not true of Chat Completions, which appears to still raise
BadRequestError
```python
tool = {
"type": "function",
"function": {
"name": "magic_function",
"description": "Applies a magic function to an input.",
"parameters": {
"properties": {
"input": {"maximum": 5, "minimum": 0, "type": "integer"}
},
"required": ["input"],
"type": "object",
"additionalProperties": False
},
"strict": True
}
}
response = client.chat.completions.create(
model="gpt-4.1",
messages=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
tools=[tool],
)
response # raises BadRequestError
```
Here we update tests accordingly.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
**Description**:
This PR updates the documentation to address a potential issue when
using `hub.pull(...)` with non-US LangSmith endpoints (e.g.,
`https://eu.api.smith.langchain.com`).
By default, the `hub.pull` function assumes the non US-based API URL.
When the `LANGSMITH_ENDPOINT` environment variable is set to a non-US
region, this can lead to `LangSmithNotFoundError 404 not found` errors
when pulling public assets from the LangChain Hub.
Issue: #31191
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Update docs to add Featherless.ai Provider & Chat Model
- **Description:** Adding Featherless.ai as provider in teh
documentations giving access to over 4300+ open-source models
- **Twitter handle:** https://x.com/FeatherlessAI
DSPy removed their LangChain integration in version 2.6.6.
Here we remove the page and add a redirect to the LangChain v0.2 docs
for posterity.
We add an admonition to the v0.2 docs in
https://github.com/langchain-ai/langchain/pull/31277.
* It is possible to chain a `Runnable` with an `AsyncIterator` as seen
in `test_runnable.py`.
* Iterator and AsyncIterator Input/Output of Callables must be put
before `Callable[[Other], Any]` otherwise the pattern matching picks the
latter.
**PR message**: Not sure if I put the check at the right spot, but I
thought throwing the error before the loop made sense to me.
**Description:** Checks if there are only system messages using
AnthropicChat model and throws an error if it's the case. Check Issue
for more details
**Issue:** #30764
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Issue:**[
#309070](https://github.com/langchain-ai/langchain/issues/30970)
**Cause**
Arg type in python code
```
arg: Union[SubSchema1, SubSchema2]
```
is translated to `anyOf` in **json schema**
```
"anyOf" : [{sub schema 1 ...}, {sub schema 1 ...}]
```
The value of anyOf is a list sub schemas.
The bug is caused since the sub schemas inside `anyOf` list is not taken
care of.
The location where the issue happens is `convert_to_openai_function`
function -> `_recursive_set_additional_properties_false` function, that
recursively adds `"additionalProperties": false` to json schema which is
[required by OpenAI's strict function
calling](https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#additionalproperties-false-must-always-be-set-in-objects)
**Solution:**
This PR fixes this issue by iterating each sub schema inside `anyOf`
list.
A unit test is added.
**Twitter handle:** shengboma
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
`aindex` function should check not only `adelete` method, but `delete`
method too
**PR title**: "core: fix async indexing issue with adelete/delete
checking"
**PR message**: Currently `langchain.indexes.aindex` checks if vector
store has overrided adelete method. But due to `adelete` default
implementation store can have just `delete` overrided to make `adelete`
working.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description: This document change concerns the document-loader
integration, specifically `Confluence`.
I am trying to use the ConfluenceLoader and came across deprecations
when I followed the instructions in the documentation. So I updated the
code blocks with the latest changes made to langchain, and also updated
the documentation for better readability
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** The file ```docs/api_reference/create_api_rst.py```
uses a pyproject.toml check to remove partners which don't have a valid
pyproject.toml. This PR extends that check to ```/langchain/libs/*```
sub-directories as well. Without this the ```make api_docs_build```
command fails (see error).
- **Issue:** #31109
- **Dependencies:** none
- **Error Traceback:**
uv run --no-group test python docs/api_reference/create_api_rst.py
Starting to build API reference files.
Building package: community
pyproject.toml not found in /langchain/libs/community.
You are either attempting to build a directory which is not a package or
the package is missing a pyproject.toml file which should be
added.Aborting the build.
make: *** [Makefile:35: api_docs_build] Error 1
**Description**:
Add a `async_client_kwargs` field to ollama chat/llm/embeddings adapters
that is passed to async httpx client constructor.
**Motivation:**
In my use-case:
- chat/embedding model adapters may be created frequently, sometimes to
be called just once or to never be called at all
- they may be used in bots sunc and async mode (not known at the moment
they are created)
So, I want to keep a static transport instance maintaining connection
pool, so model adapters can be created and destroyed freely. But that
doesn't work when both sync and async functions are in use as I can only
pass one transport instance for both sync and async client, while
transport types must be different for them. So I can't make both sync
and async calls use shared transport with current model adapter
interfaces.
In this PR I add a separate `async_client_kwargs` that gets passed to
async client constructor, so it will be possible to pass a separate
transport instance. For sake of backwards compatibility, it is merged
with `client_kwargs`, so nothing changes when it is not set.
I am unable to run linter right now, but the changes look ok.
Bumps
[Ana06/get-changed-files](https://github.com/ana06/get-changed-files)
from 2.2.0 to 2.3.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/ana06/get-changed-files/releases">Ana06/get-changed-files's
releases</a>.</em></p>
<blockquote>
<h2>v2.3.0</h2>
<p>This project is a fork of <a
href="https://github.com/jitterbit/get-changed-files">jitterbit/get-changed-files</a>,
which:</p>
<ul>
<li>Supports <code>pull_request_target</code></li>
<li>Allows to filter files using regular expressions</li>
<li>Removes the ahead check</li>
<li>Considers renamed modified files as modified</li>
<li>Adds <code>added_modified_renamed</code> that includes renamed
non-modified files and all files in <code>added_modified</code></li>
<li>Uses Node 20</li>
</ul>
<h2>Changes</h2>
<ul>
<li>Update to Node 20</li>
<li>Update dependencies</li>
</ul>
<h2>Raw diff</h2>
<p><a
href="https://github.com/Ana06/get-changed-files/compare/v2.2.0...v2.3.0">https://github.com/Ana06/get-changed-files/compare/v2.2.0...v2.3.0</a></p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="25f79e676e"><code>25f79e6</code></a>
Update version in package.json</li>
<li><a
href="6f5373eb01"><code>6f5373e</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/42">#42</a>
from Ana06/release2-3</li>
<li><a
href="64dffb46a4"><code>64dffb4</code></a>
Prepare 2.3.0 release</li>
<li><a
href="791f7645b7"><code>791f764</code></a>
[CI] Update actions/checkout</li>
<li><a
href="5a4a136e91"><code>5a4a136</code></a>
[CI] Ensure GH action uses node version 20</li>
<li><a
href="38bdb2e498"><code>38bdb2e</code></a>
Update to Node 20</li>
<li><a
href="5558be5781"><code>5558be5</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/30">#30</a>
from Ana06/dependabot/npm_and_yarn/decode-uri-componen...</li>
<li><a
href="6a376fdbb3"><code>6a376fd</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/31">#31</a>
from Ana06/dependabot/npm_and_yarn/qs-6.5.3</li>
<li><a
href="ace6e7bcbb"><code>ace6e7b</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/32">#32</a>
from brtrick/main</li>
<li><a
href="a102fae9bf"><code>a102fae</code></a>
Merge pull request <a
href="https://redirect.github.com/ana06/get-changed-files/issues/33">#33</a>
from Ana06/dependabot/npm_and_yarn/json5-2.2.3</li>
<li>Additional commits viewable in <a
href="https://github.com/ana06/get-changed-files/compare/v2.2.0...v2.3.0">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Updates dependencies to Chroma to integrate the major release of Chroma
with improved performance, and to fix issues users have been seeing
using the latest chroma docker image with langchain-chroma
https://github.com/langchain-ai/langchain/issues/31047#issuecomment-2850790841
Updates chromadb dependency to >=1.0.9
This also removes the dependency of chroma-hnswlib, meaning it can run
against python 3.13 runners for tests as well.
Tested this by pulling the latest Chroma docker image, running
langchain-chroma using client mode
```
httpClient = chromadb.HttpClient(host="localhost", port=8000)
vector_store = Chroma(
client=httpClient,
collection_name="test",
embedding_function=embeddings,
)
```
"Alanis Morissette" spelling error
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Bumps [astral-sh/setup-uv](https://github.com/astral-sh/setup-uv) from 5
to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/setup-uv/releases">astral-sh/setup-uv's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0 🌈 activate-environment and working-directory</h2>
<h2>Changes</h2>
<p>This version contains some breaking changes which have been gathering
up for a while. Lets dive into them:</p>
<ul>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#activate-environment">Activate
environment</a></li>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#working-directory">Working
Directory</a></li>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#default-cache-dependency-glob">Default
<code>cache-dependency-glob</code></a></li>
<li><a
href="https://github.com/astral-sh/setup-uv/blob/HEAD/#use-default-cache-dir-on-self-hosted-runners">Use
default cache dir on self hosted runners</a></li>
</ul>
<h3>Activate environment</h3>
<p>In previous versions using the input <code>python-version</code>
automatically activated a venv at the repository root.
