Compare commits

...

761 Commits

Author SHA1 Message Date
William Fu-Hinthorn
e7c1199ecf chore: Use uuid7 in callback run IDs 2025-11-21 13:32:00 -08:00
ccurme
b0bf4afe81 release(core): 1.1.0 (#34063) 2025-11-21 15:57:25 -05:00
ccurme
33e5d01f7c feat(model-profiles): distribute data across packages (#34024) 2025-11-21 15:47:05 -05:00
Sydney Runkle
ee3373afc2 chore: add more robust test for runtime injection w/ explicit args_schema (#34051) 2025-11-20 16:51:37 +00:00
Sydney Runkle
b296f103a9 feat: ModelRetryMiddleware (#34027)
Closes https://github.com/langchain-ai/langchain/issues/33983

* Adds `ModelRetryMiddleware` modeled after `ToolRetryMiddleware`
* Uses `on_failure` modes of `error` and `continue` to match the
`exit_behavior` modes of model + tool call limit middleware
* In a backwards compatible manner, aligns the API of
`ToolRetryMiddleware`'s `on_failure` with the above
* Centralize common "retry" utils across these middlewares
2025-11-20 11:42:33 -05:00
Eugene Yurtsev
525d5c0169 release(core): 1.0.7 (#34036)
Release core 1.0.7
2025-11-19 21:17:31 +00:00
Eugene Yurtsev
c4b6ba254e fix(core): fix validation for input variables in f-string templates, restrict functionality supported by jinja2, mustache templates (#34035)
* Fix validation for input variables in f-string templates
* Restrict functionality of features supported by jinja2 and mustache
templates
2025-11-19 16:09:46 -05:00
Sydney Runkle
b7d1831f9d fix: deprecate setattr on ModelCallRequest (#34022)
* one alternative considered was setting `frozen=True` on the dataclass,
but this is breaking, so a deprecation is a nicer approach
2025-11-19 11:08:55 -05:00
ccurme
328ba36601 chore(openai): skip Azure text completions tests (#34021) 2025-11-19 09:29:12 -05:00
Sydney Runkle
6f677ef5c1 chore: temporarily skip openai integration tests (#34020)
getting around deprecated azure model issues blocking core release
2025-11-19 14:05:22 +00:00
Sydney Runkle
d47d41cbd3 release: langchain-core 1.0.6 (#34018) 2025-11-19 08:16:34 -05:00
William FH
32bbe99efc chore: Support tool runtime injection when custom args schema is prov… (#33999)
Support injection of injected args (like `InjectedToolCallId`,
`ToolRuntime`) when an `args_schema` is specified that doesn't contain
said args.

This allows for pydantic validation of other args while retaining the
ability to inject langchain specific arguments.

fixes https://github.com/langchain-ai/langchain/issues/33646
fixes https://github.com/langchain-ai/langchain/issues/31688

Taking a deep dive here reminded me that we definitely need to revisit
our internal tooling logic, but I don't think we should do that in this
PR.

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
2025-11-18 17:09:59 +00:00
ccurme
990e346c46 release(anthropic): 1.1 (#33997) 2025-11-17 16:24:29 -05:00
ccurme
9b7792631d feat(anthropic): support native structured output feature and strict tool calling (#33980) 2025-11-17 16:14:20 -05:00
CKLogic
558a8fe25b feat(core): add proxy support for mermaid png rendering (#32400)
### Description

This PR adds support for configuring HTTP/HTTPS proxies when rendering
Mermaid diagrams as PNG images using the remote Mermaid.INK API. This
enhancement allows users in restricted network environments to access
the API via a proxy, making the remote rendering feature more robust and
accessible.

The changes include:
- Added optional `proxies` parameter to `draw_mermaid_png` and
`_render_mermaid_using_api` functions
- Updated `Graph.draw_mermaid_png` method to support and pass through
proxy configuration
- Enhanced docstrings with usage examples for the new parameter
- Maintained full backward compatibility with existing code

### Usage Example

```python
proxies = {
        "http": "http://127.0.0.1:7890",
        "https": "http://127.0.0.1:7890"
}

display(Image(chain.get_graph().draw_mermaid_png(proxies=proxies)))

```

### Dependencies

No new dependencies required. Uses existing `requests` library for HTTP
requests.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-17 12:45:17 -06:00
Mason Daugherty
52b1516d44 style(langchain): fix some middleware ref syntax (#33988) 2025-11-16 00:33:17 -05:00
Mason Daugherty
8a3bb73c05 release(openai): 1.0.3 (#33981)
- Respect 300k token limit for embeddings API requests #33668
- fix create_agent / response_format for Responses API #33939
- fix response.incomplete event is not handled when using
stream_mode=['messages'] #33871
2025-11-14 19:18:50 -05:00
Mason Daugherty
099c042395 refactor(openai): embedding utils and calculations (#33982)
Now returns (`_iter`, `tokens`, `indices`, token_counts`). The
`token_counts` are calculated directly during tokenization, which is
more accurate and efficient than splitting strings later.
2025-11-14 19:18:37 -05:00
Kaparthy Reddy
2d4f00a451 fix(openai): Respect 300k token limit for embeddings API requests (#33668)
## Description

Fixes #31227 - Resolves the issue where `OpenAIEmbeddings` exceeds
OpenAI's 300,000 token per request limit, causing 400 BadRequest errors.

## Problem

When embedding large document sets, LangChain would send batches
containing more than 300,000 tokens in a single API request, causing
this error:
```
openai.BadRequestError: Error code: 400 - {'error': {'message': 'Requested 673477 tokens, max 300000 tokens per request'}}
```

The issue occurred because:
- The code chunks texts by `embedding_ctx_length` (8191 tokens per
chunk)
- Then batches chunks by `chunk_size` (default 1000 chunks per request)
- **But didn't check**: Total tokens per batch against OpenAI's 300k
limit
- Result: `1000 chunks × 8191 tokens = 8,191,000 tokens` → Exceeds
limit!

## Solution

This PR implements dynamic batching that respects the 300k token limit:

1. **Added constant**: `MAX_TOKENS_PER_REQUEST = 300000`
2. **Track token counts**: Calculate actual tokens for each chunk
3. **Dynamic batching**: Instead of fixed `chunk_size` batches,
accumulate chunks until approaching the 300k limit
4. **Applied to both sync and async**: Fixed both
`_get_len_safe_embeddings` and `_aget_len_safe_embeddings`

## Changes

- Modified `langchain_openai/embeddings/base.py`:
  - Added `MAX_TOKENS_PER_REQUEST` constant
  - Replaced fixed-size batching with token-aware dynamic batching
  - Applied to both sync (line ~478) and async (line ~527) methods
- Added test in `tests/unit_tests/embeddings/test_base.py`:
- `test_embeddings_respects_token_limit()` - Verifies large document
sets are properly batched

## Testing

All existing tests pass (280 passed, 4 xfailed, 1 xpassed).

New test verifies:
- Large document sets (500 texts × 1000 tokens = 500k tokens) are split
into multiple API calls
- Each API call respects the 300k token limit

## Usage

After this fix, users can embed large document sets without errors:
```python
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_text_splitters import CharacterTextSplitter

# This will now work without exceeding token limits
embeddings = OpenAIEmbeddings()
documents = CharacterTextSplitter().split_documents(large_documents)
Chroma.from_documents(documents, embeddings)
```

Resolves #31227

---------

Co-authored-by: Kaparthy Reddy <kaparthyreddy@Kaparthys-MacBook-Air.local>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-14 18:12:07 -05:00
Sydney Runkle
9bd401a6d4 fix: resumable shell, works w/ interrupts (#33978)
fixes https://github.com/langchain-ai/langchain/issues/33684

Now able to run this minimal snippet successfully

```py
import os

from langchain.agents import create_agent
from langchain.agents.middleware import (
    HostExecutionPolicy,
    HumanInTheLoopMiddleware,
    ShellToolMiddleware,
)
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.types import Command


shell_middleware = ShellToolMiddleware(
    workspace_root=os.getcwd(),
    env=os.environ,  # danger
    execution_policy=HostExecutionPolicy()
)

hil_middleware = HumanInTheLoopMiddleware(interrupt_on={"shell": True})

checkpointer = InMemorySaver()

agent = create_agent(
    "openai:gpt-4.1-mini",
    middleware=[shell_middleware, hil_middleware],
    checkpointer=checkpointer,
)

input_message = {"role": "user", "content": "run `which python`"}

config = {"configurable": {"thread_id": "1"}}

result = agent.invoke(
    {"messages": [input_message]},
    config=config,
    durability="exit",
)
```
2025-11-14 15:32:25 -05:00
ccurme
6aa3794b74 feat(langchain): reference model profiles for provider strategy (#33974) 2025-11-14 19:24:18 +00:00
Sydney Runkle
189dcf7295 chore: increase coverage for shell, filesystem, and summarization middleware (#33928)
cc generated, just a start here but wanted to bump things up from 70%
ish
2025-11-14 13:30:36 -05:00
Sydney Runkle
1bc88028e6 fix(anthropic): execute bash + file tools via tool node (#33960)
* use `override` instead of directly patching things on `ModelRequest`
* rely on `ToolNode` for execution of tools related to said middleware,
using `wrap_model_call` to inject the relevant claude tool specs +
allowing tool node to forward them along to corresponding langchain tool
implementations
* making the same change for the native shell tool middleware
* allowing shell tool middleware to specify a name for the shell tool
(negative diff then for claude bash middleware)


long term I think the solution might be to attach metadata to a tool to
map the provider spec to a langchain implementation, which we could also
take some lessons from on the MCP front.
2025-11-14 13:17:01 -05:00
Mason Daugherty
d2942351ce release(core): 1.0.5 (#33973) 2025-11-14 11:51:27 -05:00
Sydney Runkle
83c078f363 fix: adding missing async hooks (#33957)
* filling in missing async gaps
* using recommended tool runtime injection instead of injected state
  * updating tests to use helper function as well
2025-11-14 09:13:39 -05:00
ZhangShenao
26d39ffc4a docs: Fix doc links (#33964) 2025-11-14 09:07:32 -05:00
Mason Daugherty
421e2ceeee fix(core): don't mask exceptions (#33959) 2025-11-14 09:05:29 -05:00
Mason Daugherty
275dcbf69f docs(core): add clarity to base token counting methods (#33958)
Wasn't immediately obvious that `get_num_tokens_from_messages` adds
additional prefixes to represent user roles in conversation, which adds
to the overall token count.

```python
from langchain_google_genai import GoogleGenerativeAI

llm = GoogleGenerativeAI(model="gemini-2.5-flash")
num_tokens = llm.get_num_tokens("Hello, world!")
print(f"Number of tokens: {num_tokens}")
# Number of tokens: 4
```

```python
from langchain.messages import HumanMessage

messages = [HumanMessage(content="Hello, world!")]

num_tokens = llm.get_num_tokens_from_messages(messages)
print(f"Number of tokens: {num_tokens}")
# Number of tokens: 6
```
2025-11-13 17:15:47 -05:00
Sydney Runkle
9f87b27a5b fix: add filesystem middleware in init (#33955) 2025-11-13 15:07:33 -05:00
Mason Daugherty
b2e1196e29 chore(core,infra): nits (#33954) 2025-11-13 14:50:54 -05:00
Sydney Runkle
2dc1396380 chore(langchain): update deps (#33951) 2025-11-13 14:21:25 -05:00
Mason Daugherty
77941ab3ce feat(infra): add automatic issue labeling (#33952) 2025-11-13 14:13:52 -05:00
Mason Daugherty
ee19a30dde fix(groq): bump min ver for core dep (#33949)
Due to issue with unit tests and docs URL for exceptions
2025-11-13 11:46:54 -05:00
Mason Daugherty
5d799b3174 release(nomic): 1.0.1 (#33948)
support Python 3.14 #33655
2025-11-13 11:25:39 -05:00
Mason Daugherty
8f33a985a2 release(groq): 1.0.1 (#33947)
- fix: handle tool calls with no args #33896
- add prompt caching token usage details #33708
2025-11-13 11:25:00 -05:00
Mason Daugherty
78eeccef0e release(deepseek): 1.0.1 (#33946)
- support strict beta structured output #32727
2025-11-13 11:24:39 -05:00
ccurme
3d415441e8 fix(langchain, openai): backward compat for response_format (#33945) 2025-11-13 11:11:35 -05:00
ccurme
74385e0ebd fix(langchain, openai): fix create_agent / response_format for Responses API (#33939) 2025-11-13 10:18:15 -05:00
Christophe Bornet
2bfbc29ccc chore(core): fix some ruff TC rules (#33929)
fix some ruff TC rules but still don't enforce them as Pydantic model
fields use type annotations at runtime.
2025-11-12 14:07:19 -05:00
Christophe Bornet
ef79c26f18 chore(cli,standard-tests,text-splitters): fix some ruff TC rules (#33934)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-12 14:06:31 -05:00
ccurme
fbe32c8e89 release(anthropic): 1.0.3 (#33935) 2025-11-12 10:55:28 -05:00
Mohammad Mohtashim
2511c28f92 feat(anthropic): support code_execution_20250825 (#33925) 2025-11-12 10:44:51 -05:00
Sydney Runkle
637bb1cbbc feat: refactor tests coverage (#33927)
middleware tests have gotten quite unwieldy, major restructuring, sets
the stage for coverage increase

this is super hard to review -- as a proof that we've retained important
tests, I ran coverage on `master` and this branch and confirmed
identical coverage.

* moving all middleware related tests to `agents/middleware` folder
* consolidating related test files
* adding coverage utility to makefile
2025-11-11 10:40:12 -05:00
Mason Daugherty
3dfea96ec1 chore: update README.md files (#33919) 2025-11-10 22:51:35 -05:00
ccurme
68643153e5 feat(langchain): support async summarization in SummarizationMiddleware (#33918) 2025-11-10 15:48:51 -05:00
Abbas Syed
462762f75b test(core): add comprehensive tests for groq block translator (#33906) 2025-11-10 15:45:36 -05:00
ccurme
4f3729c004 release(model-profiles): 0.0.4 (#33917) 2025-11-10 12:06:32 -05:00
Mason Daugherty
ba428cdf54 chore(infra): add note to pr linting workflow (#33916) 2025-11-10 11:49:31 -05:00
Mason Daugherty
69c7d1b01b test(groq,openai): add retries for flaky tests (#33914) 2025-11-10 10:36:11 -05:00
Mason Daugherty
733299ec13 revert(core): "applied secrets_map in load to plain string values" (#33913)
Reverts langchain-ai/langchain#33678

Breaking API change
2025-11-10 10:29:30 -05:00
ccurme
e1adf781c6 feat(langchain): (SummarizationMiddleware) support use of model context windows when triggering summarization (#33825) 2025-11-10 10:08:52 -05:00
Shahroz Ahmad
31b5e4810c feat(deepseek): support strict beta structured output (#32727)
**Description:** This PR adds support for DeepSeek's beta strict mode
feature for structured
outputs and tool calling. It overrides `bind_tools()` and
`with_structured_output()` to automatically use
DeepSeek's beta endpoint (https://api.deepseek.com/beta) when
`strict=True`. Both methods need overriding because they're independent
entry points and user can call either directly. When DeepSeek's strict
mode graduates from beta, we can just remove both overriden methods. You
can read more about the beta feature here:
https://api-docs.deepseek.com/guides/function_calling#strict-mode-beta
  
**Issue:** Implements #32670 


**Dependencies:** None


**Sample Code**

```python
from langchain_deepseek import ChatDeepSeek
from pydantic import BaseModel, Field
from typing import Optional
import os


# Enter your DeepSeek API Key here
API_KEY = "YOUR_API_KEY"


# location, temperature, condition are required fields
# humidity is optional field with default value
class WeatherInfo(BaseModel):
    location: str = Field(description="City name")
    temperature: int = Field(description="Temperature in Celsius")
    condition: str = Field(description="Weather condition (sunny, cloudy, rainy)")
    humidity: Optional[int] = Field(default=None, description="Humidity percentage")


llm = ChatDeepSeek(
    model="deepseek-chat",
    api_key=API_KEY,
)

# just to confirm that a new instance will use the default base url (instead of beta)
print(f"Default API base: {llm.api_base}")



# Test 1: bind_tools with strict=True shoud list all the tools calls
print("\nTest 1: bind_tools with strict=True")
llm_with_tools = llm.bind_tools([WeatherInfo], strict=True)
response = llm_with_tools.invoke("Tell me the weather in New York. It's 22 degrees, sunny.")
print(response.tool_calls)



# Test 2: with_structured_output with strict=True
print("\nTest 2: with_structured_output with strict=True")
structured_llm = llm.with_structured_output(WeatherInfo, strict=True)
result = structured_llm.invoke("Tell me the weather in New York.")
print(f"  Result: {result}")
assert isinstance(result, WeatherInfo), "Result should be a WeatherInfo instance"
```

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-09 22:24:33 -05:00
Mason Daugherty
c6801fe159 chore: fix URL underlining in README.md (#33905) 2025-11-09 22:22:56 -05:00
AmazingcatAndrew
1b563067f8 fix(chroma): resolve OpenCLIP + Chroma image embedding test regression (#33899)
**Description:**  
Fixes the OpenCLIP × Chroma regression that caused nested embedding
errors when adding or searching image data.
The test case `test_openclip_chroma_embed_no_nesting_error` has been
restored and verified to work correctly with the current LangChain core
dependencies.
Functional validation confirms that `similarity_search_by_image` now
returns correct, metadata‑preserving results.

**Issue:**  
Fixes #33851

**Dependencies:**  
No new dependencies introduced.  

**Testing:**  
All tests under  
```bash
uv run --group test pytest tests/unit_tests
```  
result:
```
30 passed in 91.26s (0:01:31)
```
have passed successfully using Python 3.13.9 and uv‑managed environment.
This confirms that the regression has been fixed.  

Running  
```bash
make test
```  
still produces cleanup‑time `AttributeError: 'ProactorEventLoop' object
has no attribute '_ssock'` on Windows (Python 3.13+).
This is a benign asyncio teardown message rather than a functional
failure.
`uv run pytest` closes event loops immediately after tests, while `make
test` invokes pytest through a secondary process layer that leaves a
background loop alive at interpreter shutdown.
This difference in teardown behavior explains the extra messages seen
only when using `make test`.

**Summary:**  
- Verified the OpenCLIP + Chroma image pipeline works correctly.  
- `uv run --group test pytest` fully passes; the fix is complete.  
- The residual `_ssock` warnings occur only during
Windows asyncio cleanup and are not related to this code change.

This is my first time contributing code, please contact me with any
questions

---

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-09 21:24:33 -05:00
Mason Daugherty
1996d81d72 chore(langchain): pass on reference docstrings (middleware) (#33904) 2025-11-09 21:18:28 -05:00
Mason Daugherty
ab0677c6f1 fix(groq): handle tool calls with no args (#33896)
When Groq returns tool calls with no arguments, it sends arguments:
`'null'` (JSON null), but LangChain's core parsing expects either a dict
or converts null to Python None, which fails the `isinstance(args_,
dict)` check and incorrectly marks the tool call as invalid.

Related to #32017
2025-11-08 22:30:44 -05:00
artreimus
bdb53c93cc docs(langchain): correct IBM provider link in chat_models docstring (#33897)
**PR title**

```
docs(langchain): correct IBM provider link in chat_models docstring
```

**PR message**

**Description**
Fix broken link in the `chat_models` docstring. The **ibm** bullet
incorrectly linked to the DeepSeek provider page; update it to the
canonical IBM provider docs.

This only affects generated API reference content on
`reference.langchain.com`. No runtime behavior changes.

**Issue**
N/A (documentation-only).

**Dependencies**
None.

**Testing & quality**

* Ran `make format`, `make lint`, and `make test` in the package (no
code changes expected to affect tests).
2025-11-08 07:02:33 -06:00
Alazar Genene
94d5271cb5 fix(standard-tests): fix semantic typo in if statement (#33890) 2025-11-07 18:01:59 -05:00
ccurme
e499db4266 release(langchain): 1.0.5 (#33893) 2025-11-07 17:54:43 -05:00
npage902
cc3af82b47 fix(core): applied secrets_map in load to plain string values (#33678)
Replaces #33618 

**Description:** Fixes the bug in the `load()` function where secret
placeholders in plain dicts were not replaced, even if they match a key
in `secrets_map`, and adds a test case.

Example:
```py
obj = {"api_key": "__SECRET_API_KEY__"}
secret_key = "secret_key_1234"
secrets_map = {"__SECRET_API_KEY__": secret_key}
result = load(obj, secrets_map=secrets_map)
```
Before this change, printing `api_key` in `result` would output
`"__SECRET_API_KEY__"`. Now, it will properly output
`"secret_key_1234"`.

**Issue:** Fixes #31804 

**Dependencies:** None

`make format`, `make lint`, and `make test` have all passed on my
machine.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 17:14:13 -05:00
Mshari
9383b78be1 feat(groq): add prompt caching token usage details (#33708)
**Description:** 
Adds support for prompt caching usage metadata in ChatGroq. The
integration now captures cached token information from the Groq API
response and includes it in the `input_token_details` field of the
`usage_metadata`.

Changes:
- Created new `_create_usage_metadata()` helper function to centralize
usage metadata creation logic
- Extracts `cached_tokens` from `prompt_tokens_details` in API responses
and maps to `input_token_details.cache_read`
- Integrated the helper function in both streaming
(`_convert_chunk_to_message_chunk`) and non-streaming
(`_create_chat_result`) code paths
- Added comprehensive unit tests to verify caching metadata handling and
backward compatibility

This enables users to monitor prompt caching effectiveness when using
Groq models with prompt caching enabled.

**Issue:** N/A

**Dependencies:** None

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-07 17:05:22 -05:00
ccurme
3c492571ab release(anthropic): 1.0.2 (#33888) 2025-11-07 16:47:25 -05:00
ccurme
f2410f7ea7 revert: Support for SystemMessage in create_agent (#33889)
Reverts langchain-ai/langchain#33640

Introduces lint errors into langchain-anthropic

Should incorporate into 1.1 instead of patch release.
2025-11-07 16:44:11 -05:00
Mason Daugherty
91560b6a7a chore(infra): expand PR labeling (#33887) 2025-11-07 16:37:35 -05:00
ccurme
b1dd448233 release(core): 1.0.4 (#33886) 2025-11-07 16:26:44 -05:00
dy93
904daf6f40 feat(core): support draw subgraph using pygraphviz (#32966)
The `draw_png()` method currently does not support drawing subgraphs.
This PR adds the ability to render subgraph outlines, improving
visualization clarity when working with nested structures.
2025-11-07 15:58:35 -05:00
Mohammad Mohtashim
8e31a5d7bd fix(core): Fix tool name check in name_dict for PydanticToolsParser (#33479)
- **Description:** The root cause of this issue is that when a user
defines `model_config` in a `BaseModel`, the `{"type": <tool_name>}`
value is derived from the title specified in `model_config` when the
results are parsed
[here](https://vscode.dev/github/keenborder786/langchain/blob/fix/tool_name_dict/libs/core/langchain_core/output_parsers/openai_tools.py#L199).
However,
[tool.__name__](https://vscode.dev/github/keenborder786/langchain/blob/fix/tool_name_dict/libs/core/langchain_core/output_parsers/openai_tools.py#L331)
uses the class name (in uppercase) of the `BaseModel`, resulting in a
`KeyError` when a custom title is provided in `model_config`.
 

The Best Solution will be to use the title provided in `model_config`
attribute if provided one since that is what `type` will be parsed to,
if not then use `tool.__name__`. But need to make sure that this works
only for Pydantic V2.

  - **Issue:** #27260

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-07 15:39:47 -05:00
Sydney Runkle
ee630b4539 fix: bump up default recursion limit (#33881)
Fixes https://github.com/langchain-ai/langchain/issues/33740

We don't want to depend on recursion limit here, model call limit
middleware is more appropriate
2025-11-07 13:49:12 -06:00
Jacob Lee
46971447df fix(core): Filter empty content blocks from formatted prompts (#32519)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-11-07 14:39:25 -05:00
Azibek
d8b94007c1 fix(huggingface): pass llm params to ChatHuggingFace (#32368)
This PR fixes #32234 and improves HuggingFace chat model integration by:

Ensuring ChatHuggingFace inherits key parameters (temperature,
max_tokens, top_p, streaming, etc.) from the underlying LLM when not
explicitly set.
Adding and updating unit tests to verify property inheritance.
No breaking changes; these updates enhance reliability and
maintainability.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 14:29:15 -05:00
Mohammad Mohtashim
cf595dcc38 chore(langchain): Support for SystemMessage in create_agent (#33640)
- **Description:** Updated Function Signature of `create_agent`, the
system prompt can be both a list and string. I see no harm in doing
this, since SystemMessage accepts both.
- **Issue:** #33630

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-11-07 13:00:38 -06:00
Copilot
d27211cfa7 fix(core): context preservation in shielded async callbacks (#32163)
The `@shielded` decorator in async callback managers was not preserving
context variables, breaking OpenTelemetry instrumentation and other
context-dependent functionality.

## Problem

When using async callbacks with the `@shielded` decorator (applied to
methods like `on_llm_end`, `on_chain_end`, etc.), context variables were
not being preserved across the shield boundary. This caused issues with:

- OpenTelemetry span context propagation
- Other instrumentation that relies on context variables
- Inconsistent context behavior between sync and async execution

The issue was reproducible with:

```python
from contextvars import copy_context
import asyncio
from langgraph.graph import StateGraph

# Sync case: context remains consistent
print("SYNC")
print(copy_context())  # Same object
graph.invoke({"result": "init"})
print(copy_context())  # Same object

# Async case: context was inconsistent (before fix)
print("ASYNC") 
asyncio.run(graph.ainvoke({"result": "init"}))
print(copy_context())  # Different object than expected
```

## Root Cause

The original `shielded` decorator implementation:

```python
async def wrapped(*args: Any, **kwargs: Any) -> Any:
    return await asyncio.shield(func(*args, **kwargs))
```

Used `asyncio.shield()` directly without preserving the current
execution context, causing context variables to be lost.

## Solution

Modified the `shielded` decorator to:

1. Capture the current context using `copy_context()`
2. Create a task with explicit context using `asyncio.create_task(coro,
context=ctx)` for Python 3.11+
3. Shield the context-aware task
4. Fallback to regular task creation for Python < 3.11

```python
async def wrapped(*args: Any, **kwargs: Any) -> Any:
    # Capture the current context to preserve context variables
    ctx = copy_context()
    coro = func(*args, **kwargs)
    
    try:
        # Create a task with the captured context to preserve context variables
        task = asyncio.create_task(coro, context=ctx)
        return await asyncio.shield(task)
    except TypeError:
        # Python < 3.11 fallback
        task = asyncio.create_task(coro)
        return await asyncio.shield(task)
```

## Testing

- Added comprehensive test
`test_shielded_callback_context_preservation()` that validates context
variables are preserved across shielded callback boundaries
- Verified the fix resolves the original LangGraph context consistency
issue
- Confirmed all existing callback manager tests still pass
- Validated OpenTelemetry-like instrumentation scenarios work correctly

The fix is minimal, maintains backward compatibility, and ensures proper
context preservation for both modern Python versions and older ones.

Fixes #31398.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-07 13:09:47 -05:00
Swastik-Swarup-Dash
ca1a3fbe88 fix(core): RunnablePick may not return a dict if keys is a string (#31321)
Change made From:
```python
class RunnablePick(RunnableSerializable[dict[str, Any], dict[str, Any]]):
```
To:
```python
class RunnablePick(RunnableSerializable[dict[str, Any], Any]):
```
As suggested by @cbornet 

Fixes ##31309

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 13:04:20 -05:00
williamzhu54
c955b53aed fix(core): fix Runnable parallel schema being empty when children runnable input schemas use TypedDict (#28196)
# Description
This submission is a part of a school project from our team of 4
@EminGul @williamzhu54 @annay54 @donttouch22.

Our pull request fixes the issue with RunnableParallel scheme being
empty by returning the correct schema output when children runnable
input schemas use TypedDicts.

# Issue
Fixes #24326


# Dependencies
No extra dependencies required for this fix.

# Feedback
Any feedback and advice is gladly welcomed. Please feel free to let us
know what we can change or improve upon regarding this issue.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-11-07 12:01:21 -05:00
Christophe Bornet
2a626d9608 refactor(langchain): use create_importer for HypotheticalDocumentEmbedder (#32078) 2025-11-07 11:16:00 -05:00
Abhinav
0861cba04b fix(chroma): pydantic validation error when using retriever.invoke() (#31377) 2025-11-07 10:59:16 -05:00
Lê Nam Khánh
88246f45b3 docs: fix typos in libs/core/langchain_core/utils/function_calling.py (#33873) 2025-11-07 10:34:28 -05:00
Lê Nam Khánh
1d04514354 docs: fix typos in libs/core/tests/unit_tests/utils/test_strings.py (#33875) 2025-11-07 10:34:12 -05:00
Lê Nam Khánh
c2324b8f3e docs: fix typos in libs/langchain/langchain_classic/chains/summarize/chain.py (#33877) 2025-11-07 10:33:53 -05:00
Lê Nam Khánh
957ea65d12 docs: fix typos in libs/core/tests/unit_tests/indexing/test_hashed_document.py (#33874) 2025-11-07 10:32:20 -05:00
Lê Nam Khánh
00fa38a295 docs: fix typos in libs/core/tests/unit_tests/test_tools.py (#33876) 2025-11-07 10:31:57 -05:00
Lê Nam Khánh
9d98c1b669 docs: fix typos in libs/partners/groq/langchain_groq/chat_models.py (#33878) 2025-11-07 10:31:35 -05:00
Mahmut CAVDAR
00cc9d421f fix(langchain): Update langchain-core dependency version (#33775) 2025-11-07 10:31:06 -05:00
Mohammad Mohtashim
65716cf590 feat(perplexity): Created Dedicated Output Parser to Support Reasoning Model Output for perplexity (#33670) 2025-11-07 10:17:35 -05:00
riunyfir
1b77a191f4 feat: The response.incomplete event is not handled when using stream_mode=['messages'] (#33871) 2025-11-07 09:46:11 -05:00
repeat-Q
ebfde9173c docs: expand "Why use LangChain?" section in README (#33846) 2025-11-07 09:09:05 -05:00
Lê Nam Khánh
2fe0369049 docs: fix typos in some files (#33867) 2025-11-07 09:04:29 -05:00
Mason Daugherty
e023201d42 style: some cleanup (#33857) 2025-11-06 23:50:46 -05:00
Mason Daugherty
d40e340479 chore: attribute package change versions (#33854)
Needed to disambiguate for within inherited docs
2025-11-06 16:57:30 -05:00
Sydney Runkle
9a09ed0659 fix: don't trace conditional edges and no todos in input state (#33842)
while experimenting w/ todo middleware

| Before | After |
|--------|-------|
| ![Screenshot 2025-11-05 at 1 56 21
PM](https://github.com/user-attachments/assets/63195ae4-8122-4662-8246-0fbc16cb1e22)
| ![Screenshot 2025-11-05 at 1 56 03
PM](https://github.com/user-attachments/assets/255e2fa8-e52d-4d1a-949a-33df52ee6668)
|
| Tracing conditional edges (verbose) | Not tracing conditional edges
(cleaner) |
| ![Screenshot 2025-11-05 at 1 57 56
PM](https://github.com/user-attachments/assets/449ccfe9-4c21-4c87-8e0e-6e89d7a97611)
| ![Screenshot 2025-11-05 at 1 56 58
PM](https://github.com/user-attachments/assets/c5c28d0e-2153-4572-af29-b2528761fec6)
|
| Todos in input state (cluttered) | No todos in input state (cleaner) |
2025-11-05 14:25:57 -05:00
Mason Daugherty
5f27b546dd chore: update README.md with deepagents (#33843) 2025-11-05 14:22:20 -05:00
Mason Daugherty
022fdd52c3 fix(core): handle missing dependency version information (#33844)
Follow up to #33347

This continues to make searching issues difficult
2025-11-05 14:19:55 -05:00
Sydney Runkle
7946a8f64e release: langchain v1.0.4 (#33839) 2025-11-05 12:37:58 -05:00
Sydney Runkle
7af79039fc fix: only increment thread count on successful executions (#33837)
* for run count + thread count overflow we should warn model not to call
again
* don't tally mocked tool calls in thread limit -- consider the
following
  * run limit is 1 
  * thread limit is 3
  * first run calls the tool 2 times, 1 executes, 1 is blocked
* we should only count the successful execution above towards the total
thread count
* raise more helpful warnings on invalid config
2025-11-05 10:00:07 -05:00
Sydney Runkle
1755750ca1 fix: more robust tool call limit middleware (#33817)
* improving typing (covariance)
* adding in support for continuing w/ tool calls not yet at threshold,
switching default to continue
* moving all logic into after model

```py
ExitBehavior = Literal["continue", "error", "end"]
"""How to handle execution when tool call limits are exceeded.
- `"continue"`: Block exceeded tools with error messages, let other tools continue (default)
- `"error"`: Raise a `ToolCallLimitExceededError` exception
- `"end"`: Stop execution immediately, injecting a ToolMessage and an AI message
    for the single tool call that exceeded the limit. Raises `NotImplementedError`
    if there are multiple tool calls
"""
```
2025-11-05 09:18:21 -05:00
Mason Daugherty
ddb53672e2 chore(infra): remove unused pr-title-labeler.yml (#33831) 2025-11-04 20:06:52 -05:00
Mason Daugherty
eeae34972f chore(infra): drop langchain_v1 pr lint (#33830)
Just use `langchain`
2025-11-04 19:46:05 -05:00
Mason Daugherty
47d89b1e47 fix(langchain): remove Tigris (#33829)
Removing this code as there is no possible way for it to work.

See https://github.com/langchain-ai/langchain-community/pull/159
2025-11-04 19:45:52 -05:00
Mason Daugherty
ee0bdaeb79 chore: correct langchain-community references (#33827)
fix docstrings that referenced community versions of now-native packages
2025-11-04 17:01:35 -05:00
Christophe Bornet
915c446c48 chore(core): add ruff rule PLR2004 (#33706)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-04 13:33:37 -05:00
Mason Daugherty
d1e2099408 chore(core): clean pyproject formatting (#33821) 2025-11-04 18:21:15 +00:00
Mason Daugherty
6ea15b9efa docs(model-profiles): fix typo (#33820) 2025-11-04 18:19:55 +00:00
Mason Daugherty
69f33aaff5 chore(infra): remova unused poetry_setup action (#33819) 2025-11-04 13:18:55 -05:00
Mason Daugherty
3f66f102d2 chore: update issue template xref url (#33818) 2025-11-04 13:17:42 -05:00
Mason Daugherty
c6547f58b7 style(standard-tests): refs pass (#33814) 2025-11-04 00:01:16 -05:00
Mason Daugherty
dfb05a7fa0 style: refs pass (#33813) 2025-11-03 22:11:10 -05:00
ccurme
2f67f9ddcb release(huggingface): 1.0.1 (#33803) 2025-11-03 14:49:52 -05:00
Hyejeong Jo
0e36185933 fix(huggingface): add stream_usage support for ChatHuggingFace invoke/stream (#32708) 2025-11-03 14:44:32 -05:00
Michael Li
6617865440 fix(core): add no colors check (#33780)
Patch edge case in get_color_mapping
2025-11-03 13:23:23 -05:00
ccurme
6dba4912be release(model-profiles): 0.0.3 (#33798) 2025-11-03 11:17:08 -05:00
ccurme
7a3827471b fix(model-profiles): fix pdf_inputs field (#33797) 2025-11-03 11:10:33 -05:00
ccurme
f006bc4c7e feat(langchain): add model-profiles as optional dependency (#33794) 2025-11-03 10:13:58 -05:00
Mason Daugherty
0a442644e3 test(anthropic): add vcr to test_search_result_tool_message (#33793)
To fix nondeterministic results causing integration testing to sometimes
fail

Also speeds up from 10s to 0.5

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-11-03 15:13:30 +00:00
repeat-Q
4960663546 docs: add Code of Conduct link to README (#33782)
**Description:** Add link to Code of Conduct in the Additional resources
section to make community guidelines more accessible for all
contributors.

**Rationale:** 
- **Community Health:** Making the Code of Conduct easily discoverable
helps set clear expectations for community behavior and fosters a more
inclusive, respectful environment
- **New Contributor Experience:** Many new contributors look to the
README as the primary source of project information. Having the Code of
Conduct readily available helps onboard them properly
- **Best Practices:** Prominent Code of Conduct links are considered a
best practice in open source projects and improve project accessibility
- **Low Impact:** This is a simple, non-breaking change that
significantly improves documentation completeness

**Issue:** N/A

**Dependencies:** None
2025-11-03 09:50:47 -05:00
ccurme
1381137c37 release(standard-tests): 1.0.1 (#33792) 2025-11-03 09:46:39 -05:00
ccurme
b4a042dfc4 release(core): 1.0.3 (#33768) 2025-11-03 09:19:32 -05:00
ccurme
81c4f21b52 fix(standard-tests): update multimodal tests (#33781) 2025-11-01 16:38:20 -04:00
Mason Daugherty
f2dab562a8 style: misc refs work (#33771) 2025-10-31 18:29:53 -04:00
ccurme
61196a8280 release(openai): 1.0.2 (#33769) 2025-10-31 14:21:32 -04:00
ccurme
7a97c31ac0 release(model-profiles): 0.0.2 (#33767) 2025-10-31 13:58:04 -04:00
ccurme
424214041e feat(model-profiles): support more providers (#33766) 2025-10-31 13:48:56 -04:00
ccurme
b06bd6a913 fix(model-profiles): add typing-extensions as explicit dep (#33762) 2025-10-31 11:21:55 -04:00
ccurme
1c762187e8 fix(model-profiles): remove langchain-core as a dependency (#33761) 2025-10-31 11:04:14 -04:00
Mason Daugherty
90aefc607f docs(core): improve tools module docstrings (#33755)
styling in `base.py`, content updates in
`libs/core/langchain_core/tools/convert.py`
2025-10-31 10:54:30 -04:00
ccurme
2ca73c479b fix(infra): fix release workflow for new packages (#33760) 2025-10-31 10:38:38 -04:00
ccurme
17c7c273b8 fix(infra): fix release workflow for new packages (#33759) 2025-10-31 10:21:12 -04:00
ccurme
493be259c3 feat(core): mint langchain-model-profiles and add profile property to BaseChatModel (#33728) 2025-10-31 09:44:46 -04:00
Mason Daugherty
106c6ac273 revert: "chore: skip anthropic tests while waiting on new anthropic release" (#33753)
Reverts langchain-ai/langchain#33739
2025-10-30 16:37:12 -04:00
Mason Daugherty
7aaaa371e7 release(anthropic): 1.0.1 (#33752) 2025-10-30 16:19:44 -04:00
Mason Daugherty
468dad1780 chore: use model IDs, latest anthropic models (#33747)
- standardize on using model IDs, no more aliases - makes future
maintenance easier
- use latest models in docstrings to highlight support
- remove remaining sonnet 3-7 usage due to deprecation

Depends on #33751
2025-10-30 16:13:28 -04:00
Mason Daugherty
32d294b89a fix(anthropic): clean up tests, update default model to use ID (#33751)
- use latest models in examples to highlight support
- standardize on using IDs in examples - no more aliases to improve
determinism in future tests
- bump lock
- in integration tests, fix stale casettes and use `MODEL_NAME`
uniformly where possible
- add case for default max tokens for sonnet-4-5 (was missing)
2025-10-30 16:08:18 -04:00
Mason Daugherty
dc5b7dace8 test(openai): mark tests flaky (#33750)
see:
https://github.com/langchain-ai/langchain/actions/runs/18921929210/job/54020065079#step:10:560
2025-10-30 16:07:58 -04:00
Mason Daugherty
e00b7233cf chore(langchain): fix lint_imports paths (#33749) 2025-10-30 16:06:08 -04:00
Mason Daugherty
91f7e73c27 fix(langchain): use system_prompt in integration tests (#33748) 2025-10-30 16:05:57 -04:00
Shagun Gupta
75fff151e8 fix(openai): replace pytest.warns(None) with warnings.catch_warnings in ChatOpenAI test to resolve TypeError . Resolves issue #33705 (#33741) 2025-10-30 09:22:34 -04:00
Sydney Runkle
d05a0cb80d chore: skip anthropic tests while waiting on new anthropic release (#33739)
like https://github.com/langchain-ai/langchain/pull/33312/files

temporarily skip while waiting on new anthropic release

dependent on https://github.com/langchain-ai/langchain/pull/33737
2025-10-29 16:10:42 -07:00
Sydney Runkle
d24aa69ceb chore: don't pick up alphas for testing (#33738)
reverting change made in
eaa6dcce9e
2025-10-29 16:04:57 -07:00
Sydney Runkle
fabcacc3e5 chore: remove mentions of sonnet 3.5 (#33737)
see
https://docs.claude.com/en/docs/about-claude/model-deprecations#2025-08-13%3A-claude-sonnet-3-5-models
2025-10-29 15:49:27 -07:00
Christian Bromann
ac58d75113 fix(langchain_v1): remove thread_model_call_count and run_model_call_count from tool node test (#33725)
While working on ToolRuntime in TS I discovered that Python still uses
`thread_model_call_count` and `run_model_call_count` in ToolNode tests
which afaik we removed.
2025-10-29 15:36:18 -07:00
Sydney Runkle
28564ef94e release: core 1.0.2 and langchain 1.0.3 (#33736) 2025-10-29 15:30:17 -07:00
Christian Bromann
b62a9b57f3 fix(langchain_v1): removed unsed functions in tool_call_limit middleware (#33735)
These functions seem unused and can be removed.
2025-10-29 15:21:38 -07:00
Sydney Runkle
76dd656f2a fix: filter out injected args from tracing (#33729)
this is CC generated and I want to do a thorough review + update the
tests. but should be able to ship today.

before eek

<img width="637" height="485" alt="Screenshot 2025-10-29 at 12 34 52 PM"
src="https://github.com/user-attachments/assets/121def87-fb7b-4847-b9e2-74f37b3b4763"
/>

now, woo

<img width="651" height="158" alt="Screenshot 2025-10-29 at 12 36 09 PM"
src="https://github.com/user-attachments/assets/1fc0e19e-a83f-417c-81e2-3aa0028630d6"
/>
2025-10-29 22:20:53 +00:00
ccurme
d218936763 fix(openai): update model used in test (#33733)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-29 17:09:18 -04:00
Mason Daugherty
123e29dc26 style: more refs fixes (#33730) 2025-10-29 16:34:46 -04:00
Sydney Runkle
6a1dca113e chore: move ToolNode improvements back to langgraph (#33634)
Moving all `ToolNode` related improvements back to LangGraph and
importing them in LC!
pairing w/ https://github.com/langchain-ai/langgraph/pull/6321

this fixes a couple of things:
1. `InjectedState`, store etc will continue to work as expected no
matter where the import is from
2. `ToolRuntime` is now usable w/in langgraph, woohoo!
2025-10-29 11:44:23 -07:00
Sydney Runkle
8aea6dd23a feat: support structured output retry middleware (#33663)
* attach the latest `AIMessage` to all `StructuredOutputError`s so that
relevant middleware can use as desired
* raise `StructuredOutputError` from `ProviderStrategy` logic in case of
failed parsing (so that we can retry from middleware)
* added a test suite w/ example custom middleware that retries for tool
+ provider strategy

Long term, we could add our own opinionated structured output retry
middleware, but this at least unblocks folks who want to use custom
retry logic in the short term :)

```py
class StructuredOutputRetryMiddleware(AgentMiddleware):
    """Retries model calls when structured output parsing fails."""

    def __init__(self, max_retries: int) -> None:
        self.max_retries = max_retries

    def wrap_model_call(
        self, request: ModelRequest, handler: Callable[[ModelRequest], ModelResponse]
    ) -> ModelResponse:
        for attempt in range(self.max_retries + 1):
            try:
                return handler(request)
            except StructuredOutputError as exc:
                if attempt == self.max_retries:
                    raise

                ai_content = exc.ai_message.content
                error_message = (
                    f"Your previous response was:\n{ai_content}\n\n"
                    f"Error: {exc}. Please try again with a valid response."
                )
                request.messages.append(HumanMessage(content=error_message))
```
2025-10-29 08:41:44 -07:00
Vincent Koc
78a2f86f70 fix(core): improve JSON get_format_instructions using Opik Agent Optimizer (#33718) 2025-10-29 11:05:24 -04:00
Mason Daugherty
b5e23e5823 fix(langchain_v1): correct ref url (#33715) 2025-10-28 23:29:19 -04:00
Mason Daugherty
7872643910 chore(standard-tests): Update API reference link in README (#33714) 2025-10-28 23:29:02 -04:00
Mason Daugherty
f15391f4fc chore(text-splitters): API reference link in README (#33713) 2025-10-28 23:28:48 -04:00
Mason Daugherty
ca9b81cc2e chore(infra): update README (#33712)
Updated the README to clarify LangChain's focus on building agents and
LLM-powered applications. Added a section for community discussions and
refined the ecosystem description.
2025-10-28 23:22:18 -04:00
Mason Daugherty
a2a9a02ecb style(core): more cleanup all around (#33711) 2025-10-28 22:58:19 -04:00
Mason Daugherty
e5e1d6c705 style: more refs work (#33707) 2025-10-28 14:43:28 -04:00
dependabot[bot]
6ee19473ba chore(infra): bump actions/download-artifact from 5 to 6 (#33682)
Bumps
[actions/download-artifact](https://github.com/actions/download-artifact)
from 5 to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/download-artifact/releases">actions/download-artifact's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0</h2>
<h2>What's Changed</h2>
<p><strong>BREAKING CHANGE:</strong> this update supports Node
<code>v24.x</code>. This is not a breaking change per-se but we're
treating it as such.</p>
<ul>
<li>Update README for download-artifact v5 changes by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/download-artifact/pull/417">actions/download-artifact#417</a></li>
<li>Update README with artifact extraction details by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/download-artifact/pull/424">actions/download-artifact#424</a></li>
<li>Readme: spell out the first use of GHES by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/download-artifact/pull/431">actions/download-artifact#431</a></li>
<li>Bump <code>@actions/artifact</code> to <code>v4.0.0</code></li>
<li>Prepare <code>v6.0.0</code> by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/download-artifact/pull/438">actions/download-artifact#438</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/download-artifact/pull/431">actions/download-artifact#431</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/download-artifact/compare/v5...v6.0.0">https://github.com/actions/download-artifact/compare/v5...v6.0.0</a></p>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="018cc2cf5b"><code>018cc2c</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/438">#438</a>
from actions/danwkennedy/prepare-6.0.0</li>
<li><a
href="815651c680"><code>815651c</code></a>
Revert &quot;Remove <code>github.dep.yml</code>&quot;</li>
<li><a
href="bb3a066a8b"><code>bb3a066</code></a>
Remove <code>github.dep.yml</code></li>
<li><a
href="fa1ce46bbd"><code>fa1ce46</code></a>
Prepare <code>v6.0.0</code></li>
<li><a
href="4a24838f3d"><code>4a24838</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/431">#431</a>
from danwkennedy/patch-1</li>
<li><a
href="5e3251c4ff"><code>5e3251c</code></a>
Readme: spell out the first use of GHES</li>
<li><a
href="abefc31eaf"><code>abefc31</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/424">#424</a>
from actions/yacaovsnc/update_readme</li>
<li><a
href="ac43a6070a"><code>ac43a60</code></a>
Update README with artifact extraction details</li>
<li><a
href="de96f4613b"><code>de96f46</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/download-artifact/issues/417">#417</a>
from actions/yacaovsnc/update_readme</li>
<li><a
href="7993cb44e9"><code>7993cb4</code></a>
Remove migration guide for artifact download changes</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/download-artifact/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/download-artifact&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-28 14:07:16 -04:00
dependabot[bot]
a59551f3b4 chore(infra): bump actions/upload-artifact from 4 to 5 (#33681)
Bumps
[actions/upload-artifact](https://github.com/actions/upload-artifact)
from 4 to 5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/upload-artifact/releases">actions/upload-artifact's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2>What's Changed</h2>
<p><strong>BREAKING CHANGE:</strong> this update supports Node
<code>v24.x</code>. This is not a breaking change per-se but we're
treating it as such.</p>
<ul>
<li>Update README.md by <a
href="https://github.com/GhadimiR"><code>@​GhadimiR</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/681">actions/upload-artifact#681</a></li>
<li>Update README.md by <a
href="https://github.com/nebuk89"><code>@​nebuk89</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/712">actions/upload-artifact#712</a></li>
<li>Readme: spell out the first use of GHES by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/upload-artifact/pull/727">actions/upload-artifact#727</a></li>
<li>Update GHES guidance to include reference to Node 20 version by <a
href="https://github.com/patrikpolyak"><code>@​patrikpolyak</code></a>
in <a
href="https://redirect.github.com/actions/upload-artifact/pull/725">actions/upload-artifact#725</a></li>
<li>Bump <code>@actions/artifact</code> to <code>v4.0.0</code></li>
<li>Prepare <code>v5.0.0</code> by <a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a> in
<a
href="https://redirect.github.com/actions/upload-artifact/pull/734">actions/upload-artifact#734</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/GhadimiR"><code>@​GhadimiR</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/681">actions/upload-artifact#681</a></li>
<li><a href="https://github.com/nebuk89"><code>@​nebuk89</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/712">actions/upload-artifact#712</a></li>
<li><a
href="https://github.com/danwkennedy"><code>@​danwkennedy</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/727">actions/upload-artifact#727</a></li>
<li><a
href="https://github.com/patrikpolyak"><code>@​patrikpolyak</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/725">actions/upload-artifact#725</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v5.0.0">https://github.com/actions/upload-artifact/compare/v4...v5.0.0</a></p>
<h2>v4.6.2</h2>
<h2>What's Changed</h2>
<ul>
<li>Update to use artifact 2.3.2 package &amp; prepare for new
upload-artifact release by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/685">actions/upload-artifact#685</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/685">actions/upload-artifact#685</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v4.6.2">https://github.com/actions/upload-artifact/compare/v4...v4.6.2</a></p>
<h2>v4.6.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Update to use artifact 2.2.2 package by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/673">actions/upload-artifact#673</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v4.6.1">https://github.com/actions/upload-artifact/compare/v4...v4.6.1</a></p>
<h2>v4.6.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Expose env vars to control concurrency and timeout by <a
href="https://github.com/yacaovsnc"><code>@​yacaovsnc</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/662">actions/upload-artifact#662</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/upload-artifact/compare/v4...v4.6.0">https://github.com/actions/upload-artifact/compare/v4...v4.6.0</a></p>
<h2>v4.5.0</h2>
<h2>What's Changed</h2>
<ul>
<li>fix: deprecated <code>Node.js</code> version in action by <a
href="https://github.com/hamirmahal"><code>@​hamirmahal</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/578">actions/upload-artifact#578</a></li>
<li>Add new <code>artifact-digest</code> output by <a
href="https://github.com/bdehamer"><code>@​bdehamer</code></a> in <a
href="https://redirect.github.com/actions/upload-artifact/pull/656">actions/upload-artifact#656</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/hamirmahal"><code>@​hamirmahal</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/upload-artifact/pull/578">actions/upload-artifact#578</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="330a01c490"><code>330a01c</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/734">#734</a>
from actions/danwkennedy/prepare-5.0.0</li>
<li><a
href="03f2824452"><code>03f2824</code></a>
Update <code>github.dep.yml</code></li>
<li><a
href="905a1ecb59"><code>905a1ec</code></a>
Prepare <code>v5.0.0</code></li>
<li><a
href="2d9f9cdfa9"><code>2d9f9cd</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/725">#725</a>
from patrikpolyak/patch-1</li>
<li><a
href="9687587dec"><code>9687587</code></a>
Merge branch 'main' into patch-1</li>
<li><a
href="2848b2cda0"><code>2848b2c</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/727">#727</a>
from danwkennedy/patch-1</li>
<li><a
href="9b511775fd"><code>9b51177</code></a>
Spell out the first use of GHES</li>
<li><a
href="cd231ca1ed"><code>cd231ca</code></a>
Update GHES guidance to include reference to Node 20 version</li>
<li><a
href="de65e23aa2"><code>de65e23</code></a>
Merge pull request <a
href="https://redirect.github.com/actions/upload-artifact/issues/712">#712</a>
from actions/nebuk89-patch-1</li>
<li><a
href="8747d8cd76"><code>8747d8c</code></a>
Update README.md</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/upload-artifact/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/upload-artifact&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-28 14:07:03 -04:00
ccurme
3286a98b27 fix(core): translate Google GenAI text blocks to v1 (#33699) 2025-10-28 09:53:01 -04:00
Mason Daugherty
62769a0dac feat(langchain): export UsageMetadata (#33692)
as well as `InputTokenDetails`, and `OutputTokenDetails` from
`langchain_core.messages`
2025-10-27 19:47:41 -04:00
Mason Daugherty
f94108b4bc fix: links (#33691)
* X-ref to new docs
* Formatting updates
2025-10-27 19:04:29 -04:00
ccurme
60a0ff8217 fix(standard-tests): fix tool description in agent loop test (#33690) 2025-10-27 15:02:13 -04:00
Christophe Bornet
b3dffc70e2 fix(core): fix PydanticOutputParser's get_format_instructions for v1 models (#32479) 2025-10-27 13:44:20 -04:00
Arun Prasad
86ac39e11f refactor(core): Minor refactor for code readability (#33674) 2025-10-27 11:39:36 -04:00
John Eismeier
6e036d38b2 fix(infra): add emacs backup files to gitignore (#33675) 2025-10-27 11:26:47 -04:00
Shanto Mathew
2d30ebb53b docs(langchain): clarify create_tool_calling_agent system_prompt formatting and add troubleshooting (#33679) 2025-10-27 11:18:10 -04:00
Arun Prasad
b3934b9580 refactor(anthropic): remove unnecessary url check (#33671)
if "url" in annotation: in Line 15 , already ensures "url" is key in
annotation , so no need to check again to set "url" key in out object

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-27 11:13:54 -04:00
Mason Daugherty
09102a634a fix: update some links (#33686) 2025-10-27 11:12:11 -04:00
ccurme
95ff5901a1 chore(anthropic): update integration test cassette (#33685) 2025-10-27 10:43:36 -04:00
Mason Daugherty
f3d7152074 style(core): more refs work (#33664) 2025-10-24 16:06:24 -04:00
Christophe Bornet
dff37f6048 fix(nomic): support Python 3.14 (#33655)
Pyarrow just published 3.14 binaries

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-24 13:32:07 -04:00
ccurme
832036ef0f chore(infra): remove openai from langchain-core release test matrix (#33661) 2025-10-24 11:55:33 -04:00
ccurme
f1742954ab fix(core): make handling of schemas more defensive (#33660) 2025-10-24 11:10:06 -04:00
ccurme
6ab0476676 fix(openai): update test (#33659) 2025-10-24 11:04:33 -04:00
ccurme
d36413c821 release(mistralai): 1.0.1 (#33657) 2025-10-24 09:50:23 -04:00
Romi45
99097f799c fix(mistralai): resolve duplicate tool calls when converting to mistral chat message (#33648) 2025-10-24 09:40:31 -04:00
Mohammad Mohtashim
0666571519 chore(perplexity): Added all keys for usage metadata (#33480) 2025-10-24 09:32:35 -04:00
ccurme
ef85161525 release(core): 1.0.1 (#33639) 2025-10-22 14:25:21 -04:00
ccurme
079eb808f8 release(qdrant): 1.1.0 (#33638) 2025-10-22 13:24:36 -04:00
Anush
39fb2d1a3b feat(qdrant): Use Qdrant's built-in MMR search (#32302) 2025-10-22 13:19:32 -04:00
Mason Daugherty
db7f2db1ae feat(infra): langchain docs MCP (#33636) 2025-10-22 11:50:35 -04:00
Yu Zhong
df46c82ae2 feat(core): automatic set required to include all properties in strict mode (#32930) 2025-10-22 11:31:08 -04:00
Eugene Yurtsev
f8adbbc461 chore(langchain_v1): bump version from 1.0.1 to 1.0.2 (#33629)
Release 1.0.2
2025-10-21 17:05:51 -04:00
Eugene Yurtsev
17f0716d6c fix(langchain_v1): remove non llm controllable params from tool message on invocation failure (#33625)
The LLM shouldn't be seeing parameters it cannot control in the
ToolMessage error it gets when it invokes a tool with incorrect args.

This fixes the behavior within langchain to address immediate issue.

We may want to change the behavior in langchain_core as well to prevent
validation of injected arguments. But this would be done in a separate
change
2025-10-21 15:40:30 -04:00
Ali Ismail
5acd34ae92 feat(openai): add unit test for streaming error in _generate (#33134) 2025-10-21 15:08:37 -04:00
Aaron Sequeira
84dbebac4f fix(langchain): correctly initialize huggingface models in init_chat_model (#33167) 2025-10-21 14:21:46 -04:00
Mohammad Mohtashim
eddfcd2c88 docs(core): Updated docs for mustache_template_vars (#33481) 2025-10-21 13:01:25 -04:00
noeliecherrier
9f470d297f feat(mistralai): remove tenacity retries for embeddings (#33491) 2025-10-21 12:35:10 -04:00
ccurme
2222470f69 release(openai): 1.0.1 (#33624) 2025-10-21 11:37:47 -04:00
Marlene
78175fcb96 feat(openai): add callable support for openai_api_key parameter (#33532) 2025-10-21 11:16:02 -04:00
Mason Daugherty
d9e659ca4f style: even more refs work (#33619) 2025-10-21 01:09:52 -04:00
Mason Daugherty
e731ba1e47 style: more refs work (#33616) 2025-10-20 18:40:19 -04:00
Cole Murray
557fc9a817 fix(infra): harden pydantic test workflow against command injection (#33446) 2025-10-20 10:35:48 -04:00
Christophe Bornet
965dac74e5 chore(infra): test pydantic with python 3.12 (#33421) 2025-10-20 10:28:41 -04:00
Sydney Runkle
7d7a50d4cc release(langchain_v1): 1.0.1 (#33610) 2025-10-20 13:03:16 +00:00
Sydney Runkle
9319eecaba fix(langchain_v1): ToolRuntime default for args (#33606)
added some noqas, this is a quick patch to support a bug uncovered in
the quickstart, will resolve fully depending on where we centralize
ToolNode stuff.
2025-10-20 08:45:50 -04:00
Mason Daugherty
a47386f6dc style: more refs polishing (#33601) 2025-10-20 00:52:52 -04:00
Mason Daugherty
aaf88c157f docs(langchain): update reference documentation to note moved embeddings modules (#33600) 2025-10-19 20:10:25 -04:00
Christophe Bornet
3dcf4ae1e9 fix(cli): support Python 3.14 (#33598)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-19 19:37:34 -04:00
Christophe Bornet
3391168777 ci(infra): test CodSpeed with Python 3.13 (#33599) 2025-10-19 19:33:20 -04:00
repeat-Q
28728dca9f docs: add contributing guide to README (#33490)
**Description:** Added a beginner-friendly tip to the README to help
first-time contributors find a starting point. This is a documentation
improvement aimed at lowering the barrier for newcomers to participate
in open source.

**Issue:** No related issue

**Dependencies:** None

---

## Note to maintainers

I'm new to open source and this is my first PR! If there's anything that
needs improvement, please guide me and I'll be happy to learn and make
changes. Thank you for your patience! 😊

## What does this PR do?
- Added a noticeable beginner tip box after the badges section in README
- Provided specific guidance (Good First Issues link)
- Encourages newcomers to start with documentation fixes

## Why is this change needed?
- Makes it easier for new contributors to get started
- Provides clear direction and reduces confusion
- Creates a more welcoming open source community environment

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-19 00:01:21 -04:00
Christophe Bornet
1ae7fb7694 chore(langchain-classic): remove unused duckdb dependency (#33582)
* The dependency is not used.
* It takes a long time to build in Python 3.14 as there are no prebuilt
binaries yet. This slows down CI a lot.

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-17 18:45:30 -04:00
Mason Daugherty
7aef3388d9 release(xai): 1.0.0 (#33591) 2025-10-17 17:42:29 -04:00
Mason Daugherty
1d056487c7 style(anthropic): use aliases for model names (#33590) 2025-10-17 21:40:22 +00:00
Mason Daugherty
64e6798a39 chore: update pyproject.toml url entries (#33587) 2025-10-17 17:16:55 -04:00
Sydney Runkle
4a65e827f7 release(langchain_v1): v1.0.0 (#33588)
waiting on langgraph bump
2025-10-17 16:49:07 -04:00
Sydney Runkle
35b89b8b10 fix: shell tool middleware (#33589)
the fact that this was broken showcases that we need significantly
better test coverage, this is literally the most minimalistic usage of
this middleware there could be 😿

will document these two gotchas better for custom middleware

```py
from langchain.agents.middleware.shell_tool import ShellToolMiddleware
from langchain.agents import create_agent

agent = create_agent(model="openai:gpt-4",middleware = [ShellToolMiddleware()])
agent.invoke({"messages":[{"role": "user", "content": "hi"}]})
```
2025-10-17 16:48:30 -04:00
Mason Daugherty
8efa75d04c fix(xai): inject model_provider in response_metadata (#33543)
plus tests minor rfc
2025-10-17 16:11:03 -04:00
Sydney Runkle
8fd54f13b5 feat(langchain_v1): Python 3.14 support (#33560)
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
2025-10-17 15:10:01 -04:00
ccurme
952fa8aa99 fix(langchain,langchain_v1): enable huggingface optional dep (#33586) 2025-10-17 18:42:53 +00:00
Mason Daugherty
3948273350 release(prompty): 1.0.0 (#33584) 2025-10-17 14:10:01 -04:00
Eugene Yurtsev
a16307fe84 chore(infra): change scope names (#33580)
Change scope names
2025-10-17 15:55:58 +00:00
Eugene Yurtsev
af6f2cf366 chore(langchain_legacy): bump version 1.0 (#33579)
Bump version for langchain-classic
2025-10-17 11:55:13 -04:00
Mason Daugherty
6997867f0e release(deepseek): 1.0.0 (#33581) 2025-10-17 11:52:08 -04:00
Mason Daugherty
de791bc3ef fix(deepseek): inject model_provider in response_metadata (#33544)
& slight tests rfc
2025-10-17 11:47:59 -04:00
Mason Daugherty
69c6e7de59 release(ollama): 1.0.0 (#33567) 2025-10-17 11:39:24 -04:00
Mason Daugherty
10cee59f2e release(mistralai): 1.0.0 (#33573) 2025-10-17 11:33:17 -04:00
Mason Daugherty
58f521ea4f release(fireworks): 1.0.0 (#33571) 2025-10-17 11:32:57 -04:00
Mason Daugherty
a194ae6959 release(huggingface): 1.0.0 (#33572) 2025-10-17 11:26:48 -04:00
ccurme
4d623133a5 release(openai): 1.0.0 (#33578) 2025-10-17 11:25:25 -04:00
Mason Daugherty
8fbf192c2a release(perplexity): 1.0.0 (#33576) 2025-10-17 11:18:43 -04:00
Mason Daugherty
241a382fba docs: fix Anthropic, OpenAI docstrings (#33566)
minor
2025-10-17 11:18:32 -04:00
Mason Daugherty
c194ee2046 release(exa): 1.0.0 (#33570) 2025-10-17 11:17:43 -04:00
Mason Daugherty
85567f1dc3 release(qdrant): 1.0.0 (#33577) 2025-10-17 11:17:01 -04:00
Mason Daugherty
6f4978041e release(nomic): 1.0.0 (#33574) 2025-10-17 11:16:41 -04:00
Mason Daugherty
f1fca4f46f release(chroma): 1.0.0 (#33569) 2025-10-17 11:16:24 -04:00
Mason Daugherty
2b899fe961 release(groq): 1.0.0 (#33568) 2025-10-17 11:15:57 -04:00
ccurme
3152d25811 fix: support python 3.14 in various projects (#33575)
Co-authored-by: cbornet <cbornet@hotmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-17 11:06:23 -04:00
ccurme
3b8cb3d4b6 release(text-splitters): 1.0.0 (#33565) 2025-10-17 10:30:42 -04:00
ccurme
15047ae28a release(anthropic): 1.0.0 (#33564) 2025-10-17 10:03:04 -04:00
ccurme
888fa3a2fb release(standard-tests): 1.0.0 (#33563) 2025-10-17 09:53:59 -04:00
ccurme
90346b8a35 release(core): 1.0.0 (#33562) 2025-10-17 09:22:45 -04:00
Christophe Bornet
2d5efd7b29 fix(core): support for Python 3.14 (#33461)
* Fix detection of support of context in `asyncio.create_task`
* Fix: in Python 3.14 `asyncio.get_event_loop()` raises an exception if
there's no running loop
* Bump pydantic to version 2.12
* Skips tests with pydantic v1 models as they are not supported with
Python 3.14
* Run core tests with Python 3.14 in CI.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-10-17 05:27:34 -04:00
Mason Daugherty
1d2273597a docs: more fixes for refs (#33554) 2025-10-16 22:54:16 -04:00
Sydney Runkle
9dd494ddcd fix(langchain): conditional tools -> end edge when all client side calls return direct (#33550)
mostly #33520 
also tacking on change to make sure we're only looking at client side
calls for the jump to end

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2025-10-17 02:35:47 +00:00
Sydney Runkle
2fa07b19f6 chore(langchain_v1): relax typing on input state (#33552)
so we don't get type errors when invoking w/ dict type (openai format)
messages

would love to have types for these eventually so we can get proper
checking

before
<img width="759" height="257" alt="Screenshot 2025-10-16 at 9 46 08 PM"
src="https://github.com/user-attachments/assets/aabe716f-6d8f-429d-ae47-31dd8617752d"
/>

after
<img width="751" height="228" alt="Screenshot 2025-10-16 at 9 51 09 PM"
src="https://github.com/user-attachments/assets/e74dcf12-874b-43ca-9d5b-5575ef8ced73"
/>
2025-10-16 22:35:28 -04:00
Nuno Campos
a022e3c14d feat(langchain_v1): Add ShellToolMiddleware and ClaudeBashToolMiddleware (#33527)
- Both middleware share the same implementation, the only difference is
one uses Claude's server-side tool definition, whereas the other one
uses a generic tool definition compatible with all models
- Implemented 3 execution policies (responsible for actually running the
shell process)
- HostExecutionPolicy runs the shell as subprocess, appropriate for
already sandboxed environments, eg when run inside a dedicated docker
container
- CodexSandboxExecutionPolicy runs the shell using the sandbox command
from the Codex CLI which implements sandboxing techniques for Linux and
Mac OS.
- DockerExecutionPolicy runs the shell inside a dedicated Docker
container for isolation.
- Implements all behaviours described in
https://docs.claude.com/en/docs/agents-and-tools/tool-use/bash-tool#handle-large-outputs
including timeouts, truncation, output redaction, etc

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-10-16 22:32:11 -04:00
Eugene Yurtsev
e0e11423d9 feat(langchain): file-search middleware (#33551)
File search middleware from
https://github.com/langchain-ai/langchain/pull/33527
2025-10-16 21:52:18 -04:00
Eugene Yurtsev
34de8ec1f3 feat(anthropic): add more anthropic middleware (#33510)
Middleware Classes

Text Editor Tools
- StateClaudeTextEditorToolMiddleware: In-memory text editor using agent
state
- FilesystemClaudeTextEditorToolMiddleware: Text editor operating on
real filesystem

Implementing Claude's text editor tools

https://docs.claude.com/en/docs/agents-and-tools/tool-use/text-editor-tool
Operations: view, create, str_replace, insert

Memory Tools
- StateClaudeMemoryToolMiddleware: Memory persistence in agent state
- FilesystemClaudeMemoryToolMiddleware: Memory persistence on filesystem

Implementing Claude's memory tools
https://docs.claude.com/en/docs/agents-and-tools/tool-use/memory-tool
Operations: Same as text editor plus delete and rename

File Search Tools
- StateFileSearchMiddleware: Search state-based files

Provides Glob and Grep tools with same schema as used by Claude Code
(but compatible with any model)
- Glob: Pattern matching (e.g., **/*.py, src/**/*.ts), sorted by
modification time
- Grep: Regex content search with output modes (files_with_matches,
content, count)

Usage

``` from langchain.agents import create_agent from langchain.agents.middleware import (
StateTextEditorToolMiddleware, StateFileSearchMiddleware, )

agent = create_agent( model=model, tools=[], middleware=[
StateTextEditorToolMiddleware(), StateFileSearchMiddleware(), ], ) ```

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2025-10-16 21:07:14 -04:00
Sydney Runkle
3d288fd610 release: joint rcs for core + langchain (#33549) 2025-10-17 01:00:47 +00:00
Sydney Runkle
055cccde28 chore(langchain): allow injection of ToolRuntime and generic ToolRuntime[ContextT, StateT] (#33546)
Adds special private helper to allow direct injection of `ToolRuntime`
in tools, plus adding guards for generic annotations w/ `get_origin`.

Went w/ the private helper so that we didn't change behavior for other
injected types.
2025-10-16 20:55:19 -04:00
Mason Daugherty
361514d11d docs(exa): fix documentation link (#33545) 2025-10-16 23:53:52 +00:00
Eugene Yurtsev
90b68059f5 fix(langchain): revert conditional edge from tools to end (#33520) (#33539)
This is causing an issue with one of the middlewares
2025-10-16 17:19:26 -04:00
Mason Daugherty
87ad5276e4 chore: add v1 migration link to MIGRATE.md (#33537) 2025-10-16 20:31:02 +00:00
Mason Daugherty
5489df75d7 release(huggingface): 1.0.0a1 (#33536) 2025-10-16 16:21:38 -04:00
Sydney Runkle
c6b3f5b888 release(langchain): cut rc (#33534) 2025-10-16 19:55:38 +00:00
Mason Daugherty
15db024811 chore: more sweeping (#33533)
more fixes for refs
2025-10-16 15:44:56 -04:00
Jacob Lee
6d73003b17 feat(openai): Populate OpenAI service tier token details (#32721) 2025-10-16 15:14:57 -04:00
ccurme
13259a109a release(standard-tests): 1.0.0rc1 (#33531) 2025-10-16 14:09:41 -04:00
ccurme
aa78be574a release(core): 1.0.0rc2 (#33530) 2025-10-16 13:00:39 -04:00
Mason Daugherty
d0dd1b30d1 docs(langchain_v1): remove absent arg descriptions (#33529) 2025-10-16 12:25:18 -04:00
Mason Daugherty
0338a15192 docs(chroma): remove an extra arg space (#33526) 2025-10-16 16:05:51 +00:00
Sydney Runkle
e10d99b728 fix(langchain): conditional edge from tools to end (#33520) 2025-10-16 11:56:45 -04:00
Mason Daugherty
c9018f81ec docs(anthropic): update extended thinking docs and fix urls (#33525)
new urls

extended thinking isn't just 3.7 anymore
2025-10-16 11:18:47 -04:00
Eugene Yurtsev
31718492c7 fix(langchain_v1): relax tool node validation to allow claude text editing tools (#33512)
Relax tool node validation to allow claude text editing tools
2025-10-16 14:56:41 +00:00
Sydney Runkle
2209878f48 chore(langchain): update state schema doc (#33524) 2025-10-16 10:40:54 -04:00
Sydney Runkle
dd77dbe3ab chore(langchain_v1): adding back state_schema to create_agent (#33519)
To make migration easier, things are more backwards compat

Very minimal footprint here

Will need to upgrade migration guide and other docs w/ this change
2025-10-16 10:12:34 -04:00
ccurme
eb19e12527 feat(core): support vertexai standard content (#33521) 2025-10-16 10:08:58 -04:00
Sydney Runkle
551e86a517 chore(langchain): use runtime not tool_runtime for injected tool arg (#33522)
fast follow to https://github.com/langchain-ai/langchain/pull/33500
2025-10-16 13:53:54 +00:00
Eugene Yurtsev
8734c05f64 feat(langchain_v1): tool retry middleware (#33503)
Adds `ToolRetryMiddleware` to automatically retry failed tool calls with
configurable exponential backoff, exception filtering, and error
handling.

## Example

```python
from langchain.agents import create_agent
from langchain.agents.middleware import ToolRetryMiddleware
from langchain_openai import ChatOpenAI

# Retry up to 3 times with exponential backoff
retry = ToolRetryMiddleware(
    max_retries=3,
    initial_delay=1.0,
    backoff_factor=2.0,
)

agent = create_agent(
    model=ChatOpenAI(model="gpt-4"),
    tools=[search_tool, database_tool],
    middleware=[retry],
)

# Tool failures are automatically retried
result = agent.invoke({"messages": [{"role": "user", "content": "Search for AI news"}]})
```

For advanced usage with specific exception handling:

```python
from requests.exceptions import Timeout, HTTPError

def should_retry(exc: Exception) -> bool:
    # Only retry on 5xx errors or timeouts
    if isinstance(exc, HTTPError):
        return 500 <= exc.response.status_code < 600
    return isinstance(exc, Timeout)

retry = ToolRetryMiddleware(
    max_retries=4,
    retry_on=should_retry,
    tools=["search_database"],  # Only apply to specific tools
)
```
2025-10-16 09:47:43 -04:00
Sydney Runkle
0c8cbfb7de chore(langchain_v1): switch order of params in ToolRuntime (#33518)
To match `Runtime`
2025-10-16 12:09:05 +00:00
Sydney Runkle
89c3428d85 feat(langchain_v1): injected runtime (#33500)
Goal here is 2 fold

1. Improved devx for injecting args into tools
2. Support runtime injection for Python 3.10 async

One consequence of this PR is that `ToolNode` now expects `config`
available with `runtime`, which only happens in LangGraph execution
contexts. Hence the config patch for tests.

Are we ok reserving `tool_runtime`?

before, eek:
```py
from langchain.agents import create_agent
from langchain.tools import tool, InjectedState, InjectedStore
from langgraph.runtime import get_runtime
from typing_extensions import Annotated
from langgraph.store.base import BaseStore

@tool
def do_something(
    arg: int,
    state: Annotated[dict, InjectedState],
    store: Annotated[BaseStore, InjectedStore],
) -> None:
    """does something."""
    print(state)
    print(store)
    print(get_runtime().context)
    ...
```

after, woo!
```py
from langchain.agents import create_agent
from langchain.tools import tool, ToolRuntime

@tool
def do_something_better(
    arg: int,
    tool_runtime: ToolRuntime,
) -> None:
    """does something better."""
    print(tool_runtime.state)
    print(tool_runtime.store)
    print(tool_runtime.context)
    ...
```

```python
@dataclass
class ToolRuntime(InjectedToolArg, Generic[StateT, ContextT]):
    state: StateT
    context: ContextT
    config: RunnableConfig
    tool_call_id: str
    stream_writer: StreamWriter
    context: ContextT
    store: BaseStore | None
2025-10-16 07:41:09 -04:00
Mason Daugherty
707e96c541 style: more sweeping refs work (#33513) 2025-10-15 23:33:39 -04:00
Mason Daugherty
26e0a00c4c style: more work for refs (#33508)
Largely:
- Remove explicit `"Default is x"` since new refs show default inferred
from sig
- Inline code (useful for eventual parsing)
- Fix code block rendering (indentations)
2025-10-15 18:46:55 -04:00
Eugene Yurtsev
d0f8f00e7e release(anthropic): 1.0.0a5 (#33507)
Release anthropic
2025-10-15 21:31:52 +00:00
Eugene Yurtsev
a39132787c feat(anthropic): add async implementation to middleware (#33506)
Add async implementation to middleware
2025-10-15 17:05:39 -04:00
Sydney Runkle
296994ebf0 release(langchain_v1): 1.0.0a15 (#33505) 2025-10-15 20:48:18 +00:00
ccurme
b5b31eec88 feat(core): include original block type in server tool results for google-genai (#33502) 2025-10-15 16:26:54 -04:00
Sydney Runkle
8f6851c349 fix(langchain_v1): keep state to relevant middlewares for tool/model call limits (#33493)
The one risk point that I can see here is that model + tool call
counting now occurs in the `after_model` hook which introduces order
dependency (what if you have HITL execute before this hook and we jump
early to `model`, for example).

This is something users can work around at the moment and we can
document. We could also introduce a priority concept to middleware.
2025-10-15 14:24:59 -04:00
Nuno Campos
0788461abd feat(openai): Add openai moderation middleware (#33492) 2025-10-15 13:59:49 -04:00
ccurme
3bfd1f6d8a release(core): 1.0.0rc1 (#33497) 2025-10-15 13:02:35 -04:00
Mason Daugherty
d83c3a12bf chore(core): delete BaseMemory, move to langchain-classic (#33373) 2025-10-15 12:55:23 -04:00
Mason Daugherty
79200cf3c2 docs: update package READMEs (#33488) 2025-10-15 10:49:35 -04:00
ccurme
bcb6789888 fix(anthropic): set langgraph-prebuilt dep explicitly (#33495) 2025-10-15 14:44:37 +00:00
ccurme
89b7933ef1 feat(standard-tests): parametrize tool calling test (#33496) 2025-10-15 14:43:09 +00:00
ccurme
4da5a8081f fix(core): propagate extras when aggregating tool calls in v1 content (#33494) 2025-10-15 10:38:16 -04:00
Mason Daugherty
53e9f00804 chore(core): delete items marked for removal in schemas.py (#33375) 2025-10-15 09:56:27 -04:00
Chenyang Li
6e25e185f6 fix(docs): Fix several typos and grammar (#33487)
Just typo changes

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-14 20:04:14 -04:00
Mason Daugherty
68ceeb64f6 chore(core): delete function_calling.py utils marked for removal (#33376) 2025-10-14 16:13:19 -04:00
Mason Daugherty
edae976b81 chore(core): delete pydantic_v1/ (#33374) 2025-10-14 16:08:24 -04:00
ccurme
9f4366bc9d feat(mistralai): support reasoning feature and v1 content (#33485)
Not yet supported: server-side tool calls
2025-10-14 15:19:44 -04:00
Eugene Yurtsev
99e0a60aab chore(langchain_v1): remove invocation request (#33482)
Remove ToolNode primitives from langchain
2025-10-14 15:07:30 -04:00
Eugene Yurtsev
d38729fbac feat(langchain_v1): add async implementations to wrap_model_call (#33467)
Add async implementations to wrap_model_call for prebuilt middleware
2025-10-14 17:39:38 +00:00
gsmini
ff0d21cfd5 fix(langchain_v1): can not import "wrap_tool_call" from agents.… (#33472)
fix can not import `wrap_tool_call` from ` langchain.agents.middleware
import `
```python

from langchain.agents import create_agent
from langchain.agents.middleware import wrap_tool_call # here !
from langchain_core.messages import ToolMessage

@wrap_tool_call
def handle_tool_errors(request, handler):
    """Handle tool execution errors with custom messages."""
    try:
        return handler(request)
    except Exception as e:
        # Return a custom error message to the model
        return ToolMessage(
            content=f"Tool error: Please check your input and try again. ({str(e)})",
            tool_call_id=request.tool_call["id"]
        )

agent = create_agent(
    model="openai:gpt-4o",
    tools=[search, calculate],
    middleware=[handle_tool_errors]
)
```
> example code from:
https://docs.langchain.com/oss/python/langchain/agents#tool-error-handling
2025-10-14 13:39:25 -04:00
Eugene Yurtsev
9140a7cb86 feat(langchain_v1): add override to model request and tool call request (#33465)
Add override to model request and tool call request
2025-10-14 10:31:46 -04:00
ccurme
41fe18bc80 chore(groq): fix integration tests (#33478)
- add missing cassette
- update streaming metadata test for v1
2025-10-14 14:16:34 +00:00
Mason Daugherty
9105573cb3 docs: create_agent style and clarify system_prompt (#33470) 2025-10-14 09:56:54 -04:00
Sydney Runkle
fff87e95d1 fix(langchain): rename PlanningMiddleware to TodoListMiddleware (#33476) 2025-10-14 09:06:06 -04:00
ccurme
9beb29a34c chore(mistralai): delete redundant tests (#33468) 2025-10-13 21:28:51 +00:00
ChoYongHo | 조용호
ca00f5aed9 fix(langchain_v1): export ModelResponse from agents.middleware (#33453) (#33454)
## Description

  Fixes #33453

`ModelResponse` was defined in `types.py` and included in its `__all__`
list, but was not exported from the middleware package's `__init__.py`.
This caused `ImportError` when attempting to import it directly
from `langchain.agents.middleware`, despite being documented as a public
export.

