Compare commits

...

787 Commits

Author SHA1 Message Date
Bagatur
022ef170f8 bump 257 (#8903) 2023-08-08 01:16:33 -07:00
Jacob Lee
fa30a57034 Adds Ollama as an LLM (#8829)
Adds Ollama as an LLM. Ollama can run various open source models locally
e.g. Llama 2 and Vicuna, automatically configuring and GPU-optimizing
them.

@rlancemartin @hwchase17

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-07 21:19:22 -07:00
Ash Vardanian
1f9124ceaa Add: USearch Vector Store (#8835)
## Description

I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.

## Dependencies

It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.

## Profiles

- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud

---------

Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 20:41:00 -07:00
Leonid Kuligin
b52a3785c9 Allow to specify a custom loader for GcsFileLoader (#8868)
Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-07 22:57:31 -04:00
Jeffrey Wang
ff44fe4e16 Change default Metaphor search example to use prompt optimizer (#8890)
- fix install command
- change example notebook to use Metaphor autoprompt by default

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 17:25:36 -07:00
Bruno Bornsztein
d56eff042a Make json output parser handle newlines inside markdown code blocks (#8682)
Update to #8528

Newlines and other special characters within markdown code blocks
returned as `action_input` should be handled correctly (in particular,
unescaped `"` => `\"` and `\n` => `\\n`) so they don't break JSON
parsing.

@baskaryan
2023-08-07 15:49:54 -07:00
Jeffrey Wang
ce3666c28b Fix metaphor install command in guide (#8888) 2023-08-07 15:43:47 -07:00
Oege Dijk
cff52638b2 when encountering error during fetch return "" in web_base.py (#8753)
when e.g. downloading a sitemap with a malformed url (e.g.
"ttp://example.com/index.html" with the h omitted at the beginning of
the url), this will ensure that the sitemap download does not crash, but
just emits a warning. (maybe should be optional with e.g. a
`skip_faulty_urls:bool=True` parameter, but this was the most
straightforward fix)

@rlancemartin, @eyurtsev
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 15:35:41 -07:00
Harrison Chase
bbd22b9b76 update metaphor docs (#8886) 2023-08-07 14:44:41 -07:00
Bennji94
33cdb06b5c Async RetryOutputParser, RetryWithErrorOutputParser and OutputFixingParser (#8776)
Added async parsing functions for RetryOutputParser,
RetryWithErrorOutputParser and OutputFixingParser.

The async parse functions call the arun methods of the used LLMChains.

Fix for #7989

---------

Co-authored-by: Benjamin May <benjamin.may94@gmail.com>
2023-08-07 14:42:48 -07:00
Carson
cc908d49a3 Fixes typo in documentation (#8882)
Fixes a simple typo in the google search engine tool documentation
@baskaryan
2023-08-07 14:33:21 -07:00
Joshua Sundance Bailey
7fc07ba5df Create ChatAnyscale (#8770)
- Description: Adds the ChatAnyscale class with llama-2 7b, llama-2 13b,
and llama-2 70b on [Anyscale
Endpoints](https://app.endpoints.anyscale.com/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
- Inspired by https://github.com/langchain-ai/langchain/pull/8434
(@kylehh and @baskaryan )
2023-08-07 13:21:05 -07:00
idcore
fe78aff1f2 Add new parameter forced_decoder_ids to OpenAIWhisperParserLocal + small bug fix (#8793)
- Description: new parameter forced_decoder_ids for
OpenAIWhisperParserLocal to force input language, and enable optional
translate mode. Usage example:
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="french",
task="transcribe")
#forced_decoder_ids =
processor.get_decoder_prompt_ids(language="french", task="translate")
loader = GenericLoader(YoutubeAudioLoader(urls, save_dir),
OpenAIWhisperParserLocal(lang_model="openai/whisper-medium",forced_decoder_ids=forced_decoder_ids))
  - Issue #8792
  - Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: idcore <eugene.novozhilov@gmail.com>
2023-08-07 13:17:58 -07:00
David vonThenen
40079d4936 Introduce Nebula LLM to LangChain (#8876)
## Description

This PR adds Nebula to the available LLMs in LangChain.

Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.

Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?

You can read more about Nebula here:

https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/

#### Integration Test 

An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.

#### Linting

- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format

### Dependencies

No new dependencies were introduced.

### Twitter handle

[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)


If you have any questions, please let me know.

cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 13:15:26 -07:00
Lance Martin
84c1ad7eaa Fix colab link for extraction ntbk (#8878)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 11:36:46 -07:00
Nuno Campos
9892e95d03 Add flush=True to stream examples (#8862) 2023-08-07 14:33:17 -04:00
Eugene Yurtsev
f616aee35a JsonOutputFunctionParser: Fix mutation in place bug (#8758)
Fixes mutation in place in the JsonOutputFunctionParser. This causes
issues when trying to re-use the original AI message.
2023-08-07 14:32:46 -04:00
shibuiwilliam
ab47557db3 fix evaluation parse test (#8859)
# What
- fix evaluation parse test

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Fix evaluation parse test
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: @MLOpsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 11:15:41 -07:00
manmax31
40096c73cd Add BGE embeddings support (#8848)
- Description: [BGE-large](https://huggingface.co/BAAI/bge-large-en)
embeddings from BAAI are at the top of [MTEB
leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Hence
adding support for it.
- Tag maintainer: @baskaryan
- Twitter handle: @ManabChetia3