This led to some unwanted side-effects, was sometimes unexpected and not
flexible enough.</p>
<p>The venv activation is now explicitly controlled with the new input
<code>activate-environment</code> (false by default):</p>
<pre lang="yaml"><code>- name: Install the latest version of uv and
activate the environment
uses: astral-sh/setup-uv@v6
with:
activate-environment: true
- run: uv pip install pip
</code></pre>
<p>The venv gets created by the <a
href="https://docs.astral.sh/uv/pip/environments/"><code>uv
venv</code></a> command so the python version is controlled by the
<code>python-version</code> input or the files
<code>pyproject.toml</code>, <code>uv.toml</code>,
<code>.python-version</code> in the <code>working-directory</code>.</p>
<h3>Working Directory</h3>
<p>The new input <code>working-directory</code> controls where we look
for <code>pyproject.toml</code>, <code>uv.toml</code> and
<code>.python-version</code> files
which are used to determine the version of uv and python to install.</p>
<p>It can also be used to control where the venv gets created.</p>
<pre lang="yaml"><code>- name: Install uv based on the config files in
the working-directory
uses: astral-sh/setup-uv@v6
with:
working-directory: my/subproject/dir
</code></pre>
<blockquote>
<p>[!CAUTION]</p>
<p>The inputs <code>pyproject-file</code> and <code>uv-file</code> have
been removed.</p>
</blockquote>
<h3>Default <code>cache-dependency-glob</code></h3>
<p><a href="https://github.com/ssbarnea"><code>@ssbarnea</code></a>
found out that the default <code>cache-dependency-glob</code> was not
suitable for a lot of users.</p>
<p>The old default</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="6b9c6063ab"><code>6b9c606</code></a>
Bump dependencies (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/389">#389</a>)</li>
<li><a
href="ef6bcdff59"><code>ef6bcdf</code></a>
Fix default cache dependency glob (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/388">#388</a>)</li>
<li><a
href="9a311713f4"><code>9a31171</code></a>
chore: update known checksums for 0.6.17 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/384">#384</a>)</li>
<li><a
href="c7f87aa956"><code>c7f87aa</code></a>
bump to v6 in README (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/382">#382</a>)</li>
<li><a
href="aadfaf08d6"><code>aadfaf0</code></a>
Change default cache-dependency-glob (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/352">#352</a>)</li>
<li><a
href="a0f9da6273"><code>a0f9da6</code></a>
No default UV_CACHE_DIR on selfhosted runners (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/380">#380</a>)</li>
<li><a
href="ec4c691628"><code>ec4c691</code></a>
new inputs activate-environment and working-directory (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/381">#381</a>)</li>
<li><a
href="aa1290542e"><code>aa12905</code></a>
chore: update known checksums for 0.6.16 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/378">#378</a>)</li>
<li><a
href="fcaddda076"><code>fcaddda</code></a>
chore: update known checksums for 0.6.15 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/377">#377</a>)</li>
<li><a
href="fb3a0a97fa"><code>fb3a0a9</code></a>
log info on venv activation (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/375">#375</a>)</li>
<li>See full diff in <a
href="https://github.com/astral-sh/setup-uv/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
**Description:** This is a document change regarding integration with
package `langchain-anthropic` for newly released websearch tool ([Claude
doc](https://docs.anthropic.com/en/docs/build-with-claude/tool-use/web-search-tool)).
Issue 1: The sample in [Web Search
section](https://python.langchain.com/docs/integrations/chat/anthropic/#web-search)
did not run. You would get an error as below:
```
File "my_file.py", line 170, in call
model_with_tools = model.bind_tools([websearch_tool])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/langchain_anthropic/chat_models.py", line 1363, in bind_tools
tool if _is_builtin_tool(tool) else convert_to_anthropic_tool(tool)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/langchain_anthropic/chat_models.py", line 1645, in convert_to_anthropic_tool
input_schema=oai_formatted["parameters"],
~~~~~~~~~~~~~^^^^^^^^^^^^^^
KeyError: 'parameters'
```
This is because websearch tool is only recently supported in
langchain-anthropic==0.3.13`, in [0.3.13
release](https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-anthropic%3D%3D0%22&expanded=true)
mentioning:
> anthropic[patch]: support web search
(https://github.com/langchain-ai/langchain/pull/31157)
Issue 2: The current doc has outdated package requirements for Websearch
tool: "This guide requires langchain-anthropic>=0.3.10".
Changes:
- Updated the required `langchain-anthropic` package version (0.3.10 ->
0.3.13).
- Added notes to user when using websearch sample.
I believe this will help avoid future confusion from readers.
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
* Remove unnecessary cast of id -> str (can do with a field setting)
* Remove unnecessary `set_text` model validator (can be done with a
computed field - though we had to make some changes to the `Generation`
class to make this possible
Before: ~2.4s
Blue circles represent time spent in custom validators :(
<img width="1337" alt="Screenshot 2025-05-14 at 10 10 12 AM"
src="https://github.com/user-attachments/assets/bb4f477f-4ee3-4870-ae93-14ca7f197d55"
/>
After: ~2.2s
<img width="1344" alt="Screenshot 2025-05-14 at 10 11 03 AM"
src="https://github.com/user-attachments/assets/99f97d80-49de-462f-856f-9e7e8662adbc"
/>
We still want to optimize the backwards compatible tool calls model
validator, though I think this might involve breaking changes, so wanted
to separate that into a different PR. This is circled in green.
**Description:** Before this commit, if one record is batched in more
than 32k rows for sqlite3 >= 3.32 or more than 999 rows for sqlite3 <
3.31, the `record_manager.delete_keys()` will fail, as we are creating a
query with too many variables.
This commit ensures that we are batching the delete operation leveraging
the `cleanup_batch_size` as it is already done for `full` cleanup.
Added unit tests for incremental mode as well on different deleting
batch size.
1. Removes summation of `ChatGenerationChunk` from hot loops in `stream`
and `astream`
2. Removes run id gen from loop as well (minor impact)
Again, benchmarking on processing ~200k chunks (a poem about broccoli).
Before: ~4.2s
Blue circle is all the time spent adding up gen chunks
<img width="1345" alt="Screenshot 2025-05-14 at 7 48 33 AM"
src="https://github.com/user-attachments/assets/08a59d78-134d-4cd3-9d54-214de689df51"
/>
After: ~2.3s
Blue circle is remaining time spent on adding chunks, which can be
minimized in a future PR by optimizing the `merge_content`,
`merge_dicts`, and `merge_lists` utilities.
<img width="1353" alt="Screenshot 2025-05-14 at 7 50 08 AM"
src="https://github.com/user-attachments/assets/df6b3506-929e-4b6d-b198-7c4e992c6d34"
/>
1. Remove `shielded` decorator from non-end event handlers
2. Exit early with a `self.handlers` check instead of doing unnecessary
asyncio work
Using a benchmark that processes ~200k chunks (a poem about broccoli).
Before: ~15s
Circled in blue is unnecessary event handling time. This is addressed by
point 2 above
<img width="1347" alt="Screenshot 2025-05-14 at 7 37 53 AM"
src="https://github.com/user-attachments/assets/675e0fed-8f37-46c0-90b3-bef3cb9a1e86"
/>
After: ~4.2s
The total time is largely reduced by the removal of the `shielded`
decorator, which holds little significance for non-end handlers.
<img width="1348" alt="Screenshot 2025-05-14 at 7 37 22 AM"
src="https://github.com/user-attachments/assets/54be8a3e-5827-4136-a87b-54b0d40fe331"
/>
Extend Google parameters in the embeddings tab to include Google GenAI
(Gemini)
**Description:** Update embeddings tab to include example for Google
GenAI (Gemini)
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Updates two notebooks in the how_to documentation to
reflect new loader interfaces and functionalities.
- **Issue:** Some how_to notebooks were still using loader interfaces
from previous versions of LangChain and did not demonstrate the latest
loader functionalities (e.g., extracting images with `ImageBlobParser`,
extracting tables in specific output formats, parsing documents using
Vision-Language Models with `ZeroxPDFLoader`, and using
`CloudBlobLoader` in the `GenericLoader`, etc.).
- **Dependencies:** `py-zerox`
- **Twitter handle:** @MarcMedlock2
---------
Co-authored-by: Marc Medlock <marc.medlock@octo.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
- [ ] **Docs Update**: "langchain-cloudflare: add env var references in
example notebooks"
- We've updated our Cloudflare integration example notebooks with
examples showing environmental variables to initialize the class
instances.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
Changed toolkit=ExampleTookit to toolkit = ExampleToolkit(...) in
tools.mdx file
- [ ] **PR message**: ***Changed toolkit=ExampleTookit to toolkit =
ExampleToolkit(...) in tools.mdx file
- [ ] ***
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: SiddharthAnandShorthillsAI <siddharth.anand@shorthills.ai>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
…map.ipynb
Update openweathermap markdown file for tools
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Replace the deprecated load_tools
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.
This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool
@tool
def get_weather(location: str) -> str:
"""Get weather at a location."""
return "It's sunny."
gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])
input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])
assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)
response = openai.invoke( # currently raises 400 / BadRequestError
[input_message, tool_call_message, tool_message]
)
```
Here we ignore function calls if tool calls are present.
**Description**: The 'inspect' package in python skips over the aliases
set in the schema of a pydantic model. This is a workound to include the
aliases from the original input.
**issue**: #31035
Cc: @ccurme @eyurtsev
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- **Description:** Integrated the Bright Data package to enable
Langchain users to seamlessly incorporate Bright Data into their agents.