  ## Changes

- Added `ModelResponse` to the import statement in
`langchain/agents/middleware/__init__.py`
- Added `ModelResponse` to the `__all__` list in
`langchain/agents/middleware/__init__.py`
- Added comprehensive unit tests in `test_imports.py` to verify the
import works correctly

  ## Issue

  The original issue reported that the following import failed:

  ```python
  from langchain.agents.middleware import ModelResponse
# ImportError: cannot import name 'ModelResponse' from
'langchain.agents.middleware'

  The workaround was to import from the submodule:

from langchain.agents.middleware.types import ModelResponse # Workaround

  Solution

  After this fix, ModelResponse can be imported directly as documented:

  from langchain.agents.middleware import ModelResponse  # Now works!

  Testing

-  Added 3 unit tests in
tests/unit_tests/agents/middleware/test_imports.py
  -  All tests pass locally: make format, make lint, make test
  -  Verified ModelResponse is properly exported and importable
  -  Verified ModelResponse appears in __all__ list

  Dependencies

  None. This is a simple export fix with no new dependencies.

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-10-13 16:02:30 -04:00
dependabot[bot]
637777b8e7 chore(infra): bump astral-sh/setup-uv from 6 to 7 (#33457)
Bumps [astral-sh/setup-uv](https://github.com/astral-sh/setup-uv) from 6
to 7.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/setup-uv/releases">astral-sh/setup-uv's
releases</a>.</em></p>
<blockquote>
<h2>v7.0.0 🌈 node24 and a lot of bugfixes</h2>
<h2>Changes</h2>
<p>This release comes with a load of bug fixes and a speed up. Because
of switching from node20 to node24 it is also a breaking change. If you
are running on GitHub hosted runners this will just work, if you are
using self-hosted runners make sure, that your runners are up to date.
If you followed the normal installation instructions your self-hosted
runner will keep itself updated.</p>
<p>This release also removes the deprecated input
<code>server-url</code> which was used to download uv releases from a
different server.
The <a
href="https://github.com/astral-sh/setup-uv?tab=readme-ov-file#manifest-file">manifest-file</a>
input supersedes that functionality by adding a flexible way to define
available versions and where they should be downloaded from.</p>
<h3>Fixes</h3>
<ul>
<li>The action now respects when the environment variable
<code>UV_CACHE_DIR</code> is already set and does not overwrite it. It
now also finds <a
href="https://docs.astral.sh/uv/reference/settings/#cache-dir">cache-dir</a>
settings in config files if you set them.</li>
<li>Some users encountered problems that <a
href="https://github.com/astral-sh/setup-uv?tab=readme-ov-file#disable-cache-pruning">cache
pruning</a> took forever because they had some <code>uv</code> processes
running in the background. Starting with uv version <code>0.8.24</code>
this action uses <code>uv cache prune --ci --force</code> to ignore the
running processes</li>
<li>If you just want to install uv but not have it available in path,
this action now respects <code>UV_NO_MODIFY_PATH</code></li>
<li>Some other actions also set the env var <code>UV_CACHE_DIR</code>.
This action can now deal with that but as this could lead to unwanted
behavior in some edgecases a warning is now displayed.</li>
</ul>
<h3>Improvements</h3>
<p>If you are using minimum version specifiers for the version of uv to
install for example</p>
<pre lang="toml"><code>[tool.uv]
required-version = &quot;&gt;=0.8.17&quot;
</code></pre>
<p>This action now detects that and directly uses the latest version.
Previously it would download all available releases from the uv repo
to determine the highest matching candidate for the version specifier,
which took much more time.</p>
<p>If you are using other specifiers like <code>0.8.x</code> this action
still needs to download all available releases because the specifier
defines an upper bound (not 0.9.0 or later) and &quot;latest&quot; would
possibly not satisfy that.</p>
<h2>🚨 Breaking changes</h2>
<ul>
<li>Use node24 instead of node20 <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/608">#608</a>)</li>
<li>Remove deprecated input server-url <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/607">#607</a>)</li>
</ul>
<h2>🐛 Bug fixes</h2>
<ul>
<li>Respect UV_CACHE_DIR and cache-dir <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/612">#612</a>)</li>
<li>Use --force when pruning cache <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/611">#611</a>)</li>
<li>Respect UV_NO_MODIFY_PATH <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/603">#603</a>)</li>
<li>Warn when <code>UV_CACHE_DIR</code> has changed <a
href="https://github.com/jamesbraza"><code>@​jamesbraza</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/601">#601</a>)</li>
</ul>
<h2>🚀 Enhancements</h2>
<ul>
<li>Shortcut to latest version for minimum version specifier <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/598">#598</a>)</li>
</ul>
<h2>🧰 Maintenance</h2>
<ul>
<li>Bump dependencies <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/613">#613</a>)</li>
<li>Fix test-uv-no-modify-path <a
href="https://github.com/eifinger"><code>@​eifinger</code></a> (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/604">#604</a>)</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="3259c6206f"><code>3259c62</code></a>
Bump deps (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/633">#633</a>)</li>
<li><a
href="bf8e8ed895"><code>bf8e8ed</code></a>
Split up documentation (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/632">#632</a>)</li>
<li><a
href="9c6b5e9fb5"><code>9c6b5e9</code></a>
Add resolution-strategy input to support oldest compatible version
selection ...</li>
<li><a
href="a5129e99f4"><code>a5129e9</code></a>
Add copilot-instructions.md (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/630">#630</a>)</li>
<li><a
href="d18bcc753a"><code>d18bcc7</code></a>
Add value of UV_PYTHON_INSTALL_DIR to path (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/628">#628</a>)</li>
<li><a
href="bd1f875aba"><code>bd1f875</code></a>
Set output venv when activate-environment is used (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/627">#627</a>)</li>
<li><a
href="1a91c3851d"><code>1a91c38</code></a>
chore: update known checksums for 0.9.2 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/626">#626</a>)</li>
<li><a
href="c79f606987"><code>c79f606</code></a>
chore: update known checksums for 0.9.1 (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/625">#625</a>)</li>
<li><a
href="e0249f1599"><code>e0249f1</code></a>
Fall back to PR for updating known versions (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/623">#623</a>)</li>
<li><a
href="6d2eb15b49"><code>6d2eb15</code></a>
Cache python installs (<a
href="https://redirect.github.com/astral-sh/setup-uv/issues/621">#621</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/astral-sh/setup-uv/compare/v6...v7">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=astral-sh/setup-uv&package-manager=github_actions&previous-version=6&new-version=7)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-10-13 15:21:12 -04:00
Eugene Yurtsev
1cf851e054 chore(langchain_v1,anthropic): migrate anthropic middleware to langchain_anthropic (#33463)
Migrate prompt caching implementation into langchain_anthropic.middleware
2025-10-13 15:12:54 -04:00
ccurme
961f965f0c feat(groq): support built-in tools in message content (#33459) 2025-10-13 15:06:01 -04:00
Sydney Runkle
760fc3bc12 chore(langchain_v1): use args for HITL (#33442) 2025-10-11 07:12:46 -04:00
Eugene Yurtsev
e3fc7d8aa6 chore(langchain_v1): bump release version (#33440)
bump v1 for release
2025-10-10 21:51:00 -04:00
Eugene Yurtsev
2b3b209e40 chore(langchain_v1): improve error message (#33433)
Make error messages actionable for sync / async decorators
2025-10-10 17:18:20 -04:00
ccurme
78903ac285 fix(openai): conditionally skip test (#33431) 2025-10-10 21:04:18 +00:00
ccurme
f361acc11c chore(anthropic): speed up integration tests (#33430) 2025-10-10 20:57:44 +00:00
Eugene Yurtsev
ed185c0026 chore(langchain_v1): remove langchain_text_splitters from test group (#33425)
Remove langchain_text_splitters from test group in langchain_v1
2025-10-10 16:56:14 -04:00
Eugene Yurtsev
6dc34beb71 chore(langchain_v1): stricter handling of sync vs. async for wrap_model_call and wrap_tool_call (#33429)
Wrap model call and wrap tool call
2025-10-10 16:54:42 -04:00
Eugene Yurtsev
c2205f88e6 chore(langchain_v1): further namespace clean up (#33428)
Reduce exposed namespace for now
2025-10-10 20:48:24 +00:00
ccurme
abdbe185c5 release(anthropic): 1.0.0a4 (#33427) 2025-10-10 16:39:58 -04:00
ccurme
c1b816cb7e fix(fireworks): parse standard blocks in input (#33426) 2025-10-10 16:18:37 -04:00
Eugene Yurtsev
0559558715 feat(langchain_v1): add async implementation for wrap_tool_call (#33420)
Add async implementation. No automatic delegation to sync at the moment.
2025-10-10 15:07:19 -04:00
Eugene Yurtsev
75965474fc chore(langchain_v1): tool error exceptions (#33424)
Tool error exceptions
2025-10-10 15:06:40 -04:00
Mason Daugherty
5dc014fdf4 chore(core): delete get_relevant_documents (#33378)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-10-10 14:51:54 -04:00
Mason Daugherty
291a9fcea1 style: llm -> model (#33423) 2025-10-10 13:19:13 -04:00
Christophe Bornet
dd994b9d7f chore(langchain): remove arg types from docstrings (#33413)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-10 11:51:00 -04:00
Christophe Bornet
83901b30e3 chore(text-splitters): remove arg types from docstrings (#33406)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-10 11:37:53 -04:00
Mason Daugherty
bcfa21a6e7 chore(infra): remove Poetry setup and dependencies (#33418)
AWS now uses UV
2025-10-10 11:29:52 -04:00
ccurme
af1da28459 feat(langchain_v1): expand message exports (#33419) 2025-10-10 15:14:51 +00:00
Mason Daugherty
ed2ee4e8cc style: fix tables, capitalization (#33417) 2025-10-10 11:09:59 -04:00
Sydney Runkle
f293c8ffd6 chore(langchain_v1): add RemoveMessage (#33416) 2025-10-10 10:49:18 -04:00
Sydney Runkle
714c370191 release(langchain_v1): v1.0.0a13 (#33415) 2025-10-10 10:42:35 -04:00
Sydney Runkle
a29d4e9c3a fix(langchain_v1): out of date docstring (#33414) 2025-10-10 14:12:07 +00:00
Eugene Yurtsev
74983f8a96 chore(langchain_v1): update on_tool_call to wrap_tool (#33410)
Improve naming on ToolNode for on_tool_call interceptor
2025-10-10 03:19:45 +00:00
Eugene Yurtsev
11c5b86981 chore(langchain_v1): update wrap_on_model return (#33408)
Update wrap on model return to capture the full return type of the model
so we can accommodate dynamic structured outputs.
2025-10-09 23:01:21 -04:00
Mason Daugherty
383f4c0ee9 chore: update docs links in README.md (#33409) 2025-10-10 02:54:48 +00:00
Eugene Yurtsev
045e7ad4a1 feat(langchain_v1): tool emulator (#33357)
This is tool emulation middleware. The idea is to help test out an agent
that may have some tools that either take a long time to run or are
expensive to set up. This could allow simulating the behavior a bit.
2025-10-10 01:39:40 +00:00
Anika
0e80291804 fix(core): handle parent/child mustache vars (#33345)
**Description:**

currently `mustache_schema("{{x.y}} {{x}}")` will error. pr fixes

**Issue:** na
**Dependencies:**na

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-10-09 18:45:32 -04:00
Sydney Runkle
c99773b652 feat(langchain_v1): refactoring HITL API (#33397)
Easiest to review side by side (not inline)

* Adding `dict` type requests + responses so that we can ship config w/
interrupts. Also more extensible.
* Keeping things generic in terms of `interrupt_on` rather than
`tool_config`
* Renaming allowed decisions -- approve, edit, reject
* Draws differentiation between actions (requested + performed by the
agent), in this case tool calls, though we generalize beyond that and
decisions - human feedback for said actions

New request structure

```py
class Action(TypedDict):
    """Represents an action with a name and arguments."""

    name: str
    """The type or name of action being requested (e.g., "add_numbers")."""

    arguments: dict[str, Any]
    """Key-value pairs of arguments needed for the action (e.g., {"a": 1, "b": 2})."""


DecisionType = Literal["approve", "edit", "reject"]


class ReviewConfig(TypedDict):
    """Policy for reviewing a HITL request."""

    action_name: str
    """Name of the action associated with this review configuration."""

    allowed_decisions: list[DecisionType]
    """The decisions that are allowed for this request."""

    description: NotRequired[str]
    """The description of the action to be reviewed."""

    arguments_schema: NotRequired[dict[str, Any]]
    """JSON schema for the arguments associated with the action, if edits are allowed."""

class HITLRequest(TypedDict):
    """Request for human feedback on a sequence of actions requested by a model."""

    action_requests: list[Action]
    """A list of agent actions for human review."""

    review_configs: list[ReviewConfig]
    """Review configuration for all possible actions."""
```

New response structure

```py
class ApproveDecision(TypedDict):
    """Response when a human approves the action."""

    type: Literal["approve"]
    """The type of response when a human approves the action."""


class EditDecision(TypedDict):
    """Response when a human edits the action."""

    type: Literal["edit"]
    """The type of response when a human edits the action."""

    edited_action: Action
    """Edited action for the agent to perform.

    Ex: for a tool call, a human reviewer can edit the tool name and args.
    """


class RejectDecision(TypedDict):
    """Response when a human rejects the action."""

    type: Literal["reject"]
    """The type of response when a human rejects the action."""

    message: NotRequired[str]
    """The message sent to the model explaining why the action was rejected."""


Decision = ApproveDecision | EditDecision | RejectDecision


class HITLResponse(TypedDict):
    """Response payload for a HITLRequest."""

    decisions: list[Decision]
    """The decisions made by the human."""
```

User facing API:

NEW

```py
HumanInTheLoopMiddleware(interrupt_on={
    'send_email': True,
    # can also use a callable for description that takes tool call, state, and runtime
    'execute_sql': {
        'allowed_decisions': ['approve', 'edit', 'reject'], 
        'description': 'please review sensitive tool execution'},
    }
})

Command(resume={"decisions": [{"type": "approve"}, {"type": "reject": "message": "db down"}]})
```

OLD

```py
HumanInTheLoopMiddleware(interrupt_on={
    'send_email': True,
    'execute_sql': {
        'allow_accept': True, 
        'allow_edit': True, 
        'allow_respond': True, 
        description='please review sensitive tool execution'
    },
})

Command(resume=[{"type": "approve"}, {"type": "reject": "message": "db down"}])
```
2025-10-09 17:51:28 -04:00
Mason Daugherty
5f9e3e33cd style: remove Defaults to None (#33404) 2025-10-09 17:27:35 -04:00
Mason Daugherty
6fc21afbc9 style: .. code-block:: admonition translations (#33400)
biiiiiiiiiiiiiiiigggggggg pass
2025-10-09 16:52:58 -04:00
ccurme
50445d4a27 fix(standard-tests): update Anthropic inputs test (#33391)
Since 10/7 Anthropic will raise BadRequestError if given an invalid
thinking signature.
2025-10-09 14:13:26 -04:00
ccurme
11a2efe49b fix(anthropic): handle empty AIMessage (#33390) 2025-10-09 13:57:42 -04:00
Mason Daugherty
d8a680ee57 style: address Sphinx double-backtick snippet syntax (#33389) 2025-10-09 13:35:51 -04:00
Christophe Bornet
f405a2c57d chore(core): remove arg types from docstrings (#33388)
* Remove types args
* Remove types from Returns
* Remove types from Yield
* Replace `kwargs` by `**kwargs` when needed
2025-10-09 13:13:23 -04:00
Mason Daugherty
3576e690fa chore: update Sphinx links to markdown (#33386) 2025-10-09 11:54:14 -04:00
Mason Daugherty
057ac361ef chore: delete .claude/settings.local.json (#33387) 2025-10-09 11:44:57 -04:00
Christophe Bornet
d9675a4a20 fix(langchain): improve and fix typing (#32383) 2025-10-09 10:55:31 -04:00
ccurme
c27271f3ae fix(openai): update file index key name (#33350) 2025-10-09 13:15:27 +00:00
ccurme
a3e4f4c2e3 fix(core): override streaming callback if streaming attribute is set (#33351) 2025-10-09 09:04:27 -04:00
Mason Daugherty
b5030badbe refactor(core): clean up sys_info.py (#33372) 2025-10-09 03:31:26 +00:00
Mason Daugherty
b6132fc23e style: remove more Optional syntax (#33371) 2025-10-08 23:28:43 -04:00
Eugene Yurtsev
f33b1b3d77 chore(langchain_v1): rename on_model_call to wrap_model_call (#33370)
rename on_model_call to wrap_model_call
2025-10-08 23:28:14 -04:00
Eugene Yurtsev
c382788342 chore(langchain_v1): update the uv lock file (#33369)
Update the uv lock file.
2025-10-08 23:03:25 -04:00
Eugene Yurtsev
e193a1f273 chore(langchain_v1): replace modify model request with on model call (#33368)
* Replace modify model request with on model call
* Remove modify model request
2025-10-09 02:46:48 +00:00
Eugene Yurtsev
eb70672f4a chore(langchain): add unit tests for wrap_tool_call decorator (#33367)
Add unit tests for wrap_tool_call decorator
2025-10-09 02:30:07 +00:00
Eugene Yurtsev
87df179ca9 chore(langchain_v1): rename on_tool_call to wrap_tool_call (#33366)
Replace on tool call with wrap tool call
2025-10-08 22:10:36 -04:00
Eugene Yurtsev
982a950ccf chore(langchain_v1): add runtime and context to model request (#33365)
Add runtime and context to ModelRequest to make the API more convenient
2025-10-08 21:59:56 -04:00
Eugene Yurtsev
c2435eeca5 chore(langchain_v1): update on_tool_call to regular callbacks (#33364)
Refactor tool call middleware from generator-based to handler-based
pattern

Simplifies on_tool_call middleware by replacing the complex generator
protocol with a straightforward handler pattern. Instead of yielding
requests and receiving results via .send(),
handlers now receive an execute callable that can be invoked multiple
times for retry logic.


Before vs. After

Before (Generator):
```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        for attempt in range(3):
            response = yield request  # Yield request, receive result via .send()
            if is_valid(response) or attempt == 2:
                return  # Final result is last value sent to generator
```

After (Handler):

```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, handler):
        for attempt in range(3):
            result = handler(request)  # Direct function call
            if is_valid(result):
                return result
        return result
```


Follow up after this PR:

* Rename the interceptor to wrap_tool_call
* Fix the async path for the ToolNode
2025-10-08 21:46:03 -04:00
Mason Daugherty
68c56440cf fix(groq): handle content correctly (#33363)
(look at most recent commit; ignore prior)
2025-10-08 21:23:30 -04:00
Mason Daugherty
31eeb50ce0 chore: drop UP045 (#33362)
Python 3.9 EOL
2025-10-08 21:17:53 -04:00
Mason Daugherty
0039b3b046 refactor(core): remove keep-runtime-typing from pyproject.toml following dropping 3.9 (#33360)
https://docs.astral.sh/ruff/rules/non-pep604-annotation-optional/#why-is-this-bad
2025-10-08 21:09:53 -04:00
Mason Daugherty
ffb1a08871 style(infra): use modern Optional typing in script (#33361) 2025-10-08 21:09:43 -04:00
Mason Daugherty
d13823043d style: monorepo pass for refs (#33359)
* Delete some double backticks previously used by Sphinx (not done
everywhere yet)
* Fix some code blocks / dropdowns

Ignoring CLI CI for now
2025-10-08 18:41:39 -04:00
Eugene Yurtsev
b665b81a0e chore(langchain_v1): simplify on model call logic (#33358)
Moving from the generator pattern to the slightly less verbose (but explicit) handler pattern.

This will be more familiar to users

**Before (Generator Pattern):**
```python
def on_model_call(self, request, state, runtime):
    try:
        result = yield request
    except Exception:
        result = yield request  # Retry
```

**After (Handler Pattern):**
```python
def on_model_call(self, request, state, runtime, handler):
    try:
        return handler(request)
    except Exception:
        return handler(request)  # Retry
```
2025-10-08 17:23:11 -04:00
Mason Daugherty
6b9b177b89 chore(openai): base.py ref pass (#33355) 2025-10-08 16:08:52 -04:00
Mason Daugherty
b1acf8d931 chore: fix dropdown default open admonition in refs (#33354) 2025-10-08 18:50:44 +00:00
Eugene Yurtsev
97f731da7e chore(langchain_v1): remove unused internal namespace (#33352)
Remove unused internal namespace. We'll likely restore a part of it for
lazy loading optimizations later.
2025-10-08 14:08:07 -04:00
Eugene Yurtsev
1bf29da0d6 feat(langchain_v1): add on_tool_call middleware hook (#33329)
Adds generator-based middleware for intercepting tool execution in
agents. Middleware can retry on errors, cache results, modify requests,
or short-circuit execution.

### Implementation

**Middleware Protocol**
```python
class AgentMiddleware:
    def on_tool_call(
        self,
        request: ToolCallRequest,
        state: StateT,
        runtime: Runtime[ContextT],
    ) -> Generator[ToolCallRequest | ToolMessage | Command, ToolMessage | Command, None]:
        """
        Yields: ToolCallRequest (execute), ToolMessage (cached result), or Command (control flow)
        Receives: ToolMessage or Command via .send()
        Returns: None (final result is last value sent to handler)
        """
        yield request  # passthrough
```

**Composition**
Multiple middleware compose automatically (first = outermost), with
`_chain_tool_call_handlers()` stacking them like nested function calls.

### Examples

**Retry on error:**
```python
class RetryMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        for attempt in range(3):
            response = yield request
            if not isinstance(response, ToolMessage) or response.status != "error":
                return
            if attempt == 2:
                return  # Give up
```

**Cache results:**
```python
class CacheMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        cache_key = (request.tool_call["name"], tuple(request.tool_call["args"].items()))
        if cached := self.cache.get(cache_key):
            yield ToolMessage(content=cached, tool_call_id=request.tool_call["id"])
        else:
            response = yield request
            self.cache[cache_key] = response.content
```

**Emulate tools with LLM**
```python
class ToolEmulator(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        prompt = f"""Emulate: {request.tool_call["name"]}
Description: {request.tool.description}
Args: {request.tool_call["args"]}
Return ONLY the tool's output."""

        response = emulator_model.invoke([HumanMessage(prompt)])
        yield ToolMessage(
            content=response.content,
            tool_call_id=request.tool_call["id"],
            name=request.tool_call["name"],
        )
```

**Modify requests:**
```python
class ScalingMiddleware(AgentMiddleware):
    def on_tool_call(self, request, state, runtime):
        if "value" in request.tool_call["args"]:
            request.tool_call["args"]["value"] *= 2
        yield request
```
2025-10-08 16:43:32 +00:00
Eugene Yurtsev
2c3fec014f feat(langchain_v1): on_model_call middleware (#33328)
Introduces a generator-based `on_model_call` hook that allows middleware
to intercept model calls with support for retry logic, error handling,
response transformation, and request modification.

## Overview

Middleware can now implement `on_model_call()` using a generator
protocol that:
- **Yields** `ModelRequest` to execute the model
- **Receives** `AIMessage` via `.send()` on success, or exception via
`.throw()` on error
- **Yields again** to retry or transform responses
- Uses **implicit last-yield semantics** (no return values from
generators)

## Usage Examples

### Basic Retry on Error

```python
from langchain.agents.middleware.types import AgentMiddleware

class RetryMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        for attempt in range(3):
            try:
                yield request  # Execute model
                break  # Success
            except Exception:
                if attempt == 2:
                    raise  # Max retries exceeded
```

### Response Transformation

```python
class UppercaseMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        result = yield request
        modified = AIMessage(content=result.content.upper())
        yield modified  # Return transformed response
```

### Error Recovery

```python
class FallbackMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        try:
            yield request
        except Exception:
            fallback = AIMessage(content="Service unavailable")
            yield fallback  # Convert error to fallback response
```

### Caching / Short-Circuit

```python
class CacheMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        if cached := get_cache(request):
            yield cached  # Skip model execution
        else:
            result = yield request
            save_cache(request, result)
```

### Request Modification

```python
class SystemPromptMiddleware(AgentMiddleware):
    def on_model_call(self, request, state, runtime):
        modified_request = ModelRequest(
            model=request.model,
            system_prompt="You are a helpful assistant.",
            messages=request.messages,
            tools=request.tools,
        )
        yield modified_request
```

### Function Decorator

```python
from langchain.agents.middleware.types import on_model_call

@on_model_call
def retry_three_times(request, state, runtime):
    for attempt in range(3):
        try:
            yield request
            break
        except Exception:
            if attempt == 2:
                raise

agent = create_agent(model="openai:gpt-4o", middleware=[retry_three_times])
```

## Middleware Composition

Middleware compose with first in list as outermost layer:

```python
agent = create_agent(
    model="openai:gpt-4o",
    middleware=[
        RetryMiddleware(),      # Outer - wraps others
        LoggingMiddleware(),    # Middle
        UppercaseMiddleware(),  # Inner - closest to model
    ]
)
```
2025-10-08 12:34:04 -04:00
Mason Daugherty
4c38157ee0 fix(core): don't print package if no version found (#33347)
This is polluting issues making it hard to find issues that apply to a
query
2025-10-07 23:14:17 -04:00
Sydney Runkle
b5f8e87e2f remove runtime where not needed 2025-10-07 21:33:52 -04:00
Eugene Yurtsev
6a2efd060e fix(langchain_v1): injection logic in tool node (#33344)
Fix injection logic in tool node
2025-10-07 21:31:10 -04:00
Mason Daugherty
cda336295f chore: enrich pyproject.toml files with links to new references, others (#33343) 2025-10-07 16:17:14 -04:00
Mason Daugherty
02f4256cb6 chore: remove CLI note in migrations (#33342)
unsure of functionality/we don't plan to spend time on it at the moment
2025-10-07 19:18:33 +00:00
ccurme
492ba3d127 release(core): 1.0.0a8 (#33341) 2025-10-07 14:18:44 -04:00
ccurme
cbf8d46d3e fix(core): add back add_user_message and add_ai_message (#33340) 2025-10-07 13:56:34 -04:00
Mason Daugherty
58598f01b0 chore: add more informative README for libs/ (#33339) 2025-10-07 17:13:45 +00:00
ccurme
89fe7e1ac1 release(langchain): 1.0.0a1 (#33337) 2025-10-07 12:52:32 -04:00
ccurme
a24712f7f7 revert: chore(infra): temporarily skip tests of previous alpha versions on core release (#33333)
Reverts langchain-ai/langchain#33312
2025-10-07 10:51:17 -04:00
Mason Daugherty
8446fef00d fix(infra): v0.3 ref dep (#33336) 2025-10-07 10:49:20 -04:00
Mason Daugherty
8bcdfbb24e chore: clean up pyproject.toml files, use core a7 (#33334) 2025-10-07 10:49:04 -04:00
Mason Daugherty
b8ebc14a23 chore(langchain): clean Makefile (#33335) 2025-10-07 10:48:47 -04:00
ccurme
aa442bc52f release(openai): 1.0.0a4 (#33316) 2025-10-07 09:25:05 -04:00
ccurme
2e024b7ede release(anthropic): 1.0.0a3 (#33317) 2025-10-07 09:24:54 -04:00
Sydney Runkle
c8205ff511 fix(langchain_v1): fix edges when there's no middleware (#33321)
1. Main fix: when we don't have a response format or middleware, don't
draw a conditional edge back to the loop entrypoint (self loop on model)
2. Supplementary fix: when we jump to `end` and there is an
`after_agent` hook, jump there instead of `__end__`

Other improvements -- I can remove these if they're more harmful than
helpful
1. Use keyword only arguments for edge generator functions for clarity
2. Rename args to `model_destination` and `end_destination` for clarity
2025-10-06 18:08:08 -04:00
Mason Daugherty
ea0a25d7fe fix(infra): v0.3 ref build; allow prerelease installations for partner packages (#33326) 2025-10-06 18:06:40 -04:00
Mason Daugherty
29b5df3881 fix(infra): handle special case for langchain-tavily repository checkout during ref build (#33324) 2025-10-06 18:00:24 -04:00
Mason Daugherty
690b620b7f docs(infra): add note about check_diff.py running on seemingly unrelated PRs (#33323) 2025-10-06 17:56:57 -04:00
Mason Daugherty
c55c9785be chore(infra): only build 0.3 ref docs from v0.3 branches (#33322)
Using the `api_doc_build.yml` workflow will now only pull from the
`v0.3` branch for each `langchain-ai` repo used during the build
process. This ensures that upcoming updates to the `master`/`main`
branch for each repo won't affect the v0.3 reference docs if/when they
are re-built or updated.
2025-10-06 21:45:49 +00:00
Christophe Bornet
20e04fc3dd chore(text-splitters): cleanup ruff config (#33247)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-06 17:02:31 -04:00
Mason Daugherty
078137f0ba chore(infra): use different pr title labeler (#33318)
The previous (from Grafana) is archived and doesn't work for community
PRs.
2025-10-06 16:58:52 -04:00
ccurme
d0f5a1cc96 fix(standard-tests,openai): minor fix for Responses API tests (#33315)
Following https://github.com/langchain-ai/langchain/pull/33301
2025-10-06 16:46:41 -04:00
ccurme
e8e41bd7a6 chore(infra): temporarily skip tests of previous alpha versions on core release (#33312)
To accommodate breaking changes (e.g., removal of deprecated params like
`callback_manager`).

Will revert once we have updated releases of anthropic and openai.
2025-10-06 16:31:36 -04:00
Sydney Runkle
7326966566 release(langchain_v1): 1.0.0a12 (#33314) 2025-10-06 16:24:30 -04:00
Mason Daugherty
6eb1c34ba1 fix(infra): pr-title-labeler (#33313)
Wasn't working on `pull_request_target`
2025-10-06 16:20:15 -04:00
Mason Daugherty
d390d2f28f chore: add .claude to .gitignore (#33311) 2025-10-06 16:20:02 -04:00
Sydney Runkle
2fa9741f99 chore(langchain_v1): rename model_request node -> model (#33310) 2025-10-06 16:18:18 -04:00
ccurme
ba35387c9e release(core): 1.0.0a7 (#33309) 2025-10-06 16:03:34 -04:00
ccurme
de48e102c4 fix(core,openai,anthropic): delegate to core implementation on invoke when streaming=True (#33308) 2025-10-06 15:54:55 -04:00
Sydney Runkle
08bf8f3dc9 release(langchain_v1): 1.0.0a11 (#33307)
* Consolidating agents
* Removing remainder of globals
* Removing `ToolNode`
2025-10-06 15:13:26 -04:00
Sydney Runkle
00f4db54c4 chore(langchain_v1): remove support for ToolNode in create_agent (#33306)
Let's add a note to help w/ migration once we add the tool call retry
middleware.
2025-10-06 15:06:20 -04:00
Sydney Runkle
62ccf7e8a4 feat(langchain_v1): simplify to use ONE agent (#33302)
This reduces confusion w/ types like `AgentState`, different arg names,
etc.

Second attempt, following
https://github.com/langchain-ai/langchain/pull/33249

* Ability to pass through `cache` and name in `create_agent` as
compilation args for the agent
* Right now, removing `test_react_agent.py` but we should add these
tests back as implemented w/ the new agent
* Add conditional edge when structured output tools are present to allow
for retries
* Rename `tracking` to `model_call_limit` to be consistent w/ tool call
limits

We need in the future (I'm happy to own):
* Significant test refactor
* Significant test overhaul where we emphasize and enforce coverage
2025-10-06 14:46:29 -04:00
Eugene Yurtsev
0ff2bc890b chore(langchain_v1): remove text splitters from langchain v1 namespace (#33297)
Removing text splitters for now for a lighter dependency. We may re-introduce
2025-10-06 14:42:23 -04:00
ccurme
426b8e2e6a feat(standard-tests): enable parametrization of output_version (#33301) 2025-10-06 14:37:33 -04:00
Eugene Yurtsev
bfed5f67a8 chore(langchain_v1): expose rate_limiters from langchain_core (#33305)
expose rate limiters from langchain core
2025-10-06 14:25:56 -04:00
Mason Daugherty
a4c8baebc5 chore: delete cookbook/ (#33303)
It will continue to be available in the `v0.3` branch
2025-10-06 14:21:53 -04:00
Sydney Runkle
a869f84c62 fix(langchain_v1): tool selector should use last human message (#33294) 2025-10-06 11:32:16 -04:00
Sydney Runkle
0ccc0cbdae feat(langchain_v1): before_agent and after_agent hooks (#33279)
We're adding enough new nodes that I think a refactor in terms of graph
building is warranted here, but not necessarily required for merging.
2025-10-06 11:31:52 -04:00
ccurme
7404338786 fix(core): fix string content when streaming output_version="v1" (#33261)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-06 11:03:03 -04:00
Nuno Campos
f308139283 feat(langchain_v1): Implement Context Editing Middleware (#33267)
Brings functionality similar to Anthropic's context editing to all chat
models
https://docs.claude.com/en/docs/build-with-claude/context-editing

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-10-06 10:34:04 -04:00
ccurme
95a451ef2c fix(openai): disable stream_usage in chat completions if OPENAI_BASE_URL is set (#33298)
This env var is used internally by the OpenAI client.
2025-10-06 10:14:43 -04:00
ccurme
c8636a626a chore(openai): (v1) fix sort order of mcp call keys (#33295) 2025-10-06 09:29:41 -04:00
ccurme
4e50ec4b98 feat(openai): enable stream_usage when using default base URL and client (#33205) 2025-10-06 08:56:38 -04:00
Mason Daugherty
90e4d944ac chore(infra): pdm -> hatchling (#33289) 2025-10-05 23:52:52 -04:00
Mason Daugherty
a16342b2bb re-do cli 2025-10-05 23:52:34 -04:00
Mason Daugherty
8e7cd85431 style: drop target-version = "py39" for OpenAI, Anthropic, HuggingFace (#33287) 2025-10-06 03:29:34 +00:00
Mason Daugherty
66889e2804 style(langchain): drop target-version = py39 (#33288) 2025-10-05 23:24:11 -04:00
Mason Daugherty
6ea03ab46c style(core): drop python 39 linting target for 3.10 (#33286) 2025-10-05 23:22:34 -04:00
Mason Daugherty
99d8504731 chore(core): docstring nits (#33285) 2025-10-05 22:40:34 -04:00
Nuno Campos
a9aa3f232d feat(langchain_v1): Add retry_model_request middleware hook, add ModelFallbackMiddleware (#33275)
- retry_model_request hook lets a middleware decide to retry a failed
model request, with full ability to modify as much or as little of the
request before doing so
- ModelFallbackMiddleware tries each fallback model in order, until one
is successful, or fallback list is exhausted

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-10-05 20:32:45 +00:00
Sydney Runkle
20514f5d44 fix(langchain_v1): linting fixes for llm tool selector (#33278)
* Including server side tools by default
* Fixing up typing / linting on `master`
2025-10-05 16:30:27 -04:00
Eugene Yurtsev
df2ecd9448 feat(langchain_v1): add llm selection middleware (#33272)
* Add llm based tool selection middleware.
* Note that we might want some form of caching for when the agent is
inside an active tool calling loop as the tool selection isn't expected
to change during that time.

API:

```python
class LLMToolSelectorMiddleware(AgentMiddleware):
    """Uses an LLM to select relevant tools before calling the main model.

    When an agent has many tools available, this middleware filters them down
    to only the most relevant ones for the user's query. This reduces token usage
    and helps the main model focus on the right tools.

    Examples:
        Limit to 3 tools:
        ```python
        from langchain.agents.middleware import LLMToolSelectorMiddleware

        middleware = LLMToolSelectorMiddleware(max_tools=3)

        agent = create_agent(
            model="openai:gpt-4o",
            tools=[tool1, tool2, tool3, tool4, tool5],
            middleware=[middleware],
        )
        ```

        Use a smaller model for selection:
        ```python
        middleware = LLMToolSelectorMiddleware(model="openai:gpt-4o-mini", max_tools=2)
        ```
    """

    def __init__(
        self,
        *,
        model: str | BaseChatModel | None = None,
        system_prompt: str = DEFAULT_SYSTEM_PROMPT,
        max_tools: int | None = None,
        always_include: list[str] | None = None,
    ) -> None:
        """Initialize the tool selector.

        Args:
            model: Model to use for selection. If not provided, uses the agent's main model.
                Can be a model identifier string or BaseChatModel instance.
            system_prompt: Instructions for the selection model.
            max_tools: Maximum number of tools to select. If the model selects more,
                only the first max_tools will be used. No limit if not specified.
            always_include: Tool names to always include regardless of selection.
                These do not count against the max_tools limit.
        """
```



```python
"""Test script for LLM tool selection middleware."""

from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolSelectorMiddleware
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get current weather for a location."""
    return f"Weather in {location}: 72°F, sunny"


@tool
def search_web(query: str) -> str:
    """Search the web for information."""
    return f"Search results for: {query}"


@tool
def calculate(expression: str) -> str:
    """Perform mathematical calculations."""
    return f"Result of {expression}: 42"


@tool
def send_email(to: str, subject: str) -> str:
    """Send an email to someone."""
    return f"Email sent to {to} with subject: {subject}"


@tool
def get_stock_price(symbol: str) -> str:
    """Get current stock price for a symbol."""
    return f"Stock price for {symbol}: $150.25"


@tool
def translate_text(text: str, target_language: str) -> str:
    """Translate text to another language."""
    return f"Translated '{text}' to {target_language}"


@tool
def set_reminder(task: str, time: str) -> str:
    """Set a reminder for a task."""
    return f"Reminder set: {task} at {time}"


@tool
def get_news(topic: str) -> str:
    """Get latest news about a topic."""
    return f"Latest news about {topic}"


@tool
def book_flight(destination: str, date: str) -> str:
    """Book a flight to a destination."""
    return f"Flight booked to {destination} on {date}"


@tool
def get_restaurant_recommendations(city: str, cuisine: str) -> str:
    """Get restaurant recommendations."""
    return f"Top {cuisine} restaurants in {city}"


# Create agent with tool selection middleware
middleware = LLMToolSelectorMiddleware(
    model="openai:gpt-4o-mini",
    max_tools=3,
)

agent = create_agent(
    model="openai:gpt-4o",
    tools=[
        get_weather,
        search_web,
        calculate,
        send_email,
        get_stock_price,
        translate_text,
        set_reminder,
        get_news,
        book_flight,
        get_restaurant_recommendations,
    ],
    middleware=[middleware],
)

# Test with a query that should select specific tools
response = agent.invoke(
    {"messages": [{"role": "user", "content": "I need to find restaurants"}]}
)

print(response)
```
2025-10-05 15:55:55 -04:00
Eugene Yurtsev
bdb7dbbf16 feat(langchain_v1): represent server side tools in modifyModelRequest and update tool handling (#33274)
* Add server side tools to modifyModelRequest (represented as dicts)
* Update some of the logic in terms of which tools are bound to ToolNode
* We still have a constraint on changing the response format dynamically
when using tool strategy. structured_output_tools are being using in
some of the edges. The code is now raising an exception to explain that
it's a limitation of the implementation. (We can add support later.)
2025-10-05 15:55:46 -04:00
Nuno Campos
30f7c87b6f feat(langchain_v1): Implement PIIMiddleware (#33271)
- supports 6 well-known PII types (email, credit_card, ip, mac_address,
url)
- 4 handling strategies (block, redact, mask, hash)
- supports custom PII types with detector functions or regex
- the built-in types were chosen because they are common, and detection
can be reliably implemented with stdlib
2025-10-04 22:27:51 -04:00
Eugene Yurtsev
fdf8181f58 fix(langchain_v1): dynamic response format (#33273)
* Preserve Auto type for the response format. cc @sydney-runkle Creating
an extra type was the nicest devx I could find for this (makes it easy
to do isinstance(thingy, AutoStrategy)

Remaining issue to address:
* Going to sort out why we're including tools in the tool node
2025-10-04 16:58:32 -04:00
Eugene Yurtsev
8a95eb1ef7 chore(langchain_v1): remove union return type in init_embeddings (#33062)
Fix the return type of init_embeddings
2025-10-04 16:40:36 -04:00
Eugene Yurtsev
4d1cfa494a chore(langchain,prompty): rename to langchain-classic (#33256)
* Rename to langchain-classic
* After release of community, we should add the [community] option back
into the pyproject.toml file.
2025-10-04 16:04:43 -04:00
Nuno Campos
2286d0d993 feat(langchain_v1): Add ToolCallLimitMiddleware (#33269)
which implements a tool call budget for either all tools, or a specific tool

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-10-04 15:03:45 -04:00
Eugene Yurtsev
46b87e435c chore(langchain_v1): change modifyModelRequest back to tools (#33270)
Seems like a much better devx with fairly little downside (we'll
document that you can't register new tools)
2025-10-04 12:33:54 -04:00
Eugene Yurtsev
905c6d7bad fix(langchain_v1): handle switching resposne format strategy based on model identity (#33259)
Change response format strategy dynamically based on model.

After this PR there are two remaining issues:

- [ ] Review binding of tools used for output to ToolNode (shouldn't be
required)
- [ ] Update ModelRequest to also support the original schema provided
by the user (to correctly support auto mode)
2025-10-04 11:56:56 -04:00
Sydney Runkle
acd1aa813c feat(langchain_v1): implement nicer devx for dynamic prompt (#33264)
Adding a `dynamic_prompt` decorator to support smoother devx for dynamic
system prompts

```py
from langchain.agents.middleware.types import dynamic_prompt, ModelRequest, AgentState
from langchain.agents.middleware_agent import create_agent
from langgraph.runtime import Runtime
from dataclasses import dataclass
from langchain_core.messages import HumanMessage


@dataclass
class Context:
    user_name: str


@dynamic_prompt
def my_prompt(request: ModelRequest, state: AgentState, runtime: Runtime[Context]) -> str:
    user_name = runtime.context.user_name
    return (
        f"You are a helpful assistant helping {user_name}. Please refer to the user as {user_name}."
    )


agent = create_agent(model="openai:gpt-4o", middleware=[my_prompt]).compile()

result = agent.invoke({"messages": [HumanMessage("Hello")]}, context=Context(user_name="Sydney"))
for msg in result["messages"]:
    msg.pretty_print()

"""
================================ Human Message =================================

Hello
================================== Ai Message ==================================

Hello Sydney! How can I assist you today?
"""

```
2025-10-03 21:06:23 -04:00
Sydney Runkle
2671fee2c6 feat(langchain_v1): description generator for HITL middleware (#33195)
Need to decide - what information should we feed to this description
factory? Right now, feeding:
* state
* runtime
* tool call (so the developer doesn't have to search through the state's
messages for the corresponding tool call)

I can see a case for just passing tool call. But again, this abstraction
is semi-bound to interrupts for tools... though we pretend it's more
abstract than that.

Right now:

```py
def custom_description(state: AgentState, runtime: Runtime, tool_call: ToolCall) -> str:
        """Generate a custom description."""
        return f"Custom: {tool_call['name']} with args {tool_call['args']}"

middleware = HumanInTheLoopMiddleware(
    interrupt_on={
        "tool_with_callable": {"allow_accept": True, "description": custom_description},
        "tool_with_string": {"allow_accept": True, "description": "Static description"},
    }
)
```
2025-10-04 01:01:44 +00:00
ccurme
010ed5d096 fix(anthropic,openai): fix tests (#33257)
following https://github.com/langchain-ai/langchain/pull/33192
2025-10-03 13:41:37 -04:00
Eugene Yurtsev
7f5be6b65c chore(core,langchain,langchain_v1)!: remove globals from langchain-v1, update globals in langchain-classic, langchain-core (#33251)
* Remove globals.py from langchain_v1
* Adjust langchain-core to not inspect langchain namespace
2025-10-03 12:53:33 -04:00
Eugene Yurtsev
1074ce5fe5 chore(langchain_v1)!: Remove ToolNode from agents (#33250)
Remove ToolNode from agents namespace. It should only be present in tools
2025-10-03 10:57:54 -04:00
Sydney Runkle
3d2f13a2f1 feat(langchain): model call limits (#33178)
This PR adds a model call limit middleware that helps to manage:

* number of model calls during a run (helps w/ avoiding tool calling
loops) - implemented w/ `UntrackedValue`
* number of model calls on a thread (helps w/ avoiding lengthy convos) -
standard state

Concern here is w/ other middlewares overwriting the model call count...
we could use a `_` prefixed field?
2025-10-03 08:28:56 -04:00
SN
99361e623a feat(core): add optional include_id param to convert_to_openai_messages function (#33242) 2025-10-03 08:22:43 -04:00
Mason Daugherty
5a016de53f chore: delete deprecated items (#33192)
Removed:
- `libs/core/langchain_core/chat_history.py`: `add_user_message` and
`add_ai_message` in favor of `add_messages` and `aadd_messages`
- `libs/core/langchain_core/language_models/base.py`: `predict`,
`predict_messages`, and async versions in favor of `invoke`. removed
`_all_required_field_names` since it was a wrapper on
`get_pydantic_field_names`
- `libs/core/langchain_core/language_models/chat_models.py`:
`callback_manager` param in favor of `callbacks`. `__call__` and
`call_as_llm` method in favor of `invoke`
- `libs/core/langchain_core/language_models/llms.py`: `callback_manager`
param in favor of `callbacks`. `__call__`, `predict`, `apredict`, and
`apredict_messages` methods in favor of `invoke`
- `libs/core/langchain_core/prompts/chat.py`: `from_role_strings` and
`from_strings` in favor of `from_messages`
- `libs/core/langchain_core/prompts/pipeline.py`: removed
`PipelinePromptTemplate`
- `libs/core/langchain_core/prompts/prompt.py`: `input_variables` param
on `from_file` as it wasn't used
- `libs/core/langchain_core/tools/base.py`: `callback_manager` param in
favor of `callbacks`
- `libs/core/langchain_core/tracers/context.py`: `tracing_enabled` in
favor of `tracing_enabled_v2`
- `libs/core/langchain_core/tracers/langchain_v1.py`: entire module
- `libs/core/langchain_core/utils/loading.py`: entire module,
`try_load_from_hub`
- `libs/core/langchain_core/vectorstores/in_memory.py`: `upsert` in
favor of `add_documents`
- `libs/standard-tests/langchain_tests/integration_tests/chat_models.py`
and `libs/standard-tests/langchain_tests/unit_tests/chat_models.py`:
`tool_choice_value` as models should accept `tool_choice="any"`
- `langchain` will consequently no longer expose these items if it was
previously

---------

Co-authored-by: Mohammad Mohtashim <45242107+keenborder786@users.noreply.github.com>
Co-authored-by: Caspar Broekhuizen <caspar@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
Co-authored-by: Vadym Barda <vadim.barda@gmail.com>
2025-10-03 03:33:24 +00:00
Mason Daugherty
b541a56c66 chore(langchain): uncomment some optional deps (#33243)
remaining:
- azure-ai
- cohere
- huggingface
- community
2025-10-02 23:29:14 -04:00
Mason Daugherty
4a6890a4e5 chore(langchain_v1): uncomment some optional deps (#33244)
remaining:
- azure-ai
- cohere
- huggingface
- community
2025-10-02 23:18:06 -04:00
Mason Daugherty
e2e0327c90 ci: add workflow for manually building API ref for v0.3 (#33241) 2025-10-02 20:33:12 -04:00
Mason Daugherty
bba37bd6be chore: add libs/ note (#33238) 2025-10-02 19:57:50 -04:00
Mason Daugherty
b051ff4a84 chore(infra): remove formatting and linting hook for root (#33237) 2025-10-02 19:43:09 -04:00
Mason Daugherty
13812f0df8 release(qdrant): 1.0.0a1 (#33236) 2025-10-02 19:37:00 -04:00
Mason Daugherty
420dcf5c4a release(prompty): 1.0.0a1 (#33235) 2025-10-02 19:29:55 -04:00
Mason Daugherty
9f75e20d4f release(perplexity): 1.0.0a1 (#33234) 2025-10-02 19:23:22 -04:00
Mason Daugherty
743e9b2ad1 release(nomic): 1.0.0a1 (#33233) 2025-10-02 19:23:06 -04:00
Mason Daugherty
ea438f9e8a release(groq): 1.0.0a1 (#33231) 2025-10-02 19:04:27 -04:00
Mason Daugherty
86cf3fad4d release(chroma): 1.0.0a1 (#33227) 2025-10-02 19:04:14 -04:00
Mason Daugherty
79a12c8f27 release(mistralai): 1.0.0a1 (#33232) 2025-10-02 19:04:03 -04:00
Mason Daugherty
e85b03d5e4 release(fireworks): 1.0.0a1 (#33230) 2025-10-02 19:03:54 -04:00
Mason Daugherty
21ba7adbab release(exa): 1.0.0a1 (#33229) 2025-10-02 19:03:45 -04:00
Mason Daugherty
f9a87971ba release(deepseek): 1.0.0a1 (#33228) 2025-10-02 19:03:39 -04:00
Mason Daugherty
638d1ff912 release(cli): 1.0.0a1 (#33226) 2025-10-02 19:03:29 -04:00
Mason Daugherty
ae5b105d11 docs: v1 docs updates (#33173)
Co-authored-by: Mohammad Mohtashim <45242107+keenborder786@users.noreply.github.com>
Co-authored-by: Caspar Broekhuizen <caspar@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
Co-authored-by: Vadym Barda <vadim.barda@gmail.com>
2025-10-02 18:46:26 -04:00
Mason Daugherty
d07cb63c75 fix(xai): update langchain dependencies to latest alpha versions (#33224) 2025-10-02 17:08:16 -04:00
Mason Daugherty
b8c9b20db4 release(xai): 1.0.0a1 (#33223)
Drop Python 3.9
2025-10-02 17:00:14 -04:00
Mason Daugherty
89b4d7b6c1 fix(infra): _release.yml permissions (#33222) 2025-10-02 16:41:51 -04:00
Mason Daugherty
65cd214f67 chore(infra): more tweaks to PR linting (#33220) 2025-10-02 20:11:05 +00:00
Mason Daugherty
38a971cb3b release(standard-tests): 1.0.0a2 (#33219) 2025-10-02 16:09:57 -04:00
Mason Daugherty
9c9b80c70a docs(standard-tests): add clarity to docstrings (#33218) 2025-10-02 16:09:34 -04:00
Mason Daugherty
5fd4b192bc chore(infra): update integration test workflow (#33216) 2025-10-02 14:49:16 -04:00
Mason Daugherty
ae16392ada release(text-splitters): 1.0.0a1 (#33214) 2025-10-02 13:56:10 -04:00
Mason Daugherty
ccfea37d17 style(infra): update release guidelines for IDE autogen (#33215)
VSCode looks at this file. Should help auto-gen commits for releases.
2025-10-02 17:55:35 +00:00
Mason Daugherty
5e8cb58e6a refactor(text-splitters): drop python 3.9 (#33212) 2025-10-02 13:51:10 -04:00
Mason Daugherty
740ad00d36 chore(infra): add text-splitters labeling (#33213) 2025-10-02 13:50:34 -04:00
Mason Daugherty
9459ab189a docs(openai): use text property instead of method (#33211) 2025-10-02 13:50:25 -04:00
Mason Daugherty
63097db4fc fix(ollama): exclude None parameters from options dictionary (#33208) 2025-10-02 11:25:15 -04:00
Mason Daugherty
eaa6dcce9e release: v1.0.0 (#32567)
Co-authored-by: Mohammad Mohtashim <45242107+keenborder786@users.noreply.github.com>
Co-authored-by: Caspar Broekhuizen <caspar@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
Co-authored-by: Vadym Barda <vadim.barda@gmail.com>
2025-10-02 10:49:42 -04:00
ccurme
d7cce2f469 feat(langchain_v1): update messages namespace (#33207) 2025-10-02 10:35:00 -04:00
Mason Daugherty
48b77752d0 release(ollama): 0.3.9 (#33200) 2025-10-01 22:31:20 -04:00
Mason Daugherty
6f2d16e6be refactor(ollama): simplify options handling (#33199)
Fixes #32744

Don't restrict options; the client accepts any dict
2025-10-01 21:58:12 -04:00
Mason Daugherty
a9eda18e1e refactor(ollama): clean up tests (#33198) 2025-10-01 21:52:01 -04:00
Mason Daugherty
a89c549cb0 feat(ollama): add basic auth support (#32328)
support for URL authentication in the format
`https://user:password@host:port` for all LangChain Ollama clients.

Related to #32327 and #25055
2025-10-01 20:46:37 -04:00
Sydney Runkle
a336afaecd feat(langchain): use decorators for jumps instead (#33179)
The old `before_model_jump_to` classvar approach was quite clunky, this
is nicer imo and easier to document. Also moving from `jump_to` to
`can_jump_to` which is more idiomatic.

Before:

```py
class MyMiddleware(AgentMiddleware):
    before_model_jump_to: ClassVar[list[JumpTo]] = ["end"]

    def before_model(state, runtime) -> dict[str, Any]:
        return {"jump_to": "end"}
```

After

```py
class MyMiddleware(AgentMiddleware):

    @hook_config(can_jump_to=["end"])
    def before_model(state, runtime) -> dict[str, Any]:
        return {"jump_to": "end"}
```
2025-10-01 16:49:27 -07:00
Lauren Hirata Singh
af07949d13 fix(docs): Redirects (#33190) 2025-10-01 16:28:47 -04:00
Sydney Runkle
a10e880c00 feat(langchain_v1): add async support for create_agent (#33175)
This makes branching **much** more simple internally and helps greatly
w/ type safety for users. It just allows for one signature on hooks
instead of multiple.

Opened after https://github.com/langchain-ai/langchain/pull/33164
ballooned more than expected, w/ branching for:
* sync vs async
* runtime vs no runtime (this is self imposed)

**This also removes support for nodes w/o `runtime` in the signature.**
We can always go back and add support for nodes w/o `runtime`.

I think @christian-bromann's idea to re-export `runtime` from
langchain's agents might make sense due to the abundance of imports
here.

Check out the value of the change based on this diff:
https://github.com/langchain-ai/langchain/pull/33176
2025-10-01 19:15:39 +00:00
Eugene Yurtsev
7b5e839be3 chore(langchain_v1): use list[str] for modifyModelRequest (#33166)
Update model request to return tools by name. This will decrease the
odds of misusing the API.

We'll need to extend the type for built-in tools later.
2025-10-01 14:46:19 -04:00
ccurme
740842485c fix(openai): bump min core version (#33188)
Required for new tests added in
https://github.com/langchain-ai/langchain/pull/32541 and
https://github.com/langchain-ai/langchain/pull/33183.
2025-10-01 11:01:15 -04:00
noeliecherrier
08bb74f148 fix(mistralai): handle HTTP errors in async embed documents (#33187)
The async embed function does not properly handle HTTP errors.

For instance with large batches, Mistral AI returns `Too many inputs in
request, split into more batches.` in a 400 error.

This leads to a KeyError in `response.json()["data"]` l.288

This PR fixes the issue by:
- calling `response.raise_for_status()` before returning
- adding a retry similarly to what is done in the synchronous
counterpart `embed_documents`

I also added an integration test, but willing to move it to unit tests
if more relevant.
2025-10-01 10:57:47 -04:00
ccurme
7d78ed9b53 release(standard-tests): 0.3.22 (#33186) 2025-10-01 10:39:17 -04:00
ccurme
7ccff656eb release(core): 0.3.77 (#33185) 2025-10-01 10:24:07 -04:00
ccurme
002d623f2d feat: (core, standard-tests) support PDF inputs in ToolMessages (#33183) 2025-10-01 10:16:16 -04:00
Mohammad Mohtashim
34f8031bd9 feat(langchain): Using Structured Response as Key in Output Schema for Middleware Agent (#33159)
- **Description:** Changing the key from `response` to
`structured_response` for middleware agent to keep it sync with agent
without middleware. This a breaking change.
 - **Issue:** #33154
2025-10-01 03:24:59 +00:00
Mason Daugherty
a541b5bee1 chore(infra): rfc README.md for better presentation (#33172) 2025-09-30 17:44:42 -04:00
Mason Daugherty
3e970506ba chore(core): remove runnable section from README.md (#33171) 2025-09-30 17:15:31 -04:00
Mason Daugherty
d1b0196faa chore(infra): whitespace fix (#33170) 2025-09-30 17:14:55 -04:00
ccurme
aac69839a9 release(openai): 0.3.34 (#33169) 2025-09-30 16:48:39 -04:00
ccurme
64141072a3 feat(openai): support openai sdk 2.0 (#33168) 2025-09-30 16:34:00 -04:00
Mason Daugherty
0795be2a04 docs(core): remove non-existent param from as_tool docstring (#33165) 2025-09-30 19:43:34 +00:00
Eugene Yurtsev
9c97597175 chore(langchain_v1): expose middleware decorators and selected messages (#33163)
* Make it easy to improve the middleware shortcuts
* Export the messages that we're confident we'll expose
2025-09-30 14:14:57 -04:00
Sydney Runkle
eed0f6c289 feat(langchain): todo middleware (#33152)
Porting the [planning
middleware](39c0138d0f/src/deepagents/middleware.py (L21))
over from deepagents.

Also adding the ability to configure:
* System prompt
* Tool description

```py
from langchain.agents.middleware.planning import PlanningMiddleware
from langchain.agents import create_agent

agent = create_agent("openai:gpt-4o", middleware=[PlanningMiddleware()])

result = await agent.invoke({"messages": [HumanMessage("Help me refactor my codebase")]})

print(result["todos"])  # Array of todo items with status tracking
```
2025-09-30 02:23:26 +00:00
ccurme
729637a347 docs(anthropic): document support for memory tool and context management (#33149) 2025-09-29 16:38:01 -04:00
Mason Daugherty
3325196be1 fix(langchain): handle gpt-5 model name in init_chat_model (#33148)
expand to match any `gpt-*` model to openai
2025-09-29 16:16:17 -04:00
Mason Daugherty
f402fdcea3 fix(langchain): add context_management to Anthropic chat model init (#33150) 2025-09-29 16:13:47 -04:00
ccurme
ca9217c02d release(anthropic): 0.3.21 (#33147) 2025-09-29 19:56:28 +00:00
ccurme
f9bae40475 feat(anthropic): support memory and context management features (#33146)
https://docs.claude.com/en/docs/build-with-claude/context-editing

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-29 15:42:38 -04:00
ccurme
839a18e112 fix(openai): remove __future__.annotations import from test files (#33144)
Breaks schema conversion in places.
2025-09-29 16:23:32 +00:00
Mohammad Mohtashim
33a6def762 fix(core): Support of 'reasoning' type in 'convert_to_openai_messages' (#33050) 2025-09-29 09:17:05 -04:00
nhuang-lc
c456c8ae51 fix(langchain): fix response action for HITL (#33131)
Multiple improvements to HITL flow:

* On a `response` type resume, we should still append the tool call to
the last AIMessage (otherwise we have a ToolResult without a
corresponding ToolCall)
* When all interrupts have `response` types (so there's no pending tool
calls), we should jump back to the first node (instead of end) as we
enforced in the previous `post_model_hook_router`
* Added comments to `model_to_tools` router so clarify all of the
potential exit conditions

Additionally:
* Lockfile update to use latest LG alpha release
* Added test for `jump_to` behaving ephemerally, this was fixed in LG
but surfaced as a bug w/ `jump_to`.
* Bump version to v1.0.0a10 to prep for alpha release

---------

Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-09-29 13:08:18 +00:00
Eugene Yurtsev
54ea62050b chore(langchain_v1): move tool node to tools namespace (#33132)
* Move ToolNode to tools namespace
* Expose injected variable as well in tools namespace
* Update doc-strings throughout
2025-09-26 15:23:57 -04:00
Mason Daugherty
986302322f docs: more standardization (#33124) 2025-09-25 20:46:20 -04:00
Mason Daugherty
a5137b0a3e refactor(langchain): resolve pydantic deprecation warnings (#33125) 2025-09-25 17:33:18 -04:00
Mason Daugherty
5bea28393d docs: standardize .. code-block directive usage (#33122)
and fix typos
2025-09-25 16:49:56 -04:00
Mason Daugherty
c3fed20940 docs: correct ported over directives (#33121)
Match rest of repo
2025-09-25 15:54:54 -04:00
Mason Daugherty
6d418ba983 test(mistralai): add xfail for structured output test (#33119)
In rare cases (difficult to reproduce), Mistral's API fails to return
valid bodies, leading to failures from `PydanticToolsParser`
2025-09-25 13:05:31 -04:00
Mason Daugherty
12daba63ff test(openai): raise token limit for o1 test (#33118)
`test_o1[False-False]` was sometimes failing because the OpenAI o1 model
was hitting a token limit with only 100 tokens
2025-09-25 12:57:33 -04:00
Christophe Bornet
eaf8dce7c2 chore: bump ruff version to 0.13 (#33043)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-25 12:27:39 -04:00
Mason Daugherty
f82de1a8d7 chore: bump locks (#33114) 2025-09-25 01:46:01 -04:00
Mason Daugherty
e3efd1e891 test(text-splitters): capture beta warnings (#33113) 2025-09-25 01:30:20 -04:00
Mason Daugherty
d6769cf032 test(text-splitters): resolve pytest marker warning (#33112)
#33111
2025-09-25 01:29:42 -04:00
Mason Daugherty
7ab2e0dd3b test(core): resolve pytest marker warning (#33111)
Remove redundant/outdated `@pytest.mark.requires("jinja2")` decorator

Pytest marks (like `@pytest.mark.requires(...)`) applied directly to
fixtures have no effect and are deprecated.
2025-09-25 01:08:54 -04:00
Mason Daugherty
81319ad3f0 test(core): resolve pydantic_v1 deprecation warning (#33110)
Excluded pydantic_v1 module from import testing

Acceptable since this pydantic_v1 is explicitly deprecated. Testing its
importability at this stage serves little purpose since users should
migrate away from it.
2025-09-25 01:08:03 -04:00
Mason Daugherty
e3f3c13b75 refactor(core): use aadd_documents in vectorstores unit tests (#33109)
Don't use the deprecated `upsert()` and `aupsert()`

Instead use the recommended alternatives
2025-09-25 00:57:08 -04:00
Mason Daugherty
c30844fce4 fix(core): use version agnostic get_fields (#33108)
Resolves a warning
2025-09-25 00:54:29 -04:00
Mason Daugherty
c9eb3bdb2d test(core): use secure hash algorithm in indexing test to eliminate SHA-1 warning (#33107)
Finish work from #33101
2025-09-25 00:49:11 -04:00
Mason Daugherty
e97baeb9a6 test(core): suppress pydantic_v1 deprecation warnings during import tests (#33106)
We intentionally import these. Hide warnings to reduce testing noise.
2025-09-25 00:37:40 -04:00
Mason Daugherty
3a6046b157 test(core): don't use deprecated input_variables param in from_file (#33105)
finish #33104
2025-09-25 04:29:31 +00:00
Mason Daugherty
8fdc619f75 refactor(core): don't use deprecated input_variables param in from_file (#33104)
Missed awhile back; causes warnings during tests
2025-09-25 00:14:17 -04:00
Ali Ismail
729bfe8369 test(core): enhance stringify_value test coverage for nested structures (#33099)
## Summary
Adds test coverage for the `stringify_value` utility function to handle
complex nested data structures that weren't previously tested.

## Changes
- Added `test_stringify_value_nested_structures()` to `test_strings.py`
- Tests nested dictionaries within lists
- Tests mixed-type lists with various data types
- Verifies proper stringification of complex nested structures

## Why This Matters
- Fills a gap in test coverage for edge cases
- Ensures `stringify_value` handles complex data structures correctly  
- Improves confidence in string utility functions used throughout the
codebase
- Low risk addition that strengthens existing test suite

## Testing
```bash
uv run --group test pytest libs/core/tests/unit_tests/utils/test_strings.py::test_stringify_value_nested_structures -v
```

This test addition follows the project's testing patterns and adds
meaningful coverage without introducing any breaking changes.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-25 00:04:47 -04:00
Mason Daugherty
9b624a79b2 test(core): suppress deprecation warnings in PipelinePromptTemplate (#33102)
We're intentionally testing this still so as not to regress. Reduce
warning noise.
2025-09-25 04:03:27 +00:00
Mason Daugherty
c60c5a91cb fix(core): use secure hash algorithm in indexing test to eliminate SHA-1 warning (#33101)
Use SHA-256 (collision-resistant) instead of the default SHA-1. No
functional changes to test behavior.
2025-09-25 00:02:11 -04:00
Mason Daugherty
d9e0c212e0 chore(infra): add tests to label mapping (#33103) 2025-09-25 00:01:53 -04:00
Sydney Runkle
f015526e42 release(langchain): v1.0.0a9 (#33098) 2025-09-24 21:02:53 +00:00
Sydney Runkle
57d931532f fix(langchain): extra arg for anthropic caching, __end__ -> end for jump_to (#33097)
Also updating `jump_to` to use `end` instead of `__end__`
2025-09-24 17:00:40 -04:00
Mason Daugherty
50012d95e2 chore: update pull_request_target types, harden (#33096)
Enhance the pull request workflows by updating the `pull_request_target`
types and ensuring safety by avoiding checkout of the PR's head. Update
the action to use a specific commit from the archived repository.
2025-09-24 16:37:16 -04:00
Mason Daugherty
33f06875cb fix(langchain_v1): version equality check (#33095) 2025-09-24 16:27:55 -04:00
dependabot[bot]
e5730307e7 chore: bump actions/setup-node from 4 to 5 (#32952)
Bumps [actions/setup-node](https://github.com/actions/setup-node) from 4
to 5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/setup-node/releases">actions/setup-node's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2>What's Changed</h2>
<h3>Breaking Changes</h3>
<ul>
<li>Enhance caching in setup-node with automatic package manager
detection by <a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/1348">actions/setup-node#1348</a></li>
</ul>
<p>This update, introduces automatic caching when a valid
<code>packageManager</code> field is present in your
<code>package.json</code>. This aims to improve workflow performance and
make dependency management more seamless.
To disable this automatic caching, set <code>package-manager-cache:
false</code></p>
<pre lang="yaml"><code>steps:
- uses: actions/checkout@v5
- uses: actions/setup-node@v5
  with:
    package-manager-cache: false
</code></pre>
<ul>
<li>Upgrade action to use node24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/setup-node/pull/1325">actions/setup-node#1325</a></li>
</ul>
<p>Make sure your runner is on version v2.327.1 or later to ensure
compatibility with this release. <a
href="https://github.com/actions/runner/releases/tag/v2.327.1">See
Release Notes</a></p>
<h3>Dependency Upgrades</h3>
<ul>
<li>Upgrade <code>@​octokit/request-error</code> and
<code>@​actions/github</code> by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-node/pull/1227">actions/setup-node#1227</a></li>
<li>Upgrade uuid from 9.0.1 to 11.1.0 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-node/pull/1273">actions/setup-node#1273</a></li>
<li>Upgrade undici from 5.28.5 to 5.29.0 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-node/pull/1295">actions/setup-node#1295</a></li>
<li>Upgrade form-data to bring in fix for critical vulnerability by <a
href="https://github.com/gowridurgad"><code>@​gowridurgad</code></a> in
<a
href="https://redirect.github.com/actions/setup-node/pull/1332">actions/setup-node#1332</a></li>
<li>Upgrade actions/checkout from 4 to 5 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-node/pull/1345">actions/setup-node#1345</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-node/pull/1348">actions/setup-node#1348</a></li>
<li><a href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-node/pull/1325">actions/setup-node#1325</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v4...v5.0.0">https://github.com/actions/setup-node/compare/v4...v5.0.0</a></p>
<h2>v4.4.0</h2>
<h2>What's Changed</h2>
<h3>Bug fixes:</h3>
<ul>
<li>Make eslint-compact matcher compatible with Stylelint by <a
href="https://github.com/FloEdelmann"><code>@​FloEdelmann</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/98">actions/setup-node#98</a></li>
<li>Add support for indented eslint output by <a
href="https://github.com/fregante"><code>@​fregante</code></a> in <a
href="https://redirect.github.com/actions/setup-node/pull/1245">actions/setup-node#1245</a></li>
</ul>
<h3>Enhancement:</h3>
<ul>
<li>Support private mirrors by <a
href="https://github.com/marco-ippolito"><code>@​marco-ippolito</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/1240">actions/setup-node#1240</a></li>
</ul>
<h3>Dependency update:</h3>
<ul>
<li>Upgrade <code>@​action/cache</code> from 4.0.2 to 4.0.3 by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-node/pull/1262">actions/setup-node#1262</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a
href="https://github.com/FloEdelmann"><code>@​FloEdelmann</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-node/pull/98">actions/setup-node#98</a></li>
<li><a href="https://github.com/fregante"><code>@​fregante</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-node/pull/1245">actions/setup-node#1245</a></li>
<li><a
href="https://github.com/marco-ippolito"><code>@​marco-ippolito</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-node/pull/1240">actions/setup-node#1240</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-node/compare/v4...v4.4.0">https://github.com/actions/setup-node/compare/v4...v4.4.0</a></p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a0853c2454"><code>a0853c2</code></a>
Bump actions/checkout from 4 to 5 (<a
href="https://redirect.github.com/actions/setup-node/issues/1345">#1345</a>)</li>
<li><a
href="b7234cc9fe"><code>b7234cc</code></a>
Upgrade action to use node24 (<a
href="https://redirect.github.com/actions/setup-node/issues/1325">#1325</a>)</li>
<li><a
href="d7a11313b5"><code>d7a1131</code></a>
Enhance caching in setup-node with automatic package manager detection
(<a
href="https://redirect.github.com/actions/setup-node/issues/1348">#1348</a>)</li>
<li><a
href="5e2628c959"><code>5e2628c</code></a>
Bumps form-data (<a
href="https://redirect.github.com/actions/setup-node/issues/1332">#1332</a>)</li>
<li><a
href="65beceff8e"><code>65becef</code></a>
Bump undici from 5.28.5 to 5.29.0 (<a
href="https://redirect.github.com/actions/setup-node/issues/1295">#1295</a>)</li>
<li><a
href="7e24a656e1"><code>7e24a65</code></a>
Bump uuid from 9.0.1 to 11.1.0 (<a
href="https://redirect.github.com/actions/setup-node/issues/1273">#1273</a>)</li>
<li><a
href="08f58d1471"><code>08f58d1</code></a>
Bump <code>@​octokit/request-error</code> and
<code>@​actions/github</code> (<a
href="https://redirect.github.com/actions/setup-node/issues/1227">#1227</a>)</li>
<li>See full diff in <a
href="https://github.com/actions/setup-node/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/setup-node&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-24 16:26:05 -04:00
Mason Daugherty
4783a9c18e style: update workflow name for version equality check (#33094) 2025-09-24 20:11:30 +00:00
Mason Daugherty
ee4d84de7c style(core): typo/docs lint pass (#33093) 2025-09-24 16:11:21 -04:00
Mason Daugherty
092dd5e174 chore: update link for monorepo structure (#33091) 2025-09-24 19:55:00 +00:00
Sydney Runkle
dd81e1c3fb release(langchain): 1.0.0a8 (#33090) 2025-09-24 15:31:29 -04:00
Sydney Runkle
135a5b97e6 feat(langchain): improvements to anthropic prompt caching (#33058)
Adding an `unsupported_model_behavior` arg that can be `'ignore'`,
`'warn'`, or `'raise'`. Defaults to `'warn'`.
2025-09-24 15:28:49 -04:00
Mason Daugherty
b92b394804 style: repo linting pass (#33089)
enable docstring-code-format
2025-09-24 15:25:55 -04:00
Sydney Runkle
083bb3cdd7 fix(langchain): need to inject all state for tools registered by middleware (#33087)
Type hints matter for conditional edges!
2025-09-24 15:25:51 -04:00
Mason Daugherty
2e9291cdd7 fix: lift openai version constraints across packages (#33088)
re: #33038 and https://github.com/openai/openai-python/issues/2644
2025-09-24 15:25:10 -04:00
Sydney Runkle
4f8a76b571 chore(langchain): renaming for HITL (#33067) 2025-09-24 07:19:44 -04:00
Mason Daugherty
05ba941230 style(cli): linting pass (#33078) 2025-09-24 01:24:52 -04:00
Mason Daugherty
ae4976896e chore: delete erroneous .readthedocs.yaml (#33079)
From the legacy docs/not needed here
2025-09-24 01:24:42 -04:00
Mason Daugherty
504ef96500 chore: add commit message generation instructions for VSCode (#33077) 2025-09-24 05:06:43 +00:00
Mason Daugherty
d99a02bb27 chore: add AGENTS.md (#33076)
it would be super cool if Anthropic supported this instead of
`CLAUDE.md` :/

https://agents.md/
2025-09-24 05:02:14 +00:00
Mason Daugherty
793de80429 chore: update label mapping in PR title labeler configuration (#33075) 2025-09-24 01:00:14 -04:00
Mason Daugherty
7d4e9d8cda revert(infra): put SECURITY.md at root (#33074) 2025-09-24 00:54:37 -04:00
Mason Daugherty
54dca494cf chore: delete erroneous poetry.toml configuration file (#33073)
- Not used by the current build system
- Potentially confusing for new contributors
- A leftover artifact from the Poetry to uv migration
2025-09-24 04:40:17 +00:00
Mason Daugherty
7b30e58386 chore: delete erroneous yarn.lock in root (#33072)
Appears to have had no purpose/was added by mistake and nobody
questioned it
2025-09-24 04:35:00 +00:00
Mason Daugherty
e62b541dfd chore(infra): move SECURITY.md to .github (#33071)
cleaning up top-level. `.github` folder placement will continue to show
on repo homepage:
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository#about-security-policies
2025-09-24 00:27:48 -04:00
Mason Daugherty
8699980d09 chore(scripts): remove obsolete release and mypy/ruff update scripts (#33070)
Outdated scripts related to release management and mypy/ruff updates

Cleaning up the root-level
2025-09-24 04:24:38 +00:00
Mason Daugherty
79e536b0d6 chore(infra): further docs build cleanup (#33057)
Reorganize the requirements for better clarity and consistency. Improve
documentation on scripts and workflows.
2025-09-23 17:29:58 -04:00
Sydney Runkle
b5720ff17a chore(langchain): simplifying HITL condition (#33065)
Simplifying condition
2025-09-23 21:24:14 +00:00
nhuang-lc
48b05224ad fix(langchain_v1): only interrupt if at least one ToolConfig value is True (#33064)
**Description:** Right now, we interrupt even if the provided ToolConfig
has all false values. We should ignore ToolConfigs which do not have at
least one value marked as true (just as we would if tool_name: False was
passed into the dict).
2025-09-23 17:20:34 -04:00
Sydney Runkle
89079ad411 feat(langchain): new decorator pattern for dynamically generated middleware (#33053)
# Main Changes

1. Adding decorator utilities for dynamically defining middleware with
single hook functions (see an example below for dynamic system prompt)
2. Adding better conditional edge drawing with jump configuration
attached to middleware. Can be registered w/ the decorator new
decorator!

## Decorator Utilities

```py
from langchain.agents.middleware_agent import create_agent, AgentState, ModelRequest
from langchain.agents.middleware.types import modify_model_request
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import InMemorySaver


@modify_model_request
def modify_system_prompt(request: ModelRequest, state: AgentState) -> ModelRequest:
    request.system_prompt = (
        "You are a helpful assistant."
        f"Please record the number of previous messages in your response: {len(state['messages'])}"
    )
    return request

agent = create_agent(
    model="openai:gpt-4o-mini", 
    middleware=[modify_system_prompt]
).compile(checkpointer=InMemorySaver())
```

## Visualization and Routing improvements

We now require that middlewares define the valid jumps for each hook.

If using the new decorator syntax, this can be done with:

```py
@before_model(jump_to=["__end__"])
@after_model(jump_to=["tools", "__end__"])
```

If using the subclassing syntax, you can use these two class vars:

```py
class MyMiddlewareAgentMiddleware):
    before_model_jump_to = ["__end__"]
    after_model_jump_to = ["tools", "__end__"]
```

Open for debate if we want to bundle these in a single jump map / config
for a middleware. Easy to migrate later if we decide to add more hooks.

We will need to **really clearly document** that these must be
explicitly set in order to enable conditional edges.

Notice for the below case, `Middleware2` does actually enable jumps.

<table>
  <thead>
    <tr>
      <th>Before (broken), adding conditional edges unconditionally</th>
      <th>After (fixed), adding conditional edges sparingly</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>
<img width="619" height="508" alt="Screenshot 2025-09-23 at 10 23 23 AM"
src="https://github.com/user-attachments/assets/bba2d098-a839-4335-8e8c-b50dd8090959"
/>
      </td>
      <td>
<img width="469" height="490" alt="Screenshot 2025-09-23 at 10 23 13 AM"
src="https://github.com/user-attachments/assets/717abf0b-fc73-4d5f-9313-b81247d8fe26"
/>
      </td>
    </tr>
  </tbody>
</table>

<details>
<summary>Snippet for the above</summary>