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 11:15:30 -07:00
shibuiwilliam
fbc83dfdbb Fix/abstract add message (#8856)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Fix/abstract add message
  - Issue: None
  - Dependencies: None
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
  - Twitter handle: @MLOpsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 11:02:19 -07:00
William FH
91be7eee66 Add concurrency support for run_on_dataset (#8841)
Long-term, would be better to use the lower-level batch() method(s) but
it may take me a bit longer to clean up. This unblocks in the meantime,
though it may fail when the evaluated chain raises a
`NotImplementedError` for a corresponding async method
2023-08-07 09:24:48 -07:00
Bagatur
fc2f450f2d bump 256 (#8870) 2023-08-07 08:29:02 -07:00
Tudor Golubenco
aeaef8f3a3 Add support for Xata as a vector store (#8822)
This adds support for [Xata](https://xata.io) (data platform based on
Postgres) as a vector store. We have recently added [Xata to
Langchain.js](https://github.com/hwchase17/langchainjs/pull/2125) and
would love to have the equivalent in the Python project as well.

The PR includes integration tests and a Jupyter notebook as docs. Please
let me know if anything else would be needed or helpful.

I have added the xata python SDK as an optional dependency.

## To run the integration tests

You will need to create a DB in xata (see the docs), then run something
like:

```
OPENAI_API_KEY=sk-... XATA_API_KEY=xau_... XATA_DB_URL='https://....xata.sh/db/langchain'  poetry run pytest tests/integration_tests/vectorstores/test_xata.py
```

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Philip Krauss <35487337+philkra@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 08:14:52 -07:00
Harrison Chase
472f00ada7 add moderation example (#8718) 2023-08-07 07:50:11 -07:00
Leonid Kuligin
6e3fa59073 Added chat history to codey models (#8831)
#7469

since 1.29.0, Vertex SDK supports a chat history provided to a codey
chat model.

Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 07:34:35 -07:00
Massimiliano Pronesti
a616e19975 feat(llms): add support for vLLM (#8806)
Hello langchain maintainers, 
this PR aims at integrating
[vllm](https://vllm.readthedocs.io/en/latest/#) into langchain. This PR
closes #8729.

This feature clearly depends on `vllm`, but I've seen other models
supported here depend on packages that are not included in the
pyproject.toml (e.g. `gpt4all`, `text-generation`) so I thought it was
the case for this as well.

@hwchase17, @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 07:32:02 -07:00
Bagatur
100d9ce4c7 bump 255 (#8865) 2023-08-07 07:25:23 -07:00
Vic Cao
c9da300e4d fix: overwrite stream for ChatOpenAI in runtime (#8288)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
@hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-07 10:18:30 +01:00
Karthik Raja A
5a9765b1b5 MultiOn client toolkit update 2.0 (#8750)
- Updated to use newer better function interaction
 - Previous version had only one callback
 - @hinthornw @hwchase17  Can you look into this
 -  Shout out to @MultiON_AI @DivGarg9 on twitter

---------

Co-authored-by: Naman Garg <ngarg3@binghamton.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 22:24:10 -07:00
Emre
454998c1fb Fix invalid escape sequence warnings (#8771)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Description: The lines I have changed looks like incorrectly escaped for
regex. In python 3.11, I receive DeprecationWarning for these lines.
You don't see any warnings unless you explicitly run python with `-W
always::DeprecationWarning` flag. So, this is my attempt to fix it.

Here are the warnings from log files:

```
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:919: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:918: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:917: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:916: DeprecationWarning: invalid escape sequence '\c'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:903: DeprecationWarning: invalid escape sequence '\*'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:804: DeprecationWarning: invalid escape sequence '\*'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:804: DeprecationWarning: invalid escape sequence '\*'
```

cc @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 17:01:18 -07:00
Harrison Chase
0adc282d70 Harrison/as retriever docstring (#8840)
Co-authored-by: Bytestorm <31070777+Bytestorm5@users.noreply.github.com>
2023-08-06 17:00:57 -07:00
Zend
bd4865b6fe Async Recursive URL loader (#8502)
Description: This PR improves the function of recursive_url_loader, such
as limiting the depth of the access, and customizable extractors(from
the raw webpage to the text of the Document object), so that users can
use other tools to extract the webpage. This PR also includes the
document and test for the new loader.
Old PR closed due to project structure change. #7756

Because socket requests are not allowed, the old unit test was removed.
Issue: N/A
Dependencies: asyncio, aiohttp
Tag maintainer: @rlancemartin
Twitter handle: @ Zend_Nihility

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-06 16:22:31 -07:00
fqassemi
485d716c21 Feature faiss delete (#8135)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: docstore had two main method: add and search, however,
dealing with docstore sometimes requires deleting an entry from
docstore. So I have added a simple delete method that deletes items from
docstore. Additionally, I have added the delete method to faiss
vectorstore for the very same reason.
  - Issue: NA
  - Dependencies: NA
  - Tag maintainer:  @rlancemartin, @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 15:46:30 -07:00
Nicolas
b57fa1a39c docs: Improvements on Mendable Search (#8808)
- Balancing prioritization between keyword / AI search
- Show snippets of highlighted keywords when searching 
- Improved keyword search
- Fixed bugs and issues