- **Dependencies:** None
- **LinkedIn handle**:[Bright
Data](https://www.linkedin.com/company/bright-data)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** The Aerospike Vector Search vector store integration
has moved out of langchain-community and to its own repository,
https://github.com/aerospike/langchain-aerospike. This PR updates
langchain documentation to reference it.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
Updated the import path for `DoctranPropertyExtractor` from
`langchain_community.document_loaders` to
`langchain_community.document_transformers` in multiple locations to
reflect recent package structure changes. Also corrected a minor typo in
the word "variable".
**Issue:**
N/A
**Dependencies:**
N/A
**LinkedIn handle:** For shout out if announced [Asif
Mehmood](https://www.linkedin.com/in/asifmehmood1997/).
**Description:**
Fix the merge logic in `CharacterTextSplitter.split_text` so that when
using a regex lookahead separator (`is_separator_regex=True`) with
`keep_separator=False`, the raw pattern is not re-inserted between
chunks.
**Issue:**
Fixes#31136
**Dependencies:**
None
**Twitter handle:**
None
Since this is my first open-source PR, please feel free to point out any
mistakes, and I'll be eager to make corrections.
Anthropic updated how they report token counts during streaming today.
See changes to `MessageDeltaUsage` in [this
commit](2da00f26c5 (diff-1a396eba0cd9cd8952dcdb58049d3b13f6b7768ead1411888d66e28211f7bfc5)).
It's clean and simple to grab these fields from the final
`message_delta` event. However, some of them are typed as Optional, and
language
[here](e42451ab3f/src/anthropic/lib/streaming/_messages.py (L462))
suggests they may not always be present. So here we take the required
field from the `message_delta` event as we were doing previously, and
ignore the rest.
partners: (langchain-openai) total_tokens should not add 'Nonetype' t…
# PR Description
## Description
Fixed an issue in `langchain-openai` where `total_tokens` was
incorrectly adding `None` to an integer, causing a TypeError. The fix
ensures proper type checking before adding token counts.
## Issue
Fixes the TypeError traceback shown in the image where `'NoneType'`
cannot be added to an integer.
## Dependencies
None
## Twitter handle
None

Co-authored-by: qiulijie <qiulijie@yuaiweiwu.com>
**Library Repo Path Update **: "langchain-cloudflare"
We recently changed our `langchain-cloudflare` repo to allow for future
libraries.
Created a `libs` folder to hold `langchain-cloudflare` python package.
https://github.com/cloudflare/langchain-cloudflare/tree/main/libs/langchain-cloudflare
On `langchain`, updating `packages.yaml` to point to new
`libs/langchain-cloudflare` library folder.
This PR fixes a grammar issue in the sentence:
"A chat prompt is made up a of a list of messages..." → "A chat prompt
is made up of a list of messages. "
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Update Pinecone notebook example
- **Issue:** N\A
- **Dependencies:** N\A
- **Twitter handle:** N\A
- [ x ] **Add tests and docs**: Just notebook updates
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** The deprecated initialize_agent functionality is
replaced with create_react_agent for the google tools. Also noticed a
potential issue with the non-existent "google-drive-search" which was
used in the old `google-drive.ipynb`. If this should be a by default
available tool, an issue should be opened to modify
langchain-community's `load_tools` accordingly.
- **Issue:** #29277
- **Dependencies:** No added dependencies
- **Twitter handle:** No Twitter account
This PR brings several improvements and modernizations to the
documentation around the Astra DB partner package.
- language alignment for better matching with the terms used in the
Astra DB docs
- updated several links to pages on said documentation
- for the `AstraDBVectorStore`, added mentions of the new features in
the overall `astra.mdx`
- for the vector store, rewritten/upgraded most of the usage example
notebook for a more straightforward experience able to highlight the
main usage patterns (including new ones such as the newly-introduced
"autodetect feature")
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**What does this PR do?**
This PR replaces deprecated usages of ```.dict()``` with
```.model_dump()``` to ensure compatibility with Pydantic v2 and prepare
for v3, addressing the deprecation warning
```PydanticDeprecatedSince20``` as required in [Issue#
31103](https://github.com/langchain-ai/langchain/issues/31103).
**Changes made:**
* Replaced ```.dict()``` with ```.model_dump()``` in multiple locations
* Ensured consistency with Pydantic v2 migration guidelines
* Verified compatibility across affected modules
**Notes**
* This is a code maintenance and compatibility update
* Tested locally with Pydantic v2.11
* No functional logic changes; only internal method replacements to
prevent deprecation issues
When aggregating AIMessageChunks in a stream, core prefers the leftmost
non-null ID. This is problematic because:
- Core assigns IDs when they are null to `f"run-{run_manager.run_id}"`
- The desired meaningful ID might not be available until midway through
the stream, as is the case for the OpenAI Responses API.
For the OpenAI Responses API, we assign message IDs to the top-level
`AIMessage.id`. This works in `.(a)invoke`, but during `.(a)stream` the
IDs get overwritten by the defaults assigned in langchain-core. These
IDs
[must](https://community.openai.com/t/how-to-solve-badrequesterror-400-item-rs-of-type-reasoning-was-provided-without-its-required-following-item-error-in-responses-api/1151686/9)
be available on the AIMessage object to support passing reasoning items
back to the API (e.g., if not using OpenAI's `previous_response_id`
feature). We could add them elsewhere, but seeing as we've already made
the decision to store them in `.id` during `.(a)invoke`, addressing the
issue in core lets us fix the problem with no interface changes.
- **Description:** `ChatAnthropic.get_num_tokens_from_messages` does not
currently receive `kwargs` and pass those on to
`self._client.beta.messages.count_tokens`. This is a problem if you need
to pass specific options to `count_tokens`, such as the `thinking`
option. This PR fixes that.
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @bengladwell
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
**Description**:
* Starting to put together some PR's to fix the typing around
`langchain-chroma` `filter` and `where_document` query filtering, as
mentioned:
https://github.com/langchain-ai/langchain/issues/30879https://github.com/langchain-ai/langchain/issues/30507
The typing of `dict[str, str]` is on the one hand too restrictive (marks
valid filter expressions as ill-typed) and also too permissive (allows
illegal filter expressions). That's not what this PR addresses though.
This PR just removes from the documentation some examples of filters
that are illegal, and also syntactically incorrect: (a) dictionaries
with keys like `$contains` but the key is missing quotation marks; (b)
dictionaries with multiple entries - this is illegal in Chroma filter
syntax and will raise an exception. (`{"foo": "bar", "qux": "baz"}`).
Filter dictionaries in Chroma must have one and one key only. Again this
is just the documentation issue, which is the lowest hanging fruit. I
also think we need to update the types for `filter` and `where_document`
to be (at the very least `dict[str, Any]`), or, since we have access to
Chroma's types, they should be `Where` and `WhereDocument` types. This
has a wider blast radius though, so I'm starting small.
This PR does not fix the issues mentioned above, it's just starting to
get the ball rolling, and cleaning up the documentation.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Really Him <hesereallyhim@proton.me>
This PR includes the following documentation fixes for the SAP HANA
Cloud vector store integration:
- Removed stale output from the `%pip install` code cell.
- Replaced an unrelated vectorstore documentation link on the provider
overview page.
- Renamed the provider from "SAP HANA" to "SAP HANA Cloud"
# What's Changed?
- [x] 1. docs: **docs/docs/integrations/chat/litellm.ipynb** : Updated
with docs for litellm_router since it has been moved into the
[langchain-litellm](https://github.com/Akshay-Dongare/langchain-litellm)
package along with ChatLiteLLM
- [x] 2. docs: **docs/docs/integrations/chat/litellm_router.ipynb** :
Deleted to avoid redundancy
- [x] 3. docs: **docs/docs/integrations/providers/litellm.mdx** :
Updated to reflect inclusion of ChatLiteLLMRouter class
- [x] Lint and test: Done
# Issue:
- [x] Related to the issue
https://github.com/langchain-ai/langchain/issues/30368
# About me
- [x] 🔗 LinkedIn:
[akshay-dongare](https://www.linkedin.com/in/akshay-dongare/)
Hi there, I'm Célina from 🤗,
This PR introduces support for Hugging Face's serverless Inference
Providers (documentation
[here](https://huggingface.co/docs/inference-providers/index)), allowing
users to specify different providers for chat completion and text
generation tasks.
This PR also removes the usage of `InferenceClient.post()` method in
`HuggingFaceEndpoint`, in favor of the task-specific `text_generation`
method. `InferenceClient.post()` is deprecated and will be removed in
`huggingface_hub v0.31.0`.
---
## Changes made
- bumped the minimum required version of the `huggingface-hub` package
to ensure compatibility with the latest API usage.
- added a `provider` field to `HuggingFaceEndpoint`, enabling users to
select the inference provider (e.g., 'cerebras', 'together',
'fireworks-ai'). Defaults to `hf-inference` (HF Inference API).
- replaced the deprecated `InferenceClient.post()` call in
`HuggingFaceEndpoint` with the task-specific `text_generation` method
for future-proofing, `post()` will be removed in huggingface-hub
v0.31.0.
- updated the `ChatHuggingFace` component:
- added async and streaming support.
- added support for tool calling.
- exposed underlying chat completion parameters for more granular
control.
- Added integration tests for `ChatHuggingFace` and updated the
corresponding unit tests.
