Refactored `requests.py`. The same as
https://github.com/langchain-ai/langchain/pull/7961#8098#8099
requests.py is in the root code folder. This creates the
`langchain.requests: Requests` group on the API Reference navigation
ToC, on the same level as Chains and Agents which is incorrect.
Refactoring:
- copied requests.py content into utils/requests.py
- I added the backwards compatibility ref in the original requests.py.
- updated imports to requests objects
@hwchase17, @baskaryan
Addresses #7578. `run()` can return dictionaries, Pydantic objects or
strings, so the type hints should reflect that. See the chain from
`create_structured_output_chain` for an example of a non-string return
type from `run()`.
I've updated the BaseLLMChain return type hint from `str` to `Any`.
Although, the differences between `run()` and `__call__()` seem less
clear now.
CC: @baskaryan
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Until now, hybrid search was limited to modules requiring external
services, such as Weaviate/Pinecone Hybrid Search. However, I have
developed a hybrid retriever that can merge a list of retrievers using
the [Reciprocal Rank
Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf)
algorithm. This new approach, similar to Weaviate hybrid search, does
not require the initialization of any external service.
- Dependencies: No - Twitter handle: dayuanjian21687
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Changed "SELECT" and "UPDTAE" intent check from "=" to
"in",
- Issue: Based on my own testing, most of the LLM (StarCoder, NeoGPT3,
etc..) doesn't return a single word response ("SELECT" / "UPDATE")
through this modification, we can accomplish the same output without
curated prompt engineering.
- Dependencies: None
- Tag maintainer: @baskaryan
- Twitter handle: @aditya_0290
Thank you for maintaining this library, Keep up the good efforts.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Stop sequences are useful if you are doing long-running completions and
need to early-out rather than running for the full max_length... not
only does this save inference cost on Replicate, it is also much faster
if you are going to truncate the output later anyway.
Other LLMs support stop sequences natively (e.g. OpenAI) but I didn't
see this for Replicate so adding this via their prediction cancel
method.
Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.
I did update the replicate integration test and ran `poetry run pytest
tests/integration_tests/llms/test_replicate.py` successfully.
Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
@rlancemartin
The modification includes:
* etherscanLoader
* test_etherscan
* document ipynb
I have run the test, lint, format, and spell check. I do encounter a
linting error on ipynb, I am not sure how to address that.
```
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:55: error: Name "null" is not defined [name-defined]
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:76: error: Name "null" is not defined [name-defined]
Found 2 errors in 1 file (checked 1 source file)
```
- Description: The Etherscan loader uses etherscan api to load
transaction histories under specific accounts on Ethereum Mainnet.
- No dependency is introduced by this PR.
- Twitter handle: glazecl
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
ChatGLM LLM integration will by default accumulate conversation
history(with_history=True) to ChatGLM backend api, which is not expected
in most cases. This PR set with_history=False by default, user should
explicitly set llm.with_history=True to turn this feature on. Related
PR: #8048#7774
---------
Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
My team recently faced an issue while using MSSQL and passing a schema
name.
We noticed that "SET search_path TO {self.schema}" is being called for
us, which is not a valid ms-sql query, and is specific to postgresql
dialect.
We were able to run it locally after this fix.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Refactored `example_generator.py`. The same as #7961
`example_generator.py` is in the root code folder. This creates the
`langchain.example_generator: Example Generator ` group on the API
Reference navigation ToC, on the same level as `Chains` and `Agents`
which is not correct.
Refactoring:
- moved `example_generator.py` content into
`chains/example_generator.py` (not in `utils` because the
`example_generator` has dependencies on other LangChain classes. It also
doesn't work for moving into `utilities/`)
- added the backwards compatibility ref in the original
`example_generator.py`
@hwchase17
- **Description:** Simple change of the Class that ContentHandler
inherits from. To create an object of type SagemakerEndpointEmbeddings,
the property content_handler must be of type EmbeddingsContentHandler
not ContentHandlerBase anymore,
- **Twitter handle:** @Juanjo_Torres11
Co-authored-by: Bagatur <baskaryan@gmail.com>
Refactored `input.py`. The same as
https://github.com/langchain-ai/langchain/pull/7961#8098#8099
input.py is in the root code folder. This creates the `langchain.input:
Input` group on the API Reference navigation ToC, on the same level as
Chains and Agents which is incorrect.
Refactoring:
- copied input.py file into utils/input.py
- I added the backwards compatibility ref in the original input.py.
- changed several imports to a new ref
@hwchase17, @baskaryan
Description:
This PR adds embeddings for LocalAI (
https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in
replacement. As LocalAI can re-use OpenAI clients it is mostly following
the lines of the OpenAI embeddings, however when embedding documents, it
just uses string instead of sending tokens as sending tokens is
best-effort depending on the model being used in LocalAI. Sending tokens
is also tricky as token id's can mismatch with the model - so it's safer
to just send strings in this case.
Partly related to: https://github.com/hwchase17/langchain/issues/5256
Dependencies: No new dependencies
Twitter: @mudler_it
---------
Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**PR Description:**
This pull request introduces several enhancements and new features to
the `CubeSemanticLoader`. The changes include the following:
1. Added imports for the `json` and `time` modules.
2. Added new constructor parameters: `load_dimension_values`,
`dimension_values_limit`, `dimension_values_max_retries`, and
`dimension_values_retry_delay`.
3. Updated the class documentation with descriptions for the new
constructor parameters.
4. Added a new private method `_get_dimension_values()` to retrieve
dimension values from Cube's REST API.
5. Modified the `load()` method to load dimension values for string
dimensions if `load_dimension_values` is set to `True`.
6. Updated the API endpoint in the `load()` method from the base URL to
the metadata endpoint.
7. Refactored the code to retrieve metadata from the response JSON.
8. Added the `column_member_type` field to the metadata dictionary to
indicate if a column is a measure or a dimension.
9. Added the `column_values` field to the metadata dictionary to store
the dimension values retrieved from Cube's API.
10. Modified the `page_content` construction to include the column title
and description instead of the table name, column name, data type,
title, and description.
These changes improve the functionality and flexibility of the
`CubeSemanticLoader` class by allowing the loading of dimension values
and providing more detailed metadata for each document.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Refactored `formatting.py`. The same as
https://github.com/langchain-ai/langchain/pull/7961#8098#8099
formatting.py is in the root code folder. This creates the
`langchain.formatting: Formatting` group on the API Reference navigation
ToC, on the same level as Chains and Agents which is incorrect.
Refactoring:
- moved formatting.py content into utils/formatting.py
- I did not add the backwards compatibility ref in the original
formatting.py. It seems unnecessary.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: In the llms/__init__.py, the key name is wrong for
mlflowaigateway. It should be mlflow-ai-gateway
- Issue: NA
- Dependencies: NA
- Tag maintainer: @hwchase17, @baskaryan
- Twitter handle: na
Without this fix, when we run the code for mlflowaigateway, we will get
error as below
ValueError: Loading mlflow-ai-gateway LLM not supported
---------
Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fixes an issue with the github tool where the API returned special
objects but the tool was expecting dictionaries.
Also added proper docstrings to the GitHubAPIWraper methods and a (very
basic) integration test.
Maintainer responsibilities:
- Agents / Tools / Toolkits: @hinthornw
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# What
- Add faiss vector search test for score threshold
- Fix failing faiss vector search test; filtering with list value is
wrong.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Add faiss vector search test for score threshold; Fix
failing faiss vector search test; filtering with list value is wrong.
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Codespaces and devcontainer was broken by the [repo
restructure](https://github.com/langchain-ai/langchain/discussions/8043).
- Description: Add libs/langchain to container so it can be built
without error.
- Issue: -
- Dependencies: -
- Tag maintainer: @hwchase17 @baskaryan
- Twitter handle: @finnless
The failed build log says:
```
#10 [langchain-dev-dependencies 2/2] RUN poetry install --no-interaction --no-ansi --with dev,test,docs
#10 sha256:e850ee99fc966158bfd2d85e82b7c57244f47ecbb1462e75bd83b981a56a1929
2023-07-23 23:30:33.692Z: #10 0.827
#10 0.827 Directory libs/langchain does not exist
2023-07-23 23:30:33.738Z: #10 ERROR: executor failed running [/bin/sh -c poetry install --no-interaction --no-ansi --with dev,test,docs]: exit code: 1
```
The new pyproject.toml imports from libs/langchain:
77bf75c236/pyproject.toml (L14-L16)
But libs/langchain is never added to the dev.Dockerfile:
77bf75c236/libs/langchain/dev.Dockerfile (L37-L39)
Hopefully, this doesn't come across as nitpicky! That isn't the
intention. I only noticed it, because I enjoy reading the documentation
and when I hit a mental road bump it is usually due to a missing word or
something =)
@baskaryan
This bugfix PR adds kwargs support to Baseten model invocations so that
e.g. the following script works properly:
```python
chatgpt_chain = LLMChain(
llm=Baseten(model="MODEL_ID"),
prompt=prompt,
verbose=False,
memory=ConversationBufferWindowMemory(k=2),
llm_kwargs={"max_length": 4096}
)
```
Unexpectedly changed at
6792a3557d
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
I guess `allowed_search_types` is unexpectedly changed in
6792a3557d,
so that we cannot specify `similarity_score_threshold` here.
```python
class VectorStoreRetriever(BaseRetriever):
...
allowed_search_types: ClassVar[Collection[str]] = (
"similarity",
"similarityatscore_threshold",
"mmr",
)
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
search_type = values["search_type"]
if search_type not in cls.allowed_search_types:
raise ValueError(...)
if search_type == "similarity_score_threshold":
... # UNREACHABLE CODE
```
VectorStores Maintainers: @rlancemartin @eyurtsev
- Description: Get SQL Cmd directly generated by SQL-Database Chain
without executing it in the DB engine.
- Issue: #4853
- Tag maintainer: @hinthornw,@baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
New HTML loader that asynchronously loader a list of urls.
New transformer using [HTML2Text](https://github.com/Alir3z4/html2text/)
for HTML to clean, easy-to-read plain ASCII text (valid Markdown).
In certain 0-shot scenarios, the existing stateful language model can
unintentionally send/accumulate the .history.
This commit adds the "with_history" option to chatglm, allowing users to
control the behavior of .history and prevent unintended accumulation.
Possible reviewers @hwchase17 @baskaryan @mlot
Refer to discussion over this thread:
https://twitter.com/wey_gu/status/1681996149543276545?s=20
The `sql_database.py` is unnecessarily placed in the root code folder.
A similar code is usually placed in the `utilities/`.
As a byproduct of this placement, the sql_database is [placed on the top
level of classes in the API
Reference](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.sql_database)
which is confusing and not correct.
- moved the `sql_database.py` from the root code folder to the
`utilities/`
@baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixed the bug causing: `TypeError: generate() got multiple values for
keyword argument 'stop_sequences'`
```python
res = await self.async_client.generate(
prompt,
**self._default_params,
stop_sequences=stop,
**kwargs,
)
```
The above throws an error because stop_sequences is in also in the
self._default_params.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I've extended the support of async API to local Qdrant mode. It is faked
but allows prototyping without spinning a container. The tests are
improved to test the in-memory case as well.
@baskaryan @rlancemartin @eyurtsev @agola11
Redis cache currently stores model outputs as strings. Chat generations
have Messages which contain more information than just a string. Until
Redis cache supports fully storing messages, cache should not interact
with chat generations.
Streaming support is useful if you are doing long-running completions or
need interactivity e.g. for chat... adding it to replicate, using a
similar pattern to other LLMs that support streaming.
Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.
I did update the replicate integration test but ran into some issues,
specifically:
1. The original test was failing for me due to the model argument not
being specified... perhaps this test is not regularly run? I fixed it by
adding a call to the lightweight hello world model which should not be
burdensome for replicate infra.
2. I couldn't get the `make integration_tests` command to pass... a lot
of failures in other integration tests due to missing dependencies...
however I did make sure the particluar test file I updated does pass, by
running `poetry run pytest
tests/integration_tests/llms/test_replicate.py`
Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)
Tagging model maintainers @hwchase17 @baskaryan
Thank for all the awesome work you folks are doing.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
## Description
This PR adds a graph class and an openCypher QA chain to work with the
Amazon Neptune database.
## Dependencies
`requests` which is included in the LangChain dependencies.
## Maintainers for Review
@krlawrence
@baskaryan
### Twitter handle
pjain7
`math_utils.py` is in the root code folder. This creates the
`langchain.math_utils: Math Utils` group on the API Reference navigation
ToC, on the same level with `Chains` and `Agents` which is not correct.
Refactoring:
- created the `utils/` folder
- moved `math_utils.py` to `utils/math.py`
- moved `utils.py` to `utils/utils.py`
- split `utils.py` into `utils.py, env.py, strings.py`
- added module description
@baskaryan
- Description: fix to avoid rdflib warnings when concatenating URIs and
strings to create the text snippet for the knowledge graph's schema.
@marioscrock pointed this out in a comment related to #7165
- Issue: None, but the problem was mentioned as a comment in #7165
- Dependencies: None
- Tag maintainer: Related to memory -> @hwchase17, maybe @baskaryan as
it is a fix
Integrating Portkey, which adds production features like caching,
tracing, tagging, retries, etc. to langchain apps.
- Dependencies: None
- Twitter handle: https://twitter.com/portkeyai
- test_portkey.py added for tests
- example notebook added in new utilities folder in modules
Also fixed a bug with OpenAIEmbeddings where headers weren't passing.
cc @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: this change will add the google place ID of the found
location to the response of the GooglePlacesTool
- Issue: Not applicable
- Dependencies: no dependencies
- Tag maintainer: @hinthornw
- Twitter handle: Not applicable
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Jiří Moravčík <jiri.moravcik@gmail.com>
Co-authored-by: Jan Čurn <jan.curn@gmail.com>
- Description: Added the ability to define the open AI model.
- Issue: Currently the Doctran instance uses gpt-4 by default, this does
not work if the user has no access to gpt -4.
- rlancemartin, @eyurtsev, @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
BedrockEmbeddings does not have endpoint_url so that switching to custom
endpoint is not possible. I have access to Bedrock custom endpoint and
cannot use BedrockEmbeddings
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Added a parameter in VectorStoreRetrieverMemory which
filters the input given by the key when constructing the buffering the
document for Vector. This feature is helpful if you have certain inputs
apart from the VectorMemory's own memory_key that needs to be ignored
e.g when using combined memory, we might need to filter the memory_key
of the other memory, Please see the issue.
- Issue: #7695
- Tag maintainer: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Golden Query is a wrapper on top of the [Golden Query
API](https://docs.golden.com/reference/query-api) which enables
programmatic access to query results on entities across Golden's
Knowledge Base. For more information about Golden API, please see the
[Golden API Getting
Started](https://docs.golden.com/reference/getting-started) page.
**Issue:** None
**Dependencies:** requests(already present in project)
**Tag maintainer:** @hinthornw
Signed-off-by: Constantin Musca <constantin.musca@gmail.com>
- Description: Adding code to set pandas dataframe to display all the
columns. Otherwise, some data get truncated (it puts a "..." in the
middle and just shows the first 4 and last 4 columns) and the LLM
doesn't realize it isn't getting the full data. Default value is 8, so
this helps Dataframes larger than that.
- Issue: none
- Dependencies: none
- Tag maintainer: @hinthornw
- Twitter handle: none
## Background
With the addition on email and calendar tools, LangChain is continuing
to complete its functionality to automate business processes.
## Challenge
One of the pieces of business functionality that LangChain currently
doesn't have is the ability to search for flights and travel in order to
book business travel.
## Changes
This PR implements an integration with the
[Amadeus](https://developers.amadeus.com/) travel search API for
LangChain, enabling seamless search for flights with a single
authentication process.
## Who can review?
@hinthornw
## Appendix
@tsolakoua and @minjikarin, I utilized your
[amadeus-python](https://github.com/amadeus4dev/amadeus-python) library
extensively. Given the rising popularity of LangChain and similar AI
frameworks, the convergence of libraries like amadeus-python and tools
like this one is likely. So, I wanted to keep you updated on our
progress.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add verbose support for the extraction_chain
- Issue: Fixes#7982
- Dependencies: NA
- Twitter handle: sheikirfanbasha
@hwchase17 and @agola11
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Added a doc about the [Datadog APM integration for
LangChain](https://github.com/DataDog/dd-trace-py/pull/6137).
Note that the integration is on `ddtrace`'s end and so no code is
introduced/required by this integration into the langchain library. For
that reason I've refrained from adding an example notebook (although
I've added setup instructions for enabling the integration in the doc)
as no code is technically required to enable the integration.
Tagging @baskaryan as reviewer on this PR, thank you very much!
## Dependencies
Datadog APM users will need to have `ddtrace` installed, but the
integration is on `ddtrace` end and so does not introduce any external
dependencies to the LangChain project.
Co-authored-by: Bagatur <baskaryan@gmail.com>
Work in Progress.
WIP
Not ready...
Adds Document Loader support for
[Geopandas.GeoDataFrames](https://geopandas.org/)
Example:
- [x] stub out `GeoDataFrameLoader` class
- [x] stub out integration tests
- [ ] Experiment with different geometry text representations
- [ ] Verify CRS is successfully added in metadata
- [ ] Test effectiveness of searches on geometries
- [ ] Test with different geometry types (point, line, polygon with
multi-variants).
- [ ] Add documentation
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
Removing **kwargs argument from add_texts method in DeepLake vectorstore
as it confuses users and doesn't fail when user is typing incorrect
parameters.
Also added small test to ensure the change is applies correctly.
Guys could pls take a look: @rlancemartin, @eyurtsev, this is a small
PR.
Thx so much!
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Adds integration for MLflow AI Gateway (this will be shipped in MLflow
2.5 this week).
Manual testing:
```sh
# Move to mlflow repo
cd /path/to/mlflow
# install langchain
pip install git+https://github.com/harupy/langchain.git@gateway-integration
# launch gateway service
mlflow gateway start --config-path examples/gateway/openai/config.yaml
# Then, run the examples in this PR
```
Fixed missing "content" field in azure.
Added a check for "content" in _dict (missing for azure
api=2023-07-01-preview)
@baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: VectorStoreRetriever->similarity_score_threshold with
search_type of "similarity_score_threshold" not working with the
following two minor issues,
- Issue: 1. In line 237 of `vectorstores/base.py`, "score_threshold" is
passed to `_similarity_search_with_relevance_scores` as in the kwargs,
while score_threshold is not a valid argument of this method. As a fix,
before calling `_similarity_search_with_relevance_scores`,
score_threshold is popped from kwargs. 2. In line 596 to 607 of
`vectorstores/pgvector.py`, it's checking the distance_strategy against
the string in Enum. However, self.distance_strategy will get the
property of distance_strategy from line 316, where the callable function
is passed. To solve this issue, self.distance_strategy is changed to
self._distance_strategy to avoid calling the property method.,
- Dependencies: No,
- Tag maintainer: @rlancemartin, @eyurtsev,
- Twitter handle: No
---------
Co-authored-by: Bin Wang <bin@arcanum.ai>
- Description: exposes the ResultItem DocumentAttributes as document
metadata with key 'document_attributes' and refactors
AmazonKendraRetriever by providing a ResultItem base class in order to
avoid duplicate code;
- Tag maintainer: @3coins @hupe1980 @dev2049 @baskaryan
- Twitter handle: wilsonleao
### Why?
Some use cases depend on specific document attributes returned by the
retriever in order to improve the quality of the overall completion and
adjust what will be displayed to the user. For the sake of consistency,
we need to expose the DocumentAttributes as document metadata so we are
sure that we are using the values returned by the kendra request issued
by langchain.
I would appreciate your review @3coins @hupe1980 @dev2049. Thank you in
advance!
### References
- [Amazon Kendra
DocumentAttribute](https://docs.aws.amazon.com/kendra/latest/APIReference/API_DocumentAttribute.html)
- [Amazon Kendra
DocumentAttributeValue](https://docs.aws.amazon.com/kendra/latest/APIReference/API_DocumentAttributeValue.html)
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
- Description: check title and excerpt separately for page_content so
that if title is empty but excerpt is present, the page_content will
only contain the excerpt
- Issue: #7782
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao
** This should land Monday the 17th **
Chroma is upgrading from `0.3.29` to `0.4.0`. `0.4.0` is easier to
build, more durable, faster, smaller, and more extensible. This comes
with a few changes:
1. A simplified and improved client setup. Instead of having to remember
weird settings, users can just do `EphemeralClient`, `PersistentClient`
or `HttpClient` (the underlying direct `Client` implementation is also
still accessible)
2. We migrated data stores away from `duckdb` and `clickhouse`. This
changes the api for the `PersistentClient` that used to reference
`chroma_db_impl="duckdb+parquet"`. Now we simply set
`is_persistent=true`. `is_persistent` is set for you to `true` if you
use `PersistentClient`.
3. Because we migrated away from `duckdb` and `clickhouse` - this also
means that users need to migrate their data into the new layout and
schema. Chroma is committed to providing extension notification and
tooling around any schema and data migrations (for example - this PR!).
After upgrading to `0.4.0` - if users try to access their data that was
stored in the previous regime, the system will throw an `Exception` and
instruct them how to use the migration assistant to migrate their data.
The migration assitant is a pip installable CLI: `pip install
chroma_migrate`. And is runnable by calling `chroma_migrate`
-- TODO ADD here is a short video demonstrating how it works.
Please reference the readme at
[chroma-core/chroma-migrate](https://github.com/chroma-core/chroma-migrate)
to see a full write-up of our philosophy on migrations as well as more
details about this particular migration.
Please direct any users facing issues upgrading to our Discord channel
called
[#get-help](https://discord.com/channels/1073293645303795742/1129200523111841883).
We have also created a [email
listserv](https://airtable.com/shrHaErIs1j9F97BE) to notify developers
directly in the future about breaking changes.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: version check to make sure chromadb >=0.4.0 does not
throw an error, and uses the default sqlite persistence engine when the
directory is set,
- Issue: the issue #7887
For attention of
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR
- fixes the `similarity_search_by_vector` example, makes the code run
and adds the example to mirror `similarity_search`
- reverts back to chroma from faiss to remove sharp edges / create a
happy path for new developers. (1) real metadata filtering, (2) expected
functionality like `update`, `delete`, etc to serve beyond the most
trivial use cases
@hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Replace this comment with:
- Description: Modified the code to return the document id from the
redis document search as metadata.
- Issue: the issue # it fixes retrieval of id as metadata as string
- Tag maintainer: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: This is an update to a previously published notebook.
Sales Agent now has access to tools, and this notebook shows how to use
a Product Knowledge base
to reduce hallucinations and act as a better sales person!
- Issue: N/A
- Dependencies: `chromadb openai tiktoken`
- Tag maintainer: @baskaryan @hinthornw
- Twitter handle: @FilipMichalsky
Moving to the latest non-preview Azure OpenAI API version=2023-05-15.
The previous 2023-03-15-preview doesn't have support, SLA etc. For
instance, OpenAI SDK has moved to this version
https://github.com/openai/openai-python/releases/tag/v0.27.7
@baskaryan
Description:
Currently, Zilliz only support dedicated clusters using a pair of
username and password for connection. Regarding serverless clusters,
they can connect to them by using API keys( [ see official note
detail](https://docs.zilliz.com/docs/manage-cluster-credentials)), so I
add API key(token) description in Zilliz docs to make it more obvious
and convenient for this group of users to better utilize Zilliz. No
changes done to code.
---------
Co-authored-by: Robin.Wang <3Jg$94sbQ@q1>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Azure GPT-4 models can't be accessed via LLM model. It's easy to miss
that and a lot of discussions about that are on the Internet. Therefore
I added a comment in Azure LLM docs that mentions that and points to
Azure Chat OpenAI docs.
@baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: This PR adds the option to retrieve scores and explanations
in the WeaviateHybridSearchRetriever. This feature improves the
usability of the retriever by allowing users to understand the scoring
logic behind the search results and further refine their search queries.
Issue: This PR is a solution to the issue #7855
Dependencies: This PR does not introduce any new dependencies.
Tag maintainer: @rlancemartin, @eyurtsev
I have included a unit test for the added feature, ensuring that it
retrieves scores and explanations correctly. I have also included an
example notebook demonstrating its use.
Here I am adding documentation for the `PromptLayerCallbackHandler`.
When we created the initial PR for the callback handler the docs were
causing issues, so we merged without the docs.
1. Add the metadata filter of documents.
2. Add the text page_content filter of documents
3. fix the bug of similarity_search_with_score
Improvement and fix bug of AwaDB
Fix the conflict https://github.com/hwchase17/langchain/pull/7840
@rlancemartin @eyurtsev Thanks!
---------
Co-authored-by: vincent <awadb.vincent@gmail.com>
Motivation, it seems that when dealing with a long context and "big"
number of relevant documents we must avoid using out of the box score
ordering from vector stores.
See: https://arxiv.org/pdf/2306.01150.pdf
So, I added an additional parameter that allows you to reorder the
retrieved documents so we can work around this performance degradation.
The relevance respect the original search score but accommodates the
lest relevant document in the middle of the context.
Extract from the paper (one image speaks 1000 tokens):