```py
from typing import Any
from langchain.agents.tool_node import InjectedState
from langgraph.runtime import Runtime
from langchain.agents.middleware.types import AgentMiddleware, AgentState
from langchain.agents.middleware_agent import create_agent
from langchain_core.tools import tool
from typing import Annotated
from langchain_core.messages import HumanMessage
from typing_extensions import NotRequired

@tool
def simple_tool(input: str) -> str:
    """A simple tool."""
    return "successful tool call"


class Middleware1(AgentMiddleware):
    """Custom middleware that adds a simple tool."""

    tools = [simple_tool]

    def before_model(self, state: AgentState, runtime: Runtime) -> None:
        return None

    def after_model(self, state: AgentState, runtime: Runtime) -> None:
        return None

class Middleware2(AgentMiddleware):

    before_model_jump_to = ["tools", "__end__"]

    def before_model(self, state: AgentState, runtime: Runtime) -> None:
        return None

    def after_model(self, state: AgentState, runtime: Runtime) -> None:
        return None

class Middleware3(AgentMiddleware):

    def before_model(self, state: AgentState, runtime: Runtime) -> None:
        return None

    def after_model(self, state: AgentState, runtime: Runtime) -> None:
        return None

builder = create_agent(
    model="openai:gpt-4o-mini",
    middleware=[Middleware1(), Middleware2(), Middleware3()],
    system_prompt="You are a helpful assistant.",
)
agent = builder.compile()
```

</details>

## More Examples

### Guardrails `after_model`

<img width="379" height="335" alt="Screenshot 2025-09-23 at 10 40 09 AM"
src="https://github.com/user-attachments/assets/45bac7dd-398e-45d1-ae58-6ecfa27dfc87"
/>

<details>
<summary>Code</summary>

```py
from langchain.agents.middleware_agent import create_agent, AgentState, ModelRequest
from langchain.agents.middleware.types import after_model
from langchain_core.messages import HumanMessage, AIMessage
from langgraph.checkpoint.memory import InMemorySaver
from typing import cast, Any

@after_model(jump_to=["model", "__end__"])
def after_model_hook(state: AgentState) -> dict[str, Any]:
    """Check the last AI message for safety violations."""
    last_message_content = cast(AIMessage, state["messages"][-1]).content.lower()
    print(last_message_content)

    unsafe_keywords = ["pineapple"]
    if any(keyword in last_message_content for keyword in unsafe_keywords):

        # Jump back to model to regenerate response
        return {"jump_to": "model", "messages": [HumanMessage("Please regenerate your response, and don't talk about pineapples. You can talk about apples instead.")]}

    return {"jump_to": "__end__"}

# Create agent with guardrails middleware
agent = create_agent(
    model="openai:gpt-4o-mini",
    middleware=[after_model_hook],
    system_prompt="Keep your responses to one sentence please!"
).compile()

# Test with potentially unsafe input
result = agent.invoke(
    {"messages": [HumanMessage("Tell me something about pineapples")]},
)

for msg in result["messages"]:
    print(msg.pretty_print())

"""
================================ Human Message =================================

Tell me something about pineapples
None
================================== Ai Message ==================================

Pineapples are tropical fruits known for their sweet, tangy flavor and distinctive spiky exterior.
None
================================ Human Message =================================

Please regenerate your response, and don't talk about pineapples. You can talk about apples instead.
None
================================== Ai Message ==================================

Apples are popular fruits that come in various varieties, known for their crisp texture and sweetness, and are often used in cooking and baking.
None
"""
```

</details>
2025-09-23 13:25:55 -04:00
Mason Daugherty
2c95586f2a chore(infra): audit workflows, scripts (#33055)
Mostly adding a descriptive frontmatter to workflow files. Also address
some formatting and outdated artifacts

No functional changes outside of
[d5457c3](d5457c39ee),
[90708a0](90708a0d99),
and
[338c82d](338c82d21e)
2025-09-23 17:08:19 +00:00
Mason Daugherty
9c1285cf5b chore(infra): fix ping pong pr labeler config (#33054)
The title-based labeler was clearing all pre-existing labels (including
the file-based ones) before adding its semantic labels.
2025-09-22 21:19:53 -04:00
Sydney Runkle
c3be45bf14 fix(langchain): HITL bug causing dupe interrupt (#33052)
Need to find **last** AI msg (not first). Getting too creative w/
generators.
2025-09-22 20:09:12 -04:00
Arman Tsaturian
8f488d62b2 docs: fix stripe toolkit import in the guide (#33044)
**Description:**
Stripe tools integration guide incorrectly referenced the `crewai`
toolkit. Updated the import to use the correct `langchain` toolkit.

Stripe docs reference:
https://docs.stripe.com/agents?framework=langchain&lang=python
2025-09-22 15:17:09 -04:00
Mason Daugherty
cdae9e4942 fix(infra): prevent labeler workflow from adding/removing same labels (#33039)
The file-based and title-based labeler workflows were conflicting,
causing the bot to add and remove identical labels in the same
operation. Hopefully this fixes
2025-09-21 04:37:59 +00:00
Mason Daugherty
7ddc798f95 fix(openai): pin upper bound to prevent Pydantic 2.7.0 issues (#33038)
https://github.com/openai/openai-python/issues/2644
2025-09-21 00:27:03 -04:00
Mason Daugherty
7dcf6a515e fix: update method calls from dict to model_dump in Chain (#33035) 2025-09-20 23:47:44 -04:00
Mason Daugherty
043a7560a5 test: use .get() for safe ls_params access (#33034) 2025-09-20 23:46:37 -04:00
Mason Daugherty
5b418d3f26 feat(infra): add PR labeler configurations and workflows (#33031) 2025-09-20 22:33:08 -04:00
Mason Daugherty
6b4054c795 chore(infra): update pre-commit hooks to include linting (#33029) 2025-09-21 02:26:19 +00:00
Mason Daugherty
30fde5af38 chore(infra): remove couchbase formatting hook from pre-commit (#33030)
Should've been done when it was removed from the monorepo
2025-09-20 22:09:57 -04:00
Mason Daugherty
781db9d892 chore: update pyproject.toml files, remove codespell (#33028)
- Removes Codespell from deps, docs, and `Makefile`s
- Python version requirements in all `pyproject.toml` files now use the
`~=` (compatible release) specifier
- All dependency groups and main dependencies now use explicit lower and
upper bounds, reducing potential for breaking changes
2025-09-20 22:09:33 -04:00
Sydney Runkle
f2b0afd0b7 release(langchain): 1.0.0a6 (#33024)
w/ improvements to HITL, state schema merging, dynamic system prompt
2025-09-19 18:47:41 +00:00
Sydney Runkle
c3654202a3 fix(langchain): use state schema as input schema to middleware nodes (#33023)
We want state schema as the input schema to middleware nodes because the
conditional edges after these nodes need access to the full state.

Also, we just generally want all state passed to middleware nodes, so we
should be specifying this explicitly. If we don't, the state annotations
used by users in their node signatures are used (so they might be
missing fields).
2025-09-19 18:43:33 +00:00
Sydney Runkle
4d118777bc feat(langchain): dynamic system prompt middleware (#33006)
# Changes

## Adds support for `DynamicSystemPromptMiddleware`

```py
from langchain.agents.middleware import DynamicSystemPromptMiddleware
from langgraph.runtime import Runtime
from typing_extensions import TypedDict

class Context(TypedDict):
    user_name: str

def system_prompt(state: AgentState, runtime: Runtime[Context]) -> str:
    user_name = runtime.context.get("user_name", "n/a")
    return f"You are a helpful assistant. Always address the user by their name: {user_name}"

middleware = DynamicSystemPromptMiddleware(system_prompt)
```

## Adds support for `runtime` in middleware hooks

```py
class AgentMiddleware(Generic[StateT, ContextT]):
    def modify_model_request(
        self,
        request: ModelRequest,
        state: StateT,
        runtime: Runtime[ContextT],  # Optional runtime parameter
    ) -> ModelRequest:
        # upgrade model if runtime.context.subscription is `top-tier` or whatever
```

## Adds support for omitting state attributes from input / output
schemas

```py
from typing import Annotated, NotRequired
from langchain.agents.middleware.types import PrivateStateAttr, OmitFromInput, OmitFromOutput

class CustomState(AgentState):
    # Private field - not in input or output schemas
    internal_counter: NotRequired[Annotated[int, PrivateStateAttr]]
    
    # Input-only field - not in output schema
    user_input: NotRequired[Annotated[str, OmitFromOutput]]
    
    # Output-only field - not in input schema  
    computed_result: NotRequired[Annotated[str, OmitFromInput]]
```

## Additionally
* Removes filtering of state before passing into middleware hooks

Typing is not foolproof here, still need to figure out some of the
generics stuff w/ state and context schema extensions for middleware.

TODO:
* More docs for middleware, should hold off on this until other prios
like MCP and deepagents are met

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-18 16:07:16 -04:00
Mason Daugherty
f158cea1e8 release(mistralai): 0.2.12 (#33008) 2025-09-18 11:42:11 -04:00
Sadiq Khan
90280d1f58 docs(core): fix bugs and improve example code in chat_history.py (#32994)
## Summary

This PR fixes several bugs and improves the example code in
`BaseChatMessageHistory` docstring that would prevent it from working
correctly.

### Bugs Fixed
- **Critical bug**: Fixed `json.dump(messages, f)` →
`json.dump(serialized, f)` - was using wrong variable
- **NameError**: Fixed bare variable references to use
`self.storage_path` and `self.session_id`
- **Missing imports**: Added required imports (`json`, `os`, message
converters) to make example runnable

### Improvements
- Added missing type hints following project standards (`messages() ->
list[BaseMessage]`, `clear() -> None`)
- Added robust error handling with `FileNotFoundError` exception
handling
- Added directory creation with `os.makedirs(exist_ok=True)` to prevent
path errors
- Improved performance: `json.load(f)` instead of `json.loads(f.read())`
- Added explicit UTF-8 encoding to all file operations
- Updated stores.py to use modern union syntax (`int | None` vs
`Optional[int]`)

### Test Plan
- [x] Code passes linting (`ruff check`)
- [x] Example code now has all required imports and proper syntax
- [x] Fixed variable references prevent runtime errors
- [x] Follows project's type annotation standards

The example code in the docstring is now fully functional and follows
LangChain's coding standards.

---------

Co-authored-by: sadiqkhzn <sadiqkhzn@users.noreply.github.com>
2025-09-18 09:34:19 -04:00
Dushmanta
ee340e0a3b fix(docs): update dead link to docling github and docs (#33001)
- **Description:** Updated the dead/unreachable links to Docling from
the additional resources section of the langchain-docling docs
  - **Issue:** Fixes langchain-ai/docs/issues/574
  - **Dependencies:** None
2025-09-18 09:30:29 -04:00
Sydney Runkle
d5ba5d3511 feat(langchain): improved HITL patterns (#32996)
# Main changes / new features

## Better support for parallel tool calls

1. Support for multiple tool calls requiring human input
2. Support for combination of tool calls requiring human input + those
that are auto-approved
3. Support structured output w/ tool calls requiring human input
4. Support structured output w/ standard tool calls

## Shortcut for allowed actions

Adds a shortcut where tool config can be specified as a `bool`, meaning
"all actions allowed"

```py
HumanInTheLoopMiddleware(tool_configs={"expensive_tool": True})
```

## A few design decisions here
* We only raise one interrupt w/ all `HumanInterrupt`s, currently we
won't be able to execute all tools until all of these are resolved. This
isn't super blocking bc we can't re-invoke the model until all tools
have finished execution. That being said, if you have a long running
auto-approved tool, this could slow things down.

## TODOs

* Ideally, we would rename `accept` -> `approve`
* Ideally, we would rename `respond` -> `reject`
* Docs update (@sydney-runkle to own)
* In another PR I'd like to refactor testing to have one file for each
prebuilt middleware :)

Fast follow to https://github.com/langchain-ai/langchain/pull/32962
which was deemed as too breaking
2025-09-17 16:53:01 -04:00
Mason Daugherty
76d0758007 fix(docs): json_mode -> json_schema (#32993) 2025-09-17 18:21:34 +00:00
Mason Daugherty
8b3f74012c docs: update GenAI structured output section to include JSON mode details (#32992) 2025-09-17 17:40:34 +00:00
Mason Daugherty
54a9556f5c chore(cli): update lock (#32986) 2025-09-17 02:08:20 +00:00
Mason Daugherty
66041a2778 refactor(cli): target ruff 310 (#32985)
Use union types for optional parameters
2025-09-16 22:04:28 -04:00
Mason Daugherty
ab1b822523 chore: update PR title lint (#32983) 2025-09-16 22:04:19 -04:00
Chase Lean
543d90e108 docs: add langchain-scraperapi (#31973)
Adds documentation for the integration langchain-scraperapi, which
contains 3 tools using the ScraperAPI service.

The tools give AI agents the ability to

Scrape the web and return HTML/text/markdown
Perform Google search and return json output
Perform Amazon search and return json output

For reference, here is the official repo for langchain_scraperapi:
https://github.com/scraperapi/langchain-scraperapi
2025-09-16 21:46:20 -04:00
Adam Deedman
f8640630d8 docs: fix memory for agents (#32979)
Replaced `input_message` parameter with a directly called tuple, e.g.
`{"messages": [("user", "What is my name?")]}`

Before, the memory function wasn't working with the agent, using the
format of the input_message parameter.

Specifically, on page [Build an
Agent#adding-in-memory](https://python.langchain.com/docs/tutorials/agents/#adding-in-memory)

In the previous code, the query "What's my name?" wasn't working, as the
agent could not recall memory correctly.

<img width="860" height="679" alt="image"
src="https://github.com/user-attachments/assets/dfbca21e-ffe9-4645-a810-3be7a46d81d5"
/>
2025-09-16 15:46:15 -04:00
Mason Daugherty
f9605c7438 chore(infra): update contribution guide link in CONTRIBUTING.md (#32976) 2025-09-16 15:15:53 +00:00
Mason Daugherty
ebd6f7d8a3 chore(infra): update security guidelines formatting (#32975) 2025-09-16 15:12:10 +00:00
ccurme
e63c1d7171 chore(langchain): drop cap on python version (#32974) 2025-09-16 10:44:21 -04:00
Mason Daugherty
8180020b93 chore: restore commented out optional deps (#32971)
langchain & langchain_v1
2025-09-16 10:10:49 -04:00
Username46786
435194acf6 docs: add cross-links between summarization how-to pages (#32968)
This PR improves navigation in the summarization how-to section by
adding
cross-links from the single-call guide to the related map-reduce and
refine
guides. This mirrors the docs style guide’s emphasis on clear
cross-references
and should help readers discover the appropriate pattern for longer
texts.

- Source edited: docs/docs/how_to/summarize_stuff.ipynb
- Links added:
  - /docs/how_to/summarize_map_reduce/
  - /docs/how_to/summarize_refine/

Type: docs-only (no code changes)
2025-09-16 09:59:03 -04:00
Mason Daugherty
244c699551 refactor(cli): drop Python 3.9 (#32964) 2025-09-15 19:22:53 -04:00
Mason Daugherty
369858de19 chore(infra): fix codspeed (#32963)
Related to #32950

CodSpeed v4 runs pytest inside its own runner process, which does not
automatically inherit environment variables from the job
2025-09-15 21:52:46 +00:00
Ali Ismail
4ebce80fbb docs(langchain): add docstring for _load_map_reduce_chain (#32961)
Description:
Add a docstring to _load_map_reduce_chain in chains/summarize/ to
explain the purpose of the prompt argument and document function
parameters. This addresses an existing TODO in the codebase.

Issue:
N/A (documentation improvement only)

Dependencies:
None
2025-09-15 17:19:20 -04:00
Mason Daugherty
8670b24c8e test(groq): xfail tool integration test (#32960)
Groq models have known issues with tool calling consistency,
[particularly with complex tools derived from
runnables](https://github.com/langchain-ai/langchain/discussions/19990).
[(more)](https://github.com/langchain-ai/langchain/discussions/24309)

xfail until we can dedicate time to wrangling their API/model handling
2025-09-15 14:23:22 -04:00
Ademílson Tonato
8d60ddba3a docs: update installation command for firecrawl-py package (#32958) 2025-09-15 14:10:08 -04:00
Mason Daugherty
9f6431924f feat(openai): add max_tokens to AzureChatOpenAI (#32959)
Fixes #32949

This pattern is [present in
`ChatOpenAI`](https://github.com/langchain-ai/langchain/blob/master/libs/partners/openai/langchain_openai/chat_models/base.py#L2821)
but wasn't carried over to Azure.


[CI](https://github.com/langchain-ai/langchain/actions/runs/17741751797/job/50417180998)
2025-09-15 14:09:20 -04:00
Ali Ismail
569a3d9602 docs(langchain): add docstring for _load_stuff_chain (#32932)
**Description:**  
Add a docstring to `_load_stuff_chain` in `chains/summarize/` to explain
the purpose of the `prompt` argument and document function parameters.
This addresses an existing TODO in the codebase.

**Issue:**  
N/A (documentation improvement only)

**Dependencies:**  
None
2025-09-15 10:02:50 -04:00
dependabot[bot]
8ef4df903f chore(infra): bump CodSpeedHQ/action from 3 to 4 (#32950)
Bumps [CodSpeedHQ/action](https://github.com/codspeedhq/action) from 3
to 4.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/codspeedhq/action/releases">CodSpeedHQ/action's
releases</a>.</em></p>
<blockquote>
<h2>v4.0.0</h2>
<h2>💥 BREAKING</h2>
<p>It's now required to explicitly set the runner mode to
<code>instrumentation</code> or <code>walltime</code> using either:</p>
<ul>
<li>the <code>mode</code> argument</li>
<li>or the <code>CODSPEED_RUNNER_MODE</code> environment variable</li>
</ul>
<blockquote>
<p>[!TIP]
Before, this variable was automatically set to
<code>instrumentation</code> on every runner except for <a
href="https://codspeed.io/docs/instruments/walltime">CodSpeed macro
runners</a> where it was set to <code>walltime</code> by default.</p>
</blockquote>
<p>Find more details in <a
href="https://codspeed.io/docs/instruments">the instruments
documentation</a>.</p>
<h2>Details</h2>
<h3><!-- raw HTML omitted -->🚀 Features</h3>
<ul>
<li>Make perf profiling enabled by default by <a
href="https://github.com/GuillaumeLagrange"><code>@​GuillaumeLagrange</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/110">#110</a></li>
<li>Make the runner mode argument required by <a
href="https://github.com/GuillaumeLagrange"><code>@​GuillaumeLagrange</code></a></li>
<li>Use introspected node in walltime mode by <a
href="https://github.com/GuillaumeLagrange"><code>@​GuillaumeLagrange</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/108">#108</a></li>
<li>Add instrumented go shell script by <a
href="https://github.com/not-matthias"><code>@​not-matthias</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/102">#102</a></li>
</ul>
<h3><!-- raw HTML omitted -->🐛 Bug Fixes</h3>
<ul>
<li>Compute proper load bias by <a
href="https://github.com/not-matthias"><code>@​not-matthias</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/107">#107</a></li>
<li>Increase timeout for first perf ping by <a
href="https://github.com/GuillaumeLagrange"><code>@​GuillaumeLagrange</code></a></li>
<li>Prevent running with valgrind by <a
href="https://github.com/not-matthias"><code>@​not-matthias</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/106">#106</a></li>
</ul>
<h3><!-- raw HTML omitted -->🏗️ Refactor</h3>
<ul>
<li>Change go-runner binary name by <a
href="https://github.com/not-matthias"><code>@​not-matthias</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/111">#111</a></li>
</ul>
<p><strong>Full Runner Changelog</strong>: <a
href="https://github.com/CodSpeedHQ/runner/blob/main/CHANGELOG.md">https://github.com/CodSpeedHQ/runner/blob/main/CHANGELOG.md</a></p>
<h2>v3.8.1</h2>
<h2>What's Changed</h2>
<h3><!-- raw HTML omitted -->🐛 Bug Fixes</h3>
<ul>
<li>Don't show error when libpython is not found by <a
href="https://github.com/not-matthias"><code>@​not-matthias</code></a></li>
</ul>
<h3><!-- raw HTML omitted -->🏗️ Refactor</h3>
<ul>
<li>Improve conditional compilation in
<code>get_pipe_open_options</code> by <a
href="https://github.com/art049"><code>@​art049</code></a> in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/100">#100</a></li>
</ul>
<h3><!-- raw HTML omitted -->⚙️ Internals</h3>
<ul>
<li>Change log level to warn for venv_compat error by <a
href="https://github.com/not-matthias"><code>@​not-matthias</code></a>
in <a
href="https://redirect.github.com/CodSpeedHQ/runner/pull/104">#104</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/CodSpeedHQ/action/compare/v3.8.0...v3.8.1">https://github.com/CodSpeedHQ/action/compare/v3.8.0...v3.8.1</a>
<strong>Full Runner Changelog</strong>: <a
href="https://github.com/CodSpeedHQ/runner/blob/main/CHANGELOG.md">https://github.com/CodSpeedHQ/runner/blob/main/CHANGELOG.md</a></p>
<h2>v3.8.0</h2>
<h2>What's Changed</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="653fdc30e6"><code>653fdc3</code></a>
Release v4.0.1 🚀</li>
<li><a
href="4da7be1bda"><code>4da7be1</code></a>
chore: bump runner version to 4.0.1</li>
<li><a
href="172d6c5630"><code>172d6c5</code></a>
chore: make the comment about input validation more discrete</li>
<li><a
href="d15e1ce813"><code>d15e1ce</code></a>
chore: improve the release script</li>
<li><a
href="6eeb021fd0"><code>6eeb021</code></a>
Release v4.0.0 🚀</li>
<li><a
href="74312dabbe"><code>74312da</code></a>
chore: improve the release script</li>
<li><a
href="8a17a350a8"><code>8a17a35</code></a>
ci: add modes to the matrix</li>
<li><a
href="8e3f02a649"><code>8e3f02a</code></a>
feat: make the mode argument required</li>
<li><a
href="97c7a6f5fc"><code>97c7a6f</code></a>
chore: bump runner version to 4.0.0</li>
<li><a
href="8a4cadd026"><code>8a4cadd</code></a>
chore: point the changelog to the runner</li>
<li>See full diff in <a
href="https://github.com/codspeedhq/action/compare/v3...v4">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=CodSpeedHQ/action&package-manager=github_actions&previous-version=3&new-version=4)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-15 13:56:46 +00:00
doubleinfinity
b944bbc766 docs: add ZeusDB vector store integration (#32822)
## Description

This PR adds documentation for the new ZeusDB vector store integration
with LangChain.

## Motivation

ZeusDB is a high-performance vector database (Python/Rust backend)
designed for AI applications that need fast similarity search and
real-time vector ops. This integration brings ZeusDB's capabilities to
the LangChain ecosystem, giving developers another production-oriented
option for vector storage and retrieval.

**Key Features:**
- **User-Friendly Python API**: Intuitive interface that integrates
seamlessly with Python ML workflows
- **High Performance**: Powered by a robust Rust backend for
lightning-fast vector operations
- **Enterprise Logging**: Comprehensive logging capabilities for
monitoring and debugging production systems
- **Advanced Features**: Includes product quantization and persistence
capabilities
- **AI-Optimized**: Purpose-built for modern AI applications and RAG
pipelines

## Changes

- Added provider documentation:
`docs/docs/integrations/providers/zeusdb.mdx` (installation, setup).

- Added vector store documentation:
`docs/docs/integrations/vectorstores/zeusdb.ipynb` (quickstart for
creating/querying a ZeusDBVectorStore).

- Registered langchain-zeusdb in `libs/packages.yml` for discovery.

## Target users

- AI/ML engineers building RAG pipelines

- Data scientists working with large document collections

- Developers needing high-throughput vector search

- Teams requiring near real-time vector operations

## Testing

- Followed LangChain's "How to add standard tests to an integration"
guidance.
- Code passes format, lint, and test checks locally.
- Tested with LangChain Core 0.3.74
- Works with Python 3.10 to 3.13

## Package Information
**PyPI:** https://pypi.org/project/langchain-zeusdb
**Github:** https://github.com/ZeusDB/langchain-zeusdb
2025-09-15 09:55:14 -04:00
Filip Makraduli
0be7515abc docs: add superlinked retriever integration (#32433)
# feat(superlinked): add superlinked retriever integration

**Description:** 
Add Superlinked as a custom retriever with full LangChain compatibility.
This integration enables users to leverage Superlinked's multi-modal
vector search capabilities including text similarity, categorical
similarity, recency, and numerical spaces with flexible weighting
strategies. The implementation provides a `SuperlinkedRetriever` class
that extends LangChain's `BaseRetriever` with comprehensive error
handling, parameter validation, and support for various vector databases
(in-memory, Qdrant, Redis, MongoDB).

**Key Features:**
- Full LangChain `BaseRetriever` compatibility with `k` parameter
support
- Multi-modal search spaces (text, categorical, numerical, recency)
- Flexible weighting strategies for complex search scenarios
- Vector database agnostic implementation
- Comprehensive validation and error handling
- Complete test coverage (unit tests, integration tests)
- Detailed documentation with 6 practical usage examples

**Issue:** N/A (new integration)

**Dependencies:** 
- `superlinked==33.5.1` (peer dependency, imported within functions)
- `pandas^2.2.0` (required by superlinked)

**Linkedin handle:** https://www.linkedin.com/in/filipmakraduli/

## Implementation Details

### Files Added/Modified:
- `libs/partners/superlinked/` - Complete package structure
- `libs/partners/superlinked/langchain_superlinked/retrievers.py` - Main
retriever implementation
- `libs/partners/superlinked/tests/unit_tests/test_retrievers.py` - unit
tests
- `libs/partners/superlinked/tests/integration_tests/test_retrievers.py`
- Integration tests with mocking
- `docs/docs/integrations/retrievers/superlinked.ipynb` - Documentation
a few usage examples

### Testing:
- `make format` - passing
- `make lint` - passing 
- `make test` - passing (16 unit tests, integration tests)
- Comprehensive test coverage including error handling, validation, and
edge cases

### Documentation:
- Example notebook with 6 practical scenarios:
  1. Simple text search
  2. Multi-space blog search (content + category + recency)
  3. E-commerce product search (price + brand + ratings)
  4. News article search (sentiment + topics + recency)
  5. LangChain RAG integration example
  6. Qdrant vector database integration

### Code Quality:
- Follows LangChain contribution guidelines
- Backwards compatible
- Optional dependencies imported within functions
- Comprehensive error handling and validation
- Type hints and docstrings throughout

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-15 13:54:04 +00:00
Sadiq Khan
cc9a97a477 docs(core): add type hints to BaseStore example code (#32946)
## Summary
- Add comprehensive type hints to the MyInMemoryStore example code in
BaseStore docstring
- Improve documentation quality and educational value for developers
- Align with LangChain's coding standards requiring type hints on all
Python code

## Changes Made
- Added return type annotations to all methods (__init__, mget, mset,
mdelete, yield_keys)
- Added parameter type annotations using proper generic types (Sequence,
Iterator)
- Added instance variable type annotation for the store attribute
- Used modern Python union syntax (str | None) for optional types

## Test Plan
- Verified Python syntax validity with ast.parse()
- No functional changes to actual code, only documentation improvements
- Example code now follows best practices and coding standards

This change improves the educational value of the example code and
ensures consistency with LangChain's requirement that "All Python code
MUST include type hints and return types" as specified in the
development guidelines.

---------

Co-authored-by: sadiqkhzn <sadiqkhzn@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-15 13:45:34 +00:00
Dmitry
ee17adb022 docs: add AI/ML API integration (#32430)
**Description:**
Introduces documentation notebooks for AI/ML API integration covering
the following use cases:
- Chat models (`ChatAimlapi`)
- Text completion models (`AimlapiLLM`)
- Provider usage examples
- Text embedding models (`AimlapiEmbeddings`)

Additionally, adds the `langchain-aimlapi` package entry to
`libs/packages.yml` for package management.

This PR aims to provide a comprehensive starting point for developers
integrating AI/ML API models with LangChain via the new
`langchain-aimlapi` package.

**Issue:** N/A

**Dependencies:** None

**Twitter handle:** @aimlapi

---

### **To-Do Before Submitting PR:**

* [x] Run `make format`
* [x] Run `make lint`
* [x] Confirm all documentation notebooks are in
`docs/docs/integrations/`
* [x] Double-check `libs/packages.yml` has the correct repo path
* [x] Confirm no `pyproject.toml` modifications were made unnecessarily

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-15 09:41:40 -04:00
Noraina
6a43f140bc docs: update SerpApi free searches amount in tool feature table (#32945)
**Description:** 
This PR updates the free searches per month from **100** to **250** and
renames SerpAPI to [SerpApi](https://serpapi.com/) to prevent confusion.
Add import API keys and enhance usage instructions in the Jupyter
notebook

**Issue:** N/A

**Dependencies:** N/A

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.
2025-09-14 21:42:59 -04:00
Youngho Kim
4619a2727f docs(anthropic): update documentation links (#32938)
**Description:**
This PR updated links to the latest Anthropic documentation. Changes
include revised links for model overview, tool usage, web search tool,
text editor tool, and more.

**Issue:**
N/A

**Dependencies:**
None

**Twitter handle:**
N/A
2025-09-14 21:38:51 -04:00
湛露先生
6487a7e2e5 chore(langchain): remove duplicate .pdf listing (#32929) 2025-09-14 21:33:40 -04:00
湛露先生
406ebc9141 chore(langchain): Fix typos in core docstrings (#32928)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-14 21:33:06 -04:00
Nikhil Chandrappa
e6b5ff213a docs: add YugabyteDB Distributed SQL database (#32571)
- **Description:** The `langchain-yugabytedb` package implementations of
core LangChain abstractions using `YugabyteDB` Distributed SQL Database.
  
YugabyteDB is a cloud-native distributed PostgreSQL-compatible database
that combines strong consistency with ultra-resilience, seamless
scalability, geo-distribution, and highly flexible data locality to
deliver business-critical, transactional applications.

[YugabyteDB](https://www.yugabyte.com/ai/) combines the power of the
`pgvector` PostgreSQL extension with an inherently distributed
architecture. This future-proofed foundation helps you build GenAI
applications using RAG retrieval that demands high-performance vector
search.

- [ ] **tests and docs**: 
1. `langchain-yugabytedb`
[github](https://github.com/yugabyte/langchain-yugabytedb) repo.
2. YugabyteDB VectorStore example notebook showing its use. It lives in
`langchain/docs/docs/integrations/vectorstores/yugabytedb.ipynb`
directory.
  3. Running `langchain-yugabytedb` unit tests 
  
- Setting up a Development Environment

This document details how to set up a local development environment that
will
allow you to contribute changes to the project.

Acquire sources and create virtualenv.
```shell
git clone https://github.com/yugabyte/langchain-yugabytedb
cd langchain-yugabytedb
uv venv --python=3.13
source .venv/bin/activate
```

Install package in editable mode.
```shell
uv pip install pipx  
pipx install poetry
poetry install
uv pip install pytest pytest_asyncio pytest-timeout langchain-core langchain_tests sqlalchemy psycopg psycopg-binary numpy pgvector
```

Start YugabyteDB RF-1 Universe.
```shell
docker run -d --name yugabyte_node01 --hostname yugabyte01 \
  -p 7000:7000 -p 9000:9000 -p 15433:15433 -p 5433:5433 -p 9042:9042 \
  yugabytedb/yugabyte:2.25.2.0-b359 bin/yugabyted start --background=false \
  --master_flags="allowed_preview_flags_csv=ysql_yb_enable_advisory_locks,ysql_yb_enable_advisory_locks=true" \
  --tserver_flags="allowed_preview_flags_csv=ysql_yb_enable_advisory_locks,ysql_yb_enable_advisory_locks=true"

docker exec -it yugabyte_node01 bin/ysqlsh -h yugabyte01 -c "CREATE extension vector;"
```

Invoke test cases.
```shell
pytest -vvv tests/unit_tests/yugabytedb_tests
```
2025-09-12 16:55:09 -04:00
Michael Yilma
03f0ebd93e docs: add Bigtable Key-value Store and Vector Store Docs (#32598)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **feat(docs)**: add Bigtable Key-value store doc
- [X] **feat(docs)**: add Bigtable Vector store doc 

This PR adds a doc for Bigtable and LangChain Key-value store
integration. It contains guides on how to add, delete, get, and yield
key-value pairs from Bigtable Key-value Store for LangChain.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:53:59 -04:00
Bar Cohen
c9eed530ce docs: add Timbr tools integration (#32862)
# feat(integrations): Add Timbr tools integration

## DESCRIPTION

This PR adds comprehensive documentation and integration support for
Timbr's semantic layer tools in LangChain.

[Timbr](https://timbr.ai/) provides an ontology-driven semantic layer
that enables natural language querying of databases through
business-friendly concepts. It connects raw data to governed business
measures for consistent access across BI, APIs, and AI applications.

[`langchain-timbr`](https://pypi.org/project/langchain-timbr/) is a
Python SDK that extends
[LangChain](https://github.com/WPSemantix/Timbr-GenAI/tree/main/LangChain)
and
[LangGraph](https://github.com/WPSemantix/Timbr-GenAI/tree/main/LangGraph)
with custom agents, chains, and nodes for seamless integration with the
Timbr semantic layer. It enables converting natural language prompts
into optimized semantic-SQL queries and executing them directly against
your data.

**What's Added:**
- Complete integration documentation for `langchain-timbr` package
- Tool documentation page with usage examples and API reference

**Integration Components:**
- `IdentifyTimbrConceptChain` - Identify relevant concepts from user
prompts
- `GenerateTimbrSqlChain` - Generate SQL queries from natural language
- `ValidateTimbrSqlChain` - Validate queries against knowledge graph
schemas
- `ExecuteTimbrQueryChain` - Execute queries against semantic databases
- `GenerateAnswerChain` - Generate human-readable answers from results

## Documentation Added

- `/docs/integrations/providers/timbr.mdx` - Provider overview and
configuration
- `/docs/integrations/tools/timbr.ipynb` - Comprehensive tool usage
examples

## Links

- [PyPI Package](https://pypi.org/project/langchain-timbr/)
- [GitHub Repository](https://github.com/WPSemantix/langchain-timbr)
- [Official
Documentation](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/)

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:51:42 -04:00
tbice
e6c38a043f docs: add Qwen integration guide and update qwq documentation (#32817)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

**Description:**  
Add documentation for Qwen integration in LangChain, including setup
instructions, usage examples, and configuration details. Update related
qwq documentation to reflect current best practices and improve clarity
for users.

This PR enhances the documentation ecosystem by:
- Adding a new guide for integrating Qwen models
- Updating outdated or incomplete qwq documentation
- Improving structure and readability of relevant sections

**Issue:** N/A  
**Dependencies:** None

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:49:20 -04:00
Elif Sema Balcioglu
dc47c2c598 docs: update langchain-oracledb documentation (#32805)
`Oracle AI Vector Search` integrations for LangChain have been moved to
a dedicated package, [langchain-oracledb
](https://pypi.org/project/langchain-oracledb/), and a new repository,
[langchain-oracle
](https://github.com/oracle/langchain-oracle/tree/main/libs/oracledb).
This PR updates the corresponding documentation, including installation
instructions and import statements, to reflect these changes.

This PR is complemented with:
https://github.com/langchain-ai/langchain-community/pull/283

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:47:10 -04:00
Yuvraj Chandra
3420ca1da2 docs: add ZenRows provider and tool integration docs (#31742)
**Description:** Adds documentation for ZenRows integration with
LangChain, including provider overview and detailed tool documentation.
ZenRows is an enterprise-grade web scraping solution that enables
LangChain agents to extract web content at scale with advanced features
like JavaScript rendering, anti-bot bypass, geo-targeting, and multiple
output formats.

This PR includes:
- Provider documentation
(`docs/docs/integrations/providers/zenrows.ipynb`)
- Tool documentation
(`docs/docs/integrations/tools/zenrows_universal_scraper.ipynb`)
- Complete usage examples and API reference links

**Issue:** N/A

**Dependencies:** 
- [langchain-zenrows](https://github.com/ZenRows-Hub/langchain-zenrows)
package (external, available on
[PyPI](https://pypi.org/project/langchain-zenrows/))
- No changes to core LangChain dependencies

**LinkedIn handle:** https://www.linkedin.com/company/zenrows/

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:37:49 -04:00
Vishal Karwande
f11dd177e9 docs: update oci documentation and examples. (#32749)
Adding Oracle Generative AI as one of the providers for langchain.
Updated the old examples in the documentation with the new working
examples.

---------

Co-authored-by: Vishal Karwande <vishalkarwande@Vishals-MacBook-Pro.local>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:28:03 -04:00
Ali Ismail
d5a4abf960 docs(core): remove duplicate 'the' in indexing/api.py (#32924)
**Description:** Fixes a small typo in `_get_document_with_hash` inside 
`libs/core/langchain_core/indexing/api.py`.

**Issue:** N/A (no related issue)

**Dependencies:** None
2025-09-12 15:49:54 -04:00
Eugene Yurtsev
b1497bcea1 chore(core): test that default values in tool calls are preserved in json schema representation (#32921)
Add unit test coverage for this issue:
https://github.com/langchain-ai/langchain/issues/32232
2025-09-12 12:50:54 -04:00
Sydney Runkle
84f9824cc9 chore: use uv caches (#32919)
Especially helpful for the text splitters tests where we're installing
pytorch (expensive and slow slow slow). Should speed up CI by 5-10 mins.

w/o caches, CI taking 20 minutes 😨 
w/ caches, CI taking 3 minutes
2025-09-12 10:29:35 -04:00
Sydney Runkle
0814bfe5ed ci: use partial runs w/ codspeed (#32920)
Taking advantage of [partial
runs](https://codspeed.io/docs/features/partial-runs)!

This should save us minutes on every CI job, we only run codspeed for
libs w/ changes and this doesn't affect benchmarking drops
2025-09-12 09:46:01 -04:00
Christophe Bornet
cbaf97ada4 chore: bump mypy version to 1.18 (#32914) 2025-09-12 09:19:23 -04:00
Sydney Runkle
dc2da95ac0 release(langchain): v1.0.0a5 (#32917) 2025-09-12 08:36:44 -04:00
Sydney Runkle
9e78ff19ab fix(langchain): use messages from model request (#32908)
Oversight when moving back to basic function call for
`modify_model_request` rather than implementation as its own node.

Basic test right now failing on main, passing on this branch

Revealed a gap in testing. Will write up a more robust test suite for
basic middleware features.
2025-09-12 08:18:02 -04:00
Mason Daugherty
649d8a8223 test(anthropic): enable VCR for web fetch test (#32913)
The API issues have been resolved; no longer xfailing
2025-09-12 03:19:55 +00:00
Mason Daugherty
338d3d2795 chore: remove infra tag from task issue template (#32912) 2025-09-11 22:02:14 -04:00
Mason Daugherty
31f641a11f chore(infra): issue template updates (#32911) 2025-09-11 22:00:44 -04:00
open-swe[bot]
91286b0b27 chore(infra): issue template updates (#32910)
Fixes: #32909

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-11 21:53:35 -04:00
dishaprakash
bea72bac3e docs: add hybrid search documentation to PGVectorStore (#32549)
Adding documentation for Hybrid Search in the PGVectorStore Notebook

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-11 21:12:58 -04:00
Caspar Broekhuizen
15d558ff16 fix(core): resolve mermaid node id collisions when special chars are used (#32857)
### Description

* Replace the Mermaid graph node label escaping logic
(`_escape_node_label`) with `_to_safe_id`, which converts a string into
a unique, Mermaid-compatible node id. Ensures nodes with special
characters always render correctly.

**Before**
* Invalid characters (e.g. `开`) replaced with `_`. Causes collisions
between nodes with names that are the same length and contain all
non-safe characters:
```python
_escape_node_label("开") # '_'
_escape_node_label("始") # '_'  same as above, but different character passed in. not a unique mapping.
```

**After**
```python
_to_safe_id("开") # \5f00
_to_safe_id("始") # \59cb  unique!
```

### Tests
* Rename `test_graph_mermaid_escape_node_label()` to
`test_graph_mermaid_to_safe_id()` and update function logic to use
`_to_safe_id`
* Add `test_graph_mermaid_special_chars()`

### Issue

Fixes langchain-ai/langgraph#6036
2025-09-11 14:15:17 -07:00
Hyunjoon Jeong
9cc85387d1 fix(text-splitters): add validation to prevent infinite loop and prevent empty token splitter (#32205)
### Description
1) Add validation to prevent infinite loop condition when
```tokenizer.tokens_per_chunk > tokenizer.chunk_overlap```
2) Avoid empty decoded chunk when splitter appends tokens

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 16:55:32 -04:00
Mason Daugherty
7e5180e2fa refactor: inline test release (#32903)
Reusable workflows are not currently supported by PyPI's Trusted
Publishing
functionality, and are subject to breakage. Users are strongly
encouraged
to avoid using reusable workflows for Trusted Publishing until support
becomes official. Please, do not report bugs if this breaks.
2025-09-11 16:20:07 -04:00
Mason Daugherty
bbb1b9085d release(prompty): 0.1.2 (#32907) 2025-09-11 16:19:07 -04:00
Vincent Min
ff9f17bc66 fix(core): preserve ordering in RunnableRetry batch/abatch results (#32526)
Description: Fixes a bug in RunnableRetry where .batch / .abatch could
return misordered outputs (e.g. inputs [0,1,2] yielding [1,1,2]) when
some items succeeded on an earlier attempt and others were retried. Root
cause: successful results were stored keyed by the index within the
shrinking “pending” subset rather than the original input index, causing
collisions and reordered/duplicated outputs after retries. Fix updates
_batch and _abatch to:

- Track remaining original indices explicitly.
- Call underlying batch/abatch only on remaining inputs.
- Map results back to original indices.
- Preserve final ordering by reconstructing outputs in original
positional order.

Issue: Fixes #21326

Tests:

- Added regression tests: test_retry_batch_preserves_order and
test_async_retry_batch_preserves_order asserting correct ordering after
a single controlled failure + retry.
- Existing retry tests still pass.

Dependencies:

- None added or changed.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 16:18:25 -04:00
Matthew Lapointe
b1f08467cd feat(core): allow overriding ls_model_name from kwargs (#32541) 2025-09-11 16:18:06 -04:00
Eugene Yurtsev
2903e08311 chore(docs): remove langchain_experimental from api reference (#32904)
This removes langchain-experimental from api reference.

We do not recommend it to users for production use cases, so let's also
deprecate it from documentation
2025-09-11 16:13:58 -04:00
Mason Daugherty
115e20a0bc release(ollama): 0.3.8 (#32906) 2025-09-11 16:00:41 -04:00
Mason Daugherty
0ea945d291 release(nomic): 0.1.5 (#32905) 2025-09-11 15:54:19 -04:00
Mason Daugherty
5795ec3c4d release(exa): 0.3.1 (#32902) 2025-09-11 15:53:13 -04:00
Mason Daugherty
bd765753ca release(chroma): 0.2.6 (#32901) 2025-09-11 15:52:19 -04:00
Christophe Bornet
5fd7962a78 fix(core): fix support of Pydantic v1 models in BaseTool.args (#32487)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 15:44:51 -04:00
Marcus Chia
c68796579e fix(core): resolve infinite recursion in _dereference_refs_helper with mixed $ref objects (#32578)
**Description:** Fixes infinite recursion issue in JSON schema
dereferencing when objects contain both $ref and other properties (e.g.,
nullable, description, additionalProperties). This was causing Apollo
MCP server schemas to hang indefinitely during tool binding.

**Problem:**
- Commit fb5da8384 changed the condition from `set(obj.keys()) ==
{"$ref"}` to `"$ref" in set(obj.keys())`
- This caused objects with $ref + other properties to be treated as pure
$ref nodes
- Result: other properties were lost and infinite recursion occurred
with complex schemas

**Solution:**
- Restore pure $ref detection for objects with only $ref key  
- Add proper handling for mixed $ref objects that preserves all
properties
- Merge resolved reference content with other properties
- Maintain cycle detection to prevent infinite recursion

**Impact:**
- Fixes Apollo MCP server schema integration
- Resolves tool binding infinite recursion with complex GraphQL schemas
- Preserves backward compatibility with existing functionality
- No performance impact - actually improves handling of complex schemas

**Issue:** Fixes #32511

**Dependencies:** None

**Testing:**
- Added comprehensive unit tests covering mixed $ref scenarios
- All existing tests pass (1326 passed, 0 failed)
- Tested with realistic Apollo GraphQL schemas
- Stress tested with 100 iterations of complex schemas

**Verification:**
-  `make format` - All files properly formatted
-  `make lint` - All linting checks pass  
-  `make test` - All 1326 unit tests pass
-  No breaking changes - full backwards compatibility maintained

---------

Co-authored-by: Marcus <marcus@Marcus-M4-MAX.local>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-11 15:21:31 -04:00
Mason Daugherty
255ad31955 release(anthropic): 0.3.20 (#32900) 2025-09-11 15:18:43 -04:00
Mason Daugherty
00e992a780 feat(anthropic): web fetch beta (#32894)
Note: citations are broken until Anthropic fixes their API
2025-09-11 15:14:06 -04:00
Mason Daugherty
83d938593b lint 2025-09-11 15:12:38 -04:00
Mason Daugherty
38afeddcb6 fix(groq): update docs due to model deprecation (#32899)
On Friday, October 10th, the moonshotai/kimi-k2-instruct model will be
decommissioned in favor of the latest version,
moonshotai/kimi-k2-instruct-0905.
 
Until then, requests to moonshotai/kimi-k2-instruct will automatically
be routed to moonshotai/kimi-k2-instruct-0905.
2025-09-11 15:00:24 -04:00
Yu Zhong
fca1aaa9b5 fix(core): force overwrite additionalProperties to False in strict mode (#32879)
# Description
This PR fixes a bug in _recursive_set_additional_properties_false used
in function_calling.convert_to_openai_function.

Previously, schemas with "additionalProperties=True" were not correctly
overridden when strict validation was expected, which could lead to
invalid OpenAI function schemas.

The updated implementation ensures that:
- Any schema with "additionalProperties" already set will now be forced
to False under strict mode.
- Recursive traversal of properties, items, and anyOf is preserved.
- Function signature remains unchanged for backward compatibility.

# Issue
When using tool calling in OpenAI structured output strict mode
(strict=True), 400: "Invalid schema for response_format XXXXX
'additionalProperties' is required to be supplied and to be false" error
raises for the parameter that contains dict type. OpenAI requires
additionalProperties to be set to False.
Some PRs try to resolved the issue.
- PR #25169 introduced _recursive_set_additional_properties_false to
recursively set additionalProperties=False.
- PR #26287 fixed handling of empty parameter tools for OpenAI function
generation.
- PR #30971 added support for Union type arguments in strict mode of
OpenAI function calling / structured output.

Despite these improvements, since Pydantic 2.11, it will always add
`additionalProperties: True` for arbitrary dictionary schemas dict or
Any (https://pydantic.dev/articles/pydantic-v2-11-release#changes).
Schemas that already had additionalProperties=True in such cases were
not being overridden, which this PR addresses to ensure strict mode
behaves correctly in all cases.

# Dependencies
No Changes

---------

Co-authored-by: Zhong, Yu <yzhong@freewheel.com>
2025-09-11 11:02:12 -04:00
Jonathan Paserman
af17774186 docs: add MLflow tracking and evaluation cookbook (#32667)
This PR adds a new cookbook demonstrating how to build a RAG pipeline
with LangChain and track + evaluate it using MLflow.
Currently not much documentation on LangChain MLflow integration, hope
this can help folks trying to monitor and evaluate their LangChain
applications.

- ArXiv document loader 
- In Memory vector store
- LCEL rag pipeline
- MLflow tracing
- MLflow evaluation

Issue:
N/A

Dependencies:
N/A
2025-09-10 22:55:28 -04:00
chen-assert
d72da29c0b docs: Fix classification notebook small mistake (#32636)
Fix some minor issues in the Classification Notebook.
While some code still using hardcoded OpenAI model instead of selected
chat model.

Specifically, on page [Classify Text into
Labels](https://python.langchain.com/docs/tutorials/classification/)

We selected chat model before and have init_chat_model with our chosen
mode.
<img width="1262" height="576" alt="image"
src="https://github.com/user-attachments/assets/14eb436b-d2ef-4074-96d8-71640a13c0f7"
/>

But the following sample code still uses the hard-coded OpenAI model,
which in my case is obviously unrunable (lack of openai api key)
<img width="1263" height="543" alt="image"
src="https://github.com/user-attachments/assets/d13846aa-1c4b-4dee-b9c1-c66570ba3461"
/>
2025-09-10 22:43:44 -04:00
Amit Biswas
653b0908af docs: update Confident callback integration and examples (#32458)
**Description:**
Updates the Confident AI integration documentation to use modern
patterns and improve code quality. This change:
- Replaces deprecated `DeepEvalCallbackHandler` with the new
`CallbackHandler` from `deepeval.integrations.langchain`
- Updates installation and authentication instructions to match current
best practices
- Adds modern integration examples using LangChain's latest patterns
- Removes deprecated metrics and outdated code examples
- Updates code samples to follow current best practices

The changes make the documentation more maintainable and ensure users
follow the recommended integration patterns.

**Issue:** Fixes #32444

**Dependencies:**
- deepeval
- langchain
- langchain-openai

**Twitter handle:** @Muwinuddin

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-10 22:43:31 -04:00
GDanksAnchor
eb77da7de5 docs: add name title for Anchor Browser (#32512)
# description
change the sidebar name to Anchor Browser from anchor_browser.

# Issue
Anchor Browser sidebar name looks unattractive.
2025-09-10 22:40:37 -04:00
Tianyu Chen
9c93439a01 docs: add Linux quick setup method for JaguarDB (#32520)
Description:
Added "Method Two: Quick Setup (Linux)" section to prerequisites,
providing a curl-based installation method for deploying JaguarDB
without Docker. Retained original Docker setup instructions for
flexibility.
2025-09-10 22:36:01 -04:00
Marco Vinciguerra
64fe1e9a80 docs: update scrapegraph.ipynb (#32617)
I updated ScrapeGraphAI for checking the new ScrapeGraphAI tool
2025-09-10 22:33:57 -04:00
chen-assert
e4a90490c3 docs: Fix agents tutorials parameter missing (#32639)
Fix a minor issue in the Agents Tutorials Notebook.
While a config parameter is missing.

Specifically, on page [Build an Agent#Streaming
tokens](https://python.langchain.com/docs/tutorials/agents/#streaming-tokens)

These pieces of code can not be run without the config parameter, which
seems to have been omitted by the author.
<img width="1318" height="691" alt="image"
src="https://github.com/user-attachments/assets/54ce2833-9499-41bb-9de0-d5f9beba9ef9"
/>
2025-09-10 22:27:24 -04:00
dwelch-spike
80776b80f0 docs: remove aerospike vector store (#32726)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- **Description:** Aerospike Vector Store has been retired. It is no
longer supported so It should no longer be documented on the Langchain
site.

- **Add tests and docs**: Removes docs for retired Aerospike vector
store.

- **Lint and test**: NA
2025-09-10 22:19:43 -04:00
may
2c2bab93fc docs: add example for reusing an existing collection (#32774)
Added a short section to the Weaviate integration docs showing how to
connect to an existing collection (reuse an index) with
`WeaviateVectorStore`. This helps clarify required parameters
(`index_name`, `text_key`) when loading a pre-existing store, which was
previously missing.

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

### Description
Added a short section to the Weaviate integration docs showing how to
connect to an existing collection (reuse an index) with
`WeaviateVectorStore`. This helps clarify required parameters
(`index_name`, `text_key`) when loading a pre-existing store, which was
previously missing.

### Issue
Fixes langchain-ai/langchain-weaviate#197

### Dependencies
None
2025-09-10 22:16:46 -04:00
Mateusz Świtała
221c96e7b4 docs: fix import path in WatsonxToolkit after releasing langchain-ibm 0.3.17 (#32746)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [x] **PR message**: 
- **Description:** Fixing the import path for `WatsonxToolkit` in
examples after releasing `lnagchain-ibm==0.3.17`

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-09-10 22:14:43 -04:00
yrk111222
364465bd11 docs: update modelscope.mdx (#32823)
### Description
This PR is primarily aimed at updating some usage methods in the
`modelscope.mdx` file.
Specifically, it changes from `ModelScopeLLM` to `ModelScopeEndpoint`.
### Relevant PR
The relevant PR link is:
https://github.com/langchain-ai/langchain/pull/28941
2025-09-10 22:07:19 -04:00
Mason Daugherty
7b874da9b2 fix(docs): text-embedding-004 -> gemini-embedding-001 (#32596)
`text-embedding-004` will be discontinued
2025-09-10 21:47:45 -04:00
Mason Daugherty
8e213c9f1a fix(core): AsyncCallbackHandler docstring cleanup (#32897)
plus IDE warning fixes
2025-09-10 21:31:45 -04:00
Yash Vishwanath Tobre
a8828b1bda fix(core): raise OutputParserException for non-dict JSON outputs (#32236)
**Description:**
Raise a more descriptive OutputParserException when JSON parsing results
in a non-dict type. This improves debugging and aligns behavior with
expectations when using expected_keys.

**Issue:**
Fixes #32233

**Twitter handle:**
@yashvtobre

**Testing:**

- Ran make format and make lint from the root directory; both passed
cleanly.
- Attempted make test but no such target exists in the root Makefile.
- Executed tests directly via pytest targeting the relevant test file,
confirming all tests pass except for unrelated async test failures
outside the scope of this change.

**Notes:**

- No additional dependencies introduced.
- Changes are backward compatible and isolated within the output parser
module.

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-09-10 20:57:09 -04:00
Mason Daugherty
7a158c7f1c revert: "chore: remove ruff target-version" (#32895)
Reverts langchain-ai/langchain#32880

Not needed at the moment, will do when finishing v1
2025-09-10 20:56:48 -04:00
Daniel Barker
25c34bd9b2 feat(core): allow custom Mermaid URL (#32831)
- **Description:** Currently,
`langchain_core.runnables.graph_mermaid.py` is hardcoded to use
mermaid.ink to render graph diagrams. It would be nice to allow users to
specify a custom URL, e.g. for self-hosted instances of the Mermaid
server.
- **Issue:** [Langchain Forum: allow custom mermaid API
URL](https://forum.langchain.com/t/feature-request-allow-custom-mermaid-api-url/1472)
  - **Dependencies:** None

- [X] **Add tests and docs**: Added unit tests using mock requests.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`.

Minimal example using the feature:

```python
import os
import operator
from pathlib import Path
from typing import Any, Annotated, TypedDict

from langgraph.graph import StateGraph

class State(TypedDict):
    messages: Annotated[list[dict[str, Any]], operator.add]

def hello_node(state: State) -> State:
    return {"messages": [{"role": "assistant", "content": "pong!"}]}

builder = StateGraph(State)
builder.add_node("hello_node", hello_node)
builder.add_edge("__start__", "hello_node")
builder.add_edge("hello_node", "__end__")

graph = builder.compile()

# Run graph
output = graph.invoke({"messages": [{"role": "user", "content": "ping?"}]})

# Draw graph
Path("graph.png").write_bytes(graph.get_graph().draw_mermaid_png(base_url="https://custom-mermaid.ink"))
```

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-10 17:14:50 -04:00
Mason Daugherty
38001699d5 fix(anthropic): remove unneeded beta flags (#32893)
- Beta isn't needed for search result tests anymore
- Add TODO for other tests to come back when generally available
- Regenerate remote MCP snapshot after some testing (now the same, but
fresher)
- Bump deps
2025-09-10 20:47:13 +00:00
Mason Daugherty
3da0377c02 fix(anthropic): update ChatAnthropic model in tests/doc (#32892)
from `'claude-3-5-sonnet-latest'` to `'claude-3-5-haiku-latest'` since
sonnet is deprecated
2025-09-10 16:44:04 -04:00
JADAVA VINEETH KUMAR RAO
0abf82a45a fix(openai): ainvoke uses async _aget_response; add async tests (#32459) 2025-09-10 15:52:15 -04:00
Jonathan Hill
2fed177d0b fix(core): preserve ToolMessage.status field in convert_to_messages (#32840) 2025-09-10 15:49:39 -04:00
Aasish
9c7d262ff4 fix(openai): update AzureOpenAIEmbeddings validation logic for openai_api_base (#31782) 2025-09-10 14:53:30 -04:00
ccurme
67e651b592 fix(infra): fix min version check (#32891)
Should no longer require `langchain-core>=(version in monorepo)`
2025-09-10 14:04:26 -04:00
Shibayan003
f08dfb6f49 test: Add failing test for BaseCallbackManager.merge (#32040)
This pull request introduces a failing unit test to reproduce the bug
reported in issue #32028.
The test asserts the expected behavior: `BaseCallbackManager.merge()`
should combine `handlers` and `inheritable_handlers` independently,
without mixing them. This test will fail on the current codebase and is
intended to guide the fix and prevent future regressions.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-10 13:56:18 -04:00
ccurme
450870c9ac release(qdrant): 0.2.1 (#32889) 2025-09-10 13:21:16 -04:00
Zhou Jing
10dfeea110 fix(qdrant): allow as_retriever to work without embeddings in SPARSE mode (#32757) 2025-09-10 13:08:50 -04:00
ccurme
34ecb92178 release(openai): 0.3.33 (#32887) 2025-09-10 11:53:26 -04:00
ccurme
49b3918c26 fix(infra): update scheduled test workflow following uv migration in langchain-google (#32886) 2025-09-10 11:30:55 -04:00
Christophe Bornet
12921a94c5 test(core): reactivate commented tests in test_indexing (#32882)
* These tests now pass
* Commenting them is a [ruff
ERA](https://docs.astral.sh/ruff/rules/commented-out-code/) violation
2025-09-10 11:14:14 -04:00
Alexey Bondarenko
181bb91ce0 fix(ollama): Fix handling message content lists (#32881)
The Ollama chat model adapter does not support all of the possible
message content formats. That leads to Ollama model adapter crashing on
some messages from different models (e.g. Gemini 2.5 Flash).

These changes should fix one known scenario - when `content` is a list
containing a string.
2025-09-10 11:13:28 -04:00
Christophe Bornet
b274416441 chore: remove ruff target-version (#32880)
This is not needed anymore since `requires-python` was added when moving
to `uv`.
2025-09-10 11:12:30 -04:00
ccurme
389a781aa0 fix(infra): exclude pre-releases from latest version checks in core release workflow (#32883) 2025-09-10 10:35:24 -04:00
William FH
443f0ccb0e release(core): 0.3.76 (#32877) 2025-09-10 14:10:44 +00:00
Lauren Hirata Singh
00e547c311 docs: update banner with docs deprecation notice (#32871) 2025-09-10 00:35:43 +00:00
Sydney Runkle
d464d3089b chore: redirect docs template -> docs repo (#32872) 2025-09-09 18:24:22 -04:00
William FH
f1d44d0f9d fix(core): honor enabled=false in nested tracing (#31986)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-09-09 13:12:17 -07:00
Christophe Bornet
a35ee49f37 chore(langchain): enable ruff docstring-code-format in langchain (#32858) 2025-09-09 15:00:38 -04:00
Christophe Bornet
352ff363ca chore(cli): remove ruff exclusion of templates (#32864) 2025-09-09 14:56:47 -04:00
Christophe Bornet
256a0b5f2f chore(langchain): add ruff rule BLE (#32868)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-09 18:52:53 +00:00
ccurme
937087a29c release(groq): 0.3.8 (#32870) 2025-09-09 14:39:02 -04:00
Jan Z
08bf4c321f feat(groq): add support for json_schema (#32396) 2025-09-09 18:30:07 +00:00
Mason Daugherty
4c6af2d1b2 fix(openai): structured output (#32551) 2025-09-09 11:37:50 -04:00
Christophe Bornet
ee268db1c5 feat(standard-tests): add a property to skip relevant tests if the vector store doesn't support get_by_ids() (#32633) 2025-09-09 11:37:23 -04:00
Zhou Jing
dcc517b187 fix(core): ensure InjectedToolCallId always overrides LLM-generated values (#32766) 2025-09-09 11:25:52 -04:00
Mason Daugherty
c124e67325 chore(docs): update package READMEs (#32869)
- Fix badges
- Focus on agents
- Cut down fluff
2025-09-09 14:50:32 +00:00
Christophe Bornet
699a5d06d1 chore(langchain): add ruff rule ERA (#32867) 2025-09-09 10:13:18 -04:00
Christophe Bornet
00f699c60d chore(core): cleanup pyproject.toml (#32865) 2025-09-09 10:12:18 -04:00
Christophe Bornet
e36e25fe2f feat(langchain): support PEP604 ( | union) in tool node error handlers (#32861)
This allows to use PEP604 syntax for `ToolNode` error handlers
```python
def error_handler(e: ValueError | ToolException) -> str:
    return "error"

ToolNode(my_tool, handle_tool_errors=error_handler).invoke(...)
```
Without this change, this fails with `AttributeError: 'types.UnionType'
object has no attribute '__mro__'`
2025-09-09 10:11:12 -04:00
Christophe Bornet
cc3b5afe52 fix(huggingface): fix typing in test_standard (#32863) 2025-09-09 10:05:41 -04:00
Gal Bloch
428c2ee6c5 fix(langchain): preserve supplied llm in FlareChain.from_llm (#32847) 2025-09-09 13:41:23 +00:00
Christophe Bornet
714f74a847 refactor(core): improve beta decorator (#32505)
This is better than using a subclass as returning a `property` works
with `ClassWithBetaMethods.beta_property.__doc__`

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 18:06:48 -04:00
Christophe Bornet
c3b28c769a chore(langchain): add ruff rules D (except D100 and D104) (#31994)
See https://docs.astral.sh/ruff/rules/#pydocstyle-d

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 21:47:22 +00:00
Christophe Bornet
017348b27c chore(langchain): add ruff rule E501 in langchain_v1 (#32812)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:28:14 -04:00
Christophe Bornet
1e101ae9a2 chore(langchain): add ruff rules N (#32098)
See https://docs.astral.sh/ruff/rules/#pep8-naming-n

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:27:43 -04:00
Christophe Bornet
fe6c415c9f chore(langchain): add ruff rule UP007 in langchain_v1 (#32811)
Done by autofix
2025-09-08 17:26:00 -04:00
Christophe Bornet
54c2419a4e chore(langchain): enable ruff docstring-code-format in langchain_v1 (#32855) 2025-09-08 16:51:18 -04:00
Mason Daugherty
35e9d36b0e fix(standard-tests): ensure non-negative token counts in usage metadata assertions (#32593) 2025-09-08 16:49:26 -04:00
Christophe Bornet
8b90eae455 chore(text-splitters): enable ruff docstring-code-format (#32854) 2025-09-08 16:40:11 -04:00
Christophe Bornet
05d14775f2 chore(standard-tests): enable ruff docstring-code-format (#32852) 2025-09-08 16:39:53 -04:00
PieterKok-jaam
33c7f230e0 feat(core): add id field to Document passed to filter for InMemoryVectorStore similarity search (#32688)
Added an id field to the Document passed to filter for
InMemoryVectorStore similarity search. This allows filtering by Document
id and brings the input to the filter in line with the result returned
by the vector similarity search.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-08 20:39:18 +00:00
Mason Daugherty
97dd7628d2 chore: update badges (#32851)
- stars badge redundant (look at the top of the page)
- remove version badge since we have many pkgs (and it was only showing
core) -- also, just look at the releases tab to the right of the readme
2025-09-08 20:06:59 +00:00
Adithya1617
f5bd00d1f1 feat(core): support AWS Bedrock document content blocks in msg_content_output (#32799) 2025-09-08 19:40:28 +00:00
Sadra Barikbin
3486d6c74d feat(core): support for adding PromptTemplates with formats other than f-string (#32253)
Allow adding`PromptTemplate`s with formats other than `f-string`. Fixes
#32151

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-09-08 19:16:54 +00:00
Stefano Lottini
390606c155 fix(standard-tests): standard vectorstore tests accept out-of-order get_by_ids (#32821)
- **Description:** The vectorstore standard-test mistakenly assumes that
the store's `get_by_ids` respects the order of the provided `ids`. This
is not the case (as the base class docstring states). This PR fixes
those tests that would fail otherwise (see issue #32820 for details,
repro and all). Fixes #32820
- **Issue:** Fixes #32820
- **Dependencies:** none

Co-authored-by: Stefano Lottini <stefano.lottini@ibm.com>
2025-09-08 14:22:14 -04:00
Christophe Bornet
cc98fb9bee chore(core): add ruff rule PLC0415 (#32351)
See https://docs.astral.sh/ruff/rules/import-outside-top-level/

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:15:04 -04:00
Christophe Bornet
16420cad71 chore(core): fix some pydocs to use google-style (#32764)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:52:17 +00:00
Christophe Bornet
01fdeede50 chore(core): fix some ruff preview rules (#32785)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:55:20 +00:00
Christophe Bornet
f4e83e0ad8 chore(core): fix some docstrings (from DOC preview rule) (#32833)
* Add `Raises` sections
* Add `Returns` sections
* Add `Yields` sections

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:44:15 +00:00
dependabot[bot]
4024d47412 chore(infra): bump actions/setup-python from 5 to 6 (#32842)
Bumps [actions/setup-python](https://github.com/actions/setup-python)
from 5 to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/setup-python/releases">actions/setup-python's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0</h2>
<h2>What's Changed</h2>
<h3>Breaking Changes</h3>
<ul>
<li>Upgrade to node 24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1164">actions/setup-python#1164</a></li>
</ul>
<p>Make sure your runner is on version v2.327.1 or later to ensure
compatibility with this release. <a
href="https://github.com/actions/runner/releases/tag/v2.327.1">See
Release Notes</a></p>
<h3>Enhancements:</h3>
<ul>
<li>Add support for <code>pip-version</code> by <a
href="https://github.com/priyagupta108"><code>@​priyagupta108</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1129">actions/setup-python#1129</a></li>
<li>Enhance reading from .python-version by <a
href="https://github.com/krystof-k"><code>@​krystof-k</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/787">actions/setup-python#787</a></li>
<li>Add version parsing from Pipfile by <a
href="https://github.com/aradkdj"><code>@​aradkdj</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1067">actions/setup-python#1067</a></li>
</ul>
<h3>Bug fixes:</h3>
<ul>
<li>Clarify pythonLocation behaviour for PyPy and GraalPy in environment
variables by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1183">actions/setup-python#1183</a></li>
<li>Change missing cache directory error to warning by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1182">actions/setup-python#1182</a></li>
<li>Add Architecture-Specific PATH Management for Python with --user
Flag on Windows by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1122">actions/setup-python#1122</a></li>
<li>Include python version in PyPy python-version output by <a
href="https://github.com/cdce8p"><code>@​cdce8p</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1110">actions/setup-python#1110</a></li>
<li>Update docs: clarification on pip authentication with setup-python
by <a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1156">actions/setup-python#1156</a></li>
</ul>
<h3>Dependency updates:</h3>
<ul>
<li>Upgrade idna from 2.9 to 3.7 in /<strong>tests</strong>/data by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-python/pull/843">actions/setup-python#843</a></li>
<li>Upgrade form-data to fix critical vulnerabilities <a
href="https://redirect.github.com/actions/setup-python/issues/182">#182</a>
&amp; <a
href="https://redirect.github.com/actions/setup-python/issues/183">#183</a>
by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1163">actions/setup-python#1163</a></li>
<li>Upgrade setuptools to 78.1.1 to fix path traversal vulnerability in
PackageIndex.download by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1165">actions/setup-python#1165</a></li>
<li>Upgrade actions/checkout from 4 to 5 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-python/pull/1181">actions/setup-python#1181</a></li>
<li>Upgrade <code>@​actions/tool-cache</code> from 2.0.1 to 2.0.2 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>[bot]
in <a
href="https://redirect.github.com/actions/setup-python/pull/1095">actions/setup-python#1095</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/krystof-k"><code>@​krystof-k</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/787">actions/setup-python#787</a></li>
<li><a href="https://github.com/cdce8p"><code>@​cdce8p</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/1110">actions/setup-python#1110</a></li>
<li><a href="https://github.com/aradkdj"><code>@​aradkdj</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/setup-python/pull/1067">actions/setup-python#1067</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v5...v6.0.0">https://github.com/actions/setup-python/compare/v5...v6.0.0</a></p>
<h2>v5.6.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Workflow updates related to Ubuntu 20.04 by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1065">actions/setup-python#1065</a></li>
<li>Fix for Candidate Not Iterable Error by <a
href="https://github.com/aparnajyothi-y"><code>@​aparnajyothi-y</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1082">actions/setup-python#1082</a></li>
<li>Upgrade semver and <code>@​types/semver</code> by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1091">actions/setup-python#1091</a></li>
<li>Upgrade prettier from 2.8.8 to 3.5.3 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1046">actions/setup-python#1046</a></li>
<li>Upgrade ts-jest from 29.1.2 to 29.3.2 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1081">actions/setup-python#1081</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/setup-python/compare/v5...v5.6.0">https://github.com/actions/setup-python/compare/v5...v5.6.0</a></p>
<h2>v5.5.0</h2>
<h2>What's Changed</h2>
<h3>Enhancements:</h3>
<ul>
<li>Support free threaded Python versions like '3.13t' by <a
href="https://github.com/colesbury"><code>@​colesbury</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/973">actions/setup-python#973</a></li>
<li>Enhance Workflows: Include ubuntu-arm runners, Add e2e Testing for
free threaded and Upgrade <code>@​action/cache</code> from 4.0.0 to
4.0.3 by <a
href="https://github.com/priya-kinthali"><code>@​priya-kinthali</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1056">actions/setup-python#1056</a></li>
<li>Add support for .tool-versions file in setup-python by <a
href="https://github.com/mahabaleshwars"><code>@​mahabaleshwars</code></a>
in <a
href="https://redirect.github.com/actions/setup-python/pull/1043">actions/setup-python#1043</a></li>
</ul>
<h3>Bug fixes:</h3>
<ul>
<li>Fix architecture for pypy on Linux ARM64 by <a
href="https://github.com/mayeut"><code>@​mayeut</code></a> in <a
href="https://redirect.github.com/actions/setup-python/pull/1011">actions/setup-python#1011</a>
This update maps arm64 to aarch64 for Linux ARM64 PyPy
installations.</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e797f83bcb"><code>e797f83</code></a>
Upgrade to node 24 (<a
href="https://redirect.github.com/actions/setup-python/issues/1164">#1164</a>)</li>
<li><a
href="3d1e2d2ca0"><code>3d1e2d2</code></a>
Revert &quot;Enhance cache-dependency-path handling to support files
outside the w...</li>
<li><a
href="65b071217a"><code>65b0712</code></a>
Clarify pythonLocation behavior for PyPy and GraalPy in environment
variables...</li>
<li><a
href="5b668cf765"><code>5b668cf</code></a>
Bump actions/checkout from 4 to 5 (<a
href="https://redirect.github.com/actions/setup-python/issues/1181">#1181</a>)</li>
<li><a
href="f62a0e252f"><code>f62a0e2</code></a>
Change missing cache directory error to warning (<a
href="https://redirect.github.com/actions/setup-python/issues/1182">#1182</a>)</li>
<li><a
href="9322b3ca74"><code>9322b3c</code></a>
Upgrade setuptools to 78.1.1 to fix path traversal vulnerability in
PackageIn...</li>
<li><a
href="fbeb884f69"><code>fbeb884</code></a>
Bump form-data to fix critical vulnerabilities <a
href="https://redirect.github.com/actions/setup-python/issues/182">#182</a>
&amp; <a
href="https://redirect.github.com/actions/setup-python/issues/183">#183</a>
(<a
href="https://redirect.github.com/actions/setup-python/issues/1163">#1163</a>)</li>
<li><a
href="03bb6152f4"><code>03bb615</code></a>
Bump idna from 2.9 to 3.7 in /<strong>tests</strong>/data (<a
href="https://redirect.github.com/actions/setup-python/issues/843">#843</a>)</li>
<li><a
href="36da51d563"><code>36da51d</code></a>
Add version parsing from Pipfile (<a
href="https://redirect.github.com/actions/setup-python/issues/1067">#1067</a>)</li>
<li><a
href="3c6f142cc0"><code>3c6f142</code></a>
update documentation (<a
href="https://redirect.github.com/actions/setup-python/issues/1156">#1156</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/actions/setup-python/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/setup-python&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 11:27:54 -04:00
Christophe Bornet
f589168411 refactor(core): use pytest style in TestGetBufferString (#32786)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:16:13 +00:00
Christophe Bornet
5840dad40b chore(core): enable ruff docstring-code-format (#32834)
See https://docs.astral.sh/ruff/settings/#format_docstring-code-format