✅ All changes are backward compatible.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Follow up to https://github.com/langchain-ai/langsmith-sdk/pull/1696,
I've bumped the `langsmith` version where applicable in `uv.lock`.
Type checking problems here because deps have been updated in
`pyproject.toml` and `uv lock` hasn't been run - we should enforce that
in the future - goes with the other dependabot todos :).
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
Added support for retrieving column comments in the SQL Database
utility. This feature allows users to see comments associated with
database columns when querying table information. Column comments
provide valuable metadata that helps LLMs better understand the
semantics and purpose of database columns.
A new optional parameter `get_col_comments` was added to the
`get_table_info` method, defaulting to `False` for backward
compatibility. When set to `True`, it retrieves and formats column
comments for each table.
Currently, this feature is supported on PostgreSQL, MySQL, and Oracle
databases.
## Implementation
You should create Table with column comments before.
```python
db = SQLDatabase.from_uri("YOUR_DB_URI")
print(db.get_table_info(get_col_comments=True))
```
## Result
```
CREATE TABLE test_table (
name VARCHAR
school VARCHAR)
/*
Column Comments: {'name': person name, 'school":school_name}
*/
/*
3 rows from test_table:
name
a
b
c
*/
```
## Benefits
1. Enhances LLM's understanding of database schema semantics
2. Preserves valuable domain knowledge embedded in database design
3. Improves accuracy of SQL query generation
4. Provides more context for data interpretation
Tests are available in
`langchain/libs/community/tests/test_sql_get_table_info.py`.
---------
Co-authored-by: chbae <chbae@gcsc.co.kr>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:**
This PR marks the `HanaDB` vector store (and related utilities) in
`langchain_community` as deprecated using the `@deprecated` annotation.
- Set `since="0.1.0"` and `removal="1.0"`
- Added a clear migration path and a link to the SAP-maintained
replacement in the
[`langchain_hana`](https://github.com/SAP/langchain-integration-for-sap-hana-cloud)
package.
Additionally, the example notebook has been updated to use the new
`HanaDB` class from `langchain_hana`, ensuring users follow the
recommended integration moving forward.
- **Issue:** None
- **Dependencies:** None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
The `_chunk_size` has not changed by method `self._tokenize`, So i think
these is duplicate code.
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
This PR brings some much-needed updates to some of the Astra DB shorter
example notebooks,
- ensuring imports are from the partner package instead of the
(deprecated) community legacy package
- improving the wording in a few related places
- updating the constructor signature introduced with the latest partner
package's AstraDBLoader
- marking the community package counterpart of the LLM caches as
deprecated in the summary table at the end of the page.
This is a PR to return the message attachments in _get_response, as when
files are generated these attachments are not returned thus generated
files cannot be retrieved
Fixes issue: https://github.com/langchain-ai/langchain/issues/30851
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
community: fix browserbase integration
docs: update docs
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Updated BrowserbaseLoader to use the new python sdk.
- **Issue:** update browserbase integration with langchain
- **Dependencies:** n/a
- **Twitter handle:** @kylejeong21
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Following https://github.com/langchain-ai/langchain/pull/30909: need to
retain "empty" reasoning output when streaming, e.g.,
```python
{'id': 'rs_...', 'summary': [], 'type': 'reasoning'}
```
Tested by existing integration tests, which are currently failing.
This PR adds Google Gemini (via AI Studio and Gemini API). Feel free to
change the ordering, if needed.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR restructures the main Google integrations documentation page
(`docs/docs/integrations/providers/google.mdx`) for better clarity and
updates content.
**Key changes:**
* **Separated Sections:** Divided integrations into distinct `Google
Generative AI (Gemini API & AI Studio)`, `Google Cloud`, and `Other
Google Products` sections.
* **Updated Generative AI:** Refreshed the introduction and the `Google
Generative AI` section with current information and quickstart examples
for the Gemini API via `langchain-google-genai`.
* **Reorganized Content:** Moved non-Cloud Platform specific
integrations (e.g., Drive, GMail, Search tools, ScaNN) to the `Other
Google Products` section.
* **Cleaned Up:** Minor improvements to descriptions and code snippets.
This aims to make it easier for users to find the relevant Google
integrations based on whether they are using the Gemini API directly or
Google Cloud services.
| Before | After |
|-----------------------|------------|
| 
| 
|
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] **PR title**: "community: add indexname to other functions in
opensearch"
- [x] **PR message**:
- **Description:** add ability to over-ride index-name if provided in
the kwargs of sub-functions. When used in WSGI application it's crucial
to be able to dynamically change parameters.
- [ ] **Add tests and docs**:
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Chat models currently implement support for:
- images in OpenAI Chat Completions format
- other multimodal types (e.g., PDF and audio) in a cross-provider
[standard
format](https://python.langchain.com/docs/how_to/multimodal_inputs/)
Here we update core to extend support to PDF and audio input in Chat
Completions format. **If an OAI-format PDF or audio content block is
passed into any chat model, it will be transformed to the LangChain
standard format**. We assume that any chat model supporting OAI-format
PDF or audio has implemented support for the standard format.
`mixtral-8x-7b-instruct` was recently retired from Fireworks Serverless.
Here we remove the default model altogether, so that the model must be
explicitly specified on init:
```python
ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct") # for example
```
We also set a null default for `temperature`, which previously defaulted
to 0.0. This parameter will no longer be included in request payloads
unless it is explicitly provided.
**langchain_openai: Support of reasoning summary streaming**
**Description:**
OpenAI API now supports streaming reasoning summaries for reasoning
models (o1, o3, o3-mini, o4-mini). More info about it:
https://platform.openai.com/docs/guides/reasoning#reasoning-summaries
It is supported only in Responses API (not Completion API), so you need
to create LangChain Open AI model as follows to support reasoning
summaries streaming:
```
llm = ChatOpenAI(
model="o4-mini", # also o1, o3, o3-mini support reasoning streaming
use_responses_api=True, # reasoning streaming works only with responses api, not completion api
model_kwargs={
"reasoning": {
"effort": "high", # also "low" and "medium" supported
"summary": "auto" # some models support "concise" summary, some "detailed", but auto will always work
}
}
)
```
Now, if you stream events from llm:
```
async for event in llm.astream_events(prompt, version="v2"):
print(event)
```
or
```
for chunk in llm.stream(prompt):
print (chunk)
```
OpenAI API will send you new types of events:
`response.reasoning_summary_text.added`
`response.reasoning_summary_text.delta`
`response.reasoning_summary_text.done`
These events are new, so they were ignored. So I have added support of
these events in function `_convert_responses_chunk_to_generation_chunk`,
so reasoning chunks or full reasoning added to the chunk
additional_kwargs.
Example of how this reasoning summary may be printed:
```
async for event in llm.astream_events(prompt, version="v2"):
if event["event"] == "on_chat_model_stream":
chunk: AIMessageChunk = event["data"]["chunk"]
if "reasoning_summary_chunk" in chunk.additional_kwargs:
print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
elif "reasoning_summary" in chunk.additional_kwargs:
print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
elif chunk.content and chunk.content[0]["type"] == "text":
print(chunk.content[0]["text"], end="")
```
or
```
for chunk in llm.stream(prompt):
if "reasoning_summary_chunk" in chunk.additional_kwargs:
print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
elif "reasoning_summary" in chunk.additional_kwargs:
print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
elif chunk.content and chunk.content[0]["type"] == "text":
print(chunk.content[0]["text"], end="")
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
PR title:
docs: add Valyu integration documentation
Description:
This PR adds documentation and example notebooks for the Valyu
integration, including retriever and tool usage.
Issue:
N/A
Dependencies:
No new dependencies.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- [x] **PR message**:
- **Description:** Updates the documentation for the
langchain-predictionguard package, adding tool calling functionality and
some new parameters.
PR Summary
This change adds a fallback in ChatAnthropic.with_structured_output() to
handle Pydantic models that don’t include a docstring. Without it,
calling:
```py
from pydantic import BaseModel
from langchain_anthropic import ChatAnthropic
class SampleModel(BaseModel):
sample_field: str
llm = ChatAnthropic(
model="claude-3-7-sonnet-latest"
).with_structured_output(SampleModel.model_json_schema())
llm.invoke("test")
```
will raise a
```
KeyError: 'description'
```
because Pydantic omits the description field when no docstring is
present.
This issue doesn’t occur when using ChatOpenAI or if you add a docstring
to the model:
```py
from pydantic import BaseModel
from langchain_openai import ChatOpenAI
class SampleModel(BaseModel):
"""Schema for sample_field output."""
sample_field: str
llm = ChatOpenAI(
model="gpt-4o-mini"
).with_structured_output(SampleModel.model_json_schema())
llm.invoke("test")
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Addresses #30158
When using the output parser—either in a chain or standalone—hitting
max_tokens triggers a misleading “missing variable” error instead of
indicating the output was truncated. This subtle bug often surfaces with
Anthropic models.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
PR title:
Community: Add bind variable support for oracle adb docloader
Description:
This PR adds support of using bind variable to oracle adb doc loader
class, including minor document change.
Issue:
N/A
Dependencies:
No new dependencies.
This is a follow-on PR to go with the identical changes that were made
in parters/openai.
Previous PR: https://github.com/langchain-ai/langchain/pull/30757
When calling embed_documents and providing a chunk_size argument, that
argument is ignored when OpenAIEmbeddings is instantiated with its
default configuration (where check_embedding_ctx_length=True).