This seems to be common to all diff arquitectures. SO I think we need a
good generic way to implement this reordering and run some test in our
already running retrievers.
It could be that my approach is not the best one from the architecture
point of view, happy to have a discussion about that.
For me this was the best place to introduce the change and start
retesting diff implementations.
@rlancemartin, @eyurtsev
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Still don't have good "how to's", and the guides / examples section
could be further pruned and improved, but this PR adds a couple examples
for each of the common evaluator interfaces.
- [x] Example docs for each implemented evaluator
- [x] "how to make a custom evalutor" notebook for each low level APIs
(comparison, string, agent)
- [x] Move docs to modules area
- [x] Link to reference docs for more information
- [X] Still need to finish the evaluation index page
- ~[ ] Don't have good data generation section~
- ~[ ] Don't have good how to section for other common scenarios / FAQs
like regression testing, testing over similar inputs to measure
sensitivity, etc.~
This new version fixes the"Verified Sources" display that got broken.
Instead of displaying the full URL, it shows the title of the page the
source is from.
- Description: Add a BM25 Retriever that do not need Elastic search
- Dependencies: rank_bm25(if it is not installed it will be install by
using pip, just like TFIDFRetriever do)
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: DayuanJian21687
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
Add LLM for ChatGLM-6B & ChatGLM2-6B API
Related Issue:
Will the langchain support ChatGLM? #4766
Add support for selfhost models like ChatGLM or transformer models #1780
Dependencies:
No extra library install required.
It wraps api call to a ChatGLM(2)-6B server(start with api.py), so api
endpoint is required to run.
Tag maintainer: @mlot
Any comments on this PR would be appreciated.
---------
Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Support Redis Sentinel database connections
This PR adds the support to connect not only to Redis standalone servers
but High Availability Replication sets too
(https://redis.io/docs/management/sentinel/)
Redis Replica Sets have on Master allowing to write data and 2+ replicas
with read-only access to the data. The additional Redis Sentinel
instances monitor all server and reconfigure the RW-Master on the fly if
it comes unavailable.
Therefore all connections must be made through the Sentinels the query
the current master for a read-write connection. This PR adds basic
support to also allow a redis connection url specifying a Sentinel as
Redis connection.
Redis documentation and Jupyter notebook with Redis examples are updated
to mention how to connect to a redis Replica Set with Sentinels
-
Remark - i did not found test cases for Redis server connections to add
new cases here. Therefor i tests the new utility class locally with
different kind of setups to make sure different connection urls are
working as expected. But no test case here as part of this PR.
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.
- This PR added support for the Xorbits agent, which allows langchain to
interact with Xorbits Pandas dataframe and Xorbits Numpy array.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @hinthornw
- Twitter handle: https://twitter.com/Xorbitsio
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Update the negative criterion descriptions to prevent bad predictions
- Add support for normalizing the string distance
- Fix potential json deserializing into float issues in the example
mapper
Starting over from #5654 because I utterly borked the poetry.lock file.
Adds new paramerters for to the MWDumpLoader class:
* skip_redirecst (bool) Tells the loader to skip articles that redirect
to other articles. False by default.
* stop_on_error (bool) Tells the parser to skip any page that causes a
parse error. True by default.
* namespaces (List[int]) Tells the parser which namespaces to parse.
Contains namespaces from -2 to 15 by default.
Default values are chosen to preserve backwards compatibility.
Sample dump XML and full unit test coverage (with extended tests that
pass!) also included!
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Issue**
When I use conda to install langchain, a dependency error throwed -
"ModuleNotFoundError: No module named 'langsmith'"
**Updated**
Run `pip install langsmith` when install langchain with conda
Co-authored-by: xaver.xu <xavier.xu@batechworks.com>
- New pin-to-side (button). This functionality allows you to search the
docs while asking the AI for questions
- Fixed the search bar in Firefox that won't detect a mouse click
- Fixes and improvements overall in the model's performance
Description: Added debugging output in DirectoryLoader to identify the
file being processed.
Issue: [Need a trace or debug feature in Lanchain DirectoryLoader
#7725](https://github.com/hwchase17/langchain/issues/7725)
Dependencies: No additional dependencies are required.
Tag maintainer: @rlancemartin, @eyurtsev
This PR enhances the DirectoryLoader with debugging output to help
diagnose issues when loading documents. This new feature does not add
any dependencies and has been tested on a local machine.
Inspired by #5550, I implemented full async API support in Qdrant. The
docs were extended to mention the existence of asynchronous operations
in Langchain. I also used that chance to restructure the tests of Qdrant
and provided a suite of tests for the async version. Async API requires
the GRPC protocol to be enabled. Thus, it doesn't work on local mode
yet, but we're considering including the support to be consistent.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Integrate [Rockset](https://rockset.com/docs/) as a document loader.
Issue: None
Dependencies: Nothing new (rockset's dependency was already added
[here](https://github.com/hwchase17/langchain/pull/6216))
Tag maintainer: @rlancemartin
I have added a test for the integration and an example notebook showing
its use. I ran `make lint` and everything looks good.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This pull request adds a ElasticsearchDatabaseChain chain for
interacting with analytics database, in the manner of the
SQLDatabaseChain.
Maintainer: @samber
Twitter handler: samuelberthe
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: This allows passing auth objects in request wrappers.
Currently, we can handle auth by editing headers in the
RequestsWrappers, but more complex auth methods, such as Kerberos, could
be handled better by using existing functionality within the requests
library. There are many authentication options supported both natively
and by extensions, such as requests-kerberos or requests-ntlm.
- Issue: Fixes#7542
- Dependencies: none
Co-authored-by: eric.speidel@de.bosch.com <eric.speidel@de.bosch.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Add langchain.llms.Tonyi for text completion, in examples into the
Tonyi Text API,
- Add system tests.
Note async completion for the Text API is not yet supported and will be
included in a future PR.
Dependencies: dashscope. It will be installed manually cause it is not
need by everyone.
Happy for feedback on any aspect of this PR @hwchase17 @baskaryan.
Multiple people have asked in #5081 for a way to limit the documents
returned from an AzureCognitiveSearchRetriever. This PR adds the `top_n`
parameter to allow that.
Twitter handle:
[@UmerHAdil](twitter.com/umerHAdil)
Fix for Serializable class to include name, used in FileCallbackHandler
as same issue #7524
Description: Fixes the Serializable class to include 'name' attribute
(class_name) in the dict created,
This is used in Callbacks, specifically the StdOutCallbackHandler,
FileCallbackHandler.
Issue: As described in issue #7524
Dependencies: None
Tag maintainer: SInce this is related to the callback module, tagging
@agola11 @idoru
Comments:
Glad to see issue #7524 fixed in pull #6124, but you forget to change
the same place in FileCallbackHandler
When a custom Embeddings object is set, embed all given texts in a batch
instead of passing them through individually. Any code calling add_texts
can then appropriately size the chunks of texts that are passed through
to take full advantage of the hardware it's running on.
Fixes#6198
ElasticKnnSearch.from_texts is actually ElasticVectorSearch.from_texts
and throws because it calls ElasticKnnSearch constructor with the wrong
arguments.
Now ElasticKnnSearch has its own from_texts, which constructs a proper
ElasticKnnSearch.
---------
Co-authored-by: Charles Parker <charlesparker@FiltaMacbook.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description:
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Description
This PR addresses a bug in the RecursiveUrlLoader class where absolute
URLs were being treated as relative URLs, causing malformed URLs to be
produced. The fix involves using the urljoin function from the
urllib.parse module to correctly handle both absolute and relative URLs.
@rlancemartin @eyurtsev
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Fixes # (issue)
The existing PlaywrightURLLoader load() function uses a synchronous
browser which is not compatible with jupyter.
This PR adds a sister function aload() which can be run insisde a
notebook.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Mainline the tracer to avoid calling feedback before run is posted.
Chose a bool over `max_workers` arg for configuring since we don't want
to support > 1 for now anyway. At some point may want to manage the pool
ourselves (ordering only really matters within a run and with parent
runs)
# Browserless
Added support for Browserless' `/content` endpoint as a document loader.
### About Browserless
Browserless is a cloud service that provides access to headless Chrome
browsers via a REST API. It allows developers to automate Chromium in a
serverless fashion without having to configure and maintain their own
Chrome infrastructure.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
With AzureOpenAI openai_api_type defaulted to "azure" the logic in
utils' get_from_dict_or_env() function triggered by the root validator
never looks to environment for the user's runtime openai_api_type
values. This inhibits folks using token-based auth, or really any auth
model other than "azure."
By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.
---------
Co-authored-by: Ebo <mebstyne@microsoft.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR is aimed at enhancing the clarity of the documentation in the
langchain project.
**Description**:
In the graphql.ipynb file, I have removed the unnecessary 'llm' argument
from the initialization process of the GraphQL tool (of type
_EXTRA_OPTIONAL_TOOLS). The 'llm' argument is not required for this
process. Its presence could potentially confuse users. This modification
simplifies the understanding of tool initialization and minimizes
potential confusion.
**Issue**: Not applicable, as this is a documentation improvement.
**Dependencies**: None.
**I kindly request a review from the following maintainer**: @hinthornw,
who is responsible for Agents / Tools / Toolkits.
No new integration is being added in this PR, hence no need for a test
or an example notebook.
Please see the changes for more detail and let me know if any further
modification is necessary.
- Migrate from deprecated langchainplus_sdk to `langsmith` package
- Update the `run_on_dataset()` API to use an eval config
- Update a number of evaluators, as well as the loading logic
- Update docstrings / reference docs
- Update tracer to share single HTTP session
Sometimes the score responded by chatgpt would be like 'Respone
example\nScore: 90 (fully answers the question, but could provide more
detail on the specific error message)'
For the score contains not only numbers, it raise a ValueError like
Update the RegexParser from `.*` to `\d*` would help us to ignore the
text after number.
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fixed#6768.
This is a workaround only. I think a better longer-term solution is for
chains to declare how many input variables they *actually* need (as
opposed to ones that are in the prompt, where some may be satisfied by
the memory). Then, a wrapping chain can check the input match against
the actual input variables.
@hwchase17
Added fix to avoid irrelevant attributes being returned plus an example
of extracting unrelated entities and an exampe of using an 'extra_info'
attribute to extract unstructured data for an entity.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added an option to trim intermediate steps to last N steps. This is
especially useful for long-running agents. Users can explicitly specify
N or provide a function that does custom trimming/manipulation on
intermediate steps. I've mimicked the API of the `handle_parsing_errors`
parameter.
Converting the Similarity obtained in the
similarity_search_with_score_by_vector method whilst comparing to the
passed
threshold. This is because the passed threshold is a number between 0 to
1 and is already in the relevance_score_fn format.
As of now, the function is comparing two different scoring parameters
and that wouldn't work.
Dependencies
None
Issue:
Different scores being compared in
similarity_search_with_score_by_vector method in FAISS.
Tag maintainer
@hwchase17
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds a new document transformer that automatically extracts metadata for
a document based on an input schema. I also moved
`document_transformers.py` to `document_transformers/__init__.py` to
group it with this new transformer - it didn't seem to cause issues in
the notebook, but let me know if I've done something wrong there.
Also had a linter issue I couldn't figure out:
```
MacBook-Pro:langchain jacoblee$ make lint
poetry run mypy .
docs/dist/conf.py: error: Duplicate module named "conf" (also at "./docs/api_reference/conf.py")
docs/dist/conf.py: note: See https://mypy.readthedocs.io/en/stable/running_mypy.html#mapping-file-paths-to-modules for more info
docs/dist/conf.py: note: Common resolutions include: a) using `--exclude` to avoid checking one of them, b) adding `__init__.py` somewhere, c) using `--explicit-package-bases` or adjusting MYPYPATH
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint] Error 2
```
@rlancemartin @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add two new document transformers that translates
documents into different languages and converts documents into q&a
format to improve vector search results. Uses OpenAI function calling
via the [doctran](https://github.com/psychic-api/doctran/tree/main)
library.
- Issue: N/A
- Dependencies: `doctran = "^0.0.5"`
- Tag maintainer: @rlancemartin @eyurtsev @hwchase17
- Twitter handle: @psychicapi or @jfan001
Notes
- Adheres to the `DocumentTransformer` abstraction set by @dev2049 in
#3182
- refactored `EmbeddingsRedundantFilter` to put it in a file under a new
`document_transformers` module
- Added basic docs for `DocumentInterrogator`, `DocumentTransformer` as
well as the existing `EmbeddingsRedundantFilter`
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Summary
This PR corrects the checks for credentials_profile_name, and
region_name attributes. This was causing validation exceptions when
either of these values were missing during creation of the retriever
class.
Fixes#7571
#### Requested reviewers:
@baskaryan
Updates to the WhyLabsCallbackHandler and example notebook
- Update dependency to langkit 0.0.6 which defines new helper methods
for callback integrations
- Update WhyLabsCallbackHandler to use the new `get_callback_instance`
so that the callback is mostly defined in langkit
- Remove much of the implementation of the WhyLabsCallbackHandler here
in favor of the callback instance
This does not change the behavior of the whylabs callback handler
implementation but is a reorganization that moves some of the
implementation externally to our optional dependency package, and should
make future updates easier.
@agola11
- Description: Adds a new chain that acts as a wrapper around Sympy to
give LLMs the ability to do some symbolic math.
- Dependencies: SymPy
---------
Co-authored-by: sreiswig <sreiswig@github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Description
This PR adds model architecture to the `WandbTracer` from the Serialized
Run kwargs. This allows visualization of the calling parameters of an
Agent, LLM and Tool in Weights & Biases.
1. Safely serialize the run objects to WBTraceTree model_dict
2. Refactors the run processing logic to be more organized.
- Twitter handle: @parambharat
---------
Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: I wanted to be able to redirect debug output to a function,
but it wasn't very easy. I figured it would make sense to implement a
`FunctionCallbackHandler`, and reimplement `ConsoleCallbackHandler` as a
subclass that calls the `print` function. Now I can create a simple
subclass in my project that calls `logging.info` or whatever I need.
Tag maintainer: @agola11
Twitter handle: `@andandaraalex`
Added an _endpoint_url_ attribute to Bedrock(LLM) class - I have access
to Bedrock only via us-west-2 endpoint and needed to change the endpoint
url, this could be useful to other users
This change makes the ecosystem integrations cnosdb documentation more
realistic and easy to understand.
- change examples of question and table
- modify typo and format
When using callbacks, there are times when callbacks can be added
redundantly: for instance sometimes you might need to create an llm with
specific callbacks, but then also create and agent that uses a chain
that has those callbacks already set. This means that "callbacks" might
get passed down again to the llm at predict() time, resulting in
duplicate calls to the `on_llm_start` callback.
For the sake of simplicity, I made it so that langchain never adds an
exact handler/callbacks object in `add_handler`, thus avoiding the
duplicate handler issue.
Tagging @hwchase17 for callback review
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: add wrapper that lets you use KoboldAI api in langchain
- Issue: n/a
- Dependencies: none extra, just what exists in lanchain
- Tag maintainer: @baskaryan
- Twitter handle: @zanzibased
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description**: Current implementation assumes that the length of
`texts` and `ids` should be same but if the passed `ids` length is not
equal to the passed length of `texts`, current code
`dict(zip(index_to_id.values(), documents))` is not failing or giving
any warning and silently creating docstores only for the passed `ids`
i.e. if `ids = ['A']` and `texts=["I love Open Source","I love
langchain"]` then only one `docstore` will be created. But either two
docstores should be created assuming same id value for all the elements
of `texts` or an error should be raised.
- **Issue**: My change fixes this by using dictionary comprehension
instead of `zip`. This was if lengths of `ids` and `texts` mismatches an
explicit `IndexError` will be raised.
@rlancemartin, @eyurtsev
fix#7569
add following properties for Notion DB document loader's metadata
- `unique_id`
- `status`
- `people`
@rlancemartin, @eyurtsev (Since this is a change related to
`DataLoaders`)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Currently `ChatOutputParser` extracts actions by splitting the text on
"```", and then load the second part as a json string.
But sometimes the LLM will wrap the action in markdown code block like:
````markdown
```json
{
"action": "foo",
"action_input": "bar"
}
```
````
Splitting text on "```" will cause `OutputParserException` in such case.
This PR changes the behaviour to extract the `$JSON_BLOB` by regex, so
that it can handle both ` ``` ``` ` and ` ```json ``` `
@hinthornw
---------
Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
**Description: a description of the change**
Fixed `make docs_build` and related scripts which caused errors. There
are several changes.
First, I made the build of the documentation and the API Reference into
two separate commands. This is because it takes less time to build. The
commands for documents are `make docs_build`, `make docs_clean`, and
`make docs_linkcheck`. The commands for API Reference are `make
api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`.
It looked like `docs/.local_build.sh` could be used to build the
documentation, so I used that. Since `.local_build.sh` was also building
API Rerefence internally, I removed that process. `.local_build.sh` also
added some Bash options to stop in error or so. Futher more added `cd
"${SCRIPT_DIR}"` at the beginning so that the script will work no matter
which directory it is executed in.
`docs/api_reference/api_reference.rst` is removed, because which is
generated by `docs/api_reference/create_api_rst.py`, and added it to
.gitignore.
Finally, the description of CONTRIBUTING.md was modified.
**Issue: the issue # it fixes (if applicable)**
https://github.com/hwchase17/langchain/issues/6413
**Dependencies: any dependencies required for this change**
`nbdoc` was missing in group docs so it was added. I installed it with
the `poetry add --group docs nbdoc` command. I am concerned if any
modifications are needed to poetry.lock. I would greatly appreciate it
if you could pay close attention to this file during the review.
**Tag maintainer**
- General / Misc / if you don't know who to tag: @baskaryan
If this PR needs any additional changes, I'll be happy to make them!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Refactor the upsert method in the Pinecone class to allow
for additional keyword arguments. This change adds flexibility and
extensibility to the method, allowing for future modifications or
enhancements. The upsert method now accepts the `**kwargs` parameter,
which can be used to pass any additional arguments to the Pinecone
index. This change has been made in both the `upsert` method in the
`Pinecone` class and the `upsert` method in the
`similarity_search_with_score` class method. Falls in line with the
usage of the upsert method in
[Pinecone-Python-Client](4640c4cf27/pinecone/index.py (L73))
Issue: [This feature request in Pinecone
Repo](https://github.com/pinecone-io/pinecone-python-client/issues/184)
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- Memory: @hwchase17
---------
Co-authored-by: kwesi <22204443+yankskwesi@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
### Description:
This PR introduces a new option format_diff to the existing Makefile.
This option allows us to apply the formatting tools (Black and isort)
only to the changed Python and ipynb files since the last commit. This
will make our development process more efficient as we only format the
codes that we modify. Along with this change, comments were added to
make the Makefile more understandable and maintainable.
### Issue:
N/A
### Dependencies:
Add dependency to black.
### Tag maintainer:
@baskaryan
### Twitter handle:
[kzk_maeda](https://twitter.com/kzk_maeda)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: I added an example of how to reference the OpenAI API
Organization ID, because I couldn't find it before. In the example, it
is mentioned how to achieve this using environment variables as well as
parameters for the OpenAI()-class
Issue: -
Dependencies: -
Twitter @schop-rob
This simply awaits `AsyncRunManager`'s method call in `MulitRouteChain`.
Noticed this while playing around with Langchain's implementation of
`MultiPromptChain`. @baskaryan
cheers
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: ChatOpenAI model does not return finish_reason in
generation_info.
Issue: #2702
Dependencies: None
Tag maintainer: @baskaryan
Thank you
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Currently there are 4 tools in SQL agent-toolkits, and 2 of them have
reference to the other 2.
This PR change the reference from hard coded string to `{tool.name}`
Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
Small fix to a link from the Marqo page in the ecosystem.
The link was not updated correctly when the documentation structure
changed to html pages instead of links to notebooks.
I found it unclear, where to get the API keys for JinaChat. Mentioning
this in the docstring should be helpful.
#7490
Twitter handle: benji1a
@delgermurun
@svlandeg gave me a tip for how to improve a bit on
https://github.com/hwchase17/langchain/pull/7442 for some extra speed
and memory gains. The tagger isn't needed for sentencization, so can be
disabled too.
This PR changes the behavior of `Qdrant.from_texts` so the collection is
reused if not requested to recreate it. Previously, calling
`Qdrant.from_texts` or `Qdrant.from_documents` resulted in removing the
old data which was confusing for many.
- Description: Added notebook to LangChain docs that explains how to use
Lemon AI NLP Workflow Automation tool with Langchain
- Issue: not applicable
- Dependencies: not applicable
- Tag maintainer: @agola11
- Twitter handle: felixbrockm
# Causal program-aided language (CPAL) chain
## Motivation
This builds on the recent [PAL](https://arxiv.org/abs/2211.10435) to
stop LLM hallucination. The problem with the
[PAL](https://arxiv.org/abs/2211.10435) approach is that it hallucinates
on a math problem with a nested chain of dependence. The innovation here
is that this new CPAL approach includes causal structure to fix
hallucination.
For example, using the below word problem, PAL answers with 5, and CPAL
answers with 13.
"Tim buys the same number of pets as Cindy and Boris."
"Cindy buys the same number of pets as Bill plus Bob."
"Boris buys the same number of pets as Ben plus Beth."
"Bill buys the same number of pets as Obama."
"Bob buys the same number of pets as Obama."
"Ben buys the same number of pets as Obama."
"Beth buys the same number of pets as Obama."
"If Obama buys one pet, how many pets total does everyone buy?"
The CPAL chain represents the causal structure of the above narrative as
a causal graph or DAG, which it can also plot, as shown below.