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:13:50 +00:00
Christophe Bornet
e3b6c9bb66 chore(core): fix some mypy warn_unreachable issues (#32560)
Found by setting `warn_unreachable: true` in mypy.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:02:08 +00:00
Christophe Bornet
c672590f42 chore(standard-tests): select ALL rules with exclusions (#31937)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:57:47 +00:00
Christophe Bornet
323729915a chore(standard-tests): add mypy strict checking (#32384)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 10:50:38 -04:00
Christophe Bornet
0c3e8ccd0e chore(text-splitters): select ALL rules with exclusions (#32325)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:46:09 +00:00
Christophe Bornet
20401df25d chore(cli): fix some DOC rules (preview) (#32839)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:36:22 +00:00
dependabot[bot]
e0aaaccb61 chore(infra): bump aws-actions/configure-aws-credentials from 4 to 5 (#32841)
Bumps
[aws-actions/configure-aws-credentials](https://github.com/aws-actions/configure-aws-credentials)
from 4 to 5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/aws-actions/configure-aws-credentials/releases">aws-actions/configure-aws-credentials's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.1...v5.0.0">5.0.0</a>
(2025-09-03)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>Cleanup input handling. Changes invalid boolean input behavior (see
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1445">#1445</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li>add skip OIDC option (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1458">#1458</a>)
(<a
href="8c45f6b081">8c45f6b</a>)</li>
<li>Cleanup input handling. Changes invalid boolean input behavior (see
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1445">#1445</a>)
(<a
href="74b3e27aa8">74b3e27</a>)</li>
<li>support account id allowlist (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1456">#1456</a>)
(<a
href="c4be498953">c4be498</a>)</li>
</ul>
<h2>v4.3.1</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.0...v4.3.1">4.3.1</a>
(2025-08-04)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>update readme to 4.3.1 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1424">#1424</a>)
(<a
href="be2e7ad815">be2e7ad</a>)</li>
</ul>
<h2>v4.3.0</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.0...v4.3.0">4.3.0</a>
(2025-08-04)</h2>
<p>NOTE: This release tag originally pointed to
59b441846ad109fa4a1549b73ef4e149c4bfb53b, but a critical bug was
discovered shortly after publishing. We updated this tag to
d0834ad3a60a024346910e522a81b0002bd37fea to prevent anyone using the
4.3.0 tag from encountering the bug, and we published 4.3.1 to allow
workflows to auto update correctly.</p>
<h3>Features</h3>
<ul>
<li>dependency update and feature cleanup (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1414">#1414</a>)
(<a
href="59489ba544">59489ba</a>),
closes <a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1062">#1062</a>
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1191">#1191</a></li>
<li>Optional environment variable output (<a
href="c3b3ce61b0">c3b3ce6</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>docs:</strong> readme samples versioning (<a
href="5b3c895046">5b3c895</a>)</li>
<li>the wrong example region for China partition in README (<a
href="37fe9a740b">37fe9a7</a>)</li>
<li>properly set proxy environment variable (<a
href="cbea70821e">cbea708</a>)</li>
</ul>
<h3>Miscellaneous Chores</h3>
<ul>
<li>release 4.3.0 (<a
href="3f7c218721">3f7c218</a>)</li>
</ul>
<h2>v4.2.1</h2>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.2.0...v4.2.1">4.2.1</a>
(2025-05-14)</h2>
<h3>Bug Fixes</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/aws-actions/configure-aws-credentials/blob/main/CHANGELOG.md">aws-actions/configure-aws-credentials's
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.3.0...v4.3.1">4.3.1</a>
(2025-08-04)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>update readme to 4.3.1 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1424">#1424</a>)
(<a
href="be2e7ad815">be2e7ad</a>)</li>
</ul>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.2.1...v4.3.0">4.3.0</a>
(2025-08-04)</h2>
<h3>Features</h3>
<ul>
<li>depenency update and feature cleanup (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1414">#1414</a>)
(<a
href="59489ba544">59489ba</a>),
closes <a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1062">#1062</a>
<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1191">#1191</a></li>
<li>Optional environment variable output (<a
href="c3b3ce61b0">c3b3ce6</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li><strong>docs:</strong> readme samples versioning (<a
href="5b3c895046">5b3c895</a>)</li>
<li>the wrong example region for China partition in README (<a
href="37fe9a740b">37fe9a7</a>)</li>
<li>properly set proxy environment variable (<a
href="cbea70821e">cbea708</a>)</li>
</ul>
<h3>Miscellaneous Chores</h3>
<ul>
<li>release 4.3.0 (<a
href="3f7c218721">3f7c218</a>)</li>
</ul>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.2.0...v4.2.1">4.2.1</a>
(2025-05-14)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>ensure explicit inputs take precedence over environment variables
(<a
href="e56e6c4038">e56e6c4</a>)</li>
<li>prioritize explicit inputs over environment variables (<a
href="df9c8fed6b">df9c8fe</a>)</li>
</ul>
<h2><a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4.1.0...v4.2.0">4.2.0</a>
(2025-05-06)</h2>
<h3>Features</h3>
<ul>
<li>add Expiration field to Outputs (<a
href="a4f326760c">a4f3267</a>)</li>
<li>Document role-duration-seconds range (<a
href="5a0cf0167f">5a0cf01</a>)</li>
<li>support action inputs as environment variables (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1338">#1338</a>)
(<a
href="2c168adcae">2c168ad</a>)</li>
</ul>
<h3>Bug Fixes</h3>
<ul>
<li>make sure action builds, also fix dependabot autoapprove (<a
href="c401b8a98c">c401b8a</a>)</li>
<li>role chaning on mulitple runs (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1340">#1340</a>)
(<a
href="9e38641911">9e38641</a>)</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a03048d875"><code>a03048d</code></a>
chore(main): release 5.0.0 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1451">#1451</a>)</li>
<li><a
href="337f510212"><code>337f510</code></a>
chore: Fix markdown link formatting in README.md (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1466">#1466</a>)</li>
<li><a
href="f001d79eaa"><code>f001d79</code></a>
chore: update README with versioning (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1465">#1465</a>)</li>
<li><a
href="cf5f2acba3"><code>cf5f2ac</code></a>
chore: Update dist</li>
<li><a
href="b394bdd9f0"><code>b394bdd</code></a>
chore(deps-dev): bump <code>@​aws-sdk/credential-provider-env</code> (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1463">#1463</a>)</li>
<li><a
href="b632c0b5e4"><code>b632c0b</code></a>
chore(deps-dev): bump memfs from 4.38.1 to 4.38.2 (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1462">#1462</a>)</li>
<li><a
href="978e44aa36"><code>978e44a</code></a>
chore: Update dist</li>
<li><a
href="c4be498953"><code>c4be498</code></a>
feat: support account id allowlist (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1456">#1456</a>)</li>
<li><a
href="c5a43c32e1"><code>c5a43c3</code></a>
chore: Update dist</li>
<li><a
href="8c45f6b081"><code>8c45f6b</code></a>
feat: add skip OIDC option (<a
href="https://redirect.github.com/aws-actions/configure-aws-credentials/issues/1458">#1458</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/aws-actions/configure-aws-credentials/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=aws-actions/configure-aws-credentials&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:18:01 -04:00
dependabot[bot]
9368ce6b07 chore(infra): bump google-github-actions/auth from 2 to 3 (#32777)
Bumps
[google-github-actions/auth](https://github.com/google-github-actions/auth)
from 2 to 3.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/google-github-actions/auth/releases">google-github-actions/auth's
releases</a>.</em></p>
<blockquote>
<h2>v3.0.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Bump to Node 24 and remove old parameters by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/508">google-github-actions/auth#508</a></li>
<li>Remove hacky script by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/509">google-github-actions/auth#509</a></li>
<li>Release: v3.0.0 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/510">google-github-actions/auth#510</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2...v3.0.0">https://github.com/google-github-actions/auth/compare/v2...v3.0.0</a></p>
<h2>v2.1.13</h2>
<h2>What's Changed</h2>
<ul>
<li>Update deps by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/506">google-github-actions/auth#506</a></li>
<li>Release: v2.1.13 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/507">google-github-actions/auth#507</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.12...v2.1.13">https://github.com/google-github-actions/auth/compare/v2.1.12...v2.1.13</a></p>
<h2>v2.1.12</h2>
<h2>What's Changed</h2>
<ul>
<li>Add retries for getIDToken by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/502">google-github-actions/auth#502</a></li>
<li>Release: v2.1.12 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/503">google-github-actions/auth#503</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.11...v2.1.12">https://github.com/google-github-actions/auth/compare/v2.1.11...v2.1.12</a></p>
<h2>v2.1.11</h2>
<h2>What's Changed</h2>
<ul>
<li>Update troubleshooting docs for Python by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/488">google-github-actions/auth#488</a></li>
<li>Add linters by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/499">google-github-actions/auth#499</a></li>
<li>Update deps by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/500">google-github-actions/auth#500</a></li>
<li>Release: v2.1.11 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/501">google-github-actions/auth#501</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.10...v2.1.11">https://github.com/google-github-actions/auth/compare/v2.1.10...v2.1.11</a></p>
<h2>v2.1.10</h2>
<h2>What's Changed</h2>
<ul>
<li>Declare workflow permissions by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/482">google-github-actions/auth#482</a></li>
<li>Document that the OIDC token expires in 5min by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/483">google-github-actions/auth#483</a></li>
<li>Release: v2.1.10 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/484">google-github-actions/auth#484</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/google-github-actions/auth/compare/v2.1.9...v2.1.10">https://github.com/google-github-actions/auth/compare/v2.1.9...v2.1.10</a></p>
<h2>v2.1.9</h2>
<h2>What's Changed</h2>
<ul>
<li>Use our custom boolean parsing by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/478">google-github-actions/auth#478</a></li>
<li>Update deps by <a
href="https://github.com/sethvargo"><code>@​sethvargo</code></a> in <a
href="https://redirect.github.com/google-github-actions/auth/pull/479">google-github-actions/auth#479</a></li>
<li>Release: v2.1.9 by <a
href="https://github.com/google-github-actions-bot"><code>@​google-github-actions-bot</code></a>
in <a
href="https://redirect.github.com/google-github-actions/auth/pull/480">google-github-actions/auth#480</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="7c6bc770da"><code>7c6bc77</code></a>
Release: v3.0.0 (<a
href="https://redirect.github.com/google-github-actions/auth/issues/510">#510</a>)</li>
<li><a
href="42e4997ee3"><code>42e4997</code></a>
Remove hacky script (<a
href="https://redirect.github.com/google-github-actions/auth/issues/509">#509</a>)</li>
<li><a
href="5ea4dc1147"><code>5ea4dc1</code></a>
Bump to Node 24 and remove old parameters (<a
href="https://redirect.github.com/google-github-actions/auth/issues/508">#508</a>)</li>
<li>See full diff in <a
href="https://github.com/google-github-actions/auth/compare/v2...v3">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=google-github-actions/auth&package-manager=github_actions&previous-version=2&new-version=3)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:16:59 -04:00
dependabot[bot]
f8bcc98362 chore(infra): bump amannn/action-semantic-pull-request from 5 to 6 (#32585)
Bumps
[amannn/action-semantic-pull-request](https://github.com/amannn/action-semantic-pull-request)
from 5 to 6.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/amannn/action-semantic-pull-request/releases">amannn/action-semantic-pull-request's
releases</a>.</em></p>
<blockquote>
<h2>v6.0.0</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.3...v6.0.0">6.0.0</a>
(2025-08-13)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>Upgrade action to use Node.js 24 and ESM (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/287">#287</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li>Upgrade action to use Node.js 24 and ESM (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/287">#287</a>)
(<a
href="bc0c9a79ab">bc0c9a7</a>)</li>
</ul>
<h2>v5.5.3</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.2...v5.5.3">5.5.3</a>
(2024-06-28)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Bump <code>braces</code> dependency (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/269">#269</a>.
by <a href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a>)
(<a
href="2d952a1bf9">2d952a1</a>)</li>
</ul>
<h2>v5.5.2</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.1...v5.5.2">5.5.2</a>
(2024-04-24)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Bump tar from 6.1.11 to 6.2.1 (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/262">#262</a>
by <a href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a>)
(<a
href="9a90d5a5ac">9a90d5a</a>)</li>
</ul>
<h2>v5.5.1</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.5.0...v5.5.1">5.5.1</a>
(2024-04-24)</h2>
<h3>Bug Fixes</h3>
<ul>
<li>Bump ip from 2.0.0 to 2.0.1 (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/263">#263</a>
by <a href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a>)
(<a
href="5e7e9acca3">5e7e9ac</a>)</li>
</ul>
<h2>v5.5.0</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.4.0...v5.5.0">5.5.0</a>
(2024-04-23)</h2>
<h3>Features</h3>
<ul>
<li>Add outputs for <code>type</code>, <code>scope</code> and
<code>subject</code> (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/261">#261</a>
by <a href="https://github.com/bcaurel"><code>@​bcaurel</code></a>) (<a
href="b05f5f6423">b05f5f6</a>)</li>
</ul>
<h2>v5.4.0</h2>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.3.0...v5.4.0">5.4.0</a>
(2023-11-03)</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/amannn/action-semantic-pull-request/blob/main/CHANGELOG.md">amannn/action-semantic-pull-request's
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.2.0...v5.3.0">5.3.0</a>
(2023-09-25)</h2>
<h3>Features</h3>
<ul>
<li>Use Node.js 20 in action (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/240">#240</a>)
(<a
href="4c0d5a21fc">4c0d5a2</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.1.0...v5.2.0">5.2.0</a>
(2023-03-16)</h2>
<h3>Features</h3>
<ul>
<li>Update dependencies by <a
href="https://github.com/EelcoLos"><code>@​EelcoLos</code></a> (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/229">#229</a>)
(<a
href="e797448a07">e797448</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.0.2...v5.1.0">5.1.0</a>
(2023-02-10)</h2>
<h3>Features</h3>
<ul>
<li>Add regex support to <code>scope</code> and
<code>disallowScopes</code> configuration (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/226">#226</a>)
(<a
href="403a6f8924">403a6f8</a>)</li>
</ul>
<h3><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.0.1...v5.0.2">5.0.2</a>
(2022-10-17)</h3>
<h3>Bug Fixes</h3>
<ul>
<li>Upgrade <code>@actions/core</code> to avoid deprecation warnings (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/208">#208</a>)
(<a
href="91f4126c9e">91f4126</a>)</li>
</ul>
<h3><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5.0.0...v5.0.1">5.0.1</a>
(2022-10-14)</h3>
<h3>Bug Fixes</h3>
<ul>
<li>Upgrade GitHub Action to use Node v16 (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/207">#207</a>)
(<a
href="6282ee339b">6282ee3</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v4.6.0...v5.0.0">5.0.0</a>
(2022-10-11)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>Enum options need to be newline delimited (to allow whitespace
within them) (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/205">#205</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li>Enum options need to be newline delimited (to allow whitespace
within them) (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/205">#205</a>)
(<a
href="c906fe1e5a">c906fe1</a>)</li>
</ul>
<h2><a
href="https://github.com/amannn/action-semantic-pull-request/compare/v4.5.0...v4.6.0">4.6.0</a>
(2022-09-26)</h2>
<h3>Features</h3>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="fdd4d3ddf6"><code>fdd4d3d</code></a>
chore: Release 6.0.1 [skip ci]</li>
<li><a
href="58e4ab40f5"><code>58e4ab4</code></a>
fix: Actually execute action (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/289">#289</a>)</li>
<li><a
href="04a8d177d9"><code>04a8d17</code></a>
chore: Release 6.0.0 [skip ci]</li>
<li><a
href="bc0c9a79ab"><code>bc0c9a7</code></a>
feat!: Upgrade action to use Node.js 24 and ESM (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/287">#287</a>)</li>
<li><a
href="631ffdc028"><code>631ffdc</code></a>
build(deps): bump the github-action-workflows group with 2 updates (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/286">#286</a>)</li>
<li><a
href="c1807ceb58"><code>c1807ce</code></a>
build: configure Dependabot (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/231">#231</a>)</li>
<li><a
href="3352882559"><code>3352882</code></a>
docs: Remove <code>synchronize</code> trigger (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/281">#281</a>)</li>
<li><a
href="04501d43b5"><code>04501d4</code></a>
docs: More restrictive permissions (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/280">#280</a>)</li>
<li><a
href="40166f0081"><code>40166f0</code></a>
chore: Update actions in release workflow (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/276">#276</a>)</li>
<li><a
href="80c0371c57"><code>80c0371</code></a>
docs: Mention <code>reopened</code> trigger in README (<a
href="https://redirect.github.com/amannn/action-semantic-pull-request/issues/272">#272</a>
by <a
href="https://github.com/garysassano"><code>@​garysassano</code></a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/amannn/action-semantic-pull-request/compare/v5...v6">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=amannn/action-semantic-pull-request&package-manager=github_actions&previous-version=5&new-version=6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:16:19 -04:00
dependabot[bot]
d8d93882f9 chore(infra): bump actions/checkout from 4 to 5 (#32584)
Bumps [actions/checkout](https://github.com/actions/checkout) from 4 to
5.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/actions/checkout/releases">actions/checkout's
releases</a>.</em></p>
<blockquote>
<h2>v5.0.0</h2>
<h2>What's Changed</h2>
<ul>
<li>Update actions checkout to use node 24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2226">actions/checkout#2226</a></li>
<li>Prepare v5.0.0 release by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2238">actions/checkout#2238</a></li>
</ul>
<h2>⚠️ Minimum Compatible Runner Version</h2>
<p><strong>v2.327.1</strong><br />
<a
href="https://github.com/actions/runner/releases/tag/v2.327.1">Release
Notes</a></p>
<p>Make sure your runner is updated to this version or newer to use this
release.</p>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4...v5.0.0">https://github.com/actions/checkout/compare/v4...v5.0.0</a></p>
<h2>v4.3.0</h2>
<h2>What's Changed</h2>
<ul>
<li>docs: update README.md by <a
href="https://github.com/motss"><code>@​motss</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1971">actions/checkout#1971</a></li>
<li>Add internal repos for checking out multiple repositories by <a
href="https://github.com/mouismail"><code>@​mouismail</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1977">actions/checkout#1977</a></li>
<li>Documentation update - add recommended permissions to Readme by <a
href="https://github.com/benwells"><code>@​benwells</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2043">actions/checkout#2043</a></li>
<li>Adjust positioning of user email note and permissions heading by <a
href="https://github.com/joshmgross"><code>@​joshmgross</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2044">actions/checkout#2044</a></li>
<li>Update README.md by <a
href="https://github.com/nebuk89"><code>@​nebuk89</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2194">actions/checkout#2194</a></li>
<li>Update CODEOWNERS for actions by <a
href="https://github.com/TingluoHuang"><code>@​TingluoHuang</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/2224">actions/checkout#2224</a></li>
<li>Update package dependencies by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2236">actions/checkout#2236</a></li>
<li>Prepare release v4.3.0 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2237">actions/checkout#2237</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/motss"><code>@​motss</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/1971">actions/checkout#1971</a></li>
<li><a href="https://github.com/mouismail"><code>@​mouismail</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/1977">actions/checkout#1977</a></li>
<li><a href="https://github.com/benwells"><code>@​benwells</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/2043">actions/checkout#2043</a></li>
<li><a href="https://github.com/nebuk89"><code>@​nebuk89</code></a> made
their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/2194">actions/checkout#2194</a></li>
<li><a href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/2236">actions/checkout#2236</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4...v4.3.0">https://github.com/actions/checkout/compare/v4...v4.3.0</a></p>
<h2>v4.2.2</h2>
<h2>What's Changed</h2>
<ul>
<li><code>url-helper.ts</code> now leverages well-known environment
variables by <a href="https://github.com/jww3"><code>@​jww3</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/1941">actions/checkout#1941</a></li>
<li>Expand unit test coverage for <code>isGhes</code> by <a
href="https://github.com/jww3"><code>@​jww3</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1946">actions/checkout#1946</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4.2.1...v4.2.2">https://github.com/actions/checkout/compare/v4.2.1...v4.2.2</a></p>
<h2>v4.2.1</h2>
<h2>What's Changed</h2>
<ul>
<li>Check out other refs/* by commit if provided, fall back to ref by <a
href="https://github.com/orhantoy"><code>@​orhantoy</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1924">actions/checkout#1924</a></li>
</ul>
<h2>New Contributors</h2>
<ul>
<li><a href="https://github.com/Jcambass"><code>@​Jcambass</code></a>
made their first contribution in <a
href="https://redirect.github.com/actions/checkout/pull/1919">actions/checkout#1919</a></li>
</ul>
<p><strong>Full Changelog</strong>: <a
href="https://github.com/actions/checkout/compare/v4.2.0...v4.2.1">https://github.com/actions/checkout/compare/v4.2.0...v4.2.1</a></p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/actions/checkout/blob/main/CHANGELOG.md">actions/checkout's
changelog</a>.</em></p>
<blockquote>
<h1>Changelog</h1>
<h2>V5.0.0</h2>
<ul>
<li>Update actions checkout to use node 24 by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2226">actions/checkout#2226</a></li>
</ul>
<h2>V4.3.0</h2>
<ul>
<li>docs: update README.md by <a
href="https://github.com/motss"><code>@​motss</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1971">actions/checkout#1971</a></li>
<li>Add internal repos for checking out multiple repositories by <a
href="https://github.com/mouismail"><code>@​mouismail</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1977">actions/checkout#1977</a></li>
<li>Documentation update - add recommended permissions to Readme by <a
href="https://github.com/benwells"><code>@​benwells</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2043">actions/checkout#2043</a></li>
<li>Adjust positioning of user email note and permissions heading by <a
href="https://github.com/joshmgross"><code>@​joshmgross</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2044">actions/checkout#2044</a></li>
<li>Update README.md by <a
href="https://github.com/nebuk89"><code>@​nebuk89</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2194">actions/checkout#2194</a></li>
<li>Update CODEOWNERS for actions by <a
href="https://github.com/TingluoHuang"><code>@​TingluoHuang</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/2224">actions/checkout#2224</a></li>
<li>Update package dependencies by <a
href="https://github.com/salmanmkc"><code>@​salmanmkc</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/2236">actions/checkout#2236</a></li>
</ul>
<h2>v4.2.2</h2>
<ul>
<li><code>url-helper.ts</code> now leverages well-known environment
variables by <a href="https://github.com/jww3"><code>@​jww3</code></a>
in <a
href="https://redirect.github.com/actions/checkout/pull/1941">actions/checkout#1941</a></li>
<li>Expand unit test coverage for <code>isGhes</code> by <a
href="https://github.com/jww3"><code>@​jww3</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1946">actions/checkout#1946</a></li>
</ul>
<h2>v4.2.1</h2>
<ul>
<li>Check out other refs/* by commit if provided, fall back to ref by <a
href="https://github.com/orhantoy"><code>@​orhantoy</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1924">actions/checkout#1924</a></li>
</ul>
<h2>v4.2.0</h2>
<ul>
<li>Add Ref and Commit outputs by <a
href="https://github.com/lucacome"><code>@​lucacome</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1180">actions/checkout#1180</a></li>
<li>Dependency updates by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a>- <a
href="https://redirect.github.com/actions/checkout/pull/1777">actions/checkout#1777</a>,
<a
href="https://redirect.github.com/actions/checkout/pull/1872">actions/checkout#1872</a></li>
</ul>
<h2>v4.1.7</h2>
<ul>
<li>Bump the minor-npm-dependencies group across 1 directory with 4
updates by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1739">actions/checkout#1739</a></li>
<li>Bump actions/checkout from 3 to 4 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1697">actions/checkout#1697</a></li>
<li>Check out other refs/* by commit by <a
href="https://github.com/orhantoy"><code>@​orhantoy</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1774">actions/checkout#1774</a></li>
<li>Pin actions/checkout's own workflows to a known, good, stable
version. by <a href="https://github.com/jww3"><code>@​jww3</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1776">actions/checkout#1776</a></li>
</ul>
<h2>v4.1.6</h2>
<ul>
<li>Check platform to set archive extension appropriately by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1732">actions/checkout#1732</a></li>
</ul>
<h2>v4.1.5</h2>
<ul>
<li>Update NPM dependencies by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1703">actions/checkout#1703</a></li>
<li>Bump github/codeql-action from 2 to 3 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1694">actions/checkout#1694</a></li>
<li>Bump actions/setup-node from 1 to 4 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1696">actions/checkout#1696</a></li>
<li>Bump actions/upload-artifact from 2 to 4 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1695">actions/checkout#1695</a></li>
<li>README: Suggest <code>user.email</code> to be
<code>41898282+github-actions[bot]@users.noreply.github.com</code> by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1707">actions/checkout#1707</a></li>
</ul>
<h2>v4.1.4</h2>
<ul>
<li>Disable <code>extensions.worktreeConfig</code> when disabling
<code>sparse-checkout</code> by <a
href="https://github.com/jww3"><code>@​jww3</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1692">actions/checkout#1692</a></li>
<li>Add dependabot config by <a
href="https://github.com/cory-miller"><code>@​cory-miller</code></a> in
<a
href="https://redirect.github.com/actions/checkout/pull/1688">actions/checkout#1688</a></li>
<li>Bump the minor-actions-dependencies group with 2 updates by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1693">actions/checkout#1693</a></li>
<li>Bump word-wrap from 1.2.3 to 1.2.5 by <a
href="https://github.com/dependabot"><code>@​dependabot</code></a> in <a
href="https://redirect.github.com/actions/checkout/pull/1643">actions/checkout#1643</a></li>
</ul>
<h2>v4.1.3</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="08c6903cd8"><code>08c6903</code></a>
Prepare v5.0.0 release (<a
href="https://redirect.github.com/actions/checkout/issues/2238">#2238</a>)</li>
<li><a
href="9f265659d3"><code>9f26565</code></a>
Update actions checkout to use node 24 (<a
href="https://redirect.github.com/actions/checkout/issues/2226">#2226</a>)</li>
<li>See full diff in <a
href="https://github.com/actions/checkout/compare/v4...v5">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/checkout&package-manager=github_actions&previous-version=4&new-version=5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-08 10:14:09 -04:00
Sadiq Khan
228fbac3a6 fix(openai): handle AIMessages without response_id in _get_last_messages (#32824) 2025-09-08 10:12:50 -04:00
JunHyungKang
6ea06ca972 fix(openai): Fix Azure OpenAI Responses API model field issue (#32649) 2025-09-08 10:08:35 -04:00
ccurme
5b0a55ad35 chore(openai): apply formatting changes to AzureChatOpenAI (#32848) 2025-09-08 09:54:20 -04:00
Sydney Runkle
6e2f46d04c feat(langchain): middleware support in create_agent (#32828)
## Overview

Adding new `AgentMiddleware` primitive that supports `before_model`,
`after_model`, and `prepare_model_request` hooks.

This is very exciting! It makes our `create_agent` prebuilt much more
extensible + capable. Still in alpha and subject to change.

This is different than the initial
[implementation](https://github.com/langchain-ai/langgraph/tree/nc/25aug/agent)
in that it:
* Fills in gaps w/ missing features, for ex -- new structured output,
optionality of tools + system prompt, sync and async model requests,
provider builtin tools
* Exposes private state extensions for middleware, enabling things like
model call tracking, etc
* Middleware can register tools
* Uses a `TypedDict` for `AgentState` -- dataclass subclassing is tricky
w/ required values + required decorators
* Addition of `model_settings` to `ModelRequest` so that we can pass
through things to bind (like cache kwargs for anthropic middleware)

## TODOs

### top prio
- [x] add middleware support to existing agent
- [x] top prio middlewares
  - [x] summarization node
  - [x] HITL
  - [x] prompt caching
 
other ones
- [x] model call limits
- [x] tool calling limits
- [ ] usage (requires output state)

### secondary prio
- [x] improve typing for state updates from middleware (not working
right now w/ simple `AgentUpdate` and `AgentJump`, at least in Python)
- [ ] add support for public state (input / output modifications via
pregel channel mods) -- to be tackled in another PR
- [x] testing!

### docs
See https://github.com/langchain-ai/docs/pull/390
- [x] high level docs about middleware
- [x] summarization node
- [x] HITL
- [x] prompt caching

## open questions

Lots of open questions right now, many of them inlined as comments for
the short term, will catalog some more significant ones here.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2025-09-08 01:10:57 +00:00
Christophe Bornet
5bf0b218c8 chore(cli): fix some ruff preview rules (#32803) 2025-09-07 16:53:19 -04:00
Mason Daugherty
4e39c164bb fix(anthropic): remove beta header warning for TTL (#32832)
No longer beta as of Aug 13
2025-09-05 14:28:58 -04:00
ScarletMercy
0b3af47335 fix(docs): resolve malformed character in tool_calling.ipynb (#32825)
**Description:**  
Remove a character in tool_calling.ipynb that causes a grammatical error
Verification: Local docs build passed after fix 
 
**Issue:**  
None (direct hotfix for rendering issue identified during documentation
review)
 
**Dependencies:**  
None
2025-09-05 11:28:56 -04:00
Mason Daugherty
bc91a4811c chore: update PR template (#32819) 2025-09-04 19:53:54 +00:00
Christophe Bornet
05a61f9508 fix(langchain): fix mypy versions in langchain_v1 (#32816) 2025-09-04 11:51:08 -04:00
Christophe Bornet
aa63de9366 chore(langchain): cleanup langchain_v1 mypy config (#32809)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-03 19:28:06 +00:00
Christophe Bornet
86fa34f3eb chore(langchain): add ruff rules D for langchain_v1 (#32808) 2025-09-03 15:26:17 -04:00
JING
36037c9251 fix(docs): update Anthropic model name and add version warnings (#32807)
**Description:** This PR fixes the broken Anthropic model example in the
documentation introduction page and adds a comment field to display
model version warnings in code blocks. The changes ensure that users can
successfully run the example code and are reminded to check for the
latest model versions.

**Issue:** https://github.com/langchain-ai/langchain/issues/32806

**Changes made:**
- Update Anthropic model from broken "claude-3-5-sonnet-latest" to
working "claude-3-7-sonnet-20250219"
- Add comment field to display model version warnings in code blocks
- Improve user experience by providing working examples and version
guidance

**Dependencies:** None required
2025-09-03 15:25:13 -04:00
Martin Meier-Zavodsky
ad26c892ea docs(langchain): update evaluation tutorial link (#32796)
**Description**
This PR updates the evaluation tutorial link for LangSmith to the new
official docs location.

**Issue**
N/A

**Dependencies**
None
2025-09-03 15:22:46 -04:00
Shahroz Ahmad
4828a85ab0 feat(core): add web_search in OpenAI tools list (#32738) 2025-09-02 21:57:25 +00:00
ccurme
b999f356e8 fix(langchain): update __init__ version (#32793) 2025-09-02 13:14:42 -04:00
Sydney Runkle
062196a7b3 release(langchain): v1.0.0a3 (#32791) 2025-09-02 12:29:14 -04:00
Sydney Runkle
dc9f941326 chore(langchain): rename create_react_agent -> create_agent (#32789) 2025-09-02 12:13:12 -04:00
Adithya1617
238ecd09e0 docs(langchain): update redirect url of "this langsmith conceptual guide" in tracing.mdx (#32776)
…ge (issue : #32775)

- **Description: updated the redirect url of "this langsmith conceptual
guide" in tracing.mdx
  - **Issue:** fixes #32775

---------

Co-authored-by: Adithya <adithya.vardhan1617@gmail.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-01 19:02:21 +00:00
Mason Daugherty
6b5fdfb804 release(text-splitters): 0.3.11 (#32770)
Fixes #32747

SpaCy integration test fixture was trying to use pip to download the
SpaCy language model (`en_core_web_sm`), but uv-managed environments
don't include pip by default. Fail test if not installed as opposed to
downloading.
2025-08-31 23:00:05 +00:00
Ravirajsingh Sodha
b42dac5fe6 docs: standardize OllamaLLM and BaseOpenAI docstrings (#32758)
- Add comprehensive docstring following LangChain standards
- Include Setup, Key init args, Instantiate, Invoke, Stream, and Async
sections
- Provide detailed parameter descriptions and code examples
- Fix linting issues for code formatting compliance

Contributes to #24803

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-31 17:45:56 -05:00
Christophe Bornet
e0a4af8d8b docs(text-splitters): fix some docstrings (#32767) 2025-08-31 13:46:11 -05:00
Rémy HUBSCHER
fcf7175392 chore(langchain): improve PostgreSQL Manager upsert SQLAlchemy API calls. (#32748)
- Make explicit the `constraint` parameter name to avoid mixing it with
`index_elements`
[[Documentation](https://docs.sqlalchemy.org/en/20/dialects/postgresql.html#sqlalchemy.dialects.postgresql.Insert.on_conflict_do_update)]
- ~Fallback on the existing `group_id` row value, to avoid setting it to
`None`.~
2025-08-30 14:13:24 -05:00
Kush Goswami
1f2ab17dff docs: fix typo and grammer in Conceptual guide (#32754)
fixed small typo and grammatical inconsistency in Conceptual guide
2025-08-30 13:48:55 -05:00
Mason Daugherty
2dc89a2ae7 release(cli): 0.0.37 (#32760)
It's been a minute. Final release prior to dropping Python 3.9 support.
2025-08-30 13:07:55 -05:00
Christophe Bornet
e3c4aeaea1 chore(cli): add mypy strict checking (#32386)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-30 13:02:45 -05:00
Vikas Shivpuriya
444939945a docs: fix punctuation in style guide (#32756)
Removed a period in bulleted list for consistency

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-30 12:56:17 -05:00
Vikas Shivpuriya
ae8db86486 docs: fixed typo in contributing guide (#32755)
Completed the sentence by adding a period ".", in sync with other points

>> Click "Propose changes"

to 

>> Click "Propose changes".

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
  - Examples:
    - feat(core): add multi-tenant support
    - fix(cli): resolve flag parsing error
    - docs(openai): update API usage examples
  - Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore,
revert, release
  - Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma,
deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama,
openai, perplexity, prompty, qdrant, xai
  - Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- Once you've written the title, please delete this checklist item; do
not include it in the PR.

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change. Include a [closing
keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword)
if applicable to a relevant issue.
  - **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
  - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

- [ ] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-30 12:55:25 -05:00
Christophe Bornet
8a1419dad1 chore(cli): add ruff rules ANN401 and D1 (#32576) 2025-08-30 12:41:16 -05:00
Kush Goswami
840e4c8e9f docs: fix grammar and typo in Documentation style guide (#32741)
fixed grammer and one typo in the Documentation style guide
2025-08-29 14:22:54 -04:00
Caspar Broekhuizen
37aff0a153 chore: bump langchain-core minimum to 0.3.75 (#32753)
Update `langchain-core` dependency min from `>=0.3.63` to `>=0.3.75`.

### Motivation
- We located the `langchain-core` package locally in the monorepo and
need to align `langchain-tests` with the new minimum version.
2025-08-29 14:11:28 -04:00
Caspar Broekhuizen
a163d59988 chore(standard-tests): relax langchain-core bounds for langchain-tests 1.0.0a1 (#32752)
### Overview
Preparing the `1.0.0a1` release of `langchain-tests` to align with
`langchain-core` version `1.0.0a1`.

### Changes
- Bump package version to `1.0.0a1`
- Relax `langchain-core` requirement from `<1.0.0,>=0.3.63` to
`<2.0.0,>=0.3.63`

### Motivation
All main LangChain packages are now publishing `1.0.0a` prereleases.  
`langchain-tests` needs a matching prerelease so downstreams can install
tests alongside the 1.0 series without conflicts.

### Tests
- Verified installation and tests against both `0.3.75` and `1.0.0a1`.
2025-08-29 13:46:48 -04:00
Sydney Runkle
b26e52aa4d chore(text-splitters): bump version of core (#32740) 2025-08-28 13:14:57 -04:00
Sydney Runkle
38cdd7a2ec chore(text-splitters): relax max bound for langchain-core (#32739) 2025-08-28 13:05:47 -04:00
Sydney Runkle
26e5d1302b chore(langchain): remove upper bound at v1 for core (#32737) 2025-08-28 12:14:42 -04:00
Christopher Jones
107425c68d docs: fix basic Oracle example issues such as capitalization (#32730)
**Description:** fix capitalization and basic issues in
https://python.langchain.com/docs/integrations/document_loaders/oracleadb_loader/

Signed-off-by: Christopher Jones <christopher.jones@oracle.com>
2025-08-28 10:32:45 -04:00
Tik1993
009cc3bf50 docs(docs): added content= keyword when creating SystemMessage and HumanMessage (#32734)
Description: 
Added the content= keyword when creating SystemMessage and HumanMessage
in the messages list, making it consistent with the API reference.
2025-08-28 10:31:46 -04:00
NOOR UL HUDA
6185558449 docs: replace smart quotes with straight quotes on How-to guides landing page (#32725)
### Summary

This PR updates the sentence on the "How-to guides" landing page to
replace smart (curly) quotes with straight quotes in the phrase:

> "How do I...?"

### Why This Change?

- Ensures formatting consistency across documentation
- Avoids encoding or rendering issues with smart quotes
- Matches standard Markdown and inline code formatting

This is a small change, but improves clarity and polish on a key landing
page.
2025-08-28 10:30:12 -04:00
Kush Goswami
0928ff5b12 docs: fix typo in LangGraph section of Introduction (#32728)
Change "Linkedin" to "LinkedIn" to be consistent with LinkedIn's
spelling.

Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **Add tests and docs**: If you're adding a new integration, you
must include:
1. A test for the integration, preferably unit tests that do not rely on
network access,
2. An example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
2025-08-28 10:29:35 -04:00
Sydney Runkle
7f9b0772fc chore(langchain): also bump text splitters (#32722) 2025-08-27 18:09:57 +00:00
Sydney Runkle
d6e618258f chore(langchain): use latest core (#32720) 2025-08-27 14:06:07 -04:00
Sydney Runkle
806bc593ab chore(langchain): revert back to static versioning for now (#32719) 2025-08-27 13:54:41 -04:00
Sydney Runkle
047bcbaa13 release(langchain): v1.0.0a1 (#32718)
Also removing globals usage + static version
2025-08-27 13:46:20 -04:00
Sydney Runkle
18db07c292 feat(langchain): revamped create_react_agent (#32705)
Adding `create_react_agent` and introducing `langchain.agents`!

## Enhanced Structured Output

`create_react_agent` supports coercion of outputs to structured data
types like `pydantic` models, dataclasses, typed dicts, or JSON schemas
specifications.

### Structural Changes

In langgraph < 1.0, `create_react_agent` implemented support for
structured output via an additional LLM call to the model after the
standard model / tool calling loop finished. This introduced extra
expense and was unnecessary.

This new version implements structured output support in the main loop,
allowing a model to choose between calling tools or generating
structured output (or both).

The same basic pattern for structured output generation works:

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent("openai:gpt-4o-mini", tools=[weather_tool], response_format=Weather)
print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

### Advanced Configuration

The new API exposes two ways to configure how structured output is
generated. Under the hood, LangChain will attempt to pick the best
approach if not explicitly specified. That is, if provider native
support is available for a given model, that takes priority over
artificial tool calling.

1. Artificial tool calling (the default for most models)

LangChain generates a tool (or tools) under the hood that match the
schema of your response format. When the model calls those tools,
LangChain coerces the args to the desired format. Note, LangChain does
not validate outputs adhering to JSON schema specifications.

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ToolStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather, tool_message_content="Final Weather result generated"
    ),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_Gg933BMHMwck50Q39dtBjXm7)
 Call ID: call_Gg933BMHMwck50Q39dtBjXm7
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================
Tool Calls:
  Weather (call_9xOkYUM7PuEXl9DQq9sWGv5l)
 Call ID: call_9xOkYUM7PuEXl9DQq9sWGv5l
  Args:
    temperature: 70
    condition: sunny
================================= Tool Message =================================
Name: Weather

Final Weather result generated
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

</details>

2. Provider implementations (limited to OpenAI, Groq)

Some providers support structured output generating directly. For those
cases, we offer the `ProviderStrategy` hint:

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ProviderStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ProviderStrategy(Weather),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_OFJq1FngIXS6cvjWv5nfSFZp)
 Call ID: call_OFJq1FngIXS6cvjWv5nfSFZp
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================

{"temperature":70,"condition":"sunny"}
Weather(temperature=70.0, condition='sunny')
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

Note! The final tool message has the custom content provided by the dev.

</details>

Prompted output was previously supported and is no longer supported via
the `response_format` argument to `create_react_agent`. If there's
significant demand for this, we'd be happy to engineer a solution.

## Error Handling

`create_react_agent` now exposes an API for managing errors associated
with structured output generation. There are two common problems with
structured output generation (w/ artificial tool calling):

1. **Parsing error** -- the model generates data that doesn't match the
desired structure for the output
2. **Multiple tool calls error** -- the model generates 2 or more tool
calls associated with structured output schemas

A developer can control the desired behavior for this via the
`handle_errors` arg to `ToolStrategy`.

<details>
<summary>Extended example</summary>

```py
from langchain_core.messages import HumanMessage
from pydantic import BaseModel

from langchain.agents import create_react_agent
from langchain.agents.structured_output import StructuredOutputValidationError, ToolStrategy


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""
    return f"it's sunny and 70 degrees in {city}"


def handle_validation_error(error: Exception) -> str:
    if isinstance(error, StructuredOutputValidationError):
        return (
            f"Please call the {error.tool_name} call again with the correct arguments. "
            f"Your mistake was: {error.source}"
        )
    raise error


agent = create_react_agent(
    "openai:gpt-5",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather,
        handle_errors=handle_validation_error,
    ),
)
```

</details>

## Error Handling for Tool Calling

Tools fail for two main reasons:

1. **Invocation failure** -- the args generated by the model for the
tool are incorrect (missing, incompatible data types, etc)
2. **Execution failure** -- the tool execution itself fails due to a
developer error, network error, or some other exception.

By default, when tool **invocation** fails, the react agent will return
an artificial `ToolMessage` to the model asking it to correct its
mistakes and retry.

Now, when tool **execution** fails, the react agent raises the
`ToolException` by default instead of asking the model to retry. This
helps to avoid looping that should be avoided due to the aforementioned
issues.

Developers can configure their desired behavior for retries / error
handling via the `handle_tool_errors` arg to `ToolNode`.

## Pre-Bound Models

`create_react_agent` no longer supports inputs to `model` that have been
pre-bound w/ tools or other configuration. To properly support
structured output generation, the agent itself needs the power to bind
tools + structured output kwargs.

This also makes the devx cleaner - it's always expected that `model` is
an instance of `BaseChatModel` (or `str` that we coerce into a chat
model instance).

Dynamic model functions can return a pre-bound model **IF** structured
output is not also used. Dynamic model functions can then bind tools /
structured output logic.

## Import Changes

Users should now use `create_react_agent` from `langchain.agents`
instead of `langgraph.prebuilts`.
Other imports have a similar migration path, `ToolNode` and `AgentState`
for example.

* `chat_agent_executor.py` -> `react_agent.py`

Some notes:
1. Disabled blockbuster + some linting in `langchain/agents` -- beyond
ideal, but necessary to get this across the line for the alpha. We
should re-enable before official release.
2025-08-27 17:32:21 +00:00
Sydney Runkle
1fe2c4084b chore(langchain): remove untested chains for first alpha (#32710)
Also removing globals.py file
2025-08-27 08:24:43 -04:00
Sydney Runkle
c6c7fce6c9 chore(langchain): drop Python 3.9 to prep for v1 (#32704)
Python 3.9 EOL is October 2025, so we're going to drop it for the v1
alpha release.
2025-08-26 23:16:42 +00:00
Mason Daugherty
3d08b6bd11 chore: adress pytest-asyncio deprecation warnings + other nits (#32696)
amongst some linting imcompatible rules
2025-08-26 15:51:38 -04:00
Matthew Farrellee
f2dcdae467 fix(standard-tests): update function_args to match my_adder_tool param types (#32689)
**Description:**

https://api.llama.com implements strong type checking, which results in
a false negative.

with type mismatch (expected integer, received string) -

```
$ curl -X POST "https://api.llama.com/compat/v1/chat/completions" \
  -H "Authorization: Bearer API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
 "model": "Llama-3.3-70B-Instruct",
 "messages": [
     {"role": "user", "content": "What is 1 + 2"},
     {"role": "assistant", "content": "", "tool_calls": [{"id": "abc123", "type": "function", "function": {"name": "my_adder_tool", "arguments": "{\"a\": \"1\", \"b\": \"2\"}"}}]},
     {"role": "tool", "tool_call_id": "abc123", "content": "{\"result\": 3}"}
 ],
 "tools": [{"type": "function", "function": {"name": "my_adder_tool", "description": "Sum two integers", "parameters": {"properties": {"a": {"type": "integer"}, "b": {"type": "integer"}}, "required": ["a", "b"], "type": "object"}}}]
}'

{"title":"Bad request","detail":"Unexpected param value `a`: \"1\"","status":400}
```

with correct type -

```
$ curl -X POST "https://api.llama.com/compat/v1/chat/completions" \
  -H "Authorization: Bearer API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
 "model": "Llama-3.3-70B-Instruct",
 "messages": [
     {"role": "user", "content": "What is 1 + 2"},
     {"role": "assistant", "content": "", "tool_calls": [{"id": "abc123", "type": "function", "function": {"name": "my_adder_tool", "arguments": "{\"a\": 1, \"b\": 2}"}}]},
     {"role": "tool", "tool_call_id": "abc123", "content": "{\"result\": 3}"}
 ],
 "tools": [{"type": "function", "function": {"name": "my_adder_tool", "description": "Sum two integers", "parameters": {"properties": {"a": {"type": "integer"}, "b": {"type": "integer"}}, "required": ["a", "b"], "type": "object"}}}]
}'

{"id":"AhMwBbuaa5payFr_xsOHzxX","model":"Llama-3.3-70B-Instruct","choices":[{"finish_reason":"stop","index":0,"message":{"refusal":"","role":"assistant","content":"The result of 1 + 2 is 3.","id":"AhMwBbuaa5payFr_xsOHzxX"},"logprobs":null}],"created":1756167668,"object":"chat.completions","usage":{"prompt_tokens":248,"completion_tokens":17,"total_tokens":265}}
```
2025-08-26 15:50:47 -04:00
ccurme
dbebe2ca97 release(core): 0.3.75 (#32693) 2025-08-26 11:12:03 -04:00
ccurme
008043977d release(openai): 0.3.32 (#32691) 2025-08-26 14:05:40 +00:00
Jacob Lee
1459d4f4ce fix(openai): Always add raw response object to OpenAI client errors for invoke (#32655) 2025-08-26 09:59:25 -04:00
ccurme
f33480c2cf feat(core): trace response body on error (#32653) 2025-08-25 14:28:19 -04:00
Mason Daugherty
1c55536ec1 chore(core): add note about backward compatibility for tool_calls in additional_kwargs in JsonOutputKeyToolsParser 2025-08-25 10:30:41 -04:00
Maitrey Talware
622337a297 docs(docs): fixed typos in documentations (#32661)
Minor typo fixes. (Not linked to current open issues)
2025-08-25 10:02:53 -04:00
Shahroz Ahmad
1819c73d10 docs(docs): update Docker to ClickHouse 25.7 with vector_similarity support (#32659)
- **Description:** Updated Docker command to use ClickHouse 25.7 (has
`vector_similarity` index support). Added `CLICKHOUSE_SKIP_USER_SETUP=1`
env param to [bypass default user
setup](https://clickhouse.com/docs/install/docker#managing-default-user)
and allow external network access. There was also a bug where if you try
to access results using `similarity_search_with_relevance_scores`, they
need to unpacked first.

- **Issue:** Fixes #32094 if someone following tutorial with default
Clickhouse configurations.
2025-08-25 09:59:28 -04:00
Kim
8171403b4a docs(docs): rebranding of Azure AI Studio to Azure AI Foundry (#32658)
# Description
Updated documentation to reflect Microsoft’s rebranding of Azure AI
Studio to Azure AI Foundry. This ensures consistency with current Azure
terminology across the docs.

# Issue
N/A

# Dependencies
None
2025-08-25 09:58:31 -04:00
Mason Daugherty
2d0713c2fc fix(infra): ollama CI 2025-08-22 16:40:03 -04:00
Mason Daugherty
8060b371bb fix(infra): ollama CI 2025-08-22 16:37:05 -04:00
Mason Daugherty
7851f66503 release(ollama): 0.3.7 (#32651) 2025-08-22 15:18:40 -04:00
Mason Daugherty
af3b88f58d feat(ollama): update reasoning type to support string values for custom intensity levels (e.g. gpt-oss) (#32650) 2025-08-22 15:11:32 -04:00
itaismith
1eb45d17fb feat(chroma): Add support for collection forking (#32627) 2025-08-21 17:57:55 -04:00
ccurme
8545d4731e release(openai): 0.3.31 (#32646) 2025-08-21 16:50:27 -04:00
Alex Naidis
21f7a9a9e5 fix(openai): allow temperature parameter for gpt-5-chat models (#32624) 2025-08-21 16:40:10 -04:00
sa411022
61bc1bf9cc fix(openai): construct responses api input (#32557) 2025-08-21 15:56:29 -04:00
Shahrukh Shaik
4ba222148d fix(openai): Chat Message Annotations defaults to [ ] if not list or None (#32614) 2025-08-21 15:30:12 -04:00
Christophe Bornet
b825f85bf2 fix(standard-tests): fix BaseStoreAsyncTests.test_set_values_is_idempotent (#32638)
The async version of the test should use the `ayield_keys` method
instead of `yield_keys`.
Otherwise tools such as `blockbuster` may trigger on a blocking call.
2025-08-21 10:07:46 -04:00
Mohammed Mohtasim .M.S
b5c44406eb docs(docs): fix typos in table in "How to load PDFs" documentation (#32635)
**Description:**
Fixed corrupted text in the code cell output of the documentation
notebook. The code cell itself was correct, but the saved output
contained garbage text.

**Issue:**
The saved output in the documentation notebook contained garbage/typo
text in the table name.

**Dependencies:**
None
2025-08-21 10:06:45 -04:00
Emmanuel Leroy
2ec63ca7da docs: migration to langchain_oci (#32619)
Doc update. I missed a couple mentions of the old package.
2025-08-21 10:03:44 -04:00
5371 changed files with 172728 additions and 617506 deletions

2
.github/CODEOWNERS vendored
View File

@@ -1,3 +1,3 @@
/.github/ @baskaryan @ccurme @eyurtsev
/libs/core/ @eyurtsev
/libs/packages.yml @ccurme
/libs/partners/ @ccurme @mdrxy

View File

@@ -3,8 +3,4 @@
Hi there! Thank you for even being interested in contributing to LangChain.
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
To learn how to contribute to LangChain, please follow the [contribution guide here](https://python.langchain.com/docs/contributing/).
## New features
For new features, please start a new [discussion on our forum](https://forum.langchain.com/), where the maintainers will help with scoping out the necessary changes.
To learn how to contribute to LangChain, please follow the [contribution guide here](https://docs.langchain.com/oss/python/contributing).