_get_len_safe_embeddings specifies a chunk_size parameter but it's not
being passed through in embed_documents, which is its only caller. This
appears to be an oversight, especially given that the
_get_len_safe_embeddings docstring states it should respect "the set
embedding context length and chunk size."
Developers typically expect method parameters to take effect (also, take
precedence) when explicitly provided, especially when instantiating
using defaults. I was confused as to why my API calls were being
rejected regardless of the chunk size I provided.
When calling `embed_documents` and providing a `chunk_size` argument,
that argument is ignored when `OpenAIEmbeddings` is instantiated with
its default configuration (where `check_embedding_ctx_length=True`).
`_get_len_safe_embeddings` specifies a `chunk_size` parameter but it's
not being passed through in `embed_documents`, which is its only caller.
This appears to be an oversight, especially given that the
`_get_len_safe_embeddings` docstring states it should respect "the set
embedding context length and chunk size."
Developers typically expect method parameters to take effect (also, take
precedence) when explicitly provided, especially when instantiating
using defaults. I was confused as to why my API calls were being
rejected regardless of the chunk size I provided.
This bug also exists in langchain_community package. I can add that to
this PR if requested otherwise I will create a new one once this passes.
**Description:**
partners-anthropic: ChatAnthropic supports b64 and urls in the
part[image_url][url] message variable
**Issue**:
ChatAnthropic right now only supports b64 encoded images in the
part[image_url][url] message variable. This PR enables ChatAnthropic to
also accept image urls in said variable and makes it compatible with
OpenAI messages to make model switching easier.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
SingleStore integration now has its package `langchain-singlestore', so
the community implementation will no longer be maintained.
Added `deprecated` decorator to `SingleStoreDBChatMessageHistory`,
`SingleStoreDBSemanticCache`, and `SingleStoreDB` classes in the
community package.
**Dependencies:** https://github.com/langchain-ai/langchain/pull/30841
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Support "usage_metadata" for LiteLLM streaming calls.
This is a follow-up to
https://github.com/langchain-ai/langchain/pull/30625, which tackled
non-streaming calls.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
- [ ] **PR message**:
- **Description:** including metadata_field in
max_marginal_relevance_search() would result in error, changed the logic
to be similar to how it's handled in similarity_search, where it can be
any field or simply a "*" to include every field
* Remove unused ignores
* Add type ignore codes
* Add mypy rule `warn_unused_ignores`
* Add ruff rule PGH003
NB: some `type: ignore[unused-ignore]` are added because the ignores are
needed when `extended_testing_deps.txt` deps are installed.
- Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- Where "package" is whichever of langchain, core, etc. is being modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI changes.
- Example: "core: add foobar LLM"
- [ ]**PR message**: ***Delete this entire checklist*** and replace with
@@ -24,6 +24,5 @@ Additional guidelines:
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in langchain.
If no one reviews your PR within a few days, please @-mention one of baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" ),\n",
" Tool(\n",
" name=\"Ruff QA System\",\n",
" name=\"ruff_qa_system\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.\",\n",
" ),\n",
@@ -186,94 +192,116 @@
},
{
"cell_type": "code",
"execution_count": 45,
"id": "fc47f230",
"execution_count": 11,
"id": "70c461d8-aaca-4f2a-9a93-bf35841cc615",
"metadata": {},
"outputs": [],
"source": [
"# Construct the agent. We will use the default agent type here.\n",
"# See documentation for a full list of options.\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.\n",
"Action: State of Union QA System\n",
"Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\u001b[0m\n",
" Biden said that he nominated Ketanji Brown Jackson for the United States Supreme Court and praised her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"In the State of the Union address, Biden said that he nominated Ketanji Brown Jackson for the United States Supreme Court and praised her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n"
]
},
{
"data": {
"text/plain": [
"\"Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\""
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\n",
" \"What did biden say about ketanji brown jackson in the state of the union address?\"\n",
")"
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"What did biden say about ketanji brown jackson in the state of the union address?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "4e91b811",
"execution_count": 13,
"id": "e836b4cd-abf7-49eb-be0e-b9ad501213f3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"Why use ruff over flake8?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out the advantages of using ruff over flake8\n",
"Action: Ruff QA System\n",
"Action Input: What are the advantages of using ruff over flake8?\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.\u001b[0m\n",
"There are a few reasons why someone might choose to use Ruff over Flake8:\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"1. Larger rule set: Ruff implements over 800 rules, while Flake8 only implements around 200. This means that Ruff can catch more potential issues in your code.\n",
"\n",
"2. Better compatibility with other tools: Ruff is designed to work well with other tools like Black, isort, and type checkers like Mypy. This means that you can use Ruff alongside these tools to get more comprehensive feedback on your code.\n",
"\n",
"3. Automatic fixing of lint violations: Unlike Flake8, Ruff is capable of automatically fixing its own lint violations. This can save you time and effort when fixing issues in your code.\n",
"\n",
"4. Native implementation of popular Flake8 plugins: Ruff re-implements some of the most popular Flake8 plugins natively, which means you don't have to install and configure multiple plugins to get the same functionality.\n",
"\n",
"Overall, Ruff offers a more comprehensive and user-friendly experience compared to Flake8, making it a popular choice for many developers.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"You might choose to use Ruff over Flake8 for several reasons:\n",
"\n",
"1. Ruff has a much larger rule set, implementing over 800 rules compared to Flake8's roughly 200, so it can catch more potential issues.\n",
"2. Ruff is designed to work better with other tools like Black, isort, and type checkers like Mypy, providing more comprehensive code feedback.\n",
"3. Ruff can automatically fix its own lint violations, which Flake8 cannot, saving time and effort.\n",
"4. Ruff natively implements some popular Flake8 plugins, so you don't need to install and configure multiple plugins separately.\n",
"\n",
"Overall, Ruff offers a more comprehensive and user-friendly experience compared to Flake8.\n"
]
},
{
"data": {
"text/plain": [
"'Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"Why use ruff over flake8?\")"
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"Why use ruff over flake8?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
@@ -296,20 +324,20 @@
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": 14,
"id": "f59b377e",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name=\"Stateof Union QA System\",\n",
" name=\"state_of_union_qa_system\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" return_direct=True,\n",
" ),\n",
" Tool(\n",
" name=\"Ruff QA System\",\n",
" name=\"ruff_qa_system\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.\",\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out what Biden said about Ketanji Brown Jackson in the State of the Union address.\n",
"Action: State of Union QA System\n",
"Action Input: What did Biden say about Ketanji Brown Jackson in the State of the Union address?\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
" Biden said that he nominated Ketanji Brown Jackson for the United States Supreme Court and praised her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n"
]
},
{
"data": {
"text/plain": [
"\" Biden said that Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence.\""
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\n",
" \"What did biden say about ketanji brown jackson in the state of the union address?\"\n",
")"
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"What did biden say about ketanji brown jackson in the state of the union address?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "edfd0a1a",
"execution_count": 17,
"id": "88f08d86-7972-4148-8128-3ac8898ad68a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"Why use ruff over flake8?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out the advantages of using ruff over flake8\n",
"Action: Ruff QA System\n",
"Action Input: What are the advantages of using ruff over flake8?\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
" Ruff has a larger rule set, supports automatic fixing of lint violations, and does not require the installation of additional plugins. It also has better compatibility with Black and can be used alongside a type checker for more comprehensive code analysis.\n"
]
},
{
"data": {
"text/plain": [
"' Ruff can be used as a drop-in replacement for Flake8 when used (1) without or with a small number of plugins, (2) alongside Black, and (3) on Python 3 code. It also re-implements some of the most popular Flake8 plugins and related code quality tools natively, including isort, yesqa, eradicate, and most of the rules implemented in pyupgrade. Ruff also supports automatically fixing its own lint violations, which Flake8 does not.'"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"Why use ruff over flake8?\")"
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"Why use ruff over flake8?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
@@ -417,19 +447,19 @@
},
{
"cell_type": "code",
"execution_count": 57,
"execution_count": 18,
"id": "d397a233",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name=\"Stateof Union QA System\",\n",
" name=\"state_of_union_qa_system\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.\",\n",
" ),\n",
" Tool(\n",
" name=\"Ruff QA System\",\n",
" name=\"ruff_qa_system\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.\",\n",
" ),\n",
@@ -438,60 +468,60 @@
},
{
"cell_type": "code",
"execution_count": 58,
"id": "06157240",
"execution_count": 19,
"id": "41743f29-150d-40ba-aa8e-3a63c32216aa",
"metadata": {},
"outputs": [],
"source": [
"# Construct the agent. We will use the default agent type here.\n",
"# See documentation for a full list of options.\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m I need to find out what tool ruff uses to run over Jupyter Notebooks, and if the president mentioned it in the state of the union.\n",
"Action: Ruff QA System\n",
"Action Input: What tool does ruff use to run over Jupyter Notebooks?\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m Ruff is integrated into nbQA, a tool for running linters and code formatters over Jupyter Notebooks. After installing ruff and nbqa, you can run Ruff over a notebook like so: > nbqa ruff Untitled.html\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now need to find out if the president mentioned this tool in the state of the union.\n",
"Action: State of Union QA System\n",
"Action Input: Did the president mention nbQA in the state of the union?\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m No, the president did not mention nbQA in the state of the union.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: No, the president did not mention nbQA in the state of the union.\u001b[0m\n",
" No, the president did not mention the tool that ruff uses to run over Jupyter Notebooks in the state of the union.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"Ruff does not support source.organizeImports and source.fixAll code actions in Jupyter Notebooks. Additionally, the president did not mention the tool that ruff uses to run over Jupyter Notebooks in the state of the union.\n"
]
},
{
"data": {
"text/plain": [
"'No, the president did not mention nbQA in the state of the union.'"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\n",
" \"What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?\"\n",
")"
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?\",\n",
@@ -48,7 +48,7 @@ From the opposite direction, scientists use `LangChain` in research and referenc
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022‑05‑25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022‑03‑15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022‑02‑01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021‑12‑02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021‑12‑02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021‑02‑26 | `API:` [langchain_experimental.open_clip](https://python.langchain.com/api_reference/experimental/open_clip.html)
| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020‑05‑28 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020‑05‑22 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts)
@@ -9,7 +9,7 @@ LLM based applications often involve a lot of I/O-bound operations, such as maki
:::note
You are expected to be familiar with asynchronous programming in Python before reading this guide. If you are not, please find appropriate resources online to learn how to program asynchronously in Python.