.
The two major sections below are:
1. Technical overview
2. Future application
Also see [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.
## 1. Technical overview
### CPAL versus PAL
Like [PAL](https://arxiv.org/abs/2211.10435), CPAL intends to reduce
large language model (LLM) hallucination.
The CPAL chain is different from the PAL chain for a couple of reasons.
* CPAL adds a causal structure (or DAG) to link entity actions (or math
expressions).
* The CPAL math expressions are modeling a chain of cause and effect
relations, which can be intervened upon, whereas for the PAL chain math
expressions are projected math identities.
PAL's generated python code is wrong. It hallucinates when complexity
increases.
```python
def solution():
"""Tim buys the same number of pets as Cindy and Boris.Cindy buys the same number of pets as Bill plus Bob.Boris buys the same number of pets as Ben plus Beth.Bill buys the same number of pets as Obama.Bob buys the same number of pets as Obama.Ben buys the same number of pets as Obama.Beth buys the same number of pets as Obama.If Obama buys one pet, how many pets total does everyone buy?"""
obama_pets = 1
tim_pets = obama_pets
cindy_pets = obama_pets + obama_pets
boris_pets = obama_pets + obama_pets
total_pets = tim_pets + cindy_pets + boris_pets
result = total_pets
return result # math result is 5
```
CPAL's generated python code is correct.
```python
story outcome data
name code value depends_on
0 obama pass 1.0 []
1 bill bill.value = obama.value 1.0 [obama]
2 bob bob.value = obama.value 1.0 [obama]
3 ben ben.value = obama.value 1.0 [obama]
4 beth beth.value = obama.value 1.0 [obama]
5 cindy cindy.value = bill.value + bob.value 2.0 [bill, bob]
6 boris boris.value = ben.value + beth.value 2.0 [ben, beth]
7 tim tim.value = cindy.value + boris.value 4.0 [cindy, boris]
query data
{
"question": "how many pets total does everyone buy?",
"expression": "SELECT SUM(value) FROM df",
"llm_error_msg": ""
}
# query result is 13
```
Based on the comments below, CPAL's intended location in the library is
`experimental/chains/cpal` and PAL's location is`chains/pal`.
### CPAL vs Graph QA
Both the CPAL chain and the Graph QA chain extract entity-action-entity
relations into a DAG.
The CPAL chain is different from the Graph QA chain for a few reasons.
* Graph QA does not connect entities to math expressions
* Graph QA does not associate actions in a sequence of dependence.
* Graph QA does not decompose the narrative into these three parts:
1. Story plot or causal model
4. Hypothetical question
5. Hypothetical condition
### Evaluation
Preliminary evaluation on simple math word problems shows that this CPAL
chain generates less hallucination than the PAL chain on answering
questions about a causal narrative. Two examples are in [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.
## 2. Future application
### "Describe as Narrative, Test as Code"
The thesis here is that the Describe as Narrative, Test as Code approach
allows you to represent a causal mental model both as code and as a
narrative, giving you the best of both worlds.
#### Why describe a causal mental mode as a narrative?
The narrative form is quick. At a consensus building meeting, people use
narratives to persuade others of their causal mental model, aka. plan.
You can share, version control and index a narrative.
#### Why test a causal mental model as a code?
Code is testable, complex narratives are not. Though fast, narratives
are problematic as their complexity increases. The problem is LLMs and
humans are prone to hallucination when predicting the outcomes of a
narrative. The cost of building a consensus around the validity of a
narrative outcome grows as its narrative complexity increases. Code does
not require tribal knowledge or social power to validate.
Code is composable, complex narratives are not. The answer of one CPAL
chain can be the hypothetical conditions of another CPAL Chain. For
stochastic simulations, a composable plan can be integrated with the
[DoWhy library](https://github.com/py-why/dowhy). Lastly, for the
futuristic folk, a composable plan as code allows ordinary community
folk to design a plan that can be integrated with a blockchain for
funding.
An explanation of a dependency planning application is
[here.](https://github.com/borisdev/cpal-llm-chain-demo)
---
Twitter handle: @boris_dev
---------
Co-authored-by: Boris Dev <borisdev@Boriss-MacBook-Air.local>
This PR proposes an implementation to support `generate` as an
`early_stopping_method` for the new `OpenAIFunctionsAgent` class.
The motivation behind is to facilitate the user to set a maximum number
of actions the agent can take with `max_iterations` and force a final
response with this new agent (as with the `Agent` class).
The following changes were made:
- The `OpenAIFunctionsAgent.return_stopped_response` method was
overwritten to support `generate` as an `early_stopping_method`
- A boolean `with_functions` parameter was added to the
`OpenAIFunctionsAgent.plan` method
This way the `OpenAIFunctionsAgent.return_stopped_response` method can
call the `OpenAIFunctionsAgent.plan` method with `with_function=False`
when the `early_stopping_method` is set to `generate`, making a call to
the LLM with no functions and forcing a final response from the
`"assistant"`.
- Relevant maintainer: @hinthornw
- Twitter handle: @aledelunap
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Current `_call` function in the
`langchain.llms.HuggingFaceEndpoint` class truncates response when
`task=text-generation`. Same error discussed a few days ago on Hugging
Face: https://huggingface.co/tiiuae/falcon-40b-instruct/discussions/51
Issue: Fixes#7353
Tag maintainer: @hwchase17 @baskaryan @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: This pull request aims to support generating the correct
generic relevancy scores for different vector stores by refactoring the
relevance score functions and their selection in the base class and
subclasses of VectorStore. This is especially relevant with VectorStores
that require a distance metric upon initialization. Note many of the
current implenetations of `_similarity_search_with_relevance_scores` are
not technically correct, as they just return
`self.similarity_search_with_score(query, k, **kwargs)` without applying
the relevant score function
Also includes changes associated with:
https://github.com/hwchase17/langchain/pull/6564 and
https://github.com/hwchase17/langchain/pull/6494
See more indepth discussion in thread in #6494
Issue:
https://github.com/hwchase17/langchain/issues/6526https://github.com/hwchase17/langchain/issues/6481https://github.com/hwchase17/langchain/issues/6346
Dependencies: None
The changes include:
- Properly handling score thresholding in FAISS
`similarity_search_with_score_by_vector` for the corresponding distance
metric.
- Refactoring the `_similarity_search_with_relevance_scores` method in
the base class and removing it from the subclasses for incorrectly
implemented subclasses.
- Adding a `_select_relevance_score_fn` method in the base class and
implementing it in the subclasses to select the appropriate relevance
score function based on the distance strategy.
- Updating the `__init__` methods of the subclasses to set the
`relevance_score_fn` attribute.
- Removing the `_default_relevance_score_fn` function from the FAISS
class and using the base class's `_euclidean_relevance_score_fn`
instead.
- Adding the `DistanceStrategy` enum to the `utils.py` file and updating
the imports in the vector store classes.
- Updating the tests to import the `DistanceStrategy` enum from the
`utils.py` file.
---------
Co-authored-by: Hanit <37485638+hanit-com@users.noreply.github.com>
Improve documentation for a central use-case, qa / chat over documents.
This will be merged as an update to `index.mdx`
[here](https://python.langchain.com/docs/use_cases/question_answering/).
Testing w/ local Docusaurus server:
```
From `docs` directory:
mkdir _dist
cp -r {docs_skeleton,snippets} _dist
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
yarn install
yarn start
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
1. Added use cases of the new features
2. Done some code refactoring
---------
Co-authored-by: Ivo Stranic <istranic@gmail.com>
### Description
Created a Loader to get a list of specific logs from Datadog Logs.
### Dependencies
`datadog_api_client` is required.
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.
- This PR added support for the Xorbits document loader, which allows
langchain to leverage Xorbits to parallelize and distribute the loading
of data.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @rlancemartin, @eyurtsev
- Twitter handle: https://twitter.com/Xorbitsio
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Adding async method for CTransformers
- Issue: I've found impossible without this code to run Websockets
inside a FastAPI micro service and a CTransformers model.
- Tag maintainer: Not necessary yet, I don't like to mention directly
- Twitter handle: @_semoal
Adding a maximal_marginal_relevance method to the
MongoDBAtlasVectorSearch vectorstore enhances the user experience by
providing more diverse search results
Issue: #7304
### Summary
Adds an `UnstructuredTSVLoader` for TSV files. Also updates the doc
strings for `UnstructuredCSV` and `UnstructuredExcel` loaders.
### Testing
```python
from langchain.document_loaders.tsv import UnstructuredTSVLoader
loader = UnstructuredTSVLoader(
file_path="example_data/mlb_teams_2012.csv", mode="elements"
)
docs = loader.load()
```
### Description
argument variable client is marked as required in commit
81e5b1ad36 which breaks the default way of
initialization providing only index_id. This commit avoid KeyError
exception when it is initialized without a client variable
### Dependencies
no dependency required
`SpacyTextSplitter` currently uses spacy's statistics-based
`en_core_web_sm` model for sentence splitting. This is a good splitter,
but it's also pretty slow, and in this case it's doing a lot of work
that's not needed given that the spacy parse is then just thrown away.
However, there is also a simple rules-based spacy sentencizer. Using
this is at least an order of magnitude faster than using
`en_core_web_sm` according to my local tests.
Also, spacy sentence tokenization based on `en_core_web_sm` can be sped
up in this case by not doing the NER stage. This shaves some cycles too,
both when loading the model and when parsing the text.
Consequently, this PR adds the option to use the basic spacy
sentencizer, and it disables the NER stage for the current approach,
*which is kept as the default*.
Lastly, when extracting the tokenized sentences, the `text` attribute is
called directly instead of doing the string conversion, which is IMO a
bit more idiomatic.
Hey @hwchase17 -
This PR adds a `ZepMemory` class, improves handling of Zep's message
metadata, and makes it easier for folks building custom chains to
persist metadata alongside their chat history.
We've had plenty confused users unfamiliar with ChatMessageHistory
classes and how to wrap the `ZepChatMessageHistory` in a
`ConversationBufferMemory`. So we've created the `ZepMemory` class as a
light wrapper for `ZepChatMessageHistory`.
Details:
- add ZepMemory, modify notebook to demo use of ZepMemory
- Modify summary to be SystemMessage
- add metadata argument to add_message; add Zep metadata to
Message.additional_kwargs
- support passing in metadata
- Description: Tiny documentation fix. In Python, when defining function
parameters or providing arguments to a function or class constructor, we
do not use the `:` character.
- Issue: N/A
- Dependencies: N/A,
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @mogaal
I just added a parameter to the method get_format_instructions, to
return directly the JSON instructions without the leading instruction
sentence. I'm planning to use it to define the structure of a JSON
object passed in input, the get_format_instructions().
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Have noticed transient ref example misalignment. I believe this is
caused by the logic of assigning an example within the thread executor
rather than before.
Current problems:
1. Evaluating LLMs or Chat models isn't smooth. Even specifying
'generations' as the output inserts a redundant list into the eval
template
2. Configuring input / prediction / reference keys in the
`get_qa_evaluator` function is confusing. Unless you are using a chain
with the default keys, you have to specify all the variables and need to
reason about whether the key corresponds to the traced run's inputs,
outputs or the examples inputs or outputs.
Proposal:
- Configure the run evaluator according to a model. Use the model type
and input/output keys to assert compatibility where possible. Only need
to specify a reference_key for certain evaluators (which is less
confusing than specifying input keys)
When does this work:
- If you have your langchain model available (assumed always for
run_on_dataset flow)
- If you are evaluating an LLM, Chat model, or chain
- If the LLM or chat models are traced by langchain (wouldn't work if
you add an incompatible schema via the REST API)
When would this fail:
- Currently if you directly create an example from an LLM run, the
outputs are generations with all the extra metadata present. A simple
`example_key` and dumping all to the template could make the evaluations
unreliable
- Doesn't help if you're not using the low level API
- If you want to instantiate the evaluator without instantiating your
chain or LLM (maybe common for monitoring, for instance) -> could also
load from run or run type though
What's ugly:
- Personally think it's better to load evaluators one by one since
passing a config down is pretty confusing.
- Lots of testing needs to be added
- Inconsistent in that it makes a separate run and example input mapper
instead of the original `RunEvaluatorInputMapper`, which maps a run and
example to a single input.
Example usage running the for an LLM, Chat Model, and Agent.
```
# Test running for the string evaluators
evaluator_names = ["qa", "criteria"]
model = ChatOpenAI()
configured_evaluators = load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer")
run_on_dataset(ds_name, model, run_evaluators=configured_evaluators)
```
<details>
<summary>Full code with dataset upload</summary>
```
## Create dataset
from langchain.evaluation.run_evaluators.loading import load_run_evaluators_for_model
from langchain.evaluation import load_dataset
import pandas as pd
lcds = load_dataset("llm-math")
df = pd.DataFrame(lcds)
from uuid import uuid4
from langsmith import Client
client = Client()
ds_name = "llm-math - " + str(uuid4())[0:8]
ds = client.upload_dataframe(df, name=ds_name, input_keys=["question"], output_keys=["answer"])
## Define the models we'll test over
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from langchain.tools import tool
llm = OpenAI(temperature=0)
chat_model = ChatOpenAI(temperature=0)
@tool
def sum(a: float, b: float) -> float:
"""Add two numbers"""
return a + b
def construct_agent():
return initialize_agent(
llm=chat_model,
tools=[sum],
agent=AgentType.OPENAI_MULTI_FUNCTIONS,
)
agent = construct_agent()
# Test running for the string evaluators
evaluator_names = ["qa", "criteria"]
models = [llm, chat_model, agent]
run_evaluators = []
for model in models:
run_evaluators.append(load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer"))
# Run on LLM, Chat Model, and Agent
from langchain.client.runner_utils import run_on_dataset
to_test = [llm, chat_model, construct_agent]
for model, configured_evaluators in zip(to_test, run_evaluators):
run_on_dataset(ds_name, model, run_evaluators=configured_evaluators, verbose=True)
```
</details>
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
fixes https://github.com/hwchase17/langchain/issues/7289
A simple fix of the buggy output of `graph_qa`. If we have several
entities with triplets then the last entry of `triplets` for a given
entity merges with the first entry of the `triplets` of the next entity.
### Description
Adding a callback handler for Context. Context is a product analytics
platform for AI chat experiences to help you understand how users are
interacting with your product.
I've added the callback library + an example notebook showing its use.
### Dependencies
Requires the user to install the `context-python` library. The library
is lazily-loaded when the callback is instantiated.
### Announcing the feature
We spoke with Harrison a few weeks ago about also doing a blog post
announcing our integration, so will coordinate this with him. Our
Twitter handle for the company is @getcontextai, and the founders are
@_agamble and @HenrySG.
Thanks in advance!
**Title:** Add verbose parameter for llamacpp
**Description:**
This pull request adds a 'verbose' parameter to the llamacpp module. The
'verbose' parameter, when set to True, will enable the output of
detailed logs during the execution of the Llama model. This added
parameter can aid in debugging and understanding the internal processes
of the module.
The verbose parameter is a boolean that prints verbose output to stderr
when set to True. By default, the verbose parameter is set to True but
can be toggled off if less output is desired. This new parameter has
been added to the `validate_environment` method of the `LlamaCpp` class
which initializes the `llama_cpp.Llama` API:
```python
class LlamaCpp(LLM):
...
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
...
model_param_names = [
...
"verbose", # New verbose parameter added
]
...
values["client"] = Llama(model_path, **model_params)
...
```
---------
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
At the moment, pinecone vectorStore does not support filters and
namespaces when using similarity_score_threshold search type.
In this PR, I've implemented that. It passes all the kwargs except
"score_threshold" as that is not a supported argument for method
"similarity_search_with_score".
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Changes
- [X] Fill the `llm_output` param when there is an output parsing error
in a Pydantic schema so that we can get the original text that failed to
parse when handling the exception
## Background
With this change, we could do something like this:
```
output_parser = PydanticOutputParser(pydantic_object=pydantic_obj)
chain = ConversationChain(..., output_parser=output_parser)
try:
response: PydanticSchema = chain.predict(input=input)
except OutputParserException as exc:
logger.error(
'OutputParserException while parsing chatbot response: %s', exc.llm_output,
)
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
hi @rlancemartin ,
We had a new deployment and the `pg_extension` creation command was
updated from `CREATE EXTENSION pg_embedding` to `CREATE EXTENSION
embedding`.
https://github.com/neondatabase/neon/pull/4646
The extension not made public yet. No users will be affected by this.
Will be public next week.
Please let me know if you have any questions.
Thank you in advance 🙏
Continuing with Tolkien inspired series of langchain tools. I bring to
you:
**The Fellowship of the Vectors**, AKA EmbeddingsClusteringFilter.
This document filter uses embeddings to group vectors together into
clusters, then allows you to pick an arbitrary number of documents
vector based on proximity to the cluster centers. That's a
representative sample of the cluster.
The original idea is from [Greg Kamradt](https://github.com/gkamradt)
from this video (Level4):
https://www.youtube.com/watch?v=qaPMdcCqtWk&t=365s
I added few tricks to make it a bit more versatile, so you can
parametrize what to do with duplicate documents in case of cluster
overlap: replace the duplicates with the next closest document or remove
it. This allow you to use it as an special kind of redundant filter too.
Additionally you can choose 2 diff orders: grouped by cluster or
respecting the original retriever scores.
In my use case I was using the docs grouped by cluster to run refine
chains per cluster to generate summarization over a large corpus of
documents.
Let me know if you want to change anything!
@rlancemartin, @eyurtsev, @hwchase17,
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Change details:
- Description: When calling db.persist(), a check prevents from it
proceeding as the constructor only sets member `_persist_directory` from
parameters. But the ChromaDB client settings also has this parameter,
and if the client_settings parameter is used without passing the
persist_directory (which is optional), the `persist` method raises
`ValueError` for not setting `_persist_directory`. This change fixes it
by setting the member `_persist_directory` variable from client_settings
if it is set, else uses the constructor parameter.
- Issue: I didn't find any github issue of this, but I discovered it
after calling the persist method
- Dependencies: None
- Tag maintainer: vectorstore related change - @rlancemartin, @eyurtsev
- Twitter handle: Don't have one :(
*Additional discussion*: We may need to discuss the way I implemented
the fallback using `or`.
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
This PR improves the example notebook for the Marqo vectorstore
implementation by adding a new RetrievalQAWithSourcesChain example. The
`embedding` parameter in `from_documents` has its type updated to
`Union[Embeddings, None]` and a default parameter of None because this
is ignored in Marqo.
This PR also upgrades the Marqo version to 0.11.0 to remove the device
parameter after a breaking change to the API.
Related to #7068 @tomhamer @hwchase17
---------
Co-authored-by: Tom Hamer <tom@marqo.ai>
Description: Pack of small fixes and refactorings that don't affect
functionality, just making code prettier & fixing some misspelling
(hand-filtered improvements proposed by SeniorAi.online, prototype of
code improving tool based on gpt4), agents and callbacks folders was
covered.
Dependencies: Nothing changed
Twitter: https://twitter.com/nayjest
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR improves upon the Clarifai LangChain integration with improved docs, errors, args and the addition of embedding model support in LancChain for Clarifai's embedding models and an overview of the various ways you can integrate with Clarifai added to the docs.
---------
Co-authored-by: Matthew Zeiler <zeiler@clarifai.com>
Description: Added number_of_head_rows as a parameter to pandas agent.
number_of_head_rows allows the user to select the number of rows to pass
with the prompt when include_df_in_prompt is True. This gives the
ability to control the token length and can be helpful in dealing with
large dataframe.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Solving, anthropic packaging version issue by clearing
the mixup from package.version that is being confused with version from
- importlib.metadata.version.
- Issue: it fixes the issue #7283
- Maintainer: @hwchase17
The following change has been explained in the comment -
https://github.com/hwchase17/langchain/issues/7283#issuecomment-1624328978
- Description: pydantic's `ModelField.type_` only exposes the native
data type but not complex type hints like `List`. Thus, generating a
Tool with `from_function` through function signature produces incorrect
argument schemas (e.g., `str` instead of `List[str]`)
- Issue: N/A
- Dependencies: N/A
- Tag maintainer: @hinthornw
- Twitter handle: `mapped`
All the unittest (with an additional one in this PR) passed, though I
didn't try integration tests...
- Description: Sometimes there are csv attachments with the media type
"application/vnd.ms-excel". These files failed to be loaded via the xlrd
library. It throws a corrupted file error. I fixed it by separately
processing excel files using pandas. Excel files will be processed just
like before.
- Dependencies: pandas, os, io
---------
Co-authored-by: Chathura <chathurar@yaalalabs.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
In some cases, the OpenAI response is missing the `finish_reason`
attribute. It seems to happen when using Ada or Babbage and
`stream=true`, but I can't always reproduce it. This change just
gracefully handles the missing key.
Introduction of newest function calling feature doesn't work properly
with PromptLayerChatOpenAI model since on the `_generate` method,
functions argument are not even getting passed to the `ChatOpenAI` base
class which results in empty `ai_message.additional_kwargs`
Fixes #6365
updated `tutorials.mdx`:
- added a link to new `Deeplearning AI` course on LangChain
- added links to other tutorial videos
- fixed format
@baskaryan, @hwchase17
#### Description
refactor BedrockEmbeddings class to clean code as below:
1. inline content type and accept
2. rewrite input_body as a dictionary literal
3. no need to declare embeddings variable, so remove it
- Description: Adding to Chroma integration the option to run a
similarity search by a vector with relevance scores. Fixing two minor
typos.
- Issue: The "lambda_mult" typo is related to #4861
- Maintainer: @rlancemartin, @eyurtsev
Based on user feedback, we have improved the Alibaba Cloud OpenSearch
vector store documentation.
Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Several updates for the PowerBI tools:
- Handle 0 records returned by requesting redo with different filtering
- Handle too large results by optionally tokenizing the result and
comparing against a max (change in signature, non-breaking)
- Implemented LLMChain with Chat for chat models for the tools.
- Updates to the main prompt including tables
- Update to Tool prompt with TOPN function
- Split the tool prompt to allow the LLMChain with ChatPromptTemplate
Smaller fixes for stability.
For visibility: @hinthornw
Replace this comment with:
- Description: added documentation for a template repo that helps
dockerizing and deploying a LangChain using a Cloud Build CI/CD pipeline
to Google Cloud build serverless
- Issue: None,
- Dependencies: None,
- Tag maintainer: @baskaryan,
- Twitter handle: EdenEmarco177
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
- Description:
- When `keep_separator` is `True` the `_split_text_with_regex()` method
in `text_splitter` uses regex to split, but when `keep_separator` is
`False` it uses `str.split()`. This causes problems when the separator
is a special regex character like `.` or `*`. This PR fixes that by
using `re.split()` in both cases.
- Issue: #7262
- Tag maintainer: @baskaryan
**Description**
In the following page, "Wikipedia" tool is explained.
https://python.langchain.com/docs/modules/agents/tools/integrations/wikipedia
However, the WikipediaAPIWrapper being used is not a tool. This PR
updated the documentation to use a tool WikipediaQueryRun.
**Issue**
None
**Tag maintainer**
Agents / Tools / Toolkits: @hinthornw
- Description: This is a chat model equivalent of HumanInputLLM. An
example notebook is also added.
- Tag maintainer: @hwchase17, @baskaryan
- Twitter handle: N/A
- Description: I have added a `show_progress_bar` parameter (defaults.to
`False`) to the `OpenAIEmbeddings`. If the user sets `show_progress_bar`
to `True`, a progress bar will be displayed.
- Issue: #7246
- Dependencies: N/A
- Tag maintainer: @hwchase17, @baskaryan
- Twitter handle: N/A
Description: `flan-t5-xl` hangs, updated to `flan-t5-xxl`. Tested all
stabilityai LLMs- all hang so removed from tutorial. Temperature > 0 to
prevent unintended determinism.
Issue: #3275
Tag maintainer: @baskaryan
Fix for bug in SitemapLoader
`aiohttp` `get` does not accept `verify` argument, and currently throws
error, so SitemapLoader is not working
This PR fixes it by removing `verify` param for `get` function call
Fixes#6107
#### Who can review?
Tag maintainers/contributors who might be interested:
@eyurtsev
---------
Co-authored-by: techcenary <127699216+techcenary@users.noreply.github.com>
### Description
This pull request introduces the "Cube Semantic Layer" document loader,
which demonstrates the retrieval of Cube's data model metadata in a
format suitable for passing to LLMs as embeddings. This enhancement aims
to provide contextual information and improve the understanding of data.
Twitter handle:
@the_cube_dev
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
This PR brings in a vectorstore interface for
[Marqo](https://www.marqo.ai/).
The Marqo vectorstore exposes some of Marqo's functionality in addition
the the VectorStore base class. The Marqo vectorstore also makes the
embedding parameter optional because inference for embeddings is an
inherent part of Marqo.
Docs, notebook examples and integration tests included.
Related PR:
https://github.com/hwchase17/langchain/pull/2807
---------
Co-authored-by: Tom Hamer <tom@marqo.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
### Summary
Updates the docstrings for the unstructured base loaders so more useful
information appears on the integrations page. If these look good, will
add similar docstrings to the other loaders.
### Reviewers
- @rlancemartin
- @eyurtsev
- @hwchase17
- Description: Allow `InMemoryDocstore` to be created without passing a
dict to the constructor; the constructor can create a dict at runtime if
one isn't provided.
- Tag maintainer: @dev2049
- Description: At the moment, inserting new embeddings to pgvector is
querying all embeddings every time as the defined `embeddings`
relationship is using the default params, which sets `lazy="select"`.
This change drastically improves the performance and adds a few
additional cleanups:
* remove `collection.embeddings.append` as it was querying all
embeddings on insert, replace with `collection_id` param
* centralize storing logic in add_embeddings function to reduce
duplication
* remove boilerplate
- Issue: No issue was opened.
- Dependencies: None.
- Tag maintainer: this is a vectorstore update, so I think
@rlancemartin, @eyurtsev
- Twitter handle: @falmannaa
Hi, there
This pull request contains two commit:
**1. Implement delete interface with optional ids parameter on
AnalyticDB.**
**2. Allow customization of database connection behavior by exposing
engine_args parameter in interfaces.**
- This commit adds the `engine_args` parameter to the interfaces,
allowing users to customize the behavior of the database connection. The
`engine_args` parameter accepts a dictionary of additional arguments
that will be passed to the create_engine function. Users can now modify
various aspects of the database connection, such as connection pool size
and recycle time. This enhancement provides more flexibility and control
to users when interacting with the database through the exposed
interfaces.
This commit is related to VectorStores @rlancemartin @eyurtsev
Thank you for your attention and consideration.
- Description: This allows parameters such as `relevance_score_fn` to be
passed to the `FAISS` constructor via the `load_local()` class method.
- Tag maintainer: @rlancemartin @eyurtsev
This fixes#4833 and the critical vulnerability
https://nvd.nist.gov/vuln/detail/CVE-2023-34540
Previously, the JIRA API Wrapper had a mode that simply pipelined user
input into an `exec()` function.
[The intended use of the 'other' mode is to cover any of Atlassian's API
that don't have an existing
interface](cc33bde74f/langchain/tools/jira/prompt.py (L24))
Fortunately all of the [Atlassian JIRA API methods are subfunctions of
their `Jira`
class](https://atlassian-python-api.readthedocs.io/jira.html), so this
implementation calls these subfunctions directly.
As well as passing a string representation of the function to call, the
implementation flexibly allows for optionally passing args and/or
keyword-args. These are given as part of the dictionary input. Example:
```
{
"function": "update_issue_field", #function to execute
"args": [ #list of ordered args similar to other examples in this JiraAPIWrapper
"key",
{"summary": "New summary"}
],
"kwargs": {} #dict of key value keyword-args pairs
}
```
the above is equivalent to `self.jira.update_issue_field("key",
{"summary": "New summary"})`
Alternate query schema designs are welcome to make querying easier
without passing and evaluating arbitrary python code. I considered
parsing (without evaluating) input python code and extracting the
function, args, and kwargs from there and then pipelining them into the
callable function via `*f(args, **kwargs)` - but this seemed more
direct.
@vowelparrot @dev2049
---------
Co-authored-by: Jamal Rahman <jamal.rahman@builder.ai>
added tutorials.mdx; updated youtube.mdx
Rationale: the Tutorials section in the documentation is top-priority.
(for example, https://pytorch.org/docs/stable/index.html) Not every
project has resources to make tutorials. We have such a privilege.
Community experts created several tutorials on YouTube. But the tutorial
links are now hidden on the YouTube page and not easily discovered by
first-time visitors.
- Added new videos and tutorials that were created since the last
update.
- Made some reprioritization between videos on the base of the view
numbers.
#### Who can review?
- @hwchase17
- @dev2049
## Description
Added Office365 tool modules to `__init__.py` files
## Issue
As described in Issue
https://github.com/hwchase17/langchain/issues/6936, the Office365
toolkit can't be loaded easily because it is not included in the
`__init__.py` files.
## Reviewer
@dev2049
Description:
The OpenAI "embeddings" API intermittently falls into a failure state
where an embedding is returned as [ Nan ], rather than the expected 1536
floats. This patch checks for that state (specifically, for an embedding
of length 1) and if it occurs, throws an ApiError, which will cause the
chunk to be retried.
Issue:
I have been unable to find an official langchain issue for this problem,
but it is discussed (by another user) at
https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
Maintainer: @dev2049
Testing:
Since this is an intermittent OpenAI issue, I have not provided a unit
or integration test. The provided code has, though, been run
successfully over several million tokens.
---------
Co-authored-by: William Webber <william@williamwebber.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- [x] wire up tools
- [x] wire up retrievers
- [x] add integration test
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Description: Fix steamship import error
When running multi_modal_output_agent:
field "steamship" not yet prepared so type is still a ForwardRef, you
might need to call SteamshipImageGenerationTool.update_forward_refs().
Tag maintainer: @hinthornw
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: If their are missing or extra variables when validating
Jinja 2 template then a warning is issued rather than raising an
exception. This allows for better flexibility for the developer as
described in #7044. Also changed the relevant test so pytest is checking
for raised warnings rather than exceptions.
- Issue: #7044
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
This PR makes the `textstat` library optional in the Flyte callback
handler.
@hinthornw, would you mind reviewing this PR since you merged the flyte
callback handler code previously?
---------
Signed-off-by: Samhita Alla <aallasamhita@gmail.com>
- Description: added some documentation to the Pinecone vector store
docs page.
- Issue: #7126
- Dependencies: None
- Tag maintainer: @baskaryan
I can add more documentation on the Pinecone integration functions as I
am going to go in great depth into this area. Just wanted to check with
the maintainers is if this is all good.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Replace this comment with:
- Description: Replace `if var is not None:` with `if var:`, a concise
and pythonic alternative
- Issue: N/A
- Dependencies: None
- Tag maintainer: Unsure
- Twitter handle: N/A
Signed-off-by: serhatgktp <efkan@ibm.com>
- Description: Modify the code for
AsyncIteratorCallbackHandler.on_llm_new_token to ensure that it does not
add an empty string to the result queue.
- Tag maintainer: @agola11
When using AsyncIteratorCallbackHandler with OpenAIFunctionsAgent, if
the LLM response function_call instead of direct answer, the
AsyncIteratorCallbackHandler.on_llm_new_token would be called with empty
string.
see also: langchain.chat_models.openai.ChatOpenAI._generate
An alternative solution is to modify the
langchain.chat_models.openai.ChatOpenAI._generate and do not call the
run_manager.on_llm_new_token when the token is empty string.
I am not sure which solution is better.
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# [SPARQL](https://www.w3.org/TR/rdf-sparql-query/) for
[LangChain](https://github.com/hwchase17/langchain)
## Description
LangChain support for knowledge graphs relying on W3C standards using
RDFlib: SPARQL/ RDF(S)/ OWL with special focus on RDF \
* Works with local files, files from the web, and SPARQL endpoints
* Supports both SELECT and UPDATE queries
* Includes both a Jupyter notebook with an example and integration tests
## Contribution compared to related PRs and discussions
* [Wikibase agent](https://github.com/hwchase17/langchain/pull/2690) -
uses SPARQL, but specifically for wikibase querying
* [Cypher qa](https://github.com/hwchase17/langchain/pull/5078) - graph
DB question answering for Neo4J via Cypher
* [PR 6050](https://github.com/hwchase17/langchain/pull/6050) - tries
something similar, but does not cover UPDATE queries and supports only
RDF
* Discussions on [w3c mailing list](mailto:semantic-web@w3.org) related
to the combination of LLMs (specifically ChatGPT) and knowledge graphs
## Dependencies
* [RDFlib](https://github.com/RDFLib/rdflib)
## Tag maintainer
Graph database related to memory -> @hwchase17
Update in_memory.py to fix "TypeError: keywords must be strings" on
certain dictionaries
Simple fix to prevent a "TypeError: keywords must be strings" error I
encountered in my use case.
@baskaryan
Thanks! Hope useful!
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fix for typos in MongoDB Atlas Vector Search documentation
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: rename the invalid function name of GoogleSerperResults
Tool for OpenAIFunctionCall
- Tag maintainer: @hinthornw
When I use the GoogleSerperResults in OpenAIFunctionCall agent, the
following error occurs:
```shell
openai.error.InvalidRequestError: 'Google Serrper Results JSON' does not match '^[a-zA-Z0-9_-]{1,64}$' - 'functions.0.name'
```
So I rename the GoogleSerperResults's property "name" from "Google
Serrper Results JSON" to "google_serrper_results_json" just like
GoogleSerperRun's name: "google_serper", and it works.
I guess this should be reasonable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
@hinthornw
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Hi @rlancemartin, @eyurtsev!
- Description: Adding HNSW extension support for Postgres. Similar to
pgvector vectorstore, with 3 differences
1. it uses HNSW extension for exact and ANN searches,
2. Vectors are of type array of real
3. Only supports L2
- Dependencies: [HNSW](https://github.com/knizhnik/hnsw) extension for
Postgres
- Example:
```python
db = HNSWVectoreStore.from_documents(
embedding=embeddings,
documents=docs,
collection_name=collection_name,
connection_string=connection_string
)
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score: List[Tuple[Document, float]] =
db.similarity_search_with_score(query)
```
The example notebook is in the PR too.
- correct `endpoint_name` to `api_url`
- add `headers`
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Minor change to the SingleStoreVectorStore:
Updated connection attributes names according to the SingleStoreDB
recommendations
@rlancemartin, @eyurtsev
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Description: doc string suggests `from langchain.llms import
LlamaCppEmbeddings` under `LlamaCpp()` class example but
`LlamaCppEmbeddings` is not in `langchain.llms`
Issue: None open
Tag maintainer: @baskaryan
Documentation update for [Jina
ecosystem](https://python.langchain.com/docs/ecosystem/integrations/jina)
and `langchain-serve` in the deployments section to latest features.
@hwchase17
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
[Apache HugeGraph](https://github.com/apache/incubator-hugegraph) is a
convenient, efficient, and adaptable graph database, compatible with the
Apache TinkerPop3 framework and the Gremlin query language.
In this PR, the HugeGraph and HugeGraphQAChain provide the same
functionality as the existing integration with Neo4j and enables query
generation and question answering over HugeGraph database. The
difference is that the graph query language supported by HugeGraph is
not cypher but another very popular graph query language
[Gremlin](https://tinkerpop.apache.org/gremlin.html).
A notebook example and a simple test case have also been added.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
This PR introduces a new Mendable UI tailored to a better search
experience.
We're more closely integrating our traditional search with our AI
generation.
With this change, you won't have to tab back and forth between the
mendable bot and the keyword search. Both types of search are handled in
the same bar. This should make the docs easier to navigate. while still
letting users get code generations or AI-summarized answers if they so
wish. Also, it should reduce the cost.
Would love to hear your feedback :)
Cc: @dev2049 @hwchase17
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Description
The type hint for `FAISS.__init__()`'s `relevance_score_fn` parameter
allowed the parameter to be set to `None`. However, a default function
is provided by the constructor. This led to an unnecessary check in the
code, as well as a test to verify this check.
**ASSUMPTION**: There's no reason to ever set `relevance_score_fn` to
`None`.
This PR changes the type hint and removes the unnecessary code.
- Description: Added a new SpacyEmbeddings class for generating
embeddings using the Spacy library.
- Issue: Sentencebert/Bert/Spacy/Doc2vec embedding support #6952
- Dependencies: This change requires the Spacy library and the
'en_core_web_sm' Spacy model.
- Tag maintainer: @dev2049
- Twitter handle: N/A
This change includes a new SpacyEmbeddings class, but does not include a
test or an example notebook.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**:
The JSON Lines format is used by some services such as OpenAI and
HuggingFace. It's also a convenient alternative to CSV.
This PR adds JSON Lines support to `JSONLoader` and also updates related
tests.
**Tag maintainer**: @rlancemartin, @eyurtsev.
PS I was not able to build docs locally so didn't update related
section.
Update to Vectara integration
- By user request added "add_files" to take advantage of Vectara
capabilities to process files on the backend, without the need for
separate loading of documents and chunking in the chain.
- Updated vectara.ipynb example notebook to be broader and added testing
of add_file()
@hwchase17 - project lead
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
### Description:
Updated the delete function in the Pinecone integration to allow for
deletion of vectors by specifying a filter condition, and to delete all
vectors in a namespace.
Made the ids parameter optional in the delete function in the base
VectorStore class and allowed for additional keyword arguments.
Updated the delete function in several classes (Redis, Chroma, Supabase,
Deeplake, Elastic, Weaviate, and Cassandra) to match the changes made in
the base VectorStore class. This involved making the ids parameter
optional and allowing for additional keyword arguments.
Retrying with the same improvements as in #6772, this time trying not to
mess up with branches.
@rlancemartin doing a fresh new PR from a branch with a new name. This
should do. Thank you for your help!
---------
Co-authored-by: Jonathan Ellis <jbellis@datastax.com>
Co-authored-by: rlm <pexpresss31@gmail.com>
should be no functional changes
also keep __init__ exposing a lot for backwards compat
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Summary
Updates `UnstructuredEmailLoader` so that it can process attachments in
addition to the e-mail content. The loader will process attachments if
the `process_attachments` kwarg is passed when the loader is
instantiated.
### Testing
```python
file_path = "fake-email-attachment.eml"
loader = UnstructuredEmailLoader(
file_path, mode="elements", process_attachments=True
)
docs = loader.load()
docs[-1]
```
### Reviewers
- @rlancemartin
- @eyurtsev
- @hwchase17
Handle the new retriever events in a way that (I think) is entirely
backwards compatible? Needs more testing for some of the chain changes
and all.
This creates an entire new run type, however. We could also just treat
this as an event within a chain run presumably (same with memory)
Adds a subclass initializer that upgrades old retriever implementations
to the new schema, along with tests to ensure they work.
First commit doesn't upgrade any of our retriever implementations (to
show that we can pass the tests along with additional ones testing the
upgrade logic).
Second commit upgrades the known universe of retrievers in langchain.
- [X] Add callback handling methods for retriever start/end/error (open
to renaming to 'retrieval' if you want that)
- [X] Update BaseRetriever schema to support callbacks
- [X] Tests for upgrading old "v1" retrievers for backwards
compatibility
- [X] Update existing retriever implementations to implement the new
interface
- [X] Update calls within chains to .{a]get_relevant_documents to pass
the child callback manager
- [X] Update the notebooks/docs to reflect the new interface
- [X] Test notebooks thoroughly
Not handled:
- Memory pass throughs: retrieval memory doesn't have a parent callback
manager passed through the method
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
when running AsyncCallbackManagerForChainRun (from
langchain.callbacks.manager import AsyncCallbackManagerForChainRun),
provided default values for tags and inheritable_tages of empty lists in
manager.py BaseRunManager.
- Description: In manager.py, `BaseRunManager`, default values were
provided for the `__init__` args `tags` and `inheritable_tags`. They
default to empty lists (`[]`).
- Issue: When trying to use Nvidia NeMo Guardrails with LangChain, the
following exception was raised:
If you create a dataset from runs and run the same chain or llm on it
later, it usually works great.
If you have an agent dataset and want to run a different agent on it, or
have more complex schema, it's hard for us to automatically map these
values every time. This PR lets you pass in an input_mapper function
that converts the example inputs to whatever format your model expects
Support `max_chunk_bytes` kwargs to pass down to `buik` helper, in order
to support the request limits in Opensearch locally and in AWS.
@rlancemartin, @eyurtsev
Description: `all_metadatas` was not defined, `OpenAIEmbeddings` was not
imported,
Issue: #6723 the issue # it fixes (if applicable),
Dependencies: lark,
Tag maintainer: @vowelparrot , @dev2049
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
# Description
This PR makes it possible to use named vectors from Qdrant in Langchain.
That was requested multiple times, as people want to reuse externally
created collections in Langchain. It doesn't change anything for the
existing applications. The changes were covered with some integration
tests and included in the docs.
## Example
```python
Qdrant.from_documents(
docs,
embeddings,
location=":memory:",
collection_name="my_documents",
vector_name="custom_vector",
)
```
### Issue: #2594
Tagging @rlancemartin & @eyurtsev. I'd appreciate your review.
Support for SQLAlchemy 1.3 was removed in version 0.0.203 by change
#6086. Re-adding support.
- Description: Imports SQLAlchemy Row at class creation time instead of
at init to support SQLAlchemy <1.4. This is the only breaking change and
was introduced in version 0.0.203 #6086.
A similar change was merged before:
https://github.com/hwchase17/langchain/pull/4647
- Dependencies: Reduces SQLAlchemy dependency to > 1.3
- Tag maintainer: @rlancemartin, @eyurtsev, @hwchase17, @wangxuqi
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
### Scientific Article PDF Parsing via Grobid
`Description:`
This change adds the GrobidParser class, which uses the Grobid library
to parse scientific articles into a universal XML format containing the
article title, references, sections, section text etc. The GrobidParser
uses a local Grobid server to return PDFs document as XML and parses the
XML to optionally produce documents of individual sentences or of whole
paragraphs. Metadata includes the text, paragraph number, pdf relative
bboxes, pages (text may overlap over two pages), section title
(Introduction, Methodology etc), section_number (i.e 1.1, 2.3), the
title of the paper and finally the file path.
Grobid parsing is useful beyond standard pdf parsing as it accurately
outputs sections and paragraphs within them. This allows for
post-fitering of results for specific sections i.e. limiting results to
the methodology section or results. While sections are split via
headings, ideally they could be classified specifically into
introduction, methodology, results, discussion, conclusion. I'm
currently experimenting with chatgpt-3.5 for this function, which could
later be implemented as a textsplitter.
`Dependencies:`
For use, the grobid repo must be cloned and Java must be installed, for
colab this is:
```
!apt-get install -y openjdk-11-jdk -q
!update-alternatives --set java /usr/lib/jvm/java-11-openjdk-amd64/bin/java
!git clone https://github.com/kermitt2/grobid.git
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64"
os.chdir('grobid')
!./gradlew clean install
```
Once installed the server is ran on localhost:8070 via
```
get_ipython().system_raw('nohup ./gradlew run > grobid.log 2>&1 &')
```
@rlancemartin, @eyurtsev
Twitter Handle: @Corranmac
Grobid Demo Notebook is
[here](https://colab.research.google.com/drive/1X-St_mQRmmm8YWtct_tcJNtoktbdGBmd?usp=sharing).
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Add API Headers support for Amazon API Gateway to enable Authentication
using DynamoDB.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Was preparing for a demo project of NebulaGraphQAChain to find out the
prompt needed to be optimized a little bit.
Please @hwchase17 kindly help review.
Thanks!
### Overview
This PR aims at building on #4378, expanding the capabilities and
building on top of the `cassIO` library to interface with the database
(as opposed to using the core drivers directly).
Usage of `cassIO` (a library abstracting Cassandra access for
ML/GenAI-specific purposes) is already established since #6426 was
merged, so no new dependencies are introduced.
In the same spirit, we try to uniform the interface for using Cassandra
instances throughout LangChain: all our appreciation of the work by
@jj701 notwithstanding, who paved the way for this incremental work
(thank you!), we identified a few reasons for changing the way a
`CassandraChatMessageHistory` is instantiated. Advocating a syntax
change is something we don't take lighthearted way, so we add some
explanations about this below.
Additionally, this PR expands on integration testing, enables use of
Cassandra's native Time-to-Live (TTL) features and improves the phrasing
around the notebook example and the short "integrations" documentation
paragraph.
We would kindly request @hwchase to review (since this is an elaboration
and proposed improvement of #4378 who had the same reviewer).
### About the __init__ breaking changes
There are
[many](https://docs.datastax.com/en/developer/python-driver/3.28/api/cassandra/cluster/)
options when creating the `Cluster` object, and new ones might be added
at any time. Choosing some of them and exposing them as `__init__`
parameters `CassandraChatMessageHistory` will prove to be insufficient
for at least some users.
On the other hand, working through `kwargs` or adding a long, long list
of arguments to `__init__` is not a desirable option either. For this
reason, (as done in #6426), we propose that whoever instantiates the
Chat Message History class provide a Cassandra `Session` object, ready
to use. This also enables easier injection of mocks and usage of
Cassandra-compatible connections (such as those to the cloud database
DataStax Astra DB, obtained with a different set of init parameters than
`contact_points` and `port`).
We feel that a breaking change might still be acceptable since LangChain
is at `0.*`. However, while maintaining that the approach we propose
will be more flexible in the future, room could be made for a
"compatibility layer" that respects the current init method. Honestly,
we would to that only if there are strong reasons for it, as that would
entail an additional maintenance burden.
### Other changes
We propose to remove the keyspace creation from the class code for two
reasons: first, production Cassandra instances often employ RBAC so that
the database user reading/writing from tables does not necessarily (and
generally shouldn't) have permission to create keyspaces, and second
that programmatic keyspace creation is not a best practice (it should be
done more or less manually, with extra care about schema mismatched
among nodes, etc). Removing this (usually unnecessary) operation from
the `__init__` path would also improve initialization performance
(shorter time).
We suggest, likewise, to remove the `__del__` method (which would close
the database connection), for the following reason: it is the
recommended best practice to create a single Cassandra `Session` object
throughout an application (it is a resource-heavy object capable to
handle concurrency internally), so in case Cassandra is used in other
ways by the app there is the risk of truncating the connection for all
usages when the history instance is destroyed. Moreover, the `Session`
object, in typical applications, is best left to garbage-collect itself
automatically.
As mentioned above, we defer the actual database I/O to the `cassIO`
library, which is designed to encode practices optimized for LLM
applications (among other) without the need to expose LangChain
developers to the internals of CQL (Cassandra Query Language). CassIO is
already employed by the LangChain's Vector Store support for Cassandra.
We added a few more connection options in the companion notebook example
(most notably, Astra DB) to encourage usage by anyone who cannot run
their own Cassandra cluster.
We surface the `ttl_seconds` option for automatic handling of an
expiration time to chat history messages, a likely useful feature given
that very old messages generally may lose their importance.
We elaborated a bit more on the integration testing (Time-to-live,
separation of "session ids", ...).
### Remarks from linter & co.
We reinstated `cassio` as a dependency both in the "optional" group and
in the "integration testing" group of `pyproject.toml`. This might not
be the right thing do to, in which case the author of this PR offer his
apologies (lack of confidence with Poetry - happy to be pointed in the
right direction, though!).
During linter tests, we were hit by some errors which appear unrelated
to the code in the PR. We left them here and report on them here for
awareness:
```
langchain/vectorstores/mongodb_atlas.py:137: error: Argument 1 to "insert_many" of "Collection" has incompatible type "List[Dict[str, Sequence[object]]]"; expected "Iterable[Union[MongoDBDocumentType, RawBSONDocument]]" [arg-type]
langchain/vectorstores/mongodb_atlas.py:186: error: Argument 1 to "aggregate" of "Collection" has incompatible type "List[object]"; expected "Sequence[Mapping[str, Any]]" [arg-type]
langchain/vectorstores/qdrant.py:16: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:19: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:20: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:22: error: Name "grpc" is not defined [name-defined]
langchain/vectorstores/qdrant.py:23: error: Name "grpc" is not defined [name-defined]
```
In the same spirit, we observe that to even get `import langchain` run,
it seems that a `pip install bs4` is missing from the minimal package
installation path.
Thank you!
If I upload a dataset with a single input and output column, we should
be able to let the chain prepare the input without having to maintain a
strict dataset format.
# Adding support for async (_acall) for VertexAICommon LLM
This PR implements the `_acall` method under `_VertexAICommon`. Because
VertexAI itself does not provide an async interface, I implemented it
via a ThreadPoolExecutor that can delegate execution of VertexAI calls
to other threads.
Twitter handle: @polecitoem : )
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
fyi - @agola11 for async functionality
fyi - @Ark-kun from VertexAI
## Description
Tag maintainer: @rlancemartin, @eyurtsev
### log_and_data_dir
`AwaDB.__init__()` accepts a parameter named `log_and_data_dir`. But
`AwaDB.from_texts()` and `AwaDB.from_documents()` accept a parameter
named `logging_and_data_dir`. This inconsistency in this parameter name
can lead to confusion on the part of the caller.
This PR renames `logging_and_data_dir` to `log_and_data_dir` to make all
functions consistent with the constructor.
### embedding
`AwaDB.__init__()` accepts a parameter named `embedding_model`. But
`AwaDB.from_texts()` and `AwaDB.from_documents()` accept a parameter
named `embeddings`. This inconsistency in this parameter name can lead
to confusion on the part of the caller.
This PR renames `embedding_model` to `embeddings` to make AwaDB's
constructor consistent with the classmethod "constructors" as specified
by `VectorStore` abstract base class.
A user has been testing the Apify integration inside langchain and he
was not able to run saved Actor tasks.
This PR adds support for calling saved Actor tasks on the Apify platform
to the existing integration. The structure of very similar to the one of
calling Actors.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Adding the functionality to return the scores with retrieved
documents when using the max marginal relevance
- Description: Add the method
`max_marginal_relevance_search_with_score_by_vector` to the FAISS
wrapper. Functionality operates the same as
`similarity_search_with_score_by_vector` except for using the max
marginal relevance retrieval framework like is used in the
`max_marginal_relevance_search_by_vector` method.
- Dependencies: None
- Tag maintainer: @rlancemartin @eyurtsev
- Twitter handle: @RianDolphin
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description:
- The current code uses `PydanticSchema.schema()` and
`_get_extraction_function` at the same time. As a result, a response
from OpenAI has two nested `info`, and
`PydanticAttrOutputFunctionsParser` fails to parse it. This PR will use
the pydantic class given as an arg instead.
- Issue: no related issue yet
- Dependencies: no dependency change
- Tag maintainer: @dev2049
- Twitter handle: @shotarok28
Description: Adds a brief example of using an OAuth access token with
the Zapier wrapper. Also links to the Zapier documentation to learn more
about OAuth flows.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
### Summary
This PR adds a LarkSuite (FeiShu) document loader.
> [LarkSuite](https://www.larksuite.com/) is an enterprise collaboration
platform developed by ByteDance.
### Tests
- an integration test case is added
- an example notebook showing usage is added. [Notebook
preview](https://github.com/yaohui-wyh/langchain/blob/master/docs/extras/modules/data_connection/document_loaders/integrations/larksuite.ipynb)
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Who can review?
- PTAL @eyurtsev @hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Yaohui Wang <wangyaohui.01@bytedance.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
- add tencent cos directory and file support for document-loader
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@eyurtsev
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
#### Add streaming only final async iterator of agent
This callback returns an async iterator and only streams the final
output of an agent.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested: @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Distance-based vector database retrieval embeds (represents) queries in
high-dimensional space and finds similar embedded documents based on
"distance". But, retrieval may produce difference results with subtle
changes in query wording or if the embeddings do not capture the
semantics of the data well. Prompt engineering / tuning is sometimes
done to manually address these problems, but can be tedious.
The `MultiQueryRetriever` automates the process of prompt tuning by
using an LLM to generate multiple queries from different perspectives
for a given user input query. For each query, it retrieves a set of
relevant documents and takes the unique union across all queries to get
a larger set of potentially relevant documents. By generating multiple
perspectives on the same question, the `MultiQueryRetriever` might be
able to overcome some of the limitations of the distance-based retrieval
and get a richer set of results.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Proxies are helpful, especially when you start querying against more
anti-bot websites.
[Proxy
services](https://developers.oxylabs.io/advanced-proxy-solutions/web-unblocker/making-requests)
(of which there are many) and `requests` make it easy to rotate IPs to
prevent banning by just passing along a simple dict to `requests`.
CC @rlancemartin, @eyurtsev
### Summary
The Unstructured API will soon begin requiring API keys. This PR updates
the Unstructured integrations docs with instructions on how to generate
Unstructured API keys.
### Reviewers
@rlancemartin
@eyurtsev
@hwchase17
Replace this comment with:
- Description: Add Async functionality to Zapier NLA Tools
- Issue: n/a
- Dependencies: n/a
- Tag maintainer:
Maintainer responsibilities:
- Agents / Tools / Toolkits: @vowelparrot
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
Added parentheses to ensure the division operation is performed before
multiplication. This now correctly calculates the cost by dividing the
number of tokens by 1000 first (to get the cost per token), and then
multiplies it with the model's cost per 1k tokens @agola11
- **Description**: this PR adds the possibility to raise an exception in
the case the http request did not return a 2xx status code. This is
particularly useful in the situation when the url points to a
non-existent web page, the server returns a http status of 404 NOT
FOUND, but WebBaseLoader anyway parses and returns the http body of the
error message.
- **Dependencies**: none,
- **Tag maintainer**: @rlancemartin, @eyurtsev,
- **Twitter handle**: jtolgyesi
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Adds a way to create the guardrails output parser from a pydantic model.
Description: When a 401 response is given back by Zapier, hint to the
end user why that may have occurred
- If an API Key was initialized with the wrapper, ask them to check
their API Key value
- if an access token was initialized with the wrapper, ask them to check
their access token or verify that it doesn't need to be refreshed.
Tag maintainer: @dev2049
#### Summary
A new approach to loading source code is implemented:
Each top-level function and class in the code is loaded into separate
documents. Then, an additional document is created with the top-level
code, but without the already loaded functions and classes.
This could improve the accuracy of QA chains over source code.
For instance, having this script:
```
class MyClass:
def __init__(self, name):
self.name = name
def greet(self):
print(f"Hello, {self.name}!")
def main():
name = input("Enter your name: ")
obj = MyClass(name)
obj.greet()
if __name__ == '__main__':
main()
```
The loader will create three documents with this content:
First document:
```
class MyClass:
def __init__(self, name):
self.name = name
def greet(self):
print(f"Hello, {self.name}!")
```
Second document:
```
def main():
name = input("Enter your name: ")
obj = MyClass(name)
obj.greet()
```
Third document:
```
# Code for: class MyClass:
# Code for: def main():
if __name__ == '__main__':
main()
```
A threshold parameter is added to control whether small scripts are
split in this way or not.
At this moment, only Python and JavaScript are supported. The
appropriate parser is determined by examining the file extension.
#### Tests
This PR adds:
- Unit tests
- Integration tests
#### Dependencies
Only one dependency was added as optional (needed for the JavaScript
parser).
#### Documentation
A notebook is added showing how the loader can be used.
#### Who can review?
@eyurtsev @hwchase17
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Description: Update documentation to
1) point to updated documentation links at Zapier.com (we've revamped
our help docs and paths), and
2) To provide clarity how to use the wrapper with an access token for
OAuth support
Demo:
Initializing the Zapier Wrapper with an OAuth Access Token
`ZapierNLAWrapper(zapier_nla_oauth_access_token="<redacted>")`
Using LangChain to resolve the current weather in Vancouver BC
leveraging Zapier NLA to lookup weather by coords.
```
> Entering new chain...
I need to use a tool to get the current weather.
Action: The Weather: Get Current Weather
Action Input: Get the current weather for Vancouver BC
Observation: {"coord__lon": -123.1207, "coord__lat": 49.2827, "weather": [{"id": 802, "main": "Clouds", "description": "scattered clouds", "icon": "03d", "icon_url": "http://openweathermap.org/img/wn/03d@2x.png"}], "weather[]icon_url": ["http://openweathermap.org/img/wn/03d@2x.png"], "weather[]icon": ["03d"], "weather[]id": [802], "weather[]description": ["scattered clouds"], "weather[]main": ["Clouds"], "base": "stations", "main__temp": 71.69, "main__feels_like": 71.56, "main__temp_min": 67.64, "main__temp_max": 76.39, "main__pressure": 1015, "main__humidity": 64, "visibility": 10000, "wind__speed": 3, "wind__deg": 155, "wind__gust": 11.01, "clouds__all": 41, "dt": 1687806607, "sys__type": 2, "sys__id": 2011597, "sys__country": "CA", "sys__sunrise": 1687781297, "sys__sunset": 1687839730, "timezone": -25200, "id": 6173331, "name": "Vancouver", "cod": 200, "summary": "scattered clouds", "_zap_search_was_found_status": true}
Thought: I now know the current weather in Vancouver BC.
Final Answer: The current weather in Vancouver BC is scattered clouds with a temperature of 71.69 and wind speed of 3
```
**Description:** Add a documentation page for the Streamlit Callback
Handler integration (#6315)
Notes:
- Implemented as a markdown file instead of a notebook since example
code runs in a Streamlit app (happy to discuss / consider alternatives
now or later)
- Contains an embedded Streamlit app ->
https://mrkl-minimal.streamlit.app/ Currently this app is hosted out of
a Streamlit repo but we're working to migrate the code to a LangChain
owned repo