Shoutout to @calebpeffer for implementing and gathering feedback on it 

cc: @dev2049 @rlancemartin @hwchase17
2023-08-06 15:32:06 -07:00
Ikko Eltociear Ashimine
6b93670410 Fix typo in long_context_reorder.ipynb (#8811)
begining -> beginning

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-06 15:31:38 -07:00
Harrison Chase
2bb1d256f3 add example of memory and returning retrieved docs (#8830) 2023-08-06 15:25:12 -07:00
Pierre Alexandre SCHEMBRI
4a7ebb7184 Fix issue #7616 (#7617)
Fix Issue #7616 with a simpler approach to extract function names (use
`__name__` attribute)

@hwchase17

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 15:12:03 -07:00
Ankur Agarwal
797c9e92c8 #8786 Fixed: Callback handler disconnect in between (#8787)
Fixes for  #8786 @agola11 

- Description: The flow of callback is breaking till the last chain, as
callbacks are missed in between chain along nested path. This will help
get full trace and correlate parent child relationship in all nested
chains.

  - Issue: the issue #8786 
  - Dependencies: NA
  - Tag maintainer: @agola11 
  - Twitter handle: Agarwal_Ankur
2023-08-06 15:11:45 -07:00
Kshitij Wadhwa
5f1aab5487 Fix docs for Rockset (#8807)
* remove error output for notebook
* add comment about vector length for ingest transformation
* change OPENAI_KEY -> OPENAI_API_KEY

cc @baskaryan
2023-08-06 15:04:01 -07:00
William FH
983678dedc Add Dist Metrics for String Distance Evaluation (#8837)
Co-authored-by: shibuiwilliam <shibuiyusuke@gmail.com>
2023-08-06 14:05:00 -07:00
William FH
f76d50d8dc fix exception inconsistencies (#8812) (#8839)
Merge #8812 with main to fix unrelated test failure

Co-authored-by: shibuiwilliam <shibuiyusuke@gmail.com>
2023-08-06 14:04:49 -07:00
Bagatur
15c271e7b3 bump 254 (#8834) 2023-08-06 11:34:54 -07:00
Bagatur
d7b613a293 Bagatur/revert revert nuclia (#8833) 2023-08-06 11:24:36 -07:00
Bagatur
2f309a4ce6 Revert "Bagatur/nuclia (#8404)" (#8832) 2023-08-06 11:14:01 -07:00
Paul Hager
2111ed3c75 Improving the text of the invalid tool to list the available tools. (#8767)
Description: When using a ReAct Agent with tools and no tool is found,
the InvalidTool gets called. Previously it just asked for a different
action, but I've found that if you list the available actions it
improves the chances of getting a valid action in the next round. I've
added a UnitTest for it also.

@hinthornw
2023-08-05 18:09:32 -07:00
shibuiwilliam
d9bc46186d Add missing test for retrievers self_query (#8783)
# What
- Add missing test for retrievers self_query
- Add missing import validation

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add missing test for retrievers self_query
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ
  
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-05 17:31:41 -07:00
Snehil Kumar
1bd4890506 Update links on QA Use Case docs (#8784)
- Description: 2 links were not working on Question Answering Use Cases
documentation page. Hence, changed them to nearest useful links,
  - Issue: NA,
  - Dependencies: NA,
  - Tag maintainer: @baskaryan,
  - Twitter handle: NA

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-05 17:30:56 -07:00
Wilson Leao Neto
b0d0338f21 feat: expose Kendra result item id and document id as document metadata (#8796)
- Description: we expose Kendra result item id and document id as
document metadata.
  - Tag maintainer: @3coins @baskaryan 
  - Twitter handle: wilsonleao

**Why**
The result item id and document id might be used to keep track of the
retrieved resources.
2023-08-05 17:21:24 -07:00
Bal Narendra Sapa
a22d502248 added the embeddings part (#8805)
Description: forgot to add the embeddings part in the documentation.
sorry 😅

@baskaryan
2023-08-05 17:16:33 -07:00
Bagatur
9b86235a56 bump 253 (#8798) 2023-08-05 10:57:22 -07:00
Bagatur
9fc9018951 Bagatur/nuclia (#8404)
Co-authored-by: Eric BREHAULT <ebrehault@gmail.com>
2023-08-05 10:44:43 -07:00
Francisco Ingham
ef5bc1fef1 Refactor for extraction docs (#8465)
Refactor for the extraction use case documentation

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-05 10:09:14 -07:00
William FH
1d68470bac Same Project for Eval Runs (#8781) 2023-08-04 17:51:49 -07:00
William FH
c8f3615aa6 Support evaluating runnables and arbitrary functions (#8698)
Added a couple of "integration tests" for these that I ran.

Main design point of feedback: at this point, would it just be better to
have separate arguments for each type? Little confusing what is or isn't
supported and what is the intended usage at this point since I try to
wrap the function as runnable or pack or unpack chains/llms.

```
run_on_dataset(
...
llm_or_chain_factory = None,
llm = None,
chain = NOne,
runnable=None,
function=None
):
# raise error if none set
```

Downside with runnables and arbitrary function support is that you get
much less helpful validation and error messages, but I don't think we
should block you from this, at least.
2023-08-04 16:39:04 -07:00
liguoqinjim
d00a247da7 fix:get bilibili subtitles (#8165)
- Description: fix the Loader 'BiliBiliLoader'
  - Issue: the API response was changed

![image](https://github.com/langchain-ai/langchain/assets/2113954/91216793-82f8-4c82-a018-d49f36f5f6aa)
The previously used API no longer returns the "subtitle_url" property.