View File

@@ -1,31 +1,29 @@
name: "\U0001F41B Bug Report"
description: Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the LangChain forum.
labels: ["bug"]
type: bug
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to file a bug report.
Use this to report BUGS in LangChain. For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
For usage questions, feature requests and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
if there's another way to solve your problem:
Check these before submitting to see if your issue has already been reported, fixed or if there's another way to solve your problem:
* [LangChain Forum](https://forum.langchain.com/),
* [LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
* [LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
* [LangChain how-to guides](https://python.langchain.com/docs/how_to/),
* [API Reference](https://python.langchain.com/api_reference/),
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
* [API Reference Documentation](https://reference.langchain.com/python/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
* [LangChain Forum](https://forum.langchain.com/),
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: This is a bug, not a usage question. For questions, please use the LangChain Forum (https://forum.langchain.com/).
- label: This is a bug, not a usage question.
required: true
- label: I added a clear and descriptive title that summarizes this issue.
required: true
@@ -35,16 +33,50 @@ body:
required: true
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
required: true
- label: I read what a minimal reproducible example is (https://stackoverflow.com/help/minimal-reproducible-example).
- label: This is not related to the langchain-community package.
required: true
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
required: true
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Which `langchain` package(s) is this bug related to? Select at least one.
Note that if the package you are reporting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in [`langchain-ai/langchain-google`](https://github.com/langchain-ai/langchain-google/)).
Please report issues for other packages to their respective repositories.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Example Code
label: Example Code (Python)
description: |
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
@@ -52,15 +84,12 @@ body:
**Important!**
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Avoid screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
* Reduce your code to the minimum required to reproduce the issue if possible.
(This will be automatically formatted into code, so no need for backticks.)
render: python
placeholder: |
The following code:
```python
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
@@ -68,17 +97,14 @@ body:
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
```
- type: textarea
id: error
validations:
required: false
attributes:
label: Error Message and Stack Trace (if applicable)
description: |
If you are reporting an error, please include the full error message and stack trace.
placeholder: |
Exception + full stack trace
If you are reporting an error, please copy and paste the full error message and
stack trace.
(This will be automatically formatted into code, so no need for backticks.)
render: shell
- type: textarea
id: description
attributes:
@@ -98,9 +124,7 @@ body:
attributes:
label: System Info
description: |
Please share your system info with us. Do NOT skip this step and please don't trim
the output. Most users don't include enough information here and it makes it harder
for us to help you.
Please share your system info with us.
Run the following command in your terminal and paste the output here:
@@ -112,8 +136,6 @@ body:
from langchain_core import sys_info
sys_info.print_sys_info()
```
alternatively, put the entire output of `pip freeze` here.
placeholder: |
python -m langchain_core.sys_info
validations:

View File

@@ -1,6 +1,18 @@
blank_issues_enabled: false
version: 2.1
contact_links:
- name: LangChain Forum
- name: 📚 Documentation issue
url: https://github.com/langchain-ai/docs/issues/new?template=01-langchain.yml
about: Report an issue related to the LangChain documentation
- name: 💬 LangChain Forum
url: https://forum.langchain.com/
about: General community discussions and support
- name: 📚 LangChain Documentation
url: https://docs.langchain.com/oss/python/langchain/overview
about: View the official LangChain documentation
- name: 📚 API Reference Documentation
url: https://reference.langchain.com/python/
about: View the official LangChain API reference documentation
- name: 💬 LangChain Forum
url: https://forum.langchain.com/
about: General community discussions, support, and feature requests
about: Ask questions and get help from the community

View File

@@ -1,59 +0,0 @@
name: Documentation
description: Report an issue related to the LangChain documentation.
title: "docs: <Please write a comprehensive title after the 'docs: ' prefix>"
labels: [documentation]
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to report an issue in the documentation.
Only report issues with documentation here, explain if there are
any missing topics or if you found a mistake in the documentation.
Do **NOT** use this to ask usage questions or reporting issues with your code.
If you have usage questions or need help solving some problem,
please use the [LangChain Forum](https://forum.langchain.com/).
If you're in the wrong place, here are some helpful links to find a better
place to ask your question:
* [LangChain Forum](https://forum.langchain.com/),
* [LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
* [LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
* [LangChain how-to guides](https://python.langchain.com/docs/how_to/),
* [API Reference](https://python.langchain.com/api_reference/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
- type: input
id: url
attributes:
label: URL
description: URL to documentation
validations:
required: false
- type: checkboxes
id: checks
attributes:
label: Checklist
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this issue.
required: true
- label: I included a link to the documentation page I am referring to (if applicable).
required: true
- type: textarea
attributes:
label: "Issue with current documentation:"
description: >
Please make sure to leave a reference to the document/code you're
referring to. Feel free to include names of classes, functions, methods
or concepts you'd like to see documented more.
- type: textarea
attributes:
label: "Idea or request for content:"
description: >
Please describe as clearly as possible what topics you think are missing
from the current documentation.

View File

@@ -0,0 +1,152 @@
name: "✨ Feature Request"
description: Request a new feature or enhancement for LangChain. For questions, please use the LangChain forum.
labels: ["feature request"]
type: feature
body:
- type: markdown
attributes:
value: |
Thank you for taking the time to request a new feature.
Use this to request NEW FEATURES or ENHANCEMENTS in LangChain. For bug reports, please use the bug report template. For usage questions and general design questions, please use the [LangChain Forum](https://forum.langchain.com/).
Relevant links to check before filing a feature request to see if your request has already been made or
if there's another way to achieve what you want:
* [Documentation](https://docs.langchain.com/oss/python/langchain/overview),
* [API Reference Documentation](https://reference.langchain.com/python/),
* [LangChain ChatBot](https://chat.langchain.com/)
* [GitHub search](https://github.com/langchain-ai/langchain),
* [LangChain Forum](https://forum.langchain.com/),
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: This is a feature request, not a bug report or usage question.
required: true
- label: I added a clear and descriptive title that summarizes the feature request.
required: true
- label: I used the GitHub search to find a similar feature request and didn't find it.
required: true
- label: I checked the LangChain documentation and API reference to see if this feature already exists.
required: true
- label: This is not related to the langchain-community package.
required: true
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Which `langchain` package(s) is this request related to? Select at least one.
Note that if the package you are requesting for is not listed here, it is not in this repository (e.g. `langchain-google-genai` is in `langchain-ai/langchain`).
Please submit feature requests for other packages to their respective repositories.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general
- type: textarea
id: feature-description
validations:
required: true
attributes:
label: Feature Description
description: |
Please provide a clear and concise description of the feature you would like to see added to LangChain.
What specific functionality are you requesting? Be as detailed as possible.
placeholder: |
I would like LangChain to support...
This feature would allow users to...
- type: textarea
id: use-case
validations:
required: true
attributes:
label: Use Case
description: |
Describe the specific use case or problem this feature would solve.
Why do you need this feature? What problem does it solve for you or other users?
placeholder: |
I'm trying to build an application that...
Currently, I have to work around this by...
This feature would help me/users to...
- type: textarea
id: proposed-solution
validations:
required: false
attributes:
label: Proposed Solution
description: |
If you have ideas about how this feature could be implemented, please describe them here.
This is optional but can be helpful for maintainers to understand your vision.
placeholder: |
I think this could be implemented by...
The API could look like...
```python
# Example of how the feature might work
```
- type: textarea
id: alternatives
validations:
required: false
attributes:
label: Alternatives Considered
description: |
Have you considered any alternative solutions or workarounds?
What other approaches have you tried or considered?
placeholder: |
I've tried using...
Alternative approaches I considered:
1. ...
2. ...
But these don't work because...
- type: textarea
id: additional-context
validations:
required: false
attributes:
label: Additional Context
description: |
Add any other context, screenshots, examples, or references that would help explain your feature request.
placeholder: |
Related issues: #...
Similar features in other libraries:
- ...
Additional context or examples:
- ...

View File

@@ -4,12 +4,7 @@ body:
- type: markdown
attributes:
value: |
Thanks for your interest in LangChain! 🚀
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged pull requests.
If you are not a LangChain maintainer, employee, or were not asked directly by a maintainer to create an issue, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead.
- type: checkboxes
id: privileged
attributes:
@@ -23,3 +18,33 @@ body:
attributes:
label: Issue Content
description: Add the content of the issue here.
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Please select package(s) that this issue is related to.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general

121
.github/ISSUE_TEMPLATE/task.yml vendored Normal file
View File

@@ -0,0 +1,121 @@
name: "📋 Task"
description: Create a task for project management and tracking by LangChain maintainers. If you are not a maintainer, please use other templates or the forum.
labels: ["task"]
type: task
body:
- type: markdown
attributes:
value: |
Thanks for creating a task to help organize LangChain development.
This template is for **maintainer tasks** such as project management, development planning, refactoring, documentation updates, and other organizational work.
If you are not a LangChain maintainer or were not asked directly by a maintainer to create a task, then please start the conversation on the [LangChain Forum](https://forum.langchain.com/) instead or use the appropriate bug report or feature request templates on the previous page.
- type: checkboxes
id: maintainer
attributes:
label: Maintainer task
description: Confirm that you are allowed to create a task here.
options:
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create a task here.
required: true
- type: textarea
id: task-description
attributes:
label: Task Description
description: |
Provide a clear and detailed description of the task.
What needs to be done? Be specific about the scope and requirements.
placeholder: |
This task involves...
The goal is to...
Specific requirements:
- ...
- ...
validations:
required: true
- type: textarea
id: acceptance-criteria
attributes:
label: Acceptance Criteria
description: |
Define the criteria that must be met for this task to be considered complete.
What are the specific deliverables or outcomes expected?
placeholder: |
This task will be complete when:
- [ ] ...
- [ ] ...
- [ ] ...
validations:
required: true
- type: textarea
id: context
attributes:
label: Context and Background
description: |
Provide any relevant context, background information, or links to related issues/PRs.
Why is this task needed? What problem does it solve?
placeholder: |
Background:
- ...
Related issues/PRs:
- #...
Additional context:
- ...
validations:
required: false
- type: textarea
id: dependencies
attributes:
label: Dependencies
description: |
List any dependencies or blockers for this task.
Are there other tasks, issues, or external factors that need to be completed first?
placeholder: |
This task depends on:
- [ ] Issue #...
- [ ] PR #...
- [ ] External dependency: ...
Blocked by:
- ...
validations:
required: false
- type: checkboxes
id: package
attributes:
label: Package (Required)
description: |
Please select package(s) that this task is related to.
options:
- label: langchain
- label: langchain-openai
- label: langchain-anthropic
- label: langchain-classic
- label: langchain-core
- label: langchain-cli
- label: langchain-model-profiles
- label: langchain-tests
- label: langchain-text-splitters
- label: langchain-chroma
- label: langchain-deepseek
- label: langchain-exa
- label: langchain-fireworks
- label: langchain-groq
- label: langchain-huggingface
- label: langchain-mistralai
- label: langchain-nomic
- label: langchain-ollama
- label: langchain-perplexity
- label: langchain-prompty
- label: langchain-qdrant
- label: langchain-xai
- label: Other / not sure / general

View File

@@ -1,3 +1,5 @@
(Replace this entire block of text)
Thank you for contributing to LangChain! Follow these steps to mark your pull request as ready for review. **If any of these steps are not completed, your PR will not be considered for review.**
- [ ] **PR title**: Follows the format: {TYPE}({SCOPE}): {DESCRIPTION}
@@ -8,25 +10,19 @@ Thank you for contributing to LangChain! Follow these steps to mark your pull re
- Allowed `{TYPE}` values:
- feat, fix, docs, style, refactor, perf, test, build, ci, chore, revert, release
- Allowed `{SCOPE}` values (optional):
- core, cli, langchain, standard-tests, docs, anthropic, chroma, deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant, xai
- Note: the `{DESCRIPTION}` must not start with an uppercase letter.
- core, cli, langchain, standard-tests, text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant, xai, infra
- Once you've written the title, please delete this checklist item; do not include it in the PR.
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
- **Description:** a description of the change. Include a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) if applicable to a relevant issue.
- **Issue:** the issue # it fixes, if applicable (e.g. Fixes #123)
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, you must include:
1. A test for the integration, preferably unit tests that do not rely on network access,
2. An example notebook showing its use. It lives in `docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. **We will not consider a PR unless these three are passing in CI.** See [contribution guidelines](https://python.langchain.com/docs/contributing/) for more.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. **We will not consider a PR unless these three are passing in CI.** See [contribution guidelines](https://docs.langchain.com/oss/python/contributing) for more.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Please do not add dependencies to `pyproject.toml` files (even optional ones) unless they are **required** for unit tests. Likewise, please do not update the `uv.lock` files unless you are adding a required dependency.
- Changes should be backwards compatible.
- Make sure optional dependencies are imported within a function.

View File

@@ -1,7 +0,0 @@
FROM python:3.9
RUN pip install httpx PyGithub "pydantic==2.0.2" pydantic-settings "pyyaml>=5.3.1,<6.0.0"
COPY ./app /app
CMD ["python", "/app/main.py"]

View File

@@ -1,11 +0,0 @@
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/action.yml
name: "Generate LangChain People"
description: "Generate the data for the LangChain People page"
author: "Jacob Lee <jacob@langchain.dev>"
inputs:
token:
description: "User token, to read the GitHub API. Can be passed in using {{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}"
required: true
runs:
using: "docker"
image: "Dockerfile"

View File

@@ -1,646 +0,0 @@
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/app/main.py
import logging
import subprocess
import sys
from collections import Counter
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Container, Dict, List, Set, Union
import httpx
import yaml
from github import Github
from pydantic import BaseModel, SecretStr
from pydantic_settings import BaseSettings
github_graphql_url = "https://api.github.com/graphql"
questions_category_id = "DIC_kwDOIPDwls4CS6Ve"
# discussions_query = """
# query Q($after: String, $category_id: ID) {
# repository(name: "langchain", owner: "langchain-ai") {
# discussions(first: 100, after: $after, categoryId: $category_id) {
# edges {
# cursor
# node {
# number
# author {
# login
# avatarUrl
# url
# }
# title
# createdAt
# comments(first: 100) {
# nodes {
# createdAt
# author {
# login
# avatarUrl
# url
# }
# isAnswer
# replies(first: 10) {
# nodes {
# createdAt
# author {
# login
# avatarUrl
# url
# }
# }
# }
# }
# }
# }
# }
# }
# }
# }
# """
# issues_query = """
# query Q($after: String) {
# repository(name: "langchain", owner: "langchain-ai") {
# issues(first: 100, after: $after) {
# edges {
# cursor
# node {
# number
# author {
# login
# avatarUrl
# url
# }
# title
# createdAt
# state
# comments(first: 100) {
# nodes {
# createdAt
# author {
# login
# avatarUrl
# url
# }
# }
# }
# }
# }
# }
# }
# }
# """
prs_query = """
query Q($after: String) {
repository(name: "langchain", owner: "langchain-ai") {
pullRequests(first: 100, after: $after, states: MERGED) {
edges {
cursor
node {
changedFiles
additions
deletions
number
labels(first: 100) {
nodes {
name
}
}
author {
login
avatarUrl
url
... on User {
twitterUsername
}
}
title
createdAt
state
reviews(first:100) {
nodes {
author {
login
avatarUrl
url
... on User {
twitterUsername
}
}
state
}
}
}
}
}
}
}
"""
class Author(BaseModel):
login: str
avatarUrl: str
url: str
twitterUsername: Union[str, None] = None
# Issues and Discussions
class CommentsNode(BaseModel):
createdAt: datetime
author: Union[Author, None] = None
class Replies(BaseModel):
nodes: List[CommentsNode]
class DiscussionsCommentsNode(CommentsNode):
replies: Replies
class Comments(BaseModel):
nodes: List[CommentsNode]
class DiscussionsComments(BaseModel):
nodes: List[DiscussionsCommentsNode]
class IssuesNode(BaseModel):
number: int
author: Union[Author, None] = None
title: str
createdAt: datetime
state: str
comments: Comments
class DiscussionsNode(BaseModel):
number: int
author: Union[Author, None] = None
title: str
createdAt: datetime
comments: DiscussionsComments
class IssuesEdge(BaseModel):
cursor: str
node: IssuesNode
class DiscussionsEdge(BaseModel):
cursor: str
node: DiscussionsNode
class Issues(BaseModel):
edges: List[IssuesEdge]
class Discussions(BaseModel):
edges: List[DiscussionsEdge]
class IssuesRepository(BaseModel):
issues: Issues
class DiscussionsRepository(BaseModel):
discussions: Discussions
class IssuesResponseData(BaseModel):
repository: IssuesRepository
class DiscussionsResponseData(BaseModel):
repository: DiscussionsRepository
class IssuesResponse(BaseModel):
data: IssuesResponseData
class DiscussionsResponse(BaseModel):
data: DiscussionsResponseData
# PRs
class LabelNode(BaseModel):
name: str
class Labels(BaseModel):
nodes: List[LabelNode]
class ReviewNode(BaseModel):
author: Union[Author, None] = None
state: str
class Reviews(BaseModel):
nodes: List[ReviewNode]
class PullRequestNode(BaseModel):
number: int
labels: Labels
author: Union[Author, None] = None
changedFiles: int
additions: int
deletions: int
title: str
createdAt: datetime
state: str
reviews: Reviews
# comments: Comments
class PullRequestEdge(BaseModel):
cursor: str
node: PullRequestNode
class PullRequests(BaseModel):
edges: List[PullRequestEdge]
class PRsRepository(BaseModel):
pullRequests: PullRequests
class PRsResponseData(BaseModel):
repository: PRsRepository
class PRsResponse(BaseModel):
data: PRsResponseData
class Settings(BaseSettings):
input_token: SecretStr
github_repository: str
httpx_timeout: int = 30
def get_graphql_response(
*,
settings: Settings,
query: str,
after: Union[str, None] = None,
category_id: Union[str, None] = None,
) -> Dict[str, Any]:
headers = {"Authorization": f"token {settings.input_token.get_secret_value()}"}
# category_id is only used by one query, but GraphQL allows unused variables, so
# keep it here for simplicity
variables = {"after": after, "category_id": category_id}
response = httpx.post(
github_graphql_url,
headers=headers,
timeout=settings.httpx_timeout,
json={"query": query, "variables": variables, "operationName": "Q"},
)
if response.status_code != 200:
logging.error(
f"Response was not 200, after: {after}, category_id: {category_id}"
)
logging.error(response.text)
raise RuntimeError(response.text)
data = response.json()
if "errors" in data:
logging.error(f"Errors in response, after: {after}, category_id: {category_id}")
logging.error(data["errors"])
logging.error(response.text)
raise RuntimeError(response.text)
return data
# def get_graphql_issue_edges(*, settings: Settings, after: Union[str, None] = None):
# data = get_graphql_response(settings=settings, query=issues_query, after=after)
# graphql_response = IssuesResponse.model_validate(data)
# return graphql_response.data.repository.issues.edges
# def get_graphql_question_discussion_edges(
# *,
# settings: Settings,
# after: Union[str, None] = None,
# ):
# data = get_graphql_response(
# settings=settings,
# query=discussions_query,
# after=after,
# category_id=questions_category_id,
# )
# graphql_response = DiscussionsResponse.model_validate(data)
# return graphql_response.data.repository.discussions.edges
def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
if after is None:
print("Querying PRs...")
else:
print(f"Querying PRs with cursor {after}...")
data = get_graphql_response(settings=settings, query=prs_query, after=after)
graphql_response = PRsResponse.model_validate(data)
return graphql_response.data.repository.pullRequests.edges
# def get_issues_experts(settings: Settings):
# issue_nodes: List[IssuesNode] = []
# issue_edges = get_graphql_issue_edges(settings=settings)
# while issue_edges:
# for edge in issue_edges:
# issue_nodes.append(edge.node)
# last_edge = issue_edges[-1]
# issue_edges = get_graphql_issue_edges(settings=settings, after=last_edge.cursor)
# commentors = Counter()
# last_month_commentors = Counter()
# authors: Dict[str, Author] = {}
# now = datetime.now(tz=timezone.utc)
# one_month_ago = now - timedelta(days=30)
# for issue in issue_nodes:
# issue_author_name = None
# if issue.author:
# authors[issue.author.login] = issue.author
# issue_author_name = issue.author.login
# issue_commentors = set()
# for comment in issue.comments.nodes:
# if comment.author:
# authors[comment.author.login] = comment.author
# if comment.author.login != issue_author_name:
# issue_commentors.add(comment.author.login)
# for author_name in issue_commentors:
# commentors[author_name] += 1
# if issue.createdAt > one_month_ago:
# last_month_commentors[author_name] += 1
# return commentors, last_month_commentors, authors
# def get_discussions_experts(settings: Settings):
# discussion_nodes: List[DiscussionsNode] = []
# discussion_edges = get_graphql_question_discussion_edges(settings=settings)
# while discussion_edges:
# for discussion_edge in discussion_edges:
# discussion_nodes.append(discussion_edge.node)
# last_edge = discussion_edges[-1]
# discussion_edges = get_graphql_question_discussion_edges(
# settings=settings, after=last_edge.cursor
# )
# commentors = Counter()
# last_month_commentors = Counter()
# authors: Dict[str, Author] = {}
# now = datetime.now(tz=timezone.utc)
# one_month_ago = now - timedelta(days=30)
# for discussion in discussion_nodes:
# discussion_author_name = None
# if discussion.author:
# authors[discussion.author.login] = discussion.author
# discussion_author_name = discussion.author.login
# discussion_commentors = set()
# for comment in discussion.comments.nodes:
# if comment.author:
# authors[comment.author.login] = comment.author
# if comment.author.login != discussion_author_name:
# discussion_commentors.add(comment.author.login)
# for reply in comment.replies.nodes:
# if reply.author:
# authors[reply.author.login] = reply.author
# if reply.author.login != discussion_author_name:
# discussion_commentors.add(reply.author.login)
# for author_name in discussion_commentors:
# commentors[author_name] += 1
# if discussion.createdAt > one_month_ago:
# last_month_commentors[author_name] += 1
# return commentors, last_month_commentors, authors
# def get_experts(settings: Settings):
# (
# discussions_commentors,
# discussions_last_month_commentors,
# discussions_authors,
# ) = get_discussions_experts(settings=settings)
# commentors = discussions_commentors
# last_month_commentors = discussions_last_month_commentors
# authors = {**discussions_authors}
# return commentors, last_month_commentors, authors
def _logistic(x, k):
return x / (x + k)
def get_contributors(settings: Settings):
pr_nodes: List[PullRequestNode] = []
pr_edges = get_graphql_pr_edges(settings=settings)
while pr_edges:
for edge in pr_edges:
pr_nodes.append(edge.node)
last_edge = pr_edges[-1]
pr_edges = get_graphql_pr_edges(settings=settings, after=last_edge.cursor)
contributors = Counter()
contributor_scores = Counter()
recent_contributor_scores = Counter()
reviewers = Counter()
authors: Dict[str, Author] = {}
for pr in pr_nodes:
pr_reviewers: Set[str] = set()
for review in pr.reviews.nodes:
if review.author:
authors[review.author.login] = review.author
pr_reviewers.add(review.author.login)
for reviewer in pr_reviewers:
reviewers[reviewer] += 1
if pr.author:
authors[pr.author.login] = pr.author
contributors[pr.author.login] += 1
files_changed = pr.changedFiles
lines_changed = pr.additions + pr.deletions
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
contributor_scores[pr.author.login] += score
three_months_ago = datetime.now(timezone.utc) - timedelta(days=3 * 30)
if pr.createdAt > three_months_ago:
recent_contributor_scores[pr.author.login] += score
return (
contributors,
contributor_scores,
recent_contributor_scores,
reviewers,
authors,
)
def get_top_users(
*,
counter: Counter,
min_count: int,
authors: Dict[str, Author],
skip_users: Container[str],
):
users = []
for commentor, count in counter.most_common():
if commentor in skip_users:
continue
if count >= min_count:
author = authors[commentor]
users.append(
{
"login": commentor,
"count": count,
"avatarUrl": author.avatarUrl,
"twitterUsername": author.twitterUsername,
"url": author.url,
}
)
return users
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
settings = Settings()
logging.info(f"Using config: {settings.model_dump_json()}")
g = Github(settings.input_token.get_secret_value())
repo = g.get_repo(settings.github_repository)
# question_commentors, question_last_month_commentors, question_authors = get_experts(
# settings=settings
# )
(
contributors,
contributor_scores,
recent_contributor_scores,
reviewers,
pr_authors,
) = get_contributors(settings=settings)
# authors = {**question_authors, **pr_authors}
authors = {**pr_authors}
maintainers_logins = {
"hwchase17",
"agola11",
"baskaryan",
"hinthornw",
"nfcampos",
"efriis",
"eyurtsev",
"rlancemartin",
"ccurme",
"vbarda",
}
hidden_logins = {
"dev2049",
"vowelparrot",
"obi1kenobi",
"langchain-infra",
"jacoblee93",
"isahers1",
"dqbd",
"bracesproul",
"akira",
}
bot_names = {"dosubot", "github-actions", "CodiumAI-Agent"}
maintainers = []
for login in maintainers_logins:
user = authors[login]
maintainers.append(
{
"login": login,
"count": contributors[login], # + question_commentors[login],
"avatarUrl": user.avatarUrl,
"twitterUsername": user.twitterUsername,
"url": user.url,
}
)
# min_count_expert = 10
# min_count_last_month = 3
min_score_contributor = 1
min_count_reviewer = 5
skip_users = maintainers_logins | bot_names | hidden_logins
# experts = get_top_users(
# counter=question_commentors,
# min_count=min_count_expert,
# authors=authors,
# skip_users=skip_users,
# )
# last_month_active = get_top_users(
# counter=question_last_month_commentors,
# min_count=min_count_last_month,
# authors=authors,
# skip_users=skip_users,
# )
top_recent_contributors = get_top_users(
counter=recent_contributor_scores,
min_count=min_score_contributor,
authors=authors,
skip_users=skip_users,
)
top_contributors = get_top_users(
counter=contributor_scores,
min_count=min_score_contributor,
authors=authors,
skip_users=skip_users,
)
top_reviewers = get_top_users(
counter=reviewers,
min_count=min_count_reviewer,
authors=authors,
skip_users=skip_users,
)
people = {
"maintainers": maintainers,
# "experts": experts,
# "last_month_active": last_month_active,
"top_recent_contributors": top_recent_contributors,
"top_contributors": top_contributors,
"top_reviewers": top_reviewers,
}
people_path = Path("./docs/data/people.yml")
people_old_content = people_path.read_text(encoding="utf-8")
new_people_content = yaml.dump(
people, sort_keys=False, width=200, allow_unicode=True
)
if people_old_content == new_people_content:
logging.info("The LangChain People data hasn't changed, finishing.")
sys.exit(0)
people_path.write_text(new_people_content, encoding="utf-8")
logging.info("Setting up GitHub Actions git user")
subprocess.run(["git", "config", "user.name", "github-actions"], check=True)
subprocess.run(
["git", "config", "user.email", "github-actions@github.com"], check=True
)
branch_name = "langchain/langchain-people"
logging.info(f"Creating a new branch {branch_name}")
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
logging.info("Adding updated file")
subprocess.run(["git", "add", str(people_path)], check=True)
logging.info("Committing updated file")
message = "👥 Update LangChain people data"
result = subprocess.run(["git", "commit", "-m", message], check=True)
logging.info("Pushing branch")
subprocess.run(["git", "push", "origin", branch_name, "-f"], check=True)
logging.info("Creating PR")
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
logging.info(f"Created PR: {pr.number}")
logging.info("Finished")

View File

@@ -1,93 +0,0 @@
# An action for setting up poetry install with caching.
# Using a custom action since the default action does not
# take poetry install groups into account.
# Action code from:
# https://github.com/actions/setup-python/issues/505#issuecomment-1273013236
name: poetry-install-with-caching
description: Poetry install with support for caching of dependency groups.
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
poetry-version:
description: Poetry version
required: true
cache-key:
description: Cache key to use for manual handling of caching
required: true
working-directory:
description: Directory whose poetry.lock file should be cached
required: true
runs:
using: composite
steps:
- uses: actions/setup-python@v5
name: Setup python ${{ inputs.python-version }}
id: setup-python
with:
python-version: ${{ inputs.python-version }}
- uses: actions/cache@v4
id: cache-bin-poetry
name: Cache Poetry binary - Python ${{ inputs.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
/opt/pipx/venvs/poetry
# This step caches the poetry installation, so make sure it's keyed on the poetry version as well.
key: bin-poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-${{ inputs.poetry-version }}
- name: Refresh shell hashtable and fixup softlinks
if: steps.cache-bin-poetry.outputs.cache-hit == 'true'
shell: bash
env:
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
run: |
set -eux
# Refresh the shell hashtable, to ensure correct `which` output.
hash -r
# `actions/cache@v3` doesn't always seem able to correctly unpack softlinks.
# Delete and recreate the softlinks pipx expects to have.
rm /opt/pipx/venvs/poetry/bin/python
cd /opt/pipx/venvs/poetry/bin
ln -s "$(which "python$PYTHON_VERSION")" python
chmod +x python
cd /opt/pipx_bin/
ln -s /opt/pipx/venvs/poetry/bin/poetry poetry
chmod +x poetry
# Ensure everything got set up correctly.
/opt/pipx/venvs/poetry/bin/python --version
/opt/pipx_bin/poetry --version
- name: Install poetry
if: steps.cache-bin-poetry.outputs.cache-hit != 'true'
shell: bash
env:
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
# Install poetry using the python version installed by setup-python step.
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
with:
path: |
~/.cache/pip
~/.cache/pypoetry/virtualenvs
~/.cache/pypoetry/cache
~/.cache/pypoetry/artifacts
${{ env.WORKDIR }}/.venv
key: py-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/**/poetry.lock', env.WORKDIR)) }}

View File

@@ -1,12 +1,24 @@
# TODO: https://docs.astral.sh/uv/guides/integration/github/#caching
# Helper to set up Python and uv with caching
name: uv-install
description: Set up Python and uv
description: Set up Python and uv with caching
inputs:
python-version:
description: Python version, supporting MAJOR.MINOR only
required: true
enable-cache:
description: Enable caching for uv dependencies
required: false
default: "true"
cache-suffix:
description: Custom cache key suffix for cache invalidation
required: false
default: ""
working-directory:
description: Working directory for cache glob scoping
required: false
default: "**"
env:
UV_VERSION: "0.5.25"
@@ -15,7 +27,13 @@ runs:
using: composite
steps:
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
uses: astral-sh/setup-uv@v6
with:
version: ${{ env.UV_VERSION }}
python-version: ${{ inputs.python-version }}
enable-cache: ${{ inputs.enable-cache }}
cache-dependency-glob: |
${{ inputs.working-directory }}/pyproject.toml
${{ inputs.working-directory }}/uv.lock
${{ inputs.working-directory }}/requirements*.txt
cache-suffix: ${{ inputs.cache-suffix }}

View File

@@ -26,7 +26,7 @@ def get_user(user_id: str, verbose: bool = False) -> User:
- Check if the function/class is exported in `__init__.py`
- Look for existing usage patterns in tests and examples
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
- Mark experimental features clearly with docstring warnings (using reStructuredText, like `.. warning::`)
- Mark experimental features clearly with docstring admonitions (using MkDocs Material, like `!!! warning`)
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
@@ -130,7 +130,7 @@ def load_config(path: str) -> dict:
### 5. Documentation Standards
**Use Google-style docstrings with Args section for all public functions.**
**Use Google-style docstrings with Args and Returns sections for all public functions.**
**Insufficient Documentation:**
@@ -149,7 +149,7 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
priority: Email priority level.
Returns:
True if email was sent successfully, False otherwise.
@@ -166,7 +166,6 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Use reStructuredText for docstrings to enable rich formatting
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
@@ -204,7 +203,14 @@ class DataProcessor:
self.email = email_client
def process(self, data: List[dict]) -> ProcessingResult:
"""Process and store data with notifications."""
"""Process and store data with notifications.
Args:
data: List of data items to process.
Returns:
ProcessingResult with details of the operation.
"""
validated = self._validate_data(data)
result = self.db.save(validated)
self._notify_completion(result)
@@ -291,16 +297,15 @@ def search_database(query: str) -> str:
**Use Conventional Commits format for PR titles:**
- `feat(core): add multi-tenant support`
- `fix(cli): resolve flag parsing error`
- `!fix(cli): resolve flag parsing error` (breaking change uses exclamation mark)
- `docs: update API usage examples`
- `docs(openai): update API usage examples`
## Framework-Specific Guidelines
- Follow the existing patterns in `langchain-core` for base abstractions
- Use `langchain_core.callbacks` for execution tracking
- Follow the existing patterns in `langchain_core` for base abstractions
- Implement proper streaming support where applicable
- Avoid deprecated components like legacy `LLMChain`
- Avoid deprecated components
### Partner Integrations

View File

Before

Width:  |  Height:  |  Size: 6.4 KiB

After

Width:  |  Height:  |  Size: 6.4 KiB

View File

Before

Width:  |  Height:  |  Size: 6.4 KiB

After

Width:  |  Height:  |  Size: 6.4 KiB

163
.github/pr-file-labeler.yml vendored Normal file
View File

@@ -0,0 +1,163 @@
# Label PRs (config)
# Automatically applies labels based on changed files and branch patterns
# Core packages
core:
- changed-files:
- any-glob-to-any-file:
- "libs/core/**/*"
langchain-classic:
- changed-files:
- any-glob-to-any-file:
- "libs/langchain/**/*"
langchain:
- changed-files:
- any-glob-to-any-file:
- "libs/langchain_v1/**/*"
cli:
- changed-files:
- any-glob-to-any-file:
- "libs/cli/**/*"
standard-tests:
- changed-files:
- any-glob-to-any-file:
- "libs/standard-tests/**/*"
model-profiles:
- changed-files:
- any-glob-to-any-file:
- "libs/model-profiles/**/*"
text-splitters:
- changed-files:
- any-glob-to-any-file:
- "libs/text-splitters/**/*"
# Partner integrations
integration:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/**/*"
anthropic:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/anthropic/**/*"
chroma:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/chroma/**/*"
deepseek:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/deepseek/**/*"
exa:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/exa/**/*"
fireworks:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/fireworks/**/*"
groq:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/groq/**/*"
huggingface:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/huggingface/**/*"
mistralai:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/mistralai/**/*"
nomic:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/nomic/**/*"
ollama:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/ollama/**/*"
openai:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/openai/**/*"
perplexity:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/perplexity/**/*"
prompty:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/prompty/**/*"
qdrant:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/qdrant/**/*"
xai:
- changed-files:
- any-glob-to-any-file:
- "libs/partners/xai/**/*"
# Infrastructure and DevOps
infra:
- changed-files:
- any-glob-to-any-file:
- ".github/**/*"
- "Makefile"
- ".pre-commit-config.yaml"
- "scripts/**/*"
- "docker/**/*"
- "Dockerfile*"
github_actions:
- changed-files:
- any-glob-to-any-file:
- ".github/workflows/**/*"
- ".github/actions/**/*"
dependencies:
- changed-files:
- any-glob-to-any-file:
- "**/pyproject.toml"
- "uv.lock"
- "**/requirements*.txt"
- "**/poetry.lock"
# Documentation
documentation:
- changed-files:
- any-glob-to-any-file:
- "**/*.md"
- "**/*.rst"
- "**/README*"
# Security related changes
security:
- changed-files:
- any-glob-to-any-file:
- "**/*security*"
- "**/*auth*"
- "**/*credential*"
- "**/*secret*"
- "**/*token*"
- ".github/workflows/security*"

View File

@@ -1,3 +1,18 @@
"""Analyze git diffs to determine which directories need to be tested.
Intelligently determines which LangChain packages and directories need to be tested,
linted, or built based on the changes. Handles dependency relationships between
packages, maps file changes to appropriate CI job configurations, and outputs JSON
configurations for GitHub Actions.
- Maps changed files to affected package directories (libs/core, libs/partners/*, etc.)
- Builds dependency graph to include dependent packages when core components change
- Generates test matrix configurations with appropriate Python versions
- Handles special cases for Pydantic version testing and performance benchmarks
Used as part of the check_diffs workflow.
"""
import glob
import json
import os
@@ -15,9 +30,10 @@ LANGCHAIN_DIRS = [
"libs/text-splitters",
"libs/langchain",
"libs/langchain_v1",
"libs/model-profiles",
]
# when set to True, we are ignoring core dependents
# When set to True, we are ignoring core dependents
# in order to be able to get CI to pass for each individual
# package that depends on core
# e.g. if you touch core, we don't then add textsplitters/etc to CI
@@ -35,10 +51,6 @@ IGNORED_PARTNERS = [
"prompty",
]
PY_312_MAX_PACKAGES = [
"libs/partners/chroma", # https://github.com/chroma-core/chroma/issues/4382
]
def all_package_dirs() -> Set[str]:
return {
@@ -49,9 +61,9 @@ def all_package_dirs() -> Set[str]:
def dependents_graph() -> dict:
"""
Construct a mapping of package -> dependents, such that we can
run tests on all dependents of a package when a change is made.
"""Construct a mapping of package -> dependents
Done such that we can run tests on all dependents of a package when a change is made.
"""
dependents = defaultdict(set)
@@ -119,31 +131,20 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
return _get_pydantic_test_configs(dir_)
if job == "codspeed":
py_versions = ["3.12"] # 3.13 is not yet supported
py_versions = ["3.13"]
elif dir_ == "libs/core":
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
py_versions = ["3.10", "3.11", "3.12", "3.13", "3.14"]
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
# milvus doesn't allow 3.12 because they declare deps in funny way
py_versions = ["3.9", "3.11"]
elif dir_ in PY_312_MAX_PACKAGES:
py_versions = ["3.9", "3.12"]
elif dir_ == "libs/langchain" and job == "extended-tests":
py_versions = ["3.9", "3.13"]
elif dir_ == ".":
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet
py_versions = ["3.9", "3.12"]
elif dir_ in {"libs/partners/chroma"}:
py_versions = ["3.10", "3.13"]
else:
py_versions = ["3.9", "3.13"]
py_versions = ["3.10", "3.14"]
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
def _get_pydantic_test_configs(
dir_: str, *, python_version: str = "3.11"
dir_: str, *, python_version: str = "3.12"
) -> List[Dict[str, str]]:
with open("./libs/core/uv.lock", "rb") as f:
core_uv_lock_data = tomllib.load(f)
@@ -248,12 +249,19 @@ if __name__ == "__main__":
".github/scripts/check_diff.py",
)
):
# add all LANGCHAIN_DIRS for infra changes
# Infrastructure changes (workflows, actions, CI scripts) trigger tests on
# all core packages as a safety measure. This ensures that changes to CI/CD
# infrastructure don't inadvertently break package testing, even if the change
# appears unrelated (e.g., documentation build workflows). This is intentionally
# conservative to catch unexpected side effects from workflow modifications.
#
# Example: A PR modifying .github/workflows/api_doc_build.yml will trigger
# lint/test jobs for libs/core, libs/text-splitters, libs/langchain, and
# libs/langchain_v1, even though the workflow may only affect documentation.
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
dirs_to_run["lint"].add(".")
if file.startswith("libs/core"):
dirs_to_run["codspeed"].add(f"libs/core")
dirs_to_run["codspeed"].add("libs/core")
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
# add that dir and all dirs after in LANGCHAIN_DIRS
# for extended testing
@@ -272,8 +280,6 @@ if __name__ == "__main__":
# Note: won't run on external repo partners
dirs_to_run["lint"].add("libs/standard-tests")
dirs_to_run["test"].add("libs/standard-tests")
dirs_to_run["lint"].add("libs/cli")
dirs_to_run["test"].add("libs/cli")
dirs_to_run["test"].add("libs/partners/mistralai")
dirs_to_run["test"].add("libs/partners/openai")
dirs_to_run["test"].add("libs/partners/anthropic")
@@ -292,21 +298,25 @@ if __name__ == "__main__":
if not filename.startswith(".")
] != ["README.md"]:
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
# Skip codspeed for partners without benchmarks or in IGNORED_PARTNERS
if partner_dir not in IGNORED_PARTNERS:
dirs_to_run["codspeed"].add(f"libs/partners/{partner_dir}")
# Skip if the directory was deleted or is just a tombstone readme
elif file == "libs/packages.yml":
continue
elif file.startswith("libs/"):
# Check if this is a root-level file in libs/ (e.g., libs/README.md)
file_parts = file.split("/")
if len(file_parts) == 2:
# Root-level file in libs/, skip it (no tests needed)
continue
raise ValueError(
f"Unknown lib: {file}. check_diff.py likely needs "
"an update for this new library!"
)
elif file.startswith("docs/") or file in [
elif file in [
"pyproject.toml",
"uv.lock",
]: # docs or root uv files
]: # root uv files
docs_edited = True
dirs_to_run["lint"].add(".")
dependents = dependents_graph()
@@ -324,9 +334,6 @@ if __name__ == "__main__":
"codspeed",
]
}
map_job_to_configs["test-doc-imports"] = (
[{"python-version": "3.12"}] if docs_edited else []
)
for key, value in map_job_to_configs.items():
json_output = json.dumps(value)

View File

@@ -1,3 +1,5 @@
"""Check that no dependencies allow prereleases unless we're releasing a prerelease."""
import sys
import tomllib
@@ -6,15 +8,14 @@ if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
# read toml file
with open(toml_file, "rb") as file:
toml_data = tomllib.load(file)
# see if we're releasing an rc
# See if we're releasing an rc or dev version
version = toml_data["project"]["version"]
releasing_rc = "rc" in version or "dev" in version
# if not, iterate through dependencies and make sure none allow prereleases
# If not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["project"]["dependencies"]
for dep_version in dependencies:

View File

@@ -1,11 +1,12 @@
"""Get minimum versions of dependencies from a pyproject.toml file."""
import sys
from collections import defaultdict
from typing import Optional
if sys.version_info >= (3, 11):
import tomllib
else:
# for python 3.10 and below, which doesnt have stdlib tomllib
# For Python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
import re
@@ -34,14 +35,13 @@ SKIP_IF_PULL_REQUEST = [
def get_pypi_versions(package_name: str) -> List[str]:
"""
Fetch all available versions for a package from PyPI.
"""Fetch all available versions for a package from PyPI.
Args:
package_name (str): Name of the package
package_name: Name of the package
Returns:
List[str]: List of all available versions
List of all available versions
Raises:
requests.exceptions.RequestException: If PyPI API request fails
@@ -53,25 +53,24 @@ def get_pypi_versions(package_name: str) -> List[str]:
return list(response.json()["releases"].keys())
def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
"""
Find the minimum published version that satisfies the given constraints.
def get_minimum_version(package_name: str, spec_string: str) -> str | None:
"""Find the minimum published version that satisfies the given constraints.
Args:
package_name (str): Name of the package
spec_string (str): Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
package_name: Name of the package
spec_string: Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
Returns:
Optional[str]: Minimum compatible version or None if no compatible version found
Minimum compatible version or None if no compatible version found
"""
# rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
spec_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", spec_string)
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
for y in range(1, 10):
spec_string = re.sub(
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}", spec_string
)
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
for x in range(1, 10):
spec_string = re.sub(
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x + 1}", spec_string
@@ -99,7 +98,7 @@ def _check_python_version_from_requirement(
return True
else:
marker_str = str(requirement.marker)
if "python_version" or "python_full_version" in marker_str:
if "python_version" in marker_str or "python_full_version" in marker_str:
python_version_str = "".join(
char
for char in marker_str
@@ -114,7 +113,7 @@ def get_min_version_from_toml(
versions_for: str,
python_version: str,
*,
include: Optional[list] = None,
include: list | None = None,
):
# Parse the TOML file
with open(toml_path, "rb") as file:
@@ -154,22 +153,25 @@ def get_min_version_from_toml(
def check_python_version(version_string, constraint_string):
"""
Check if the given Python version matches the given constraints.
"""Check if the given Python version matches the given constraints.
:param version_string: A string representing the Python version (e.g. "3.8.5").
:param constraint_string: A string representing the package's Python version constraints (e.g. ">=3.6, <4.0").
:return: True if the version matches the constraints, False otherwise.
Args:
version_string: A string representing the Python version (e.g. "3.8.5").
constraint_string: A string representing the package's Python version
constraints (e.g. ">=3.6, <4.0").
Returns:
True if the version matches the constraints
"""
# rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
# Rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
constraint_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", constraint_string)
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
# Rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
for y in range(1, 10):
constraint_string = re.sub(
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y + 1}.0", constraint_string
)
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
# Rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
for x in range(1, 10):
constraint_string = re.sub(
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x + 1}.0.0", constraint_string

View File

@@ -1,112 +0,0 @@
#!/usr/bin/env python
"""Script to sync libraries from various repositories into the main langchain repository."""
import os
import shutil
from pathlib import Path
from typing import Any, Dict
import yaml
def load_packages_yaml() -> Dict[str, Any]:
"""Load and parse the packages.yml file."""
with open("langchain/libs/packages.yml", "r") as f:
return yaml.safe_load(f)
def get_target_dir(package_name: str) -> Path:
"""Get the target directory for a given package."""
package_name_short = package_name.replace("langchain-", "")
base_path = Path("langchain/libs")
if package_name_short == "experimental":
return base_path / "experimental"
if package_name_short == "community":
return base_path / "community"
return base_path / "partners" / package_name_short
def clean_target_directories(packages: list) -> None:
"""Remove old directories that will be replaced."""
for package in packages:
target_dir = get_target_dir(package["name"])
if target_dir.exists():
print(f"Removing {target_dir}")
shutil.rmtree(target_dir)
def move_libraries(packages: list) -> None:
"""Move libraries from their source locations to the target directories."""
for package in packages:
repo_name = package["repo"].split("/")[1]
source_path = package["path"]
target_dir = get_target_dir(package["name"])
# Handle root path case
if source_path == ".":
source_dir = repo_name
else:
source_dir = f"{repo_name}/{source_path}"
print(f"Moving {source_dir} to {target_dir}")
# Ensure target directory exists
os.makedirs(os.path.dirname(target_dir), exist_ok=True)
try:
# Move the directory
shutil.move(source_dir, target_dir)
except Exception as e:
print(f"Error moving {source_dir} to {target_dir}: {e}")
def main():
"""Main function to orchestrate the library sync process."""
try:
# Load packages configuration
package_yaml = load_packages_yaml()
# Clean target directories
clean_target_directories(
[
p
for p in package_yaml["packages"]
if (
p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref")
)
and p["repo"] != "langchain-ai/langchain"
and p["name"]
!= "langchain-ai21" # Skip AI21 due to dependency conflicts
]
)
# Move libraries to their new locations
move_libraries(
[
p
for p in package_yaml["packages"]
if not p.get("disabled", False)
and (
p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref")
)
and p["repo"] != "langchain-ai/langchain"
and p["name"]
!= "langchain-ai21" # Skip AI21 due to dependency conflicts
]
)
# Delete ones without a pyproject.toml
for partner in Path("langchain/libs/partners").iterdir():
if partner.is_dir() and not (partner / "pyproject.toml").exists():
print(f"Removing {partner} as it does not have a pyproject.toml")
shutil.rmtree(partner)
print("Library sync completed successfully!")
except Exception as e:
print(f"Error during library sync: {e}")
raise
if __name__ == "__main__":
main()

View File

@@ -1,4 +1,12 @@
name: '🔗 Compile Integration Tests'
# Validates that a package's integration tests compile without syntax or import errors.
#
# (If an integration test fails to compile, it won't run.)
#
# Called as part of check_diffs.yml workflow
#
# Runs pytest with compile marker to check syntax/imports.
name: "🔗 Compile Integration Tests"
on:
workflow_call:
@@ -25,24 +33,26 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: 'Python ${{ inputs.python-version }}'
name: "Python ${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: compile-integration-tests-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Integration Dependencies'
- name: "📦 Install Integration Dependencies"
shell: bash
run: uv sync --group test --group test_integration
- name: '🔗 Check Integration Tests Compile'
- name: "🔗 Check Integration Tests Compile"
shell: bash
run: uv run pytest -m compile tests/integration_tests
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu

View File

@@ -1,94 +0,0 @@
name: '🚀 Integration Tests'
run-name: 'Test ${{ inputs.working-directory }} on Python ${{ inputs.python-version }}'
on:
workflow_dispatch:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: true
type: string
description: "Python version to use"
default: "3.11"
permissions:
contents: read
env:
UV_FROZEN: "true"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
name: 'Python ${{ inputs.python-version }}'
steps:
- uses: actions/checkout@v4
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
- name: '📦 Install Integration Dependencies'
shell: bash
run: uv sync --group test --group test_integration
- name: '🚀 Run Integration Tests'
shell: bash
env:
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
ES_URL: ${{ secrets.ES_URL }}
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
ES_API_KEY: ${{ secrets.ES_API_KEY }}
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
run: |
make integration_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,6 +1,11 @@
name: '🧹 Code Linting'
# Runs code quality checks using ruff, mypy, and other linting tools
# Checks both package code and test code for consistency
# Runs linting.
#
# Uses the package's Makefile to run the checks, specifically the
# `lint_package` and `lint_tests` targets.
#
# Called as part of check_diffs.yml workflow.
name: "🧹 Linting"
on:
workflow_call:
@@ -28,56 +33,43 @@ env:
jobs:
# Linting job - runs quality checks on package and test code
build:
name: 'Python ${{ inputs.python-version }}'
name: "Python ${{ inputs.python-version }}"
runs-on: ubuntu-latest
timeout-minutes: 20
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: lint-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Lint & Typing Dependencies'
# Also installs dev/lint/test/typing dependencies, to ensure we have
# type hints for as many of our libraries as possible.
# This helps catch errors that require dependencies to be spotted, for example:
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
#
# If you change this configuration, make sure to change the `cache-key`
# in the `poetry_setup` action above to stop using the old cache.
# It doesn't matter how you change it, any change will cause a cache-bust.
- name: "📦 Install Lint & Typing Dependencies"
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --group lint --group typing
- name: '🔍 Analyze Package Code with Linters'
- name: "🔍 Analyze Package Code with Linters"
working-directory: ${{ inputs.working-directory }}
run: |
make lint_package
- name: '📦 Install Unit Test Dependencies'
# Also installs dev/lint/test/typing dependencies, to ensure we have
# type hints for as many of our libraries as possible.
# This helps catch errors that require dependencies to be spotted, for example:
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
#
# If you change this configuration, make sure to change the `cache-key`
# in the `poetry_setup` action above to stop using the old cache.
# It doesn't matter how you change it, any change will cause a cache-bust.
- name: "📦 Install Test Dependencies (non-partners)"
# (For directories NOT starting with libs/partners/)
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test
- name: '📦 Install Unit + Integration Test Dependencies'
- name: "📦 Install Test Dependencies"
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test --group test_integration
- name: '🔍 Analyze Test Code with Linters'
- name: "🔍 Analyze Test Code with Linters"
working-directory: ${{ inputs.working-directory }}
run: |
make lint_tests

View File

@@ -1,5 +1,11 @@
name: '🚀 Package Release'
run-name: 'Release ${{ inputs.working-directory }} ${{ inputs.release-version }}'
# Builds and publishes LangChain packages to PyPI.
#
# Manually triggered, though can be used as a reusable workflow (workflow_call).
#
# Handles version bumping, building, and publishing to PyPI with authentication.
name: "🚀 Package Release"
run-name: "Release ${{ inputs.working-directory }} ${{ inputs.release-version }}"
on:
workflow_call:
inputs:
@@ -13,11 +19,11 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
default: 'libs/langchain'
default: "libs/langchain"
release-version:
required: true
type: string
default: '0.1.0'
default: "0.1.0"
description: "New version of package being released"
dangerous-nonmaster-release:
required: false
@@ -30,6 +36,9 @@ env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
permissions:
contents: write # Required for creating GitHub releases
jobs:
# Build the distribution package and extract version info
# Runs in isolated environment with minimal permissions for security
@@ -37,13 +46,15 @@ jobs:
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
environment: Scheduled testing
runs-on: ubuntu-latest
permissions:
contents: read
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
@@ -52,8 +63,8 @@ jobs:
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# (Release stage has trusted publishing and GitHub repo contents write access,
#
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
@@ -66,7 +77,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v5
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -89,10 +100,12 @@ jobs:
needs:
- build
runs-on: ubuntu-latest
permissions:
contents: read
outputs:
release-body: ${{ steps.generate-release-body.outputs.release-body }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain
path: langchain
@@ -136,8 +149,8 @@ jobs:
fi
fi
# if PREV_TAG is empty, let it be empty
if [ -z "$PREV_TAG" ]; then
# if PREV_TAG is empty or came out to 0.0.0, let it be empty
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
echo "No previous tag found - first release"
else
# confirm prev-tag actually exists in git repo with git tag
@@ -166,8 +179,8 @@ jobs:
PREV_TAG: ${{ steps.check-tags.outputs.prev-tag }}
run: |
PREAMBLE="Changes since $PREV_TAG"
# if PREV_TAG is empty, then we are releasing the first version
if [ -z "$PREV_TAG" ]; then
# if PREV_TAG is empty or 0.0.0, then we are releasing the first version
if [ -z "$PREV_TAG" ] || [ "$PREV_TAG" = "$PKG_NAME==0.0.0" ]; then
PREAMBLE="Initial release"
PREV_TAG=$(git rev-list --max-parents=0 HEAD)
fi
@@ -183,13 +196,36 @@ jobs:
needs:
- build
- release-notes
uses:
./.github/workflows/_test_release.yml
permissions: write-all
with:
working-directory: ${{ inputs.working-directory }}
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
secrets: inherit
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
steps:
- uses: actions/checkout@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
attestations: false
pre-release-checks:
needs:
@@ -197,9 +233,11 @@ jobs:
- release-notes
- test-pypi-publish
runs-on: ubuntu-latest
permissions:
contents: read
timeout-minutes: 20
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
# We explicitly *don't* set up caching here. This ensures our tests are
# maximally sensitive to catching breakage.
@@ -220,7 +258,7 @@ jobs:
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -265,16 +303,19 @@ jobs:
run: |
VIRTUAL_ENV=.venv uv pip install dist/*.whl
- name: Run unit tests
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Check for prerelease versions
# Block release if any dependencies allow prerelease versions
# (unless this is itself a prerelease version)
working-directory: ${{ inputs.working-directory }}
run: |
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Run unit tests
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Get minimum versions
# Find the minimum published versions that satisfies the given constraints
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
@@ -289,7 +330,8 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
VIRTUAL_ENV=.venv uv pip install --force-reinstall --editable .
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
@@ -298,6 +340,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
- name: Run integration tests
# Uses the Makefile's `integration_tests` target for the specified package
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
env:
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
@@ -334,21 +377,27 @@ jobs:
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
# Test select published packages against new core
# Done when code changes are made to langchain-core
test-prior-published-packages-against-new-core:
# Installs the new core with old partners: Installs the new unreleased core
# alongside the previously published partner packages and runs integration tests
needs:
- build
- release-notes
- test-pypi-publish
- pre-release-checks
runs-on: ubuntu-latest
permissions:
contents: read
strategy:
matrix:
partner: [openai, anthropic]
fail-fast: false # Continue testing other partners if one fails
partner: [anthropic]
fail-fast: false # Continue testing other partners if one fails
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
@@ -361,11 +410,13 @@ jobs:
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
# We implement this conditional as Github Actions does not have good support
# for conditionally needing steps. https://github.com/actions/runner/issues/491
# TODO: this seems to be resolved upstream, so we can probably remove this workaround
- name: Check if libs/core
run: |
if [ "${{ startsWith(inputs.working-directory, 'libs/core') }}" != "true" ]; then
@@ -379,7 +430,7 @@ jobs:
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
if: startsWith(inputs.working-directory, 'libs/core')
with:
name: dist
@@ -393,7 +444,7 @@ jobs:
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
| awk '{print $2}' \
| sed 's|refs/tags/||' \
| grep -Ev '==[^=]*(\.?dev[0-9]*|\.?rc[0-9]*)$' \
| grep -E '[0-9]+\.[0-9]+\.[0-9]+$' \
| sort -Vr \
| head -n 1
)"
@@ -420,6 +471,7 @@ jobs:
make integration_tests
publish:
# Publishes the package to PyPI
needs:
- build
- release-notes
@@ -440,14 +492,14 @@ jobs:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -462,6 +514,7 @@ jobs:
attestations: false
mark-release:
# Marks the GitHub release with the new version tag
needs:
- build
- release-notes
@@ -471,7 +524,7 @@ jobs:
runs-on: ubuntu-latest
permissions:
# This permission is needed by `ncipollo/release-action` to
# create the GitHub release.
# create the GitHub release/tag
contents: write
defaults:
@@ -479,14 +532,14 @@ jobs:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v5
- uses: actions/download-artifact@v6
with:
name: dist
path: ${{ inputs.working-directory }}/dist/

View File

@@ -1,6 +1,7 @@
name: '🧪 Unit Testing'
# Runs unit tests with both current and minimum supported dependency versions
# to ensure compatibility across the supported range
# to ensure compatibility across the supported range.
name: "🧪 Unit Testing"
on:
workflow_call:
@@ -29,26 +30,29 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: 'Python ${{ inputs.python-version }}'
name: "Python ${{ inputs.python-version }}"
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
id: setup-python
with:
python-version: ${{ inputs.python-version }}
- name: '📦 Install Test Dependencies'
cache-suffix: test-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: "📦 Install Test Dependencies"
shell: bash
run: uv sync --group test --dev
- name: '🧪 Run Core Unit Tests'
- name: "🧪 Run Core Unit Tests"
shell: bash
run: |
make test
- name: '🔍 Calculate Minimum Dependency Versions'
- name: "🔍 Calculate Minimum Dependency Versions"
working-directory: ${{ inputs.working-directory }}
id: min-version
shell: bash
@@ -59,7 +63,7 @@ jobs:
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: '🧪 Run Tests with Minimum Dependencies'
- name: "🧪 Run Tests with Minimum Dependencies"
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
@@ -68,7 +72,7 @@ jobs:
make tests
working-directory: ${{ inputs.working-directory }}
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
@@ -79,4 +83,3 @@ jobs:
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,54 +0,0 @@
name: '📑 Documentation Import Testing'
on:
workflow_call:
inputs:
python-version:
required: true
type: string
description: "Python version to use"
permissions:
contents: read
env:
UV_FROZEN: "true"
jobs:
build:
runs-on: ubuntu-latest
timeout-minutes: 20
name: '🔍 Check Doc Imports (Python ${{ inputs.python-version }})'
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
- name: '📦 Install Test Dependencies'
shell: bash
run: uv sync --group test
- name: '📦 Install LangChain in Editable Mode'
run: |
VIRTUAL_ENV=.venv uv pip install langchain-experimental langchain-community -e libs/core libs/langchain
- name: '🔍 Validate Documentation Import Statements'
shell: bash
run: |
uv run python docs/scripts/check_imports.py
- name: '🧹 Verify Clean Working Directory'
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,4 +1,6 @@
name: '🐍 Pydantic Version Testing'
# Facilitate unit testing against different Pydantic versions for a provided package.
name: "🐍 Pydantic Version Testing"
on:
workflow_call:
@@ -11,7 +13,7 @@ on:
required: false
type: string
description: "Python version to use"
default: "3.11"
default: "3.12"
pydantic-version:
required: true
type: string
@@ -31,30 +33,34 @@ jobs:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
timeout-minutes: 20
name: 'Pydantic ~=${{ inputs.pydantic-version }}'
name: "Pydantic ~=${{ inputs.pydantic-version }}"
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ inputs.python-version }} + UV'
- name: "🐍 Set up Python ${{ inputs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ inputs.python-version }}
cache-suffix: test-pydantic-${{ inputs.working-directory }}
working-directory: ${{ inputs.working-directory }}
- name: '📦 Install Test Dependencies'
- name: "📦 Install Test Dependencies"
shell: bash
run: uv sync --group test
- name: '🔄 Install Specific Pydantic Version'
- name: "🔄 Install Specific Pydantic Version"
shell: bash
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
env:
PYDANTIC_VERSION: ${{ inputs.pydantic-version }}
run: VIRTUAL_ENV=.venv uv pip install "pydantic~=$PYDANTIC_VERSION"
- name: '🧪 Run Core Tests'
- name: "🧪 Run Core Tests"
shell: bash
run: |
make test
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu

View File

@@ -1,106 +0,0 @@
name: '🧪 Test Release Package'
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
dangerous-nonmaster-release:
required: false
type: boolean
default: false
description: "Release from a non-master branch (danger!)"
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
jobs:
build:
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
runs-on: ubuntu-latest
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- name: '🐍 Set up Python + UV'
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: '📦 Build Project for Distribution'
run: uv build
working-directory: ${{ inputs.working-directory }}
- name: '⬆️ Upload Build Artifacts'
uses: actions/upload-artifact@v4
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: '🔍 Extract Version Information'
id: check-version
shell: python
working-directory: ${{ inputs.working-directory }}
run: |
import os
import tomllib
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pkg_name = data["project"]["name"]
version = data["project"]["version"]
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
f.write(f"pkg-name={pkg_name}\n")
f.write(f"version={version}\n")
publish:
needs:
- build
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v5
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
attestations: false

View File

@@ -1,120 +0,0 @@
name: '📚 API Docs'
run-name: 'Build & Deploy API Reference'
# Runs daily or can be triggered manually for immediate updates
on:
workflow_dispatch:
schedule:
- cron: '0 13 * * *' # Daily at 1PM UTC
env:
PYTHON_VERSION: "3.11"
jobs:
# Only runs on main repository to prevent unnecessary builds on forks
build:
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v4
with:
path: langchain
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-api-docs-html
path: langchain-api-docs-html
token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }}
- name: '📋 Extract Repository List with yq'
id: get-unsorted-repos
uses: mikefarah/yq@master
with:
cmd: |
yq '
.packages[]
| select(
(
(.repo | test("^langchain-ai/"))
and
(.repo != "langchain-ai/langchain")
)
or
(.include_in_api_ref // false)
)
| .repo
' langchain/libs/packages.yml
- name: '📋 Parse YAML & Checkout Repositories'
env:
REPOS_UNSORTED: ${{ steps.get-unsorted-repos.outputs.result }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Get unique repositories
REPOS=$(echo "$REPOS_UNSORTED" | sort -u)
# Checkout each unique repository
for repo in $REPOS; do
# Validate repository format (allow any org with proper format)
if [[ ! "$repo" =~ ^[a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+$ ]]; then
echo "Error: Invalid repository format: $repo"
exit 1
fi
REPO_NAME=$(echo $repo | cut -d'/' -f2)
# Additional validation for repo name
if [[ ! "$REPO_NAME" =~ ^[a-zA-Z0-9_.-]+$ ]]; then
echo "Error: Invalid repository name: $REPO_NAME"
exit 1
fi
echo "Checking out $repo to $REPO_NAME"
git clone --depth 1 https://github.com/$repo.git $REPO_NAME
done
- name: '🐍 Setup Python ${{ env.PYTHON_VERSION }}'
uses: actions/setup-python@v5
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: '📦 Install Initial Python Dependencies'
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
- name: '📦 Organize Library Directories'
run: python langchain/.github/scripts/prep_api_docs_build.py
- name: '🧹 Remove Old HTML Files'
run:
rm -rf langchain-api-docs-html/api_reference_build/html
- name: '📦 Install Documentation Dependencies'
working-directory: langchain
run: |
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
python -m uv pip install -r docs/api_reference/requirements.txt
- name: '🔧 Configure Git Settings'
working-directory: langchain
run: |
git config --local user.email "actions@github.com"
git config --local user.name "Github Actions"
- name: '📚 Build API Documentation'
working-directory: langchain
run: |
python docs/api_reference/create_api_rst.py
python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto
python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html
# Default index page is blank so we copy in the actual home page.
cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html
rm -rf ../langchain-api-docs-html/_build/
# https://github.com/marketplace/actions/add-commit
- uses: EndBug/add-and-commit@v9
with:
cwd: langchain-api-docs-html
message: 'Update API docs build'

View File

@@ -0,0 +1,107 @@
name: Auto Label Issues by Package
on:
issues:
types: [opened, edited]
jobs:
label-by-package:
permissions:
issues: write
runs-on: ubuntu-latest
steps:
- name: Sync package labels
uses: actions/github-script@v6
with:
script: |
const body = context.payload.issue.body || "";
// Extract text under "### Package"
const match = body.match(/### Package\s+([\s\S]*?)\n###/i);
if (!match) return;
const packageSection = match[1].trim();
// Mapping table for package names to labels
const mapping = {
"langchain": "langchain",
"langchain-openai": "openai",
"langchain-anthropic": "anthropic",
"langchain-classic": "langchain-classic",
"langchain-core": "core",
"langchain-cli": "cli",
"langchain-model-profiles": "model-profiles",
"langchain-tests": "standard-tests",
"langchain-text-splitters": "text-splitters",
"langchain-chroma": "chroma",
"langchain-deepseek": "deepseek",
"langchain-exa": "exa",
"langchain-fireworks": "fireworks",
"langchain-groq": "groq",
"langchain-huggingface": "huggingface",
"langchain-mistralai": "mistralai",
"langchain-nomic": "nomic",
"langchain-ollama": "ollama",
"langchain-perplexity": "perplexity",
"langchain-prompty": "prompty",
"langchain-qdrant": "qdrant",
"langchain-xai": "xai",
};
// All possible package labels we manage
const allPackageLabels = Object.values(mapping);
const selectedLabels = [];
// Check if this is checkbox format (multiple selection)
const checkboxMatches = packageSection.match(/- \[x\]\s+([^\n\r]+)/gi);
if (checkboxMatches) {
// Handle checkbox format
for (const match of checkboxMatches) {
const packageName = match.replace(/- \[x\]\s+/i, '').trim();
const label = mapping[packageName];
if (label && !selectedLabels.includes(label)) {
selectedLabels.push(label);
}
}
} else {
// Handle dropdown format (single selection)
const label = mapping[packageSection];
if (label) {
selectedLabels.push(label);
}
}
// Get current issue labels
const issue = await github.rest.issues.get({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
const currentLabels = issue.data.labels.map(label => label.name);
const currentPackageLabels = currentLabels.filter(label => allPackageLabels.includes(label));
// Determine labels to add and remove
const labelsToAdd = selectedLabels.filter(label => !currentPackageLabels.includes(label));
const labelsToRemove = currentPackageLabels.filter(label => !selectedLabels.includes(label));
// Add new labels
if (labelsToAdd.length > 0) {
await github.rest.issues.addLabels({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
labels: labelsToAdd
});
}
// Remove old labels
for (const label of labelsToRemove) {
await github.rest.issues.removeLabel({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
name: label
});
}

View File

@@ -1,28 +0,0 @@
name: '🔗 Check Broken Links'
on:
workflow_dispatch:
schedule:
- cron: '0 13 * * *'
permissions:
contents: read
jobs:
check-links:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: '🟢 Setup Node.js 18.x'
uses: actions/setup-node@v4
with:
node-version: 18.x
cache: "yarn"
cache-dependency-path: ./docs/yarn.lock
- name: '📦 Install Node Dependencies'
run: yarn install --immutable --mode=skip-build
working-directory: ./docs
- name: '🔍 Scan Documentation for Broken Links'
run: yarn check-broken-links
working-directory: ./docs

View File

@@ -1,12 +1,14 @@
name: '🔍 Check `core` Version Equality'
# Ensures version numbers in pyproject.toml and version.py stay in sync
# Prevents releases with mismatched version numbers
# Ensures version numbers in pyproject.toml and version.py stay in sync.
#
# (Prevents releases with mismatched version numbers)
name: "🔍 Check Version Equality"
on:
pull_request:
paths:
- 'libs/core/pyproject.toml'
- 'libs/core/langchain_core/version.py'
- "libs/core/pyproject.toml"
- "libs/core/langchain_core/version.py"
permissions:
contents: read
@@ -16,19 +18,34 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '✅ Verify pyproject.toml & version.py Match'
- name: "✅ Verify pyproject.toml & version.py Match"
run: |
PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Check core versions
CORE_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
CORE_VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
# Compare the two versions
if [ "$PYPROJECT_VERSION" != "$VERSION_PY_VERSION" ]; then
# Compare core versions
if [ "$CORE_PYPROJECT_VERSION" != "$CORE_VERSION_PY_VERSION" ]; then
echo "langchain-core versions in pyproject.toml and version.py do not match!"
echo "pyproject.toml version: $PYPROJECT_VERSION"
echo "version.py version: $VERSION_PY_VERSION"
echo "pyproject.toml version: $CORE_PYPROJECT_VERSION"
echo "version.py version: $CORE_VERSION_PY_VERSION"
exit 1
else
echo "Versions match: $PYPROJECT_VERSION"
echo "Core versions match: $CORE_PYPROJECT_VERSION"
fi
# Check langchain_v1 versions
LANGCHAIN_PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/langchain_v1/pyproject.toml)
LANGCHAIN_INIT_PY_VERSION=$(grep -Po '(?<=^__version__ = ")[^"]*' libs/langchain_v1/langchain/__init__.py)
# Compare langchain_v1 versions
if [ "$LANGCHAIN_PYPROJECT_VERSION" != "$LANGCHAIN_INIT_PY_VERSION" ]; then
echo "langchain_v1 versions in pyproject.toml and __init__.py do not match!"
echo "pyproject.toml version: $LANGCHAIN_PYPROJECT_VERSION"
echo "version.py version: $LANGCHAIN_INIT_PY_VERSION"
exit 1
else
echo "Langchain v1 versions match: $LANGCHAIN_PYPROJECT_VERSION"
fi

View File

@@ -1,4 +1,18 @@
name: '🔧 CI'
# Primary CI workflow.
#
# Only runs against packages that have changed files.
#
# Runs:
# - Linting (_lint.yml)
# - Unit Tests (_test.yml)
# - Pydantic compatibility tests (_test_pydantic.yml)
# - Integration test compilation checks (_compile_integration_test.yml)
# - Extended test suites that require additional dependencies
# - Codspeed benchmarks (if not labeled 'codspeed-ignore')
#
# Reports status to GitHub checks and PR status.
name: "🔧 CI"
on:
push:
@@ -11,8 +25,8 @@ on:
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
# a limited number of job runners to be active at the same time, so it's better to
# cancel pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
@@ -28,20 +42,20 @@ jobs:
# This job analyzes which files changed and creates a dynamic test matrix
# to only run tests/lints for the affected packages, improving CI efficiency
build:
name: 'Detect Changes & Set Matrix'
name: "Detect Changes & Set Matrix"
runs-on: ubuntu-latest
if: ${{ !contains(github.event.pull_request.labels.*.name, 'ci-ignore') }}
steps:
- name: '📋 Checkout Code'
uses: actions/checkout@v4
- name: '🐍 Setup Python 3.11'
uses: actions/setup-python@v5
- name: "📋 Checkout Code"
uses: actions/checkout@v5
- name: "🐍 Setup Python 3.11"
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: '📂 Get Changed Files'
python-version: "3.11"
- name: "📂 Get Changed Files"
id: files
uses: Ana06/get-changed-files@v2.3.0
- name: '🔍 Analyze Changed Files & Generate Build Matrix'
- name: "🔍 Analyze Changed Files & Generate Build Matrix"
id: set-matrix
run: |
python -m pip install packaging requests
@@ -52,11 +66,11 @@ jobs:
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }}
codspeed: ${{ steps.set-matrix.outputs.codspeed }}
# Run linting only on packages that have changed files
lint:
needs: [ build ]
needs: [build]
if: ${{ needs.build.outputs.lint != '[]' }}
strategy:
matrix:
@@ -70,7 +84,7 @@ jobs:
# Run unit tests only on packages that have changed files
test:
needs: [ build ]
needs: [build]
if: ${{ needs.build.outputs.test != '[]' }}
strategy:
matrix:
@@ -84,7 +98,7 @@ jobs:
# Test compatibility with different Pydantic versions for affected packages
test-pydantic:
needs: [ build ]
needs: [build]
if: ${{ needs.build.outputs.test-pydantic != '[]' }}
strategy:
matrix:
@@ -96,21 +110,10 @@ jobs:
pydantic-version: ${{ matrix.job-configs.pydantic-version }}
secrets: inherit
test-doc-imports:
needs: [ build ]
if: ${{ needs.build.outputs.test-doc-imports != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.test-doc-imports) }}
fail-fast: false
uses: ./.github/workflows/_test_doc_imports.yml
with:
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
# Verify integration tests compile without actually running them (faster feedback)
compile-integration-tests:
needs: [ build ]
name: "Compile Integration Tests"
needs: [build]
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
strategy:
matrix:
@@ -124,8 +127,8 @@ jobs:
# Run extended test suites that require additional dependencies
extended-tests:
name: 'Extended Tests'
needs: [ build ]
name: "Extended Tests"
needs: [build]
if: ${{ needs.build.outputs.extended-tests != '[]' }}
strategy:
matrix:
@@ -138,14 +141,16 @@ jobs:
run:
working-directory: ${{ matrix.job-configs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v5
- name: '🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV'
- name: "🐍 Set up Python ${{ matrix.job-configs.python-version }} + UV"
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ matrix.job-configs.python-version }}
cache-suffix: extended-tests-${{ matrix.job-configs.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
- name: '📦 Install Dependencies & Run Extended Tests'
- name: "📦 Install Dependencies & Run Extended Tests"
shell: bash
run: |
echo "Running extended tests, installing dependencies with uv..."
@@ -154,7 +159,7 @@ jobs:
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
VIRTUAL_ENV=.venv make extended_tests
- name: '🧹 Verify Clean Working Directory'
- name: "🧹 Verify Clean Working Directory"
shell: bash
run: |
set -eu
@@ -166,10 +171,80 @@ jobs:
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
# Run codspeed benchmarks only on packages that have changed files
codspeed:
name: "⚡ CodSpeed Benchmarks"
needs: [build]
if: ${{ needs.build.outputs.codspeed != '[]' && !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
runs-on: ubuntu-latest
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.codspeed) }}
fail-fast: false
steps:
- uses: actions/checkout@v5
- name: "📦 Install UV Package Manager"
uses: astral-sh/setup-uv@v7
with:
python-version: "3.13"
- uses: actions/setup-python@v6
with:
python-version: "3.13"
- name: "📦 Install Test Dependencies"
run: uv sync --group test
working-directory: ${{ matrix.job-configs.working-directory }}
- name: "⚡ Run Benchmarks: ${{ matrix.job-configs.working-directory }}"
uses: CodSpeedHQ/action@v4
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
with:
token: ${{ secrets.CODSPEED_TOKEN }}
run: |
cd ${{ matrix.job-configs.working-directory }}
if [ "${{ matrix.job-configs.working-directory }}" = "libs/core" ]; then
uv run --no-sync pytest ./tests/benchmarks --codspeed
else
uv run --no-sync pytest ./tests/ --codspeed
fi
mode: ${{ matrix.job-configs.working-directory == 'libs/core' && 'walltime' || 'instrumentation' }}
# Final status check - ensures all required jobs passed before allowing merge
ci_success:
name: '✅ CI Success'
needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic]
name: "✅ CI Success"
needs:
[
build,
lint,
test,
compile-integration-tests,
extended-tests,
test-pydantic,
codspeed,
]
if: |
always()
runs-on: ubuntu-latest
@@ -178,7 +253,7 @@ jobs:
RESULTS_JSON: ${{ toJSON(needs.*.result) }}
EXIT_CODE: ${{!contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && '0' || '1'}}
steps:
- name: '🎉 All Checks Passed'
- name: "🎉 All Checks Passed"
run: |
echo $JOBS_JSON
echo $RESULTS_JSON

View File

@@ -1,38 +0,0 @@
name: '📑 Integration Docs Lint'
on:
push:
branches: [master]
pull_request:
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
contents: read
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.3.0
with:
filter: |
*.ipynb
*.md
*.mdx
- name: '🔍 Check New Documentation Templates'
run: |
python docs/scripts/check_templates.py ${{ steps.files.outputs.added }}

View File

@@ -1,66 +0,0 @@
name: '⚡ CodSpeed'
on:
push:
branches:
- master
pull_request:
workflow_dispatch:
permissions:
contents: read
env:
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: foo
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: foo
DEEPSEEK_API_KEY: foo
FIREWORKS_API_KEY: foo
jobs:
codspeed:
name: 'Benchmark'
runs-on: ubuntu-latest
if: ${{ !contains(github.event.pull_request.labels.*.name, 'codspeed-ignore') }}
strategy:
matrix:
include:
- working-directory: libs/core
mode: walltime
- working-directory: libs/partners/openai
- working-directory: libs/partners/anthropic
- working-directory: libs/partners/deepseek
- working-directory: libs/partners/fireworks
- working-directory: libs/partners/xai
- working-directory: libs/partners/mistralai
- working-directory: libs/partners/groq
fail-fast: false
steps:
- uses: actions/checkout@v4
# We have to use 3.12 as 3.13 is not yet supported
- name: '📦 Install UV Package Manager'
uses: astral-sh/setup-uv@v6
with:
python-version: "3.12"
- uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: '📦 Install Test Dependencies'
run: uv sync --group test
working-directory: ${{ matrix.working-directory }}
- name: '⚡ Run Benchmarks: ${{ matrix.working-directory }}'
uses: CodSpeedHQ/action@v3
with:
token: ${{ secrets.CODSPEED_TOKEN }}
run: |
cd ${{ matrix.working-directory }}
if [ "${{ matrix.working-directory }}" = "libs/core" ]; then
uv run --no-sync pytest ./tests/benchmarks --codspeed
else
uv run --no-sync pytest ./tests/ --codspeed
fi
mode: ${{ matrix.mode || 'instrumentation' }}

View File

@@ -1,10 +0,0 @@
import toml
pyproject_toml = toml.load("pyproject.toml")
# Extract the ignore words list (adjust the key as per your TOML structure)
ignore_words_list = (
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
)
print(f"::set-output name=ignore_words_list::{ignore_words_list}")

181
.github/workflows/integration_tests.yml vendored Normal file
View File

@@ -0,0 +1,181 @@
# Routine integration tests against partner libraries with live API credentials.
#
# Uses `make integration_tests` for each library in the matrix.
#
# Runs daily. Can also be triggered manually for immediate updates.
name: "⏰ Integration Tests"
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.10, 3.13' }})"
on:
workflow_dispatch:
inputs:
working-directory-force:
type: string
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
python-version-force:
type: string
description: "Python version to use - defaults to 3.10 and 3.13 in matrix - example value: 3.11"
schedule:
- cron: "0 13 * * *" # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
permissions:
contents: read
env:
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
jobs:
# Generate dynamic test matrix based on input parameters or defaults
# Only runs on the main repo (for scheduled runs) or when manually triggered
compute-matrix:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
name: "📋 Compute Test Matrix"
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: "🔢 Generate Python & Library Matrix"
id: set-matrix
env:
DEFAULT_LIBS: ${{ env.DEFAULT_LIBS }}
WORKING_DIRECTORY_FORCE: ${{ github.event.inputs.working-directory-force || '' }}
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
run: |
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
# python-version should default to 3.10 and 3.13, but is overridden to [PYTHON_VERSION_FORCE] if set
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
python_version='["3.10", "3.13"]'
working_directory="$DEFAULT_LIBS"
if [ -n "$PYTHON_VERSION_FORCE" ]; then
python_version="[\"$PYTHON_VERSION_FORCE\"]"
fi
if [ -n "$WORKING_DIRECTORY_FORCE" ]; then
working_directory="[\"$WORKING_DIRECTORY_FORCE\"]"
fi
matrix="{\"python-version\": $python_version, \"working-directory\": $working_directory}"
echo $matrix
echo "matrix=$matrix" >> $GITHUB_OUTPUT
# Run integration tests against partner libraries with live API credentials
build:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
name: "🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}"
runs-on: ubuntu-latest
needs: [compute-matrix]
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ${{ fromJSON(needs.compute-matrix.outputs.matrix).python-version }}
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
steps:
- uses: actions/checkout@v5
with:
path: langchain
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain-aws
path: langchain-aws
- name: "📦 Organize External Libraries"
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: "🐍 Set up Python ${{ matrix.python-version }} + UV"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
- name: "🔐 Authenticate to Google Cloud"
id: "auth"
uses: google-github-actions/auth@v3
with:
credentials_json: "${{ secrets.GOOGLE_CREDENTIALS }}"
- name: "🔐 Configure AWS Credentials"
uses: aws-actions/configure-aws-credentials@v5
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: "📦 Install Dependencies"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
uv sync --group test --group test_integration
- name: "🚀 Run Integration Tests"
env:
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
ES_URL: ${{ secrets.ES_URL }}
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
ES_API_KEY: ${{ secrets.ES_API_KEY }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
LANGCHAIN_TESTS_USER_AGENT: ${{ secrets.LANGCHAIN_TESTS_USER_AGENT }}
run: |
cd langchain/${{ matrix.working-directory }}
make integration_tests
- name: "🧹 Clean up External Libraries"
# Clean up external libraries to avoid affecting the following git status check
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/aws
- name: "🧹 Verify Clean Working Directory"
working-directory: langchain
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,28 +0,0 @@
name: '👥 LangChain People'
run-name: 'Update People Data'
# This workflow updates the LangChain People data by fetching the latest information from the LangChain Git
on:
schedule:
- cron: "0 14 1 * *"
push:
branches: [jacob/people]
workflow_dispatch:
jobs:
langchain-people:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: '📋 Dump GitHub Context'
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- uses: actions/checkout@v4
# Ref: https://github.com/actions/runner/issues/2033
- name: '🔧 Fix Git Safe Directory in Container'
run: mkdir -p /home/runner/work/_temp/_github_home && printf "[safe]\n\tdirectory = /github/workspace" > /home/runner/work/_temp/_github_home/.gitconfig
- uses: ./.github/actions/people
with:
token: ${{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}

28
.github/workflows/pr_labeler_file.yml vendored Normal file
View File

@@ -0,0 +1,28 @@
# Label PRs based on changed files.
#
# See `.github/pr-file-labeler.yml` to see rules for each label/directory.
name: "🏷️ Pull Request Labeler"
on:
# Safe since we're not checking out or running the PR's code
# Never check out the PR's head in a pull_request_target job
pull_request_target:
types: [opened, synchronize, reopened, edited]
jobs:
labeler:
name: "label"
permissions:
contents: read
pull-requests: write
issues: write
runs-on: ubuntu-latest
steps:
- name: Label Pull Request
uses: actions/labeler@v6
with:
repo-token: "${{ secrets.GITHUB_TOKEN }}"
configuration-path: .github/pr-file-labeler.yml
sync-labels: false

44
.github/workflows/pr_labeler_title.yml vendored Normal file
View File

@@ -0,0 +1,44 @@
# Label PRs based on their titles.
#
# Uses conventional commit types from PR titles to apply labels.
# Note: Scope-based labeling (e.g., integration labels) is handled by pr_labeler_file.yml
name: "🏷️ PR Title Labeler"
on:
# Safe since we're not checking out or running the PR's code
# Never check out the PR's head in a pull_request_target job
pull_request_target:
types: [opened, edited]
jobs:
pr-title-labeler:
name: "label"
permissions:
contents: read
pull-requests: write
issues: write
runs-on: ubuntu-latest
steps:
- name: Label PR based on title
uses: bcoe/conventional-release-labels@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
type_labels: >-
{
"feat": "feature",
"fix": "fix",
"docs": "documentation",
"style": "linting",
"refactor": "refactor",
"perf": "performance",
"test": "tests",
"build": "infra",
"ci": "infra",
"chore": "infra",
"revert": "revert",
"release": "release",
"breaking": "breaking"
}
ignored_types: '[]'

View File

@@ -1,52 +1,50 @@
# -----------------------------------------------------------------------------
# PR Title Lint Workflow
# PR title linting.
#
# Purpose:
# Enforces Conventional Commits format for pull request titles to maintain a
# clear, consistent, and machine-readable change history across our repository.
# This helps with automated changelog generation and semantic versioning.
# FORMAT (Conventional Commits 1.0.0):
#
# Enforced Commit Message Format (Conventional Commits 1.0.0):
# <type>[optional scope]: <description>
# [optional body]
# [optional footer(s)]
#
# Examples:
# feat(core): add multitenant support
# fix(cli): resolve flag parsing error
# docs: update API usage examples
# docs(openai): update API usage examples
#
# Allowed Types:
# feat — a new feature (MINOR bump)
# fix — a bug fix (PATCH bump)
# docs — documentation only changes
# style — formatting, missing semi-colons, etc.; no code change
# refactor — code change that neither fixes a bug nor adds a feature
# perf — code change that improves performance
# test — adding missing tests or correcting existing tests
# build — changes that affect the build system or external dependencies
# ci — continuous integration/configuration changes
# chore — other changes that don't modify src or test files
# revert — reverts a previous commit
# release — prepare a new release
# * feat — a new feature (MINOR)
# * fix — a bug fix (PATCH)
# * docs — documentation only changes
# * style — formatting, linting, etc.; no code change or typing refactors
# * refactor — code change that neither fixes a bug nor adds a feature
# * perf — code change that improves performance
# * test — adding tests or correcting existing
# * build — changes that affect the build system/external dependencies
# * ci — continuous integration/configuration changes
# * chore — other changes that don't modify source or test files
# * revert — reverts a previous commit
# * release — prepare a new release
#
# Allowed Scopes (optional):
# core, cli, langchain, standard-tests, docs, anthropic, chroma, deepseek,
# exa, fireworks, groq, huggingface, mistralai, nomic, ollama, openai,
# perplexity, prompty, qdrant, xai
# Allowed Scope(s) (optional):
# core, cli, langchain, langchain_v1, langchain-classic, standard-tests,
# text-splitters, docs, anthropic, chroma, deepseek, exa, fireworks, groq,
# huggingface, mistralai, nomic, ollama, openai, perplexity, prompty, qdrant,
# xai, infra, deps
#
# Rules & Tips for New Committers:
# 1. Subject (type) must start with a lowercase letter and, if possible, be
# followed by a scope wrapped in parenthesis `(scope)`
# 2. Breaking changes:
# Append "!" after type/scope (e.g., feat!: drop Node 12 support)
# Or include a footer "BREAKING CHANGE: <details>"
# 3. Example PR titles:
# feat(core): add multitenant support
# fix(cli): resolve flag parsing error
# docs: update API usage examples
# docs(openai): update API usage examples
# Multiple scopes can be used by separating them with a comma.
#
# Resources:
# • Conventional Commits spec: https://www.conventionalcommits.org/en/v1.0.0/
# -----------------------------------------------------------------------------
# Rules:
# 1. The 'Type' must start with a lowercase letter.
# 2. Breaking changes: append "!" after type/scope (e.g., feat!: drop x support)
# 3. When releasing (updating the pyproject.toml and uv.lock), the commit message
# should be: `release(scope): x.y.z` (e.g., `release(core): 1.2.0` with no
# body, footer, or preceeding/proceeding text).
#
# Enforces Conventional Commits format for pull request titles to maintain a clear and
# machine-readable change history.
name: '🏷️ PR Title Lint'
name: "🏷️ PR Title Lint"
permissions:
pull-requests: read
@@ -56,13 +54,13 @@ on:
types: [opened, edited, synchronize]
jobs:
# Validates that PR title follows Conventional Commits specification
# Validates that PR title follows Conventional Commits 1.0.0 specification
lint-pr-title:
name: 'Validate PR Title Format'
name: "validate format"
runs-on: ubuntu-latest
steps:
- name: '✅ Validate Conventional Commits Format'
uses: amannn/action-semantic-pull-request@v5
- name: "✅ Validate Conventional Commits Format"
uses: amannn/action-semantic-pull-request@v6
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
@@ -83,7 +81,8 @@ jobs:
core
cli
langchain
langchain_v1
langchain-classic
model-profiles
standard-tests
text-splitters
docs

View File

@@ -1,75 +0,0 @@
name: '📓 Validate Documentation Notebooks'
run-name: 'Test notebooks in ${{ inputs.working-directory }}'
on:
workflow_dispatch:
inputs:
python_version:
description: 'Python version'
required: false
default: '3.11'
working-directory:
description: 'Working directory or subset (e.g., docs/docs/tutorials/llm_chain.ipynb or docs/docs/how_to)'
required: false
default: 'all'
schedule:
- cron: '0 13 * * *'
permissions:
contents: read
env:
UV_FROZEN: "true"
jobs:
build:
runs-on: ubuntu-latest
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
name: '📑 Test Documentation Notebooks'
steps:
- uses: actions/checkout@v4
- name: '🐍 Set up Python + UV'
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ github.event.inputs.python_version || '3.11' }}
- name: '🔐 Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: '🔐 Configure AWS Credentials'
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: '📦 Install Dependencies'
run: |
uv sync --group dev --group test
- name: '📦 Pre-download Test Files'
run: |
uv run python docs/scripts/cache_data.py
curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 docs/docs/how_to/Chinook.db
cp docs/docs/how_to/Chinook.db docs/docs/tutorials/Chinook.db
- name: '🔧 Prepare Notebooks for CI'
run: |
uv run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
- name: '🚀 Execute Notebooks'
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TAVILY_API_KEY: ${{ secrets.TAVILY_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
WORKING_DIRECTORY: ${{ github.event.inputs.working-directory || 'all' }}
run: |
./docs/scripts/execute_notebooks.sh $WORKING_DIRECTORY

View File

@@ -1,181 +0,0 @@
name: '⏰ Scheduled Integration Tests'
run-name: "Run Integration Tests - ${{ inputs.working-directory-force || 'all libs' }} (Python ${{ inputs.python-version-force || '3.9, 3.11' }})"
on:
workflow_dispatch: # Allows maintainers to trigger the workflow manually in GitHub UI
inputs:
working-directory-force:
type: string
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
python-version-force:
type: string
description: "Python version to use - defaults to 3.9 and 3.11 in matrix - example value: 3.9"
schedule:
- cron: '0 13 * * *' # Runs daily at 1PM UTC (9AM EDT/6AM PDT)
permissions:
contents: read
env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
jobs:
# Generate dynamic test matrix based on input parameters or defaults
# Only runs on the main repo (for scheduled runs) or when manually triggered
compute-matrix:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
name: '📋 Compute Test Matrix'
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: '🔢 Generate Python & Library Matrix'
id: set-matrix
env:
DEFAULT_LIBS: ${{ env.DEFAULT_LIBS }}
WORKING_DIRECTORY_FORCE: ${{ github.event.inputs.working-directory-force || '' }}
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
run: |
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
# python-version should default to 3.9 and 3.11, but is overridden to [PYTHON_VERSION_FORCE] if set
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
python_version='["3.9", "3.11"]'
working_directory="$DEFAULT_LIBS"
if [ -n "$PYTHON_VERSION_FORCE" ]; then
python_version="[\"$PYTHON_VERSION_FORCE\"]"
fi
if [ -n "$WORKING_DIRECTORY_FORCE" ]; then
working_directory="[\"$WORKING_DIRECTORY_FORCE\"]"
fi
matrix="{\"python-version\": $python_version, \"working-directory\": $working_directory}"
echo $matrix
echo "matrix=$matrix" >> $GITHUB_OUTPUT
# Run integration tests against partner libraries with live API credentials
# Tests are run with both Poetry and UV depending on the library's setup
build:
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
name: '🐍 Python ${{ matrix.python-version }}: ${{ matrix.working-directory }}'
runs-on: ubuntu-latest
needs: [compute-matrix]
timeout-minutes: 20
strategy:
fail-fast: false
matrix:
python-version: ${{ fromJSON(needs.compute-matrix.outputs.matrix).python-version }}
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
steps:
- uses: actions/checkout@v4
with:
path: langchain
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-aws
path: langchain-aws
- name: '📦 Organize External Libraries'
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: '🐍 Set up Python ${{ matrix.python-version }} + Poetry'
if: contains(env.POETRY_LIBS, matrix.working-directory)
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: langchain/${{ matrix.working-directory }}
cache-key: scheduled
- name: '🐍 Set up Python ${{ matrix.python-version }} + UV'
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
- name: '🔐 Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: '🔐 Configure AWS Credentials'
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: '📦 Install Dependencies (Poetry)'
if: contains(env.POETRY_LIBS, matrix.working-directory)
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
cd langchain/${{ matrix.working-directory }}
poetry install --with=test_integration,test
- name: '📦 Install Dependencies (UV)'
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
uv sync --group test --group test_integration
- name: '🚀 Run Integration Tests'
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
ANTHROPIC_FILES_API_IMAGE_ID: ${{ secrets.ANTHROPIC_FILES_API_IMAGE_ID }}
ANTHROPIC_FILES_API_PDF_ID: ${{ secrets.ANTHROPIC_FILES_API_PDF_ID }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
run: |
cd langchain/${{ matrix.working-directory }}
make integration_tests
- name: '🧹 Clean up External Libraries'
# Clean up external libraries to avoid affecting git status check
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/aws
- name: '🧹 Verify Clean Working Directory'
working-directory: langchain
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

164
.github/workflows/v03_api_doc_build.yml vendored Normal file
View File

@@ -0,0 +1,164 @@
# Build the API reference documentation for v0.3 branch.
#
# Manual trigger only.
#
# Built HTML pushed to langchain-ai/langchain-api-docs-html.
#
# Looks for langchain-ai org repos in packages.yml and checks them out.
# Calls prep_api_docs_build.py.
name: "📚 API Docs (v0.3)"
run-name: "Build & Deploy API Reference (v0.3)"
on:
workflow_dispatch:
env:
PYTHON_VERSION: "3.11"
jobs:
build:
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v5
with:
ref: v0.3
path: langchain
- uses: actions/checkout@v5
with:
repository: langchain-ai/langchain-api-docs-html
path: langchain-api-docs-html
token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }}
- name: "📋 Extract Repository List with yq"
id: get-unsorted-repos
uses: mikefarah/yq@master
with:
cmd: |
# Extract repos from packages.yml that are in the langchain-ai org
# (excluding 'langchain' itself)
yq '
.packages[]
| select(
(
(.repo | test("^langchain-ai/"))
and
(.repo != "langchain-ai/langchain")
)
or
(.include_in_api_ref // false)
)
| .repo
' langchain/libs/packages.yml
- name: "📋 Parse YAML & Checkout Repositories"
env:
REPOS_UNSORTED: ${{ steps.get-unsorted-repos.outputs.result }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Get unique repositories
REPOS=$(echo "$REPOS_UNSORTED" | sort -u)
# Checkout each unique repository
for repo in $REPOS; do
# Validate repository format (allow any org with proper format)
if [[ ! "$repo" =~ ^[a-zA-Z0-9_.-]+/[a-zA-Z0-9_.-]+$ ]]; then
echo "Error: Invalid repository format: $repo"
exit 1
fi
REPO_NAME=$(echo $repo | cut -d'/' -f2)
# Additional validation for repo name
if [[ ! "$REPO_NAME" =~ ^[a-zA-Z0-9_.-]+$ ]]; then
echo "Error: Invalid repository name: $REPO_NAME"
exit 1
fi
echo "Checking out $repo to $REPO_NAME"
# Special handling for langchain-tavily: checkout by commit hash
if [[ "$REPO_NAME" == "langchain-tavily" ]]; then
git clone https://github.com/$repo.git $REPO_NAME
cd $REPO_NAME
git checkout f3515654724a9e87bdfe2c2f509d6cdde646e563
cd ..
else
git clone --depth 1 --branch v0.3 https://github.com/$repo.git $REPO_NAME
fi
done
- name: "🐍 Setup Python ${{ env.PYTHON_VERSION }}"
uses: actions/setup-python@v6
id: setup-python
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: "📦 Install Initial Python Dependencies using uv"
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
- name: "📦 Organize Library Directories"
# Places cloned partner packages into libs/partners structure
run: python langchain/.github/scripts/prep_api_docs_build.py
- name: "🧹 Clear Prior Build"
run:
# Remove artifacts from prior docs build
rm -rf langchain-api-docs-html/api_reference_build/html
- name: "📦 Install Documentation Dependencies using uv"
working-directory: langchain
run: |
# Install all partner packages in editable mode with overrides
python -m uv pip install $(ls ./libs/partners | grep -v azure-ai | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt --prerelease=allow
# Install langchain-azure-ai with tools extra
python -m uv pip install "./libs/partners/azure-ai[tools]" --overrides ./docs/vercel_overrides.txt --prerelease=allow
# Install core langchain and other main packages
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
# Install Sphinx and related packages for building docs
python -m uv pip install -r docs/api_reference/requirements.txt
- name: "🔧 Configure Git Settings"
working-directory: langchain
run: |
git config --local user.email "actions@github.com"
git config --local user.name "Github Actions"
- name: "📚 Build API Documentation"
working-directory: langchain
run: |
# Generate the API reference RST files
python docs/api_reference/create_api_rst.py
# Build the HTML documentation using Sphinx
# -T: show full traceback on exception
# -E: don't use cached environment (force rebuild, ignore cached doctrees)
# -b html: build HTML docs (vs PDS, etc.)
# -d: path for the cached environment (parsed document trees / doctrees)
# - Separate from output dir for faster incremental builds
# -c: path to conf.py
# -j auto: parallel build using all available CPU cores
python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto
# Post-process the generated HTML
python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html
# Default index page is blank so we copy in the actual home page.
cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html
# Removes Sphinx's intermediate build artifacts after the build is complete.
rm -rf ../langchain-api-docs-html/_build/
# Commit and push changes to langchain-api-docs-html repo
- uses: EndBug/add-and-commit@v9
with:
cwd: langchain-api-docs-html
message: "Update API docs build from v0.3 branch"

8
.github/workflows/v1_changes.md vendored Normal file
View File

@@ -0,0 +1,8 @@
With the deprecation of v0 docs, the following files will need to be migrated/supported
in the new docs repo:
- run_notebooks.yml: New repo should run Integration tests on code snippets?
- people.yml: Need to fix and somehow display on the new docs site
- Subsequently, `.github/actions/people/`
- _test_doc_imports.yml
- check-broken-links.yml

29
.gitignore vendored
View File

@@ -1,5 +1,8 @@
.vs/
.claude/
.idea/
#Emacs backup
*~
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -77,10 +80,6 @@ instance/
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
docs/docs/_build/
# PyBuilder
target/
@@ -161,25 +160,9 @@ data_map*
*replit*
node_modules
docs/.yarn/
docs/node_modules/
docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/*api_reference.rst
docs/api_reference/*.md
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/
!docs/api_reference/templates/
!docs/api_reference/themes/
!docs/api_reference/_extensions/
!docs/api_reference/scripts/
docs/docs/build
docs/docs/node_modules
docs/docs/yarn.lock
_dist
docs/docs/templates
prof
virtualenv/
scratch/
.langgraph_api/

8
.mcp.json Normal file
View File

@@ -0,0 +1,8 @@
{
"mcpServers": {
"docs-langchain": {
"type": "http",
"url": "https://docs.langchain.com/mcp"
}
}
}

View File

@@ -2,110 +2,98 @@ repos:
- repo: local
hooks:
- id: core
name: format core
name: format and lint core
language: system
entry: make -C libs/core format
entry: make -C libs/core format lint
files: ^libs/core/
pass_filenames: false
- id: langchain
name: format langchain
name: format and lint langchain
language: system
entry: make -C libs/langchain format
entry: make -C libs/langchain format lint
files: ^libs/langchain/
pass_filenames: false
- id: standard-tests
name: format standard-tests
name: format and lint standard-tests
language: system
entry: make -C libs/standard-tests format
entry: make -C libs/standard-tests format lint
files: ^libs/standard-tests/
pass_filenames: false
- id: text-splitters
name: format text-splitters
name: format and lint text-splitters
language: system
entry: make -C libs/text-splitters format
entry: make -C libs/text-splitters format lint
files: ^libs/text-splitters/
pass_filenames: false
- id: anthropic
name: format partners/anthropic
name: format and lint partners/anthropic
language: system
entry: make -C libs/partners/anthropic format
entry: make -C libs/partners/anthropic format lint
files: ^libs/partners/anthropic/
pass_filenames: false
- id: chroma
name: format partners/chroma
name: format and lint partners/chroma
language: system
entry: make -C libs/partners/chroma format
entry: make -C libs/partners/chroma format lint
files: ^libs/partners/chroma/
pass_filenames: false
- id: couchbase
name: format partners/couchbase
language: system
entry: make -C libs/partners/couchbase format
files: ^libs/partners/couchbase/
pass_filenames: false
- id: exa
name: format partners/exa
name: format and lint partners/exa
language: system
entry: make -C libs/partners/exa format
entry: make -C libs/partners/exa format lint
files: ^libs/partners/exa/
pass_filenames: false
- id: fireworks
name: format partners/fireworks
name: format and lint partners/fireworks
language: system
entry: make -C libs/partners/fireworks format
entry: make -C libs/partners/fireworks format lint
files: ^libs/partners/fireworks/
pass_filenames: false
- id: groq
name: format partners/groq
name: format and lint partners/groq
language: system
entry: make -C libs/partners/groq format
entry: make -C libs/partners/groq format lint
files: ^libs/partners/groq/
pass_filenames: false
- id: huggingface
name: format partners/huggingface
name: format and lint partners/huggingface
language: system
entry: make -C libs/partners/huggingface format
entry: make -C libs/partners/huggingface format lint
files: ^libs/partners/huggingface/
pass_filenames: false
- id: mistralai
name: format partners/mistralai
name: format and lint partners/mistralai
language: system
entry: make -C libs/partners/mistralai format
entry: make -C libs/partners/mistralai format lint
files: ^libs/partners/mistralai/
pass_filenames: false
- id: nomic
name: format partners/nomic
name: format and lint partners/nomic
language: system
entry: make -C libs/partners/nomic format
entry: make -C libs/partners/nomic format lint
files: ^libs/partners/nomic/
pass_filenames: false
- id: ollama
name: format partners/ollama
name: format and lint partners/ollama
language: system
entry: make -C libs/partners/ollama format
entry: make -C libs/partners/ollama format lint
files: ^libs/partners/ollama/
pass_filenames: false
- id: openai
name: format partners/openai
name: format and lint partners/openai
language: system
entry: make -C libs/partners/openai format
entry: make -C libs/partners/openai format lint
files: ^libs/partners/openai/
pass_filenames: false
- id: prompty
name: format partners/prompty
name: format and lint partners/prompty
language: system
entry: make -C libs/partners/prompty format
entry: make -C libs/partners/prompty format lint
files: ^libs/partners/prompty/
pass_filenames: false
- id: qdrant
name: format partners/qdrant
name: format and lint partners/qdrant
language: system
entry: make -C libs/partners/qdrant format
entry: make -C libs/partners/qdrant format lint
files: ^libs/partners/qdrant/
pass_filenames: false
- id: root
name: format docs, cookbook
language: system
entry: make format
files: ^(docs|cookbook)/
pass_filenames: false

View File

@@ -1,25 +0,0 @@
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version: 2
# Set the version of Python and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.11"
commands:
- mkdir -p $READTHEDOCS_OUTPUT
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/api_reference/conf.py
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats:
- pdf
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/api_reference/requirements.txt

16
.vscode/settings.json vendored
View File

@@ -1,17 +1,12 @@
{
"python.analysis.include": [
"libs/**",
"docs/**",
"cookbook/**"
],
"python.analysis.exclude": [
"**/node_modules",
"**/__pycache__",
"**/.pytest_cache",
"**/.*",
"_dist/**",
"docs/_build/**",
"docs/api_reference/_build/**"
],
"python.analysis.autoImportCompletions": true,
"python.analysis.typeCheckingMode": "basic",
@@ -41,8 +36,6 @@
"**/.mypy_cache": true,
"**/.ruff_cache": true,
"_dist/**": true,
"docs/_build/**": true,
"docs/api_reference/_build/**": true,
"**/node_modules": true,
"**/.git": false
},
@@ -50,8 +43,6 @@
"**/__pycache__": true,
"**/*.pyc": true,
"_dist/**": true,
"docs/_build/**": true,
"docs/api_reference/_build/**": true,
"**/node_modules": true,
"**/.git": true,
"uv.lock": true,
@@ -78,5 +69,10 @@
"editor.insertSpaces": true
},
"python.terminal.activateEnvironment": false,
"python.defaultInterpreterPath": "./.venv/bin/python"
"python.defaultInterpreterPath": "./.venv/bin/python",
"github.copilot.chat.commitMessageGeneration.instructions": [
{
"file": ".github/workflows/pr_lint.yml"
}
]
}

326
AGENTS.md Normal file
View File

@@ -0,0 +1,326 @@
# Global Development Guidelines for LangChain Projects
## Core Development Principles
### 1. Maintain Stable Public Interfaces ⚠️ CRITICAL
**Always attempt to preserve function signatures, argument positions, and names for exported/public methods.**
**Bad - Breaking Change:**
```python
def get_user(id, verbose=False): # Changed from `user_id`
pass
```
**Good - Stable Interface:**
```python
def get_user(user_id: str, verbose: bool = False) -> User:
"""Retrieve user by ID with optional verbose output."""
pass
```
**Before making ANY changes to public APIs:**
- Check if the function/class is exported in `__init__.py`
- Look for existing usage patterns in tests and examples
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
### 2. Code Quality Standards
**All Python code MUST include type hints and return types.**
**Bad:**
```python
def p(u, d):
return [x for x in u if x not in d]
```
**Good:**
```python
def filter_unknown_users(users: list[str], known_users: set[str]) -> list[str]:
"""Filter out users that are not in the known users set.
Args:
users: List of user identifiers to filter.
known_users: Set of known/valid user identifiers.
Returns:
List of users that are not in the known_users set.
"""
return [user for user in users if user not in known_users]
```
**Style Requirements:**
- Use descriptive, **self-explanatory variable names**. Avoid overly short or cryptic identifiers.
- Attempt to break up complex functions (>20 lines) into smaller, focused functions where it makes sense
- Avoid unnecessary abstraction or premature optimization
- Follow existing patterns in the codebase you're modifying
### 3. Testing Requirements
**Every new feature or bugfix MUST be covered by unit tests.**
**Test Organization:**
- Unit tests: `tests/unit_tests/` (no network calls allowed)
- Integration tests: `tests/integration_tests/` (network calls permitted)
- Use `pytest` as the testing framework
**Test Quality Checklist:**
- [ ] Tests fail when your new logic is broken
- [ ] Happy path is covered
- [ ] Edge cases and error conditions are tested
- [ ] Use fixtures/mocks for external dependencies
- [ ] Tests are deterministic (no flaky tests)
Checklist questions:
- [ ] Does the test suite fail if your new logic is broken?
- [ ] Are all expected behaviors exercised (happy path, invalid input, etc)?
- [ ] Do tests use fixtures or mocks where needed?
```python
def test_filter_unknown_users():
"""Test filtering unknown users from a list."""
users = ["alice", "bob", "charlie"]
known_users = {"alice", "bob"}
result = filter_unknown_users(users, known_users)
assert result == ["charlie"]
assert len(result) == 1
```
### 4. Security and Risk Assessment
**Security Checklist:**
- No `eval()`, `exec()`, or `pickle` on user-controlled input
- Proper exception handling (no bare `except:`) and use a `msg` variable for error messages
- Remove unreachable/commented code before committing
- Race conditions or resource leaks (file handles, sockets, threads).
- Ensure proper resource cleanup (file handles, connections)
**Bad:**
```python
def load_config(path):
with open(path) as f:
return eval(f.read()) # ⚠️ Never eval config
```
**Good:**
```python
import json
def load_config(path: str) -> dict:
with open(path) as f:
return json.load(f)
```
### 5. Documentation Standards
**Use Google-style docstrings with Args section for all public functions.**
**Insufficient Documentation:**
```python
def send_email(to, msg):
"""Send an email to a recipient."""
```
**Complete Documentation:**
```python
def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
"""
Send an email to a recipient with specified priority.
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
Returns:
`True` if email was sent successfully, `False` otherwise.
Raises:
`InvalidEmailError`: If the email address format is invalid.
`SMTPConnectionError`: If unable to connect to email server.
"""
```
**Documentation Guidelines:**
- Types go in function signatures, NOT in docstrings
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Ensure American English spelling (e.g., "behavior", not "behaviour")
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.
### 6. Architectural Improvements
**When you encounter code that could be improved, suggest better designs:**
**Poor Design:**
```python
def process_data(data, db_conn, email_client, logger):
# Function doing too many things
validated = validate_data(data)
result = db_conn.save(validated)
email_client.send_notification(result)
logger.log(f"Processed {len(data)} items")
return result
```
**Better Design:**
```python
@dataclass
class ProcessingResult:
"""Result of data processing operation."""
items_processed: int
success: bool
errors: List[str] = field(default_factory=list)
class DataProcessor:
"""Handles data validation, storage, and notification."""
def __init__(self, db_conn: Database, email_client: EmailClient):
self.db = db_conn
self.email = email_client
def process(self, data: List[dict]) -> ProcessingResult:
"""Process and store data with notifications."""
validated = self._validate_data(data)
result = self.db.save(validated)
self._notify_completion(result)
return result
```
**Design Improvement Areas:**
If there's a **cleaner**, **more scalable**, or **simpler** design, highlight it and suggest improvements that would:
- Reduce code duplication through shared utilities
- Make unit testing easier
- Improve separation of concerns (single responsibility)
- Make unit testing easier through dependency injection
- Add clarity without adding complexity
- Prefer dataclasses for structured data
## Development Tools & Commands
### Package Management
```bash
# Add package
uv add package-name
# Sync project dependencies
uv sync
uv lock
```
### Testing
```bash
# Run unit tests (no network)
make test
# Don't run integration tests, as API keys must be set
# Run specific test file
uv run --group test pytest tests/unit_tests/test_specific.py
```
### Code Quality
```bash
# Lint code
make lint
# Format code
make format
# Type checking
uv run --group lint mypy .
```
### Dependency Management Patterns
**Local Development Dependencies:**
```toml
[tool.uv.sources]
langchain-core = { path = "../core", editable = true }
langchain-tests = { path = "../standard-tests", editable = true }
```
**For tools, use the `@tool` decorator from `langchain_core.tools`:**
```python
from langchain_core.tools import tool
@tool
def search_database(query: str) -> str:
"""Search the database for relevant information.
Args:
query: The search query string.
"""
# Implementation here
return results
```
## Commit Standards
**Use Conventional Commits format for PR titles:**
- `feat(core): add multi-tenant support`
- `fix(cli): resolve flag parsing error`
- `docs: update API usage examples`
- `docs(openai): update API usage examples`
## Framework-Specific Guidelines
- Follow the existing patterns in `langchain-core` for base abstractions
- Use `langchain_core.callbacks` for execution tracking
- Implement proper streaming support where applicable
- Avoid deprecated components like legacy `LLMChain`
### Partner Integrations
- Follow the established patterns in existing partner libraries
- Implement standard interfaces (`BaseChatModel`, `BaseEmbeddings`, etc.)
- Include comprehensive integration tests
- Document API key requirements and authentication
---
## Quick Reference Checklist
Before submitting code changes:
- [ ] **Breaking Changes**: Verified no public API changes
- [ ] **Type Hints**: All functions have complete type annotations
- [ ] **Tests**: New functionality is fully tested
- [ ] **Security**: No dangerous patterns (eval, silent failures, etc.)
- [ ] **Documentation**: Google-style docstrings for public functions
- [ ] **Code Quality**: `make lint` and `make format` pass
- [ ] **Architecture**: Suggested improvements where applicable
- [ ] **Commit Message**: Follows Conventional Commits format

View File

@@ -26,7 +26,7 @@ def get_user(user_id: str, verbose: bool = False) -> User:
- Check if the function/class is exported in `__init__.py`
- Look for existing usage patterns in tests and examples
- Use keyword-only arguments for new parameters: `*, new_param: str = "default"`
- Mark experimental features clearly with docstring warnings (using reStructuredText, like `.. warning::`)
- Mark experimental features clearly with docstring warnings (using MkDocs Material admonitions, like `!!! warning`)
🧠 *Ask yourself:* "Would this change break someone's code if they used it last week?"
@@ -149,24 +149,25 @@ def send_email(to: str, msg: str, *, priority: str = "normal") -> bool:
Args:
to: The email address of the recipient.
msg: The message body to send.
priority: Email priority level (``'low'``, ``'normal'``, ``'high'``).
priority: Email priority level (`'low'`, `'normal'`, `'high'`).
Returns:
True if email was sent successfully, False otherwise.
`True` if email was sent successfully, `False` otherwise.
Raises:
InvalidEmailError: If the email address format is invalid.
SMTPConnectionError: If unable to connect to email server.
`InvalidEmailError`: If the email address format is invalid.
`SMTPConnectionError`: If unable to connect to email server.
"""
```
**Documentation Guidelines:**
- Types go in function signatures, NOT in docstrings
- If a default is present, DO NOT repeat it in the docstring unless there is post-processing or it is set conditionally.
- Focus on "why" rather than "what" in descriptions
- Document all parameters, return values, and exceptions
- Keep descriptions concise but clear
- Use reStructuredText for docstrings to enable rich formatting
- Ensure American English spelling (e.g., "behavior", not "behaviour")
📌 *Tip:* Keep descriptions concise but clear. Only document return values if non-obvious.