This guide specifically focuses on what you need to know to work with LangChain in an asynchronous context, assuming that you are already familiar with asynch
This guide specifically focuses on what you need to know to work with LangChain in an asynchronous context, assuming that you are already familiar with asynchronous programming.
LangChain provides a callback system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
You can subscribe to these events by using the `callbacks` argument available throughout the API. This argument is list of handler objects, which are expected to implement one or more of the methods described below in more detail.
You can subscribe to these events by using the `callbacks` argument available throughout the API. This argument is a list of handler objects, which are expected to implement one or more of the methods described below in more detail.
Multimodal support is still relatively new and less common, model providers have not yet standardized on the "best" way to define the API. As such, LangChain's multimodal abstractions are lightweight and flexible, designed to accommodate different model providers' APIs and interaction patterns, but are **not** standardized across models.
LangChain supports multimodal data as input to chat models:
1. Following provider-specific formats
2. Adhering to a cross-provider standard (see [how-to guides](/docs/how_to/#multimodal) for detail)
### How to use multimodal models
@@ -26,38 +29,85 @@ Multimodal support is still relatively new and less common, model providers have
#### Inputs
Some models can accept multimodal inputs, such as images, audio, video, or files. The types of multimodal inputs supported depend on the model provider. For instance, [Google's Gemini](/docs/integrations/chat/google_generative_ai/) supports documents like PDFs as inputs.
Some models can accept multimodal inputs, such as images, audio, video, or files.
The types of multimodal inputs supported depend on the model provider. For instance,
[OpenAI](/docs/integrations/chat/openai/),
[Anthropic](/docs/integrations/chat/anthropic/), and
Most chat models that support **multimodal inputs** also accept those values in OpenAI's content blocks format. So far this is restricted to image inputs. For models like Gemini which support video and other bytes input, the APIs also support the native, model-specific representations.
The gist of passing multimodal inputs to a chat model is to use content blocks that specify a type and corresponding data. For example, to pass an image to a chat model:
The gist of passing multimodal inputs to a chat model is to use content blocks that
specify a type and corresponding data. For example, to pass an image to a chat model
as URL:
```python
from langchain_core.messages import HumanMessage
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{"type": "text", "text": "Describe the weather in this image:"},
{
"type": "image",
"source_type": "url",
"url": "https://...",
},
],
)
response = model.invoke([message])
```
We can also pass the image as in-line data:
```python
from langchain_core.messages import HumanMessage
message = HumanMessage(
content=[
{"type": "text", "text": "Describe the weather in this image:"},
{
"type": "image",
"source_type": "base64",
"data": "<base64 string>",
"mime_type": "image/jpeg",
},
],
)
response = model.invoke([message])
```
To pass a PDF file as in-line data (or URL, as supported by providers such as
Anthropic), just change `"type"` to `"file"` and `"mime_type"` to `"application/pdf"`.
See the [how-to guides](/docs/how_to/#multimodal) for more detail.
Most chat models that support multimodal **image** inputs also accept those values in
@@ -32,7 +32,7 @@ The only requirement for a retriever is the ability to accepts a query and retur
In particular, [LangChain's retriever class](https://python.langchain.com/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html#) only requires that the `_get_relevant_documents` method is implemented, which takes a `query: str` and returns a list of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects that are most relevant to the query.
The underlying logic used to get relevant documents is specified by the retriever and can be whatever is most useful for the application.
A LangChain retriever is a [runnable](/docs/how_to/lcel_cheatsheet/), which is a standard interface is for LangChain components.
A LangChain retriever is a [runnable](/docs/how_to/lcel_cheatsheet/), which is a standard interface for LangChain components.
This means that it has a few common methods, including `invoke`, that are used to interact with it. A retriever can be invoked with a query:
@@ -13,23 +13,33 @@ Install `uv`: **[documentation on how to install it](https://docs.astral.sh/uv/g
This repository contains multiple packages:
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
- `langchain-community`: Third-party integrations of various components.
- `langchain`: Chains, agents, and retrieval logic that makes up the cognitive architecture of your applications.
- `langchain-experimental`: Components and chains that are experimental, either in the sense that the techniques are novel and still being tested, or they require giving the LLM more access than would be possible in most production systems.
- Partner integrations: Partner packages in `libs/partners` that are independently version controlled.
:::note
Some LangChain packages live outside the monorepo, see for example
[langchain-community](https://github.com/langchain-ai/langchain-community) for various
third-party integrations and
[langchain-experimental](https://github.com/langchain-ai/langchain-experimental) for
abstractions that are experimental (either in the sense that the techniques are novel
and still being tested, or they require giving the LLM more access than would be
possible in most production systems).
:::
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
For this quickstart, start with langchain-community:
For this quickstart, start with `langchain`:
```bash
cd libs/community
cd libs/langchain
```
## Local Development Dependencies
Install langchain-community development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
Install development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
```bash
uv sync
@@ -62,22 +72,15 @@ make docker_tests
There are also [integration tests and code-coverage](../testing.mdx) available.
### Only develop langchain_core or langchain_community
### Developing langchain_core
If you are only developing `langchain_core` or `langchain_community`, you can simply install the dependencies for the respective projects and run tests:
If you are only developing `langchain_core`, you can simply install the dependencies for the project and run tests:
```bash
cd libs/core
make test
```
Or:
```bash
cd libs/community
make test
```
## Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
"This is useful to allow for switching of prompts"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9a9ea077",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatPromptValue(messages=[HumanMessage(content=\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: foo \\nContext: bar \\nAnswer:\")])"
"ChatPromptValue(messages=[HumanMessage(content=\"[INST]<<SYS>> You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.<</SYS>> \\nQuestion: foo \\nContext: bar \\nAnswer: [/INST]\")])"
"When implementing a document loader do **NOT** provide parameters via the `lazy_load` or `alazy_load` methods.\n",
"\n",
"All configuration is expected to be passed through the initializer (__init__). This was a design choice made by LangChain to make sure that once a document loader has been instantiated it has all the information needed to load documents.\n",
":::\n",
"\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "520edbbabde7df6e",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"Install **langchain-core** and **langchain_community**."
"<contextlib._GeneratorContextManager at 0x743f34324450>"
"<contextlib._GeneratorContextManager at 0x74b8d42e9940>"
]
},
"execution_count": 14,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -498,9 +593,13 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 17,
"id": "ec8de0ab-51d7-4e41-82c9-3ce0a6fdc2cd",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.599576Z",
"start_time": "2025-04-21T08:49:58.596567Z"
},
"tags": []
},
"outputs": [
@@ -510,7 +609,7 @@
"{'foo': 'bar'}"
]
},
"execution_count": 15,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -521,9 +620,13 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 18,
"id": "19eae991-ae48-43c2-8952-7347cdb76a34",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-21T08:49:58.649634Z",
"start_time": "2025-04-21T08:49:58.646313Z"
},
"tags": []
},
"outputs": [
@@ -533,7 +636,7 @@
"'./meow.txt'"
]
},
"execution_count": 16,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -551,65 +654,50 @@
"\n",
"While a parser encapsulates the logic needed to parse binary data into documents, *blob loaders* encapsulate the logic that's necessary to load blobs from a given storage location.\n",
"\n",
"At the moment, `LangChain` only supports `FileSystemBlobLoader`.\n",
"At the moment, `LangChain` supports `FileSystemBlobLoader` and `CloudBlobLoader`.\n",
"\n",
"You can use the `FileSystemBlobLoader` to load blobs and then use the parser to parse them."
"for blob in filesystem_blob_loader.yield_blobs():\n",
" for doc in parser.lazy_parse(blob):\n",
" print(doc)\n",
" break"
@@ -620,56 +708,104 @@
"id": "f016390c-d38b-4261-946d-34eefe546df7",
"metadata": {},
"source": [
"### Generic Loader\n",
"\n",
"LangChain has a `GenericLoader` abstraction which composes a `BlobLoader` with a `BaseBlobParser`.\n",
"\n",
"`GenericLoader` is meant to provide standardized classmethods that make it easy to use existing `BlobLoader` implementations. At the moment, only the `FileSystemBlobLoader` is supported."