![image](https://github.com/langchain-ai/langchain/assets/2113954/a8ec2a7a-f40d-4c2a-b7d0-0ccdf2b327cc)
We should use another API to get `subtitle_url` property. 
The `subtitle_url` returned by this API does not include the http schema
and needs to be added.

  - Dependencies: Nope
  - Tag maintainer: @rlancemartin
2023-08-04 14:30:41 -07:00
Bagatur
21771a6f1c rm sklearn links (#8773) 2023-08-04 14:28:00 -07:00
Joshua Carroll
e5fed7d535 Extend the StreamlitChatMessageHistory docs with a fuller example and… (#8774)
Add more details to the [notebook for
StreamlitChatMessageHistory](https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history),
including a link to a [running example
app](https://langchain-st-memory.streamlit.app/).

Original PR: https://github.com/langchain-ai/langchain/pull/8497
2023-08-04 14:27:46 -07:00
Eugene Yurtsev
19dfe166c9 Update documentation for prompts (#8381)
* Documentation to favor creation without declaring input_variables
* Cut out obvious examples, but add more description in a few places

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-08-04 14:25:03 -07:00
Dayou Liu
91a0817e39 docs: llamacpp minor fixes (#8738)
- Description: minor updates on llama cpp doc
2023-08-04 14:19:43 -07:00
Bagatur
f437311eef Bagatur/runnable with fallbacks (#8543) 2023-08-04 14:06:05 -07:00
Eugene Yurtsev
003e1ca9a0 Update api references (#8646)
Update API reference documentation. This PR will pick up a number of missing classes, it also applies selective formatting based on the class / object type.
2023-08-04 16:10:58 -04:00
Piyush Jain
8374367de2 Amazon Textract as document loader (#8661)
Description: Adding support for [Amazon
Textract](https://aws.amazon.com/textract/) as a PDF document loader

---------

Co-authored-by: schadem <45048633+schadem@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-04 15:55:06 -04:00
Leonid Ganeline
82ef1f587d fix makefile help (#8723)
Fixed the `makefile` help. It was not up-to-date.
 @baskaryan
2023-08-04 15:37:00 -04:00
Neil Murphy
b0d0399d34 (issue #5163) Append reminder to nest multi-prompt router prompt output in JSON markdown code block, resolving JSON parsing error. (#8709)
Resolves occasional JSON parsing error when some predictions are passed
through a `MultiPromptChain`.

Makes [this
modification](https://github.com/langchain-ai/langchain/issues/5163#issuecomment-1652220401)
to `multi_prompt_prompt.py`, which is much cleaner than appending an
entire example object, which is another community-reported solution.

@hwchase17, @baskaryan

cc: @SimasJan
2023-08-04 15:36:34 -04:00
Snehil Kumar
a6ee646ef3 Update get_started.mdx (#8744)
- Description: Added a missing word and rearranged a sentence in the
documentation of Self Query Retrievers.,
  - Issue: NA,
  - Dependencies: NA,
  - Tag maintainer: @baskaryan,
  - Twitter handle: NA

Thanks for your time.
2023-08-04 15:32:19 -04:00
Bal Narendra Sapa
bd61757423 add documentation for serializer function (#8769)
Description: Added necessary documentation for serializer functions

@baskaryan
2023-08-04 14:39:40 -04:00
rjanardhan3
affaaea87b Updates fireworks (#8765)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Updates to Fireworks Documentation, 
  - Issue: N/A,
  - Dependencies: N/A,
  - Tag maintainer: @rlancemartin,

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-04 10:32:22 -07:00
Bagatur
8c35fcb571 update rss doc (#8761) 2023-08-04 08:25:20 -07:00
Bagatur
e45be8b3f6 bump 252 (#8759) 2023-08-04 08:22:16 -07:00
Bagatur
0d5a90f30a Revert "add filter to sklearn vector store functions (#8113)" (#8760) 2023-08-04 08:13:32 -07:00
Ben Auffarth
6b007e2829 update repo username to langchain-ai (#8747)
Time for this minor update? @hwchase17
2023-08-04 07:31:39 -07:00
Lance Martin
be638ad77d Chatbots use case (#8554)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-04 07:02:14 -07:00
Bagatur
115a77142a support for arbitrary kwargs for llamacpp (#8727)
llamacpp params (per their own code) are unstable, so instead of
adding/deleting them constantly adding a model_kwargs parameter that
allows for arbitrary additional kwargs

cc @jsjolund and @zacps re #8599 and #8704
2023-08-04 06:52:02 -07:00
Alec Flett
f0b0c72d98 add load() deserializer function that bypasses need for json serialization (#7626)
There is already a `loads()` function which takes a JSON string and
loads it using the Reviver

But in the callbacks system, there is a `serialized` object that is
passed in and that object is already a deserialized JSON-compatible
object. This allows you to call `load(serialized)` and bypass
intermediate JSON encoding.