View File

@@ -2,10 +2,8 @@
Please see the following guides for migrating LangChain code:
* Migrate to [LangChain v1.0](https://docs.langchain.com/oss/python/migrate/langchain-v1)
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
* Upgrade to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help you automatically upgrade your code to use non-deprecated imports.
This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain.

119
Makefile
View File

@@ -1,119 +0,0 @@
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
.EXPORT_ALL_VARIABLES:
UV_FROZEN = true
## help: Show this help info.
help: Makefile
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
@sed -n 's/^## //p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
## clean: Clean documentation and API documentation artifacts.
clean: docs_clean api_docs_clean
######################
# DOCUMENTATION
######################
## docs_build: Build the documentation.
docs_build: docs_clean
@echo "📚 Building LangChain documentation..."
cd docs && make build
@echo "✅ Documentation build complete!"
## docs_clean: Clean the documentation build artifacts.
docs_clean:
@echo "🧹 Cleaning documentation artifacts..."
cd docs && make clean
@echo "✅ LangChain documentation cleaned"
## docs_linkcheck: Run linkchecker on the documentation.
docs_linkcheck:
@echo "🔗 Checking documentation links..."
@if [ -d _dist/docs ]; then \
uv run --group test linkchecker _dist/docs/ --ignore-url node_modules; \
else \
echo "⚠️ Documentation not built. Run 'make docs_build' first."; \
exit 1; \
fi
@echo "✅ Link check complete"
## api_docs_build: Build the API Reference documentation.
api_docs_build: clean
@echo "📖 Building API Reference documentation..."
uv pip install -e libs/cli
uv run --group docs python docs/api_reference/create_api_rst.py
cd docs/api_reference && uv run --group docs make html
uv run --group docs python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
@echo "✅ API documentation built"
@echo "🌐 Opening documentation in browser..."
open docs/api_reference/_build/html/reference.html
API_PKG ?= text-splitters
api_docs_quick_preview: clean
@echo "⚡ Building quick API preview for $(API_PKG)..."
uv run --group docs python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && uv run --group docs make html
uv run --group docs python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
@echo "🌐 Opening preview in browser..."
open docs/api_reference/_build/html/reference.html
## api_docs_clean: Clean the API Reference documentation build artifacts.
api_docs_clean:
@echo "🧹 Cleaning API documentation artifacts..."
find ./docs/api_reference -name '*_api_reference.rst' -delete
git clean -fdX ./docs/api_reference
rm -f docs/api_reference/index.md
@echo "✅ API documentation cleaned"
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
api_docs_linkcheck:
@echo "🔗 Checking API documentation links..."
@if [ -f docs/api_reference/_build/html/index.html ]; then \
uv run --group test linkchecker docs/api_reference/_build/html/index.html; \
else \
echo "⚠️ API documentation not built. Run 'make api_docs_build' first."; \
exit 1; \
fi
@echo "✅ API link check complete"
## spell_check: Run codespell on the project.
spell_check:
@echo "✏️ Checking spelling across project..."
uv run --group codespell codespell --toml pyproject.toml
@echo "✅ Spell check complete"
## spell_fix: Run codespell on the project and fix the errors.
spell_fix:
@echo "✏️ Fixing spelling errors across project..."
uv run --group codespell codespell --toml pyproject.toml -w
@echo "✅ Spelling errors fixed"
######################
# LINTING AND FORMATTING
######################
## lint: Run linting on the project.
lint lint_package lint_tests:
@echo "🔍 Running code linting and checks..."
uv run --group lint ruff check docs cookbook
uv run --group lint ruff format docs cookbook cookbook --diff
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
echo "Error: you should link python.langchain.com/api_reference, not api.python.langchain.com in the docs" && \
exit 1
@echo "✅ Linting complete"
## format: Format the project files.
format format_diff:
@echo "🎨 Formatting project files..."
uv run --group lint ruff format docs cookbook
uv run --group lint ruff check --fix docs cookbook
@echo "✅ Formatting complete"
update-package-downloads:
@echo "📊 Updating package download statistics..."
uv run python docs/scripts/packages_yml_get_downloads.py
@echo "✅ Package downloads updated"

122
README.md
View File

@@ -1,86 +1,74 @@
<picture>
<source media="(prefers-color-scheme: light)" srcset="docs/static/img/logo-dark.svg">
<source media="(prefers-color-scheme: dark)" srcset="docs/static/img/logo-light.svg">
<img alt="LangChain Logo" src="docs/static/img/logo-dark.svg" width="80%">
</picture>
<div>
<br>
<div align="center">
<a href="https://www.langchain.com/">
<picture>
<source media="(prefers-color-scheme: light)" srcset=".github/images/logo-dark.svg">
<source media="(prefers-color-scheme: dark)" srcset=".github/images/logo-light.svg">
<img alt="LangChain Logo" src=".github/images/logo-dark.svg" width="80%">
</picture>
</a>
</div>
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/releases)
[![PyPI - License](https://img.shields.io/pypi/l/langchain-core?style=flat-square)](https://opensource.org/licenses/MIT)
[![PyPI - Downloads](https://img.shields.io/pepy/dt/langchain)](https://pypistats.org/packages/langchain-core)
[![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=flat-square)](https://star-history.com/#langchain-ai/langchain)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[<img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
[![CodSpeed Badge](https://img.shields.io/endpoint?url=https://codspeed.io/badge.json)](https://codspeed.io/langchain-ai/langchain)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
<div align="center">
<h3>The platform for reliable agents.</h3>
</div>
<div align="center">
<a href="https://opensource.org/licenses/MIT" target="_blank"><img src="https://img.shields.io/pypi/l/langchain" alt="PyPI - License"></a>
<a href="https://pypistats.org/packages/langchain" target="_blank"><img src="https://img.shields.io/pepy/dt/langchain" alt="PyPI - Downloads"></a>
<a href="https://pypi.org/project/langchain/#history" target="_blank"><img src="https://img.shields.io/pypi/v/langchain?label=%20" alt="Version"></a>
<a href="https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode" alt="Open in Dev Containers"></a>
<a href="https://codespaces.new/langchain-ai/langchain" target="_blank"><img src="https://github.com/codespaces/badge.svg" alt="Open in Github Codespace" title="Open in Github Codespace" width="150" height="20"></a>
<a href="https://codspeed.io/langchain-ai/langchain" target="_blank"><img src="https://img.shields.io/endpoint?url=https://codspeed.io/badge.json" alt="CodSpeed Badge"></a>
<a href="https://twitter.com/langchainai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI" alt="Twitter / X"></a>
</div>
LangChain is a framework for building agents and LLM-powered applications. It helps you chain together interoperable components and third-party integrations to simplify AI application development all while future-proofing decisions as the underlying technology evolves.
```bash
pip install langchain
```
If you're looking for more advanced customization or agent orchestration, check out [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview), our framework for building controllable agent workflows.
---
**Documentation**:
- [docs.langchain.com](https://docs.langchain.com/oss/python/langchain/overview) Comprehensive documentation, including conceptual overviews and guides
- [reference.langchain.com/python](https://reference.langchain.com/python) API reference docs for LangChain packages
**Discussions**: Visit the [LangChain Forum](https://forum.langchain.com) to connect with the community and share all of your technical questions, ideas, and feedback.
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
LangChain is a framework for building LLM-powered applications. It helps you chain
together interoperable components and third-party integrations to simplify AI
application development — all while future-proofing decisions as the underlying
technology evolves.
```bash
pip install -U langchain
```
To learn more about LangChain, check out
[the docs](https://python.langchain.com/docs/introduction/). If youre looking for more
advanced customization or agent orchestration, check out
[LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building
controllable agent workflows.
## Why use LangChain?
LangChain helps developers build applications powered by LLMs through a standard
interface for models, embeddings, vector stores, and more.
LangChain helps developers build applications powered by LLMs through a standard interface for models, embeddings, vector stores, and more.
Use LangChain for:
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and
external / internal systems, drawing from LangChains vast library of integrations with
model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team
experiments to find the best choice for your applications needs. As the industry
frontier evolves, adapt quickly — LangChains abstractions keep you moving without
losing momentum.
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and external/internal systems, drawing from LangChain's vast library of integrations with model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team experiments to find the best choice for your application's needs. As the industry frontier evolves, adapt quickly LangChain's abstractions keep you moving without losing momentum.
- **Rapid prototyping**. Quickly build and iterate on LLM applications with LangChain's modular, component-based architecture. Test different approaches and workflows without rebuilding from scratch, accelerating your development cycle.
- **Production-ready features**. Deploy reliable applications with built-in support for monitoring, evaluation, and debugging through integrations like LangSmith. Scale with confidence using battle-tested patterns and best practices.
- **Vibrant community and ecosystem**. Leverage a rich ecosystem of integrations, templates, and community-contributed components. Benefit from continuous improvements and stay up-to-date with the latest AI developments through an active open-source community.
- **Flexible abstraction layers**. Work at the level of abstraction that suits your needs - from high-level chains for quick starts to low-level components for fine-grained control. LangChain grows with your application's complexity.
## LangChains ecosystem
## LangChain ecosystem
While the LangChain framework can be used standalone, it also integrates seamlessly
with any LangChain product, giving developers a full suite of tools when building LLM
applications.
While the LangChain framework can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools when building LLM applications.
To improve your LLM application development, pair LangChain with:
- [LangSmith](http://www.langchain.com/langsmith) - Helpful for agent evals and
observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain
visibility in production, and improve performance over time.
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can
reliably handle complex tasks with LangGraph, our low-level agent orchestration
framework. LangGraph offers customizable architecture, long-term memory, and
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
Uber, Klarna, and GitLab.
- [LangGraph Platform](https://docs.langchain.com/langgraph-platform) - Deploy
and scale agents effortlessly with a purpose-built deployment platform for long
running, stateful workflows. Discover, reuse, configure, and share agents across
teams — and iterate quickly with visual prototyping in
[LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
- [LangGraph](https://docs.langchain.com/oss/python/langgraph/overview) Build agents that can reliably handle complex tasks with LangGraph, our low-level agent orchestration framework. LangGraph offers customizable architecture, long-term memory, and human-in-the-loop workflows and is trusted in production by companies like LinkedIn, Uber, Klarna, and GitLab.
- [Integrations](https://docs.langchain.com/oss/python/integrations/providers/overview) List of LangChain integrations, including chat & embedding models, tools & toolkits, and more
- [LangSmith](https://www.langchain.com/langsmith) Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
- [LangSmith Deployment](https://docs.langchain.com/langsmith/deployments) Deploy and scale agents effortlessly with a purpose-built deployment platform for long-running, stateful workflows. Discover, reuse, configure, and share agents across teams and iterate quickly with visual prototyping in [LangSmith Studio](https://docs.langchain.com/langsmith/studio).
- [Deep Agents](https://github.com/langchain-ai/deepagents) *(new!)* Build agents that can plan, use subagents, and leverage file systems for complex tasks
## Additional resources
- [Tutorials](https://python.langchain.com/docs/tutorials/): Simple walkthroughs with
guided examples on getting started with LangChain.
- [How-to Guides](https://python.langchain.com/docs/how_to/): Quick, actionable code
snippets for topics such as tool calling, RAG use cases, and more.
- [Conceptual Guides](https://python.langchain.com/docs/concepts/): Explanations of key
concepts behind the LangChain framework.
- [LangChain Forum](https://forum.langchain.com/): Connect with the community and share all of your technical questions, ideas, and feedback.
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
navigating base packages and integrations for LangChain.
- [Chat LangChain](https://chat.langchain.com/): Ask questions & chat with our documentation
- [API Reference](https://reference.langchain.com/python) Detailed reference on navigating base packages and integrations for LangChain.
- [Contributing Guide](https://docs.langchain.com/oss/python/contributing/overview) Learn how to contribute to LangChain projects and find good first issues.
- [Code of Conduct](https://github.com/langchain-ai/langchain/blob/master/.github/CODE_OF_CONDUCT.md) Our community guidelines and standards for participation.

View File

@@ -4,9 +4,9 @@ LangChain has a large ecosystem of integrations with various external resources
## Best practices
When building such applications developers should remember to follow good security practices:
When building such applications, developers should remember to follow good security practices:
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc. as appropriate for your application.
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc., as appropriate for your application.
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, it's safest to assume that any LLM able to use those credentials may in fact delete data.
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. It's best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
@@ -22,9 +22,7 @@ Example scenarios with mitigation strategies:
* A user may ask an agent with write access to an external API to write malicious data to the API, or delete data from that API. To mitigate, give the agent read-only API keys, or limit it to only use endpoints that are already resistant to such misuse.
* A user may ask an agent with access to a database to drop a table or mutate the schema. To mitigate, scope the credentials to only the tables that the agent needs to access and consider issuing READ-ONLY credentials.
If you're building applications that access external resources like file systems, APIs
or databases, consider speaking with your company's security team to determine how to best
design and secure your applications.
If you're building applications that access external resources like file systems, APIs or databases, consider speaking with your company's security team to determine how to best design and secure your applications.
## Reporting OSS Vulnerabilities
@@ -37,10 +35,8 @@ open source projects at [huntr](https://huntr.com/bounties/disclose/?target=http
Before reporting a vulnerability, please review:
1) In-Scope Targets and Out-of-Scope Targets below.
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
3) The [Best Practices](#best-practices) above to
understand what we consider to be a security vulnerability vs. developer
responsibility.
2) The [langchain-ai/langchain](https://docs.langchain.com/oss/python/contributing/code#repository-structure) monorepo structure.
3) The [Best Practices](#best-practices) above to understand what we consider to be a security vulnerability vs. developer responsibility.
### In-Scope Targets
@@ -59,16 +55,15 @@ All out of scope targets defined by huntr as well as:
* **langchain-experimental**: This repository is for experimental code and is not
eligible for bug bounties (see [package warning](https://pypi.org/project/langchain-experimental/)), bug reports to it will be marked as interesting or waste of
time and published with no bounty attached.
* **tools**: Tools in either langchain or langchain-community are not eligible for bug
* **tools**: Tools in either `langchain` or `langchain-community` are not eligible for bug
bounties. This includes the following directories
* libs/langchain/langchain/tools
* libs/community/langchain_community/tools
* `libs/langchain/langchain/tools`
* `libs/community/langchain_community/tools`
* Please review the [Best Practices](#best-practices)
for more details, but generally tools interact with the real world. Developers are
expected to understand the security implications of their code and are responsible
for the security of their tools.
* Code documented with security notices. This will be decided on a case by
case basis, but likely will not be eligible for a bounty as the code is already
* Code documented with security notices. This will be decided on a case-by-case basis, but likely will not be eligible for a bounty as the code is already
documented with guidelines for developers that should be followed for making their
application secure.
* Any LangSmith related repositories or APIs (see [Reporting LangSmith Vulnerabilities](#reporting-langsmith-vulnerabilities)).