"Or, you can use `CloudBlobLoader` to load blobs from a cloud storage location (Supports s3://, az://, gs://, file:// schemes)."
"LangChain has a `GenericLoader` abstraction which composes a `BlobLoader` with a `BaseBlobParser`.\n",
"\n",
"`GenericLoader` is meant to provide standardized classmethods that make it easy to use existing `BlobLoader` implementations. At the moment, the `FileSystemBlobLoader` and `CloudBlobLoader` are supported. See example below:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "5dfb2be02fe662c5",
"metadata": {
"tags": []
"ExecuteTime": {
"end_time": "2025-04-21T08:50:16.244917Z",
"start_time": "2025-04-21T08:50:15.527562Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f1f6810a71a4909ac9fe1e8f8cb9e0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/8 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 7/7 [00:00<00:00, 1224.82it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='# Microsoft Office\\n' metadata={'line_number': 1, 'source': 'office_file.mdx'}\n",
"page_content='>[The Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS.\\n' metadata={'line_number': 3, 'source': 'office_file.mdx'}\n",
"page_content='This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a document format that we can use downstream.\\n' metadata={'line_number': 5, 'source': 'office_file.mdx'}\n",
"page_content='Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.\n",
"page_content='>[The Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS.\\n' metadata={'line_number': 3, 'source': 'office_file.mdx'}\n",
"page_content='This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a document format that we can use downstream.\\n' metadata={'line_number': 5, 'source': 'office_file.mdx'}\n",
"page_content='Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.\n",
"LangChain integrates with a host of PDF parsers. Some are simple and relatively low-level; others will support OCR and image-processing, or perform advanced document layout analysis. The right choice will depend on your needs. Below we enumerate the possibilities.\n",
"\n",
"We will demonstrate these approaches on a [sample file](https://github.com/langchain-ai/langchain/blob/master/libs/community/tests/integration_tests/examples/layout-parser-paper.pdf):"
"We will demonstrate these approaches on a [sample file](https://github.com/langchain-ai/langchain-community/blob/main/libs/community/tests/examples/layout-parser-paper.pdf):"
@@ -50,6 +50,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: work with local models](/docs/how_to/local_llms)
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
- [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/)
### Messages
@@ -67,6 +68,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
- [How to: use few shot examples in chat models](/docs/how_to/few_shot_examples_chat/)
- [How to: partially format prompt templates](/docs/how_to/prompts_partial)
- [How to: compose prompts together](/docs/how_to/prompts_composition)
- [How to: use multimodal prompts](/docs/how_to/multimodal_prompts/)
### Example selectors
@@ -170,7 +172,7 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
### Tools
LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-built tools.
- [How to: create tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
"Many providers will accept images passed in-line as base64 data. Some will additionally accept an image from a URL directly.\n",
"\n",
"### Images from base64 data\n",
"\n",
"To pass images in-line, format them as content blocks of the following form:\n",
"\n",
"```python\n",
"{\n",
" \"type\": \"image\",\n",
" \"source_type\": \"base64\",\n",
" \"mime_type\": \"image/jpeg\", # or image/png, etc.\n",
" \"data\": \"<base64 data string>\",\n",
"}\n",
"```\n",
"\n",
"Example:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0d9fd81a-b7f0-445a-8e3d-cfc2d31fdd59",
"execution_count": 10,
"id": "1fcf7b27-1cc3-420a-b920-0420b5892e20",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The image shows a beautiful clear day with bright blue skies and wispy cirrus clouds stretching across the horizon. The clouds are thin and streaky, creating elegant patterns against the blue backdrop. The lighting suggests it's during the day, possibly late afternoon given the warm, golden quality of the light on the grass. The weather appears calm with no signs of wind (the grass looks relatively still) and no indication of rain. It's the kind of perfect, mild weather that's ideal for walking along the wooden boardwalk through the marsh grass.\n"
"The weather in the image appears to be clear and pleasant. The sky is mostly blue with scattered, light clouds, suggesting a sunny day with minimal cloud cover. There is no indication of rain or strong winds, and the overall scene looks bright and calm. The lush green grass and clear visibility further indicate good weather conditions.\n"
"The weather in this image appears to be pleasant and clear. The sky is mostly blue with a few scattered, light clouds, and there is bright sunlight illuminating the green grass and plants. There are no signs of rain or stormy conditions, suggesting it is a calm, likely warm day—typical of spring or summer.\n"
]
}
],
"source": [
"message = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"describe the weather in this image\"},\n",
" \"text\": \"Describe the weather in this image:\",\n",
" },\n",
" {\n",
" \"type\": \"image\",\n",
" # highlight-start\n",
" \"source_type\": \"url\",\n",
" \"url\": image_url,\n",
" # highlight-end\n",
" },\n",
" ],\n",
")\n",
"response = model.invoke([message])\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"id": "8656018e-c56d-47d2-b2be-71e87827f90a",
"metadata": {},
"source": [
"We can feed the image URL directly in a content block of type \"image_url\". Note that only some model providers support this."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a8819cf3-5ddc-44f0-889a-19ca7b7fe77e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered clouds, suggesting good visibility and a likely pleasant temperature. The bright sunlight is casting distinct shadows on the grass and vegetation, indicating it is likely daytime, possibly late morning or early afternoon. The overall ambiance suggests a warm and inviting day, suitable for outdoor activities.\n"
]
}
],
"source": [
"message = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"describe the weather in this image\"},\n",
"Yes, the two images are the same. They both depict a wooden boardwalk extending through a grassy field under a blue sky with light clouds. The scenery, lighting, and composition are identical.\n"
"Yes, these two images are the same. They depict a wooden boardwalk going through a grassy field under a blue sky with some clouds. The colors, composition, and elements in both images are identical.\n"
]
}
],
"source": [
"message = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"are these two images the same?\"},\n",
"[Google Gemini](/docs/integrations/chat/google_generative_ai/)) will accept PDF documents.\n",
"\n",
"### Documents from base64 data\n",
"\n",
"To pass documents in-line, format them as content blocks of the following form:\n",
"\n",
"```python\n",
"{\n",
" \"type\": \"file\",\n",
" \"source_type\": \"base64\",\n",
" \"mime_type\": \"application/pdf\",\n",
" \"data\": \"<base64 data string>\",\n",
"}\n",
"```\n",
"\n",
"Example:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6c1455a9-699a-4702-a7e0-7f6eaec76a21",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This document appears to be a sample PDF file that contains Lorem ipsum placeholder text. It begins with a title \"Sample PDF\" followed by the subtitle \"This is a simple PDF file. Fun fun fun.\"\n",
"\n",
"The rest of the document consists of several paragraphs of Lorem ipsum text, which is a commonly used placeholder text in design and publishing. The text is formatted in a clean, readable layout with consistent paragraph spacing. The document appears to be a single page containing four main paragraphs of this placeholder text.\n",
"\n",
"The Lorem ipsum text, while appearing to be Latin, is actually scrambled Latin-like text that is used primarily to demonstrate the visual form of a document or typeface without the distraction of meaningful content. It's commonly used in publishing and graphic design when the actual content is not yet available but the layout needs to be demonstrated.\n",
"\n",
"The document has a professional, simple layout with generous margins and clear paragraph separation, making it an effective example of basic PDF formatting and structure.\n"
"will also accept documents from URLs directly.\n",
"\n",
"To pass documents as URLs, format them as content blocks of the following form:\n",
"\n",
"```python\n",
"{\n",
" \"type\": \"file\",\n",
" \"source_type\": \"url\",\n",
" \"url\": \"https://...\",\n",
"}\n",
"```\n",
"\n",
"Example:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "55e1d937-3b22-4deb-b9f0-9e688f0609dc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This document appears to be a sample PDF file with both text and an image. It begins with a title \"Sample PDF\" followed by the text \"This is a simple PDF file. Fun fun fun.\" The rest of the document contains Lorem ipsum placeholder text arranged in several paragraphs. The content is shown both as text and as an image of the formatted PDF, with the same content displayed in a clean, formatted layout with consistent spacing and typography. The document consists of a single page containing this sample text.\n"
"Some providers will support or require additional fields on content blocks containing multimodal data.\n",
"For example, Anthropic lets you specify [caching](/docs/integrations/chat/anthropic/#prompt-caching) of\n",
"specific content to reduce token consumption.\n",
"\n",
"To use these fields, you can:\n",
"\n",
"1. Store them on directly on the content block; or\n",
"2. Use the native format supported by each provider (see [chat model integrations](/docs/integrations/chat/) for detail).\n",
"\n",
"We show three examples below.\n",
"\n",
"### Example: Anthropic prompt caching"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "83593b9d-a8d3-4c99-9dac-64e0a9d397cb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The image shows a beautiful, clear day with partly cloudy skies. The sky is a vibrant blue with wispy, white cirrus clouds stretching across it. The lighting suggests it's during daylight hours, possibly late afternoon or early evening given the warm, golden quality of the light on the grass. The weather appears calm with no signs of wind (the grass looks relatively still) and no threatening weather conditions. It's the kind of perfect weather you'd want for a walk along this wooden boardwalk through the marshland or grassland area.\n"