cc @dev2049 @tconkling
Notebook shows preference scoring between two chains and reports wilson
score interval + p value
I think I'll add the option to insert ground truth labels but doesn't
have to be in this PR
- Description: Bug Fix - Added a step variable to keep track of prompts
- Issue: Bug from internal Arize testing - The prompts and responses
that are ingested were not mapped correctly
- Dependencies: N/A
fix the Chinese characters in the solution content will be converted to
ascii encoding, resulting in an abnormally long number of tokens
Co-authored-by: qixin <qixin@fintec.ai>
allows for where filtering on collection via get
- Description: aligns langchain chroma vectorstore get with underlying
[chromadb collection
get](https://github.com/chroma-core/chroma/blob/main/chromadb/api/models/Collection.py#L103)
allowing for where filtering, etc.
- Issue: NA
- Dependencies: none
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @pappanaka
#### Background
With the development of [structured
tools](https://blog.langchain.dev/structured-tools/), the LangChain team
expanded the platform's functionality to meet the needs of new
applications. The GMail tool, empowered by structured tools, now
supports multiple arguments and powerful search capabilities,
demonstrating LangChain's ability to interact with dynamic data sources
like email servers.
#### Challenge
The current GMail tool only supports GMail, while users often utilize
other email services like Outlook in Office365. Additionally, the
proposed calendar tool in PR
https://github.com/hwchase17/langchain/pull/652 only works with Google
Calendar, not Outlook.
#### Changes
This PR implements an Office365 integration for LangChain, enabling
seamless email and calendar functionality with a single authentication
process.
#### Future Work
With the core Office365 integration complete, future work could include
integrating other Office365 tools such as Tasks and Address Book.
#### Who can review?
@hwchase17 or @vowelparrot can review this PR
#### Appendix
@janscas, I utilized your [O365](https://github.com/O365/python-o365)
library extensively. Given the rising popularity of LangChain and
similar AI frameworks, the convergence of libraries like O365 and tools
like this one is likely. So, I wanted to keep you updated on our
progress.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
When the tool requires no input, the LLM often gives something like
this:
```json
{
"action": "just_do_it"
}
```
I have attempted to enhance the prompt, but it doesn't appear to be
functioning effectively. Therefore, I believe we should consider easing
the check a little bit.
Signed-off-by: Xiaochao Dong (@damnever) <the.xcdong@gmail.com>
Adding Confluence to Jira tool. Can create a page in Confluence with
this PR. If accepted, will extend functionality to Bitbucket and
additional Confluence features.
---------
Co-authored-by: Ethan Bowen <ethan.bowen@slalom.com>
Since this model name is not there in the list MODEL_COST_PER_1K_TOKENS,
when we use get_openai_callback(), for gpt 3.5 model in Azure AI, we do
not get the cost of the tokens. This will fix this issue
#### Who can review?
@hwchase17
@agola11
Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
- Fixed an issue where some caching types check the wrong types, hence
not allowing caching to work
Maintainer responsibilities:
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
MHTML is a very interesting format since it's used both for emails but
also for archived webpages. Some scraping projects want to store pages
in disk to process them later, mhtml is perfect for that use case.
This is heavily inspired from the beautifulsoup html loader, but
extracting the html part from the mhtml file.
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
# beautifulsoup get_text kwargs in WebBaseLoader
- Description: this PR introduces an optional `bs_get_text_kwargs`
parameter to `WebBaseLoader` constructor. It can be used to pass kwargs
to the downstream BeautifulSoup.get_text call. The most common usage
might be to pass a custom text separator, as seen also in
`BSHTMLLoader`.
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: jtolgyesi
- Description: Adds a simple progress bar with tqdm when using
UnstructuredURLLoader. Exposes new paramater `show_progress_bar`. Very
simple PR.
- Issue: N/A
- Dependencies: N/A
- Tag maintainer: @rlancemartin @eyurtsev
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
- Description: Updated regex to support a new format that was observed
when whatsapp chat was exported.
- Issue: #6654
- Dependencies: No new dependencies
- Tag maintainer: @rlancemartin, @eyurtsev
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: Fix Typo in LangChain MyScale Integration Doc
@hwchase17
# Add caching to BaseChatModel
Fixes#1644
(Sidenote: While testing, I noticed we have multiple implementations of
Fake LLMs, used for testing. I consolidated them.)
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Models
- @hwchase17
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Motorhead Memory module didn't support deletion of a session. Added a
method to enable deletion.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds a new LLM class for the Amazon API Gateway hosted LLM. The
PR also includes example notebooks for using the LLM class in an Agent
chain.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
### Just corrected a small inconsistency on a doc page (not exactly a
typo, per se)
- Description: There was inconsistency due to the use of single quotes
at one place on the [Squential
Chains](https://python.langchain.com/docs/modules/chains/foundational/sequential_chains)
page of the docs,
- Issue: NA,
- Dependencies: NA,
- Tag maintainer: @dev2049,
- Twitter handle: kambleakash0
This PR targets the `API Reference` documentation.
- Several classes and functions missed `docstrings`. These docstrings
were created.
- In several places this
```
except ImportError:
raise ValueError(
```
was replaced to
```
except ImportError:
raise ImportError(
```
# Description
It adds a new initialization param in `WikipediaLoader` so we can
override the `doc_content_chars_max` param used in `WikipediaAPIWrapper`
under the hood, e.g:
```python
from langchain.document_loaders import WikipediaLoader
# doc_content_chars_max is the new init param
loader = WikipediaLoader(query="python", doc_content_chars_max=90000)
```
## Decisions
`doc_content_chars_max` default value will be 4000, because it's the
current value
I have added pycode comments
# Issue
#6639
# Dependencies
None
# Twitter handle
[@elafo](https://twitter.com/elafo)
- Description: The aviary integration has changed url link. This PR
provide fix for those changes and also it makes providing the input URL
optional to the API (since they can be set via env variables).
- Issue: N/A
- Dependencies: N/A
- Twitter handle: N/A
---------
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
Fix a typo in
`langchain/experimental/plan_and_execute/planners/base.py`, by changing
"Given input, decided what to do." to "Given input, decide what to do."
This is in the docstring for functions running LLM chains which shall
create a plan, "decided" does not make any sense in this context.
This link for the notebook of OpenLLM is not migrated to the new format
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
vertex Ai chat is broken right now. That is because context is in params
and chat.send_message doesn't accept that as a params.
- Closes issue [ChatVertexAI Error: _ChatSessionBase.send_message() got
an unexpected keyword argument 'context'
#6610](https://github.com/hwchase17/langchain/issues/6610)
We may want to process load all URLs under a root directory.
For example, let's look at the [LangChain JS
documentation](https://js.langchain.com/docs/).
This has many interesting child pages that we may want to read in bulk.
Of course, the `WebBaseLoader` can load a list of pages.
But, the challenge is traversing the tree of child pages and actually
assembling that list!
We do this using the `RecusiveUrlLoader`.
This also gives us the flexibility to exclude some children (e.g., the
`api` directory with > 800 child pages).
## Goal
We want to ensure consistency across vectordbs:
1/ add `delete` by ID method to the base vectorstore class
2/ ensure `add_texts` performs `upsert` with ID optionally passed
## Testing
- [x] Pinecone: notebook test w/ `langchain_test` vectorstore.
- [x] Chroma: Review by @jeffchuber, notebook test w/ in memory
vectorstore.
- [x] Supabase: Review by @copple, notebook test w/ `langchain_test`
table.
- [x] Weaviate: Notebook test w/ `langchain_test` index.
- [x] Elastic: Revied by @vestal. Notebook test w/ `langchain_test`
table.
- [ ] Redis: Asked for review from owner of recent `delete` method
https://github.com/hwchase17/langchain/pull/6222
Fixes#5456
This PR removes the `callbacks` argument from a tool's schema when
creating a `Tool` or `StructuredTool` with the `from_function` method
and `infer_schema` is set to `True`. The `callbacks` argument is now
removed in the `create_schema_from_function` and `_get_filtered_args`
methods. As suggested by @vowelparrot, this fix provides a
straightforward solution that minimally affects the existing
implementation.
A test was added to verify that this change enables the expected use of
`Tool` and `StructuredTool` when using a `CallbackManager` and inferring
the tool's schema.
- @hwchase17
Many cities have open data portals for events like crime, traffic, etc.
Socrata provides an API for many, including SF (e.g., see
[here](https://dev.socrata.com/foundry/data.sfgov.org/tmnf-yvry)).
This is a new data loader for city data that uses Socrata API.
A new implementation of `StreamlitCallbackHandler`. It formats Agent
thoughts into Streamlit expanders.
You can see the handler in action here:
https://langchain-mrkl.streamlit.app/
Per a discussion with Harrison, we'll be adding a
`StreamlitCallbackHandler` implementation to an upcoming
[Streamlit](https://github.com/streamlit/streamlit) release as well, and
will be updating it as we add new LLM- and LangChain-specific features
to Streamlit.
The idea with this PR is that the LangChain `StreamlitCallbackHandler`
will "auto-update" in a way that keeps it forward- (and backward-)
compatible with Streamlit. If the user has an older Streamlit version
installed, the LangChain `StreamlitCallbackHandler` will be used; if
they have a newer Streamlit version that has an updated
`StreamlitCallbackHandler`, that implementation will be used instead.
(I'm opening this as a draft to get the conversation going and make sure
we're on the same page. We're really excited to land this into
LangChain!)
#### Who can review?
@agola11, @hwchase17
# Changes
This PR adds [Clarifai](https://www.clarifai.com/) integration to
Langchain. Clarifai is an end-to-end AI Platform. Clarifai offers user
the ability to use many types of LLM (OpenAI, cohere, ect and other open
source models). As well, a clarifai app can be treated as a vector
database to upload and retrieve data. The integrations includes:
- Clarifai LLM integration: Clarifai supports many types of language
model that users can utilize for their application
- Clarifai VectorDB: A Clarifai application can hold data and
embeddings. You can run semantic search with the embeddings
#### Before submitting
- [x] Added integration test for LLM
- [x] Added integration test for VectorDB
- [x] Added notebook for LLM
- [x] Added notebook for VectorDB
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
### Description
We have added a new LLM integration `azureml_endpoint` that allows users
to leverage models from the AzureML platform. Microsoft recently
announced the release of [Azure Foundation
Models](https://learn.microsoft.com/en-us/azure/machine-learning/concept-foundation-models?view=azureml-api-2)
which users can find in the AzureML Model Catalog. The Model Catalog
contains a variety of open source and Hugging Face models that users can
deploy on AzureML. The `azureml_endpoint` allows LangChain users to use
the deployed Azure Foundation Models.
### Dependencies
No added dependencies were required for the change.
### Tests
Integration tests were added in
`tests/integration_tests/llms/test_azureml_endpoint.py`.
### Notebook
A Jupyter notebook demonstrating how to use `azureml_endpoint` was added
to `docs/modules/llms/integrations/azureml_endpoint_example.ipynb`.
### Twitters
[Prakhar Gupta](https://twitter.com/prakhar_in)
[Matthew DeGuzman](https://twitter.com/matthew_d13)
---------
Co-authored-by: Matthew DeGuzman <91019033+matthewdeguzman@users.noreply.github.com>
Co-authored-by: prakharg-msft <75808410+prakharg-msft@users.noreply.github.com>
Since it seems like #6111 will be blocked for a bit, I've forked
@tyree731's fork and implemented the requested changes.
This change adds support to the base Embeddings class for two methods,
aembed_query and aembed_documents, those two methods supporting async
equivalents of embed_query and
embed_documents respectively. This ever so slightly rounds out async
support within langchain, with an initial implementation of this
functionality being implemented for openai.
Implements https://github.com/hwchase17/langchain/issues/6109
---------
Co-authored-by: Stephen Tyree <tyree731@gmail.com>
1. upgrade the version of AwaDB
2. add some new interfaces
3. fix bug of packing page content error
@dev2049 please review, thanks!
---------
Co-authored-by: vincent <awadb.vincent@gmail.com>
Everything needed to support sending messages over WhatsApp Business
Platform (GA), Facebook Messenger (Public Beta) and Google Business
Messages (Private Beta) was present. Just added some details on
leveraging it.
Description:
Update the artifact name of the xml file and the namespaces. Co-authored
with @tjaffri
Co-authored-by: Kenzie Mihardja <kenzie@docugami.com>
### Feature
Using FAISS on a retrievalQA task, I found myself wanting to allow in
multiple sources. From what I understood, the filter feature takes in a
dict of form {key: value} which then will check in the metadata for the
exact value linked to that key.
I added some logic to be able to pass a list which will be checked
against instead of an exact value. Passing an exact value will also
work.
Here's an example of how I could then use it in my own project:
```
pdfs_to_filter_in = ["file_A", "file_B"]
filter_dict = {
"source": [f"source_pdfs/{pdf_name}.pdf" for pdf_name in pdfs_to_filter_in]
}
retriever = db.as_retriever()
retriever.search_kwargs = {"filter": filter_dict}
```
I added an integration test based on the other ones I found in
`tests/integration_tests/vectorstores/test_faiss.py` under
`test_faiss_with_metadatas_and_list_filter()`.
It doesn't feel like this is worthy of its own notebook or doc, but I'm
open to suggestions if needed.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Just some grammar fixes: I found "retriver" instead of "retriever" in
several comments across the documentation and in the comments. I fixed
it.
Co-authored-by: andrey.vedishchev <andrey.vedishchev@rgigroup.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Here are some examples to use StarRocks as vectordb
```
from langchain.vectorstores import StarRocks
from langchain.vectorstores.starrocks import StarRocksSettings
embeddings = OpenAIEmbeddings()
# conifgure starrocks settings
settings = StarRocksSettings()
settings.port = 41003
settings.host = '127.0.0.1'
settings.username = 'root'
settings.password = ''
settings.database = 'zya'
# to fill new embeddings
docsearch = StarRocks.from_documents(split_docs, embeddings, config = settings)
# or to use already-built embeddings in database.
docsearch = StarRocks(embeddings, settings)
```
#### Who can review?
Tag maintainers/contributors who might be interested:
@dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
### Integration of Infino with LangChain for Enhanced Observability
This PR aims to integrate [Infino](https://github.com/infinohq/infino),
an open source observability platform written in rust for storing
metrics and logs at scale, with LangChain, providing users with a
streamlined and efficient method of tracking and recording LangChain
experiments. By incorporating Infino into LangChain, users will be able
to gain valuable insights and easily analyze the behavior of their
language models.
#### Please refer to the following files related to integration:
- `InfinoCallbackHandler`: A [callback
handler](https://github.com/naman-modi/langchain/blob/feature/infino-integration/langchain/callbacks/infino_callback.py)
specifically designed for storing chain responses within Infino.
- Example `infino.ipynb` file: A comprehensive notebook named
[infino.ipynb](https://github.com/naman-modi/langchain/blob/feature/infino-integration/docs/extras/modules/callbacks/integrations/infino.ipynb)
has been included to guide users on effectively leveraging Infino for
tracking LangChain requests.
- [Integration
Doc](https://github.com/naman-modi/langchain/blob/feature/infino-integration/docs/extras/ecosystem/integrations/infino.mdx)
for Infino integration.
By integrating Infino, LangChain users will gain access to powerful
visualization and debugging capabilities. Infino enables easy tracking
of inputs, outputs, token usage, execution time of LLMs. This
comprehensive observability ensures a deeper understanding of individual
executions and facilitates effective debugging.
Co-authors: @vinaykakade @savannahar68
---------
Co-authored-by: Vinay Kakade <vinaykakade@gmail.com>
This PR adds Rockset as a vectorstore for langchain.
[Rockset](https://rockset.com/blog/introducing-vector-search-on-rockset/)
is a real time OLAP database which provides a fast and efficient vector
search functionality. Further since it is entirely schemaless, it can
store metadata in separate columns thereby allowing fast metadata
filters during vector similarity search (as opposed to storing the
entire metadata in a single JSON column). It currently supports three
distance functions: `COSINE_SIMILARITY`, `EUCLIDEAN_DISTANCE`, and
`DOT_PRODUCT`.
This PR adds `rockset` client as an optional dependency.
We would love a twitter shoutout, our handle is
https://twitter.com/RocksetCloud
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This pull request introduces a new feature to the LangChain QA Retrieval
Chains with Structures. The change involves adding a prompt template as
an optional parameter for the RetrievalQA chains that utilize the
recently implemented OpenAI Functions.
The main purpose of this enhancement is to provide users with the
ability to input a more customizable prompt to the chain. By introducing
a prompt template as an optional parameter, users can tailor the prompt
to their specific needs and context, thereby improving the flexibility
and effectiveness of the RetrievalQA chains.
## Changes Made
- Created a new optional parameter, "prompt", for the RetrievalQA with
structure chains.
- Added an example to the RetrievalQA with sources notebook.
My twitter handle is @El_Rey_Zero
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Added the functionality to leverage 3 new Codey models from Vertex AI:
- code-bison - Code generation using the existing LLM integration
- code-gecko - Code completion using the existing LLM integration
- codechat-bison - Code chat using the existing chat_model integration
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds `KuzuGraph` and `KuzuQAChain` for interacting with [Kùzu
database](https://github.com/kuzudb/kuzu). Kùzu is an in-process
property graph database management system (GDBMS) built for query speed
and scalability. The `KuzuGraph` and `KuzuQAChain` provide the same
functionality as the existing integration with NebulaGraph and Neo4j and
enables query generation and question answering over Kùzu database.
A notebook example and a simple test case have also been added.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
#### Fix
Added the mention of "store" amongst the tasks that the data connection
module can perform aside from the existing 3 (load, transform and
query). Particularly, this implies the generation of embeddings vectors
and the creation of vector stores.
This addresses #6291 adding support for using Cassandra (and compatible
databases, such as DataStax Astra DB) as a [Vector
Store](https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-30%3A+Approximate+Nearest+Neighbor(ANN)+Vector+Search+via+Storage-Attached+Indexes).
A new class `Cassandra` is introduced, which complies with the contract
and interface for a vector store, along with the corresponding
integration test, a sample notebook and modified dependency toml.
Dependencies: the implementation relies on the library `cassio`, which
simplifies interacting with Cassandra for ML- and LLM-oriented
workloads. CassIO, in turn, uses the `cassandra-driver` low-lever
drivers to communicate with the database. The former is added as
optional dependency (+ in `extended_testing`), the latter was already in
the project.
Integration testing relies on a locally-running instance of Cassandra.
[Here](https://cassio.org/more_info/#use-a-local-vector-capable-cassandra)
a detailed description can be found on how to compile and run it (at the
time of writing the feature has not made it yet to a release).
During development of the integration tests, I added a new "fake
embedding" class for what I consider a more controlled way of testing
the MMR search method. Likewise, I had to amend what looked like a
glitch in the behaviour of `ConsistentFakeEmbeddings` whereby an
`embed_query` call would have bypassed storage of the requested text in
the class cache for use in later repeated invocations.
@dev2049 might be the right person to tag here for a review. Thank you!
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Hello Folks,
Thanks for creating and maintaining this great project. I'm excited to
submit this PR to add Alibaba Cloud OpenSearch as a new vector store.
OpenSearch is a one-stop platform to develop intelligent search
services. OpenSearch was built based on the large-scale distributed
search engine developed by Alibaba. OpenSearch serves more than 500
business cases in Alibaba Group and thousands of Alibaba Cloud
customers. OpenSearch helps develop search services in different search
scenarios, including e-commerce, O2O, multimedia, the content industry,
communities and forums, and big data query in enterprises.
OpenSearch provides the vector search feature. In specific scenarios,
especially test question search and image search scenarios, you can use
the vector search feature together with the multimodal search feature to
improve the accuracy of search results.
This PR includes:
A AlibabaCloudOpenSearch class that can connect to the Alibaba Cloud
OpenSearch instance.
add embedings and metadata into a opensearch datasource.
querying by squared euclidean and metadata.
integration tests.
ipython notebook and docs.
I have read your contributing guidelines. And I have passed the tests
below
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
---------
Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
Already supported in the reverse operation in
`_convert_message_to_dict()`, this just provides parity.
@hwchase17
@agola11
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fix issue #6380
<!-- Remove if not applicable -->
Fixes#6380 (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: HubertKl <HubertKl>
Support baidu list type answer_box
From [this document](https://serpapi.com/baidu-answer-box), we can know
that the answer_box attribute returned by the Baidu interface is a list,
and the list contains only one Object, but an error will occur when the
current code is executed.
So when answer_box is a list, we reset res["answer_box"] so that the
code can execute successfully.
Caching wasn't accounting for which model was used so a result for the
first executed model would return for the same prompt on a different
model.
This was because `Replicate._identifying_params` did not include the
`model` parameter.
FYI
- @cbh123
- @hwchase17
- @agola11
# Provider the latest duckduckgo_search API
The Git commit contents involve two files related to some DuckDuckGo
query operations, and an upgrade of the DuckDuckGo module to version
3.8.3. A suitable commit message could be "Upgrade DuckDuckGo module to
version 3.8.3, including query operations". Specifically, in the
duckduckgo_search.py file, a DDGS() class instance is newly added to
replace the previous ddg() function, and the time parameter name in the
get_snippets() and results() methods is changed from "time" to
"timelimit" to accommodate recent changes. In the pyproject.toml file,
the duckduckgo-search module is upgraded to version 3.8.3.
[duckduckgo_search readme
attention](https://github.com/deedy5/duckduckgo_search): Versions before
v2.9.4 no longer work as of May 12, 2023
## Who can review?
@vowelparrot
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Trying to use OpenAI models like 'text-davinci-002' or
'text-davinci-003' the agent doesn't work and the message is 'Only
supported with OpenAI models.' The error message should be 'Only
supported with ChatOpenAI models.'
My Twitter handle is @alonsosilva
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
Co-authored-by: SILVA Alonso <alonso.silva@nokia-bell-labs.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
I apologize for the error: the 'ANTHROPIC_API_URL' environment variable
doesn't take effect if the 'anthropic_api_url' parameter has a default
value.
#### Who can review?
Models
- @hwchase17
- @agola11
1. Introduced new distance strategies support: **DOT_PRODUCT** and
**EUCLIDEAN_DISTANCE** for enhanced flexibility.
2. Implemented a feature to filter results based on metadata fields.
3. Incorporated connection attributes specifying "langchain python sdk"
usage for enhanced traceability and debugging.
4. Expanded the suite of integration tests for improved code
reliability.
5. Updated the existing notebook with the usage example
@dev2049
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
W.r.t recent changes, ChatPromptTemplate does not accepting partial
variables. This PR should fix that issue.
Fixes#6431
#### Who can review?
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Throwing ToolException when incorrect arguments are passed to tools so
that that agent can course correct them.
# Incorrect argument count handling
I was facing an error where the agent passed incorrect arguments to
tools. As per the discussions going around, I started throwing
ToolException to allow the model to course correct.
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes a link typo from `/-/route` to `/-/routes`.
and change endpoint format
from `f"{self.anyscale_service_url}/{self.anyscale_service_route}"` to
`f"{self.anyscale_service_url}{self.anyscale_service_route}"`
Also adding documentation about the format of the endpoint
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixed several inconsistencies:
- file names and notebook titles should be similar otherwise ToC on the
[retrievers
page](https://python.langchain.com/en/latest/modules/indexes/retrievers.html)
and on the left ToC tab are different. For example, now, `Self-querying
with Chroma` is not correctly alphabetically sorted because its file
named `chroma_self_query.ipynb`
- `Stringing compressors and document transformers...` demoted from `#`
to `##`. Otherwise, it appears in Toc.
- several formatting problems
#### Who can review?
@hwchase17
@dev2049
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
The `CustomOutputParser` needs to throw `OutputParserException` when it
fails to parse the response from the agent, so that the executor can
[catch it and
retry](be9371ca8f/langchain/agents/agent.py (L767))
when `handle_parsing_errors=True`.
<!-- Remove if not applicable -->
#### Who can review?
Tag maintainers/contributors who might be interested: @hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
#### Description
- Removed two backticks surrounding the phrase "chat messages as"
- This phrase stood out among other formatted words/phrases such as
`prompt`, `role`, `PromptTemplate`, etc., which all seem to have a clear
function.
- `chat messages as`, formatted as such, confused me while reading,
leading me to believe the backticks were misplaced.
#### Who can review?
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
Minor new line character in the markdown.
Also, this option is not yet in the latest version of LangChain
(0.0.190) from Conda. Maybe in the next update.
@eyurtsev
@hwchase17
Just so it is consistent with other `VectorStore` classes.
This is a follow-up of #6056 which also discussed the potential of
adding `similarity_search_by_vector_returning_embeddings` that we will
continue the discussion here.
potentially related: #6286
#### Who can review?
Tag maintainers/contributors who might be interested: @rlancemartin
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
This PR adds an example of doing question answering over documents using
OpenAI Function Agents.
#### Who can review?
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes: ChatAnthropic was mutating the input message list during
formatting which isn't ideal bc you could be changing the behavior for
other chat models when using the same input
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
Arize released a new Generative LLM Model Type, adjusting the callback
function to new logging.
Added arize imports, please delete if not necessary.
Specifically, this change makes sure that the prompt and response pairs
from LangChain agents are logged into Arize as a Generative LLM model,
instead of our previous categorical model. In order to do this, the
callback functions collects the necessary data and passes the data into
Arize using Python Pandas SDK.
Arize library, specifically pandas.logger is an additional dependency.
Notebook For Test:
https://docs.arize.com/arize/resources/integrations/langchain
Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17 - project lead
Tracing / Callbacks
@agola11
- return raw and full output (but keep run shortcut method functional)
- change output parser to take in generations (good for working with
messages)
- add output parser to base class, always run (default to same as
current)
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
#### Before submitting
Add memory support for `OpenAIFunctionsAgent` like
`StructuredChatAgent`.
#### Who can review?
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
A must-include for SiteMap Loader to avoid the SSL verification error.
Setting the 'verify' to False by ``` sitemap_loader.requests_kwargs =
{"verify": False}``` does not bypass the SSL verification in some
websites.
There are websites (https:// researchadmin.asu.edu/ sitemap.xml) where
setting "verify" to False as shown below would not work:
sitemap_loader.requests_kwargs = {"verify": False}
We need this merge to tell the Session to use a connector with a
specific argument about SSL:
\# For SiteMap SSL verification
if not self.request_kwargs['verify']:
connector = aiohttp.TCPConnector(ssl=False)
else:
connector = None
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
Fixes#5483
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
@eyurtsev
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
@agola11
Issue
#6193
I added the new pricing for the new models.
Also, now gpt-3.5-turbo got split into "input" and "output" pricing. It
currently does not support that.
can't pass system_message argument, the prompt always show default
message "System: You are a helpful AI assistant."
```
system_message = SystemMessage(
content="You are an AI that provides information to Human regarding documentation."
)
agent = initialize_agent(
tools,
llm=openai_llm_chat,
agent=AgentType.OPENAI_FUNCTIONS,
system_message=system_message,
agent_kwargs={
"system_message": system_message,
},
verbose=False,
)
```
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
To bypass SSL verification errors during fetching, you can include the
`verify=False` parameter. This markdown proves useful, especially for
beginners in the field of web scraping.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
Fixes#6079
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
@eyurtsev
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
To bypass SSL verification errors during web scraping, you can include
the ssl_verify=False parameter along with the headers parameter. This
combination of arguments proves useful, especially for beginners in the
field of web scraping.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
Fixes#1829
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17 @eyurtsev
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Hi, I make a small improvement for BaseOpenAI.
I added a max_context_size attribute to BaseOpenAI so that we can get
the max context size directly instead of only getting the maximum token
size of the prompt through the max_tokens_for_prompt method.
Who can review?
@hwchase17 @agola11
I followed the [Common
Tasks](c7db9febb0/.github/CONTRIBUTING.md),
the test is all passed.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
LLM configurations can be loaded from a Python dict (or JSON file
deserialized as dict) using the
[load_llm_from_config](8e1a7a8646/langchain/llms/loading.py (L12))
function.
However, the type string in the `type_to_cls_dict` lookup dict differs
from the type string defined in some LLM classes. This means that the
LLM object can be saved, but not loaded again, because the type strings
differ.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
The current version of chat history with DynamoDB doesn't handle the
case correctly when a table has no chat history. This change solves this
error handling.
<!-- Remove if not applicable -->
Fixes https://github.com/hwchase17/langchain/issues/6088
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
Fixes#6131
Simply passes kwargs forward from similarity_search to helper functions
so that search_kwargs are applied to search as originally intended. See
bug for repro steps.
#### Who can review?
@hwchase17
@dev2049
Twitter: poshporcupine
Very small typo in the Constitutional AI critique default prompt. The
negation "If there is *no* material critique of ..." is used two times,
should be used only on the first one.
Cheers,
Pierre
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
Fixes https://github.com/hwchase17/langchain/issues/6208
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
VectorStores / Retrievers / Memory
- @dev2049
Hot Fixes for Deep Lake [would highly appreciate expedited review]
* deeplake version was hardcoded and since deeplake upgraded the
integration fails with confusing error
* an additional integration test fixed due to embedding function
* Additionally fixed docs for code understanding links after docs
upgraded
* notebook removal of public parameter to make sure code understanding
notebook works
#### Who can review?
@hwchase17 @dev2049
---------
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
Fixes#5807 (issue)
#### Who can review?
Tag maintainers/contributors who might be interested: @dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
Related to this https://github.com/hwchase17/langchain/issues/6225
Just copied the implementation from `generate` function to `agenerate`
and tested it.
Didn't run any official tests thought
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes#6225
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17, @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
The LLM integration
[HuggingFaceTextGenInference](https://github.com/hwchase17/langchain/blob/master/langchain/llms/huggingface_text_gen_inference.py)
already has streaming support.
However, when streaming is enabled, it always returns an empty string as
the final output text when the LLM is finished. This is because `text`
is instantiated with an empty string and never updated.
This PR fixes the collection of the final output text by concatenating
new tokens.
Similar as https://github.com/hwchase17/langchain/pull/5818
Added the functionality to save/load Graph Cypher QA Chain due to a user
reporting the following error
> raise NotImplementedError("Saving not supported for this chain
type.")\nNotImplementedError: Saving not supported for this chain
type.\n'
In LangChain, all module classes are enumerated in the `__init__.py`
file of the correspondent module. But some classes were missed and were
not included in the module `__init__.py`
This PR:
- added the missed classes to the module `__init__.py` files
- `__init__.py:__all_` variable value (a list of the class names) was
sorted
- `langchain.tools.sql_database.tool.QueryCheckerTool` was renamed into
the `QuerySQLCheckerTool` because it conflicted with
`langchain.tools.spark_sql.tool.QueryCheckerTool`
- changes to `pyproject.toml`:
- added `pgvector` to `pyproject.toml:extended_testing`
- added `pandas` to
`pyproject.toml:[tool.poetry.group.test.dependencies]`
- commented out the `streamlit` from `collbacks/__init__.py`, It is
because now the `streamlit` requires Python >=3.7, !=3.9.7
- fixed duplicate names in `tools`
- fixed correspondent ut-s
#### Who can review?
@hwchase17
@dev2049
Fixed PermissionError that occurred when downloading PDF files via http
in BasePDFLoader on windows.
When downloading PDF files via http in BasePDFLoader, NamedTemporaryFile
is used.
This function cannot open the file again on **Windows**.[Python
Doc](https://docs.python.org/3.9/library/tempfile.html#tempfile.NamedTemporaryFile)
So, we created a **temporary directory** with TemporaryDirectory and
placed the downloaded file there.
temporary directory is deleted in the deconstruct.
Fixes#2698
#### Who can review?
Tag maintainers/contributors who might be interested:
- @eyurtsev
- @hwchase17
This will add the ability to add an AsyncCallbackManager (handler) for
the reducer chain, which would be able to stream the tokens via the
`async def on_llm_new_token` callback method
Fixes # (issue)
[5532](https://github.com/hwchase17/langchain/issues/5532)
@hwchase17 @agola11
The following code snippet explains how this change would be used to
enable `reduce_llm` with streaming support in a `map_reduce` chain
I have tested this change and it works for the streaming use-case of
reducer responses. I am happy to share more information if this makes
solution sense.
```
AsyncHandler
..........................
class StreamingLLMCallbackHandler(AsyncCallbackHandler):
"""Callback handler for streaming LLM responses."""
def __init__(self, websocket):
self.websocket = websocket
# This callback method is to be executed in async
async def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
resp = ChatResponse(sender="bot", message=token, type="stream")
await self.websocket.send_json(resp.dict())
Chain
..........
stream_handler = StreamingLLMCallbackHandler(websocket)
stream_manager = AsyncCallbackManager([stream_handler])
streaming_llm = ChatOpenAI(
streaming=True,
callback_manager=stream_manager,
verbose=False,
temperature=0,
)
main_llm = OpenAI(
temperature=0,
verbose=False,
)
doc_chain = load_qa_chain(
llm=main_llm,
reduce_llm=streaming_llm,
chain_type="map_reduce",
callback_manager=manager
)
qa_chain = ConversationalRetrievalChain(
retriever=vectorstore.as_retriever(),
combine_docs_chain=doc_chain,
question_generator=question_generator,
callback_manager=manager,
)
# Here `acall` will trigger `acombine_docs` on `map_reduce` which should then call `_aprocess_result` which in turn will call `self.combine_document_chain.arun` hence async callback will be awaited
result = await qa_chain.acall(
{"question": question, "chat_history": chat_history}
)
```
Hi again @agola11! 🤗
## What's in this PR?
After playing around with different chains we noticed that some chains
were using different `output_key`s and we were just handling some, so
we've extended the support to any output, either if it's a Python list
or a string.
Kudos to @dvsrepo for spotting this!
---------
Co-authored-by: Daniel Vila Suero <daniel@argilla.io>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes https://github.com/ShreyaR/guardrails/issues/155
Enables guardrails reasking by specifying an LLM api in the output
parser.
skip building preview of docs for anything branch that doesn't start
with `__docs__`. will eventually update to look at code diff directories
but patching for now
We propose an enhancement to the web-based loader initialize method by
introducing a "verify" option. This enhancement addresses the issue of
SSL verification errors encountered on certain web pages. By providing
users with the option to set the verify parameter to False, we offer
greater flexibility and control.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
### Fixes#6079
#### Who can review?
@eyurtsev @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
[Feature] User can custom the Anthropic API URL
#### Who can review?
Tag maintainers/contributors who might be interested:
Models
- @hwchase17
- @agola11
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Added support to `search_by_vector` to Qdrant Vector store.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Who can review
VectorStores / Retrievers / Memory
- @dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
-->
@eyurtsev
The existing GoogleDrive implementation always needs a service account
to be available at the credentials location. When running on GCP
services such as Cloud Run, a service account already exists in the
metadata of the service, so no physical key is necessary. This change
adds a check to see if it is running in such an environment, and uses
that authentication instead.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add oobabooga/text-generation-webui support as an LLM. Currently,
supports using text-generation-webui's non-streaming API interface.
Allows users who already have text-gen running to use the same models
with langchain.
#### Before submitting
Simple usage, similar to existing LLM supported:
```
from langchain.llms import TextGen
llm = TextGen(model_url = "http://localhost:5000")
```
#### Who can review?
@hwchase17 - project lead
---------
Co-authored-by: Hien Ngo <Hien.Ngo@adia.ae>
Hi there:
As I implement the AnalyticDB VectorStore use two table to store the
document before. It seems just use one table is a better way. So this
commit is try to improve AnalyticDB VectorStore implementation without
affecting user behavior:
**1. Streamline the `post_init `behavior by creating a single table with
vector indexing.
2. Update the `add_texts` API for document insertion.
3. Optimize `similarity_search_with_score_by_vector` to retrieve results
directly from the table.
4. Implement `_similarity_search_with_relevance_scores`.
5. Add `embedding_dimension` parameter to support different dimension
embedding functions.**
Users can continue using the API as before.
Test cases added before is enough to meet this commit.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes ##6039
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17 @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
## DocArray as a Retriever
[DocArray](https://github.com/docarray/docarray) is an open-source tool
for managing your multi-modal data. It offers flexibility to store and
search through your data using various document index backends. This PR
introduces `DocArrayRetriever` - which works with any available backend
and serves as a retriever for Langchain apps.
Also, I added 2 notebooks:
DocArray Backends - intro to all 5 currently supported backends, how to
initialize, index, and use them as a retriever
DocArray Usage - showcasing what additional search parameters you can
pass to create versatile retrievers
Example:
```python
from docarray.index import InMemoryExactNNIndex
from docarray import BaseDoc, DocList
from docarray.typing import NdArray
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.retrievers import DocArrayRetriever
# define document schema
class MyDoc(BaseDoc):
description: str
description_embedding: NdArray[1536]
embeddings = OpenAIEmbeddings()
# create documents
descriptions = ["description 1", "description 2"]
desc_embeddings = embeddings.embed_documents(texts=descriptions)
docs = DocList[MyDoc](
[
MyDoc(description=desc, description_embedding=embedding)
for desc, embedding in zip(descriptions, desc_embeddings)
]
)
# initialize document index with data
db = InMemoryExactNNIndex[MyDoc](docs)
# create a retriever
retriever = DocArrayRetriever(
index=db,
embeddings=embeddings,
search_field="description_embedding",
content_field="description",
)
# find the relevant document
doc = retriever.get_relevant_documents("action movies")
print(doc)
```
#### Who can review?
@dev2049
---------
Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes #
links to prompt templates and example selectors on the
[Prompts](https://python.langchain.com/docs/modules/model_io/prompts/)
page are invalid.
#### Before submitting
Just a small note that I tried to run `make docs_clean` and other
related commands before PR written
[here](https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md#build-documentation-locally),
it gives me an error:
```bash
langchain % make docs_clean
Traceback (most recent call last):
File "/Users/masafumi/Downloads/langchain/.venv/bin/make", line 5, in <module>
from scripts.proto import main
ModuleNotFoundError: No module named 'scripts'
make: *** [docs_clean] Error 1
# Poetry (version 1.5.1)
# Python 3.9.13
```
I couldn't figure out how to fix this, so I didn't run those command.
But links should work.
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
Similar issue #6323
Co-authored-by: masafumimori <m.masafumimori@outlook.com>
# Handle Managed Motorhead Data Key
Managed motorhead will return a payload with a `data` key. we need to
handle this to properly access messages from the server.
Just adds some comments and docstring improvements.
There was some behaviour that was quite unclear to me at first like:
- "when do things get updated?"
- "why are there only entity names and no summaries?"
- "why do the entity names disappear?"
Now it can be much more obvious to many.
I am lukestanley on Twitter.
1. Changed the implementation of add_texts interface for the AwaDB
vector store in order to improve the performance
2. Upgrade the AwaDB from 0.3.2 to 0.3.3
---------
Co-authored-by: vincent <awadb.vincent@gmail.com>
Fixes https://github.com/hwchase17/langchain/issues/6172
As described in https://github.com/hwchase17/langchain/issues/6172, I'd
love to help update the dev container in this project.
**Summary of changes:**
- Dev container now builds (the current container in this repo won't
build for me)
- Dockerfile updates
- Update image to our [currently-maintained Python
image](https://github.com/devcontainers/images/tree/main/src/python/.devcontainer)
(`mcr.microsoft.com/devcontainers/python`) rather than the deprecated
image from vscode-dev-containers
- Move Dockerfile to root of repo - in order for `COPY` to work
properly, it needs the files (in this case, `pyproject.toml` and
`poetry.toml`) in the same directory
- devcontainer.json updates
- Removed `customizations` and `remoteUser` since they should be covered
by the updated image in the Dockerfile
- Update comments
- Update docker-compose.yaml to properly point to updated Dockerfile
- Add a .gitattributes to avoid line ending conversions, which can
result in hundreds of pending changes
([info](https://code.visualstudio.com/docs/devcontainers/tips-and-tricks#_resolving-git-line-ending-issues-in-containers-resulting-in-many-modified-files))
- Add a README in the .devcontainer folder and info on the dev container
in the contributing.md
**Outstanding questions:**
- Is it expected for `poetry install` to take some time? It takes about
30 minutes for this dev container to finish building in a Codespace, but
a user should only have to experience this once. Through some online
investigation, this doesn't seem unusual
- Versions of poetry newer than 1.3.2 failed every time - based on some
of the guidance in contributing.md and other online resources, it seemed
changing poetry versions might be a good solution. 1.3.2 is from Jan
2023
---------
Co-authored-by: bamurtaugh <brmurtau@microsoft.com>
Co-authored-by: Samruddhi Khandale <samruddhikhandale@github.com>
This PR refactors the ArxivAPIWrapper class making
`doc_content_chars_max` parameter optional. Additionally, tests have
been added to ensure the functionality of the doc_content_chars_max
parameter.
Fixes#6027 (issue)
There will likely be another change or two coming over the next couple
weeks as we stabilize the API, but putting this one in now which just
makes the integration a bit more flexible with the response output
format.
```
(langchain) danielking@MML-1B940F4333E2 langchain % pytest tests/integration_tests/llms/test_mosaicml.py tests/integration_tests/embeddings/test_mosaicml.py
=================================================================================== test session starts ===================================================================================
platform darwin -- Python 3.10.11, pytest-7.3.1, pluggy-1.0.0
rootdir: /Users/danielking/github/langchain
configfile: pyproject.toml
plugins: asyncio-0.20.3, mock-3.10.0, dotenv-0.5.2, cov-4.0.0, anyio-3.6.2
asyncio: mode=strict
collected 12 items
tests/integration_tests/llms/test_mosaicml.py ...... [ 50%]
tests/integration_tests/embeddings/test_mosaicml.py ...... [100%]
=================================================================================== slowest 5 durations ===================================================================================
4.76s call tests/integration_tests/llms/test_mosaicml.py::test_retry_logic
4.74s call tests/integration_tests/llms/test_mosaicml.py::test_mosaicml_llm_call
4.13s call tests/integration_tests/llms/test_mosaicml.py::test_instruct_prompt
0.91s call tests/integration_tests/llms/test_mosaicml.py::test_short_retry_does_not_loop
0.66s call tests/integration_tests/llms/test_mosaicml.py::test_mosaicml_extra_kwargs
=================================================================================== 12 passed in 19.70s ===================================================================================
```
#### Who can review?
@hwchase17
@dev2049
the current implement put the doc itself as the metadata, but the
document chatgpt plugin retriever returned already has a `metadata`
field, it's better to use that instead.
the original code will throw the following exception when using
`RetrievalQAWithSourcesChain`, becuse it can not find the field
`metadata`:
```python
Exception has occurred: ValueError (note: full exception trace is shown but execution is paused at: _run_module_as_main)
Document prompt requires documents to have metadata variables: ['source']. Received document with missing metadata: ['source'].
File "/home/wangjie/anaconda3/envs/chatglm/lib/python3.10/site-packages/langchain/chains/combine_documents/base.py", line 27, in format_document
raise ValueError(
File "/home/wangjie/anaconda3/envs/chatglm/lib/python3.10/site-packages/langchain/chains/combine_documents/stuff.py", line 65, in <listcomp>
doc_strings = [format_document(doc, self.document_prompt) for doc in docs]
File "/home/wangjie/anaconda3/envs/chatglm/lib/python3.10/site-packages/langchain/chains/combine_documents/stuff.py", line 65, in _get_inputs
doc_strings = [format_document(doc, self.document_prompt) for doc in docs]
File "/home/wangjie/anaconda3/envs/chatglm/lib/python3.10/site-packages/langchain/chains/combine_documents/stuff.py", line 85, in combine_docs
inputs = self._get_inputs(docs, **kwargs)
File "/home/wangjie/anaconda3/envs/chatglm/lib/python3.10/site-packages/langchain/chains/combine_documents/base.py", line 84, in _call
output, extra_return_dict = self.combine_docs(
File "/home/wangjie/anaconda3/envs/chatglm/lib/python3.10/site-packages/langchain/chains/base.py", line 140, in __call__
raise e
```
Additionally, the `metadata` filed in the `chatgpt plugin retriever`
have these fileds by default:
```json
{
"source": "file", //email, file or chat
"source_id": "filename.docx", // the filename
"url": "",
...
}
```
so, we should set `source_id` to `source` in the langchain metadata.
```python
metadata = d.pop("metadata", d)
if(metadata.get("source_id")):
metadata["source"] = metadata.pop("source_id")
```
#### Who can review?
@dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: wangjie <wangjie@htffund.com>
**Short Description**
Added a new argument to AutoGPT class which allows to persist the chat
history to a file.
**Changes**
1. Removed the `self.full_message_history: List[BaseMessage] = []`
2. Replaced it with `chat_history_memory` which can take any subclasses
of `BaseChatMessageHistory`
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
adding new loader for [acreom](https://acreom.com) vaults. It's based on
the Obsidian loader with some additional text processing for acreom
specific markdown elements.
@eyurtsev please take a look!
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Trying to call `ChatOpenAI.get_num_tokens_from_messages` returns the
following error for the newly announced models `gpt-3.5-turbo-0613` and
`gpt-4-0613`:
```
NotImplementedError: get_num_tokens_from_messages() is not presently implemented for model gpt-3.5-turbo-0613.See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.
```
This adds support for counting tokens for those models, by counting
tokens the same way they're counted for the previous versions of
`gpt-3.5-turbo` and `gpt-4`.
#### reviewers
- @hwchase17
- @agola11
Confluence API supports difference format of page content. The storage
format is the raw XML representation for storage. The view format is the
HTML representation for viewing with macros rendered as though it is
viewed by users.
Add the `content_format` parameter to `ConfluenceLoader.load()` to
specify the content format, this is
set to `ContentFormat.STORAGE` by default.
#### Who can review?
Tag maintainers/contributors who might be interested: @eyurtsev
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
## Add Solidity programming language support for code splitter.
Twitter: @0xjord4n_
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @hwchase17
VectorStores / Retrievers / Memory
- @dev2049
-->
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
This adds implementation of MMR search in pinecone; and I have two
semi-related observations about this vector store class:
- Maybe we should also have a
`similarity_search_by_vector_returning_embeddings` like in supabase, but
it's not in the base `VectorStore` class so I didn't implement
- Talking about the base class, there's
`similarity_search_with_relevance_scores`, but in pinecone it is called
`similarity_search_with_score`; maybe we should consider renaming it to
align with other `VectorStore` base and sub classes (or add that as an
alias for backward compatibility)
#### Who can review?
Tag maintainers/contributors who might be interested:
- VectorStores / Retrievers / Memory - @dev2049
# Introduces embaas document extraction api endpoints
In this PR, we add support for embaas document extraction endpoints to
Text Embedding Models (with LLMs, in different PRs coming). We currently
offer the MTEB leaderboard top performers, will continue to add top
embedding models and soon add support for customers to deploy thier own
models. Additional Documentation + Infomation can be found
[here](https://embaas.io).
While developing this integration, I closely followed the patterns
established by other langchain integrations. Nonetheless, if there are
any aspects that require adjustments or if there's a better way to
present a new integration, let me know! :)
Additionally, I fixed some docs in the embeddings integration.
Related PR: #5976
#### Who can review?
DataLoaders
- @eyurtsev
This creates a new kind of text splitter for markdown files.
The user can supply a set of headers that they want to split the file
on.
We define a new text splitter class, `MarkdownHeaderTextSplitter`, that
does a few things:
(1) For each line, it determines the associated set of user-specified
headers
(2) It groups lines with common headers into splits
See notebook for example usage and test cases.
Adds a new parameter `relative_chunk_overlap` for the
`SentenceTransformersTokenTextSplitter` constructor. The parameter sets
the chunk overlap using a relative factor, e.g. for a model where the
token limit is 100, a `relative_chunk_overlap=0.5` implies that
`chunk_overlap=50`
Tag maintainers/contributors who might be interested:
@hwchase17, @dev2049
#### What I do
Adding embedding api for
[DashScope](https://help.aliyun.com/product/610100.html), which is the
DAMO Academy's multilingual text unified vector model based on the LLM
base. It caters to multiple mainstream languages worldwide and offers
high-quality vector services, helping developers quickly transform text
data into high-quality vector data. Currently supported languages
include Chinese, English, Spanish, French, Portuguese, Indonesian, and
more.
#### Who can review?
Models
- @hwchase17
- @agola11
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Added description of LangChain Decorators ✨ into the integration section
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
Inspired by the filtering capability available in ChromaDB, added the
same functionality to the FAISS vectorestore as well. Since FAISS does
not have an inbuilt method of filtering used the approach suggested in
this [thread](https://github.com/facebookresearch/faiss/issues/1079)
Langchain Issue inspiration:
https://github.com/hwchase17/langchain/issues/4572
- [x] Added filtering capability to semantic similarly and MMR
- [x] Added test cases for filtering in
`tests/integration_tests/vectorstores/test_faiss.py`
#### Who can review?
Tag maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
- @hwchase17
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
I used the APIChain sometimes it failed during the intermediate step
when generating the api url and calling the `request` function. After
some digging, I found the url sometimes includes the space at the
beginning, like `%20https://...api.com` which causes the `
self.requests_wrapper.get` internal function to fail.
Including a little string preprocessing `.strip` to remove the space
seems to improve the robustness of the APIchain to make sure it can send
the request and retrieve the API result more reliably.
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@vowelparrot
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
HuggingFace -> Hugging Face
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Obey `handler.raise_error` in `_ahandle_event_for_handler`
Exceptions for async callbacks were only logged as warnings, also when
`raise_error = True`
#### Who can review?
@hwchase17
@agola11
@eyurtsev
当Confluence文档内容中包含附件,且附件内容为非英文时,提取出来的文本是乱码的。
When the content of the document contains attachments, and the content
of the attachments is not in English, the extracted text is garbled.
这主要是因为没有为pytesseract传递lang参数,默认情况下只支持英文。
This is mainly because lang parameter is not passed to pytesseract, and
only English is supported by default.
所以我给ConfluenceLoader.load()添加了ocr_languages参数,以便支持多种语言。
So I added the ocr_languages parameter to ConfluenceLoader.load () to
support multiple languages.
Fixes (not reported) an error that may occur in some cases in the
RecursiveCharacterTextSplitter.
An empty `new_separators` array ([]) would end up in the else path of
the condition below and used in a function where it is expected to be
non empty.
```python
if new_separators is None:
...
else:
# _split_text() expects this array to be non-empty!
other_info = self._split_text(s, new_separators)
```
resulting in an `IndexError`
```python
def _split_text(self, text: str, separators: List[str]) -> List[str]:
"""Split incoming text and return chunks."""
final_chunks = []
# Get appropriate separator to use
> separator = separators[-1]
E IndexError: list index out of range
langchain/text_splitter.py:425: IndexError
```
#### Who can review?
@hwchase17 @eyurtsev
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This fixes a token limit bug in the
SentenceTransformersTokenTextSplitter. Before the token limit was taken
from tokenizer used by the model. However, for some models the token
limit of the tokenizer (from `AutoTokenizer.from_pretrained`) does not
equal the token limit of the model. This was a false assumption.
Therefore, the token limit of the text splitter is now taken from the
sentence transformers model token limit.
Twitter: @plasmajens
#### Before submitting
#### Who can review?
@hwchase17 and/or @dev2049
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR updates the Vectara integration (@hwchase17 ):
* Adds reuse of requests.session to imrpove efficiency and speed.
* Utilizes Vectara's low-level API (instead of standard API) to better
match user's specific chunking with LangChain
* Now add_texts puts all the texts into a single Vectara document so
indexing is much faster.
* updated variables names from alpha to lambda_val (to be consistent
with Vectara docs) and added n_context_sentence so it's available to use
if needed.
* Updates to documentation and tests
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Unstructured XML Loader
Adds an `UnstructuredXMLLoader` class for .xml files. Works with
unstructured>=0.6.7. A plain text representation of the text with the
XML tags will be available under the `page_content` attribute in the
doc.
### Testing
```python
from langchain.document_loaders import UnstructuredXMLLoader
loader = UnstructuredXMLLoader(
"example_data/factbook.xml",
)
docs = loader.load()
```
## Who can review?
@hwchase17
@eyurtsev
Added AwaDB vector store, which is a wrapper over the AwaDB, that can be
used as a vector storage and has an efficient similarity search. Added
integration tests for the vector store
Added jupyter notebook with the example
Delete a unneeded empty file and resolve the
conflict(https://github.com/hwchase17/langchain/pull/5886)
Please check, Thanks!
@dev2049
@hwchase17
---------
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: ljeagle <vincent_jieli@yeah.net>
Co-authored-by: vincent <awadb.vincent@gmail.com>
Based on the inspiration from the SQL chain, the following three
parameters are added to Graph Cypher Chain.
- top_k: Limited the number of results from the database to be used as
context
- return_direct: Return database results without transforming them to
natural language
- return_intermediate_steps: Return intermediate steps
Hi,
This is a fix for https://github.com/hwchase17/langchain/pull/5014. This
PR forgot to add the ability to self solve the ValueError(f"Could not
parse LLM output: {llm_output}") error for `_atake_next_step`.
<!--
Fixed a simple typo on
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/vectorstore.html
where the word "use" was missing.
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
**Fix SnowflakeLoader's Behavior of Returning Empty Documents**
**Description:**
This PR addresses the issue where the SnowflakeLoader was consistently
returning empty documents. After investigation, it was found that the
query method within the SnowflakeLoader was not properly fetching and
processing the data.
**Changes:**
1. Modified the query method in SnowflakeLoader to handle data fetch and
processing more accurately.
2. Enhanced error handling within the SnowflakeLoader to catch and log
potential issues that may arise during data loading.
**Impact:**
This fix will ensure the SnowflakeLoader reliably returns the expected
documents instead of empty ones, improving the efficiency and
reliability of data processing tasks in the LangChain project.
Before Fix:
`[
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={}),
Document(page_content='', metadata={})
]`
After Fix:
`[Document(page_content='CUSTOMER_ID: 1\nFIRST_NAME: John\nLAST_NAME:
Doe\nEMAIL: john.doe@example.com\nPHONE: 555-123-4567\nADDRESS: 123 Elm
St, San Francisco, CA 94102', metadata={}),
Document(page_content='CUSTOMER_ID: 2\nFIRST_NAME: Jane\nLAST_NAME:
Doe\nEMAIL: jane.doe@example.com\nPHONE: 555-987-6543\nADDRESS: 456 Oak
St, San Francisco, CA 94103', metadata={}),
Document(page_content='CUSTOMER_ID: 3\nFIRST_NAME: Michael\nLAST_NAME:
Smith\nEMAIL: michael.smith@example.com\nPHONE: 555-234-5678\nADDRESS:
789 Pine St, San Francisco, CA 94104', metadata={}),
Document(page_content='CUSTOMER_ID: 4\nFIRST_NAME: Emily\nLAST_NAME:
Johnson\nEMAIL: emily.johnson@example.com\nPHONE: 555-345-6789\nADDRESS:
321 Maple St, San Francisco, CA 94105', metadata={}),
Document(page_content='CUSTOMER_ID: 5\nFIRST_NAME: David\nLAST_NAME:
Williams\nEMAIL: david.williams@example.com\nPHONE:
555-456-7890\nADDRESS: 654 Birch St, San Francisco, CA 94106',
metadata={}), Document(page_content='CUSTOMER_ID: 6\nFIRST_NAME:
Emma\nLAST_NAME: Jones\nEMAIL: emma.jones@example.com\nPHONE:
555-567-8901\nADDRESS: 987 Cedar St, San Francisco, CA 94107',
metadata={}), Document(page_content='CUSTOMER_ID: 7\nFIRST_NAME:
Oliver\nLAST_NAME: Brown\nEMAIL: oliver.brown@example.com\nPHONE:
555-678-9012\nADDRESS: 147 Cherry St, San Francisco, CA 94108',
metadata={}), Document(page_content='CUSTOMER_ID: 8\nFIRST_NAME:
Sophia\nLAST_NAME: Davis\nEMAIL: sophia.davis@example.com\nPHONE:
555-789-0123\nADDRESS: 369 Walnut St, San Francisco, CA 94109',
metadata={}), Document(page_content='CUSTOMER_ID: 9\nFIRST_NAME:
James\nLAST_NAME: Taylor\nEMAIL: james.taylor@example.com\nPHONE:
555-890-1234\nADDRESS: 258 Hawthorn St, San Francisco, CA 94110',
metadata={}), Document(page_content='CUSTOMER_ID: 10\nFIRST_NAME:
Isabella\nLAST_NAME: Wilson\nEMAIL: isabella.wilson@example.com\nPHONE:
555-901-2345\nADDRESS: 963 Aspen St, San Francisco, CA 94111',
metadata={})]
`
**Tests:**
All unit and integration tests have been run and passed successfully.
Additional tests were added to validate the new behavior of the
SnowflakeLoader.
**Checklist:**
- [x] Code changes are covered by tests
- [x] Code passes `make format` and `make lint`
- [x] This PR does not introduce any breaking changes
Please review and let me know if any changes are required.
"One Retriever to merge them all, One Retriever to expose them, One
Retriever to bring them all and in and process them with Document
formatters."
Hi @dev2049! Here bothering people again!
I'm using this simple idea to deal with merging the output of several
retrievers into one.
I'm aware of DocumentCompressorPipeline and
ContextualCompressionRetriever but I don't think they allow us to do
something like this. Also I was getting in trouble to get the pipeline
working too. Please correct me if i'm wrong.
This allow to do some sort of "retrieval" preprocessing and then using
the retrieval with the curated results anywhere you could use a
retriever.
My use case is to generate diff indexes with diff embeddings and sources
for a more colorful results then filtering them with one or many
document formatters.
I saw some people looking for something like this, here:
https://github.com/hwchase17/langchain/issues/3991
and something similar here:
https://github.com/hwchase17/langchain/issues/5555
This is just a proposal I know I'm missing tests , etc. If you think
this is a worth it idea I can work on tests and anything you want to
change.
Let me know!
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Expose full params in Qdrant
There were many questions regarding supporting some additional
parameters in Qdrant integration. Qdrant supports many vector search
optimizations that were impossible to use directly in Qdrant before.
That includes:
1. Possibility to manipulate collection params while using
`Qdrant.from_texts`. The PR allows setting things such as quantization,
HNWS config, optimizers config, etc. That makes it consistent with raw
`QdrantClient`.
2. Extended options while searching. It includes HNSW options, exact
search, score threshold filtering, and read consistency in distributed
mode.
After merging that PR, #4858 might also be closed.
## Who can review?
VectorStores / Retrievers / Memory
@dev2049 @hwchase17
This PR adds the possibility of specifying the endpoint URL to AWS in
the DynamoDBChatMessageHistory, so that it is possible to target not
only the AWS cloud services, but also a local installation.
Specifying the endpoint URL, which is normally not done when addressing
the cloud services, is very helpful when targeting a local instance
(like [Localstack](https://localstack.cloud/)) when running local tests.
Fixes#5835
#### Who can review?
Tag maintainers/contributors who might be interested: @dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixes proxy error.
Since openai does not parse proxy parameters and uses openai.proxy
directly, the proxy method needs to be modified.
7610c5adfa/openai/api_requestor.py (LL90)
#### Who can review?
@hwchase17 - project lead
Models
- @hwchase17
- @agola11
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
#### Add start index to metadata in TextSplitter
- Modified method `create_documents` to track start position of each
chunk
- The `start_index` is included in the metadata if the `add_start_index`
parameter in the class constructor is set to `True`
This enables referencing back to the original document, particularly
useful when a specific chunk is retrieved.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@eyurtsev @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
This PR adds a Baseten integration. I've done my best to follow the
contributor's guidelines and add docs, an example notebook, and an
integration test modeled after similar integrations' test.
Please let me know if there is anything I can do to improve the PR. When
it is merged, please tag https://twitter.com/basetenco and
https://twitter.com/philip_kiely as contributors (the note on the PR
template said to include Twitter accounts)
+ this private attribute is referenced as `arxiv_search` in internal
usage and is set when verifying the environment
twitter: @spazm
#### Who can review?
Any of @hwchase17, @leo-gan, or @bongsang might be interested in
reviewing.
+ Mismatch between `arxiv_client` attribute vs `arxiv_search` in
validation and usage is present in the initial commit by @hwchase17.
+ @leo-gan has made most of the edits.
+ @bongsang implemented pdf download.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
Fix the document page to open both search and Mendable when pressing
Ctrl+K.
I have changed the shortcut for Mendable to Ctrl+J.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@hwchase17
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
`load_qa_with_sources_chain` method already support four type of chain,
including `map_rerank`. update document to prevent any misunderstandings
😀.