I found one other place in the code that benefited from this
short-circuiting (string_run_evaluator.py) so I fixed that too.

Tagging @baskaryan for general/utility stuff.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-04 09:49:41 +01:00
Ruiqi Guo
6aee589eec Add ScaNN support in vectorstore. (#8251)
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann

- Dependencies: scann

Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py

@rlancemartin, @eyurtsev for review.

Thanks!
2023-08-03 23:41:30 -07:00
Moonsik Kang
5b7ff215e8 Fix load map reduce documents chain (#7915)
This PR updates _load_reduce_documents_chain to handle
`reduce_documents_chain` and `combine_documents_chain` config

Please review @hwchase17, @baskaryan

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:27:38 -07:00
shibuiwilliam
0f0ccfe7f6 add filter to sklearn vector store functions (#8113)
# What
- This is to add filter option to sklearn vectore store functions

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add filter to sklearn vectore store functions.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:41 -07:00
shibuiwilliam
2759e2d857 add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:27 -07:00
aerickson-clt
0f68054401 Issue #8089 Improve painless script scoring with params.query_value. (#8086)
This is a minor improvement that replaces the full query_vector with the
reference string `params.query_value` used in the painless scripting
docs. I have tested it manually and it works on an example. This makes
the query about half the size and much easier to read.


https://opensearch.org/docs/latest/search-plugins/knn/painless-functions/#get-started-with-k-nns-painless-scripting-functions

@babbldev 
#8089

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:17 -07:00
linpan
0ead8ea708 typo: ignored to ignore (#8740)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 23:05:59 -07:00
aerickson-clt
c7ea6e9ff8 Issue 8081 Fix query results size bug. Other bug: pass vector_field param. (#8085)
@baskaryan
#8081 

Likely the reason why the issue occurred is that OpenSearch's default k
is 10, so it needs to be specified.

Here's a similar question about its cousin ElasticSearch

https://discuss.elastic.co/t/elasticsearch-returns-only-10-records-but-the-hit-is-507/136605

I tested this manually and also fixed the same issue in
`_default_painless_scripting_query`. In addition,
`_default_painless_scripting_query` was not passing the `vector_field`
name to a sub call, so I fixed that too.


![image](https://github.com/hwchase17/langchain/assets/32244272/cfb7aad1-f701-49d9-9beb-a723aa276817)

I also tested this in the aws opensearch developer tools.


![image](https://github.com/hwchase17/langchain/assets/32244272/24544682-1578-4bbb-9eb5-980463c5b41b)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 22:41:11 -07:00
Sidchat95
812419d946 Removing score threshold parameter of faiss _similarity_search_with_r… (#8093)
Removing score threshold parameter of faiss
_similarity_search_with_relevance_scores as the thresholding part is
implemented in similarity_search_with_relevance_scores method which
calls this method.

As this method is supposed to be a private method of faiss.py this will
never receive the score threshold parameter as it is popped in the super
method similarity_search_with_relevance_scores.

@baskaryan @hwchase17
2023-08-03 21:31:43 -07:00
Mathias Panzenböck
873a80e496 Reduce generation of temporary objects (#7950)
Just a tiny change to use `list.append(...)` and `list.extend(...)`
instead of `list += [...]` so that no unnecessary temporary lists are
created.

Since its a tiny miscellaneous thing I guess @baskaryan is the
maintainer to tag?

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:24:08 -07:00
Lance Martin
d1b95db874 Retriever that can re-phase user inputs (#8026)
Simple retriever that applies an LLM between the user input and the
query pass the to retriever.

It can be used to pre-process the user input in any way.

The default prompt:

```
DEFAULT_QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an assistant tasked with taking a natural languge query from a user
    and converting it into a query for a vectorstore. In this process, you strip out
    information that is not relevant for the retrieval task. Here is the user query: {question} """
)
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:23:59 -07:00
Harrison Chase
6c3573e7f6 Harrison/aleph alpha (#8735)
Co-authored-by: PiotrMazurek <piotr.mazurek@aleph-alpha.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 21:21:15 -07:00
Wilson Leao Neto
179a39954d Provides access to a Document page_content formatter in the AmazonKendraRetriever (#8034)
- Description: 
- Provides a new attribute in the AmazonKendraRetriever which processes
a ResultItem and returns a string that will be used as page_content;
- The excerpt metadata should not be changed, it will be kept as was
retrieved. But it is cleaned when composing the page_content;
    - Refactors the AmazonKendraRetriever to improve code reusability;
- Issue: #7787 
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao

**Why?**

Some use cases need to adjust the page_content by dynamically combining
the ResultItem attributes depending on the context of the item.
2023-08-03 20:54:49 -07:00
Ilya
6f0bccfeb5 Add regex control over separators in character text splitter (#7933)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
#7854

Added the ability to use the `separator` ase a regex or a simple
character.
Fixed a bug where `start_index` was incorrectly counting from -1.

Who can review?
@eyurtsev
@hwchase17 
@mmz-001
2023-08-03 20:25:23 -07:00
Vasileios Mansolas
e68a1d73d0 Fix Issue #6650: Enable Azure Active Directory token-based auth access for AzureChatOpenAI (#8622)
When using AzureChatOpenAI the openai_api_type defaults to "azure". The
utils' get_from_dict_or_env() function triggered by the root validator
does not look for user provided values from environment variables
OPENAI_API_TYPE, so other values like "azure_ad" are replaced with
"azure". This does not allow the use of token-based auth.

By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.

This fixes #6650

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:41 -07:00
Ofer Mendelevitch
29f51055e8 Updates to Vectara documentation (#8699)
- Description: updates to Vectara documentation with more details on how
to get started.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @vectara, @ofermend

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:17 -07:00
Alec Flett
5d765408ce propagate callbacks through load_summarize_chain (#7565)
This lets you pass callbacks when you create the summarize chain:

```
summarize = load_summarize_chain(llm, chain_type="map_reduce", callbacks=[my_callbacks])
summary = summarize(documents)
```
See #5572 for a similar surgical fix.

tagging @hwchase17 for callbacks work

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 20:12:34 -07:00
Alec Flett
404d103c41 propagate RetrievalQA chain callbacks through its own LLMChain and StuffDocumentsChain (#7853)
This is another case, similar to #5572 and #7565 where the callbacks are
getting dropped during construction of the chains.

tagging @hwchase17 and @agola11 for callbacks propagation

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 20:11:58 -07:00
Bal Narendra Sapa
47eea32f6a add serializer methods (#7914)
Description: I have added two methods serializer and deserializer
methods. There was method called save local but it saves the to the
local disk. I wanted the vectorstore in the format using which i can
push it to the sql database's blob field. I have used this while i was
working on something

@rlancemartin, @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 20:10:35 -07:00
Ryan Sloan
b786335dd1 fix RecursiveUrlLoader (#8582)
Description: the recursive url loader does not fully crawl for all urls
under base url
Maintainer: @baskaryan
2023-08-03 16:51:57 -07:00
William FH
f81e613086 Fix Async Retry Event Handling (#8659)
It fails currently because the event loop is already running.

The `retry` decorator alraedy infers an `AsyncRetrying` handler for
coroutines (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L535)))
However before_sleep always gets called synchronously (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L338))).


Instead, check for a running loop and use that it exists. Of course,
it's running an async method synchronously which is not _nice_. Given
how important LLMs are, it may make sense to have a task list or
something but I'd want to chat with @nfcampos on where that would live.

This PR also fixes the unit tests to check the handler is called and to
make sure the async test is run (it looks like it's just been being
skipped). It would have failed prior to the proposed fixes but passes
now.
2023-08-03 15:02:16 -07:00
ruze
8ef7e14a85 RSS Feed / OPML loader (#8694)
Replace this comment with:
- Description: added a document loader for a list of RSS feeds or OPML.
It iterates through the list and uses NewsURLLoader to load each
article.
  - Issue: N/A
  - Dependencies: feedparser, listparser
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:58:06 -07:00
sumandeng
53e4148a1b add model_revison parameter to ModelScopeEmbeddings (#8669)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:17:48 -07:00
Yoshi
4e8f11b36a Deterministic Fake Embedding Model (#8706)
Solves #8644 
This embedding models output identical random embedding vectors, given
the input texts are identical.
Useful when used in unittest.
@baskaryan
2023-08-03 13:36:45 -07:00
Leonid Kuligin
2928a1a3c9 added minimum expected version of SDK to the error description (#8712)
#7932

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-03 13:28:42 -07:00
Harrison Chase
814faa9de5 relax deps for yaml (#8713)
context: https://github.com/yaml/pyyaml/issues/724

I think this is fine? I don't think we use yaml too heavily
2023-08-03 13:22:17 -07:00
Holt Skinner
8a8917e0d9 feat: Add Spell Correction Spec to Google Cloud Enterprise Search connector (#8705) 2023-08-03 13:38:45 -04:00
Bagatur
b2b71b0d35 Bagatur/eden llm (#8670)
Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: KyrianC <ckyrian@protonmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-08-03 10:24:51 -07:00
William FH
8022293124 lint (#8702) 2023-08-03 09:33:28 -07:00
axa99
1f54ec899b updated interface jupyter notebook explanations (#8689)
Updated the documentation in the interface.ipynb to clearly show the
_input_ and _output_ types for various components @baskaryan
2023-08-03 11:53:31 -04:00
William FH
a137492b53 Permit none key in chain mapper (#8696) 2023-08-03 08:50:36 -07:00
Bagatur
e283dc8d50 bump 251 (#8690) 2023-08-03 06:28:36 -07:00
Eugene Yurtsev
81e0cbf2d5 Minor typo fix (#8657)
Fix typo in doc-string.
2023-08-02 23:20:25 -07:00
Lance Martin
37aade19da Minor formatting and additional figure for summarization use case (#8663) 2023-08-02 21:52:29 -07:00
Harrison Chase
43dffe39fb Harrison/conversational retrieval agent (#8639)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 18:05:15 -07:00
ruze
71f98db2fe Newspaper (#8647)
- Description: Added newspaper3k based news article loader. Provide a
list of urls.
  - Issue: N/A
  - Dependencies: newspaper3k,
  - Tag maintainer: @rlancemartin , @eyurtsev 
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:56:08 -07:00
shibuiwilliam
f68f3b23d7 add missing RemoteLangChainRetriever _get_relevant_documents test (#8628)
# What
- Add missing RemoteLangChainRetriever _get_relevant_documents test

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:20:40 -07:00
William FH
206901fa01 Use salt instead of datetime (#8653)
If you want to kick off two runs at the same time it'll cause errors.
Use a uuid instead
2023-08-02 17:15:50 -07:00
William FH
7ea2b08d1f Use call directly for chain (#8655)
for run_on_dataset since the `run()` method requires a single output
2023-08-02 17:11:39 -07:00
William FH
368aa4ede7 fix enum error message (#8652)