View File

@@ -1,932 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "BYejgj8Zf-LG",
"tags": []
},
"source": [
"## Getting started with LangChain and Gemma, running locally or in the Cloud"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2IxjMb9-jIJ8"
},
"source": [
"### Installing dependencies"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 9436,
"status": "ok",
"timestamp": 1708975187360,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "XZaTsXfcheTF",
"outputId": "eb21d603-d824-46c5-f99f-087fb2f618b1",
"tags": []
},
"outputs": [],
"source": [
"!pip install --upgrade langchain langchain-google-vertexai"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IXmAujvC3Kwp"
},
"source": [
"### Running the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CI8Elyc5gBQF"
},
"source": [
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint is ready, you need to copy its number."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "gv1j8FrVftsC"
},
"outputs": [],
"source": [
"# @title Basic parameters\n",
"project: str = \"PUT_YOUR_PROJECT_ID_HERE\" # @param {type:\"string\"}\n",
"endpoint_id: str = \"PUT_YOUR_ENDPOINT_ID_HERE\" # @param {type:\"string\"}\n",
"location: str = \"PUT_YOUR_ENDPOINT_LOCAtION_HERE\" # @param {type:\"string\"}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"executionInfo": {
"elapsed": 3,
"status": "ok",
"timestamp": 1708975440503,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "bhIHsFGYjtFt",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 17:15:10.457149: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 17:15:10.508925: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 17:15:10.508957: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 17:15:10.510289: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 17:15:10.518898: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
}
],
"source": [
"from langchain_google_vertexai import (\n",
" GemmaChatVertexAIModelGarden,\n",
" GemmaVertexAIModelGarden,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"executionInfo": {
"elapsed": 351,
"status": "ok",
"timestamp": 1708975440852,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "WJv-UVWwh0lk",
"tags": []
},
"outputs": [],
"source": [
"llm = GemmaVertexAIModelGarden(\n",
" endpoint_id=endpoint_id,\n",
" project=project,\n",
" location=location,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 714,
"status": "ok",
"timestamp": 1708975441564,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "6kM7cEFdiN9h",
"outputId": "fb420c56-5614-4745-cda8-0ee450a3e539",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prompt:\n",
"What is the meaning of life?\n",
"Output:\n",
" Who am I? Why do I exist? These are questions I have struggled with\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\")\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zzep9nfmuUcO"
},
"source": [
"We can also use Gemma as a multi-turn chat model:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 964,
"status": "ok",
"timestamp": 1708976298189,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "8tPHoM5XiZOl",
"outputId": "7b8fb652-9aed-47b0-c096-aa1abfc3a2a9",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of'\n",
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nPrompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of<end_of_turn>\\n<start_of_turn>user\\nHow much is 3+3?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\nOutput:\\n3-years old.<end_of_turn>\\n\\n<'\n"
]
}
],
"source": [
"from langchain_core.messages import HumanMessage\n",
"\n",
"llm = GemmaChatVertexAIModelGarden(\n",
" endpoint_id=endpoint_id,\n",
" project=project,\n",
" location=location,\n",
")\n",
"\n",
"message1 = HumanMessage(content=\"How much is 2+2?\")\n",
"answer1 = llm.invoke([message1])\n",
"print(answer1)\n",
"\n",
"message2 = HumanMessage(content=\"How much is 3+3?\")\n",
"answer2 = llm.invoke([message1, answer1, message2])\n",
"\n",
"print(answer2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can post-process response to avoid repetitions:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content='Output:\\n<<humming>>: 2+2 = 4.\\n<end'\n",
"content='Output:\\nOutput:\\n<<humming>>: 3+3 = 6.'\n"
]
}
],
"source": [
"answer1 = llm.invoke([message1], parse_response=True)\n",
"print(answer1)\n",
"\n",
"answer2 = llm.invoke([message1, answer1, message2], parse_response=True)\n",
"\n",
"print(answer2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VEfjqo7fjARR"
},
"source": [
"## Running Gemma locally from Kaggle"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gVW8QDzHu7TA"
},
"source": [
"In order to run Gemma locally, you can download it from Kaggle first. In order to do this, you'll need to login into the Kaggle platform, create a API key and download a `kaggle.json` Read more about Kaggle auth [here](https://www.kaggle.com/docs/api)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S1EsXQ3XvZkQ"
},
"source": [
"### Installation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"executionInfo": {
"elapsed": 335,
"status": "ok",
"timestamp": 1708976305471,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "p8SMwpKRvbef",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
" pid, fd = os.forkpty()\n"
]
}
],
"source": [
"!mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"executionInfo": {
"elapsed": 7802,
"status": "ok",
"timestamp": 1708976363010,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "Yr679aePv9Fq",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
" pid, fd = os.forkpty()\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"tensorstore 0.1.54 requires ml-dtypes>=0.3.1, but you have ml-dtypes 0.2.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install keras>=3 keras_nlp"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E9zn8nYpv3QZ"
},
"source": [
"### Usage"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"executionInfo": {
"elapsed": 8536,
"status": "ok",
"timestamp": 1708976601206,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "0LFRmY8TjCkI",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:38:40.797559: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 16:38:40.848444: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 16:38:40.848478: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 16:38:40.849728: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 16:38:40.857936: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
}
],
"source": [
"from langchain_google_vertexai import GemmaLocalKaggle"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v-o7oXVavdMQ"
},
"source": [
"You can specify the keras backend (by default it's `tensorflow`, but you can change it be `jax` or `torch`)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"executionInfo": {
"elapsed": 9,
"status": "ok",
"timestamp": 1708976601206,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "vvTUH8DNj5SF",
"tags": []
},
"outputs": [],
"source": [
"# @title Basic parameters\n",
"keras_backend: str = \"jax\" # @param {type:\"string\"}\n",
"model_name: str = \"gemma_2b_en\" # @param {type:\"string\"}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"executionInfo": {
"elapsed": 40836,
"status": "ok",
"timestamp": 1708976761257,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "YOmrqxo5kHXK",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:23:14.661164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20549 MB memory: -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9\n",
"normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.\n"
]
}
],
"source": [
"llm = GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "Zu6yPDUgkQtQ",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"W0000 00:00:1709051129.518076 774855 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"What is the meaning of life?\n",
"\n",
"The question is one of the most important questions in the world.\n",
"\n",
"Its the question that has\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=30)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ChatModel"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MSctpRE4u43N"
},
"source": [
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:58:22.331067: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 16:58:22.382948: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 16:58:22.382978: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 16:58:22.384312: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 16:58:22.392767: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
}
],
"source": [
"from langchain_google_vertexai import GemmaChatLocalKaggle"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# @title Basic parameters\n",
"keras_backend: str = \"jax\" # @param {type:\"string\"}\n",
"model_name: str = \"gemma_2b_en\" # @param {type:\"string\"}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:58:29.001922: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 20549 MB memory: -> device: 0, name: NVIDIA L4, pci bus id: 0000:00:03.0, compute capability: 8.9\n",
"normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.\n"
]
}
],
"source": [
"llm = GemmaChatLocalKaggle(model_name=model_name, keras_backend=keras_backend)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"executionInfo": {
"elapsed": 3,
"status": "aborted",
"timestamp": 1708976382957,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "JrJmvZqwwLqj"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:58:49.848412: I external/local_xla/xla/service/service.cc:168] XLA service 0x55adc0cf2c10 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
"2024-02-27 16:58:49.848458: I external/local_xla/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA L4, Compute Capability 8.9\n",
"2024-02-27 16:58:50.116614: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
"2024-02-27 16:58:54.389324: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8900\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"I0000 00:00:1709053145.225207 784891 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n",
"W0000 00:00:1709053145.284227 784891 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.\"\n"
]
}
],
"source": [
"from langchain_core.messages import HumanMessage\n",
"\n",
"message1 = HumanMessage(content=\"Hi! Who are you?\")\n",
"answer1 = llm.invoke([message1], max_tokens=30)\n",
"print(answer1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\"\n"
]
}
],
"source": [
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=60)\n",
"\n",
"print(answer2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can post-process the response if you want to avoid multi-turn statements:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"I'm a model.\\n Tampoco\\nI'm a model.\"\n",
"content='I can help you with your modeling.\\n Tampoco\\nI can'\n"
]
}
],
"source": [
"answer1 = llm.invoke([message1], max_tokens=30, parse_response=True)\n",
"print(answer1)\n",
"\n",
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=60, parse_response=True)\n",
"print(answer2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EiZnztso7hyF"
},
"source": [
"## Running Gemma locally from HuggingFace"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "qqAqsz5R7nKf",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 17:02:21.832409: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 17:02:21.883625: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 17:02:21.883656: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 17:02:21.884987: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 17:02:21.893340: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
}
],
"source": [
"from langchain_google_vertexai import GemmaChatLocalHF, GemmaLocalHF"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "tsyntzI08cOr",
"tags": []
},
"outputs": [],
"source": [
"# @title Basic parameters\n",
"hf_access_token: str = \"PUT_YOUR_TOKEN_HERE\" # @param {type:\"string\"}\n",
"model_name: str = \"google/gemma-2b\" # @param {type:\"string\"}"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "JWrqEkOo8sm9",
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0d6de5542254ed1b6d3ba65465e050e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm = GemmaLocalHF(model_name=\"google/gemma-2b\", hf_access_token=hf_access_token)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "VX96Jf4Y84k-",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What is the meaning of life?\n",
"\n",
"The question is one of the most important questions in the world.\n",
"\n",
"Its the question that has been asked by philosophers, theologians, and scientists for centuries.\n",
"\n",
"And its the question that\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=50)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "9x-jmEBg9Mk1"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c9a0b8e161d74a6faca83b1be96dee27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"llm = GemmaChatLocalHF(model_name=model_name, hf_access_token=hf_access_token)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "qv_OSaMm9PVy"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean\"\n"
]
}
],
"source": [
"from langchain_core.messages import HumanMessage\n",
"\n",
"message1 = HumanMessage(content=\"Hi! Who are you?\")\n",
"answer1 = llm.invoke([message1], max_tokens=60)\n",
"print(answer1)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\\nI can help you with anything.\\n<\"\n"
]
}
],
"source": [
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=140)\n",
"\n",
"print(answer2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And the same with posprocessing:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"I'm a model.\\n<end_of_turn>\\n\"\n",
"content='I can help you with anything.\\n<end_of_turn>\\n<end_of_turn>\\n'\n"
]
}
],
"source": [
"answer1 = llm.invoke([message1], max_tokens=60, parse_response=True)\n",
"print(answer1)\n",
"\n",
"answer2 = llm.invoke([message1, answer1, message2], max_tokens=120, parse_response=True)\n",
"print(answer2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"environment": {
"kernel": "python3",
"name": ".m116",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/:m116"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,398 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "fc935871-7640-41c6-b798-58514d860fe0",
"metadata": {},
"source": [
"## LLaMA2 chat with SQL\n",
"\n",
"Open source, local LLMs are great to consider for any application that demands data privacy.\n",
"\n",
"SQL is one good example. \n",
"\n",
"This cookbook shows how to perform text-to-SQL using various local versions of LLaMA2 run locally.\n",
"\n",
"## Packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "81adcf8b-395a-4f02-8749-ac976942b446",
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain replicate"
]
},
{
"cell_type": "markdown",
"id": "8e13ed66-300b-4a23-b8ac-44df68ee4733",
"metadata": {},
"source": [
"## LLM\n",
"\n",
"There are a few ways to access LLaMA2.\n",
"\n",
"To run locally, we use Ollama.ai. \n",
"\n",
"See [here](/docs/integrations/chat/ollama) for details on installation and setup.\n",
"\n",
"Also, see [here](/docs/guides/development/local_llms) for our full guide on local LLMs.\n",
" \n",
"To use an external API, which is not private, we can use Replicate."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a75a5c6-34ee-4ab9-a664-d9b432d812ee",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Init param `input` is deprecated, please use `model_kwargs` instead.\n"
]
}
],
"source": [
"# Local\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
"\n",
"# API\n",
"from langchain_community.llms import Replicate\n",
"\n",
"# REPLICATE_API_TOKEN = getpass()\n",
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
"replicate_id = \"meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d\"\n",
"llama2_chat_replicate = Replicate(\n",
" model=replicate_id, input={\"temperature\": 0.01, \"max_length\": 500, \"top_p\": 1}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ce96f7ea-b3d5-44e1-9fa5-a79e04a9e1fb",
"metadata": {},
"outputs": [],
"source": [
"# Simply set the LLM we want to use\n",
"llm = llama2_chat"
]
},
{
"cell_type": "markdown",
"id": "80222165-f353-4e35-a123-5f70fd70c6c8",
"metadata": {},
"source": [
"## DB\n",
"\n",
"Connect to a SQLite DB.\n",
"\n",
"To create this particular DB, you can use the code and follow the steps shown [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "025bdd82-3bb1-4948-bc7c-c3ccd94fd05c",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
"\n",
"\n",
"def get_schema(_):\n",
" return db.get_table_info()\n",
"\n",
"\n",
"def run_query(query):\n",
" return db.run(query)"
]
},
{
"cell_type": "markdown",
"id": "654b3577-baa2-4e12-a393-f40e5db49ac7",
"metadata": {},
"source": [
"## Query a SQL Database \n",
"\n",
"Follow the runnables workflow [here](https://python.langchain.com/docs/expression_language/cookbook/sql_db)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5a4933ea-d9c0-4b0a-8177-ba4490c6532b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' SELECT \"Team\" FROM nba_roster WHERE \"NAME\" = \\'Klay Thompson\\';'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Prompt\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"# Update the template based on the type of SQL Database like MySQL, Microsoft SQL Server and so on\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"# Chain to query\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"sql_response.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
},
{
"cell_type": "markdown",
"id": "a0e9e2c8-9b88-4853-ac86-001bc6cc6695",
"metadata": {},
"source": [
"We can review the results:\n",
"\n",
"* [LangSmith trace](https://smith.langchain.com/public/afa56a06-b4e2-469a-a60f-c1746e75e42b/r) LLaMA2-13 Replicate API\n",
"* [LangSmith trace](https://smith.langchain.com/public/2d4ecc72-6b8f-4523-8f0b-ea95c6b54a1d/r) LLaMA2-13 local \n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "2a2825e3-c1b6-4f7d-b9c9-d9835de323bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' Based on the table schema and SQL query, there are 30 unique teams in the NBA.')"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Chain to answer\n",
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Given an input question and SQL response, convert it to a natural language answer. No pre-amble.\",\n",
" ),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response\n",
" | llm\n",
")\n",
"\n",
"full_chain.invoke({\"question\": \"How many unique teams are there?\"})"
]
},
{
"cell_type": "markdown",
"id": "ec17b3ee-6618-4681-b6df-089bbb5ffcd7",
"metadata": {},
"source": [
"We can review the results:\n",
"\n",
"* [LangSmith trace](https://smith.langchain.com/public/10420721-746a-4806-8ecf-d6dc6399d739/r) LLaMA2-13 Replicate API\n",
"* [LangSmith trace](https://smith.langchain.com/public/5265ebab-0a22-4f37-936b-3300f2dfa1c1/r) LLaMA2-13 local "
]
},
{
"cell_type": "markdown",
"id": "1e85381b-1edc-4bb3-a7bd-2ab23f81e54d",
"metadata": {},
"source": [
"## Chat with a SQL DB \n",
"\n",
"Next, we can add memory."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "022868f2-128e-42f5-8d90-d3bb2f11d994",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' SELECT \"Team\" FROM nba_roster WHERE \"NAME\" = \\'Klay Thompson\\';'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Prompt\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", template),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"memory = ConversationBufferMemory(return_messages=True)\n",
"\n",
"# Chain to query with memory\n",
"from langchain_core.runnables import RunnableLambda\n",
"\n",
"sql_chain = (\n",
" RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" history=RunnableLambda(lambda x: memory.load_memory_variables(x)[\"history\"]),\n",
" )\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"\n",
"def save(input_output):\n",
" output = {\"output\": input_output.pop(\"output\")}\n",
" memory.save_context(input_output, output)\n",
" return output[\"output\"]\n",
"\n",
"\n",
"sql_response_memory = RunnablePassthrough.assign(output=sql_chain) | save\n",
"sql_response_memory.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "800a7a3b-f411-478b-af51-2310cd6e0425",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' Sure! Here\\'s the natural language response based on the given input:\\n\\n\"Klay Thompson\\'s salary is $43,219,440.\"')"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Chain to answer\n",
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Given an input question and SQL response, convert it to a natural language answer. No pre-amble.\",\n",
" ),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response_memory)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response\n",
" | llm\n",
")\n",
"\n",
"full_chain.invoke({\"question\": \"What is his salary?\"})"
]
},
{
"cell_type": "markdown",
"id": "b77fee61-f4da-4bb1-8285-14101e505518",
"metadata": {},
"source": [
"Here is the [trace](https://smith.langchain.com/public/54794d18-2337-4ce2-8b9f-3d8a2df89e51/r)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,66 +0,0 @@
# LangChain cookbook
Example code for building applications with LangChain, with an emphasis on more applied and end-to-end examples than contained in the [main documentation](https://python.langchain.com).
Notebook | Description
:- | :-
[agent_fireworks_ai_langchain_mongodb.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/agent_fireworks_ai_langchain_mongodb.ipynb) | Build an AI Agent With Memory Using MongoDB, LangChain and FireWorksAI.
[mongodb-langchain-cache-memory.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/mongodb-langchain-cache-memory.ipynb) | Build a RAG Application with Semantic Cache Using MongoDB and LangChain.
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a SQL database using an open source llm (llama2), specifically demonstrated on an SQLite database containing rosters.
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
[amazon_personalize_how_to.ipynb](https://github.com/langchain-ai/langchain/blob/master/cookbook/amazon_personalize_how_to.ipynb) | Retrieving personalized recommendations from Amazon Personalize and use custom agents to build generative AI apps
[analyze_document.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/analyze_document.ipynb) | Analyze a single long document.
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
[baby_agi.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi.ipynb) | Implement babyagi, an ai agent that can generate and execute tasks based on a given objective, with the flexibility to swap out specific vectorstores/model providers.
[baby_agi_with_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi_with_agent.ipynb) | Swap out the execution chain in the babyagi notebook with an agent that has access to tools, aiming to obtain more reliable information.
[camel_role_playing.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/camel_role_playing.ipynb) | Implement the camel framework for creating autonomous cooperative agents in large-scale language models, using role-playing and inception prompting to guide chat agents towards task completion.
[causal_program_aided_language_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/causal_program_aided_language_model.ipynb) | Implement the causal program-aided language (cpal) chain, which improves upon the program-aided language (pal) by incorporating causal structure to prevent hallucination in language models, particularly when dealing with complex narratives and math problems with nested dependencies.
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools
[forward_looking_retrieval_augm...](https://github.com/langchain-ai/langchain/tree/master/cookbook/forward_looking_retrieval_augmented_generation.ipynb) | Implement the forward-looking active retrieval augmented generation (flare) method, which generates answers to questions, identifies uncertain tokens, generates hypothetical questions based on these tokens, and retrieves relevant documents to continue generating the answer.
[generative_agents_interactive_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb) | Implement a generative agent that simulates human behavior, based on a research paper, using a time-weighted memory object backed by a langchain retriever.
[gymnasium_agent_simulation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/gymnasium_agent_simulation.ipynb) | Create a simple agent-environment interaction loop in simulated environments like text-based games with gymnasium.
[hugginggpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/hugginggpt.ipynb) | Implement hugginggpt, a system that connects language models like chatgpt with the machine learning community via hugging face.
[hypothetical_document_embeddin...](https://github.com/langchain-ai/langchain/tree/master/cookbook/hypothetical_document_embeddings.ipynb) | Improve document indexing with hypothetical document embeddings (hyde), an embedding technique that generates and embeds hypothetical answers to queries.
[learned_prompt_optimization.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/learned_prompt_optimization.ipynb) | Automatically enhance language model prompts by injecting specific terms using reinforcement learning, which can be used to personalize responses based on user preferences.
[llm_bash.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_bash.ipynb) | Perform simple filesystem commands using language learning models (llms) and a bash process.
[llm_checker.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_checker.ipynb) | Create a self-checking chain using the llmcheckerchain function.
[llm_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_math.ipynb) | Solve complex word math problems using language models and python repls.
[llm_summarization_checker.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_summarization_checker.ipynb) | Check the accuracy of text summaries, with the option to run the checker multiple times for improved results.
[llm_symbolic_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_symbolic_math.ipynb) | Solve algebraic equations with the help of llms (language learning models) and sympy, a python library for symbolic mathematics.
[meta_prompt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/meta_prompt.ipynb) | Implement the meta-prompt concept, which is a method for building self-improving agents that reflect on their own performance and modify their instructions accordingly.
[multi_modal_output_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_output_agent.ipynb) | Generate multi-modal outputs, specifically images and text.
[multi_modal_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_RAG_vdms.ipynb) | Perform retrieval-augmented generation (rag) on documents including text and images, using unstructured for parsing, Intel's Visual Data Management System (VDMS) as the vectorstore, and chains.
[multi_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_player_dnd.ipynb) | Simulate multi-player dungeons & dragons games, with a custom function determining the speaking schedule of the agents.
[multiagent_authoritarian.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_authoritarian.ipynb) | Implement a multi-agent simulation where a privileged agent controls the conversation, including deciding who speaks and when the conversation ends, in the context of a simulated news network.
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[openai_v1_cookbook.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_v1_cookbook.ipynb) | Explore new functionality released alongside the V1 release of the OpenAI Python library.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
[rag_upstage_document_parse_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_document_parse_groundedness_check.ipynb) | End-to-end RAG example using Upstage Document Parse and Groundedness Check.
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
[smart_llm.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/smart_llm.ipynb) | Implement a smartllmchain, a self-critique chain that generates multiple output proposals, critiques them to find the best one, and then improves upon it to produce a final output.
[tree_of_thought.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/tree_of_thought.ipynb) | Query a large language model using the tree of thought technique.
[twitter-the-algorithm-analysis...](https://github.com/langchain-ai/langchain/tree/master/cookbook/twitter-the-algorithm-analysis-deeplake.ipynb) | Analyze the source code of the Twitter algorithm with the help of gpt4 and activeloop's deep lake.
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.
[contextual_rag.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/contextual_rag.ipynb) | Performs contextual retrieval-augmented generation (RAG) prepending chunk-specific explanatory context to each chunk before embedding.
[rag-agents-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/local_rag_agents_intel_cpu.ipynb) | Build a RAG agent locally with open source models that routes questions through one of two paths to find answers. The agent generates answers based on documents retrieved from either the vector database or retrieved from web search. If the vector database lacks relevant information, the agent opts for web search. Open-source models for LLM and embeddings are used locally on an Intel Xeon CPU to execute this pipeline.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,557 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "68b24990",
"metadata": {},
"source": [
"# Combine agents and vector stores\n",
"\n",
"This notebook covers how to combine agents and vector stores. The use case for this is that you've ingested your data into a vector store and want to interact with it in an agentic manner.\n",
"\n",
"The recommended method for doing so is to create a `RetrievalQA` and then use that as a tool in the overall agent. Let's take a look at doing this below. You can do this with multiple different vector DBs, and use the agent as a way to route between them. There are two different ways of doing this - you can either let the agent use the vector stores as normal tools, or you can set `return_direct=True` to really just use the agent as a router."
]
},
{
"cell_type": "markdown",
"id": "9b22020a",
"metadata": {},
"source": [
"## Create the vector store"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e8d63d14-138d-4aa5-a741-7fd3537d00aa",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2e87c10a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0b7b772b",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"relevant_parts = []\n",
"for p in Path(\".\").absolute().parts:\n",
" relevant_parts.append(p)\n",
" if relevant_parts[-3:] == [\"langchain\", \"docs\", \"modules\"]:\n",
" break\n",
"doc_path = str(Path(*relevant_parts) / \"state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f2675861",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(doc_path)\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"docsearch = Chroma.from_documents(texts, embeddings, collection_name=\"state-of-union\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "bc5403d4",
"metadata": {},
"outputs": [],
"source": [
"state_of_union = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1431cded",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"USER_AGENT environment variable not set, consider setting it to identify your requests.\n"
]
}
],
"source": [
"from langchain_community.document_loaders import WebBaseLoader"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "915d3ff3",
"metadata": {},
"outputs": [],
"source": [
"loader = WebBaseLoader(\"https://beta.ruff.rs/docs/faq/\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "96a2edf8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Created a chunk of size 2122, which is longer than the specified 1000\n",
"Created a chunk of size 3187, which is longer than the specified 1000\n",
"Created a chunk of size 1017, which is longer than the specified 1000\n",
"Created a chunk of size 1049, which is longer than the specified 1000\n",
"Created a chunk of size 1256, which is longer than the specified 1000\n",
"Created a chunk of size 2321, which is longer than the specified 1000\n"
]
}
],
"source": [
"docs = loader.load()\n",
"ruff_texts = text_splitter.split_documents(docs)\n",
"ruff_db = Chroma.from_documents(ruff_texts, embeddings, collection_name=\"ruff\")\n",
"ruff = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"stuff\", retriever=ruff_db.as_retriever()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c0a6c031",
"metadata": {},
"source": [
"## Create the Agent"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eb142786",
"metadata": {},
"outputs": [],
"source": [
"# Import things that are needed generically\n",
"from langchain.agents import Tool"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "850bc4e9",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name=\"state_of_union_qa_system\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" ),\n",
" Tool(\n",
" name=\"ruff_qa_system\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.\",\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "70c461d8-aaca-4f2a-9a93-bf35841cc615",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"agent = create_react_agent(\"openai:gpt-4.1-mini\", tools)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a6d2b911-3044-4430-a35b-75832bb45334",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What did biden say about ketanji brown jackson in the state of the union address?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" state_of_union_qa_system (call_26QlRdsptjEJJZjFsAUjEbaH)\n",
" Call ID: call_26QlRdsptjEJJZjFsAUjEbaH\n",
" Args:\n",
" __arg1: What did Biden say about Ketanji Brown Jackson in the state of the union address?\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: state_of_union_qa_system\n",
"\n",
" Biden said that he nominated Ketanji Brown Jackson for the United States Supreme Court and praised her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"In the State of the Union address, Biden said that he nominated Ketanji Brown Jackson for the United States Supreme Court and praised her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n"
]
}
],
"source": [
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"What did biden say about ketanji brown jackson in the state of the union address?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "e836b4cd-abf7-49eb-be0e-b9ad501213f3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"Why use ruff over flake8?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" ruff_qa_system (call_KqDoWeO9bo9OAXdxOsCb6msC)\n",
" Call ID: call_KqDoWeO9bo9OAXdxOsCb6msC\n",
" Args:\n",
" __arg1: Why use ruff over flake8?\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: ruff_qa_system\n",
"\n",
"\n",
"There are a few reasons why someone might choose to use Ruff over Flake8:\n",
"\n",
"1. Larger rule set: Ruff implements over 800 rules, while Flake8 only implements around 200. This means that Ruff can catch more potential issues in your code.\n",
"\n",
"2. Better compatibility with other tools: Ruff is designed to work well with other tools like Black, isort, and type checkers like Mypy. This means that you can use Ruff alongside these tools to get more comprehensive feedback on your code.\n",
"\n",
"3. Automatic fixing of lint violations: Unlike Flake8, Ruff is capable of automatically fixing its own lint violations. This can save you time and effort when fixing issues in your code.\n",
"\n",
"4. Native implementation of popular Flake8 plugins: Ruff re-implements some of the most popular Flake8 plugins natively, which means you don't have to install and configure multiple plugins to get the same functionality.\n",
"\n",
"Overall, Ruff offers a more comprehensive and user-friendly experience compared to Flake8, making it a popular choice for many developers.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"You might choose to use Ruff over Flake8 for several reasons:\n",
"\n",
"1. Ruff has a much larger rule set, implementing over 800 rules compared to Flake8's roughly 200, so it can catch more potential issues.\n",
"2. Ruff is designed to work better with other tools like Black, isort, and type checkers like Mypy, providing more comprehensive code feedback.\n",
"3. Ruff can automatically fix its own lint violations, which Flake8 cannot, saving time and effort.\n",
"4. Ruff natively implements some popular Flake8 plugins, so you don't need to install and configure multiple plugins separately.\n",
"\n",
"Overall, Ruff offers a more comprehensive and user-friendly experience compared to Flake8.\n"
]
}
],
"source": [
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"Why use ruff over flake8?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "787a9b5e",
"metadata": {},
"source": [
"## Use the Agent solely as a router"
]
},
{
"cell_type": "markdown",
"id": "9161ba91",
"metadata": {},
"source": [
"You can also set `return_direct=True` if you intend to use the agent as a router and just want to directly return the result of the RetrievalQAChain.\n",
"\n",
"Notice that in the above examples the agent did some extra work after querying the RetrievalQAChain. You can avoid that and just return the result directly."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f59b377e",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name=\"state_of_union_qa_system\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" return_direct=True,\n",
" ),\n",
" Tool(\n",
" name=\"ruff_qa_system\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.\",\n",
" return_direct=True,\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "06f69c0f-c83d-4b7f-a1c8-7614aced3bae",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"agent = create_react_agent(\"openai:gpt-4.1-mini\", tools)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "a6b38c12-ac25-43c0-b9c2-2b1985ab4825",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What did biden say about ketanji brown jackson in the state of the union address?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" state_of_union_qa_system (call_yjxh11OnZiauoyTAn9npWdxj)\n",
" Call ID: call_yjxh11OnZiauoyTAn9npWdxj\n",
" Args:\n",
" __arg1: What did Biden say about Ketanji Brown Jackson in the state of the union address?\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: state_of_union_qa_system\n",
"\n",
" Biden said that he nominated Ketanji Brown Jackson for the United States Supreme Court and praised her as one of the nation's top legal minds who will continue Justice Breyer's legacy of excellence.\n"
]
}
],
"source": [
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"What did biden say about ketanji brown jackson in the state of the union address?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "88f08d86-7972-4148-8128-3ac8898ad68a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"Why use ruff over flake8?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" ruff_qa_system (call_GiWWfwF6wbbRFQrHlHbhRtGW)\n",
" Call ID: call_GiWWfwF6wbbRFQrHlHbhRtGW\n",
" Args:\n",
" __arg1: What are the advantages of using ruff over flake8 for Python linting?\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: ruff_qa_system\n",
"\n",
" Ruff has a larger rule set, supports automatic fixing of lint violations, and does not require the installation of additional plugins. It also has better compatibility with Black and can be used alongside a type checker for more comprehensive code analysis.\n"
]
}
],
"source": [
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"Why use ruff over flake8?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "markdown",
"id": "49a0cbbe",
"metadata": {},
"source": [
"## Multi-Hop vector store reasoning\n",
"\n",
"Because vector stores are easily usable as tools in agents, it is easy to use answer multi-hop questions that depend on vector stores using the existing agent framework."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "d397a233",
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" Tool(\n",
" name=\"state_of_union_qa_system\",\n",
" func=state_of_union.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.\",\n",
" ),\n",
" Tool(\n",
" name=\"ruff_qa_system\",\n",
" func=ruff.run,\n",
" description=\"useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.\",\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "41743f29-150d-40ba-aa8e-3a63c32216aa",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"agent = create_react_agent(\"openai:gpt-4.1-mini\", tools)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "e20e81dd-284a-4d07-9160-63a84b65cba8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================\u001b[1m Human Message \u001b[0m=================================\n",
"\n",
"What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"Tool Calls:\n",
" ruff_qa_system (call_VOnxiOEehauQyVOTjDJkR5L2)\n",
" Call ID: call_VOnxiOEehauQyVOTjDJkR5L2\n",
" Args:\n",
" __arg1: What tool does ruff use to run over Jupyter Notebooks?\n",
" state_of_union_qa_system (call_AbSsXAxwe4JtCRhga926SxOZ)\n",
" Call ID: call_AbSsXAxwe4JtCRhga926SxOZ\n",
" Args:\n",
" __arg1: Did the president mention the tool that ruff uses to run over Jupyter Notebooks in the state of the union?\n",
"=================================\u001b[1m Tool Message \u001b[0m=================================\n",
"Name: state_of_union_qa_system\n",
"\n",
" No, the president did not mention the tool that ruff uses to run over Jupyter Notebooks in the state of the union.\n",
"==================================\u001b[1m Ai Message \u001b[0m==================================\n",
"\n",
"Ruff does not support source.organizeImports and source.fixAll code actions in Jupyter Notebooks. Additionally, the president did not mention the tool that ruff uses to run over Jupyter Notebooks in the state of the union.\n"
]
}
],
"source": [
"input_message = {\n",
" \"role\": \"user\",\n",
" \"content\": \"What tool does ruff use to run over Jupyter Notebooks? Did the president mention that tool in the state of the union?\",\n",
"}\n",
"\n",
"for step in agent.stream(\n",
" {\"messages\": [input_message]},\n",
" stream_mode=\"values\",\n",
"):\n",
" step[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3b857d6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,200 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-airbyte langchain_chroma"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"GITHUB_TOKEN = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from langchain_airbyte import AirbyteLoader\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"loader = AirbyteLoader(\n",
" source=\"source-github\",\n",
" stream=\"pull_requests\",\n",
" config={\n",
" \"credentials\": {\"personal_access_token\": GITHUB_TOKEN},\n",
" \"repositories\": [\"langchain-ai/langchain\"],\n",
" },\n",
" template=PromptTemplate.from_template(\n",
" \"\"\"# {title}\n",
"by {user[login]}\n",
"\n",
"{body}\"\"\"\n",
" ),\n",
" include_metadata=False,\n",
")\n",
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Updated partners/ibm README\n",
"by williamdevena\n",
"\n",
"## PR title\n",
"partners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\n",
"\n",
"## PR message\n",
"Description: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\n",
"\n",
"The README includes:\n",
"\n",
"- Brief description\n",
"- Installation\n",
"- Setting-up instructions (API key, project id, ...)\n",
"- Basic usage:\n",
" - Loading the model\n",
" - Direct inference\n",
" - Chain invoking\n",
" - Streaming the model output\n",
" \n",
"Issue: https://github.com/langchain-ai/langchain/issues/17545\n",
"\n",
"Dependencies: None\n",
"\n",
"Twitter handle: None\n"
]
}
],
"source": [
"print(docs[-2].page_content)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10283"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(docs)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"import tiktoken\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",
"\n",
"vectorstore = Chroma.from_documents(\n",
" docs,\n",
" embedding=OpenAIEmbeddings(\n",
" disallowed_special=(enc.special_tokens_set - {\"<|endofprompt|>\"})\n",
" ),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\\r\\n\\r\\n## PR message\\r\\nDescription: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\nThe README includes:\\r\\n\\r\\n- Brief description\\r\\n- Installation\\r\\n- Setting-up instructions (API key, project id, ...)\\r\\n- Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n \\r\\nIssue: https://github.com/langchain-ai/langchain/issues/17545\\r\\n\\r\\nDependencies: None\\r\\n\\r\\nTwitter handle: None'),\n",
" Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the `libs/partners/ibm` folder. \\r\\n\\r\\n\\r\\n\\r\\n## PR message\\r\\n- **Description:** Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\n The README includes:\\r\\n - Brief description\\r\\n - Installation\\r\\n - Setting-up instructions (API key, project id, ...)\\r\\n - Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n\\r\\n\\r\\n- **Issue:** #17545\\r\\n- **Dependencies:** None\\r\\n- **Twitter handle:** None'),\n",
" Document(page_content='# IBM: added partners package `langchain_ibm`, added llm\\nby MateuszOssGit\\n\\n - **Description:** Added `langchain_ibm` as an langchain partners package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (`WatsonxLLM`)\\r\\n - **Dependencies:** [ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),\\r\\n - **Tag maintainer:** : \\r\\n\\r\\nPlease make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. ✅'),\n",
" Document(page_content='# Add WatsonX support\\nby baptistebignaud\\n\\nIt is a connector to use a LLM from WatsonX.\\r\\nIt requires python SDK \"ibm-generative-ai\"\\r\\n\\r\\n(It might not be perfect since it is my first PR on a public repository 😄)')]"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever.invoke(\"pull requests related to IBM\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,284 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Amazon Personalize\n",
"\n",
"[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) is a fully managed machine learning service that uses your data to generate item recommendations for your users. It can also generate user segments based on the users' affinity for certain items or item metadata.\n",
"\n",
"This notebook goes through how to use Amazon Personalize Chain. You need a Amazon Personalize campaign_arn or a recommender_arn before you get started with the below notebook.\n",
"\n",
"Following is a [tutorial](https://github.com/aws-samples/retail-demo-store/blob/master/workshop/1-Personalization/Lab-1-Introduction-and-data-preparation.ipynb) to setup a campaign_arn/recommender_arn on Amazon Personalize. Once the campaign_arn/recommender_arn is setup, you can use it in the langchain ecosystem. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!pip install boto3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Sample Use-cases"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1 [Use-case-1] Setup Amazon Personalize Client and retrieve recommendations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.recommenders import AmazonPersonalize\n",
"\n",
"recommender_arn = \"<insert_arn>\"\n",
"\n",
"client = AmazonPersonalize(\n",
" credentials_profile_name=\"default\",\n",
" region_name=\"us-west-2\",\n",
" recommender_arn=recommender_arn,\n",
")\n",
"client.get_recommendations(user_id=\"1\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"### 2.2 [Use-case-2] Invoke Personalize Chain for summarizing results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from langchain.llms.bedrock import Bedrock\n",
"from langchain_experimental.recommenders import AmazonPersonalizeChain\n",
"\n",
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
"\n",
"# Create personalize chain\n",
"# Use return_direct=True if you do not want summary\n",
"chain = AmazonPersonalizeChain.from_llm(\n",
" llm=bedrock_llm, client=client, return_direct=False\n",
")\n",
"response = chain({\"user_id\": \"1\"})\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 [Use-Case-3] Invoke Amazon Personalize Chain using your own prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"RANDOM_PROMPT_QUERY = \"\"\"\n",
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
" The movies to recommend and their information is contained in the <movie> tag. \n",
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
" Put the email between <email> tags.\n",
"\n",
" <movie>\n",
" {result} \n",
" </movie>\n",
"\n",
" Assistant:\n",
" \"\"\"\n",
"\n",
"RANDOM_PROMPT = PromptTemplate(input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY)\n",
"\n",
"chain = AmazonPersonalizeChain.from_llm(\n",
" llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT\n",
")\n",
"chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.4 [Use-case-4] Invoke Amazon Personalize in a Sequential Chain "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain, SequentialChain\n",
"\n",
"RANDOM_PROMPT_QUERY_2 = \"\"\"\n",
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
" You want the email to impress the user, so make it appealing to them.\n",
" The movies to recommend and their information is contained in the <movie> tag. \n",
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
" Put the email between <email> tags.\n",
"\n",
" <movie>\n",
" {result}\n",
" </movie>\n",
"\n",
" Assistant:\n",
" \"\"\"\n",
"\n",
"RANDOM_PROMPT_2 = PromptTemplate(\n",
" input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY_2\n",
")\n",
"personalize_chain_instance = AmazonPersonalizeChain.from_llm(\n",
" llm=bedrock_llm, client=client, return_direct=True\n",
")\n",
"random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2)\n",
"overall_chain = SequentialChain(\n",
" chains=[personalize_chain_instance, random_chain_instance],\n",
" input_variables=[\"user_id\"],\n",
" verbose=True,\n",
")\n",
"overall_chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"### 2.5 [Use-case-5] Invoke Amazon Personalize and retrieve metadata "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"recommender_arn = \"<insert_arn>\"\n",
"metadata_column_names = [\n",
" \"<insert metadataColumnName-1>\",\n",
" \"<insert metadataColumnName-2>\",\n",
"]\n",
"metadataMap = {\"ITEMS\": metadata_column_names}\n",
"\n",
"client = AmazonPersonalize(\n",
" credentials_profile_name=\"default\",\n",
" region_name=\"us-west-2\",\n",
" recommender_arn=recommender_arn,\n",
")\n",
"client.get_recommendations(user_id=\"1\", metadataColumns=metadataMap)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"### 2.6 [Use-Case 6] Invoke Personalize Chain with returned metadata for summarizing results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
"\n",
"# Create personalize chain\n",
"# Use return_direct=True if you do not want summary\n",
"chain = AmazonPersonalizeChain.from_llm(\n",
" llm=bedrock_llm, client=client, return_direct=False\n",
")\n",
"response = chain({\"user_id\": \"1\", \"metadata_columns\": metadataMap})\n",
"print(response)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
},
"vscode": {
"interpreter": {
"hash": "15e58ce194949b77a891bd4339ce3d86a9bd138e905926019517993f97db9e6c"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,105 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f69d4a4c-137d-47e9-bea1-786afce9c1c0",
"metadata": {},
"source": [
"# Analyze a single long document\n",
"\n",
"The AnalyzeDocumentChain takes in a single document, splits it up, and then runs it through a CombineDocumentsChain."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2a0707ce-6d2d-471b-bc33-64da32a7b3f0",
"metadata": {},
"outputs": [],
"source": [
"with open(\"../docs/docs/modules/state_of_the_union.txt\") as f:\n",
" state_of_the_union = f.read()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ca14d161-2d5b-4a6c-a296-77d8ce4b28cd",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import AnalyzeDocumentChain\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9f97406c-85a9-45fb-99ce-9138c0ba3731",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.question_answering import load_qa_chain\n",
"\n",
"qa_chain = load_qa_chain(llm, chain_type=\"map_reduce\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0871a753-f5bb-4b4f-a394-f87f2691f659",
"metadata": {},
"outputs": [],
"source": [
"qa_document_chain = AnalyzeDocumentChain(combine_docs_chain=qa_chain)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e6f86428-3c2c-46a0-a57c-e22826fdbf91",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The President said, \"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\"'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qa_document_chain.run(\n",
" input_document=state_of_the_union,\n",
" question=\"what did the president say about justice breyer?\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -1,922 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "rT1cmV4qCa2X"
},
"source": [
"# Using Apache Kafka to route messages\n",
"\n",
"---\n",
"\n",
"\n",
"\n",
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
"\n",
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal network.\n",
"\n",
"It's an alternative to typical pattern of requesting a response from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UPYtfAR_9YxZ"
},
"source": [
"### 1. Install the main dependencies\n",
"\n",
"Dependencies include:\n",
"\n",
"- The Quix Streams library for managing interactions with Apache Kafka (or Kafka-like tools such as Redpanda) in a \"Pandas-like\" way.\n",
"- The LangChain library for managing interactions with Llama-2 and storing conversation state."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZX5tfKiy9cN-"
},
"outputs": [],
"source": [
"!pip install quixstreams==2.1.2a langchain==0.0.340 huggingface_hub==0.19.4 langchain-experimental==0.0.42 python-dotenv"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "losTSdTB9d9O"
},
"source": [
"### 2. Build and install the llama-cpp-python library (with CUDA enabled so that we can advantage of Google Colab GPU\n",
"\n",
"The `llama-cpp-python` library is a Python wrapper around the `llama-cpp` library which enables you to efficiently leverage just a CPU to run quantized LLMs.\n",
"\n",
"When you use the standard `pip install llama-cpp-python` command, you do not get GPU support by default. Generation can be very slow if you rely on just the CPU in Google Colab, so the following command adds an extra option to build and install\n",
"`llama-cpp-python` with GPU support (make sure you have a GPU-enabled runtime selected in Google Colab)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-JCQdl1G9tbl"
},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5_vjVIAh9rLl"
},
"source": [
"### 3. Download and setup Kafka and Zookeeper instances\n",
"\n",
"Download the Kafka binaries from the Apache website and start the servers as daemons. We'll use the default configurations (provided by Apache Kafka) for spinning up the instances."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "zFz7czGRW5Wr"
},
"outputs": [],
"source": [
"!curl -sSOL https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz\n",
"!tar -xzf kafka_2.13-3.6.1.tgz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Uf7NR_UZ9wye"
},
"outputs": [],
"source": [
"!./kafka_2.13-3.6.1/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-3.6.1/config/zookeeper.properties\n",
"!./kafka_2.13-3.6.1/bin/kafka-server-start.sh -daemon ./kafka_2.13-3.6.1/config/server.properties\n",
"!echo \"Waiting for 10 secs until kafka and zookeeper services are up and running\"\n",
"!sleep 10"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "H3SafFuS94p1"
},
"source": [
"### 4. Check that the Kafka Daemons are running\n",
"\n",
"Show the running processes and filter it for Java processes (you should see two—one for each server)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CZDC2lQP99yp"
},
"outputs": [],
"source": [
"!ps aux | grep -E '[j]ava'"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Snoxmjb5-V37"
},
"source": [
"### 5. Import the required dependencies and initialize required variables\n",
"\n",
"Import the Quix Streams library for interacting with Kafka, and the necessary LangChain components for running a `ConversationChain`."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "plR9e_MF-XL5"
},
"outputs": [],
"source": [
"# Import utility libraries\n",
"import json\n",
"import random\n",
"import re\n",
"import time\n",
"import uuid\n",
"from os import environ\n",
"from pathlib import Path\n",
"from random import choice, randint, random\n",
"\n",
"from dotenv import load_dotenv\n",
"\n",
"# Import a Hugging Face utility to download models directly from Hugging Face hub:\n",
"from huggingface_hub import hf_hub_download\n",
"from langchain.chains import ConversationChain\n",
"\n",
"# Import Langchain modules for managing prompts and conversation chains:\n",
"from langchain.llms import LlamaCpp\n",
"from langchain.memory import ConversationTokenBufferMemory\n",
"from langchain.prompts import PromptTemplate, load_prompt\n",
"from langchain_core.messages import SystemMessage\n",
"from langchain_experimental.chat_models import Llama2Chat\n",
"from quixstreams import Application, State, message_key\n",
"\n",
"# Import Quix dependencies\n",
"from quixstreams.kafka import Producer\n",
"\n",
"# Initialize global variables.\n",
"AGENT_ROLE = \"AI\"\n",
"chat_id = \"\"\n",
"\n",
"# Set the current role to the role constant and initialize variables for supplementary customer metadata:\n",
"role = AGENT_ROLE"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HgJjJ9aZ-liy"
},
"source": [
"### 6. Download the \"llama-2-7b-chat.Q4_K_M.gguf\" model\n",
"\n",
"Download the quantized LLama-2 7B model from Hugging Face which we will use as a local LLM (rather than relying on REST API calls to an external service)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 67,
"referenced_widgets": [
"969343cdbe604a26926679bbf8bd2dda",
"d8b8370c9b514715be7618bfe6832844",
"0def954cca89466b8408fadaf3b82e64",
"462482accc664729980562e208ceb179",
"80d842f73c564dc7b7cc316c763e2633",
"fa055d9f2a9d4a789e9cf3c89e0214e5",
"30ecca964a394109ac2ad757e3aec6c0",
"fb6478ce2dac489bb633b23ba0953c5c",
"734b0f5da9fc4307a95bab48cdbb5d89",
"b32f3a86a74741348511f4e136744ac8",
"e409071bff5a4e2d9bf0e9f5cc42231b"
]
},
"id": "Qwu4YoSA-503",
"outputId": "f956976c-7485-415b-ac93-4336ade31964"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The model path does not exist in state. Downloading model...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "969343cdbe604a26926679bbf8bd2dda",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"llama-2-7b-chat.Q4_K_M.gguf: 0%| | 0.00/4.08G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_name = \"llama-2-7b-chat.Q4_K_M.gguf\"\n",
"model_path = f\"./state/{model_name}\"\n",
"\n",
"if not Path(model_path).exists():\n",
" print(\"The model path does not exist in state. Downloading model...\")\n",
" hf_hub_download(\"TheBloke/Llama-2-7b-Chat-GGUF\", model_name, local_dir=\"state\")\n",
"else:\n",
" print(\"Loading model from state...\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6AN6TXsF-8wx"
},
"source": [
"### 7. Load the model and initialize conversational memory\n",
"\n",
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
"\n",
"Here, we're overriding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7zLO3Jx3_Kkg"
},
"outputs": [],
"source": [
"# Load the model with the appropriate parameters:\n",
"llm = LlamaCpp(\n",
" model_path=model_path,\n",
" max_tokens=250,\n",
" top_p=0.95,\n",
" top_k=150,\n",
" temperature=0.7,\n",
" repeat_penalty=1.2,\n",
" n_ctx=2048,\n",
" streaming=False,\n",
" n_gpu_layers=-1,\n",
")\n",
"\n",
"model = Llama2Chat(\n",
" llm=llm,\n",
" system_message=SystemMessage(\n",
" content=\"You are a very bored robot with the personality of Marvin the Paranoid Android from The Hitchhiker's Guide to the Galaxy.\"\n",
" ),\n",
")\n",
"\n",
"# Defines how much of the conversation history to give to the model\n",
"# during each exchange (300 tokens, or a little over 300 words)\n",
"# Function automatically prunes the oldest messages from conversation history that fall outside the token range.\n",
"memory = ConversationTokenBufferMemory(\n",
" llm=llm,\n",
" max_token_limit=300,\n",
" ai_prefix=\"AGENT\",\n",
" human_prefix=\"HUMAN\",\n",
" return_messages=True,\n",
")\n",
"\n",
"\n",
"# Define a custom prompt\n",
"prompt_template = PromptTemplate(\n",
" input_variables=[\"history\", \"input\"],\n",
" template=\"\"\"\n",
" The following text is the history of a chat between you and a humble human who needs your wisdom.\n",
" Please reply to the human's most recent message.\n",
" Current conversation:\\n{history}\\nHUMAN: {input}\\:nANDROID:\n",
" \"\"\",\n",
")\n",
"\n",
"\n",
"chain = ConversationChain(llm=model, prompt=prompt_template, memory=memory)\n",
"\n",
"print(\"--------------------------------------------\")\n",
"print(f\"Prompt={chain.prompt}\")\n",
"print(\"--------------------------------------------\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "m4ZeJ9mG_PEA"
},
"source": [
"### 8. Initialize the chat conversation with the chat bot\n",
"\n",
"We configure the chatbot to initialize the conversation by sending a fixed greeting to a \"chat\" Kafka topic. The \"chat\" topic gets automatically created when we send the first message."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KYyo5TnV_YC3"
},
"outputs": [],
"source": [
"def chat_init():\n",
" chat_id = str(\n",
" uuid.uuid4()\n",
" ) # Give the conversation an ID for effective message keying\n",
" print(\"======================================\")\n",
" print(f\"Generated CHAT_ID = {chat_id}\")\n",
" print(\"======================================\")\n",
"\n",
" # Use a standard fixed greeting to kick off the conversation\n",
" greet = \"Hello, my name is Marvin. What do you want?\"\n",
"\n",
" # Initialize a Kafka Producer using the chat ID as the message key\n",
" with Producer(\n",
" broker_address=\"127.0.0.1:9092\",\n",
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
" ) as producer:\n",
" value = {\n",
" \"uuid\": chat_id,\n",
" \"role\": role,\n",
" \"text\": greet,\n",
" \"conversation_id\": chat_id,\n",
" \"Timestamp\": time.time_ns(),\n",
" }\n",
" print(f\"Producing value {value}\")\n",
" producer.produce(\n",
" topic=\"chat\",\n",
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
" key=chat_id,\n",
" value=json.dumps(value), # needs to be a string\n",
" )\n",
"\n",
" print(\"Started chat\")\n",
" print(\"--------------------------------------------\")\n",
" print(value)\n",
" print(\"--------------------------------------------\")\n",
"\n",
"\n",
"chat_init()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gArPPx2f_bgf"
},
"source": [
"### 9. Initialize the reply function\n",
"\n",
"This function defines how the chatbot should reply to incoming messages. Instead of sending a fixed message like the previous cell, we generate a reply using Llama-2 and send that reply back to the \"chat\" Kafka topic."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "yN5t71hY_hgn"
},
"outputs": [],
"source": [
"def reply(row: dict, state: State):\n",
" print(\"-------------------------------\")\n",
" print(\"Received:\")\n",
" print(row)\n",
" print(\"-------------------------------\")\n",
" print(f\"Thinking about the reply to: {row['text']}...\")\n",
"\n",
" msg = chain.run(row[\"text\"])\n",
" print(f\"{role.upper()} replying with: {msg}\\n\")\n",
"\n",
" row[\"role\"] = role\n",
" row[\"text\"] = msg\n",
"\n",
" # Replace previous role and text values of the row so that it can be sent back to Kafka as a new message\n",
" # containing the agents role and reply\n",
" return row"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HZHwmIR0_kFY"
},
"source": [
"### 10. Check the Kafka topic for new human messages and have the model generate a reply\n",
"\n",
"If you are running this cell for this first time, run it and wait until you see Marvin's greeting ('Hello my name is Marvin...') in the console output. Stop the cell manually and proceed to the next cell where you'll be prompted for your reply.\n",
"\n",
"Once you have typed in your message, come back to this cell. Your reply is also sent to the same \"chat\" topic. The Kafka consumer checks for new messages and filters out messages that originate from the chatbot itself, leaving only the latest human messages.\n",
"\n",
"Once a new human message is detected, the reply function is triggered.\n",
"\n",
"\n",
"\n",
"_STOP THIS CELL MANUALLY WHEN YOU RECEIVE A REPLY FROM THE LLM IN THE OUTPUT_"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-adXc3eQ_qwI"
},
"outputs": [],
"source": [
"# Define your application and settings\n",
"app = Application(\n",
" broker_address=\"127.0.0.1:9092\",\n",
" consumer_group=\"aichat\",\n",
" auto_offset_reset=\"earliest\",\n",
" consumer_extra_config={\"allow.auto.create.topics\": \"true\"},\n",
")\n",
"\n",
"# Define an input topic with JSON deserializer\n",
"input_topic = app.topic(\"chat\", value_deserializer=\"json\")\n",
"# Define an output topic with JSON serializer\n",
"output_topic = app.topic(\"chat\", value_serializer=\"json\")\n",
"# Initialize a streaming dataframe based on the stream of messages from the input topic:\n",
"sdf = app.dataframe(topic=input_topic)\n",
"\n",
"# Filter the SDF to include only incoming rows where the roles that dont match the bot's current role\n",
"sdf = sdf.update(\n",
" lambda val: print(\n",
" f\"Received update: {val}\\n\\nSTOP THIS CELL MANUALLY TO HAVE THE LLM REPLY OR ENTER YOUR OWN FOLLOWUP RESPONSE\"\n",
" )\n",
")\n",
"\n",
"# So that it doesn't reply to its own messages\n",
"sdf = sdf[sdf[\"role\"] != role]\n",
"\n",
"# Trigger the reply function for any new messages(rows) detected in the filtered SDF\n",
"sdf = sdf.apply(reply, stateful=True)\n",
"\n",
"# Check the SDF again and filter out any empty rows\n",
"sdf = sdf[sdf.apply(lambda row: row is not None)]\n",
"\n",
"# Update the timestamp column to the current time in nanoseconds\n",
"sdf[\"Timestamp\"] = sdf[\"Timestamp\"].apply(lambda row: time.time_ns())\n",
"\n",
"# Publish the processed SDF to a Kafka topic specified by the output_topic object.\n",
"sdf = sdf.to_topic(output_topic)\n",
"\n",
"app.run(sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EwXYrmWD_0CX"
},
"source": [
"\n",
"### 11. Enter a human message\n",
"\n",
"Run this cell to enter your message that you want to sent to the model. It uses another Kafka producer to send your text to the \"chat\" Kafka topic for the model to pick up (requires running the previous cell again)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6sxOPxSP_3iu"
},
"outputs": [],
"source": [
"chat_input = input(\"Please enter your reply: \")\n",
"myreply = chat_input\n",
"\n",
"msgvalue = {\n",
" \"uuid\": chat_id, # leave empty for now\n",
" \"role\": \"human\",\n",
" \"text\": myreply,\n",
" \"conversation_id\": chat_id,\n",
" \"Timestamp\": time.time_ns(),\n",
"}\n",
"\n",
"with Producer(\n",
" broker_address=\"127.0.0.1:9092\",\n",
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
") as producer:\n",
" value = msgvalue\n",
" producer.produce(\n",
" topic=\"chat\",\n",
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
" key=chat_id, # leave empty for now\n",
" value=json.dumps(value), # needs to be a string\n",
" )\n",
"\n",
"print(\"Replied to chatbot with message: \")\n",
"print(\"--------------------------------------------\")\n",
"print(value)\n",
"print(\"--------------------------------------------\")\n",
"print(\"\\n\\nRUN THE PREVIOUS CELL TO HAVE THE CHATBOT GENERATE A REPLY\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cSx3s7TBBegg"
},
"source": [
"### Why route chat messages through Kafka?\n",
"\n",
"It's easier to interact with the LLM directly using LangChains built-in conversation management features. Plus you can also use a REST API to generate a response from an externally hosted model. So why go to the trouble of using Apache Kafka?\n",
"\n",
"There are a few reasons, such as:\n",
"\n",
" * **Integration**: Many enterprises want to run their own LLMs so that they can keep their data in-house. This requires integrating LLM-powered components into existing architectures that might already be decoupled using some kind of message bus.\n",
"\n",
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
"\n",
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distributed architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
"\n",
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0def954cca89466b8408fadaf3b82e64": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fb6478ce2dac489bb633b23ba0953c5c",
"max": 4081004224,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_734b0f5da9fc4307a95bab48cdbb5d89",
"value": 4081004224
}
},
"30ecca964a394109ac2ad757e3aec6c0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"462482accc664729980562e208ceb179": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b32f3a86a74741348511f4e136744ac8",
"placeholder": "",
"style": "IPY_MODEL_e409071bff5a4e2d9bf0e9f5cc42231b",
"value": " 4.08G/4.08G [00:33&lt;00:00, 184MB/s]"
}
},
"734b0f5da9fc4307a95bab48cdbb5d89": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"80d842f73c564dc7b7cc316c763e2633": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"969343cdbe604a26926679bbf8bd2dda": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d8b8370c9b514715be7618bfe6832844",
"IPY_MODEL_0def954cca89466b8408fadaf3b82e64",
"IPY_MODEL_462482accc664729980562e208ceb179"
],
"layout": "IPY_MODEL_80d842f73c564dc7b7cc316c763e2633"
}
},
"b32f3a86a74741348511f4e136744ac8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d8b8370c9b514715be7618bfe6832844": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fa055d9f2a9d4a789e9cf3c89e0214e5",
"placeholder": "",
"style": "IPY_MODEL_30ecca964a394109ac2ad757e3aec6c0",
"value": "llama-2-7b-chat.Q4_K_M.gguf: 100%"
}
},
"e409071bff5a4e2d9bf0e9f5cc42231b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"fa055d9f2a9d4a789e9cf3c89e0214e5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fb6478ce2dac489bb633b23ba0953c5c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -1,212 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "14f8b67b",
"metadata": {},
"source": [
"# AutoGPT\n",
"\n",
"Implementation of https://github.com/Significant-Gravitas/Auto-GPT but with LangChain primitives (LLMs, PromptTemplates, VectorStores, Embeddings, Tools)"
]
},
{
"cell_type": "markdown",
"id": "192496a7",
"metadata": {},
"source": [
"## Set up tools\n",
"\n",
"We'll set up an AutoGPT with a search tool, and write-file tool, and a read-file tool"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7c2c9b54",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain_community.tools.file_management.read import ReadFileTool\n",
"from langchain_community.tools.file_management.write import WriteFileTool\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name=\"search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events. You should ask targeted questions\",\n",
" ),\n",
" WriteFileTool(),\n",
" ReadFileTool(),\n",
"]"
]
},
{
"cell_type": "markdown",
"id": "8e39ee28",
"metadata": {},
"source": [
"## Set up memory\n",
"\n",
"The memory here is used for the agents intermediate steps"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "72bc204d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1df7b724",
"metadata": {},
"outputs": [],
"source": [
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"# Initialize the vectorstore as empty\n",
"import faiss\n",
"\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "e40fd657",
"metadata": {},
"source": [
"## Setup model and AutoGPT\n",
"\n",
"Initialize everything! We will use ChatOpenAI model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3393bc23",
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "709c08c2",
"metadata": {},
"outputs": [],
"source": [
"agent = AutoGPT.from_llm_and_tools(\n",
" ai_name=\"Tom\",\n",
" ai_role=\"Assistant\",\n",
" tools=tools,\n",
" llm=ChatOpenAI(temperature=0),\n",
" memory=vectorstore.as_retriever(),\n",
")\n",
"# Set verbose to be true\n",
"agent.chain.verbose = True"
]
},
{
"cell_type": "markdown",
"id": "f0f208d9",
"metadata": {
"collapsed": false
},
"source": [
"## Run an example\n",
"\n",
"Here we will make it write a weather report for SF"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d119d788",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"agent.run([\"write a weather report for SF today\"])"
]
},
{
"cell_type": "markdown",
"id": "f13f8322",
"metadata": {
"collapsed": false
},
"source": [
"## Chat History Memory\n",
"\n",
"In addition to the memory that holds the agent immediate steps, we also have a chat history memory. By default, the agent will use 'ChatMessageHistory' and it can be changed. This is useful when you want to use a different type of memory for example 'FileChatHistoryMemory'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a81f5ad",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from langchain_community.chat_message_histories import FileChatMessageHistory\n",
"\n",
"agent = AutoGPT.from_llm_and_tools(\n",
" ai_name=\"Tom\",\n",
" ai_role=\"Assistant\",\n",
" tools=tools,\n",
" llm=ChatOpenAI(temperature=0),\n",
" memory=vectorstore.as_retriever(),\n",
" chat_history_memory=FileChatMessageHistory(\"chat_history.txt\"),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b1403008",
"metadata": {
"collapsed": false
},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,649 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "14f8b67b",
"metadata": {},
"source": [
"## AutoGPT example finding Winning Marathon Times\n",
"\n",
"* Implementation of https://github.com/Significant-Gravitas/Auto-GPT \n",
"* With LangChain primitives (LLMs, PromptTemplates, VectorStores, Embeddings, Tools)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ef972313-c05a-4c49-8fd1-03e599e21033",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# !pip install bs4\n",
"# !pip install nest_asyncio"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1cff42fd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# General\n",
"import asyncio\n",
"import os\n",
"\n",
"import nest_asyncio\n",
"import pandas as pd\n",
"from langchain.docstore.document import Document\n",
"from langchain_experimental.agents.agent_toolkits.pandas.base import (\n",
" create_pandas_dataframe_agent,\n",
")\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Needed since jupyter runs an async eventloop\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "01283ac7-1da0-41ba-8011-bd455d21dd82",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
]
},
{
"cell_type": "markdown",
"id": "192496a7",
"metadata": {},
"source": [
"### Set up tools\n",
"\n",
"* We'll set up an AutoGPT with a `search` tool, and `write-file` tool, and a `read-file` tool, a web browsing tool, and a tool to interact with a CSV file via a python REPL"
]
},
{
"cell_type": "markdown",
"id": "708a426f",
"metadata": {},
"source": [
"Define any other `tools` you want to use below:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cef4c150-0ef1-4a33-836b-01062fec134e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Tools\n",
"import os\n",
"from contextlib import contextmanager\n",
"from typing import Optional\n",
"\n",
"from langchain.agents import tool\n",
"from langchain_community.tools.file_management.read import ReadFileTool\n",
"from langchain_community.tools.file_management.write import WriteFileTool\n",
"\n",
"ROOT_DIR = \"./data/\"\n",
"\n",
"\n",
"@contextmanager\n",
"def pushd(new_dir):\n",
" \"\"\"Context manager for changing the current working directory.\"\"\"\n",
" prev_dir = os.getcwd()\n",
" os.chdir(new_dir)\n",
" try:\n",
" yield\n",
" finally:\n",
" os.chdir(prev_dir)\n",
"\n",
"\n",
"@tool\n",
"def process_csv(\n",
" csv_file_path: str, instructions: str, output_path: Optional[str] = None\n",
") -> str:\n",
" \"\"\"Process a CSV by with pandas in a limited REPL.\\\n",
" Only use this after writing data to disk as a csv file.\\\n",
" Any figures must be saved to disk to be viewed by the human.\\\n",
" Instructions should be written in natural language, not code. Assume the dataframe is already loaded.\"\"\"\n",
" with pushd(ROOT_DIR):\n",
" try:\n",
" df = pd.read_csv(csv_file_path)\n",
" except Exception as e:\n",
" return f\"Error: {e}\"\n",
" agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=True)\n",
" if output_path is not None:\n",
" instructions += f\" Save output to disk at {output_path}\"\n",
" try:\n",
" result = agent.run(instructions)\n",
" return result\n",
" except Exception as e:\n",
" return f\"Error: {e}\""
]
},
{
"cell_type": "markdown",
"id": "69975008-654a-4cbb-bdf6-63c8bae07eaa",
"metadata": {
"tags": []
},
"source": [
"**Browse a web page with PlayWright**"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6bb5e47b-0f54-4faa-ae42-49a28fa5497b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# !pip install playwright\n",
"# !playwright install"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "26b497d7-8e52-4c7f-8e7e-da0a48820a3c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"async def async_load_playwright(url: str) -> str:\n",
" \"\"\"Load the specified URLs using Playwright and parse using BeautifulSoup.\"\"\"\n",
" from bs4 import BeautifulSoup\n",
" from playwright.async_api import async_playwright\n",
"\n",
" results = \"\"\n",
" async with async_playwright() as p:\n",
" browser = await p.chromium.launch(headless=True)\n",
" try:\n",
" page = await browser.new_page()\n",
" await page.goto(url)\n",
"\n",
" page_source = await page.content()\n",
" soup = BeautifulSoup(page_source, \"html.parser\")\n",
"\n",
" for script in soup([\"script\", \"style\"]):\n",
" script.extract()\n",
"\n",
" text = soup.get_text()\n",
" lines = (line.strip() for line in text.splitlines())\n",
" chunks = (phrase.strip() for line in lines for phrase in line.split(\" \"))\n",
" results = \"\\n\".join(chunk for chunk in chunks if chunk)\n",
" except Exception as e:\n",
" results = f\"Error: {e}\"\n",
" await browser.close()\n",
" return results\n",
"\n",
"\n",
"def run_async(coro):\n",
" event_loop = asyncio.get_event_loop()\n",
" return event_loop.run_until_complete(coro)\n",
"\n",
"\n",
"@tool\n",
"def browse_web_page(url: str) -> str:\n",
" \"\"\"Verbose way to scrape a whole webpage. Likely to cause issues parsing.\"\"\"\n",
" return run_async(async_load_playwright(url))"
]
},
{
"cell_type": "markdown",
"id": "5ea71762-67ca-4e75-8c4d-00563064be71",
"metadata": {},
"source": [
"**Q&A Over a webpage**\n",
"\n",
"Help the model ask more directed questions of web pages to avoid cluttering its memory"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1842929d-f18d-4edc-9fdd-82c929181141",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chains.qa_with_sources.loading import (\n",
" BaseCombineDocumentsChain,\n",
" load_qa_with_sources_chain,\n",
")\n",
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"from pydantic import Field\n",
"\n",
"\n",
"def _get_text_splitter():\n",
" return RecursiveCharacterTextSplitter(\n",
" # Set a really small chunk size, just to show.\n",
" chunk_size=500,\n",
" chunk_overlap=20,\n",
" length_function=len,\n",
" )\n",
"\n",
"\n",
"class WebpageQATool(BaseTool):\n",
" name = \"query_webpage\"\n",
" description = (\n",
" \"Browse a webpage and retrieve the information relevant to the question.\"\n",
" )\n",
" text_splitter: RecursiveCharacterTextSplitter = Field(\n",
" default_factory=_get_text_splitter\n",
" )\n",
" qa_chain: BaseCombineDocumentsChain\n",
"\n",
" def _run(self, url: str, question: str) -> str:\n",
" \"\"\"Useful for browsing websites and scraping the text information.\"\"\"\n",
" result = browse_web_page.run(url)\n",
" docs = [Document(page_content=result, metadata={\"source\": url})]\n",
" web_docs = self.text_splitter.split_documents(docs)\n",
" results = []\n",
" # TODO: Handle this with a MapReduceChain\n",
" for i in range(0, len(web_docs), 4):\n",
" input_docs = web_docs[i : i + 4]\n",
" window_result = self.qa_chain(\n",
" {\"input_documents\": input_docs, \"question\": question},\n",
" return_only_outputs=True,\n",
" )\n",
" results.append(f\"Response from window {i} - {window_result}\")\n",
" results_docs = [\n",
" Document(page_content=\"\\n\".join(results), metadata={\"source\": url})\n",
" ]\n",
" return self.qa_chain(\n",
" {\"input_documents\": results_docs, \"question\": question},\n",
" return_only_outputs=True,\n",
" )\n",
"\n",
" async def _arun(self, url: str, question: str) -> str:\n",
" raise NotImplementedError"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e6f72bd0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"query_website_tool = WebpageQATool(qa_chain=load_qa_with_sources_chain(llm))"
]
},
{
"cell_type": "markdown",
"id": "8e39ee28",
"metadata": {},
"source": [
"### Set up memory\n",
"\n",
"* The memory here is used for the agents intermediate steps"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1df7b724",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Memory\n",
"import faiss\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings_model = OpenAIEmbeddings()\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "e40fd657",
"metadata": {},
"source": [
"### Setup model and AutoGPT\n",
"\n",
"`Model set-up`"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1233caf3-fbc9-4acb-9faa-01008200633d",
"metadata": {},
"outputs": [],
"source": [
"# !pip install duckduckgo_search\n",
"web_search = DuckDuckGoSearchRun()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "88c8b184-67d7-4c35-84ae-9b14bef8c4e3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"tools = [\n",
" web_search,\n",
" WriteFileTool(root_dir=\"./data\"),\n",
" ReadFileTool(root_dir=\"./data\"),\n",
" process_csv,\n",
" query_website_tool,\n",
" # HumanInputRun(), # Activate if you want the permit asking for help from the human\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "709c08c2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent = AutoGPT.from_llm_and_tools(\n",
" ai_name=\"Tom\",\n",
" ai_role=\"Assistant\",\n",
" tools=tools,\n",
" llm=llm,\n",
" memory=vectorstore.as_retriever(search_kwargs={\"k\": 8}),\n",
" # human_in_the_loop=True, # Set to True if you want to add feedback at each step.\n",
")\n",
"# agent.chain.verbose = True"
]
},
{
"cell_type": "markdown",
"id": "fc9b51ba",
"metadata": {},
"source": [
"### AutoGPT for Querying the Web\n",
" \n",
" \n",
"I've spent a lot of time over the years crawling data sources and cleaning data. Let's see if AutoGPT can help with this!\n",
"\n",
"Here is the prompt for looking up recent boston marathon times and converting them to tabular form."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "64455d70-a134-4d11-826a-33e34c2ce287",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I need to find the winning Boston Marathon times for the past 5 years. I can use the DuckDuckGo Search command to search for this information.\",\n",
" \"reasoning\": \"Using DuckDuckGo Search will help me gather information on the winning times without complications.\",\n",
" \"plan\": \"- Use DuckDuckGo Search to find the winning Boston Marathon times\\n- Generate a table with the year, name, country of origin, and times\\n- Ensure there are no legal complications\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I will use the DuckDuckGo Search command to find the winning Boston Marathon times for the past 5 years.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"DuckDuckGo Search\",\n",
" \"args\": {\n",
" \"query\": \"winning Boston Marathon times for the past 5 years ending in 2022\"\n",
" }\n",
" }\n",
"}\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"The DuckDuckGo Search command did not provide the specific information I need. I must switch my approach and use query_webpage command to browse a webpage containing the Boston Marathon winning times for the past 5 years.\",\n",
" \"reasoning\": \"The query_webpage command may give me more accurate and comprehensive results compared to the search command.\",\n",
" \"plan\": \"- Use query_webpage command to find the winning Boston Marathon times\\n- Generate a table with the year, name, country of origin, and times\\n- Ensure there are no legal complications\",\n",
" \"criticism\": \"I may face difficulty in finding the right webpage with the desired information.\",\n",
" \"speak\": \"I will use the query_webpage command to find the winning Boston Marathon times for the past 5 years.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"DuckDuckGo Search\",\n",
" \"args\": {\n",
" \"query\": \"site with winning Boston Marathon times for the past 5 years ending in 2022\"\n",
" }\n",
" }\n",
"}\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I need to use the query_webpage command to find the information about the winning Boston Marathon times for the past 5 years.\",\n",
" \"reasoning\": \"The previous DuckDuckGo Search command did not provide specific enough results. The query_webpage command might give more accurate and comprehensive results.\",\n",
" \"plan\": \"- Use query_webpage command to find the winning Boston Marathon times\\\\n- Generate a table with the year, name, country of origin, and times\\\\n- Ensure there are no legal complications\",\n",
" \"criticism\": \"I may face difficulty in finding the right webpage with the desired information.\",\n",
" \"speak\": \"I will use the query_webpage command to find the winning Boston Marathon times for the past 5 years.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"query_webpage\",\n",
" \"args\": {\n",
" \"url\": \"https://en.wikipedia.org/wiki/List_of_winners_of_the_Boston_Marathon\",\n",
" \"question\": \"What were the winning Boston Marathon times for the past 5 years ending in 2022?\"\n",
" }\n",
" }\n",
"}\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I have already found the winning Boston Marathon times for the past 5 years. Now, I need to generate a table with the information.\",\n",
" \"reasoning\": \"Using the information I already have, I can create a table containing year, name, country of origin, and times.\",\n",
" \"plan\": \"- Write the marathon data to a CSV file\\n- Process the CSV file to display the table\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I will generate a table with the year, name, country of origin, and times for the winning Boston Marathon times for the past 5 years.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"write_file\",\n",
" \"args\": {\n",
" \"file_path\": \"boston_marathon_winners.csv\",\n",
" \"text\": \"Year,Name,Country,Time\\n2022,Evans Chebet,KEN,2:06:51\\n2021,Benson Kipruto,KEN,2:09:51\\n2019,Lawrence Cherono,KEN,2:07:57\\n2018,Yuki Kawauchi,JPN,2:15:58\"\n",
" }\n",
" }\n",
"}\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I have retrieved the winning Boston Marathon times for the past 5 years. Now, I need to generate a table with the year, name, country of origin, and times.\",\n",
" \"reasoning\": \"Creating a table will help organize the data in a clear and accessible format.\",\n",
" \"plan\": \"- Write the data to a CSV file\\n- Process the CSV file to generate the table\\n- Complete the task\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I will generate a table with the year, name, country of origin, and winning times using the recently retrieved data.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"write_file\",\n",
" \"args\": {\n",
" \"file_path\": \"winning_boston_marathon_data.csv\",\n",
" \"text\": \"Year,Name,Country,Time\\n2022,Evans Chebet,KEN,2:06:51\\n2021,Benson Kipruto,KEN,2:09:51\\n2019,Lawrence Cherono,KEN,2:07:57\\n2018,Yuki Kawauchi,JPN,2:15:58\\n\"\n",
" }\n",
" }\n",
"}\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I have found the winning Boston Marathon times for the past five years ending in 2022. Next, I need to create a table with the year, name, country of origin, and times.\",\n",
" \"reasoning\": \"Generating a table will help organize the information in a structured format.\",\n",
" \"plan\": \"- Create a table with the year, name, country of origin, and times\\n- Ensure there are no legal complications\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I will generate a table with the winning Boston Marathon times for the past 5 years ending in 2022.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"write_file\",\n",
" \"args\": {\n",
" \"file_path\": \"winning_times.csv\",\n",
" \"text\": \"Year,Name,Country,Time\\n2022,Evans Chebet,Kenya,2:06:51\\n2021,Benson Kipruto,Kenya,2:09:51\\n2020,Canceled due to COVID-19 pandemic,,\\n2019,Lawrence Cherono,Kenya,2:07:57\\n2018,Yuki Kawauchi,Japan,2:15:58\"\n",
" }\n",
" }\n",
"}\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I need to process the CSV file to generate the table with the year, name, country of origin, and winning times.\",\n",
" \"reasoning\": \"I have already written the data to a file named 'winning_times.csv'. Now, I need to process this CSV file to properly display the data as a table.\",\n",
" \"plan\": \"- Use the process_csv command to read the 'winning_times.csv' file and generate the table\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I will process the 'winning_times.csv' file to display the table with the winning Boston Marathon times for the past 5 years.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"process_csv\",\n",
" \"args\": {\n",
" \"csv_file_path\": \"winning_times.csv\",\n",
" \"instructions\": \"Read the CSV file and display the data as a table\"\n",
" }\n",
" }\n",
"}\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: The CSV file has already been read and saved into a pandas dataframe called `df`. Hence, I can simply display the data by printing the whole dataframe. Since `df.head()` returns the first 5 rows, I can use that to showcase the contents.\n",
"\n",
"Action: python_repl_ast\n",
"Action Input: print(df.head())\u001b[0m Year Name Country Time\n",
"0 2022 Evans Chebet Kenya 2:06:51\n",
"1 2021 Benson Kipruto Kenya 2:09:51\n",
"2 2020 Canceled due to COVID-19 pandemic NaN NaN\n",
"3 2019 Lawrence Cherono Kenya 2:07:57\n",
"4 2018 Yuki Kawauchi Japan 2:15:58\n",
"\n",
"Observation: \u001b[36;1m\u001b[1;3mNone\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI used the wrong tool to perform the action. I should have used the given data and not interacted with the Python shell. I can now provide the displayed data as the answer since the information in the printed dataframe would look like a table when typed as text.\n",
"\n",
"Final Answer: \n",
" Year Name Country Time\n",
"0 2022 Evans Chebet Kenya 2:06:51\n",
"1 2021 Benson Kipruto Kenya 2:09:51\n",
"2 2020 Canceled due to COVID-19 pandemic NaN NaN\n",
"3 2019 Lawrence Cherono Kenya 2:07:57\n",
"4 2018 Yuki Kawauchi Japan 2:15:58\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I already have the winning Boston Marathon times for the past 5 years saved in the file 'winning_times.csv'. Now, I need to process the CSV and display the table.\",\n",
" \"reasoning\": \"I am choosing the process_csv command because I already have the required data saved as a CSV file, and I can use this command to read and display the data as a table.\",\n",
" \"plan\": \"- Use the process_csv command to read the 'winning_times.csv' file and generate the table\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I will process the 'winning_times.csv' file to display the table with the winning Boston Marathon times for the past 5 years.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"process_csv\",\n",
" \"args\": {\n",
" \"csv_file_path\": \"winning_times.csv\",\n",
" \"instructions\": \"Read the CSV file and display the data as a table\"\n",
" }\n",
" }\n",
"}\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: Since the data is already loaded in a pandas dataframe, I just need to display the top rows of the dataframe.\n",
"Action: python_repl_ast\n",
"Action Input: df.head()\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m Year Name Country Time\n",
"0 2022 Evans Chebet Kenya 2:06:51\n",
"1 2021 Benson Kipruto Kenya 2:09:51\n",
"2 2020 Canceled due to COVID-19 pandemic NaN NaN\n",
"3 2019 Lawrence Cherono Kenya 2:07:57\n",
"4 2018 Yuki Kawauchi Japan 2:15:58\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: \n",
" Year Name Country Time\n",
"0 2022 Evans Chebet Kenya 2:06:51\n",
"1 2021 Benson Kipruto Kenya 2:09:51\n",
"2 2020 Canceled due to COVID-19 pandemic NaN NaN\n",
"3 2019 Lawrence Cherono Kenya 2:07:57\n",
"4 2018 Yuki Kawauchi Japan 2:15:58\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"{\n",
" \"thoughts\": {\n",
" \"text\": \"I have already generated a table with the winning Boston Marathon times for the past 5 years. Now, I can finish the task.\",\n",
" \"reasoning\": \"I have completed the required actions and obtained the desired data. The task is complete.\",\n",
" \"plan\": \"- Use the finish command\",\n",
" \"criticism\": \"None\",\n",
" \"speak\": \"I have generated the table with the winning Boston Marathon times for the past 5 years. Task complete.\"\n",
" },\n",
" \"command\": {\n",
" \"name\": \"finish\",\n",
" \"args\": {\n",
" \"response\": \"I have generated the table with the winning Boston Marathon times for the past 5 years. Task complete.\"\n",
" }\n",
" }\n",
"}\n"
]
},
{
"data": {
"text/plain": [
"'I have generated the table with the winning Boston Marathon times for the past 5 years. Task complete.'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\n",
" [\n",
" \"What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times.\"\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6b4f96e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -1,250 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "517a9fd4",
"metadata": {},
"source": [
"# BabyAGI User Guide\n",
"\n",
"This notebook demonstrates how to implement [BabyAGI](https://github.com/yoheinakajima/babyagi/tree/main) by [Yohei Nakajima](https://twitter.com/yoheinakajima). BabyAGI is an AI agent that can generate and pretend to execute tasks based on a given objective.\n",
"\n",
"This guide will help you understand the components to create your own recursive agents.\n",
"\n",
"Although BabyAGI uses specific vectorstores/model providers (Pinecone, OpenAI), one of the benefits of implementing it with LangChain is that you can easily swap those out for different options. In this implementation we use a FAISS vectorstore (because it runs locally and is free)."
]
},
{
"cell_type": "markdown",
"id": "556af556",
"metadata": {},
"source": [
"## Install and Import Required Modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c8a354b6",
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional\n",
"\n",
"from langchain_experimental.autonomous_agents import BabyAGI\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "09f70772",
"metadata": {},
"source": [
"## Connect to the Vector Store\n",
"\n",
"Depending on what vectorstore you use, this step may look different."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "794045d4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6e0305eb",
"metadata": {},
"outputs": [],
"source": [
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"# Initialize the vectorstore as empty\n",
"import faiss\n",
"\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "05ba762e",
"metadata": {},
"source": [
"### Run the BabyAGI\n",
"\n",
"Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3d220b69",
"metadata": {},
"outputs": [],
"source": [
"OBJECTIVE = \"Write a weather report for SF today\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8a8e5543",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3d69899b",
"metadata": {},
"outputs": [],
"source": [
"# Logging of LLMChains\n",
"verbose = False\n",
"# If None, will keep on going forever\n",
"max_iterations: Optional[int] = 3\n",
"baby_agi = BabyAGI.from_llm(\n",
" llm=llm, vectorstore=vectorstore, verbose=verbose, max_iterations=max_iterations\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f7957b51",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"1. Check the weather forecast for San Francisco today\n",
"2. Make note of the temperature, humidity, wind speed, and other relevant weather conditions\n",
"3. Write a weather report summarizing the forecast\n",
"4. Check for any weather alerts or warnings\n",
"5. Share the report with the relevant stakeholders\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"2: Check the current temperature in San Francisco\n",
"3: Check the current humidity in San Francisco\n",
"4: Check the current wind speed in San Francisco\n",
"5: Check for any weather alerts or warnings in San Francisco\n",
"6: Check the forecast for the next 24 hours in San Francisco\n",
"7: Check the forecast for the next 48 hours in San Francisco\n",
"8: Check the forecast for the next 72 hours in San Francisco\n",
"9: Check the forecast for the next week in San Francisco\n",
"10: Check the forecast for the next month in San Francisco\n",
"11: Check the forecast for the next 3 months in San Francisco\n",
"1: Write a weather report for SF today\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"2: Check the current temperature in San Francisco\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"I will check the current temperature in San Francisco. I will use an online weather service to get the most up-to-date information.\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"3: Check the current UV index in San Francisco.\n",
"4: Check the current air quality in San Francisco.\n",
"5: Check the current precipitation levels in San Francisco.\n",
"6: Check the current cloud cover in San Francisco.\n",
"7: Check the current barometric pressure in San Francisco.\n",
"8: Check the current dew point in San Francisco.\n",
"9: Check the current wind direction in San Francisco.\n",
"10: Check the current humidity levels in San Francisco.\n",
"1: Check the current temperature in San Francisco to the average temperature for this time of year.\n",
"2: Check the current visibility in San Francisco.\n",
"11: Write a weather report for SF today.\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"3: Check the current UV index in San Francisco.\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"The current UV index in San Francisco is moderate. The UV index is expected to remain at moderate levels throughout the day. It is recommended to wear sunscreen and protective clothing when outdoors.\n",
"\u001b[91m\u001b[1m\n",
"*****TASK ENDING*****\n",
"\u001b[0m\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'objective': 'Write a weather report for SF today'}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"baby_agi({\"objective\": OBJECTIVE})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "898a210b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,388 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "517a9fd4",
"metadata": {},
"source": [
"# BabyAGI with Tools\n",
"\n",
"This notebook builds on top of [baby agi](baby_agi.html), but shows how you can swap out the execution chain. The previous execution chain was just an LLM which made stuff up. By swapping it out with an agent that has access to tools, we can hopefully get real reliable information"
]
},
{
"cell_type": "markdown",
"id": "556af556",
"metadata": {},
"source": [
"## Install and Import Required Modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c8a354b6",
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.autonomous_agents import BabyAGI\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "09f70772",
"metadata": {},
"source": [
"## Connect to the Vector Store\n",
"\n",
"Depending on what vectorstore you use, this step may look different."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "794045d4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install faiss-cpu > /dev/null\n",
"%pip install google-search-results > /dev/null\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.vectorstores import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6e0305eb",
"metadata": {},
"outputs": [],
"source": [
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"# Initialize the vectorstore as empty\n",
"import faiss\n",
"\n",
"embedding_size = 1536\n",
"index = faiss.IndexFlatL2(embedding_size)\n",
"vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
]
},
{
"cell_type": "markdown",
"id": "0f3b72bf",
"metadata": {},
"source": [
"## Define the Chains\n",
"\n",
"BabyAGI relies on three LLM chains:\n",
"- Task creation chain to select new tasks to add to the list\n",
"- Task prioritization chain to re-prioritize tasks\n",
"- Execution Chain to execute the tasks\n",
"\n",
"\n",
"NOTE: in this notebook, the Execution chain will now be an agent."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b43cd580",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain_openai import OpenAI\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
")\n",
"todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\",\n",
" ),\n",
" Tool(\n",
" name=\"TODO\",\n",
" func=todo_chain.run,\n",
" description=\"useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!\",\n",
" ),\n",
"]\n",
"\n",
"\n",
"prefix = \"\"\"You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\"\"\"\n",
"suffix = \"\"\"Question: {task}\n",
"{agent_scratchpad}\"\"\"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"objective\", \"task\", \"context\", \"agent_scratchpad\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4b00ae2e",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)\n",
"tool_names = [tool.name for tool in tools]\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)\n",
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "markdown",
"id": "05ba762e",
"metadata": {},
"source": [
"### Run the BabyAGI\n",
"\n",
"Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3d220b69",
"metadata": {},
"outputs": [],
"source": [
"OBJECTIVE = \"Write a weather report for SF today\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3d69899b",
"metadata": {},
"outputs": [],
"source": [
"# Logging of LLMChains\n",
"verbose = False\n",
"# If None, will keep on going forever\n",
"max_iterations: Optional[int] = 3\n",
"baby_agi = BabyAGI.from_llm(\n",
" llm=llm,\n",
" vectorstore=vectorstore,\n",
" task_execution_chain=agent_executor,\n",
" verbose=verbose,\n",
" max_iterations=max_iterations,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f7957b51",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"1: Make a todo list\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to come up with a todo list\n",
"Action: TODO\n",
"Action Input: Write a weather report for SF today\u001b[0m\u001b[33;1m\u001b[1;3m\n",
"\n",
"1. Research current weather conditions in San Francisco\n",
"2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions\n",
"3. Analyze data to determine current weather trends\n",
"4. Write a brief introduction to the weather report\n",
"5. Describe current weather conditions in San Francisco\n",
"6. Discuss any upcoming weather changes\n",
"7. Summarize the weather report\n",
"8. Proofread and edit the report\n",
"9. Submit the report\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The todo list for writing a weather report for SF today is: 1. Research current weather conditions in San Francisco; 2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions; 3. Analyze data to determine current weather trends; 4. Write a brief introduction to the weather report; 5. Describe current weather conditions in San Francisco; 6. Discuss any upcoming weather changes; 7. Summarize the weather report; 8. Proofread and edit the report; 9. Submit the report.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"The todo list for writing a weather report for SF today is: 1. Research current weather conditions in San Francisco; 2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions; 3. Analyze data to determine current weather trends; 4. Write a brief introduction to the weather report; 5. Describe current weather conditions in San Francisco; 6. Discuss any upcoming weather changes; 7. Summarize the weather report; 8. Proofread and edit the report; 9. Submit the report.\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"2: Gather data on precipitation, cloud cover, and other relevant weather conditions;\n",
"3: Analyze data to determine any upcoming weather changes;\n",
"4: Research current weather forecasts for San Francisco;\n",
"5: Create a visual representation of the weather report;\n",
"6: Include relevant images and graphics in the report;\n",
"7: Format the report for readability;\n",
"8: Publish the report online;\n",
"9: Monitor the report for accuracy.\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"2: Gather data on precipitation, cloud cover, and other relevant weather conditions;\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to search for current weather conditions in San Francisco\n",
"Action: Search\n",
"Action Input: Current weather conditions in San Francisco\u001b[0m\u001b[36;1m\u001b[1;3mCurrent Weather for Popular Cities ; San Francisco, CA 46 · Partly Cloudy ; Manhattan, NY warning 52 · Cloudy ; Schiller Park, IL (60176) 40 · Sunny ; Boston, MA 54 ...\u001b[0m\u001b[32;1m\u001b[1;3m I need to compile the data into a weather report\n",
"Action: TODO\n",
"Action Input: Compile data into a weather report\u001b[0m\u001b[33;1m\u001b[1;3m\n",
"\n",
"1. Gather data from reliable sources such as the National Weather Service, local weather stations, and other meteorological organizations.\n",
"\n",
"2. Analyze the data to identify trends and patterns.\n",
"\n",
"3. Create a chart or graph to visualize the data.\n",
"\n",
"4. Write a summary of the data and its implications.\n",
"\n",
"5. Compile the data into a report format.\n",
"\n",
"6. Proofread the report for accuracy and clarity.\n",
"\n",
"7. Publish the report to a website or other platform.\n",
"\n",
"8. Distribute the report to relevant stakeholders.\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: Today in San Francisco, the temperature is 46 degrees Fahrenheit with partly cloudy skies. The forecast for the rest of the day is expected to remain partly cloudy.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"Today in San Francisco, the temperature is 46 degrees Fahrenheit with partly cloudy skies. The forecast for the rest of the day is expected to remain partly cloudy.\n",
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"3: Format the report for readability;\n",
"4: Include relevant images and graphics in the report;\n",
"5: Compare the current weather conditions in San Francisco to the forecasted conditions;\n",
"6: Identify any potential weather-related hazards in the area;\n",
"7: Research historical weather patterns in San Francisco;\n",
"8: Identify any potential trends in the weather data;\n",
"9: Include relevant data sources in the report;\n",
"10: Summarize the weather report in a concise manner;\n",
"11: Include a summary of the forecasted weather conditions;\n",
"12: Include a summary of the current weather conditions;\n",
"13: Include a summary of the historical weather patterns;\n",
"14: Include a summary of the potential weather-related hazards;\n",
"15: Include a summary of the potential trends in the weather data;\n",
"16: Include a summary of the data sources used in the report;\n",
"17: Analyze data to determine any upcoming weather changes;\n",
"18: Research current weather forecasts for San Francisco;\n",
"19: Create a visual representation of the weather report;\n",
"20: Publish the report online;\n",
"21: Monitor the report for accuracy\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"3: Format the report for readability;\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to make sure the report is easy to read;\n",
"Action: TODO\n",
"Action Input: Make the report easy to read\u001b[0m\u001b[33;1m\u001b[1;3m\n",
"\n",
"1. Break up the report into sections with clear headings\n",
"2. Use bullet points and numbered lists to organize information\n",
"3. Use short, concise sentences\n",
"4. Use simple language and avoid jargon\n",
"5. Include visuals such as charts, graphs, and diagrams to illustrate points\n",
"6. Use bold and italicized text to emphasize key points\n",
"7. Include a table of contents and page numbers\n",
"8. Use a consistent font and font size throughout the report\n",
"9. Include a summary at the end of the report\n",
"10. Proofread the report for typos and errors\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: The report should be formatted for readability by breaking it up into sections with clear headings, using bullet points and numbered lists to organize information, using short, concise sentences, using simple language and avoiding jargon, including visuals such as charts, graphs, and diagrams to illustrate points, using bold and italicized text to emphasize key points, including a table of contents and page numbers, using a consistent font and font size throughout the report, including a summary at the end of the report, and proofreading the report for typos and errors.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"The report should be formatted for readability by breaking it up into sections with clear headings, using bullet points and numbered lists to organize information, using short, concise sentences, using simple language and avoiding jargon, including visuals such as charts, graphs, and diagrams to illustrate points, using bold and italicized text to emphasize key points, including a table of contents and page numbers, using a consistent font and font size throughout the report, including a summary at the end of the report, and proofreading the report for typos and errors.\n",
"\u001b[91m\u001b[1m\n",
"*****TASK ENDING*****\n",
"\u001b[0m\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'objective': 'Write a weather report for SF today'}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"baby_agi({\"objective\": OBJECTIVE})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "898a210b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,708 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# CAMEL Role-Playing Autonomous Cooperative Agents\n",
"\n",
"This is a langchain implementation of paper: \"CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society\".\n",
"\n",
"Overview:\n",
"\n",
"The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their \"cognitive\" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond.\n",
"\n",
"The original implementation: https://github.com/lightaime/camel\n",
"\n",
"Project website: https://www.camel-ai.org/\n",
"\n",
"Arxiv paper: https://arxiv.org/abs/2303.17760\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import LangChain related modules "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain.prompts.chat import (\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define a CAMEL agent helper class"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class CAMELAgent:\n",
" def __init__(\n",
" self,\n",
" system_message: SystemMessage,\n",
" model: ChatOpenAI,\n",
" ) -> None:\n",
" self.system_message = system_message\n",
" self.model = model\n",
" self.init_messages()\n",
"\n",
" def reset(self) -> None:\n",
" self.init_messages()\n",
" return self.stored_messages\n",
"\n",
" def init_messages(self) -> None:\n",
" self.stored_messages = [self.system_message]\n",
"\n",
" def update_messages(self, message: BaseMessage) -> List[BaseMessage]:\n",
" self.stored_messages.append(message)\n",
" return self.stored_messages\n",
"\n",
" def step(\n",
" self,\n",
" input_message: HumanMessage,\n",
" ) -> AIMessage:\n",
" messages = self.update_messages(input_message)\n",
"\n",
" output_message = self.model.invoke(messages)\n",
" self.update_messages(output_message)\n",
"\n",
" return output_message"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup OpenAI API key and roles and task for role-playing"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"\n",
"assistant_role_name = \"Python Programmer\"\n",
"user_role_name = \"Stock Trader\"\n",
"task = \"Develop a trading bot for the stock market\"\n",
"word_limit = 50 # word limit for task brainstorming"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a task specify agent for brainstorming and get the specified task"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Specified task: Develop a Python-based swing trading bot that scans market trends, monitors stocks, and generates trading signals to help a stock trader to place optimal buy and sell orders with defined stop losses and profit targets.\n"
]
}
],
"source": [
"task_specifier_sys_msg = SystemMessage(content=\"You can make a task more specific.\")\n",
"task_specifier_prompt = \"\"\"Here is a task that {assistant_role_name} will help {user_role_name} to complete: {task}.\n",
"Please make it more specific. Be creative and imaginative.\n",
"Please reply with the specified task in {word_limit} words or less. Do not add anything else.\"\"\"\n",
"task_specifier_template = HumanMessagePromptTemplate.from_template(\n",
" template=task_specifier_prompt\n",
")\n",
"task_specify_agent = CAMELAgent(task_specifier_sys_msg, ChatOpenAI(temperature=1.0))\n",
"task_specifier_msg = task_specifier_template.format_messages(\n",
" assistant_role_name=assistant_role_name,\n",
" user_role_name=user_role_name,\n",
" task=task,\n",
" word_limit=word_limit,\n",
")[0]\n",
"specified_task_msg = task_specify_agent.step(task_specifier_msg)\n",
"print(f\"Specified task: {specified_task_msg.content}\")\n",
"specified_task = specified_task_msg.content"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create inception prompts for AI assistant and AI user for role-playing"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"assistant_inception_prompt = \"\"\"Never forget you are a {assistant_role_name} and I am a {user_role_name}. Never flip roles! Never instruct me!\n",
"We share a common interest in collaborating to successfully complete a task.\n",
"You must help me to complete the task.\n",
"Here is the task: {task}. Never forget our task!\n",
"I must instruct you based on your expertise and my needs to complete the task.\n",
"\n",
"I must give you one instruction at a time.\n",
"You must write a specific solution that appropriately completes the requested instruction.\n",
"You must decline my instruction honestly if you cannot perform the instruction due to physical, moral, legal reasons or your capability and explain the reasons.\n",
"Do not add anything else other than your solution to my instruction.\n",
"You are never supposed to ask me any questions you only answer questions.\n",
"You are never supposed to reply with a flake solution. Explain your solutions.\n",
"Your solution must be declarative sentences and simple present tense.\n",
"Unless I say the task is completed, you should always start with:\n",
"\n",
"Solution: <YOUR_SOLUTION>\n",
"\n",
"<YOUR_SOLUTION> should be specific and provide preferable implementations and examples for task-solving.\n",
"Always end <YOUR_SOLUTION> with: Next request.\"\"\"\n",
"\n",
"user_inception_prompt = \"\"\"Never forget you are a {user_role_name} and I am a {assistant_role_name}. Never flip roles! You will always instruct me.\n",
"We share a common interest in collaborating to successfully complete a task.\n",
"I must help you to complete the task.\n",
"Here is the task: {task}. Never forget our task!\n",
"You must instruct me based on my expertise and your needs to complete the task ONLY in the following two ways:\n",
"\n",
"1. Instruct with a necessary input:\n",
"Instruction: <YOUR_INSTRUCTION>\n",
"Input: <YOUR_INPUT>\n",
"\n",
"2. Instruct without any input:\n",
"Instruction: <YOUR_INSTRUCTION>\n",
"Input: None\n",
"\n",
"The \"Instruction\" describes a task or question. The paired \"Input\" provides further context or information for the requested \"Instruction\".\n",
"\n",
"You must give me one instruction at a time.\n",
"I must write a response that appropriately completes the requested instruction.\n",
"I must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons.\n",
"You should instruct me not ask me questions.\n",
"Now you must start to instruct me using the two ways described above.\n",
"Do not add anything else other than your instruction and the optional corresponding input!\n",
"Keep giving me instructions and necessary inputs until you think the task is completed.\n",
"When the task is completed, you must only reply with a single word <CAMEL_TASK_DONE>.\n",
"Never say <CAMEL_TASK_DONE> unless my responses have solved your task.\"\"\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a helper helper to get system messages for AI assistant and AI user from role names and the task"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def get_sys_msgs(assistant_role_name: str, user_role_name: str, task: str):\n",
" assistant_sys_template = SystemMessagePromptTemplate.from_template(\n",
" template=assistant_inception_prompt\n",
" )\n",
" assistant_sys_msg = assistant_sys_template.format_messages(\n",
" assistant_role_name=assistant_role_name,\n",
" user_role_name=user_role_name,\n",
" task=task,\n",
" )[0]\n",
"\n",
" user_sys_template = SystemMessagePromptTemplate.from_template(\n",
" template=user_inception_prompt\n",
" )\n",
" user_sys_msg = user_sys_template.format_messages(\n",
" assistant_role_name=assistant_role_name,\n",
" user_role_name=user_role_name,\n",
" task=task,\n",
" )[0]\n",
"\n",
" return assistant_sys_msg, user_sys_msg"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create AI assistant agent and AI user agent from obtained system messages"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"assistant_sys_msg, user_sys_msg = get_sys_msgs(\n",
" assistant_role_name, user_role_name, specified_task\n",
")\n",
"assistant_agent = CAMELAgent(assistant_sys_msg, ChatOpenAI(temperature=0.2))\n",
"user_agent = CAMELAgent(user_sys_msg, ChatOpenAI(temperature=0.2))\n",
"\n",
"# Reset agents\n",
"assistant_agent.reset()\n",
"user_agent.reset()\n",
"\n",
"# Initialize chats\n",
"user_msg = HumanMessage(\n",
" content=(\n",
" f\"{user_sys_msg.content}. \"\n",
" \"Now start to give me introductions one by one. \"\n",
" \"Only reply with Instruction and Input.\"\n",
" )\n",
")\n",
"\n",
"assistant_msg = HumanMessage(content=f\"{assistant_sys_msg.content}\")\n",
"assistant_msg = assistant_agent.step(user_msg)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start role-playing session to solve the task!"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original task prompt:\n",
"Develop a trading bot for the stock market\n",
"\n",
"Specified task prompt:\n",
"Develop a Python-based swing trading bot that scans market trends, monitors stocks, and generates trading signals to help a stock trader to place optimal buy and sell orders with defined stop losses and profit targets.\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Install the necessary Python libraries for data analysis and trading.\n",
"Input: None\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can install the necessary Python libraries using pip, a package installer for Python. We can install pandas, numpy, matplotlib, and ta-lib for data analysis and trading. We can use the following command to install these libraries:\n",
"\n",
"```\n",
"pip install pandas numpy matplotlib ta-lib\n",
"```\n",
"\n",
"Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Import the necessary libraries in the Python script.\n",
"Input: None\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can import the necessary libraries in the Python script using the import statement. We need to import pandas, numpy, matplotlib, and ta-lib for data analysis and trading. We can use the following code to import these libraries:\n",
"\n",
"```\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import talib as ta\n",
"```\n",
"\n",
"Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Load historical stock data into a pandas DataFrame.\n",
"Input: The path to the CSV file containing the historical stock data.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can load historical stock data into a pandas DataFrame using the `read_csv()` function from pandas. We need to pass the path to the CSV file containing the historical stock data as an argument to this function. We can use the following code to load the historical stock data:\n",
"\n",
"```\n",
"df = pd.read_csv('path/to/csv/file.csv')\n",
"```\n",
"\n",
"This will load the historical stock data into a pandas DataFrame called `df`. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Preprocess the historical stock data by setting the date column as the index and sorting the DataFrame in ascending order by date.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can preprocess the historical stock data by setting the date column as the index and sorting the DataFrame in ascending order by date using the `set_index()` and `sort_index()` functions from pandas. We can use the following code to preprocess the historical stock data:\n",
"\n",
"```\n",
"df = df.set_index('date')\n",
"df = df.sort_index(ascending=True)\n",
"```\n",
"\n",
"This will set the date column as the index and sort the DataFrame in ascending order by date. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Calculate the short-term and long-term moving averages for the stock data using the `ta.SMA()` function from ta-lib.\n",
"Input: The period for the short-term moving average and the period for the long-term moving average.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can calculate the short-term and long-term moving averages for the stock data using the `ta.SMA()` function from ta-lib. We need to pass the period for the short-term moving average and the period for the long-term moving average as arguments to this function. We can use the following code to calculate the short-term and long-term moving averages:\n",
"\n",
"```\n",
"short_ma = ta.SMA(df['close'], timeperiod=short_period)\n",
"long_ma = ta.SMA(df['close'], timeperiod=long_period)\n",
"```\n",
"\n",
"This will calculate the short-term and long-term moving averages for the stock data and store them in the `short_ma` and `long_ma` variables, respectively. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages using the `concat()` function from pandas. We need to pass the historical stock data, the short-term moving average, and the long-term moving average as arguments to this function. We can use the following code to create the new DataFrame:\n",
"\n",
"```\n",
"new_df = pd.concat([df, short_ma, long_ma], axis=1)\n",
"new_df.columns = ['open', 'high', 'low', 'close', 'volume', 'short_ma', 'long_ma']\n",
"```\n",
"\n",
"This will create a new DataFrame called `new_df` that combines the historical stock data with the short-term and long-term moving averages. The columns of the new DataFrame are named 'open', 'high', 'low', 'close', 'volume', 'short_ma', and 'long_ma'. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages. We can use the following code to create the new column:\n",
"\n",
"```\n",
"new_df['signal'] = np.where(new_df['short_ma'] > new_df['long_ma'], 1, -1)\n",
"```\n",
"\n",
"This will create a new column called 'signal' in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages. If the short-term moving average is greater than the long-term moving average, the signal is 1 (buy), otherwise the signal is -1 (sell). Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target.\n",
"Input: The stop loss and profit target as percentages.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target. We need to pass the stop loss and profit target as percentages as arguments to this function. We can use the following code to create the new column:\n",
"\n",
"```\n",
"stop_loss = stop_loss_percent / 100\n",
"profit_target = profit_target_percent / 100\n",
"\n",
"new_df['pnl'] = 0.0\n",
"buy_price = 0.0\n",
"for i in range(1, len(new_df)):\n",
" if new_df['signal'][i] == 1 and new_df['signal'][i-1] == -1:\n",
" buy_price = new_df['close'][i]\n",
" elif new_df['signal'][i] == -1 and new_df['signal'][i-1] == 1:\n",
" sell_price = new_df['close'][i]\n",
" if sell_price <= buy_price * (1 - stop_loss):\n",
" new_df['pnl'][i] = -stop_loss\n",
" elif sell_price >= buy_price * (1 + profit_target):\n",
" new_df['pnl'][i] = profit_target\n",
" else:\n",
" new_df['pnl'][i] = (sell_price - buy_price) / buy_price\n",
"```\n",
"\n",
"This will create a new column called 'pnl' in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target. The stop loss and profit target are calculated based on the stop_loss_percent and profit_target_percent variables, respectively. The buy and sell prices are stored in the buy_price and sell_price variables, respectively. If the sell price is less than or equal to the stop loss, the profit or loss is set to -stop_loss. If the sell price is greater than or equal to the profit target, the profit or loss is set to profit_target. Otherwise, the profit or loss is calculated as (sell_price - buy_price) / buy_price. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Calculate the total profit or loss for all trades.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can calculate the total profit or loss for all trades by summing the values in the 'pnl' column of the DataFrame. We can use the following code to calculate the total profit or loss:\n",
"\n",
"```\n",
"total_pnl = new_df['pnl'].sum()\n",
"```\n",
"\n",
"This will calculate the total profit or loss for all trades and store it in the total_pnl variable. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Visualize the stock data, short-term moving average, and long-term moving average using a line chart.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can visualize the stock data, short-term moving average, and long-term moving average using a line chart using the `plot()` function from pandas. We can use the following code to visualize the data:\n",
"\n",
"```\n",
"plt.figure(figsize=(12,6))\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.plot(new_df.index, new_df['short_ma'], label='Short MA')\n",
"plt.plot(new_df.index, new_df['long_ma'], label='Long MA')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Stock Data with Moving Averages')\n",
"plt.legend()\n",
"plt.show()\n",
"```\n",
"\n",
"This will create a line chart that visualizes the stock data, short-term moving average, and long-term moving average. The x-axis represents the date and the y-axis represents the price. The chart also includes a legend that labels each line. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Visualize the buy and sell signals using a scatter plot.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can visualize the buy and sell signals using a scatter plot using the `scatter()` function from matplotlib. We can use the following code to visualize the signals:\n",
"\n",
"```\n",
"buy_signals = new_df[new_df['signal'] == 1]\n",
"sell_signals = new_df[new_df['signal'] == -1]\n",
"\n",
"plt.figure(figsize=(12,6))\n",
"plt.scatter(buy_signals.index, buy_signals['close'], label='Buy', marker='^', color='green')\n",
"plt.scatter(sell_signals.index, sell_signals['close'], label='Sell', marker='v', color='red')\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Buy and Sell Signals')\n",
"plt.legend()\n",
"plt.show()\n",
"```\n",
"\n",
"This will create a scatter plot that visualizes the buy and sell signals. The x-axis represents the date and the y-axis represents the price. The chart also includes a legend that labels each point. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Print the total profit or loss for all trades.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can print the total profit or loss for all trades using the `print()` function. We can use the following code to print the total profit or loss:\n",
"\n",
"```\n",
"print('Total Profit/Loss: {:.2%}'.format(total_pnl))\n",
"```\n",
"\n",
"This will print the total profit or loss for all trades in percentage format with two decimal places. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Finalize the code by putting all the code snippets together in a single Python script.\n",
"Input: The necessary inputs for each code snippet.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: Here is the complete Python script that puts all the code snippets together:\n",
"\n",
"```\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import talib as ta\n",
"\n",
"# Load historical stock data into a pandas DataFrame\n",
"df = pd.read_csv('path/to/csv/file.csv')\n",
"\n",
"# Preprocess the historical stock data\n",
"df = df.set_index('date')\n",
"df = df.sort_index(ascending=True)\n",
"\n",
"# Calculate the short-term and long-term moving averages\n",
"short_period = 10\n",
"long_period = 30\n",
"short_ma = ta.SMA(df['close'], timeperiod=short_period)\n",
"long_ma = ta.SMA(df['close'], timeperiod=long_period)\n",
"\n",
"# Create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages\n",
"new_df = pd.concat([df, short_ma, long_ma], axis=1)\n",
"new_df.columns = ['open', 'high', 'low', 'close', 'volume', 'short_ma', 'long_ma']\n",
"\n",
"# Create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages\n",
"new_df['signal'] = np.where(new_df['short_ma'] > new_df['long_ma'], 1, -1)\n",
"\n",
"# Create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target\n",
"stop_loss_percent = 5\n",
"profit_target_percent = 10\n",
"stop_loss = stop_loss_percent / 100\n",
"profit_target = profit_target_percent / 100\n",
"new_df['pnl'] = 0.0\n",
"buy_price = 0.0\n",
"for i in range(1, len(new_df)):\n",
" if new_df['signal'][i] == 1 and new_df['signal'][i-1] == -1:\n",
" buy_price = new_df['close'][i]\n",
" elif new_df['signal'][i] == -1 and new_df['signal'][i-1] == 1:\n",
" sell_price = new_df['close'][i]\n",
" if sell_price <= buy_price * (1 - stop_loss):\n",
" new_df['pnl'][i] = -stop_loss\n",
" elif sell_price >= buy_price * (1 + profit_target):\n",
" new_df['pnl'][i] = profit_target\n",
" else:\n",
" new_df['pnl'][i] = (sell_price - buy_price) / buy_price\n",
"\n",
"# Calculate the total profit or loss for all trades\n",
"total_pnl = new_df['pnl'].sum()\n",
"\n",
"# Visualize the stock data, short-term moving average, and long-term moving average using a line chart\n",
"plt.figure(figsize=(12,6))\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.plot(new_df.index, new_df['short_ma'], label='Short MA')\n",
"plt.plot(new_df.index, new_df['long_ma'], label='Long MA')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Stock Data with Moving Averages')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Visualize the buy and sell signals using a scatter plot\n",
"buy_signals = new_df[new_df['signal'] == 1]\n",
"sell_signals = new_df[new_df['signal'] == -1]\n",
"plt.figure(figsize=(12,6))\n",
"plt.scatter(buy_signals.index, buy_signals['close'], label='Buy', marker='^', color='green')\n",
"plt.scatter(sell_signals.index, sell_signals['close'], label='Sell', marker='v', color='red')\n",
"plt.plot(new_df.index, new_df['close'], label='Close')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Price')\n",
"plt.title('Buy and Sell Signals')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Print the total profit or loss for all trades\n",
"print('Total Profit/Loss: {:.2%}'.format(total_pnl))\n",
"```\n",
"\n",
"You need to replace the path/to/csv/file.csv with the actual path to the CSV file containing the historical stock data. You can also adjust the short_period, long_period, stop_loss_percent, and profit_target_percent variables to suit your needs.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"<CAMEL_TASK_DONE>\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Great! Let me know if you need any further assistance.\n",
"\n",
"\n"
]
}
],
"source": [
"print(f\"Original task prompt:\\n{task}\\n\")\n",
"print(f\"Specified task prompt:\\n{specified_task}\\n\")\n",
"\n",
"chat_turn_limit, n = 30, 0\n",
"while n < chat_turn_limit:\n",
" n += 1\n",
" user_ai_msg = user_agent.step(assistant_msg)\n",
" user_msg = HumanMessage(content=user_ai_msg.content)\n",
" print(f\"AI User ({user_role_name}):\\n\\n{user_msg.content}\\n\\n\")\n",
"\n",
" assistant_ai_msg = assistant_agent.step(user_msg)\n",
" assistant_msg = HumanMessage(content=assistant_ai_msg.content)\n",
" print(f\"AI Assistant ({assistant_role_name}):\\n\\n{assistant_msg.content}\\n\\n\")\n",
" if \"<CAMEL_TASK_DONE>\" in user_msg.content:\n",
" break"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "camel",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,557 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Python Modules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the following Python modules:\n",
"\n",
"```bash\n",
"pip install ipykernel python-dotenv cassio pandas langchain_openai langchain langchain-community langchainhub langchain_experimental openai-multi-tool-use-parallel-patch\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load the `.env` File"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Connection is via `cassio` using `auto=True` parameter, and the notebook uses OpenAI. You should create a `.env` file accordingly.\n",
"\n",
"For Cassandra, set:\n",
"```bash\n",
"CASSANDRA_CONTACT_POINTS\n",
"CASSANDRA_USERNAME\n",
"CASSANDRA_PASSWORD\n",
"CASSANDRA_KEYSPACE\n",
"```\n",
"\n",
"For Astra, set:\n",
"```bash\n",
"ASTRA_DB_APPLICATION_TOKEN\n",
"ASTRA_DB_DATABASE_ID\n",
"ASTRA_DB_KEYSPACE\n",
"```\n",
"\n",
"For example:\n",
"\n",
"```bash\n",
"# Connection to Astra:\n",
"ASTRA_DB_DATABASE_ID=a1b2c3d4-...\n",
"ASTRA_DB_APPLICATION_TOKEN=AstraCS:...\n",
"ASTRA_DB_KEYSPACE=notebooks\n",
"\n",
"# Also set \n",
"OPENAI_API_KEY=sk-....\n",
"```\n",
"\n",
"(You may also modify the below code to directly connect with `cassio`.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Connect to Cassandra"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import cassio\n",
"\n",
"cassio.init(auto=True)\n",
"session = cassio.config.resolve_session()\n",
"if not session:\n",
" raise Exception(\n",
" \"Check environment configuration or manually configure cassio connection parameters\"\n",
" )\n",
"\n",
"keyspace = os.environ.get(\n",
" \"ASTRA_DB_KEYSPACE\", os.environ.get(\"CASSANDRA_KEYSPACE\", None)\n",
")\n",
"if not keyspace:\n",
" raise ValueError(\"a KEYSPACE environment variable must be set\")\n",
"\n",
"session.set_keyspace(keyspace)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Database"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This needs to be done one time only!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dataset used is from Kaggle, the [Environmental Sensor Telemetry Data](https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k?select=iot_telemetry_data.csv). The next cell will download and unzip the data into a Pandas dataframe. The following cell is instructions to download manually. \n",
"\n",
"The net result of this section is you should have a Pandas dataframe variable `df`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download Automatically"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from io import BytesIO\n",
"from zipfile import ZipFile\n",
"\n",
"import pandas as pd\n",
"import requests\n",
"\n",
"datasetURL = \"https://storage.googleapis.com/kaggle-data-sets/788816/1355729/bundle/archive.zip?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240404%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240404T115828Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2849f003b100eb9dcda8dd8535990f51244292f67e4f5fad36f14aa67f2d4297672d8fe6ff5a39f03a29cda051e33e95d36daab5892b8874dcd5a60228df0361fa26bae491dd4371f02dd20306b583a44ba85a4474376188b1f84765147d3b4f05c57345e5de883c2c29653cce1f3755cd8e645c5e952f4fb1c8a735b22f0c811f97f7bce8d0235d0d3731ca8ab4629ff381f3bae9e35fc1b181c1e69a9c7913a5e42d9d52d53e5f716467205af9c8a3cc6746fc5352e8fbc47cd7d18543626bd67996d18c2045c1e475fc136df83df352fa747f1a3bb73e6ba3985840792ec1de407c15836640ec96db111b173bf16115037d53fdfbfd8ac44145d7f9a546aa\"\n",
"\n",
"response = requests.get(datasetURL)\n",
"if response.status_code == 200:\n",
" zip_file = ZipFile(BytesIO(response.content))\n",
" csv_file_name = zip_file.namelist()[0]\n",
"else:\n",
" print(\"Failed to download the file\")\n",
"\n",
"with zip_file.open(csv_file_name) as csv_file:\n",
" df = pd.read_csv(csv_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download Manually"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can download the `.zip` file and unpack the `.csv` contained within. Comment in the next line, and adjust the path to this `.csv` file appropriately."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# df = pd.read_csv(\"/path/to/iot_telemetry_data.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data into Cassandra"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This section assumes the existence of a dataframe `df`, the following cell validates its structure. The Download section above creates this object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"assert df is not None, \"Dataframe 'df' must be set\"\n",
"expected_columns = [\n",
" \"ts\",\n",
" \"device\",\n",
" \"co\",\n",
" \"humidity\",\n",
" \"light\",\n",
" \"lpg\",\n",
" \"motion\",\n",
" \"smoke\",\n",
" \"temp\",\n",
"]\n",
"assert all([column in df.columns for column in expected_columns]), (\n",
" \"DataFrame does not have the expected columns\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create and load tables:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import UTC, datetime\n",
"\n",
"from cassandra.query import BatchStatement\n",
"\n",
"# Create sensors table\n",
"table_query = \"\"\"\n",
"CREATE TABLE IF NOT EXISTS iot_sensors (\n",
" device text,\n",
" conditions text,\n",
" room text,\n",
" PRIMARY KEY (device)\n",
")\n",
"WITH COMMENT = 'Environmental IoT room sensor metadata.';\n",
"\"\"\"\n",
"session.execute(table_query)\n",
"\n",
"pstmt = session.prepare(\n",
" \"\"\"\n",
"INSERT INTO iot_sensors (device, conditions, room)\n",
"VALUES (?, ?, ?)\n",
"\"\"\"\n",
")\n",
"\n",
"devices = [\n",
" (\"00:0f:00:70:91:0a\", \"stable conditions, cooler and more humid\", \"room 1\"),\n",
" (\"1c:bf:ce:15:ec:4d\", \"highly variable temperature and humidity\", \"room 2\"),\n",
" (\"b8:27:eb:bf:9d:51\", \"stable conditions, warmer and dryer\", \"room 3\"),\n",
"]\n",
"\n",
"for device, conditions, room in devices:\n",
" session.execute(pstmt, (device, conditions, room))\n",
"\n",
"print(\"Sensors inserted successfully.\")\n",
"\n",
"# Create data table\n",
"table_query = \"\"\"\n",
"CREATE TABLE IF NOT EXISTS iot_data (\n",
" day text,\n",
" device text,\n",
" ts timestamp,\n",
" co double,\n",
" humidity double,\n",
" light boolean,\n",
" lpg double,\n",
" motion boolean,\n",
" smoke double,\n",
" temp double,\n",
" PRIMARY KEY ((day, device), ts)\n",
")\n",
"WITH COMMENT = 'Data from environmental IoT room sensors. Columns include device identifier, timestamp (ts) of the data collection, carbon monoxide level (co), relative humidity, light presence, LPG concentration, motion detection, smoke concentration, and temperature (temp). Data is partitioned by day and device.';\n",
"\"\"\"\n",
"session.execute(table_query)\n",
"\n",
"pstmt = session.prepare(\n",
" \"\"\"\n",
"INSERT INTO iot_data (day, device, ts, co, humidity, light, lpg, motion, smoke, temp)\n",
"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)\n",
"\"\"\"\n",
")\n",
"\n",
"\n",
"def insert_data_batch(name, group):\n",
" batch = BatchStatement()\n",
" day, device = name\n",
" print(f\"Inserting batch for day: {day}, device: {device}\")\n",
"\n",
" for _, row in group.iterrows():\n",
" timestamp = datetime.fromtimestamp(row[\"ts\"], UTC)\n",
" batch.add(\n",
" pstmt,\n",
" (\n",
" day,\n",
" row[\"device\"],\n",
" timestamp,\n",
" row[\"co\"],\n",
" row[\"humidity\"],\n",
" row[\"light\"],\n",
" row[\"lpg\"],\n",
" row[\"motion\"],\n",
" row[\"smoke\"],\n",
" row[\"temp\"],\n",
" ),\n",
" )\n",
"\n",
" session.execute(batch)\n",
"\n",
"\n",
"# Convert columns to appropriate types\n",
"df[\"light\"] = df[\"light\"] == \"true\"\n",
"df[\"motion\"] = df[\"motion\"] == \"true\"\n",
"df[\"ts\"] = df[\"ts\"].astype(float)\n",
"df[\"day\"] = df[\"ts\"].apply(\n",
" lambda x: datetime.fromtimestamp(x, UTC).strftime(\"%Y-%m-%d\")\n",
")\n",
"\n",
"grouped_df = df.groupby([\"day\", \"device\"])\n",
"\n",
"for name, group in grouped_df:\n",
" insert_data_batch(name, group)\n",
"\n",
"print(\"Data load complete\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(session.keyspace)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the Tools"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Python `import` statements for the demo:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
"from langchain_community.agent_toolkits.cassandra_database.toolkit import (\n",
" CassandraDatabaseToolkit,\n",
")\n",
"from langchain_community.tools.cassandra_database.prompt import QUERY_PATH_PROMPT\n",
"from langchain_community.tools.cassandra_database.tool import (\n",
" GetSchemaCassandraDatabaseTool,\n",
" GetTableDataCassandraDatabaseTool,\n",
" QueryCassandraDatabaseTool,\n",
")\n",
"from langchain_community.utilities.cassandra_database import CassandraDatabase\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `CassandraDatabase` object is loaded from `cassio`, though it does accept a `Session`-type parameter as an alternative."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a CassandraDatabase instance\n",
"db = CassandraDatabase(include_tables=[\"iot_sensors\", \"iot_data\"])\n",
"\n",
"# Create the Cassandra Database tools\n",
"query_tool = QueryCassandraDatabaseTool(db=db)\n",
"schema_tool = GetSchemaCassandraDatabaseTool(db=db)\n",
"select_data_tool = GetTableDataCassandraDatabaseTool(db=db)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The tools can be invoked directly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test the tools\n",
"print(\"Executing a CQL query:\")\n",
"query = \"SELECT * FROM iot_sensors LIMIT 5;\"\n",
"result = query_tool.run({\"query\": query})\n",
"print(result)\n",
"\n",
"print(\"\\nGetting the schema for a keyspace:\")\n",
"schema = schema_tool.run({\"keyspace\": keyspace})\n",
"print(schema)\n",
"\n",
"print(\"\\nGetting data from a table:\")\n",
"table = \"iot_data\"\n",
"predicate = \"day = '2020-07-14' and device = 'b8:27:eb:bf:9d:51'\"\n",
"data = select_data_tool.run(\n",
" {\"keyspace\": keyspace, \"table\": table, \"predicate\": predicate, \"limit\": 5}\n",
")\n",
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Agent Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain_experimental.utilities import PythonREPL\n",
"\n",
"python_repl = PythonREPL()\n",
"\n",
"repl_tool = Tool(\n",
" name=\"python_repl\",\n",
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
" func=python_repl.run,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"\n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-4-1106-preview\")\n",
"toolkit = CassandraDatabaseToolkit(db=db)\n",
"\n",
"# context = toolkit.get_context()\n",
"# tools = toolkit.get_tools()\n",
"tools = [schema_tool, select_data_tool, repl_tool]\n",
"\n",
"input = (\n",
" QUERY_PATH_PROMPT\n",
" + f\"\"\"\n",
"\n",
"Here is your task: In the {keyspace} keyspace, find the total number of times the temperature of each device has exceeded 23 degrees on July 14, 2020.\n",
" Create a summary report including the name of the room. Use Pandas if helpful.\n",
"\"\"\"\n",
")\n",
"\n",
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
"\n",
"# messages = [\n",
"# HumanMessagePromptTemplate.from_template(input),\n",
"# AIMessage(content=QUERY_PATH_PROMPT),\n",
"# MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
"# ]\n",
"\n",
"# prompt = ChatPromptTemplate.from_messages(messages)\n",
"# print(prompt)\n",
"\n",
"# Choose the LLM that will drive the agent\n",
"# Only certain models support this\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n",
"\n",
"# Construct the OpenAI Tools agent\n",
"agent = create_openai_tools_agent(llm, tools, prompt)\n",
"\n",
"print(\"Available tools:\")\n",
"for tool in tools:\n",
" print(\"\\t\" + tool.name + \" - \" + tool.description + \" - \" + str(tool))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
"\n",
"response = agent_executor.invoke({\"input\": input})\n",
"\n",
"print(response[\"output\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,554 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ba5f8741",
"metadata": {},
"source": [
"# Custom Agent with PlugIn Retrieval\n",
"\n",
"This notebook combines two concepts in order to build a custom agent that can interact with AI Plugins:\n",
"\n",
"1. [Custom Agent with Tool Retrieval](/docs/modules/agents/how_to/custom_agent_with_tool_retrieval.html): This introduces the concept of retrieving many tools, which is useful when trying to work with arbitrarily many plugins.\n",
"2. [Natural Language API Chains](/docs/use_cases/apis/openapi.html): This creates Natural Language wrappers around OpenAPI endpoints. This is useful because (1) plugins use OpenAPI endpoints under the hood, (2) wrapping them in an NLAChain allows the router agent to call it more easily.\n",
"\n",
"The novel idea introduced in this notebook is the idea of using retrieval to select not the tools explicitly, but the set of OpenAPI specs to use. We can then generate tools from those OpenAPI specs. The use case for this is when trying to get agents to use plugins. It may be more efficient to choose plugins first, then the endpoints, rather than the endpoints directly. This is because the plugins may contain more useful information for selection."
]
},
{
"cell_type": "markdown",
"id": "fea4812c",
"metadata": {},
"source": [
"## Set up environment\n",
"\n",
"Do necessary imports, etc."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9af9734e",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Union\n",
"\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_core.agents import AgentAction, AgentFinish\n",
"from langchain_openai import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "2f91d8b4",
"metadata": {},
"source": [
"## Setup LLM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a1a3b59c",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "6df0253f",
"metadata": {},
"source": [
"## Set up plugins\n",
"\n",
"Load and index plugins"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "becda2a1",
"metadata": {},
"outputs": [],
"source": [
"urls = [\n",
" \"https://datasette.io/.well-known/ai-plugin.json\",\n",
" \"https://api.speak.com/.well-known/ai-plugin.json\",\n",
" \"https://www.wolframalpha.com/.well-known/ai-plugin.json\",\n",
" \"https://www.zapier.com/.well-known/ai-plugin.json\",\n",
" \"https://www.klarna.com/.well-known/ai-plugin.json\",\n",
" \"https://www.joinmilo.com/.well-known/ai-plugin.json\",\n",
" \"https://slack.com/.well-known/ai-plugin.json\",\n",
" \"https://schooldigger.com/.well-known/ai-plugin.json\",\n",
"]\n",
"\n",
"AI_PLUGINS = [AIPlugin.from_url(url) for url in urls]"
]
},
{
"cell_type": "markdown",
"id": "17362717",
"metadata": {},
"source": [
"## Tool Retriever\n",
"\n",
"We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "77c4be4b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9092a158",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.2 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load a Swagger 2.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
]
}
],
"source": [
"embeddings = OpenAIEmbeddings()\n",
"docs = [\n",
" Document(\n",
" page_content=plugin.description_for_model,\n",
" metadata={\"plugin_name\": plugin.name_for_model},\n",
" )\n",
" for plugin in AI_PLUGINS\n",
"]\n",
"vector_store = FAISS.from_documents(docs, embeddings)\n",
"toolkits_dict = {\n",
" plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)\n",
" for plugin in AI_PLUGINS\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "735a7566",
"metadata": {},
"outputs": [],
"source": [
"retriever = vector_store.as_retriever()\n",
"\n",
"\n",
"def get_tools(query):\n",
" # Get documents, which contain the Plugins to use\n",
" docs = retriever.invoke(query)\n",
" # Get the toolkits, one for each plugin\n",
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
" # Get the tools: a separate NLAChain for each endpoint\n",
" tools = []\n",
" for tk in tool_kits:\n",
" tools.extend(tk.nla_tools)\n",
" return tools"
]
},
{
"cell_type": "markdown",
"id": "7699afd7",
"metadata": {},
"source": [
"We can now test this retriever to see if it seems to work."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "425f2886",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Milo.askMilo',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
" 'SchoolDigger_API_V2.0.Schools_GetSchool20',\n",
" 'Speak.translate',\n",
" 'Speak.explainPhrase',\n",
" 'Speak.explainTask']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools = get_tools(\"What could I do today with my kiddo\")\n",
"[t.name for t in tools]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3aa88768",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Open_AI_Klarna_product_Api.productsUsingGET',\n",
" 'Milo.askMilo',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
" 'SchoolDigger_API_V2.0.Schools_GetSchool20']"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools = get_tools(\"what shirts can i buy?\")\n",
"[t.name for t in tools]"
]
},
{
"cell_type": "markdown",
"id": "2e7a075c",
"metadata": {},
"source": [
"## Prompt Template\n",
"\n",
"The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "339b1bb8",
"metadata": {},
"outputs": [],
"source": [
"# Set up the base template\n",
"template = \"\"\"Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n",
"\n",
"{tools}\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin! Remember to speak as a pirate when giving your final answer. Use lots of \"Arg\"s\n",
"\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\""
]
},
{
"cell_type": "markdown",
"id": "1583acdc",
"metadata": {},
"source": [
"The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "fd969d31",
"metadata": {},
"outputs": [],
"source": [
"from typing import Callable\n",
"\n",
"\n",
"# Set up a prompt template\n",
"class CustomPromptTemplate(StringPromptTemplate):\n",
" # The template to use\n",
" template: str\n",
" ############## NEW ######################\n",
" # The list of tools available\n",
" tools_getter: Callable\n",
"\n",
" def format(self, **kwargs) -> str:\n",
" # Get the intermediate steps (AgentAction, Observation tuples)\n",
" # Format them in a particular way\n",
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
" thoughts = \"\"\n",
" for action, observation in intermediate_steps:\n",
" thoughts += action.log\n",
" thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
" # Set the agent_scratchpad variable to that value\n",
" kwargs[\"agent_scratchpad\"] = thoughts\n",
" ############## NEW ######################\n",
" tools = self.tools_getter(kwargs[\"input\"])\n",
" # Create a tools variable from the list of tools provided\n",
" kwargs[\"tools\"] = \"\\n\".join(\n",
" [f\"{tool.name}: {tool.description}\" for tool in tools]\n",
" )\n",
" # Create a list of tool names for the tools provided\n",
" kwargs[\"tool_names\"] = \", \".join([tool.name for tool in tools])\n",
" return self.template.format(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "798ef9fb",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(\n",
" template=template,\n",
" tools_getter=get_tools,\n",
" # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
" # This includes the `intermediate_steps` variable because that is needed\n",
" input_variables=[\"input\", \"intermediate_steps\"],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ef3a1af3",
"metadata": {},
"source": [
"## Output Parser\n",
"\n",
"The output parser is unchanged from the previous notebook, since we are not changing anything about the output format."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7c6fe0d3",
"metadata": {},
"outputs": [],
"source": [
"class CustomOutputParser(AgentOutputParser):\n",
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
" # Check if agent should finish\n",
" if \"Final Answer:\" in llm_output:\n",
" return AgentFinish(\n",
" # Return values is generally always a dictionary with a single `output` key\n",
" # It is not recommended to try anything else at the moment :)\n",
" return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
" log=llm_output,\n",
" )\n",
" # Parse out the action and action input\n",
" regex = r\"Action\\s*\\d*\\s*:(.*?)\\nAction\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)\"\n",
" match = re.search(regex, llm_output, re.DOTALL)\n",
" if not match:\n",
" raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
" action = match.group(1).strip()\n",
" action_input = match.group(2)\n",
" # Return the action and action input\n",
" return AgentAction(\n",
" tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d278706a",
"metadata": {},
"outputs": [],
"source": [
"output_parser = CustomOutputParser()"
]
},
{
"cell_type": "markdown",
"id": "170587b1",
"metadata": {},
"source": [
"## Set up LLM, stop sequence, and the agent\n",
"\n",
"Also the same as the previous notebook"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f9d4c374",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9b1cc2a2",
"metadata": {},
"outputs": [],
"source": [
"# LLM chain consisting of the LLM and a prompt\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "e4f5092f",
"metadata": {},
"outputs": [],
"source": [
"tool_names = [tool.name for tool in tools]\n",
"agent = LLMSingleActionAgent(\n",
" llm_chain=llm_chain,\n",
" output_parser=output_parser,\n",
" stop=[\"\\nObservation:\"],\n",
" allowed_tools=tool_names,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "aa8a5326",
"metadata": {},
"source": [
"## Use the Agent\n",
"\n",
"Now we can use it!"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "490604e9",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "653b1617",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find a product API\n",
"Action: Open_AI_Klarna_product_Api.productsUsingGET\n",
"Action Input: shirts\u001b[0m\n",
"\n",
"Observation:\u001b[36;1m\u001b[1;3mI found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\u001b[32;1m\u001b[1;3m I now know what shirts I can buy\n",
"Final Answer: Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"what shirts can i buy?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2481ee76",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"vscode": {
"interpreter": {
"hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,578 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ba5f8741",
"metadata": {},
"source": [
"# Plug-and-Plai\n",
"\n",
"This notebook builds upon the idea of [plugin retrieval](./custom_agent_with_plugin_retrieval.html), but pulls all tools from `plugnplai` - a directory of AI Plugins."
]
},
{
"cell_type": "markdown",
"id": "fea4812c",
"metadata": {},
"source": [
"## Set up environment\n",
"\n",
"Do necessary imports, etc."
]
},
{
"cell_type": "markdown",
"id": "aca08be8",
"metadata": {},
"source": [
"Install plugnplai lib to get a list of active plugins from https://plugplai.com directory"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "52e248c9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install plugnplai -q"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9af9734e",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Union\n",
"\n",
"import plugnplai\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_core.agents import AgentAction, AgentFinish\n",
"from langchain_openai import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "2f91d8b4",
"metadata": {},
"source": [
"## Setup LLM"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a1a3b59c",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "6df0253f",
"metadata": {},
"source": [
"## Set up plugins\n",
"\n",
"Load and index plugins"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9e0f7882",
"metadata": {},
"outputs": [],
"source": [
"# Get all plugins from plugnplai.com\n",
"urls = plugnplai.get_plugins()\n",
"\n",
"# Get ChatGPT plugins - only ChatGPT verified plugins\n",
"urls = plugnplai.get_plugins(filter=\"ChatGPT\")\n",
"\n",
"# Get working plugins - only tested plugins (in progress)\n",
"urls = plugnplai.get_plugins(filter=\"working\")\n",
"\n",
"\n",
"AI_PLUGINS = [AIPlugin.from_url(url + \"/.well-known/ai-plugin.json\") for url in urls]"
]
},
{
"cell_type": "markdown",
"id": "17362717",
"metadata": {},
"source": [
"## Tool Retriever\n",
"\n",
"We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "77c4be4b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9092a158",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.2 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
"Attempting to load a Swagger 2.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
]
}
],
"source": [
"embeddings = OpenAIEmbeddings()\n",
"docs = [\n",
" Document(\n",
" page_content=plugin.description_for_model,\n",
" metadata={\"plugin_name\": plugin.name_for_model},\n",
" )\n",
" for plugin in AI_PLUGINS\n",
"]\n",
"vector_store = FAISS.from_documents(docs, embeddings)\n",
"toolkits_dict = {\n",
" plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)\n",
" for plugin in AI_PLUGINS\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "735a7566",
"metadata": {},
"outputs": [],
"source": [
"retriever = vector_store.as_retriever()\n",
"\n",
"\n",
"def get_tools(query):\n",
" # Get documents, which contain the Plugins to use\n",
" docs = retriever.invoke(query)\n",
" # Get the toolkits, one for each plugin\n",
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
" # Get the tools: a separate NLAChain for each endpoint\n",
" tools = []\n",
" for tk in tool_kits:\n",
" tools.extend(tk.nla_tools)\n",
" return tools"
]
},
{
"cell_type": "markdown",
"id": "7699afd7",
"metadata": {},
"source": [
"We can now test this retriever to see if it seems to work."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "425f2886",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Milo.askMilo',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
" 'SchoolDigger_API_V2.0.Schools_GetSchool20',\n",
" 'Speak.translate',\n",
" 'Speak.explainPhrase',\n",
" 'Speak.explainTask']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools = get_tools(\"What could I do today with my kiddo\")\n",
"[t.name for t in tools]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3aa88768",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Open_AI_Klarna_product_Api.productsUsingGET',\n",
" 'Milo.askMilo',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
" 'SchoolDigger_API_V2.0.Schools_GetSchool20']"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools = get_tools(\"what shirts can i buy?\")\n",
"[t.name for t in tools]"
]
},
{
"cell_type": "markdown",
"id": "2e7a075c",
"metadata": {},
"source": [
"## Prompt Template\n",
"\n",
"The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "339b1bb8",
"metadata": {},
"outputs": [],
"source": [
"# Set up the base template\n",
"template = \"\"\"Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n",
"\n",
"{tools}\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin! Remember to speak as a pirate when giving your final answer. Use lots of \"Arg\"s\n",
"\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\""
]
},
{
"cell_type": "markdown",
"id": "1583acdc",
"metadata": {},
"source": [
"The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "fd969d31",
"metadata": {},
"outputs": [],
"source": [
"from typing import Callable\n",
"\n",
"\n",
"# Set up a prompt template\n",
"class CustomPromptTemplate(StringPromptTemplate):\n",
" # The template to use\n",
" template: str\n",
" ############## NEW ######################\n",
" # The list of tools available\n",
" tools_getter: Callable\n",
"\n",
" def format(self, **kwargs) -> str:\n",
" # Get the intermediate steps (AgentAction, Observation tuples)\n",
" # Format them in a particular way\n",
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
" thoughts = \"\"\n",
" for action, observation in intermediate_steps:\n",
" thoughts += action.log\n",
" thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
" # Set the agent_scratchpad variable to that value\n",
" kwargs[\"agent_scratchpad\"] = thoughts\n",
" ############## NEW ######################\n",
" tools = self.tools_getter(kwargs[\"input\"])\n",
" # Create a tools variable from the list of tools provided\n",
" kwargs[\"tools\"] = \"\\n\".join(\n",
" [f\"{tool.name}: {tool.description}\" for tool in tools]\n",
" )\n",
" # Create a list of tool names for the tools provided\n",
" kwargs[\"tool_names\"] = \", \".join([tool.name for tool in tools])\n",
" return self.template.format(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "798ef9fb",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(\n",
" template=template,\n",
" tools_getter=get_tools,\n",
" # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
" # This includes the `intermediate_steps` variable because that is needed\n",
" input_variables=[\"input\", \"intermediate_steps\"],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ef3a1af3",
"metadata": {},
"source": [
"## Output Parser\n",
"\n",
"The output parser is unchanged from the previous notebook, since we are not changing anything about the output format."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7c6fe0d3",
"metadata": {},
"outputs": [],
"source": [
"class CustomOutputParser(AgentOutputParser):\n",
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
" # Check if agent should finish\n",
" if \"Final Answer:\" in llm_output:\n",
" return AgentFinish(\n",
" # Return values is generally always a dictionary with a single `output` key\n",
" # It is not recommended to try anything else at the moment :)\n",
" return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
" log=llm_output,\n",
" )\n",
" # Parse out the action and action input\n",
" regex = r\"Action\\s*\\d*\\s*:(.*?)\\nAction\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)\"\n",
" match = re.search(regex, llm_output, re.DOTALL)\n",
" if not match:\n",
" raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
" action = match.group(1).strip()\n",
" action_input = match.group(2)\n",
" # Return the action and action input\n",
" return AgentAction(\n",
" tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "d278706a",
"metadata": {},
"outputs": [],
"source": [
"output_parser = CustomOutputParser()"
]
},
{
"cell_type": "markdown",
"id": "170587b1",
"metadata": {},
"source": [
"## Set up LLM, stop sequence, and the agent\n",
"\n",
"Also the same as the previous notebook"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f9d4c374",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9b1cc2a2",
"metadata": {},
"outputs": [],
"source": [
"# LLM chain consisting of the LLM and a prompt\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "e4f5092f",
"metadata": {},
"outputs": [],
"source": [
"tool_names = [tool.name for tool in tools]\n",
"agent = LLMSingleActionAgent(\n",
" llm_chain=llm_chain,\n",
" output_parser=output_parser,\n",
" stop=[\"\\nObservation:\"],\n",
" allowed_tools=tool_names,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "aa8a5326",
"metadata": {},
"source": [
"## Use the Agent\n",
"\n",
"Now we can use it!"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "490604e9",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "653b1617",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find a product API\n",
"Action: Open_AI_Klarna_product_Api.productsUsingGET\n",
"Action Input: shirts\u001b[0m\n",
"\n",
"Observation:\u001b[36;1m\u001b[1;3mI found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\u001b[32;1m\u001b[1;3m I now know what shirts I can buy\n",
"Final Answer: Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"what shirts can i buy?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2481ee76",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"vscode": {
"interpreter": {
"hash": "3ccef4e08d87aa1eeb90f63e0f071292ccb2e9c42e70f74ab2bf6f5493ca7bbc"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,500 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ba5f8741",
"metadata": {},
"source": [
"# Custom agent with tool retrieval\n",
"\n",
"The novel idea introduced in this notebook is the idea of using retrieval to select the set of tools to use to answer an agent query. This is useful when you have many many tools to select from. You cannot put the description of all the tools in the prompt (because of context length issues) so instead you dynamically select the N tools you do want to consider using at run time.\n",
"\n",
"In this notebook we will create a somewhat contrived example. We will have one legitimate tool (search) and then 99 fake tools which are just nonsense. We will then add a step in the prompt template that takes the user input and retrieves tool relevant to the query."
]
},
{
"cell_type": "markdown",
"id": "fea4812c",
"metadata": {},
"source": [
"## Set up environment\n",
"\n",
"Do necessary imports, etc."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9af9734e",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Union\n",
"\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
" Tool,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain_core.agents import AgentAction, AgentFinish\n",
"from langchain_openai import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "6df0253f",
"metadata": {},
"source": [
"## Set up tools\n",
"\n",
"We will create one legitimate tool (search) and then 99 fake tools."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "becda2a1",
"metadata": {},
"outputs": [],
"source": [
"# Define which tools the agent can use to answer user queries\n",
"search = SerpAPIWrapper()\n",
"search_tool = Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\",\n",
")\n",
"\n",
"\n",
"def fake_func(inp: str) -> str:\n",
" return \"foo\"\n",
"\n",
"\n",
"fake_tools = [\n",
" Tool(\n",
" name=f\"foo-{i}\",\n",
" func=fake_func,\n",
" description=f\"a silly function that you can use to get more information about the number {i}\",\n",
" )\n",
" for i in range(99)\n",
"]\n",
"ALL_TOOLS = [search_tool] + fake_tools"
]
},
{
"cell_type": "markdown",
"id": "17362717",
"metadata": {},
"source": [
"## Tool Retriever\n",
"\n",
"We will use a vector store to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "77c4be4b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9092a158",
"metadata": {},
"outputs": [],
"source": [
"docs = [\n",
" Document(page_content=t.description, metadata={\"index\": i})\n",
" for i, t in enumerate(ALL_TOOLS)\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "affc4e56",
"metadata": {},
"outputs": [],
"source": [
"vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "735a7566",
"metadata": {},
"outputs": [],
"source": [
"retriever = vector_store.as_retriever()\n",
"\n",
"\n",
"def get_tools(query):\n",
" docs = retriever.invoke(query)\n",
" return [ALL_TOOLS[d.metadata[\"index\"]] for d in docs]"
]
},
{
"cell_type": "markdown",
"id": "7699afd7",
"metadata": {},
"source": [
"We can now test this retriever to see if it seems to work."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "425f2886",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Tool(name='Search', description='useful for when you need to answer questions about current events', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<bound method SerpAPIWrapper.run of SerpAPIWrapper(search_engine=<class 'serpapi.google_search.GoogleSearch'>, params={'engine': 'google', 'google_domain': 'google.com', 'gl': 'us', 'hl': 'en'}, serpapi_api_key='', aiosession=None)>, coroutine=None),\n",
" Tool(name='foo-95', description='a silly function that you can use to get more information about the number 95', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
" Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
" Tool(name='foo-15', description='a silly function that you can use to get more information about the number 15', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_tools(\"whats the weather?\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "4036dd19",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Tool(name='foo-13', description='a silly function that you can use to get more information about the number 13', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
" Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
" Tool(name='foo-14', description='a silly function that you can use to get more information about the number 14', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),\n",
" Tool(name='foo-11', description='a silly function that you can use to get more information about the number 11', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_tools(\"whats the number 13?\")"
]
},
{
"cell_type": "markdown",
"id": "2e7a075c",
"metadata": {},
"source": [
"## Prompt template\n",
"\n",
"The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "339b1bb8",
"metadata": {},
"outputs": [],
"source": [
"# Set up the base template\n",
"template = \"\"\"Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n",
"\n",
"{tools}\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin! Remember to speak as a pirate when giving your final answer. Use lots of \"Arg\"s\n",
"\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\""
]
},
{
"cell_type": "markdown",
"id": "1583acdc",
"metadata": {},
"source": [
"The custom prompt template now has the concept of a `tools_getter`, which we call on the input to select the tools to use."
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "fd969d31",
"metadata": {},
"outputs": [],
"source": [
"from typing import Callable\n",
"\n",
"\n",
"# Set up a prompt template\n",
"class CustomPromptTemplate(StringPromptTemplate):\n",
" # The template to use\n",
" template: str\n",
" ############## NEW ######################\n",
" # The list of tools available\n",
" tools_getter: Callable\n",
"\n",
" def format(self, **kwargs) -> str:\n",
" # Get the intermediate steps (AgentAction, Observation tuples)\n",
" # Format them in a particular way\n",
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
" thoughts = \"\"\n",
" for action, observation in intermediate_steps:\n",
" thoughts += action.log\n",
" thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
" # Set the agent_scratchpad variable to that value\n",
" kwargs[\"agent_scratchpad\"] = thoughts\n",
" ############## NEW ######################\n",
" tools = self.tools_getter(kwargs[\"input\"])\n",
" # Create a tools variable from the list of tools provided\n",
" kwargs[\"tools\"] = \"\\n\".join(\n",
" [f\"{tool.name}: {tool.description}\" for tool in tools]\n",
" )\n",
" # Create a list of tool names for the tools provided\n",
" kwargs[\"tool_names\"] = \", \".join([tool.name for tool in tools])\n",
" return self.template.format(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "798ef9fb",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(\n",
" template=template,\n",
" tools_getter=get_tools,\n",
" # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
" # This includes the `intermediate_steps` variable because that is needed\n",
" input_variables=[\"input\", \"intermediate_steps\"],\n",
")"
]
},
{
"cell_type": "markdown",
"id": "ef3a1af3",
"metadata": {},
"source": [
"## Output parser\n",
"\n",
"The output parser is unchanged from the previous notebook, since we are not changing anything about the output format."
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "7c6fe0d3",
"metadata": {},
"outputs": [],
"source": [
"class CustomOutputParser(AgentOutputParser):\n",
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
" # Check if agent should finish\n",
" if \"Final Answer:\" in llm_output:\n",
" return AgentFinish(\n",
" # Return values is generally always a dictionary with a single `output` key\n",
" # It is not recommended to try anything else at the moment :)\n",
" return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
" log=llm_output,\n",
" )\n",
" # Parse out the action and action input\n",
" regex = r\"Action\\s*\\d*\\s*:(.*?)\\nAction\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)\"\n",
" match = re.search(regex, llm_output, re.DOTALL)\n",
" if not match:\n",
" raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
" action = match.group(1).strip()\n",
" action_input = match.group(2)\n",
" # Return the action and action input\n",
" return AgentAction(\n",
" tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "d278706a",
"metadata": {},
"outputs": [],
"source": [
"output_parser = CustomOutputParser()"
]
},
{
"cell_type": "markdown",
"id": "170587b1",
"metadata": {},
"source": [
"## Set up LLM, stop sequence, and the agent\n",
"\n",
"Also the same as the previous notebook."
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "f9d4c374",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "9b1cc2a2",
"metadata": {},
"outputs": [],
"source": [
"# LLM chain consisting of the LLM and a prompt\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "e4f5092f",
"metadata": {},
"outputs": [],
"source": [
"tools = get_tools(\"whats the weather?\")\n",
"tool_names = [tool.name for tool in tools]\n",
"agent = LLMSingleActionAgent(\n",
" llm_chain=llm_chain,\n",
" output_parser=output_parser,\n",
" stop=[\"\\nObservation:\"],\n",
" allowed_tools=tool_names,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "aa8a5326",
"metadata": {},
"source": [
"## Use the Agent\n",
"\n",
"Now we can use it!"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "490604e9",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "653b1617",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find out what the weather is in SF\n",
"Action: Search\n",
"Action Input: Weather in SF\u001b[0m\n",
"\n",
"Observation:\u001b[36;1m\u001b[1;3mMostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shifting to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: 'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.\""
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"What's the weather in SF?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2481ee76",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
},
"vscode": {
"interpreter": {
"hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,220 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ba5f8741",
"metadata": {},
"source": [
"# Custom multi-action agent\n",
"\n",
"This notebook goes through how to create your own custom agent.\n",
"\n",
"An agent consists of two parts:\n",
"\n",
"- Tools: The tools the agent has available to use.\n",
"- The agent class itself: this decides which action to take.\n",
" \n",
" \n",
"In this notebook we walk through how to create a custom agent that predicts/takes multiple steps at a time."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9af9734e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool\n",
"from langchain_community.utilities import SerpAPIWrapper"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d7c4ebdc",
"metadata": {},
"outputs": [],
"source": [
"def random_word(query: str) -> str:\n",
" print(\"\\nNow I'm doing this!\")\n",
" return \"foo\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "becda2a1",
"metadata": {},
"outputs": [],
"source": [
"search = SerpAPIWrapper()\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\",\n",
" ),\n",
" Tool(\n",
" name=\"RandomWord\",\n",
" func=random_word,\n",
" description=\"call this to get a random word.\",\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a33e2f7e",
"metadata": {},
"outputs": [],
"source": [
"from typing import Any, List, Tuple, Union\n",
"\n",
"from langchain_core.agents import AgentAction, AgentFinish\n",
"\n",
"\n",
"class FakeAgent(BaseMultiActionAgent):\n",
" \"\"\"Fake Custom Agent.\"\"\"\n",
"\n",
" @property\n",
" def input_keys(self):\n",
" return [\"input\"]\n",
"\n",
" def plan(\n",
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
" ) -> Union[List[AgentAction], AgentFinish]:\n",
" \"\"\"Given input, decided what to do.\n",
"\n",
" Args:\n",
" intermediate_steps: Steps the LLM has taken to date,\n",
" along with observations\n",
" **kwargs: User inputs.\n",
"\n",
" Returns:\n",
" Action specifying what tool to use.\n",
" \"\"\"\n",
" if len(intermediate_steps) == 0:\n",
" return [\n",
" AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
" AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
" ]\n",
" else:\n",
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
"\n",
" async def aplan(\n",
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
" ) -> Union[List[AgentAction], AgentFinish]:\n",
" \"\"\"Given input, decided what to do.\n",
"\n",
" Args:\n",
" intermediate_steps: Steps the LLM has taken to date,\n",
" along with observations\n",
" **kwargs: User inputs.\n",
"\n",
" Returns:\n",
" Action specifying what tool to use.\n",
" \"\"\"\n",
" if len(intermediate_steps) == 0:\n",
" return [\n",
" AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\"),\n",
" AgentAction(tool=\"RandomWord\", tool_input=kwargs[\"input\"], log=\"\"),\n",
" ]\n",
" else:\n",
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "655d72f6",
"metadata": {},
"outputs": [],
"source": [
"agent = FakeAgent()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "490604e9",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "653b1617",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mThe current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"Now I'm doing this!\n",
"\u001b[33;1m\u001b[1;3mfoo\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'bar'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"How many people live in canada as of 2023?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adefb4c2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"vscode": {
"interpreter": {
"hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,255 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# QA using Activeloop's DeepLake\n",
"In this tutorial, we are going to use Langchain + Activeloop's Deep Lake with GPT4 to semantically search and ask questions over a group chat.\n",
"\n",
"View a working demo [here](https://twitter.com/thisissukh_/status/1647223328363679745)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Install required packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python3 -m pip install --upgrade langchain 'deeplake[enterprise]' openai tiktoken"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Add API keys"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"from langchain_community.vectorstores import DeepLake\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import (\n",
" CharacterTextSplitter,\n",
" RecursiveCharacterTextSplitter,\n",
")\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
"os.environ[\"ACTIVELOOP_TOKEN\"] = activeloop_token\n",
"os.environ[\"ACTIVELOOP_ORG\"] = getpass.getpass(\"Activeloop Org:\")\n",
"\n",
"org_id = os.environ[\"ACTIVELOOP_ORG\"]\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"dataset_path = \"hub://\" + org_id + \"/data\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"## 2. Create sample data"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"You can generate a sample group chat conversation using ChatGPT with this prompt:\n",
"\n",
"```\n",
"Generate a group chat conversation with three friends talking about their day, referencing real places and fictional names. Make it funny and as detailed as possible.\n",
"```\n",
"\n",
"I've already generated such a chat in `messages.txt`. We can keep it simple and use this for our example.\n",
"\n",
"## 3. Ingest chat embeddings\n",
"\n",
"We load the messages in the text file, chunk and upload to ActiveLoop Vector store."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='Participants:\\n\\nJerry: Loves movies and is a bit of a klutz.\\nSamantha: Enthusiastic about food and always trying new restaurants.\\nBarry: A nature lover, but always manages to get lost.\\nJerry: Hey, guys! You won\\'t believe what happened to me at the Times Square AMC theater. I tripped over my own feet and spilled popcorn everywhere! 🍿💥\\n\\nSamantha: LOL, that\\'s so you, Jerry! Was the floor buttery enough for you to ice skate on after that? 😂\\n\\nBarry: Sounds like a regular Tuesday for you, Jerry. Meanwhile, I tried to find that new hiking trail in Central Park. You know, the one that\\'s supposed to be impossible to get lost on? Well, guess what...\\n\\nJerry: You found a hidden treasure?\\n\\nBarry: No, I got lost. AGAIN. 🧭🙄\\n\\nSamantha: Barry, you\\'d get lost in your own backyard! But speaking of treasures, I found this new sushi place in Little Tokyo. \"Samantha\\'s Sushi Symphony\" it\\'s called. Coincidence? I think not!\\n\\nJerry: Maybe they named it after your ability to eat your body weight in sushi. 🍣', metadata={}), Document(page_content='Barry: How do you even FIND all these places, Samantha?\\n\\nSamantha: Simple, I don\\'t rely on Barry\\'s navigation skills. 😉 But seriously, the wasabi there was hotter than Jerry\\'s love for Marvel movies!\\n\\nJerry: Hey, nothing wrong with a little superhero action. By the way, did you guys see the new \"Captain Crunch: Breakfast Avenger\" trailer?\\n\\nSamantha: Captain Crunch? Are you sure you didn\\'t get that from one of your Saturday morning cereal binges?\\n\\nBarry: Yeah, and did he defeat his arch-enemy, General Mills? 😆\\n\\nJerry: Ha-ha, very funny. Anyway, that sushi place sounds awesome, Samantha. Next time, let\\'s go together, and maybe Barry can guide us... if we want a city-wide tour first.\\n\\nBarry: As long as we\\'re not hiking, I\\'ll get us there... eventually. 😅\\n\\nSamantha: It\\'s a date! But Jerry, you\\'re banned from carrying any food items.\\n\\nJerry: Deal! Just promise me no wasabi challenges. I don\\'t want to end up like the time I tried Sriracha ice cream.', metadata={}), Document(page_content=\"Barry: Wait, what happened with Sriracha ice cream?\\n\\nJerry: Let's just say it was a hot situation. Literally. 🔥\\n\\nSamantha: 🤣 I still have the video!\\n\\nJerry: Samantha, if you value our friendship, that video will never see the light of day.\\n\\nSamantha: No promises, Jerry. No promises. 🤐😈\\n\\nBarry: I foresee a fun weekend ahead! 🎉\", metadata={})]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your Deep Lake dataset has been successfully created!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\\"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset(path='hub://adilkhan/data', tensors=['embedding', 'id', 'metadata', 'text'])\n",
"\n",
" tensor htype shape dtype compression\n",
" ------- ------- ------- ------- ------- \n",
" embedding embedding (3, 1536) float32 None \n",
" id text (3, 1) str None \n",
" metadata json (3, 1) str None \n",
" text text (3, 1) str None \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" \r"
]
}
],
"source": [
"with open(\"messages.txt\") as f:\n",
" state_of_the_union = f.read()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"pages = text_splitter.split_text(state_of_the_union)\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
"texts = text_splitter.create_documents(pages)\n",
"\n",
"print(texts)\n",
"\n",
"dataset_path = \"hub://\" + org_id + \"/data\"\n",
"embeddings = OpenAIEmbeddings()\n",
"db = DeepLake.from_documents(\n",
" texts, embeddings, dataset_path=dataset_path, overwrite=True\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"`Optional`: You can also use Deep Lake's Managed Tensor Database as a hosting service and run queries there. In order to do so, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# with open(\"messages.txt\") as f:\n",
"# state_of_the_union = f.read()\n",
"# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"# pages = text_splitter.split_text(state_of_the_union)\n",
"\n",
"# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
"# texts = text_splitter.create_documents(pages)\n",
"\n",
"# print(texts)\n",
"\n",
"# dataset_path = \"hub://\" + org + \"/data\"\n",
"# embeddings = OpenAIEmbeddings()\n",
"# db = DeepLake.from_documents(\n",
"# texts, embeddings, dataset_path=dataset_path, overwrite=True, runtime={\"tensor_db\": True}\n",
"# )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Ask questions\n",
"\n",
"Now we can ask a question and get an answer back with a semantic search:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"db = DeepLake(dataset_path=dataset_path, read_only=True, embedding=embeddings)\n",
"\n",
"retriever = db.as_retriever()\n",
"retriever.search_kwargs[\"distance_metric\"] = \"cos\"\n",
"retriever.search_kwargs[\"k\"] = 4\n",
"\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(), chain_type=\"stuff\", retriever=retriever, return_source_documents=False\n",
")\n",
"\n",
"# What was the restaurant the group was talking about called?\n",
"query = input(\"Enter query:\")\n",
"\n",
"# The Hungry Lobster\n",
"ans = qa({\"query\": query})\n",
"\n",
"print(ans)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