"[{'citations': [{'cited_text': 'Sample PDF\\r\\nThis is a simple PDF file. Fun fun fun.\\r\\n',\n",
" 'document_index': 0,\n",
" 'document_title': None,\n",
" 'end_page_number': 2,\n",
" 'start_page_number': 1,\n",
" 'type': 'page_location'}],\n",
" 'text': 'Simple PDF file: fun fun',\n",
" 'type': 'text'}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message = {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"Generate a 5 word summary of this document.\",\n",
" },\n",
" {\n",
" \"type\": \"file\",\n",
" \"source_type\": \"base64\",\n",
" \"data\": pdf_data,\n",
" \"mime_type\": \"application/pdf\",\n",
" # highlight-next-line\n",
" \"citations\": {\"enabled\": True},\n",
" },\n",
" ],\n",
"}\n",
"response = llm.invoke([message])\n",
"response.content"
]
},
{
"cell_type": "markdown",
"id": "e26991eb-e769-41f4-b6e0-63d81f2c7d67",
"metadata": {},
"source": [
"### Example: OpenAI file names\n",
"\n",
"OpenAI requires that PDF documents be associated with file names:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ae076c9b-ff8f-461d-9349-250f396c9a25",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The document is a sample PDF file containing placeholder text. It consists of one page, titled \"Sample PDF\". The content is a mixture of English and the commonly used filler text \"Lorem ipsum dolor sit amet...\" and its extensions, which are often used in publishing and web design as generic text to demonstrate font, layout, and other visual elements.\n",
"\n",
"**Key points about the document:**\n",
"- Length: 1 page\n",
"- Purpose: Demonstrative/sample content\n",
"- Content: No substantive or meaningful information, just demonstration text in paragraph form\n",
"- Language: English (with the Latin-like \"Lorem Ipsum\" text used for layout purposes)\n",
"\n",
"There are no charts, tables, diagrams, or images on the page—only plain text. The document serves as an example of what a PDF file looks like rather than providing actual, useful content.\n"
"The image depicts a sunny day with a beautiful blue sky filled with scattered white clouds. The sky has varying shades of blue, ranging from a deeper hue near the horizon to a lighter, almost pale blue higher up. The white clouds are fluffy and scattered across the expanse of the sky, creating a peaceful and serene atmosphere. The lighting and cloud patterns suggest pleasant weather conditions, likely during the daytime hours on a mild, sunny day in an outdoor natural setting.\n"
"The two images provided are identical. Both images feature a wooden boardwalk path extending through a lush green field under a bright blue sky with some clouds. The perspective, colors, and elements in both images are exactly the same.\n"
"This image shows a beautiful wooden boardwalk cutting through a lush green wetland or marsh area. The boardwalk extends straight ahead toward the horizon, creating a strong leading line through the composition. On either side, tall green grasses sway in what appears to be a summer or late spring setting. The sky is particularly striking, with wispy cirrus clouds streaking across a vibrant blue background. In the distance, you can see a tree line bordering the wetland area. The lighting suggests this may be during \"golden hour\" - either early morning or late afternoon - as there's a warm, gentle quality to the light that's illuminating the scene. The wooden planks of the boardwalk appear well-maintained and provide safe passage through what would otherwise be difficult terrain to traverse. It's the kind of scene you might find in a nature preserve or wildlife refuge designed to give visitors access to observe wetland ecosystems while protecting the natural environment.\n"
"This image shows a beautiful wooden boardwalk cutting through a lush green marsh or wetland area. The boardwalk extends straight ahead toward the horizon, creating a strong leading line in the composition. The surrounding vegetation consists of tall grass and reeds in vibrant green hues, with some bushes and trees visible in the background. The sky is particularly striking, featuring a bright blue color with wispy white clouds streaked across it. The lighting suggests this photo was taken during the \"golden hour\" - either early morning or late afternoon - giving the scene a warm, peaceful quality. The raised wooden path provides accessible access through what would otherwise be difficult terrain to traverse, allowing visitors to experience and appreciate this natural environment.\n"
"A chat prompt is made up a of a list of messages. Similarly to the above example, we can concatenate chat prompt templates. Each new element is a new message in the final prompt.\n",
"A chat prompt is made up of a list of messages. Similarly to the above example, we can concatenate chat prompt templates. Each new element is a new message in the final prompt.\n",
"\n",
"First, let's initialize the a [`ChatPromptTemplate`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html) with a [`SystemMessage`](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.system.SystemMessage.html)."
"category_chain.invoke({\"input\": \"What are all the genres of Alanis Morisette songs\"})"
"category_chain.invoke({\"input\": \"What are all the genres of Alanis Morissette songs\"})"
]
},
{
@@ -261,7 +261,7 @@
"\n",
"\n",
"table_chain = category_chain | get_tables\n",
"table_chain.invoke({\"input\": \"What are all the genres of Alanis Morisette songs\"})"
"table_chain.invoke({\"input\": \"What are all the genres of Alanis Morissette songs\"})"
]
},
{
@@ -313,7 +313,7 @@
],
"source": [
"query = full_chain.invoke(\n",
" {\"question\": \"What are all the genres of Alanis Morisette songs\"}\n",
" {\"question\": \"What are all the genres of Alanis Morissette songs\"}\n",
")\n",
"print(query)"
]
@@ -346,7 +346,7 @@
"source": [
"We can see the LangSmith trace for this run [here](https://smith.langchain.com/public/4fbad408-3554-4f33-ab47-1e510a1b52a3/r).\n",
"\n",
"We've seen how to dynamically include a subset of table schemas in a prompt within a chain. Another possible approach to this problem is to let an Agent decide for itself when to look up tables by giving it a Tool to do so. You can see an example of this in the [SQL: Agents](/docs/tutorials/agents) guide."
"We've seen how to dynamically include a subset of table schemas in a prompt within a chain. Another possible approach to this problem is to let an Agent decide for itself when to look up tables by giving it a Tool to do so. You can see an example of this in the [SQL: Agents](/docs/tutorials/sql_qa/#agents) guide."
]
},
{
@@ -555,7 +555,7 @@
"source": [
"We can see that with retrieval we're able to correct the spelling from \"Elenis Moriset\" to \"Alanis Morissette\" and get back a valid result.\n",
"\n",
"Another possible approach to this problem is to let an Agent decide for itself when to look up proper nouns. You can see an example of this in the [SQL: Agents](/docs/tutorials/agents) guide."
"Another possible approach to this problem is to let an Agent decide for itself when to look up proper nouns. You can see an example of this in the [SQL: Agents](/docs/tutorials/sql_qa/#agents) guide."
"Chains are great when we know the specific sequence of tool usage needed for any user input. But for certain use cases, how many times we use tools depends on the input. In these cases, we want to let the model itself decide how many times to use tools and in what order. [Agents](/docs/tutorials/agents) let us do just this.\n",
"Chains are great when we know the specific sequence of tool usage needed for any user input. But for certain use cases, how many times we use tools depends on the input. In these cases, we want to let the model itself decide how many times to use tools and in what order. [Agents](/docs/concepts/agents/) let us do just this.\n",
"\n",
"LangChain comes with a number of built-in agents that are optimized for different use cases. Read about all the [agent types here](/docs/concepts/agents).\n",
"\n",
"We'll use the [tool calling agent](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html), which is generally the most reliable kind and the recommended one for most use cases.\n",
"We'll demonstrate a simple example using a LangGraph agent. See [this tutorial](/docs/tutorials/agents) for more detail.\n",
"The final result of taking 3 to the fifth power, multiplying it by the sum of twelve and three, and then squaring the whole result is **13,286,025**.\n"
]
},
{
"data": {
"text/plain": [
"{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n",
" 'output': 'The result of taking 3 to the fifth power is 243. \\n\\nThe sum of twelve and three is 15. \\n\\nMultiplying 243 by 15 gives 3645. \\n\\nFinally, squaring 3645 gives 13286025.'}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.invoke(\n",
" {\n",
" \"input\": \"Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result\"\n",
" }\n",
")"
"# Use the agent\n",
"\n",
"query = (\n",
" \"Take 3 to the fifth power and multiply that by the sum of twelve and \"\n",
"This example demonstrates how to get started with the SingleStore semantic cache.\n",
"\n",
"### Integration Overview\n",
"\n",
"`SingleStoreSemanticCache` leverages `SingleStoreVectorStore` to cache LLM responses directly in a SingleStore database, enabling efficient semantic retrieval and reuse of results.\n",
agent=initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,metadata={"agent_name":"GirlfriendAgeFinder"})# <- recommended, assign a custom name
"This will help you getting started with ChatAbso [chat models](https://python.langchain.com/docs/concepts/chat_models/). For detailed documentation of all ChatAbso features and configurations head to the [API reference](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html).\n",
"This will help you get started with ChatAbso [chat models](https://python.langchain.com/docs/concepts/chat_models/). For detailed documentation of all ChatAbso features and configurations, head to the [API reference](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html).\n",
"\n",
"- You can find the full documentation for the Abso router [here] (https://abso.ai)\n",
"To access ChatAbso models you'll need to create an OpenAI account, get an API key, and install the `langchain-abso` integration package.\n",
"To access ChatAbso models, you'll need to create an OpenAI account, get an API key, and install the `langchain-abso` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to ChatAbso and generate an API key. Once you've done this set the ABSO_API_KEY environment variable:"
"Head to (TODO: link) to sign up for ChatAbso and generate an API key. Once you've done this, set the ABSO_API_KEY environment variable:"
]
},
{
@@ -198,7 +198,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.12.10"
}
},
"nbformat": 4,
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.