could be a string so don't directly call value
2023-08-02 17:11:27 -07:00
millerick
5018af8839 docs: fix some grammar (#8654)
### Description
Fixes a grammar issue I noticed when reading through the documentation.

### Maintainers
@baskaryan

Co-authored-by: mmillerick <mmillerick@blend.com>
2023-08-02 16:48:01 -07:00
Erick Friis
96b0ff182e Enterprise support form wording (#8641) 2023-08-02 15:18:20 -07:00
Lance Martin
59194c2214 Add summarization use-case (#8376)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 14:25:11 -07:00
Will Thompson
ee1d13678e 🐛 Docs Fixes [2 one-liners, examples broken] (#8519)
## Description: 
   
1)Map reduce example in docs is missing an important import statement.
Figured other people would benefit from being able to copy 🍝 the code.

2)RefineDocumentsChain example also broken.

## Issue: 

None

## Dependencies:

None. One liner.

## Tag maintainer:

@baskaryan

## Twitter handle: 

I mean, it's a one line fix lol. But @will_thompson_k is my twitter
handle.
2023-08-02 13:39:41 -07:00
Leonid Ganeline
1335f2b9f8 MLflow examples (#8642)
Updated `MLflow` examples with links to the examples from MLflow

 @baskaryan
2023-08-02 13:30:28 -07:00
Kacper Łukawski
16551536e3 Refactor Qdrant integration (#8634)
This small PR introduces new parameters into Qdrant (`on_disk`), fixes
some tests and changes the error message to be more clear.

Tagging: @baskaryan, @rlancemartin, @eyurtsev
2023-08-02 10:30:18 -07:00
Erick Friis
c5fb3b6069 Enterprise support form in airtable (#8607) 2023-08-02 09:49:59 -07:00
Eugene Yurtsev
1ec0b18379 Re-add __add__ functionality for messages (revert #8245) (#8489)
This PR reverts #8245, so `__add__` is defined on base messages.

Resolves issue: https://github.com/langchain-ai/langchain/issues/8472
2023-08-02 10:51:44 -04:00
Bagatur
f31047a394 bump 250 (#8632) 2023-08-02 07:47:36 -07:00
Comendeiro
5c516945d0 Add local support for audio models (PR #7329) (#7591)
- Description: run the poetry dependencies
  - Issue: #7329 
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @rlancemartin

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 01:24:53 -07:00
Naveen Tatikonda
d2adec3818 [Opensearch] : Fix the service validation in http_auth (#8609)
### Description
OpenSearch supports validation using both Master Credentials (Username
and password) and IAM. For Master Credentials users will not pass the
argument `service` in `http_auth` and the existing code will break. To
fix this, I have updated the condition to check if service attribute is
present in http_auth before accessing it.

### Maintainers
@baskaryan @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-08-02 01:16:38 -07:00
Harrison Chase
7c5c0557cb cast to string when measuring token length (#8617) 2023-08-02 00:12:59 -07:00
rjanardhan3
68113348cc Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Bagatur
b574507c51 normalized openai embeddings embed_query (#8604)
we weren't normalizing when embedding queries
2023-08-01 17:12:10 -07:00
Neil Murphy
31820a31e4 Add firestore_client param to FirestoreChatMessageHistory if caller already has one; also lets them specify GCP project, etc. (#8601)
Existing implementation requires that you install `firebase-admin`
package, and prevents you from using an existing Firestore client
instance if available.

This adds optional `firestore_client` param to
`FirestoreChatMessageHistory`, so users can just use their existing
client/settings. If not passed, existing logic executes to initialize a
`firestore_client`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 15:42:13 -07:00
Naveen Tatikonda
13ccf202de [OpenSearch] : Fix AOSS Initialization (#8600)
### Description
This PR fixes the AOSS Initialization in Opensearch.

### Maintainers
@rlancemartin, @eyurtsev, @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-08-01 15:33:51 -07:00
Joshua Carroll
6705928b9d Add StreamlitChatMessageHistory (#8497)
Add a StreamlitChatMessageHistory class that stores chat messages in
[Streamlit's Session
State](https://docs.streamlit.io/library/api-reference/session-state).

Note: The integration test uses a currently-experimental Streamlit
testing framework to simulate the execution of a Streamlit app. Marking
this PR as draft until I confirm with the Streamlit team that we're
comfortable supporting it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:28:15 -07:00
Matt Robinson
8961c720b8 docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8 mv (#8595) 2023-08-01 14:17:04 -07:00
brettdbrewer
2de028834f updated to use new llm_util query (#8591)
- Description: added memgraph_graph.py which defines the MemgraphGraph
class, subclassing off the existing Neo4jGraph class. This lets you
query the Memgraph graph database using natural language. It leverages
the Neo4j drivers and the bolt protocol.
- Dependencies: since it is a subclass off of Neo4jGraph, it is
dependent on it and the GraphCypherQA Chain implementations. It is
dependent on the Neo4j drivers being present. It is dependent on having
a running Memgraph instance to connect to.
  - Tag maintainer: @baskaryan
  - Twitter handle: @villageideate
- example usage can be seen in this repo
https://github.com/brettdbrewer/MemgraphGraph/

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:16:15 -07:00
Tesfagabir Meharizghi