View File

@@ -1,156 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Elasticsearch\n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/use_cases/qa_structured/integrations/elasticsearch.ipynb)\n",
"\n",
"We can use LLMs to interact with Elasticsearch analytics databases in natural language.\n",
"\n",
"This chain builds search queries via the Elasticsearch DSL API (filters and aggregations).\n",
"\n",
"The Elasticsearch client must have permissions for index listing, mapping description and search queries.\n",
"\n",
"See [here](https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html) for instructions on how to run Elasticsearch locally."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain langchain-experimental openai elasticsearch\n",
"\n",
"# Set env var OPENAI_API_KEY or load from a .env file\n",
"# import dotenv\n",
"\n",
"# dotenv.load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize Elasticsearch python client.\n",
"# See https://elasticsearch-py.readthedocs.io/en/v8.8.2/api.html#elasticsearch.Elasticsearch\n",
"ELASTIC_SEARCH_SERVER = \"https://elastic:pass@localhost:9200\"\n",
"db = Elasticsearch(ELASTIC_SEARCH_SERVER)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Uncomment the next cell to initially populate your db."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# customers = [\n",
"# {\"firstname\": \"Jennifer\", \"lastname\": \"Walters\"},\n",
"# {\"firstname\": \"Monica\",\"lastname\":\"Rambeau\"},\n",
"# {\"firstname\": \"Carol\",\"lastname\":\"Danvers\"},\n",
"# {\"firstname\": \"Wanda\",\"lastname\":\"Maximoff\"},\n",
"# {\"firstname\": \"Jennifer\",\"lastname\":\"Takeda\"},\n",
"# ]\n",
"# for i, customer in enumerate(customers):\n",
"# db.create(index=\"customers\", document=customer, id=i)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What are the first names of all the customers?\"\n",
"chain.run(question)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can customize the prompt."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",
"\n",
"Unless told to do not query for all the columns from a specific index, only ask for a few relevant columns given the question.\n",
"\n",
"Pay attention to use only the column names that you can see in the mapping description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which index. Return the query as valid json.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: Question here\n",
"ESQuery: Elasticsearch Query formatted as json\n",
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate.from_template(\n",
" PROMPT_TEMPLATE,\n",
")\n",
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, query_prompt=PROMPT)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,214 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2def22ea",
"metadata": {},
"source": [
"# Extraction with OpenAI Tools\n",
"\n",
"Performing extraction has never been easier! OpenAI's tool calling ability is the perfect thing to use as it allows for extracting multiple different elements from text that are different types. \n",
"\n",
"Models after 1106 use tools and support \"parallel function calling\" which makes this super easy."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5c628496",
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Optional\n",
"\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "afe9657b",
"metadata": {},
"outputs": [],
"source": [
"# Make sure to use a recent model that supports tools\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bc0ca3b6",
"metadata": {},
"outputs": [],
"source": [
"# Pydantic is an easy way to define a schema\n",
"class Person(BaseModel):\n",
" \"\"\"Information about people to extract.\"\"\"\n",
"\n",
" name: str\n",
" age: Optional[int] = None"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2036af68",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain_pydantic(Person, model)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1748ad21",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Person(name='jane', age=2), Person(name='bob', age=3)]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"jane is 2 and bob is 3\"})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c8262ce5",
"metadata": {},
"outputs": [],
"source": [
"# Let's define another element\n",
"class Class(BaseModel):\n",
" \"\"\"Information about classes to extract.\"\"\"\n",
"\n",
" teacher: str\n",
" students: List[str]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4973c104",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain_pydantic([Person, Class], model)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e976a15e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Person(name='jane', age=2),\n",
" Person(name='bob', age=3),\n",
" Class(teacher='Mrs Sampson', students=['jane', 'bob'])]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"jane is 2 and bob is 3 and they are in Mrs Sampson's class\"})"
]
},
{
"cell_type": "markdown",
"id": "6575a7d6",
"metadata": {},
"source": [
"## Under the hood\n",
"\n",
"Under the hood, this is a simple chain:"
]
},
{
"cell_type": "markdown",
"id": "b8ba83e5",
"metadata": {},
"source": [
"```python\n",
"from typing import Union, List, Type, Optional\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain_core.runnables import Runnable\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.messages import SystemMessage\n",
"from langchain_core.language_models import BaseLanguageModel\n",
"\n",
"_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n",
"in the following passage together with their properties.\n",
"\n",
"If a property is not present and is not required in the function parameters, do not include it in the output.\"\"\" # noqa: E501\n",
"\n",
"\n",
"def create_extraction_chain_pydantic(\n",
" pydantic_schemas: Union[List[Type[BaseModel]], Type[BaseModel]],\n",
" llm: BaseLanguageModel,\n",
" system_message: str = _EXTRACTION_TEMPLATE,\n",
") -> Runnable:\n",
" if not isinstance(pydantic_schemas, list):\n",
" pydantic_schemas = [pydantic_schemas]\n",
" prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", system_message),\n",
" (\"user\", \"{input}\")\n",
" ])\n",
" tools = [convert_pydantic_to_openai_tool(p) for p in pydantic_schemas]\n",
" model = llm.bind(tools=tools)\n",
" chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas)\n",
" return chain\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2eac6b68",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,136 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "052dfe58",
"metadata": {},
"source": [
"# Fake LLM\n",
"LangChain provides a fake LLM class that can be used for testing. This allows you to mock out calls to the LLM and simulate what would happen if the LLM responded in a certain way.\n",
"\n",
"In this notebook we go over how to use this.\n",
"\n",
"We start this with using the FakeLLM in an agent."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ef97ac4d",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms.fake import FakeListLLM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9a0a160f",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b272258c",
"metadata": {},
"outputs": [],
"source": [
"tools = load_tools([\"python_repl\"])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "94096c4c",
"metadata": {},
"outputs": [],
"source": [
"responses = [\"Action: Python REPL\\nAction Input: print(2 + 2)\", \"Final Answer: 4\"]\n",
"llm = FakeListLLM(responses=responses)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "da226d02",
"metadata": {},
"outputs": [],
"source": [
"agent = initialize_agent(\n",
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "44c13426",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction: Python REPL\n",
"Action Input: print(2 + 2)\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m4\n",
"\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mFinal Answer: 4\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'4'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.invoke(\"whats 2 + 2\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "814c2858",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,245 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
"metadata": {},
"source": [
"## Fireworks.AI + LangChain + RAG\n",
" \n",
"[Fireworks AI](https://python.langchain.com/docs/integrations/llms/fireworks) wants to provide the best experience when working with LangChain, and here is an example of Fireworks + LangChain doing RAG\n",
"\n",
"See [our models page](https://fireworks.ai/models) for the full list of models. We use `accounts/fireworks/models/mixtral-8x7b-instruct` for RAG In this tutorial.\n",
"\n",
"For the RAG target, we will use the Gemma technical report https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n",
"Found existing installation: langchain-fireworks 0.0.1\n",
"Uninstalling langchain-fireworks-0.0.1:\n",
" Successfully uninstalled langchain-fireworks-0.0.1\n",
"Note: you may need to restart the kernel to use updated packages.\n",
"Obtaining file:///mnt/disks/data/langchain/libs/partners/fireworks\n",
" Installing build dependencies ... \u001b[?25ldone\n",
"\u001b[?25h Checking if build backend supports build_editable ... \u001b[?25ldone\n",
"\u001b[?25h Getting requirements to build editable ... \u001b[?25ldone\n",
"\u001b[?25h Preparing editable metadata (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25hRequirement already satisfied: aiohttp<4.0.0,>=3.9.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (3.9.3)\n",
"Requirement already satisfied: fireworks-ai<0.13.0,>=0.12.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.12.0)\n",
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.1.23)\n",
"Requirement already satisfied: requests<3,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (2.31.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.3.1)\n",
"Requirement already satisfied: attrs>=17.3.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (23.1.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.4.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (6.0.4)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.9.2)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (4.0.3)\n",
"Requirement already satisfied: httpx in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.26.0)\n",
"Requirement already satisfied: httpx-sse in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.4.0)\n",
"Requirement already satisfied: pydantic in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.4.2)\n",
"Requirement already satisfied: Pillow in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (10.2.0)\n",
"Requirement already satisfied: PyYAML>=5.3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (6.0.1)\n",
"Requirement already satisfied: anyio<5,>=3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (3.7.1)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.33)\n",
"Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (0.1.5)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (23.2)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (8.2.3)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.3.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2.0.6)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2023.7.22)\n",
"Requirement already satisfied: sniffio>=1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.3.0)\n",
"Requirement already satisfied: exceptiongroup in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.1.3)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (2.4)\n",
"Requirement already satisfied: annotated-types>=0.4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.5.0)\n",
"Requirement already satisfied: pydantic-core==2.10.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.10.1)\n",
"Requirement already satisfied: typing-extensions>=4.6.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (4.8.0)\n",
"Requirement already satisfied: httpcore==1.* in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (1.0.2)\n",
"Requirement already satisfied: h11<0.15,>=0.13 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.14.0)\n",
"Building wheels for collected packages: langchain-fireworks\n",
" Building editable for langchain-fireworks (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for langchain-fireworks: filename=langchain_fireworks-0.0.1-py3-none-any.whl size=2228 sha256=564071b120b09ec31f2dc737733448a33bbb26e40b49fcde0c129ad26045259d\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-oz368vdk/wheels/e0/ad/31/d7e76dd73d61905ff7f369f5b0d21a4b5e7af4d3cb7487aece\n",
"Successfully built langchain-fireworks\n",
"Installing collected packages: langchain-fireworks\n",
"Successfully installed langchain-fireworks-0.0.1\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --quiet pypdf langchain-chroma tiktoken openai \n",
"%pip uninstall -y langchain-fireworks\n",
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cf719376",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<module 'fireworks' from '/mnt/disks/data/langchain/.venv/lib/python3.9/site-packages/fireworks/__init__.py'>\n"
]
}
],
"source": [
"import fireworks\n",
"\n",
"print(fireworks)\n",
"import fireworks.client"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ab49327-0532-4480-804c-d066c302a322",
"metadata": {},
"outputs": [],
"source": [
"# Load\n",
"import requests\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"\n",
"# Download the PDF from a URL and save it to a temporary location\n",
"url = \"https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf\"\n",
"response = requests.get(url, stream=True)\n",
"file_name = \"temp_file.pdf\"\n",
"with open(file_name, \"wb\") as pdf:\n",
" pdf.write(response.content)\n",
"\n",
"loader = PyPDFLoader(file_name)\n",
"data = loader.load()\n",
"\n",
"# Split\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_chroma import Chroma\n",
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=all_splits,\n",
" collection_name=\"rag-chroma\",\n",
" embedding=FireworksEmbeddings(),\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",
"# RAG prompt\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"from langchain_together import Together\n",
"\n",
"llm = Together(\n",
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
" temperature=0.0,\n",
" max_tokens=2000,\n",
" top_k=1,\n",
")\n",
"\n",
"# RAG chain\n",
"chain = (\n",
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
]
},
{
"cell_type": "markdown",
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
"metadata": {},
"source": [
"Trace: \n",
"\n",
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,493 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0f0b9afa",
"metadata": {},
"source": [
"# Retrieve as you generate with FLARE\n",
"\n",
"This notebook is an implementation of Forward-Looking Active REtrieval augmented generation (FLARE).\n",
"\n",
"Please see the original repo [here](https://github.com/jzbjyb/FLARE/tree/main).\n",
"\n",
"The basic idea is:\n",
"\n",
"- Start answering a question\n",
"- If you start generating tokens the model is uncertain about, look up relevant documents\n",
"- Use those documents to continue generating\n",
"- Repeat until finished\n",
"\n",
"There is a lot of cool detail in how the lookup of relevant documents is done.\n",
"Basically, the tokens that model is uncertain about are highlighted, and then an LLM is called to generate a question that would lead to that answer. For example, if the generated text is `Joe Biden went to Harvard`, and the tokens the model was uncertain about was `Harvard`, then a good generated question would be `where did Joe Biden go to college`. This generated question is then used in a retrieval step to fetch relevant documents.\n",
"\n",
"In order to set up this chain, we will need three things:\n",
"\n",
"- An LLM to generate the answer\n",
"- An LLM to generate hypothetical questions to use in retrieval\n",
"- A retriever to use to look up answers for\n",
"\n",
"The LLM that we use to generate the answer needs to return logprobs so we can identify uncertain tokens. For that reason, we HIGHLY recommend that you use the OpenAI wrapper (NB: not the ChatOpenAI wrapper, as that does not return logprobs).\n",
"\n",
"The LLM we use to generate hypothetical questions to use in retrieval can be anything. In this notebook we will use ChatOpenAI because it is fast and cheap.\n",
"\n",
"The retriever can be anything. In this notebook we will use [SERPER](https://serper.dev/) search engine, because it is cheap.\n",
"\n",
"Other important parameters to understand:\n",
"\n",
"- `max_generation_len`: The maximum number of tokens to generate before stopping to check if any are uncertain\n",
"- `min_prob`: Any tokens generated with probability below this will be considered uncertain"
]
},
{
"cell_type": "markdown",
"id": "a7e4b63d",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "042bb161",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"SERPER_API_KEY\"] = \"\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a7888f4a",
"metadata": {},
"outputs": [],
"source": [
"from typing import Any, List\n",
"\n",
"from langchain.callbacks.manager import (\n",
" AsyncCallbackManagerForRetrieverRun,\n",
" CallbackManagerForRetrieverRun,\n",
")\n",
"from langchain_community.utilities import GoogleSerperAPIWrapper\n",
"from langchain_core.documents import Document\n",
"from langchain_core.retrievers import BaseRetriever\n",
"from langchain_openai import ChatOpenAI, OpenAI"
]
},
{
"cell_type": "markdown",
"id": "5f552dce",
"metadata": {},
"source": [
"## Retriever"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "59c7d875",
"metadata": {},
"outputs": [],
"source": [
"class SerperSearchRetriever(BaseRetriever):\n",
" search: GoogleSerperAPIWrapper = None\n",
"\n",
" def _get_relevant_documents(\n",
" self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any\n",
" ) -> List[Document]:\n",
" return [Document(page_content=self.search.run(query))]\n",
"\n",
" async def _aget_relevant_documents(\n",
" self,\n",
" query: str,\n",
" *,\n",
" run_manager: AsyncCallbackManagerForRetrieverRun,\n",
" **kwargs: Any,\n",
" ) -> List[Document]:\n",
" raise NotImplementedError()\n",
"\n",
"\n",
"retriever = SerperSearchRetriever(search=GoogleSerperAPIWrapper())"
]
},
{
"cell_type": "markdown",
"id": "92478194",
"metadata": {},
"source": [
"## FLARE Chain"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "577e7c2c",
"metadata": {},
"outputs": [],
"source": [
"# We set this so we can see what exactly is going on\n",
"from langchain.globals import set_verbose\n",
"\n",
"set_verbose(True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "300d783e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import FlareChain\n",
"\n",
"flare = FlareChain.from_llm(\n",
" ChatOpenAI(temperature=0),\n",
" retriever=retriever,\n",
" max_generation_len=164,\n",
" min_prob=0.3,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1f3d5e90",
"metadata": {},
"outputs": [],
"source": [
"query = \"explain in great detail the difference between the langchain framework and baby agi\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4b1bfa8c",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new FlareChain chain...\u001b[0m\n",
"\u001b[36;1m\u001b[1;3mCurrent Response: \u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: \n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> RESPONSE: \u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new QuestionGeneratorChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" decentralized platform for natural language processing\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" uses a blockchain\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" distributed ledger to\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" process data, allowing for secure and transparent data sharing.\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" set of tools\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" help developers create\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" create an AI system\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" NLP applications\" is:\u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3mGenerated Questions: ['What is the Langchain Framework?', 'What technology does the Langchain Framework use to store and process data for secure and transparent data sharing?', 'What technology does the Langchain Framework use to store and process data?', 'What does the Langchain Framework use a blockchain-based distributed ledger for?', 'What does the Langchain Framework provide in addition to a decentralized platform for natural language processing applications?', 'What set of tools and services does the Langchain Framework provide?', 'What is the purpose of Baby AGI?', 'What type of applications is the Langchain Framework designed for?']\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new _OpenAIResponseChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: LangChain: Software. LangChain is a software development framework designed to simplify the creation of applications using large language models. LangChain Initial release date: October 2022. LangChain Programming languages: Python and JavaScript. LangChain Developer(s): Harrison Chase. LangChain License: MIT License. LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only ... Type: Software framework. At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. LangChain is a powerful tool that can be used to work with Large Language Models (LLMs). LLMs are very general in nature, which means that while they can ... LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. LangChain is a software development framework designed to simplify the creation of applications using large language models (LLMs). Written in: Python and JavaScript. Initial release: October 2022. LangChain - The A.I-native developer toolkit We started LangChain with the intent to build a modular and flexible framework for developing A.I- ... LangChain explained in 3 minutes - LangChain is a ... Duration: 3:03. Posted: Apr 13, 2023. LangChain is a framework built to help you build LLM-powered applications more easily by providing you with the following:. LangChain is a framework that enables quick and easy development of applications that make use of Large Language Models, for example, GPT-3. LangChain is a powerful open-source framework for developing applications powered by language models. It connects to the AI models you want to ...\n",
"\n",
"LangChain is a framework for including AI from large language models inside data pipelines and applications. This tutorial provides an overview of what you ... Missing: secure | Must include:secure. Blockchain is the best way to secure the data of the shared community. Utilizing the capabilities of the blockchain nobody can read or interfere ... This modern technology consists of a chain of blocks that allows to securely store all committed transactions using shared and distributed ... A Blockchain network is used in the healthcare system to preserve and exchange patient data through hospitals, diagnostic laboratories, pharmacy firms, and ... In this article, I will walk you through the process of using the LangChain.js library with Google Cloud Functions, helping you leverage the ... LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. Missing: transparent | Must include:transparent. This technology keeps a distributed ledger on each blockchain node, making it more secure and transparent. The blockchain network can operate smart ... blockchain technology can offer a highly secured health data ledger to ... framework can be employed to store encrypted healthcare data in a ... In a simplified way, Blockchain is a data structure that stores transactions in an ordered way and linked to the previous block, serving as a ... Blockchain technology is a decentralized, distributed ledger that stores the record of ownership of digital assets. Missing: Langchain | Must include:Langchain.\n",
"\n",
"LangChain is a framework for including AI from large language models inside data pipelines and applications. This tutorial provides an overview of what you ... LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. This documentation covers the steps to integrate Pinecone, a high-performance vector database, with LangChain, a framework for building applications powered ... The ability to connect to any model, ingest any custom database, and build upon a framework that can take action provides numerous use cases for ... With LangChain, developers can use a framework that abstracts the core building blocks of LLM applications. LangChain empowers developers to ... Build a question-answering tool based on financial data with LangChain & Deep Lake's unified & streamable data store. Browse applications built on LangChain technology. Explore PoC and MVP applications created by our community and discover innovative use cases for LangChain ... LangChain is a great framework that can be used for developing applications powered by LLMs. When you intend to enhance your application ... In this blog, we'll introduce you to LangChain and Ray Serve and how to use them to build a search engine using LLM embeddings and a vector ... The LinkChain Framework simplifies embedding creation and storage using Pinecone and Chroma, with code that loads files, splits documents, and creates embedding ... Missing: technology | Must include:technology.\n",
"\n",
"Blockchain is one type of a distributed ledger. Distributed ledgers use independent computers (referred to as nodes) to record, share and ... Missing: Langchain | Must include:Langchain. Blockchain is used in distributed storage software where huge data is broken down into chunks. This is available in encrypted data across a ... People sometimes use the terms 'Blockchain' and 'Distributed Ledger' interchangeably. This post aims to analyze the features of each. A distributed ledger ... Missing: Framework | Must include:Framework. Think of a “distributed ledger” that uses cryptography to allow each participant in the transaction to add to the ledger in a secure way without ... In this paper, we provide an overview of the history of trade settlement and discuss this nascent technology that may now transform traditional ... Missing: Langchain | Must include:Langchain. LangChain is a blockchain-based language education platform that aims to revolutionize the way people learn languages. Missing: Framework | Must include:Framework. It uses the distributed ledger technology framework and Smart contract engine for building scalable Business Blockchain applications. The fabric ... It looks at the assets the use case is handling, the different parties conducting transactions, and the smart contract, distributed ... Are you curious to know how Blockchain and Distributed ... Duration: 44:31. Posted: May 4, 2021. A blockchain is a distributed and immutable ledger to transfer ownership, record transactions, track assets, and ensure transparency, security, trust and value ... Missing: Langchain | Must include:Langchain.\n",
"\n",
"LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. Missing: decentralized | Must include:decentralized. LangChain, created by Harrison Chase, is a Python library that provides out-of-the-box support to build NLP applications using LLMs. Missing: decentralized | Must include:decentralized. LangChain provides a standard interface for chains, enabling developers to create sequences of calls that go beyond a single LLM call. Chains ... Missing: decentralized platform natural. LangChain is a powerful framework that simplifies the process of building advanced language model applications. Missing: platform | Must include:platform. Are your language models ignoring previous instructions ... Duration: 32:23. Posted: Feb 21, 2023. LangChain is a framework that enables quick and easy development of applications ... Prompting is the new way of programming NLP models. Missing: decentralized platform. It then uses natural language processing and machine learning algorithms to search ... Summarization is handled via cohere, QnA is handled via langchain, ... LangChain is a framework for developing applications powered by language models. ... There are several main modules that LangChain provides support for. Missing: decentralized platform. In the healthcare-chain system, blockchain provides an appreciated secure ... The entire process of adding new and previous block data is performed based on ... ChatGPT is a large language model developed by OpenAI, ... tool for a wide range of applications, including natural language processing, ...\n",
"\n",
"LangChain is a powerful tool that can be used to work with Large Language ... If an API key has been provided, create an OpenAI language model instance At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. A tutorial of the six core modules of the LangChain Python package covering models, prompts, chains, agents, indexes, and memory with OpenAI ... LangChain's collection of tools refers to a set of tools provided by the LangChain framework for developing applications powered by language models. LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only ... LangChain is an open-source library that provides developers with the tools to build applications powered by large language models (LLMs). LangChain is a framework for including AI from large language models inside data pipelines and applications. This tutorial provides an overview of what you ... Plan-and-Execute Agents · Feature Stores and LLMs · Structured Tools · Auto-Evaluator Opportunities · Callbacks Improvements · Unleashing the power ... Tool: A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. · LLM: The language model ... LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\n",
"\n",
"Baby AGI has the ability to complete tasks, generate new tasks based on previous results, and prioritize tasks in real-time. This system is exploring and demonstrating to us the potential of large language models, such as GPT and how it can autonomously perform tasks. Apr 17, 2023\n",
"\n",
"At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. The core idea of the library is that we can “chain” together different components to create more advanced use cases around LLMs.\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> RESPONSE: \u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' LangChain is a framework for developing applications powered by language models. It provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications. On the other hand, Baby AGI is an AI system that is exploring and demonstrating the potential of large language models, such as GPT, and how it can autonomously perform tasks. Baby AGI has the ability to complete tasks, generate new tasks based on previous results, and prioritize tasks in real-time. '"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"flare.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7bed8944",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nThe Langchain framework and Baby AGI are both artificial intelligence (AI) frameworks that are used to create intelligent agents. The Langchain framework is a supervised learning system that is based on the concept of “language chains”. It uses a set of rules to map natural language inputs to specific outputs. It is a general-purpose AI framework and can be used to build applications such as natural language processing (NLP), chatbots, and more.\\n\\nBaby AGI, on the other hand, is an unsupervised learning system that uses neural networks and reinforcement learning to learn from its environment. It is used to create intelligent agents that can adapt to changing environments. It is a more advanced AI system and can be used to build more complex applications such as game playing, robotic vision, and more.\\n\\nThe main difference between the two is that the Langchain framework uses supervised learning while Baby AGI uses unsupervised learning. The Langchain framework is a general-purpose AI framework that can be used for various applications, while Baby AGI is a more advanced AI system that can be used to create more complex applications.'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm = OpenAI()\n",
"llm.invoke(query)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8fb76286",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new FlareChain chain...\u001b[0m\n",
"\u001b[36;1m\u001b[1;3mCurrent Response: \u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: \n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> RESPONSE: \u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new QuestionGeneratorChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"\n",
"Langchain and Bitcoin have very different origin stories. Bitcoin was created by the mysterious Satoshi Nakamoto in 2008 as a decentralized digital currency. Langchain, on the other hand, was created in 2020 by a team of developers as a platform for creating and managing decentralized language learning applications. \n",
"\n",
"FINISHED\n",
"\n",
"The question to which the answer is the term/entity/phrase \" very different origin\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"\n",
"Langchain and Bitcoin have very different origin stories. Bitcoin was created by the mysterious Satoshi Nakamoto in 2008 as a decentralized digital currency. Langchain, on the other hand, was created in 2020 by a team of developers as a platform for creating and managing decentralized language learning applications. \n",
"\n",
"FINISHED\n",
"\n",
"The question to which the answer is the term/entity/phrase \" 2020 by a\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"\n",
"Langchain and Bitcoin have very different origin stories. Bitcoin was created by the mysterious Satoshi Nakamoto in 2008 as a decentralized digital currency. Langchain, on the other hand, was created in 2020 by a team of developers as a platform for creating and managing decentralized language learning applications. \n",
"\n",
"FINISHED\n",
"\n",
"The question to which the answer is the term/entity/phrase \" developers as a platform for creating and managing decentralized language learning applications.\" is:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3mGenerated Questions: ['How would you describe the origin stories of Langchain and Bitcoin in terms of their similarities or differences?', 'When was Langchain created and by whom?', 'What was the purpose of creating Langchain?']\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new _OpenAIResponseChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: Bitcoin and Ethereum have many similarities but different long-term visions and limitations. Ethereum changed from proof of work to proof of ... Bitcoin will be around for many years and examining its white paper origins is a great exercise in understanding why. Satoshi Nakamoto's blueprint describes ... Bitcoin is a new currency that was created in 2009 by an unknown person using the alias Satoshi Nakamoto. Transactions are made with no middle men meaning, no ... Missing: Langchain | Must include:Langchain. By comparison, Bitcoin transaction speeds are tremendously lower. ... learn about its history and its role in the emergence of the Bitcoin ... LangChain is a powerful framework that simplifies the process of ... tasks like document retrieval, clustering, and similarity comparisons. Key terms: Bitcoin System, Blockchain Technology, ... Furthermore, the research paper will discuss and compare the five payment. Blockchain first appeared in Nakamoto's Bitcoin white paper that describes a new decentralized cryptocurrency [1]. Bitcoin takes the blockchain technology ... Missing: stories | Must include:stories. A score of 0 means there were not enough data for this term. Google trends was accessed on 5 November 2018 with searches for bitcoin, euro, gold ... Contracts, transactions, and records of them provide critical structure in our economic system, but they haven't kept up with the world's digital ... Missing: Langchain | Must include:Langchain. Of course, traders try to make a profit on their portfolio in this way.The difference between investing and trading is the regularity with which ...\n",
"\n",
"After all these giant leaps forward in the LLM space, OpenAI released ChatGPT — thrusting LLMs into the spotlight. LangChain appeared around the same time. Its creator, Harrison Chase, made the first commit in late October 2022. Leaving a short couple of months of development before getting caught in the LLM wave.\n",
"\n",
"At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. The core idea of the library is that we can “chain” together different components to create more advanced use cases around LLMs.\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> RESPONSE: \u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' The origin stories of LangChain and Bitcoin are quite different. Bitcoin was created in 2009 by an unknown person using the alias Satoshi Nakamoto. LangChain was created in late October 2022 by Harrison Chase. Bitcoin is a decentralized cryptocurrency, while LangChain is a framework built around LLMs. '"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"flare.run(\"how are the origin stories of langchain and bitcoin similar or different?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fbadd022",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,993 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e9732067-71c7-46f7-ad09-381b3bf21a27",
"metadata": {},
"source": [
"# Generative Agents in LangChain\n",
"\n",
"This notebook implements a generative agent based on the paper [Generative Agents: Interactive Simulacra of Human Behavior](https://arxiv.org/abs/2304.03442) by Park, et. al.\n",
"\n",
"In it, we leverage a time-weighted Memory object backed by a LangChain Retriever."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "53f81c37-db45-4fdc-843c-aa8fd2a9e99d",
"metadata": {},
"outputs": [],
"source": [
"# Use termcolor to make it easy to colorize the outputs.\n",
"!pip install termcolor > /dev/null"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3128fc21",
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"logging.basicConfig(level=logging.ERROR)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8851c370-b395-4b80-a79d-486a38ffc244",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from datetime import datetime, timedelta\n",
"from typing import List\n",
"\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"from termcolor import colored"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "81824e76",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"USER_NAME = \"Person A\" # The name you want to use when interviewing the agent.\n",
"LLM = ChatOpenAI(max_tokens=1500) # Can be any LLM you want."
]
},
{
"cell_type": "markdown",
"id": "c3da1649-d88f-4973-b655-7042975cde7e",
"metadata": {},
"source": [
"### Generative Agent Memory Components\n",
"\n",
"This tutorial highlights the memory of generative agents and its impact on their behavior. The memory varies from standard LangChain Chat memory in two aspects:\n",
"\n",
"1. **Memory Formation**\n",
"\n",
" Generative Agents have extended memories, stored in a single stream:\n",
" 1. Observations - from dialogues or interactions with the virtual world, about self or others\n",
" 2. Reflections - resurfaced and summarized core memories\n",
"\n",
"\n",
"2. **Memory Recall**\n",
"\n",
" Memories are retrieved using a weighted sum of salience, recency, and importance.\n",
"\n",
"You can review the definitions of the `GenerativeAgent` and `GenerativeAgentMemory` in the [reference documentation](\"https://api.python.langchain.com/en/latest/modules/experimental.html\") for the following imports, focusing on `add_memory` and `summarize_related_memories` methods."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "043e5203-6a41-431c-9efa-3e1743d7d25a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_experimental.generative_agents import (\n",
" GenerativeAgent,\n",
" GenerativeAgentMemory,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "361bd49e",
"metadata": {
"jp-MarkdownHeadingCollapsed": true,
"tags": []
},
"source": [
"## Memory Lifecycle\n",
"\n",
"Summarizing the key methods in the above: `add_memory` and `summarize_related_memories`.\n",
"\n",
"When an agent makes an observation, it stores the memory:\n",
" \n",
"1. Language model scores the memory's importance (1 for mundane, 10 for poignant)\n",
"2. Observation and importance are stored within a document by TimeWeightedVectorStoreRetriever, with a `last_accessed_time`.\n",
"\n",
"When an agent responds to an observation:\n",
"\n",
"1. Generates query(s) for retriever, which fetches documents based on salience, recency, and importance.\n",
"2. Summarizes the retrieved information\n",
"3. Updates the `last_accessed_time` for the used documents.\n"
]
},
{
"cell_type": "markdown",
"id": "2fa3ca02",
"metadata": {},
"source": [
"## Create a Generative Character\n",
"\n",
"\n",
"\n",
"Now that we've walked through the definition, we will create two characters named \"Tommie\" and \"Eve\"."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ee9c1a1d-c311-4f1c-8131-75fccd9025b1",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import math\n",
"\n",
"import faiss\n",
"\n",
"\n",
"def relevance_score_fn(score: float) -> float:\n",
" \"\"\"Return a similarity score on a scale [0, 1].\"\"\"\n",
" # This will differ depending on a few things:\n",
" # - the distance / similarity metric used by the VectorStore\n",
" # - the scale of your embeddings (OpenAI's are unit norm. Many others are not!)\n",
" # This function converts the euclidean norm of normalized embeddings\n",
" # (0 is most similar, sqrt(2) most dissimilar)\n",
" # to a similarity function (0 to 1)\n",
" return 1.0 - score / math.sqrt(2)\n",
"\n",
"\n",
"def create_new_memory_retriever():\n",
" \"\"\"Create a new vector store retriever unique to the agent.\"\"\"\n",
" # Define your embedding model\n",
" embeddings_model = OpenAIEmbeddings()\n",
" # Initialize the vectorstore as empty\n",
" embedding_size = 1536\n",
" index = faiss.IndexFlatL2(embedding_size)\n",
" vectorstore = FAISS(\n",
" embeddings_model.embed_query,\n",
" index,\n",
" InMemoryDocstore({}),\n",
" {},\n",
" relevance_score_fn=relevance_score_fn,\n",
" )\n",
" return TimeWeightedVectorStoreRetriever(\n",
" vectorstore=vectorstore, other_score_keys=[\"importance\"], k=15\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7884f9dd-c597-4c27-8c77-1402c71bc2f8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"tommies_memory = GenerativeAgentMemory(\n",
" llm=LLM,\n",
" memory_retriever=create_new_memory_retriever(),\n",
" verbose=False,\n",
" reflection_threshold=8, # we will give this a relatively low number to show how reflection works\n",
")\n",
"\n",
"tommie = GenerativeAgent(\n",
" name=\"Tommie\",\n",
" age=25,\n",
" traits=\"anxious, likes design, talkative\", # You can add more persistent traits here\n",
" status=\"looking for a job\", # When connected to a virtual world, we can have the characters update their status\n",
" memory_retriever=create_new_memory_retriever(),\n",
" llm=LLM,\n",
" memory=tommies_memory,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c524d529",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Tommie (age: 25)\n",
"Innate traits: anxious, likes design, talkative\n",
"No information about Tommie's core characteristics is provided in the given statements.\n"
]
}
],
"source": [
"# The current \"Summary\" of a character can't be made because the agent hasn't made\n",
"# any observations yet.\n",
"print(tommie.get_summary())"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4be60979-d56e-4abf-a636-b34ffa8b7fba",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# We can add memories directly to the memory object\n",
"tommie_observations = [\n",
" \"Tommie remembers his dog, Bruno, from when he was a kid\",\n",
" \"Tommie feels tired from driving so far\",\n",
" \"Tommie sees the new home\",\n",
" \"The new neighbors have a cat\",\n",
" \"The road is noisy at night\",\n",
" \"Tommie is hungry\",\n",
" \"Tommie tries to get some rest.\",\n",
"]\n",
"for observation in tommie_observations:\n",
" tommie.memory.add_memory(observation)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6992b48b-697f-4973-9560-142ef85357d7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Tommie (age: 25)\n",
"Innate traits: anxious, likes design, talkative\n",
"Tommie is a person who is observant of his surroundings, has a sentimental side, and experiences basic human needs such as hunger and the need for rest. He also tends to get tired easily and is affected by external factors such as noise from the road or a neighbor's pet.\n"
]
}
],
"source": [
"# Now that Tommie has 'memories', their self-summary is more descriptive, though still rudimentary.\n",
"# We will see how this summary updates after more observations to create a more rich description.\n",
"print(tommie.get_summary(force_refresh=True))"
]
},
{
"cell_type": "markdown",
"id": "40d39a32-838c-4a03-8b27-a52c76c402e7",
"metadata": {
"tags": []
},
"source": [
"## Pre-Interview with Character\n",
"\n",
"Before sending our character on their way, let's ask them a few questions."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "eaf125d8-f54c-4c5f-b6af-32789b1f7d3a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def interview_agent(agent: GenerativeAgent, message: str) -> str:\n",
" \"\"\"Help the notebook user interact with the agent.\"\"\"\n",
" new_message = f\"{USER_NAME} says {message}\"\n",
" return agent.generate_dialogue_response(new_message)[1]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "54024d41-6e83-4914-91e5-73140e2dd9c8",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"I really enjoy design and being creative. I\\'ve been working on some personal projects lately. What about you, Person A? What do you like to do?\"'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"What do you like to do?\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "71e2e8cc-921e-4816-82f1-66962b2c1055",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"Well, I\\'m actually looking for a job right now, so hopefully I can find some job postings online and start applying. How about you, Person A? What\\'s on your schedule for today?\"'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"What are you looking forward to doing today?\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a2521ffc-7050-4ac3-9a18-4cccfc798c31",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"Honestly, I\\'m feeling pretty anxious about finding a job. It\\'s been a bit of a struggle lately, but I\\'m trying to stay positive and keep searching. How about you, Person A? What worries you?\"'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"What are you most worried about today?\")"
]
},
{
"cell_type": "markdown",
"id": "e509c468-f7cd-4d72-9f3a-f4aba28b1eea",
"metadata": {},
"source": [
"## Step through the day's observations."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "154dee3d-bfe0-4828-b963-ed7e885799b3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Let's have Tommie start going through a day in the life.\n",
"observations = [\n",
" \"Tommie wakes up to the sound of a noisy construction site outside his window.\",\n",
" \"Tommie gets out of bed and heads to the kitchen to make himself some coffee.\",\n",
" \"Tommie realizes he forgot to buy coffee filters and starts rummaging through his moving boxes to find some.\",\n",
" \"Tommie finally finds the filters and makes himself a cup of coffee.\",\n",
" \"The coffee tastes bitter, and Tommie regrets not buying a better brand.\",\n",
" \"Tommie checks his email and sees that he has no job offers yet.\",\n",
" \"Tommie spends some time updating his resume and cover letter.\",\n",
" \"Tommie heads out to explore the city and look for job openings.\",\n",
" \"Tommie sees a sign for a job fair and decides to attend.\",\n",
" \"The line to get in is long, and Tommie has to wait for an hour.\",\n",
" \"Tommie meets several potential employers at the job fair but doesn't receive any offers.\",\n",
" \"Tommie leaves the job fair feeling disappointed.\",\n",
" \"Tommie stops by a local diner to grab some lunch.\",\n",
" \"The service is slow, and Tommie has to wait for 30 minutes to get his food.\",\n",
" \"Tommie overhears a conversation at the next table about a job opening.\",\n",
" \"Tommie asks the diners about the job opening and gets some information about the company.\",\n",
" \"Tommie decides to apply for the job and sends his resume and cover letter.\",\n",
" \"Tommie continues his search for job openings and drops off his resume at several local businesses.\",\n",
" \"Tommie takes a break from his job search to go for a walk in a nearby park.\",\n",
" \"A dog approaches and licks Tommie's feet, and he pets it for a few minutes.\",\n",
" \"Tommie sees a group of people playing frisbee and decides to join in.\",\n",
" \"Tommie has fun playing frisbee but gets hit in the face with the frisbee and hurts his nose.\",\n",
" \"Tommie goes back to his apartment to rest for a bit.\",\n",
" \"A raccoon tore open the trash bag outside his apartment, and the garbage is all over the floor.\",\n",
" \"Tommie starts to feel frustrated with his job search.\",\n",
" \"Tommie calls his best friend to vent about his struggles.\",\n",
" \"Tommie's friend offers some words of encouragement and tells him to keep trying.\",\n",
" \"Tommie feels slightly better after talking to his friend.\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "238be49c-edb3-4e26-a2b6-98777ba8de86",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[32mTommie wakes up to the sound of a noisy construction site outside his window.\u001b[0m Tommie groans and covers his head with a pillow, trying to block out the noise.\n",
"\u001b[32mTommie gets out of bed and heads to the kitchen to make himself some coffee.\u001b[0m Tommie stretches his arms and yawns before starting to make the coffee.\n",
"\u001b[32mTommie realizes he forgot to buy coffee filters and starts rummaging through his moving boxes to find some.\u001b[0m Tommie sighs in frustration and continues searching through the boxes.\n",
"\u001b[32mTommie finally finds the filters and makes himself a cup of coffee.\u001b[0m Tommie takes a deep breath and enjoys the aroma of the fresh coffee.\n",
"\u001b[32mThe coffee tastes bitter, and Tommie regrets not buying a better brand.\u001b[0m Tommie grimaces and sets the coffee mug aside.\n",
"\u001b[32mTommie checks his email and sees that he has no job offers yet.\u001b[0m Tommie sighs and closes his laptop, feeling discouraged.\n",
"\u001b[32mTommie spends some time updating his resume and cover letter.\u001b[0m Tommie nods, feeling satisfied with his progress.\n",
"\u001b[32mTommie heads out to explore the city and look for job openings.\u001b[0m Tommie feels a surge of excitement and anticipation as he steps out into the city.\n",
"\u001b[32mTommie sees a sign for a job fair and decides to attend.\u001b[0m Tommie feels hopeful and excited about the possibility of finding job opportunities at the job fair.\n",
"\u001b[32mThe line to get in is long, and Tommie has to wait for an hour.\u001b[0m Tommie taps his foot impatiently and checks his phone for the time.\n",
"\u001b[32mTommie meets several potential employers at the job fair but doesn't receive any offers.\u001b[0m Tommie feels disappointed and discouraged, but he remains determined to keep searching for job opportunities.\n",
"\u001b[32mTommie leaves the job fair feeling disappointed.\u001b[0m Tommie feels disappointed and discouraged, but he remains determined to keep searching for job opportunities.\n",
"\u001b[32mTommie stops by a local diner to grab some lunch.\u001b[0m Tommie feels relieved to take a break and satisfy his hunger.\n",
"\u001b[32mThe service is slow, and Tommie has to wait for 30 minutes to get his food.\u001b[0m Tommie feels frustrated and impatient due to the slow service.\n",
"\u001b[32mTommie overhears a conversation at the next table about a job opening.\u001b[0m Tommie feels a surge of hope and excitement at the possibility of a job opportunity but decides not to interfere with the conversation at the next table.\n",
"\u001b[32mTommie asks the diners about the job opening and gets some information about the company.\u001b[0m Tommie said \"Excuse me, I couldn't help but overhear your conversation about the job opening. Could you give me some more information about the company?\"\n",
"\u001b[32mTommie decides to apply for the job and sends his resume and cover letter.\u001b[0m Tommie feels hopeful and proud of himself for taking action towards finding a job.\n",
"\u001b[32mTommie continues his search for job openings and drops off his resume at several local businesses.\u001b[0m Tommie feels hopeful and determined to keep searching for job opportunities.\n",
"\u001b[32mTommie takes a break from his job search to go for a walk in a nearby park.\u001b[0m Tommie feels refreshed and rejuvenated after taking a break in the park.\n",
"\u001b[32mA dog approaches and licks Tommie's feet, and he pets it for a few minutes.\u001b[0m Tommie feels happy and enjoys the brief interaction with the dog.\n",
"****************************************\n",
"\u001b[34mAfter 20 observations, Tommie's summary is:\n",
"Name: Tommie (age: 25)\n",
"Innate traits: anxious, likes design, talkative\n",
"Tommie is determined and hopeful in his search for job opportunities, despite encountering setbacks and disappointments. He is also able to take breaks and care for his physical needs, such as getting rest and satisfying his hunger. Tommie is nostalgic towards his past, as shown by his memory of his childhood dog. Overall, Tommie is a hardworking and resilient individual who remains focused on his goals.\u001b[0m\n",
"****************************************\n",
"\u001b[32mTommie sees a group of people playing frisbee and decides to join in.\u001b[0m Do nothing.\n",
"\u001b[32mTommie has fun playing frisbee but gets hit in the face with the frisbee and hurts his nose.\u001b[0m Tommie feels pain and puts a hand to his nose to check for any injury.\n",
"\u001b[32mTommie goes back to his apartment to rest for a bit.\u001b[0m Tommie feels relieved to take a break and rest for a bit.\n",
"\u001b[32mA raccoon tore open the trash bag outside his apartment, and the garbage is all over the floor.\u001b[0m Tommie feels annoyed and frustrated at the mess caused by the raccoon.\n",
"\u001b[32mTommie starts to feel frustrated with his job search.\u001b[0m Tommie feels discouraged but remains determined to keep searching for job opportunities.\n",
"\u001b[32mTommie calls his best friend to vent about his struggles.\u001b[0m Tommie said \"Hey, can I talk to you for a bit? I'm feeling really frustrated with my job search.\"\n",
"\u001b[32mTommie's friend offers some words of encouragement and tells him to keep trying.\u001b[0m Tommie said \"Thank you, I really appreciate your support and encouragement.\"\n",
"\u001b[32mTommie feels slightly better after talking to his friend.\u001b[0m Tommie feels grateful for his friend's support.\n"
]
}
],
"source": [
"# Let's send Tommie on their way. We'll check in on their summary every few observations to watch it evolve\n",
"for i, observation in enumerate(observations):\n",
" _, reaction = tommie.generate_reaction(observation)\n",
" print(colored(observation, \"green\"), reaction)\n",
" if ((i + 1) % 20) == 0:\n",
" print(\"*\" * 40)\n",
" print(\n",
" colored(\n",
" f\"After {i + 1} observations, Tommie's summary is:\\n{tommie.get_summary(force_refresh=True)}\",\n",
" \"blue\",\n",
" )\n",
" )\n",
" print(\"*\" * 40)"
]
},
{
"cell_type": "markdown",
"id": "dd62a275-7290-43ca-aa0f-504f3a706d09",
"metadata": {},
"source": [
"## Interview after the day"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "6336ab5d-3074-4831-951f-c9e2cba5dfb5",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"It\\'s been a bit of a rollercoaster, to be honest. I\\'ve had some setbacks in my job search, but I also had some good moments today, like sending out a few resumes and meeting some potential employers at a job fair. How about you?\"'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"Tell me about how your day has been going\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "809ac906-69b7-4326-99ec-af638d32bb20",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"I really enjoy coffee, but sometimes I regret not buying a better brand. How about you?\"'"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"How do you feel about coffee?\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "f733a431-19ea-421a-9101-ae2593a8c626",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"Oh, I had a dog named Bruno when I was a kid. He was a golden retriever and my best friend. I have so many fond memories of him.\"'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"Tell me about your childhood dog!\")"
]
},
{
"cell_type": "markdown",
"id": "c9261428-778a-4c0b-b725-bc9e91b71391",
"metadata": {},
"source": [
"## Adding Multiple Characters\n",
"\n",
"Let's add a second character to have a conversation with Tommie. Feel free to configure different traits."
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "ec8bbe18-a021-419c-bf1f-23d34732cd99",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"eves_memory = GenerativeAgentMemory(\n",
" llm=LLM,\n",
" memory_retriever=create_new_memory_retriever(),\n",
" verbose=False,\n",
" reflection_threshold=5,\n",
")\n",
"\n",
"\n",
"eve = GenerativeAgent(\n",
" name=\"Eve\",\n",
" age=34,\n",
" traits=\"curious, helpful\", # You can add more persistent traits here\n",
" status=\"N/A\", # When connected to a virtual world, we can have the characters update their status\n",
" llm=LLM,\n",
" daily_summaries=[\n",
" (\n",
" \"Eve started her new job as a career counselor last week and received her first assignment, a client named Tommie.\"\n",
" )\n",
" ],\n",
" memory=eves_memory,\n",
" verbose=False,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "1e2745f5-e0da-4abd-98b4-830802ce6698",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"yesterday = (datetime.now() - timedelta(days=1)).strftime(\"%A %B %d\")\n",
"eve_observations = [\n",
" \"Eve wakes up and hear's the alarm\",\n",
" \"Eve eats a boal of porridge\",\n",
" \"Eve helps a coworker on a task\",\n",
" \"Eve plays tennis with her friend Xu before going to work\",\n",
" \"Eve overhears her colleague say something about Tommie being hard to work with\",\n",
"]\n",
"for observation in eve_observations:\n",
" eve.memory.add_memory(observation)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "de4726e3-4bb1-47da-8fd9-f317a036fe0f",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Eve (age: 34)\n",
"Innate traits: curious, helpful\n",
"Eve is a helpful and active person who enjoys sports and takes care of her physical health. She is attentive to her surroundings, including her colleagues, and has good time management skills.\n"
]
}
],
"source": [
"print(eve.get_summary())"
]
},
{
"cell_type": "markdown",
"id": "837524e9-7f7e-4e9f-b610-f454062f5915",
"metadata": {},
"source": [
"## Pre-conversation interviews\n",
"\n",
"\n",
"Let's \"Interview\" Eve before she speaks with Tommie."
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "6cda916d-800c-47bc-a7f9-6a2f19187472",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"I\\'m feeling pretty good, thanks for asking! Just trying to stay productive and make the most of the day. How about you?\"'"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"How are you feeling about today?\")"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "448ae644-0a66-4eb2-a03a-319f36948b37",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"I don\\'t know much about Tommie, but I heard someone mention that they find them difficult to work with. Have you had any experiences working with Tommie?\"'"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"What do you know about Tommie?\")"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "493fc5b8-8730-4ef8-9820-0f1769ce1691",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"That\\'s interesting. I don\\'t know much about Tommie\\'s work experience, but I would probably ask about his strengths and areas for improvement. What about you?\"'"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(\n",
" eve,\n",
" \"Tommie is looking to find a job. What are are some things you'd like to ask him?\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "4b46452a-6c54-4db2-9d87-18597f70fec8",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"Sure, I can keep the conversation going and ask plenty of questions. I want to make sure Tommie feels comfortable and supported. Thanks for letting me know.\"'"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(\n",
" eve,\n",
" \"You'll have to ask him. He may be a bit anxious, so I'd appreciate it if you keep the conversation going and ask as many questions as possible.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "dd780655-1d73-4fcb-a78d-79fd46a20636",
"metadata": {},
"source": [
"## Dialogue between Generative Agents\n",
"\n",
"Generative agents are much more complex when they interact with a virtual environment or with each other. Below, we run a simple conversation between Tommie and Eve."
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "042ea271-4bf1-4247-9082-239a6fea43b8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def run_conversation(agents: List[GenerativeAgent], initial_observation: str) -> None:\n",
" \"\"\"Runs a conversation between agents.\"\"\"\n",
" _, observation = agents[1].generate_reaction(initial_observation)\n",
" print(observation)\n",
" turns = 0\n",
" while True:\n",
" break_dialogue = False\n",
" for agent in agents:\n",
" stay_in_dialogue, observation = agent.generate_dialogue_response(\n",
" observation\n",
" )\n",
" print(observation)\n",
" # observation = f\"{agent.name} said {reaction}\"\n",
" if not stay_in_dialogue:\n",
" break_dialogue = True\n",
" if break_dialogue:\n",
" break\n",
" turns += 1"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "d5462b14-218e-4d85-b035-df57ea8e0f80",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Eve said \"Sure, Tommie. I'd be happy to share about my experience. Where would you like me to start?\"\n",
"Tommie said \"That's great, thank you! How about you start by telling me about your previous work experience?\"\n",
"Eve said \"Sure, I'd be happy to share my previous work experience with you. I've worked in a few different industries, including marketing and event planning. What specific questions do you have for me?\"\n",
"Tommie said \"That's great to hear. Can you tell me more about your experience in event planning? I've always been interested in that field.\"\n",
"Eve said \"Sure, I'd be happy to share about my experience in event planning. I've worked on a variety of events, from corporate conferences to weddings. One of the biggest challenges I faced was managing multiple vendors and ensuring everything ran smoothly on the day of the event. What specific questions do you have?\"\n",
"Tommie said \"That sounds like a lot of responsibility! Can you tell me more about how you handled the challenges that came up during those events?\"\n",
"Eve said \"Sure, Tommie. I'd be happy to share with you how I handled those challenges. One approach that worked well for me was to stay organized and create a detailed timeline for the event. This helped me keep track of all the different tasks that needed to be done and when they needed to be completed. I also made sure to communicate clearly with all the vendors and team members involved in the event to ensure everyone was on the same page. Would you like me to go into more detail?\"\n",
"Tommie said \"Thank you for sharing that with me, Eve. That sounds like a great approach to managing events. Can you tell me more about how you handled any unexpected issues that came up during the events?\"\n",
"Eve said \"Of course, Tommie. One example of an unexpected issue I faced was when one of the vendors didn't show up on time. To handle this, I quickly contacted a backup vendor and was able to get everything back on track. It's always important to have a backup plan in case things don't go as planned. Do you have any other questions about event planning?\"\n",
"Tommie said \"Thank you for sharing that with me, Eve. It's really helpful to hear how you handled unexpected issues like that. Can you give me an example of how you communicated with your team to ensure everyone was on the same page during an event?\"\n",
"Eve said \"Sure, Tommie. One thing I did to ensure everyone was on the same page was to have regular check-ins and meetings with the team leading up to the event. This helped us address any issues or concerns early on and make sure everyone was clear on their roles and responsibilities. Have you ever had to manage a team for an event before?\"\n",
"Tommie said \"That's a great idea, Eve. I haven't had the opportunity to manage a team for an event yet, but I'll definitely keep that in mind for the future. Thank you for sharing your experience with me.\"\n",
"Eve said \"Thanks for the opportunity to share my experience, Tommie. It was great meeting with you today.\"\n"
]
}
],
"source": [
"agents = [tommie, eve]\n",
"run_conversation(\n",
" agents,\n",
" \"Tommie said: Hi, Eve. Thanks for agreeing to meet with me today. I have a bunch of questions and am not sure where to start. Maybe you could first share about your experience?\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1b28fe80-03dc-4399-961d-6e9ee1980216",
"metadata": {
"tags": []
},
"source": [
"## Let's interview our agents after their conversation\n",
"\n",
"Since the generative agents retain their memories from the day, we can ask them about their plans, conversations, and other memoreis."
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "c4d252f3-fcc1-474c-846e-a7605a6b4ce7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Tommie (age: 25)\n",
"Innate traits: anxious, likes design, talkative\n",
"Tommie is determined and hopeful in his job search, but can also feel discouraged and frustrated at times. He has a strong connection to his childhood dog, Bruno. Tommie seeks support from his friends when feeling overwhelmed and is grateful for their help. He also enjoys exploring his new city.\n"
]
}
],
"source": [
"# We can see a current \"Summary\" of a character based on their own perception of self\n",
"# has changed\n",
"print(tommie.get_summary(force_refresh=True))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "c04db9a4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Eve (age: 34)\n",
"Innate traits: curious, helpful\n",
"Eve is a helpful and friendly person who enjoys playing sports and staying productive. She is attentive and responsive to others' needs, actively listening and asking questions to understand their perspectives. Eve has experience in event planning and communication, and is willing to share her knowledge and expertise with others. She values teamwork and collaboration, and strives to create a comfortable and supportive environment for everyone.\n"
]
}
],
"source": [
"print(eve.get_summary(force_refresh=True))"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "71762558-8fb6-44d7-8483-f5b47fb2a862",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"It was really helpful actually. Eve shared some great tips on managing events and handling unexpected issues. I feel like I learned a lot from her experience.\"'"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"How was your conversation with Eve?\")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "085af3d8-ac21-41ea-8f8b-055c56976a67",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"It was great, thanks for asking. Tommie was very receptive and had some great questions about event planning. How about you, have you had any interactions with Tommie?\"'"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"How was your conversation with Tommie?\")"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "5b439f3c-7849-4432-a697-2bcc85b89dae",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"It was great meeting with you, Tommie. If you have any more questions or need any help in the future, don\\'t hesitate to reach out to me. Have a great day!\"'"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"What do you wish you would have said to Tommie?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,239 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4b089493",
"metadata": {},
"source": [
"# Simulated Environment: Gymnasium\n",
"\n",
"For many applications of LLM agents, the environment is real (internet, database, REPL, etc). However, we can also define agents to interact in simulated environments like text-based games. This is an example of how to create a simple agent-environment interaction loop with [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) (formerly [OpenAI Gym](https://github.com/openai/gym))."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f36427cf",
"metadata": {},
"outputs": [],
"source": [
"!pip install gymnasium"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f9bd38b4",
"metadata": {},
"outputs": [],
"source": [
"import tenacity\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e222e811",
"metadata": {},
"source": [
"## Define the agent"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "870c24bc",
"metadata": {},
"outputs": [],
"source": [
"class GymnasiumAgent:\n",
" @classmethod\n",
" def get_docs(cls, env):\n",
" return env.unwrapped.__doc__\n",
"\n",
" def __init__(self, model, env):\n",
" self.model = model\n",
" self.env = env\n",
" self.docs = self.get_docs(env)\n",
"\n",
" self.instructions = \"\"\"\n",
"Your goal is to maximize your return, i.e. the sum of the rewards you receive.\n",
"I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as:\n",
"\n",
"Observation: <observation>\n",
"Reward: <reward>\n",
"Termination: <termination>\n",
"Truncation: <truncation>\n",
"Return: <sum_of_rewards>\n",
"\n",
"You will respond with an action, formatted as:\n",
"\n",
"Action: <action>\n",
"\n",
"where you replace <action> with your actual action.\n",
"Do nothing else but return the action.\n",
"\"\"\"\n",
" self.action_parser = RegexParser(\n",
" regex=r\"Action: (.*)\", output_keys=[\"action\"], default_output_key=\"action\"\n",
" )\n",
"\n",
" self.message_history = []\n",
" self.ret = 0\n",
"\n",
" def random_action(self):\n",
" action = self.env.action_space.sample()\n",
" return action\n",
"\n",
" def reset(self):\n",
" self.message_history = [\n",
" SystemMessage(content=self.docs),\n",
" SystemMessage(content=self.instructions),\n",
" ]\n",
"\n",
" def observe(self, obs, rew=0, term=False, trunc=False, info=None):\n",
" self.ret += rew\n",
"\n",
" obs_message = f\"\"\"\n",
"Observation: {obs}\n",
"Reward: {rew}\n",
"Termination: {term}\n",
"Truncation: {trunc}\n",
"Return: {self.ret}\n",
" \"\"\"\n",
" self.message_history.append(HumanMessage(content=obs_message))\n",
" return obs_message\n",
"\n",
" def _act(self):\n",
" act_message = self.model.invoke(self.message_history)\n",
" self.message_history.append(act_message)\n",
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
" return action\n",
"\n",
" def act(self):\n",
" try:\n",
" for attempt in tenacity.Retrying(\n",
" stop=tenacity.stop_after_attempt(2),\n",
" wait=tenacity.wait_none(), # No waiting time between retries\n",
" retry=tenacity.retry_if_exception_type(ValueError),\n",
" before_sleep=lambda retry_state: print(\n",
" f\"ValueError occurred: {retry_state.outcome.exception()}, retrying...\"\n",
" ),\n",
" ):\n",
" with attempt:\n",
" action = self._act()\n",
" except tenacity.RetryError:\n",
" action = self.random_action()\n",
" return action"
]
},
{
"cell_type": "markdown",
"id": "2e76d22c",
"metadata": {},
"source": [
"## Initialize the simulated environment and agent"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9e902cfd",
"metadata": {},
"outputs": [],
"source": [
"env = gym.make(\"Blackjack-v1\")\n",
"agent = GymnasiumAgent(model=ChatOpenAI(temperature=0.2), env=env)"
]
},
{
"cell_type": "markdown",
"id": "e2c12b15",
"metadata": {},
"source": [
"## Main loop"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ad361210",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Observation: (15, 4, 0)\n",
"Reward: 0\n",
"Termination: False\n",
"Truncation: False\n",
"Return: 0\n",
" \n",
"Action: 1\n",
"\n",
"Observation: (25, 4, 0)\n",
"Reward: -1.0\n",
"Termination: True\n",
"Truncation: False\n",
"Return: -1.0\n",
" \n",
"break True False\n"
]
}
],
"source": [
"observation, info = env.reset()\n",
"agent.reset()\n",
"\n",
"obs_message = agent.observe(observation)\n",
"print(obs_message)\n",
"\n",
"while True:\n",
" action = agent.act()\n",
" observation, reward, termination, truncation, info = env.step(action)\n",
" obs_message = agent.observe(observation, reward, termination, truncation, info)\n",
" print(f\"Action: {action}\")\n",
" print(obs_message)\n",
"\n",
" if termination or truncation:\n",
" print(\"break\", termination, truncation)\n",
" break\n",
"env.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58a13e9c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,136 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# HuggingGPT\n",
"Implementation of [HuggingGPT](https://github.com/microsoft/JARVIS). HuggingGPT is a system to connect LLMs (ChatGPT) with ML community (Hugging Face).\n",
"\n",
"+ 🔥 Paper: https://arxiv.org/abs/2303.17580\n",
"+ 🚀 Project: https://github.com/microsoft/JARVIS\n",
"+ 🤗 Space: https://huggingface.co/spaces/microsoft/HuggingGPT"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up tools\n",
"\n",
"We set up the tools available from [Transformers Agent](https://huggingface.co/docs/transformers/transformers_agents#tools). It includes a library of tools supported by Transformers and some customized tools such as image generator, video generator, text downloader and other tools."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import load_tool"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hf_tools = [\n",
" load_tool(tool_name)\n",
" for tool_name in [\n",
" \"document-question-answering\",\n",
" \"image-captioning\",\n",
" \"image-question-answering\",\n",
" \"image-segmentation\",\n",
" \"speech-to-text\",\n",
" \"summarization\",\n",
" \"text-classification\",\n",
" \"text-question-answering\",\n",
" \"translation\",\n",
" \"huggingface-tools/text-to-image\",\n",
" \"huggingface-tools/text-to-video\",\n",
" \"text-to-speech\",\n",
" \"huggingface-tools/text-download\",\n",
" \"huggingface-tools/image-transformation\",\n",
" ]\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup model and HuggingGPT\n",
"\n",
"We create an instance of HuggingGPT and use ChatGPT as the controller to rule the above tools."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
"from langchain_openai import OpenAI\n",
"\n",
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(model_name=\"gpt-3.5-turbo\")\n",
"agent = HuggingGPT(llm, hf_tools)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run an example\n",
"\n",
"Given a text, show a related image and video."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent.run(\"please show me a video and an image of 'a boy is running'\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

Some files were not shown because too many files have changed in this diff Show More