<!-- Remove if not applicable -->
Fixes # (issue)
No, just update document.
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@hwchase17
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes#3983
Mimicing what we do for saving and loading VectorDBQA chain, I added the
logic for RetrievalQA chain.
Also added a unit test. I did not find how we test other chains for
their saving and loading functionality, so I just added a file with one
test case. Let me know if there are recommended ways to test it.
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Your PR Title (What it does)
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
- Added `SingleStoreDB` vector store, which is a wrapper over the
SingleStore DB database, that can be used as a vector storage and has an
efficient similarity search.
- Added integration tests for the vector store
- Added jupyter notebook with the example
@dev2049
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Allow callbacks to monitor ConversationalRetrievalChain
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
I ran into an issue where load_qa_chain was not passing the callbacks
down to the child LLM chains, and so made sure that callbacks are
propagated. There are probably more improvements to do here but this
seemed like a good place to stop.
Note that I saw a lot of references to callbacks_manager, which seems to
be deprecated. I left that code alone for now.
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
in the `ElasticKnnSearch` class added 2 arguments that were not exposed
properly
`knn_search` added:
- `vector_query_field: Optional[str] = 'vector'`
-- vector_query_field: Field name to use in knn search if not default
'vector'
`knn_hybrid_search` added:
- `vector_query_field: Optional[str] = 'vector'`
-- vector_query_field: Field name to use in knn search if not default
'vector'
- `query_field: Optional[str] = 'text'`
-- query_field: Field name to use in search if not default 'text'
Fixes # https://github.com/hwchase17/langchain/issues/5633
cc: @dev2049 @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Simply fixing a small typo in the memory page.
Also removed an extra code block at the end of the file.
Along the way, the current outputs seem to have changed in a few places
so left that for posterity, and updated the number of runs which seems
harmless, though I can clean that up if preferred.
Implementation of similarity_search_with_relevance_scores for quadrant
vector store.
As implemented the method is also compatible with other capacities such
as filtering.
Integration tests updated.
#### Who can review?
Tag maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
This PR adds documentation for Shale Protocol's integration with
LangChain.
[Shale Protocol](https://shaleprotocol.com) provides forever-free
production-ready inference APIs to the open-source community. We have
global data centers and plan to support all major open LLMs (estimated
~1,000 by 2025).
The team consists of software and ML engineers, AI researchers,
designers, and operators across North America and Asia. Combined
together, the team has 50+ years experience in machine learning, cloud
infrastructure, software engineering and product development. Team
members have worked at places like Google and Microsoft.
#### Who can review?
Tag maintainers/contributors who might be interested:
- @hwchase17
- @agola11
---------
Co-authored-by: Karen Sheng <46656667+karensheng@users.noreply.github.com>
## Changes
- Added the `stop` param to the `_VertexAICommon` class so it can be set
at llm initialization
## Example Usage
```python
VertexAI(
# ...
temperature=0.15,
max_output_tokens=128,
top_p=1,
top_k=40,
stop=["\n```"],
)
```
## Possible Reviewers
- @hwchase17
- @agola11
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
Add some logging into the powerbi tool so that you can see the queries
being sent to PBI and attempts to correct them.
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested: @vowelparrot
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
### Summary
Adds an `UnstructuredCSVLoader` for loading CSVs. One advantage of using
`UnstructuredCSVLoader` relative to the standard `CSVLoader` is that if
you use `UnstructuredCSVLoader` in `"elements"` mode, an HTML
representation of the table will be available in the metadata.
#### Who can review?
@hwchase17
@eyurtsev
Hi! I just added an example of how to use a custom scraping function
with the sitemap loader. I recently used this feature and had to dig in
the source code to find it. I thought it might be useful to other devs
to have an example in the Jupyter Notebook directly.
I only added the example to the documentation page.
@eyurtsev I was not able to run the lint. Please let me know if I have
to do anything else.
I know this is a very small contribution, but I hope it will be
valuable. My Twitter handle is @web3Dav3.
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17 - project lead
- @agola11
---------
Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
LatexTextSplitter needs to use "\n\\\chapter" when separators are
escaped, such as "\n\\\chapter", otherwise it will report an error:
(re.error: bad escape \c at position 1 (line 2, column 1))
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
re.error: bad escape \c at position 1 (line 2, column 1)
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@hwchase17 @dev2049
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
Co-authored-by: Pang <ugfly@qq.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes#5822
I upgrade my langchain lib by execute `pip install -U langchain`, and
the verion is 0.0.192。But i found that openai.api_base not working. I
use azure openai service as openai backend, the openai.api_base is very
import for me. I hava compared tag/0.0.192 and tag/0.0.191, and figure
out that:

openai params is moved inside `_invocation_params` function,and used in
some openai invoke:


but still some case not covered like:

#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
just change "to" to "too" so it matches the above prompt
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
Fixes # 5807
Realigned tests with implementation.
Also reinforced folder unicity for the test_faiss_local_save_load test
using date-time suffix
#### Before submitting
- Integration test updated
- formatting and linting ok (locally)
#### Who can review?
Tag maintainers/contributors who might be interested:
@hwchase17 - project lead
VectorStores / Retrievers / Memory
-@dev2049
I added support for specifing different types with ResponseSchema
objects:
## before
`
extracted_info = ResponseSchema(name="extracted_info", description="List
of extracted information")
`
generate the following doc: ```json\n{\n\t\"extracted_info\": string //
List of extracted information}```
This brings GPT to create a JSON with only one string in the specified
field even if you requested a List in the description.
## now
`extracted_info = ResponseSchema(name="extracted_info",
type="List[string]", description="List of extracted information")
`
generate the following doc: ```json\n{\n\t\"extracted_info\":
List[string] // List of extracted information}```
This way the model responds better to the prompt generating an array of
strings.
Tag maintainers/contributors who might be interested:
Agents / Tools / Toolkits
@vowelparrot
Don't know who can be interested, I suppose this is a tool, so I tagged
you vowelparrot,
anyway, it's a minor change, and shouldn't impact any other part of the
framework.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Some links were broken from the previous merge. This PR fixes them.
Tested locally.
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
This introduces the `YoutubeAudioLoader`, which will load blobs from a
YouTube url and write them. Blobs are then parsed by
`OpenAIWhisperParser()`, as show in this
[PR](https://github.com/hwchase17/langchain/pull/5580), but we extend
the parser to split audio such that each chuck meets the 25MB OpenAI
size limit. As shown in the notebook, this enables a very simple UX:
```
# Transcribe the video to text
loader = GenericLoader(YoutubeAudioLoader([url],save_dir),OpenAIWhisperParser())
docs = loader.load()
```
Tested on full set of Karpathy lecture videos:
```
# Karpathy lecture videos
urls = ["https://youtu.be/VMj-3S1tku0"
"https://youtu.be/PaCmpygFfXo",
"https://youtu.be/TCH_1BHY58I",
"https://youtu.be/P6sfmUTpUmc",
"https://youtu.be/q8SA3rM6ckI",
"https://youtu.be/t3YJ5hKiMQ0",
"https://youtu.be/kCc8FmEb1nY"]
# Directory to save audio files
save_dir = "~/Downloads/YouTube"
# Transcribe the videos to text
loader = GenericLoader(YoutubeAudioLoader(urls,save_dir),OpenAIWhisperParser())
docs = loader.load()
```
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
In the [Databricks
integration](https://python.langchain.com/en/latest/integrations/databricks.html)
and [Databricks
LLM](https://python.langchain.com/en/latest/modules/models/llms/integrations/databricks.html),
we suggestted users to set the ENV variable `DATABRICKS_API_TOKEN`.
However, this is inconsistent with the other Databricks library. To make
it consistent, this PR changes the variable from `DATABRICKS_API_TOKEN`
to `DATABRICKS_TOKEN`
After changes, there is no more `DATABRICKS_API_TOKEN` in the doc
```
$ git grep DATABRICKS_API_TOKEN|wc -l
0
$ git grep DATABRICKS_TOKEN|wc -l
8
```
cc @hwchase17 @dev2049 @mengxr since you have reviewed the previous PRs.
# What does this PR do?
Change the HTML tags so that a tag with attributes can be found.
## Before submitting
- [x] Tests added
- [x] CI/CD validated
### Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
- Remove the client implementation (this breaks backwards compatibility
for existing testers. I could keep the stub in that file if we want, but
not many people are using it yet
- Add SDK as dependency
- Update the 'run_on_dataset' method to be a function that optionally
accepts a client as an argument
- Remove the langchain plus server implementation (you get it for free
with the SDK now)
We could make the SDK optional for now, but the plan is to use w/in the
tracer so it would likely become a hard dependency at some point.
# Scores in Vectorestores' Docs Are Explained
Following vectorestores can return scores with similar documents by
using `similarity_search_with_score`:
- chroma
- docarray_hnsw
- docarray_in_memory
- faiss
- myscale
- qdrant
- supabase
- vectara
- weaviate
However, in documents, these scores were either not explained at all or
explained in a way that could lead to misunderstandings (e.g., FAISS).
For instance in FAISS document: if we consider the score returned by the
function as a similarity score, we understand that a document returning
a higher score is more similar to the source document. However, since
the scores returned by the function are distance scores, we should
understand that smaller scores correspond to more similar documents.
For the libraries other than Vectara, I wrote the scores they use by
investigating from the source libraries. Since I couldn't be certain
about the score metric used by Vectara, I didn't make any changes in its
documentation. The links mentioned in Vectara's documentation became
broken due to updates, so I replaced them with working ones.
VectorStores / Retrievers / Memory
- @dev2049
my twitter: [berkedilekoglu](https://twitter.com/berkedilekoglu)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Added an overview of LangChain modules
Aimed at introducing newcomers to LangChain's main modules :)
Twitter handle is @edrick_dch
## Who can review?
@eyurtsev
Fixes#5614
#### Issue
The `***` combination produces an exception when used as a seperator in
`re.split`. Instead `\*\*\*` should be used for regex exprations.
#### Who can review?
@eyurtsev
Fixes#5699
#### Who can review?
Tag maintainers/contributors who might be interested:
@woodworker @LeSphax @johannhartmann
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
…719)
A minor update to retry Cohore API call in case of errors using tenacity
as it is done for OpenAI LLMs.
#### Who can review?
@hwchase17, @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Sagar Sapkota <22609549+sagar-spkt@users.noreply.github.com>
Aviary is an open source toolkit for evaluating and deploying open
source LLMs. You can find out more about it on
[http://github.com/ray-project/aviary). You can try it out at
[http://aviary.anyscale.com](aviary.anyscale.com).
This code adds support for Aviary in LangChain. To minimize
dependencies, it connects directly to the HTTP endpoint.
The current implementation is not accelerated and uses the default
implementation of `predict` and `generate`.
It includes a test and a simple example.
@hwchase17 and @agola11 could you have a look at this?
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
Adding a class attribute "return_generated_question" to class
"BaseConversationalRetrievalChain". If set to `True`, the chain's output
has a key "generated_question" with the question generated by the
sub-chain `question_generator` as the value. This way the generated
question can be logged.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@dev2049 @vowelparrot
# OpenAIWhisperParser
This PR creates a new parser, `OpenAIWhisperParser`, that uses the
[OpenAI Whisper
model](https://platform.openai.com/docs/guides/speech-to-text/quickstart)
to perform transcription of audio files to text (`Documents`). Please
see the notebook for usage.
Fixed python deprecation warning:
DeprecationWarning: invalid escape sequence '`'
backticks (`) do not have special meaning in python strings and should
not be escaped.
-- @spazm on twitter
### Who can review:
@nfcampos ported this change from javascript, @hwchase17 wrote the
original STRUCTURED_FORMAT_INSTRUCTIONS,
Zep now supports persisting custom metadata with messages and hybrid
search across both message embeddings and structured metadata. This PR
implements custom metadata and enhancements to the
`ZepChatMessageHistory` and `ZepRetriever` classes to implement this
support.
Tag maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
---------
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
# Check if generated Cypher code is wrapped in backticks
Some LLMs like the VertexAI like to explain how they generated the
Cypher statement and wrap the actual code in three backticks:

I have observed a similar pattern with OpenAI chat models in a
conversational settings, where multiple user and assistant message are
provided to the LLM to generate Cypher statements, where then the LLM
wants to maybe apologize for previous steps or explain its thoughts.
Interestingly, both OpenAI and VertexAI wrap the code in three backticks
if they are doing any explaining or apologizing. Checking if the
generated cypher is wrapped in backticks seems like a low-hanging fruit
to expand the cypher search to other LLMs and conversational settings.
# Adding support to save multiple memories at a time. Cuts save time by
more then half
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
-
VectorStores / Retrievers / Memory
- @dev2049
-->
@dev2049
@vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Fixes#5720.
A more in-depth discussion is in my comment here:
https://github.com/hwchase17/langchain/issues/5720#issuecomment-1577047018
In a nutshell, there has been a subtle change in the latest version of
GPT4Alls Python bindings. The change I submitted yesterday is compatible
with this version, however, this version is as of yet unreleased and
thus the code change breaks Langchain's wrapper under the currently
released version of GPT4All.
This pull request proposes a backwards-compatible solution.
fix for the sqlalchemy deprecated declarative_base import :
```
MovedIn20Warning: The ``declarative_base()`` function is now available as sqlalchemy.orm.declarative_base(). (deprecated since: 2.0) (Background on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)
Base = declarative_base() # type: Any
```
Import is wrapped in an try catch Block to fallback to the old import if
needed.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Token text splitter for sentence transformers
The current TokenTextSplitter only works with OpenAi models via the
`tiktoken` package. This is not clear from the name `TokenTextSplitter`.
In this (first PR) a token based text splitter for sentence transformer
models is added. In the future I think we should work towards injecting
a tokenizer into the TokenTextSplitter to make ti more flexible.
Could perhaps be reviewed by @dev2049
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Raises exception if OutputParsers receive a response with both a valid
action and a final answer
Currently, if an OutputParser receives a response which includes both an
action and a final answer, they return a FinalAnswer object. This allows
the parser to accept responses which propose an action and hallucinate
an answer without the action being parsed or taken by the agent.
This PR changes the logic to:
1. store a variable checking whether a response contains the
`FINAL_ANSWER_ACTION` (this is the easier condition to check).
2. store a variable checking whether the response contains a valid
action
3. if both are present, raise a new exception stating that both are
present
4. if an action is present, return an AgentAction
5. if an answer is present, return an AgentAnswer
6. if neither is present, raise the relevant exception based around the
action format (these have been kept consistent with the prior exception
messages)
Disclaimer:
* Existing mock data included strings which did include an action and an
answer. This might indicate that prioritising returning AgentAnswer was
always correct, and I am patching out desired behaviour? @hwchase17 to
advice. Curious if there are allowed cases where this is not
hallucinating, and we do want the LLM to output an action which isn't
taken.
* I have not passed `send_to_llm` through this new exception
Fixes#5601
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@hwchase17 - project lead
@vowelparrot
All the queries to the database are done based on the SessionId
property, this will optimize how Mongo retrieves all messages from a
session
#### Who can review?
Tag maintainers/contributors who might be interested:
@dev2049
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes#5638. Retitles "Amazon Bedrock" page to "Bedrock" so that the
Integrations section of the left nav is properly sorted in alphabetical
order.
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@vowelparrot:
Minor change to the SQL agent:
Tells agent to introspect the schema of the most relevant tables, I
found this to dramatically decrease the chance that the agent wastes
times guessing column names.
Fixes https://github.com/hwchase17/langchain/issues/5067
Verified the following code now works correctly:
```
db = Chroma(persist_directory=index_directory(index_name), embedding_function=embeddings)
retriever = db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.4})
docs = retriever.get_relevant_documents(query)
```
## Improve Error Messaging for APOC Procedure Failure in Neo4jGraph
This commit revises the error message provided when the
'apoc.meta.data()' procedure fails. Previously, the message simply
instructed the user to install the APOC plugin in Neo4j. The new error
message is more specific.
Also removed an unnecessary newline in the Cypher statement variable:
`node_properties_query`.
Fixes#5545
## Who can review?
- @vowelparrot
- @dev2049
This commit addresses a ValueError occurring when the YoutubeLoader
class tries to add datetime metadata from a YouTube video's publish
date. The error was happening because the ChromaDB metadata validation
only accepts str, int, or float data types.
In the `_get_video_info` method of the `YoutubeLoader` class, the
publish date retrieved from the YouTube video was of datetime type. This
commit fixes the issue by converting the datetime object to a string
before adding it to the metadata dictionary.
Additionally, this commit introduces error handling in the
`_get_video_info` method to ensure that all metadata fields have valid
values. If a metadata field is found to be None, a default value is
assigned. This prevents potential errors during metadata validation when
metadata fields are None.
The file modified in this commit is youtube.py.
# Your PR Title (What it does)
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# refactor BaseStringMessagePromptTemplate from_template method
Refactor the `from_template` method of the
`BaseStringMessagePromptTemplate` class to allow passing keyword
arguments to the `from_template` method of `PromptTemplate`.
Enable the usage of arguments like `template_format`.
In my scenario, I intend to utilize Jinja2 for formatting the human
message prompt in the chat template.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Models
- @hwchase17
- @agola11
- @jonasalexander
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# like
[StdoutCallbackHandler](https://github.com/hwchase17/langchain/blob/master/langchain/callbacks/stdout.py),
but writes to a file
When running experiments I have found myself wanting to log the outputs
of my chains in a more lightweight way than using WandB tracing. This PR
contributes a callback handler that writes to file what
`StdoutCallbackHandler` would print.
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
## Example Notebook
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
See the included `filecallbackhandler.ipynb` notebook for usage. Would
it be better to include this notebook under `modules/callbacks` or under
`integrations/`?

## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
Created fix for 5475
Currently in PGvector, we do not have any function that returns the
instance of an existing store. The from_documents always adds embeddings
and then returns the store. This fix is to add a function that will
return the instance of an existing store
Also changed the jupyter example for PGVector to show the example of
using the function
<!-- Remove if not applicable -->
Fixes # 5475
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@dev2049
@hwchase17
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR corrects a minor typo in the Momento chat message history
notebook and also expands the title from "Momento" to "Momento Chat
History", inline with other chat history storage providers.
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
cc @dev2049 who reviewed the original integration
# Your PR Title (What it does)
Fixes the pgvector python example notebook : one of the variables was
not referencing anything
## Before submitting
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
# Ensure parameters are used by vertexai chat models (PaLM2)
The current version of the google aiplatform contains a bug where
parameters for a chat model are not used as intended.
See https://github.com/googleapis/python-aiplatform/issues/2263
Params can be passed both to start_chat() and send_message(); however,
the parameters passed to start_chat() will not be used if send_message()
is called without the overrides. This is due to the defaults in
send_message() being global values rather than None (there is code in
send_message() which would use the params from start_chat() if the param
passed to send_message() evaluates to False, but that won't happen as
the defaults are global values).
Fixes # 5531
@hwchase17
@agola11
# Make FinalStreamingStdOutCallbackHandler more robust by ignoring new
lines & white spaces
`FinalStreamingStdOutCallbackHandler` doesn't work out of the box with
`ChatOpenAI`, as it tokenized slightly differently than `OpenAI`. The
response of `OpenAI` contains the tokens `["\nFinal", " Answer", ":"]`
while `ChatOpenAI` contains `["Final", " Answer", ":"]`.
This PR make `FinalStreamingStdOutCallbackHandler` more robust by
ignoring new lines & white spaces when determining if the answer prefix
has been reached.
Fixes#5433
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Tracing / Callbacks
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
# Adds the option to pass the original prompt into the AgentExecutor for
PlanAndExecute agents
This PR allows the user to optionally specify that they wish for the
original prompt/objective to be passed into the Executor agent used by
the PlanAndExecute agent. This solves a potential problem where the plan
is formed referring to some context contained in the original prompt,
but which is not included in the current prompt.
Currently, the prompt format given to the Executor is:
```
System: Respond to the human as helpfully and accurately as possible. You have access to the following tools:
<Tool and Action Description>
<Output Format Description>
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Thought:
Human: <Previous steps>
<Current step>
```
This PR changes the final part after `Human:` to optionally insert the
objective:
```
Human: <objective>
<Previous steps>
<Current step>
```
I have given a specific example in #5400 where the context of a database
path is lost, since the plan refers to the "given path".
The PR has been linted and formatted. So that existing behaviour is not
changed, I have defaulted the argument to `False` and added it as the
last argument in the signature, so it does not cause issues for any
users passing args positionally as opposed to using keywords.
Happy to take any feedback or make required changes!
Fixes#5400
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@vowelparrot
---------
Co-authored-by: Nathan Azrak <nathan.azrak@gmail.com>
# Implements support for Personal Access Token Authentication in the
ConfluenceLoader
Fixes#5191
Implements a new optional parameter for the ConfluenceLoader: `token`.
This allows the use of personal access authentication when using the
on-prem server version of Confluence.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @Jflick58
Twitter Handle: felipe_yyc
---------
Co-authored-by: Felipe <feferreira@ea.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Update confluence.py to return spaces between elements like headers
and links.
Please see
https://stackoverflow.com/questions/48913975/how-to-return-nicely-formatted-text-in-beautifulsoup4-when-html-text-is-across-m
Given:
```html
<address>
183 Main St<br>East Copper<br>Massachusetts<br>U S A<br>
MA 01516-113
</address>
```
The document loader currently returns:
```
'183 Main StEast CopperMassachusettsU S A MA 01516-113'
```
After this change, the document loader will return:
```
183 Main St East Copper Massachusetts U S A MA 01516-113
```
@eyurtsev would you prefer this to be an option that can be passed in?
# Reduce DB query error rate
If you use sql agent of `SQLDatabaseToolkit` to query data, it is prone
to errors in query fields and often uses fields that do not exist in
database tables for queries. However, the existing prompt does not
effectively make the agent aware that there are problems with the fields
they query. At this time, we urgently need to improve the prompt so that
the agent realizes that they have queried non-existent fields and allows
them to use the `schema_sql_db`, that is,` ListSQLDatabaseTool` first
queries the corresponding fields in the table in the database, and then
uses `QuerySQLDatabaseTool` for querying.
There is a demo of my project to show this problem.
**Original Agent**
```python
def create_mysql_kit():
db = SQLDatabase.from_uri("mysql+pymysql://xxxxxxx")
llm = OpenAI(temperature=0)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
agent_executor = create_sql_agent(
llm=OpenAI(temperature=0),
toolkit=toolkit,
verbose=True
)
agent_executor.run("Who are the users of sysuser in this system? Tell me the username of all users")
if __name__ == '__main__':
create_mysql_kit()
```
**original output**
```
> Entering new AgentExecutor chain...
Action: list_tables_sql_db
Action Input: ""
Observation: app_sysrole_menus, app_bimfacemodel, app_project_users, app_measuringpointdata, auth_user, auth_user_groups, django_apscheduler_djangojobexecution, app_project, app_elementpoint, django_apscheduler_djangojob, django_content_type, app_sysrole, django_admin_log, app_bimfaceaccount, app_measuringpoint_warning_thresholds, app_measuringpoint, app_company, auth_group_permissions, app_sysuser, app_sysuser_companies, app_sysmenu, app_datawarningthreshold, auth_group, auth_permission, app_datawarningrecord, auth_user_user_permissions, app_bimfaceaccount_bimface_models, django_migrations, app_measuringitem, django_session
Thought: I should query the app_sysuser table to get the users in the system.
Action: query_sql_db
Action Input: SELECT username FROM app_sysuser LIMIT 10;
Observation: Error: (pymysql.err.OperationalError) (1054, "Unknown column 'username' in 'field list'")
[SQL: SELECT username FROM app_sysuser LIMIT 10;]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Thought: I should double check my query before executing it.
Action: query_checker_sql_db
Action Input: SELECT username FROM app_sysuser LIMIT 10;
Observation:
SELECT username FROM app_sysuser LIMIT 10;
Thought: The query looks correct, so I should execute it.
Action: query_sql_db
Action Input: SELECT username FROM app_sysuser LIMIT 10;
Observation: Error: (pymysql.err.OperationalError) (1054, "Unknown column 'username' in 'field list'")
[SQL: SELECT username FROM app_sysuser LIMIT 10;]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Thought: I should double check my query before executing it.
Action: query_checker_sql_db
Action Input: SELECT name FROM app_sysuser LIMIT 10;
Observation:
SELECT name FROM app_sysuser LIMIT 10;
Thought: The query looks correct, so I should execute it.
Action: query_sql_db
Action Input: SELECT name FROM app_sysuser LIMIT 10;
Observation: Error: (pymysql.err.OperationalError) (1054, "Unknown column 'name' in 'field list'")
[SQL: SELECT name FROM app_sysuser LIMIT 10;]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Thought: I should double check my query before executing it.
Action: query_checker_sql_db
Action Input: SELECT id, username FROM app_sysuser LIMIT 10;
Observation:
SELECT id, username FROM app_sysuser LIMIT 10;
Thought: The query looks correct, so I should execute it.
Action: query_sql_db
Action Input: SELECT id, username FROM app_sysuser LIMIT 10;
Observation: Error: (pymysql.err.OperationalError) (1054, "Unknown column 'id' in 'field list'")
[SQL: SELECT id, username FROM app_sysuser LIMIT 10;]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Thought: I should double check my query before executing it.
Action: query_checker_sql_db
Action Input: SELECT user_id, username FROM app_sysuser LIMIT 10;
Observation:
SELECT user_id, username FROM app_sysuser WHERE user_id IS NOT NULL AND user_id BETWEEN 0 AND 10 UNION ALL SELECT user_id, username FROM app_sysuser WHERE username IS NOT NULL ORDER BY user_id ASC LIMIT 10;
Thought: The query looks correct, so I should execute it.
Action: query_sql_db
Action Input: SELECT user_id, username FROM app_sysuser WHERE user_id IS NOT NULL AND user_id BETWEEN 0 AND 10 UNION ALL SELECT user_id, username FROM app_sysuser WHERE username IS NOT NULL ORDER BY user_id ASC LIMIT 10;
Observation: Error: (pymysql.err.OperationalError) (1054, "Unknown column 'username' in 'field list'")
[SQL: SELECT user_id, username FROM app_sysuser WHERE user_id IS NOT NULL AND user_id BETWEEN 0 AND 10 UNION ALL SELECT user_id, username FROM app_sysuser WHERE username IS NOT NULL ORDER BY user_id ASC LIMIT 10;]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Thought: I should double check my query before executing it.
Action: query_checker_sql_db
Action Input: SELECT user_id, user_name FROM app_sysuser LIMIT 10;
Observation:
SELECT user_id, user_name FROM app_sysuser WHERE user_id NOT IN (NULL) AND user_name BETWEEN 'A' AND 'Z' UNION ALL SELECT user_id, user_name FROM app_sysuser WHERE user_id IS NOT NULL AND user_name LIKE '%a%' LIMIT 10;
Thought: The query looks correct, so I should execute it.
Action: query_sql_db
Action Input: SELECT user_id, user_name FROM app_sysuser WHERE user_id NOT IN (NULL) AND user_name BETWEEN 'A' AND 'Z' UNION ALL SELECT user_id, user_name FROM app_sysuser WHERE user_id IS NOT NULL AND user_name LIKE '%a%' LIMIT 10;
Observation: []
Thought: I now know the final answer.
Final Answer: There are no users in the sysuser table.
> Finished chain.
Process finished with exit code 0
```
As you can see, agent always use incorrect sql to query the data.
Actually, the username field name of my `app_sysuser` table is
`user_name`, not the `username` believed by the agent.
**Optimized agent output**
```
> Entering new AgentExecutor chain...
Action: list_tables_sql_db
Action Input: ""
Observation: app_project_users, django_content_type, app_measuringpoint_warning_thresholds, app_bimfaceaccount_bimface_models, django_session, app_sysuser, django_migrations, app_bimfacemodel, app_elementpoint, app_measuringpoint, django_apscheduler_djangojobexecution, auth_permission, app_sysuser_companies, app_measuringpointdata, app_measuringitem, app_sysrole_menus, django_admin_log, auth_group, django_apscheduler_djangojob, app_sysmenu, app_project, app_bimfaceaccount, app_datawarningthreshold, app_datawarningrecord, auth_user_groups, auth_user_user_permissions, auth_group_permissions, auth_user, app_company, app_sysrole
Thought: I should query the app_sysuser table to get the usernames of all the users.
Action: query_sql_db
Action Input: SELECT username FROM app_sysuser
Observation: Error: (pymysql.err.OperationalError) (1054, "Unknown column 'username' in 'field list'")
[SQL: SELECT username FROM app_sysuser]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
Thought: I should use the schema_sql_db tool to get the correct table fields.
Action: schema_sql_db
Action Input: app_sysuser
Observation:
CREATE TABLE app_sysuser (
user_id INTEGER NOT NULL AUTO_INCREMENT,
user_account VARCHAR(50) COLLATE utf8mb4_general_ci NOT NULL,
user_password VARCHAR(255) COLLATE utf8mb4_general_ci NOT NULL,
user_name VARCHAR(50) COLLATE utf8mb4_general_ci NOT NULL,
user_avatar VARCHAR(255) COLLATE utf8mb4_general_ci,
user_email VARCHAR(254) COLLATE utf8mb4_general_ci,
user_phone VARCHAR(20) COLLATE utf8mb4_general_ci,
user_create_time DATETIME(6) NOT NULL,
user_update_time DATETIME(6) NOT NULL,
user_status SMALLINT,
role_id_id INTEGER,
PRIMARY KEY (user_id),
CONSTRAINT app_sysuser_role_id_id_51b50f39_fk_app_sysrole_role_id FOREIGN KEY(role_id_id) REFERENCES app_sysrole (role_id)
)COLLATE utf8mb4_general_ci DEFAULT CHARSET=utf8mb4 ENGINE=InnoDB
/*
3 rows from app_sysuser table:
user_id user_account user_password user_name user_avatar user_email user_phone user_create_time user_update_time user_status role_id_id
xxxxxxxxxxxxxx
*/
Thought: I should query the app_sysuser table to get the usernames of all the users.
Action: query_sql_db
Action Input: SELECT user_account FROM app_sysuser LIMIT 10
Observation: [('baiyun',), ('eatrice',), ('lisi',), ('pingxiang',), ('wangwu',), ('zeeland',), ('zsj',), ('zzw',)]
Thought: I now know the final answer
Final Answer: The usernames of the users in the sysuser table are baiyun, eatrice, lisi, pingxiang, wangwu, zeeland, zsj, and zzw.
> Finished chain.
Process finished with exit code 0
```
I have tested about 10 related prompts and they all work properly, with
a much lower error rate compared to before
## Who can review?
@vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# minor refactor of GenerativeAgentMemory
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
- refactor `format_memories_detail` to be more reusable
- modified prompts for getting topics for reflection and for generating
insights
- update `characters.ipynb` to reflect changes
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@vowelparrot
@hwchase17
@dev2049
# docs: modules pages simplified
Fixied #5627 issue
Merged several repetitive sections in the `modules` pages. Some texts,
that were hard to understand, were also simplified.
## Who can review?
@hwchase17
@dev2049
# Fixed multi input prompt for MapReduceChain
Added `kwargs` support for inner chains of `MapReduceChain` via
`from_params` method
Currently the `from_method` method of intialising `MapReduceChain` chain
doesn't work if prompt has multiple inputs. It happens because it uses
`StuffDocumentsChain` and `MapReduceDocumentsChain` underneath, both of
them require specifying `document_variable_name` if `prompt` of their
`llm_chain` has more than one `input`.
With this PR, I have added support for passing their respective `kwargs`
via the `from_params` method.
## Fixes https://github.com/hwchase17/langchain/issues/4752
## Who can review?
@dev2049 @hwchase17 @agola11
---------
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
# Unstructured Excel Loader
Adds an `UnstructuredExcelLoader` class for `.xlsx` and `.xls` files.
Works with `unstructured>=0.6.7`. A plain text representation of the
Excel file will be available under the `page_content` attribute in the
doc. If you use the loader in `"elements"` mode, an HTML representation
of the Excel file will be available under the `text_as_html` metadata
key. Each sheet in the Excel document is its own document.
### Testing
```python
from langchain.document_loaders import UnstructuredExcelLoader
loader = UnstructuredExcelLoader(
"example_data/stanley-cups.xlsx",
mode="elements"
)
docs = loader.load()
```
## Who can review?
@hwchase17
@eyurtsev
# fix for the import issue
Added document loader classes from [`figma`, `iugu`, `onedrive_file`] to
`document_loaders/__inti__.py` imports
Also sorted `__all__`
Fixed#5623 issue
# Chroma update_document full document embeddings bugfix
Chroma update_document takes a single document, but treats the
page_content sting of that document as a list when getting the new
document embedding.
This is a two-fold problem, where the resulting embedding for the
updated document is incorrect (it's only an embedding of the first
character in the new page_content) and it calls the embedding function
for every character in the new page_content string, using many tokens in
the process.
Fixes#5582
Co-authored-by: Caleb Ellington <calebellington@Calebs-MBP.hsd1.ca.comcast.net>
# Fix Qdrant ids creation
There has been a bug in how the ids were created in the Qdrant vector
store. They were previously calculated based on the texts. However,
there are some scenarios in which two documents may have the same piece
of text but different metadata, and that's a valid case. Deduplication
should be done outside of insertion.
It has been fixed and covered with the integration tests.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Create elastic_vector_search.ElasticKnnSearch class
This extends `langchain/vectorstores/elastic_vector_search.py` by adding
a new class `ElasticKnnSearch`
Features:
- Allow creating an index with the `dense_vector` mapping compataible
with kNN search
- Store embeddings in index for use with kNN search (correct mapping
creates HNSW data structure)
- Perform approximate kNN search
- Perform hybrid BM25 (`query{}`) + kNN (`knn{}`) search
- perform knn search by either providing a `query_vector` or passing a
hosted `model_id` to use query_vector_builder to automatically generate
a query_vector at search time
Connection options
- Using `cloud_id` from Elastic Cloud
- Passing elasticsearch client object
search options
- query
- k
- query_vector
- model_id
- size
- source
- knn_boost (hybrid search)
- query_boost (hybrid search)
- fields
This also adds examples to
`docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb`
Fixes # [5346](https://github.com/hwchase17/langchain/issues/5346)
cc: @dev2049
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Fixes SQLAlchemy truncating the result if you have a big/text column
with many chars.
SQLAlchemy truncates columns if you try to convert a Row or Sequence to
a string directly
For comparison:
- Before:
```[('Harrison', 'That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio ... (2 characters truncated) ... hat is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio That is my Bio ')]```
- After:
```[('Harrison', 'That is my Bio That is my Bio That is my Bio That is
my Bio That is my Bio That is my Bio That is my Bio That is my Bio That
is my Bio That is my Bio That is my Bio That is my Bio That is my Bio
That is my Bio That is my Bio That is my Bio That is my Bio That is my
Bio That is my Bio That is my Bio ')]```
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
I'm not sure who to tag for chains, maybe @vowelparrot ?
# Lint sphinx documentation and fix broken links
This PR lints multiple warnings shown in generation of the project
documentation (using "make docs_linkcheck" and "make docs_build").
Additionally documentation internal links to (now?) non-existent files
are modified to point to existing documents as it seemed the new correct
target.
The documentation is not updated content wise.
There are no source code changes.
Fixes # (issue)
- broken documentation links to other files within the project
- sphinx formatting (linting)
## Before submitting
No source code changes, so no new tests added.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
the api which create index or search in the elasticsearch below 8.x is
different with 8.x. When use the es which below 8.x , it will throw
error. I fix the problem
Co-authored-by: gaofeng27692 <gaofeng27692@hundsun.com>
Corrects a spelling error (of the word separator) in several variable
names. Three cut/paste instances of this were corrected, amidst
instances of it also being named properly, which would likely would lead
to issues for someone in the future.
Here is one such example:
```
seperators = self.get_separators_for_language(Language.PYTHON)
super().__init__(separators=seperators, **kwargs)
```
becomes
```
separators = self.get_separators_for_language(Language.PYTHON)
super().__init__(separators=separators, **kwargs)
```
Make test results below:
```
============================== 708 passed, 52 skipped, 27 warnings in 11.70s ==============================
```
# docs: `ecosystem_integrations` update 3
Next cycle of updating the `ecosystem/integrations`
* Added an integration `template` file
* Added missed integration files
* Fixed several document_loaders/notebooks
## Who can review?
Is it possible to assign somebody to review PRs on docs? Thanks.
# Make BaseEntityStore inherit from BaseModel
This enables initializing InMemoryEntityStore by optionally passing in a
value for the store field.
## Who can review?
It's a small change so I think any of the reviewers can review, but
tagging @dev2049 who seems most relevant since the change relates to
Memory.
Similar to #1813 for faiss, this PR is to extend functionality to pass
text and its vector pair to initialize and add embeddings to the
PGVector wrapper.
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @dev2049
# Fix wrong class instantiation in docs MMR example
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
When looking at the Maximal Marginal Relevance ExampleSelector example
at
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html,
I noticed that there seems to be an error. Initially, the
`MaxMarginalRelevanceExampleSelector` class is used as an
`example_selector` argument to the `FewShotPromptTemplate` class. Then,
according to the text, a comparison is made to regular similarity
search. However, the `FewShotPromptTemplate` still uses the
`MaxMarginalRelevanceExampleSelector` class, so the output is the same.
To fix it, I added an instantiation of the
`SemanticSimilarityExampleSelector` class, because this seems to be what
is intended.
## Who can review?
@hwchase17
# Replace loop appends with list comprehension.
It's significantly faster because it avoids repeated method lookup. It's
also more idiomatic and readable.
# Replace list comprehension with generator.
Since these strings can be fairly long, it's best to not construct
unnecessary temporary list just to pass it to `join`. Generators produce
items one-by-one and even though they are slightly more expensive than
lists in terms of CPU they are much more memory-friendly and slightly
more readable.
# Update Unstructured docs to remove the `detectron2` install
instructions
Removes `detectron2` installation instructions from the Unstructured
docs because installing `detectron2` is no longer required for
`unstructured>=0.7.0`. The `detectron2` model now runs using the ONNX
runtime.
## Who can review?
@hwchase17
@eyurtsev
# Add Managed Motorhead
This change enabled MotorheadMemory to utilize Metal's managed version
of Motorhead. We can easily enable this by passing in a `api_key` and
`client_id` in order to hit the managed url and access the memory api on
Metal.
Twitter: [@softboyjimbo](https://twitter.com/softboyjimbo)
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049 @hwchase17
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Skips creating boto client if passed in constructor
Current LLM and Embeddings class always creates a new boto client, even
if one is passed in a constructor. This blocks certain users from
passing in externally created boto clients, for example in SSO
authentication.
## Who can review?
@hwchase17
@jasondotparse
@rsgrewal-aws
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# added DeepLearing.AI course link
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
not @hwchase17 - hehe
# Added support for download GPT4All model if does not exist
I've include the class attribute `allow_download` to the GPT4All class.
By default, `allow_download` is set to False.
## Changes Made
- Added a new attribute `allow_download` to the GPT4All class.
- Updated the `validate_environment` method to pass the `allow_download`
parameter to the GPT4All model constructor.
## Context
This change provides more control over model downloading in the GPT4All
class. Previously, if the model file was not found in the cache
directory `~/.cache/gpt4all/`, the package returned error "Failed to
retrieve model (type=value_error)". Now, if `allow_download` is set as
True then it will use GPT4All package to download it . With the addition
of the `allow_download` attribute, users can now choose whether the
wrapper is allowed to download the model or not.
## Dependencies
There are no new dependencies introduced by this change. It only
utilizes existing functionality provided by the GPT4All package.
## Testing
Since this is a minor change to the existing behavior, the existing test
suite for the GPT4All package should cover this scenario
Co-authored-by: Vokturz <victornavarrrokp47@gmail.com>
# Bedrock LLM and Embeddings
This PR adds a new LLM and an Embeddings class for the
[Bedrock](https://aws.amazon.com/bedrock) service. The PR also includes
example notebooks for using the LLM class in a conversation chain and
embeddings usage in creating an embedding for a query and document.
**Note**: AWS is doing a private release of the Bedrock service on
05/31/2023; users need to request access and added to an allowlist in
order to start using the Bedrock models and embeddings. Please use the
[Bedrock Home Page](https://aws.amazon.com/bedrock) to request access
and to learn more about the models available in Bedrock.
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# Support Qdrant filters
Qdrant has an [extensive filtering
system](https://qdrant.tech/documentation/concepts/filtering/) with rich
type support. This PR makes it possible to use the filters in Langchain
by passing an additional param to both the
`similarity_search_with_score` and `similarity_search` methods.
## Who can review?
@dev2049 @hwchase17
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds a new method `from_es_connection` to the
`ElasticsearchEmbeddings` class allowing users to use Elasticsearch
clusters outside of Elastic Cloud.
Users can create an Elasticsearch Client object and pass that to the new
function.
The returned object is identical to the one returned by calling
`from_credentials`
```
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=['https://es_cluster_url:port'],
basic_auth=('user', 'password')
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
```
I also added examples to the elasticsearch jupyter notebook
Fixes # https://github.com/hwchase17/langchain/issues/5239
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added support for modifying the number of threads in the GPT4All model
I have added the capability to modify the number of threads used by the
GPT4All model. This allows users to adjust the model's parallel
processing capabilities based on their specific requirements.
## Changes Made
- Updated the `validate_environment` method to set the number of threads
for the GPT4All model using the `values["n_threads"]` parameter from the
`GPT4All` class constructor.
## Context
Useful in scenarios where users want to optimize the model's performance
by leveraging multi-threading capabilities.
Please note that the `n_threads` parameter was included in the `GPT4All`
class constructor but was previously unused. This change ensures that
the specified number of threads is utilized by the model .
## Dependencies
There are no new dependencies introduced by this change. It only
utilizes existing functionality provided by the GPT4All package.
## Testing
Since this is a minor change testing is not required.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
when the LLMs output 'yes|no',BooleanOutputParser can parse it to
'True|False', fix the ValueError in parse().
<!--
when use the BooleanOutputParser in the chain_filter.py, the LLMs output
'yes|no',the function 'parse' will throw ValueError。
-->
Fixes # (issue)
#5396https://github.com/hwchase17/langchain/issues/5396
---------
Co-authored-by: gaofeng27692 <gaofeng27692@hundsun.com>
# Adds ability to specify credentials when using Google BigQuery as a
data loader
Fixes#5465 . Adds ability to set credentials which must be of the
`google.auth.credentials.Credentials` type. This argument is optional
and will default to `None.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add maximal relevance search to SKLearnVectorStore
This PR implements the maximum relevance search in SKLearnVectorStore.
Twitter handle: jtolgyesi (I submitted also the original implementation
of SKLearnVectorStore)
## Before submitting
Unit tests are included.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Update [psychicapi](https://pypi.org/project/psychicapi/) python package
dependency to the latest version 0.5. The newest python package version
addresses breaking changes in the Psychic http api.
# Add batching to Qdrant
Several people requested a batching mechanism while uploading data to
Qdrant. It is important, as there are some limits for the maximum size
of the request payload, and without batching implemented in Langchain,
users need to implement it on their own. This PR exposes a new optional
`batch_size` parameter, so all the documents/texts are loaded in batches
of the expected size (64, by default).
The integration tests of Qdrant are extended to cover two cases:
1. Documents are sent in separate batches.
2. All the documents are sent in a single request.
# Added Async _acall to FakeListLLM
FakeListLLM is handy when unit testing apps built with langchain. This
allows the use of FakeListLLM inside concurrent code with
[asyncio](https://docs.python.org/3/library/asyncio.html).
I also changed the pydocstring which was out of date.
## Who can review?
@hwchase17 - project lead
@agola11 - async
# Handles the edge scenario in which the action input is a well formed
SQL query which ends with a quoted column
There may be a cleaner option here (or indeed other edge scenarios) but
this seems to robustly determine if the action input is likely to be a
well formed SQL query in which we don't want to arbitrarily trim off `"`
characters
Fixes#5423
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Agents / Tools / Toolkits
- @vowelparrot
# What does this PR do?
Bring support of `encode_kwargs` for ` HuggingFaceInstructEmbeddings`,
change the docstring example and add a test to illustrate with
`normalize_embeddings`.
Fixes#3605
(Similar to #3914)
Use case:
```python
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
```
This removes duplicate code presumably introduced by a cut-and-paste
error, spotted while reviewing the code in
```langchain/client/langchain.py```. The original code had back to back
occurrences of the following code block:
```
response = self._get(
path,
params=params,
)
raise_for_status_with_text(response)
```
As the title says, I added more code splitters.
The implementation is trivial, so i don't add separate tests for each
splitter.
Let me know if any concerns.
Fixes # (issue)
https://github.com/hwchase17/langchain/issues/5170
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @hwchase17
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
# Creates GitHubLoader (#5257)
GitHubLoader is a DocumentLoader that loads issues and PRs from GitHub.
Fixes#5257
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added New Trello loader class and documentation
Simple Loader on top of py-trello wrapper.
With a board name you can pull cards and to do some field parameter
tweaks on load operation.
I included documentation and examples.
Included unit test cases using patch and a fixture for py-trello client
class.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add ToolException that a tool can throw
This is an optional exception that tool throws when execution error
occurs.
When this exception is thrown, the agent will not stop working,but will
handle the exception according to the handle_tool_error variable of the
tool,and the processing result will be returned to the agent as
observation,and printed in pink on the console.It can be used like this:
```python
from langchain.schema import ToolException
from langchain import LLMMathChain, SerpAPIWrapper, OpenAI
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
class Error_tool:
def run(self, s: str):
raise ToolException('The current search tool is not available.')
def handle_tool_error(error) -> str:
return "The following errors occurred during tool execution:"+str(error)
search_tool1 = Error_tool()
search_tool2 = SerpAPIWrapper()
tools = [
Tool.from_function(
func=search_tool1.run,
name="Search_tool1",
description="useful for when you need to answer questions about current events.You should give priority to using it.",
handle_tool_error=handle_tool_error,
),
Tool.from_function(
func=search_tool2.run,
name="Search_tool2",
description="useful for when you need to answer questions about current events",
return_direct=True,
)
]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True,
handle_tool_errors=handle_tool_error)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
```

## Who can review?
- @vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# docs: ecosystem/integrations update
It is the first in a series of `ecosystem/integrations` updates.
The ecosystem/integrations list is missing many integrations.
I'm adding the missing integrations in a consistent format:
1. description of the integrated system
2. `Installation and Setup` section with 'pip install ...`, Key setup,
and other necessary settings
3. Sections like `LLM`, `Text Embedding Models`, `Chat Models`... with
links to correspondent examples and imports of the used classes.
This PR keeps new docs, that are presented in the
`docs/modules/models/text_embedding/examples` but missed in the
`ecosystem/integrations`. The next PRs will cover the next example
sections.
Also updated `integrations.rst`: added the `Dependencies` section with a
link to the packages used in LangChain.
## Who can review?
@hwchase17
@eyurtsev
@dev2049
# docs: ecosystem/integrations update 2
#5219 - part 1
The second part of this update (parts are independent of each other! no
overlap):
- added diffbot.md
- updated confluence.ipynb; added confluence.md
- updated college_confidential.md
- updated openai.md
- added blackboard.md
- added bilibili.md
- added azure_blob_storage.md
- added azlyrics.md
- added aws_s3.md
## Who can review?
@hwchase17@agola11
@agola11
@vowelparrot
@dev2049
# Implemented appending arbitrary messages to the base chat message
history, the in-memory and cosmos ones.
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
As discussed this is the alternative way instead of #4480, with a
add_message method added that takes a BaseMessage as input, so that the
user can control what is in the base message like kwargs.
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Removed deprecated llm attribute for load_chain
Currently `load_chain` for some chain types expect `llm` attribute to be
present but `llm` is deprecated attribute for those chains and might not
be persisted during their `chain.save`.
Fixes#5224
[(issue)](https://github.com/hwchase17/langchain/issues/5224)
## Who can review?
@hwchase17
@dev2049
---------
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
# Update llamacpp demonstration notebook
Add instructions to install with BLAS backend, and update the example of
model usage.
Fixes#5071. However, it is more like a prevention of similar issues in
the future, not a fix, since there was no problem in the framework
functionality
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
# Fix for `update_document` Function in Chroma
## Summary
This pull request addresses an issue with the `update_document` function
in the Chroma class, as described in
[#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947).
The issue was identified as an `AttributeError` raised when calling
`update_document` due to a missing corresponding method in the
`Collection` object. This fix refactors the `update_document` method in
`Chroma` to correctly interact with the `Collection` object.
## Changes
1. Fixed the `update_document` method in the `Chroma` class to correctly
call methods on the `Collection` object.
2. Added the corresponding test `test_chroma_update_document` in
`tests/integration_tests/vectorstores/test_chroma.py` to reflect the
updated method call.
3. Added an example and explanation of how to use the `update_document`
function in the Jupyter notebook tutorial for Chroma.
## Test Plan
All existing tests pass after this change. In addition, the
`test_chroma_update_document` test case now correctly checks the
functionality of `update_document`, ensuring that the function works as
expected and updates the content of documents correctly.
## Reviewers
@dev2049
This fix will ensure that users are able to use the `update_document`
function as expected, without encountering the previous
`AttributeError`. This will enhance the usability and reliability of the
Chroma class for all users.
Thank you for considering this pull request. I look forward to your
feedback and suggestions.
# Add async support for (LLM) routing chains
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Add asynchronous LLM calls support for the routing chains. More
specifically:
- Add async `aroute` function (i.e. async version of `route`) to the
`RouterChain` which calls the routing LLM asynchronously
- Implement the async `_acall` for the `LLMRouterChain`
- Implement the async `_acall` function for `MultiRouteChain` which
first calls asynchronously the routing chain with its new `aroute`
function, and then calls asynchronously the relevant destination chain.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
- @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Async
- @agola11
-->
# Fix lost mimetype when using Blob.from_data method
The mimetype is lost due to a typo in the class attribue name
Fixes # - (no issue opened but I can open one if needed)
## Changes
* Fixed typo in name
* Added unit-tests to validate the output Blob
## Review
@eyurtsev
We shouldn't be calling a constructor for a default value - should use
default_factory instead. This is especially ad in this case since it
requires an optional dependency and an API key to be set.
Resolves#5361
# Fix: Handle empty documents in ContextualCompressionRetriever (Issue
#5304)
Fixes#5304
Prevent cohere.error.CohereAPIError caused by an empty list of documents
by adding a condition to check if the input documents list is empty in
the compress_documents method. If the list is empty, return an empty
list immediately, avoiding the error and unnecessary processing.
@dev2049
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add path validation to DirectoryLoader
This PR introduces a minor adjustment to the DirectoryLoader by adding
validation for the path argument. Previously, if the provided path
didn't exist or wasn't a directory, DirectoryLoader would return an
empty document list due to the behavior of the `glob` method. This could
potentially cause confusion for users, as they might expect a
file-loading error instead.
So, I've added two validations to the load method of the
DirectoryLoader:
- Raise a FileNotFoundError if the provided path does not exist
- Raise a ValueError if the provided path is not a directory
Due to the relatively small scope of these changes, a new issue was not
created.
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev
# Remove re-use of iter within add_embeddings causing error
As reported in https://github.com/hwchase17/langchain/issues/5336 there
is an issue currently involving the atempted re-use of an iterator
within the FAISS vectorstore adapter
Fixes # https://github.com/hwchase17/langchain/issues/5336
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
2023-05-28 09:59:30 -07:00
3352 changed files with 248589 additions and 123127 deletions
This project includes a [dev container](https://containers.dev/), which lets you use a container as a full-featured dev environment.
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
## GitHub Codespaces
[](https://codespaces.new/hwchase17/langchain)
You may use the button above, or follow these steps to open this repo in a Codespace:
1. Click the **Code** drop-down menu at the top of https://github.com/hwchase17/langchain.
1. Click on the **Codespaces** tab.
1. Click **Create codespace on master** .
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).
2. Open a locally cloned copy of the code:
- Clone this repository to your local filesystem.
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
- Select the cloned copy of this folder, wait for the container to start, and try things out!
You can learn more in the [Dev Containers documentation](https://code.visualstudio.com/docs/devcontainers/containers).
## Tips and tricks
* If you are working with the same repository folder in a container and Windows, you'll want consistent line endings (otherwise you may see hundreds of changes in the SCM view). The `.gitattributes` file in the root of this repo will disable line ending conversion and should prevent this. See [tips and tricks](https://code.visualstudio.com/docs/devcontainers/tips-and-tricks#_resolving-git-line-ending-issues-in-containers-resulting-in-many-modified-files) for more info.
* If you'd like to review the contents of the image used in this dev container, you can check it out in the [devcontainers/images](https://github.com/devcontainers/images/tree/main/src/python) repo.
@@ -59,6 +59,8 @@ we do not want these to get in the way of getting good code into the codebase.
## 🚀 Quick Start
> **Note:** You can run this repository locally (which is described below) or in a [development container](https://containers.dev/) (which is described in the [.devcontainer folder](https://github.com/hwchase17/langchain/tree/master/.devcontainer)).
This project uses [Poetry](https://python-poetry.org/) as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
@@ -67,6 +69,14 @@ This project uses [Poetry](https://python-poetry.org/) as a dependency manager.
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
There are two separate projects in this repository:
-`langchain`: core langchain code, abstractions, and use cases
-`langchain.experimental`: more experimental code
Each of these has their OWN development environment.
In order to run any of the commands below, please move into their respective directories.
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
To install requirements:
```bash
@@ -93,6 +103,14 @@ To run formatting for this project:
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
make format_diff
```
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
@@ -103,8 +121,42 @@ To run linting for this project:
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
make lint_diff
```
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
To check spelling for this project:
```bash
make spell_check
```
To fix spelling in place:
```bash
make spell_fix
```
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
@@ -204,32 +256,43 @@ When you run `poetry install`, the `langchain` package is installed as editable
## Documentation
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
This covers how to get started contributing to documentation.
### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
The docs directory contains Documentation and API Reference.
Documentation is built using [Docusaurus 2](https://docusaurus.io/).
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
make api_docs_clean
```
Next, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
```
Finally, you can build the documentation as outlined below:
Next, you can build the documentation as outlined below:
```bash
make docs_build
make api_docs_build
```
Finally, you can run the linkchecker to make sure all links are valid:
Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution.
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change.
Please make sure you're PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost.
-->
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use.
<!-- Remove if not applicable -->
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
-@agola11
Async
-@agola11
DataLoaders
-@eyurtsev
Models
-@hwchase17
-@agola11
Agents / Tools / Toolkits
-@vowelparrot
VectorStores / Retrievers / Memory
-@dev2049
See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[](https://codespaces.new/hwchase17/langchain)
[](https://star-history.com/#hwchase17/langchain)
@@ -84,7 +94,7 @@ Memory refers to persisting state between calls of a chain/agent. LangChain prov
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our [full documentation](https://langchain.readthedocs.io/en/latest/).
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
When you first access the UI, you should see a page with your tracing sessions.
An initial one "default" should already be created for you.
A session is just a way to group traces together.
If you click on a session, it will take you to a page with no recorded traces that says "No Runs."
You can create a new session with the new session form.

If we click on the `default` session, we can see that to start we have no traces stored.

If we now start running chains and agents with tracing enabled, we will see data show up here.
To do so, we can run [this notebook](../tracing/agent_with_tracing.ipynb) as an example.
After running it, we will see an initial trace show up.

From here we can explore the trace at a high level by clicking on the arrow to show nested runs.
We can keep on clicking further and further down to explore deeper and deeper.

We can also click on the "Explore" button of the top level run to dive even deeper.
Here, we can see the inputs and outputs in full, as well as all the nested traces.

We can keep on exploring each of these nested traces in more detail.
For example, here is the lowest level trace with the exact inputs/outputs to the LLM.

## Changing Sessions
1. To initially record traces to a session other than `"default"`, you can set the `LANGCHAIN_SESSION` environment variable to the name of the session you want to record to:
```python
importos
os.environ["LANGCHAIN_TRACING"]="true"
os.environ["LANGCHAIN_SESSION"]="my_session"# Make sure this session actually exists. You can create a new session in the UI.
```
2. To switch sessions mid-script or mid-notebook, do NOT set the `LANGCHAIN_SESSION` environment variable. Instead: `langchain.set_tracing_callback_manager(session_name="my_session")`
### Introduction to LangChain with Harrison Chase, creator of LangChain
- [Building the Future with LLMs, `LangChain`, & `Pinecone`](https://youtu.be/nMniwlGyX-c) by [Pinecone](https://www.youtube.com/@pinecone-io)
- [LangChain and Weaviate with Harrison Chase and Bob van Luijt - Weaviate Podcast #36](https://youtu.be/lhby7Ql7hbk) by [Weaviate • Vector Database](https://www.youtube.com/@Weaviate)
- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@FullStackDeepLearning)
- [LangChain Agents: Build Personal Assistants For Your Data (Q&A with Harrison Chase and Mayo Oshin)](https://youtu.be/gVkF8cwfBLI) by [Chat with data](https://www.youtube.com/@chatwithdata)
- ⛓️ [LangChain "Agents in Production" Webinar](https://youtu.be/k8GNCCs16F4) by [LangChain](https://www.youtube.com/@LangChain)
## Videos (sorted by views)
- [Building AI LLM Apps with LangChain (and more?) - LIVE STREAM](https://www.youtube.com/live/M-2Cj_2fzWI?feature=share) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
- [First look - `ChatGPT` + `WolframAlpha` (`GPT-3.5` and Wolfram|Alpha via LangChain by James Weaver)](https://youtu.be/wYGbY811oMo) by [Dr Alan D. Thompson](https://www.youtube.com/@DrAlanDThompson)
- [LangChain explained - The hottest new Python framework](https://youtu.be/RoR4XJw8wIc) by [AssemblyAI](https://www.youtube.com/@AssemblyAI)
- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
- [Build your own LLM Apps with LangChain & `GPT-Index`](https://youtu.be/-75p09zFUJY) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [`BabyAGI` - New System of Autonomous AI Agents with LangChain](https://youtu.be/lg3kJvf1kXo) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [Run `BabyAGI` with Langchain Agents (with Python Code)](https://youtu.be/WosPGHPObx8) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [How to Use Langchain With `Zapier` | Write and Send Email with GPT-3 | OpenAI API Tutorial](https://youtu.be/p9v2-xEa9A0) by [StarMorph AI](https://www.youtube.com/@starmorph)
- [Use Your Locally Stored Files To Get Response From GPT - `OpenAI` | Langchain | Python](https://youtu.be/NC1Ni9KS-rk) by [Shweta Lodha](https://www.youtube.com/@shweta-lodha)
- [`Langchain JS` | How to Use GPT-3, GPT-4 to Reference your own Data | `OpenAI Embeddings` Intro](https://youtu.be/veV2I-NEjaM) by [StarMorph AI](https://www.youtube.com/@starmorph)
- [The easiest way to work with large language models | Learn LangChain in 10min](https://youtu.be/kmbS6FDQh7c) by [Sophia Yang](https://www.youtube.com/@SophiaYangDS)
- [4 Autonomous AI Agents: “Westworld” simulation `BabyAGI`, `AutoGPT`, `Camel`, `LangChain`](https://youtu.be/yWbnH6inT_U) by [Sophia Yang](https://www.youtube.com/@SophiaYangDS)
- [AI CAN SEARCH THE INTERNET? Langchain Agents + OpenAI ChatGPT](https://youtu.be/J-GL0htqda8) by [tylerwhatsgood](https://www.youtube.com/@tylerwhatsgood)
- [Query Your Data with GPT-4 | Embeddings, Vector Databases | Langchain JS Knowledgebase](https://youtu.be/jRnUPUTkZmU) by [StarMorph AI](https://www.youtube.com/@starmorph)
- [`Weaviate` + LangChain for LLM apps presented by Erika Cardenas](https://youtu.be/7AGj4Td5Lgw) by [`Weaviate` • Vector Database](https://www.youtube.com/@Weaviate)
- [Langchain Overview — How to Use Langchain & `ChatGPT`](https://youtu.be/oYVYIq0lOtI) by [Python In Office](https://www.youtube.com/@pythoninoffice6568)
- [Langchain Overview - How to Use Langchain & `ChatGPT`](https://youtu.be/oYVYIq0lOtI) by [Python In Office](https://www.youtube.com/@pythoninoffice6568)
- [Custom langchain Agent & Tools with memory. Turn any `Python function` into langchain tool with Gpt 3](https://youtu.be/NIG8lXk0ULg) by [echohive](https://www.youtube.com/@echohive)
- [LangChain: Run Language Models Locally - `Hugging Face Models`](https://youtu.be/Xxxuw4_iCzw) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- [`ChatGPT` with any `YouTube` video using langchain and `chromadb`](https://youtu.be/TQZfB2bzVwU) by [echohive](https://www.youtube.com/@echohive)
- [How to Talk to a `PDF` using LangChain and `ChatGPT`](https://youtu.be/v2i1YDtrIwk) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@merksworld)
- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nick_daigs)
- [LangChain. Crear aplicaciones Python impulsadas por GPT](https://youtu.be/DkW_rDndts8) by [Jesús Conde](https://www.youtube.com/@0utKast)
- [Easiest Way to Use GPT In Your Products | LangChain Basics Tutorial](https://youtu.be/fLy0VenZyGc) by [Rachel Woods](https://www.youtube.com/@therachelwoods)
- [`BabyAGI` + `GPT-4` Langchain Agent with Internet Access](https://youtu.be/wx1z_hs5P6E) by [tylerwhatsgood](https://www.youtube.com/@tylerwhatsgood)
- [Learning LLM Agents. How does it actually work? LangChain, AutoGPT & OpenAI](https://youtu.be/mb_YAABSplk) by [Arnoldas Kemeklis](https://www.youtube.com/@processusAI)
- [Get Started with LangChain in `Node.js`](https://youtu.be/Wxx1KUWJFv4) by [Developers Digest](https://www.youtube.com/@DevelopersDigest)
- [LangChain + `OpenAI` tutorial: Building a Q&A system w/ own text data](https://youtu.be/DYOU_Z0hAwo) by [Samuel Chan](https://www.youtube.com/@SamuelChan)
- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@merksworld)
- [Connecting the Internet with `ChatGPT` (LLMs) using Langchain And Answers Your Questions](https://youtu.be/9Y0TBC63yZg) by [Kamalraj M M](https://www.youtube.com/@insightbuilder)
- [Build More Powerful LLM Applications for Business’s with LangChain (Beginners Guide)](https://youtu.be/sp3-WLKEcBg) by[ No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- ⛓️ [LangFlow LLM Agent Demo for 🦜🔗LangChain](https://youtu.be/zJxDHaWt-6o) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
- ⛓️ [Chatbot Factory: Streamline Python Chatbot Creation with LLMs and Langchain](https://youtu.be/eYer3uzrcuM) by [Finxter](https://www.youtube.com/@CobusGreylingZA)
- ⛓️ [LangChain Tutorial - ChatGPT mit eigenen Daten](https://youtu.be/0XDLyY90E2c) by [Coding Crashkurse](https://www.youtube.com/@codingcrashkurse6429)
- ⛓️ [Chat with a `CSV` | LangChain Agents Tutorial (Beginners)](https://youtu.be/tjeti5vXWOU) by [GoDataProf](https://www.youtube.com/@godataprof)
- ⛓️ [Introdução ao Langchain - #Cortes - Live DataHackers](https://youtu.be/fw8y5VRei5Y) by [Prof. João Gabriel Lima](https://www.youtube.com/@profjoaogabriellima)
- ⛓️ [LangChain: Level up `ChatGPT` !? | LangChain Tutorial Part 1](https://youtu.be/vxUGx8aZpDE) by [Code Affinity](https://www.youtube.com/@codeaffinitydev)
- ⛓️ [Chat with Audio: Langchain, `Chroma DB`, OpenAI, and `Assembly AI`](https://youtu.be/Kjy7cx1r75g) by [AI Anytime](https://www.youtube.com/@AIAnytime)
- ⛓️ [QA over documents with Auto vector index selection with Langchain router chains](https://youtu.be/9G05qybShv8) by [echohive](https://www.youtube.com/@echohive)
- ⛓️ [Build your own custom LLM application with `Bubble.io` & Langchain (No Code & Beginner friendly)](https://youtu.be/O7NhQGu1m6c) by [No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- ⛓️ [Simple App to Question Your Docs: Leveraging `Streamlit`, `Hugging Face Spaces`, LangChain, and `Claude`!](https://youtu.be/X4YbNECRr7o) by [Chris Alexiuk](https://www.youtube.com/@chrisalexiuk)
- ⛓️ [LANGCHAIN AI- `ConstitutionalChainAI` + Databutton AI ASSISTANT Web App](https://youtu.be/5zIU6_rdJCU) by [Avra](https://www.youtube.com/@Avra_b)
- ⛓️ [LANGCHAIN AI AUTONOMOUS AGENT WEB APP - 👶 `BABY AGI` 🤖 with EMAIL AUTOMATION using `DATABUTTON`](https://youtu.be/cvAwOGfeHgw) by [Avra](https://www.youtube.com/@Avra_b)
- ⛓️ [The Future of Data Analysis: Using A.I. Models in Data Analysis (LangChain)](https://youtu.be/v_LIcVyg5dk) by [Absent Data](https://www.youtube.com/@absentdata)
- ⛓️ [Memory in LangChain | Deep dive (python)](https://youtu.be/70lqvTFh_Yg) by [Eden Marco](https://www.youtube.com/@EdenMarco)
- ⛓️ [Use Large Language Models in Jupyter Notebook | LangChain | Agents & Indexes](https://youtu.be/JSe11L1a_QQ) by [Abhinaw Tiwari](https://www.youtube.com/@AbhinawTiwariAT)
- ⛓️ [How to Talk to Your Langchain Agent | `11 Labs` + `Whisper`](https://youtu.be/N4k459Zw2PU) by [VRSEN](https://www.youtube.com/@vrsen)
- ⛓️ [LangChain Deep Dive: 5 FUN AI App Ideas To Build Quickly and Easily](https://youtu.be/mPYEPzLkeks) by [James NoCode](https://www.youtube.com/@jamesnocode)
- ⛓️ [BEST OPEN Alternative to OPENAI's EMBEDDINGs for Retrieval QA: LangChain](https://youtu.be/ogEalPMUCSY) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- ⛓️ [LangChain 101: Models](https://youtu.be/T6c_XsyaNSQ) by [Mckay Wrigley](https://www.youtube.com/@realmckaywrigley)
- ⛓️ [LangChain with JavaScript Tutorial #1 | Setup & Using LLMs](https://youtu.be/W3AoeMrg27o) by [Leon van Zyl](https://www.youtube.com/@leonvanzyl)
- ⛓️ [LangChain Overview & Tutorial for Beginners: Build Powerful AI Apps Quickly & Easily (ZERO CODE)](https://youtu.be/iI84yym473Q) by [James NoCode](https://www.youtube.com/@jamesnocode)
- ⛓️ [LangChain In Action: Real-World Use Case With Step-by-Step Tutorial](https://youtu.be/UO699Szp82M) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- ⛓️ [Summarizing and Querying Multiple Papers with LangChain](https://youtu.be/p_MQRWH5Y6k) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
- ⛓️ [Using Langchain (and `Replit`) through `Tana`, ask `Google`/`Wikipedia`/`Wolfram Alpha` to fill out a table](https://youtu.be/Webau9lEzoI) by [Stian Håklev](https://www.youtube.com/@StianHaklev)
- ⛓️ [Langchain PDF App (GUI) | Create a ChatGPT For Your `PDF` in Python](https://youtu.be/wUAUdEw5oxM) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- ⛓️ [Auto-GPT with LangChain 🔥 | Create Your Own Personal AI Assistant](https://youtu.be/imDfPmMKEjM) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- ⛓️ [Create Your OWN Slack AI Assistant with Python & LangChain](https://youtu.be/3jFXRNn2Bu8) by [Dave Ebbelaar](https://www.youtube.com/@daveebbelaar)
- ⛓️ [How to Create LOCAL Chatbots with GPT4All and LangChain [Full Guide]](https://youtu.be/4p1Fojur8Zw) by [Liam Ottley](https://www.youtube.com/@LiamOttley)
- ⛓️ [Build a `Multilingual PDF` Search App with LangChain, `Cohere` and `Bubble`](https://youtu.be/hOrtuumOrv8) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- ⛓️ [Building a LangChain Agent (code-free!) Using `Bubble` and `Flowise`](https://youtu.be/jDJIIVWTZDE) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- ⛓️ [Build a LangChain-based Semantic PDF Search App with No-Code Tools Bubble and Flowise](https://youtu.be/s33v5cIeqA4) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- ⛓️ [LangChain Memory Tutorial | Building a ChatGPT Clone in Python](https://youtu.be/Cwq91cj2Pnc) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- ⛓️ [ChatGPT For Your DATA | Chat with Multiple Documents Using LangChain](https://youtu.be/TeDgIDqQmzs) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- ⛓️ [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@merksworld)
- ⛓️ [Using OpenAI, LangChain, and `Gradio` to Build Custom GenAI Applications](https://youtu.be/1MsmqMg3yUc) by [David Hundley](https://www.youtube.com/@dkhundley)
This website is built using [Docusaurus 2](https://docusaurus.io/), a modern static website generator.
### Installation
```
$ yarn
```
### Local Development
```
$ yarn start
```
This command starts a local development server and opens up a browser window. Most changes are reflected live without having to restart the server.
### Build
```
$ yarn build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.
### Deployment
Using SSH:
```
$ USE_SSH=true yarn deploy
```
Not using SSH:
```
$ GIT_USER=<Your GitHub username> yarn deploy
```
If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.
### Continuous Integration
Some common defaults for linting/formatting have been set for you. If you integrate your project with an open source Continuous Integration system (e.g. Travis CI, CircleCI), you may check for issues using the following command.
**LangChain** is a framework for developing applications powered by language models. It enables applications that are:
- **Data-aware**: connect a language model to other sources of data
- **Agentic**: allow a language model to interact with its environment
The main value props of LangChain are:
1. **Components**: abstractions for working with language models, along with a collection of implementations for each abstraction. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: a structured assembly of components for accomplishing specific higher-level tasks
Off-the-shelf chains make it easy to get started. For more complex applications and nuanced use-cases, components make it easy to customize existing chains or build new ones.
## Get started
[Here’s](/docs/get_started/installation.html) how to install LangChain, set up your environment, and start building.
We recommend following our [Quickstart](/docs/get_started/quickstart.html) guide to familiarize yourself with the framework by building your first LangChain application.
_**Note**: These docs are for the LangChain [Python package](https://github.com/hwchase17/langchain). For documentation on [LangChain.js](https://github.com/hwchase17/langchainjs), the JS/TS version, [head here](https://js.langchain.com/docs)._
## Modules
LangChain provides standard, extendable interfaces and external integrations for the following modules, listed from least to most complex:
Learn best practices for developing with LangChain.
### [Ecosystem](/docs/ecosystem/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/) and [dependent repos](/docs/ecosystem/dependents).
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).
<h3><span style={{color:"#2e8555"}}> Support </span></h3>
Join us on [GitHub](https://github.com/hwchase17/langchain) or [Discord](https://discord.gg/6adMQxSpJS) to ask questions, share feedback, meet other developers building with LangChain, and dream about the future of LLM’s.
## API reference
Head to the [reference](https://api.python.langchain.com) section for full documentation of all classes and methods in the LangChain Python package.
import Install from "@snippets/get_started/quickstart/installation.mdx"
<Install/>
For more details, see our [Installation guide](/docs/get_started/installation.html).
## Environment setup
Using LangChain will usually require integrations with one or more model providers, data stores, APIs, etc. For this example, we'll use OpenAI's model APIs.
import OpenAISetup from "@snippets/get_started/quickstart/openai_setup.mdx"
<OpenAISetup/>
## Building an application
Now we can start building our language model application. LangChain provides many modules that can be used to build language model applications.
Modules can be used as stand-alones in simple applications and they can be combined for more complex use cases.
The core building block of LangChain applications is the LLMChain.
This combines three things:
- LLM: The language model is the core reasoning engine here. In order to work with LangChain, you need to understand the different types of language models and how to work with them.
- Prompt Templates: This provides instructions to the language model. This controls what the language model outputs, so understanding how to construct prompts and different prompting strategies is crucial.
- Output Parsers: These translate the raw response from the LLM to a more workable format, making it easy to use the output downstream.
In this getting started guide we will cover those three components by themselves, and then cover the LLMChain which combines all of them.
Understanding these concepts will set you up well for being able to use and customize LangChain applications.
Most LangChain applications allow you to configure the LLM and/or the prompt used, so knowing how to take advantage of this will be a big enabler.
## LLMs
There are two types of language models, which in LangChain are called:
- LLMs: this is a language model which takes a string as input and returns a string
- ChatModels: this is a language model which takes a list of messages as input and returns a message
The input/output for LLMs is simple and easy to understand - a string.
But what about ChatModels? The input there is a list of `ChatMessage`s, and the output is a single `ChatMessage`.
A `ChatMessage` has two required components:
- `content`: This is the content of the message.
- `role`: This is the role of the entity from which the `ChatMessage` is coming from.
LangChain provides several objects to easily distinguish between different roles:
- `HumanMessage`: A `ChatMessage` coming from a human/user.
- `AIMessage`: A `ChatMessage` coming from an AI/assistant.
- `SystemMessage`: A `ChatMessage` coming from the system.
- `FunctionMessage`: A `ChatMessage` coming from a function call.
If none of those roles sound right, there is also a `ChatMessage` class where you can specify the role manually.
For more information on how to use these different messages most effectively, see our prompting guide.
LangChain exposes a standard interface for both, but it's useful to understand this difference in order to construct prompts for a given language model.
The standard interface that LangChain exposes has two methods:
- `predict`: Takes in a string, returns a string
- `predict_messages`: Takes in a list of messages, returns a message.
Let's see how to work with these different types of models and these different types of inputs.
First, let's import an LLM and a ChatModel.
import ImportLLMs from "@snippets/get_started/quickstart/import_llms.mdx"
<ImportLLMs/>
The `OpenAI` and `ChatOpenAI` objects are basically just configuration objects.
You can initialize them with parameters like `temperature` and others, and pass them around.
Next, let's use the `predict` method to run over a string input.
import InputString from "@snippets/get_started/quickstart/input_string.mdx"
<InputString/>
Finally, let's use the `predict_messages` method to run over a list of messages.
import InputMessages from "@snippets/get_started/quickstart/input_messages.mdx"
<InputMessages/>
For both these methods, you can also pass in parameters as key word arguments.
For example, you could pass in `temperature=0` to adjust the temperature that is used from what the object was configured with.
Whatever values are passed in during run time will always override what the object was configured with.
## Prompt templates
Most LLM applications do not pass user input directly into an LLM. Usually they will add the user input to a larger piece of text, called a prompt template, that provides additional context on the specific task at hand.
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
PromptTemplates help with exactly this!
They bundle up all the logic for going from user input into a fully formatted prompt.
This can start off very simple - for example, a prompt to produce the above string would just be:
import PromptTemplateLLM from "@snippets/get_started/quickstart/prompt_templates_llms.mdx"
import PromptTemplateChatModel from "@snippets/get_started/quickstart/prompt_templates_chat_models.mdx"
<PromptTemplateLLM/>
However, the advantages of using these over raw string formatting are several.
You can "partial" out variables - eg you can format only some of the variables at a time.
You can compose them together, easily combining different templates into a single prompt.
For explanations of these functionalities, see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
PromptTemplates can also be used to produce a list of messages.
In this case, the prompt not only contains information about the content, but also each message (its role, its position in the list, etc)
Here, what happens most often is a ChatPromptTemplate is a list of ChatMessageTemplates.
Each ChatMessageTemplate contains instructions for how to format that ChatMessage - its role, and then also its content.
Let's take a look at this below:
<PromptTemplateChatModel/>
ChatPromptTemplates can also include other things besides ChatMessageTemplates - see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
## Output Parsers
OutputParsers convert the raw output of an LLM into a format that can be used downstream.
There are few main type of OutputParsers, including:
- Convert text from LLM -> structured information (eg JSON)
- Convert a ChatMessage into just a string
- Convert the extra information returned from a call besides the message (like OpenAI function invocation) into a string.
For full information on this, see the [section on output parsers](/docs/modules/model_io/output_parsers)
In this getting started guide, we will write our own output parser - one that converts a comma separated list into a list.
import OutputParser from "@snippets/get_started/quickstart/output_parser.mdx"
<OutputParser/>
## LLMChain
We can now combine all these into one chain.
This chain will take input variables, pass those to a prompt template to create a prompt, pass the prompt to an LLM, and then pass the output through an (optional) output parser.
This is a convenient way to bundle up a modular piece of logic.
Let's see it in action!
import LLMChain from "@snippets/get_started/quickstart/llm_chain.mdx"
<LLMChain/>
## Next Steps
This is it!
We've now gone over how to create the core building block of LangChain applications - the LLMChains.
There is a lot more nuance in all these components (LLMs, prompts, output parsers) and a lot more different components to learn about as well.
To continue on your journey:
- [Dive deeper](/docs/modules/model_io) into LLMs, prompts, and output parsers
- Learn the other [key components](/docs/modules)
- Check out our [helpful guides](/docs/guides) for detailed walkthroughs on particular topics
Language models can be unpredictable. This makes it challenging to ship reliable applications to production, where repeatable, useful outcomes across diverse inputs are a minimum requirement. Tests help demonstrate each component in an LLM application can produce the required or expected functionality. These tests also safeguard against regressions while you improve interconnected pieces of an integrated system. However, measuring the quality of generated text can be challenging. It can be hard to agree on the right set of metrics for your application, and it can be difficult to translate those into better performance. Furthermore, it's common to lack sufficient evaluation data to adequately test the range of inputs and expected outputs for each component when you're just getting started. The LangChain community is building open source tools and guides to help address these challenges.
LangChain exposes different types of evaluators for common types of evaluation. Each type has off-the-shelf implementations you can use to get started, as well as an
extensible API so you can create your own or contribute improvements for everyone to use. The following sections have example notebooks for you to get started.
- [String Evaluators](/docs/modules/evaluation/string/): Evaluate the predicted string for a given input, usually against a reference string
- [Trajectory Evaluators](/docs/modules/evaluation/trajectory/): Evaluate the whole trajectory of agent actions
- [Comparison Evaluators](/docs/modules/evaluation/comparison/): Compare predictions from two runs on a common input
This section also provides some additional examples of how you could use these evaluators for different scenarios or apply to different chain implementations in the LangChain library. Some examples include:
- [Preference Scoring Chain Outputs](/docs/modules/evaluation/examples/comparisons): An example using a comparison evaluator on different models or prompts to select statistically significant differences in aggregate preference scores
## Reference Docs
For detailed information of the available evaluators, including how to instantiate, configure, and customize them. Check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
This walkthrough demonstrates how to use an agent optimized for conversation. Other agents are often optimized for using tools to figure out the best response, which is not ideal in a conversational setting where you may want the agent to be able to chat with the user as well.
import Example from "@snippets/modules/agents/agent_types/conversational_agent.mdx"
<Example/>
import ChatExample from "@snippets/modules/agents/agent_types/chat_conversation_agent.mdx"
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should to be called and respond with the inputs that should be passed to the function.
In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions.
The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.
The OpenAI Functions Agent is designed to work with these models.
import Example from "@snippets/modules/agents/agent_types/openai_functions_agent.mdx";
Plan and execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the ["Plan-and-Solve" paper](https://arxiv.org/abs/2305.04091).
The planning is almost always done by an LLM.
The execution is usually done by a separate agent (equipped with tools).
import Example from "@snippets/modules/agents/agent_types/plan_and_execute.mdx"
The structured tool chat agent is capable of using multi-input tools.
Older agents are configured to specify an action input as a single string, but this agent can use the provided tools' `args_schema` to populate the action input.
import Example from "@snippets/modules/agents/agent_types/structured_chat.mdx"
This walkthrough demonstrates how to replicate the [MRKL](https://arxiv.org/pdf/2205.00445.pdf) system using agents.
This uses the example Chinook database.
To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository.
import Example from "@snippets/modules/agents/how_to/mrkl.mdx"
<Example/>
## With a chat model
import ChatExample from "@snippets/modules/agents/how_to/mrkl_chat.mdx"
Head to [Integrations](/docs/integrations/callbacks/) for documentation on built-in callbacks integrations with 3rd-party tools.
:::
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
import GetStarted from "@snippets/modules/callbacks/get_started.mdx"
The AnalyzeDocumentChain can be used as an end-to-end to chain. This chain takes in a single document, splits it up, and then runs it through a CombineDocumentsChain.
import Example from "@snippets/modules/chains/additional/analyze_document.mdx"
The ConstitutionalChain is a chain that ensures the output of a language model adheres to a predefined set of constitutional principles. By incorporating specific rules and guidelines, the ConstitutionalChain filters and modifies the generated content to align with these principles, thus providing more controlled, ethical, and contextually appropriate responses. This mechanism helps maintain the integrity of the output while minimizing the risk of generating content that may violate guidelines, be offensive, or deviate from the desired context.
import Example from "@snippets/modules/chains/additional/constitutional_chain.mdx"
This notebook walks through examples of how to use a moderation chain, and several common ways for doing so. Moderation chains are useful for detecting text that could be hateful, violent, etc. This can be useful to apply on both user input, but also on the output of a Language Model. Some API providers, like OpenAI, [specifically prohibit](https://beta.openai.com/docs/usage-policies/use-case-policy) you, or your end users, from generating some types of harmful content. To comply with this (and to just generally prevent your application from being harmful) you may often want to append a moderation chain to any LLMChains, in order to make sure any output the LLM generates is not harmful.
If the content passed into the moderation chain is harmful, there is not one best way to handle it, it probably depends on your application. Sometimes you may want to throw an error in the Chain (and have your application handle that). Other times, you may want to return something to the user explaining that the text was harmful. There could even be other ways to handle it! We will cover all these ways in this walkthrough.
import Example from "@snippets/modules/chains/additional/moderation.mdx"
<Example/>
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.