a7000ee89e Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
Harrison Chase
9c2b29a1cb Harrison/loader bug (#8559)
Co-authored-by: ddroghini <d.droghini@mflgroup.com>
Co-authored-by: Buckler89 <Droghini.diego@gmail.com>
2023-08-01 13:31:49 -07:00
Kristelle Widjaja
f190bc3e83 Bug fix: feature/issue-7804-chroma-client_settings-bug (#8267)
Description: Made Chroma constructor more robust when client_settings is
provided. Otherwise, existing embeddings will not be loaded correctly
from Chroma.
Issue: #7804
Dependencies: None
Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 13:31:35 -07:00
mpb159753
7df2dfc4c2 Add Support for Loading Documents from Huawei OBS (#8573)
Description:
This PR adds support for loading documents from Huawei OBS (Object
Storage Service) in Langchain. OBS is a cloud-based object storage
service provided by Huawei Cloud. With this enhancement, Langchain users
can now easily access and load documents stored in Huawei OBS directly
into the system.

Key Changes:
- Added a new document loader module specifically for Huawei OBS
integration.
- Implemented the necessary logic to authenticate and connect to Huawei
OBS using access credentials.
- Enabled the loading of individual documents from a specified bucket
and object key in Huawei OBS.
- Provided the option to specify custom authentication information or
obtain security tokens from Huawei Cloud ECS for easy access.

How to Test:
1. Ensure the required package "esdk-obs-python" is installed.
2. Configure the endpoint, access key, secret key, and bucket details
for Huawei OBS in the Langchain settings.
3. Load documents from Huawei OBS using the updated document loader
module.
4. Verify that documents are successfully retrieved and loaded into
Langchain for further processing.

Please review this PR and let us know if any further improvements are
needed. Your feedback is highly appreciated!

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 09:30:30 -07:00
Leonid Ganeline
ed9a0f8185 Docstrings: Module descriptions (#8262)
Added/changed the module descriptions (the firs-line docstrings in the
`__init__` files).
Added class hierarchy info.
 @baskaryan
2023-08-01 09:12:32 -07:00
shibuiwilliam
465faab935 fix apparent spelling inconsistencies (#8574)
Use ImportErrors where appropriate
2023-08-01 09:09:09 -07:00
Nuno Campos
0ec020698f Add new run types for Runnables (#8488)
- allow overriding run_type in on_chain_start

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-01 12:56:40 +01:00
Bagatur
bd2e298468 bump 249 (#8571) 2023-08-01 01:20:16 -07:00
Harrison Chase
66226d1d4d add example for memory (#8552) 2023-08-01 01:10:19 -07:00
William FH
e83250cc5f Rm RunTypeEnum (#8553)
We already support raw strings in the SDK but would like to deprecate
client-side validation of run types. This removes its usage
2023-08-01 07:32:07 +01:00
Jacob Lee
2a26cc6d2b Fix combining runnable sequences (#8557)
Combining runnable sequences was dropping a step in the middle.

@nfcampos @baskaryan
2023-07-31 18:17:46 -07:00
Mohamad Zamini
3fbb737bb3 Update combined.py (#7541)
from my understanding, the `check_repeated_memory_variable` validator
will raise an error if any of the variables in the `memories` list are
repeated. However, the `load_memory_variables` method does not check for
repeated variables. This means that it is possible for the
`CombinedMemory` instance to return a dictionary of memory variables
that contains duplicate values. This code will check for repeated
variables in the `data` dictionary returned by the
`load_memory_variables` method of each sub-memory. If a repeated
variable is found, an error will be raised.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:15:00 -07:00
Shantanu Nair
53f3793504 Fast load conversationsummarymemory from existing summary (#7533)
- Description: Adds an optional buffer arg to the memory's
from_messages() method. If provided the existing memory will be loaded
instead of regenerating a summary from the loaded messages.
 
Why? If we have past messages to load from, it is likely we also have an
existing summary. This is particularly helpful in cases where the chat
is ephemeral and/or is backed by serverless where the chat history is
not stored but where the updated chat history is passed back and forth
between a backend/frontend.

Eg: Take a stateless qa backend implementation that loads messages on
every request and generates a response — without this addition, each
time the messages are loaded via from_messages, the summaries are
recomputed even though they may have just been computed during the
previous response. With this, the previously computed summary can be
passed in and avoid:
  1) spending extra $$$ on tokens, and 
2) increased response time by avoiding regenerating previously generated
summary.

Tag maintainer: @hwchase17
Twitter handle: https://twitter.com/ShantanuNair

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:14:11 -07:00
DJ Atha
ec40ead980 Fixed bug7445 where a duplicate restuld_id is added to the vectorstore. (#7573)
- Description: updated BabyAGI examples to append the iteration to the
result id to fix error storing data to vectorstore.
  - Issue: 7445
  - Dependencies: no
  - Tag maintainer: @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didnt want to over complicate the example.
2023-07-31 18:00:01 -07:00
yangdihang
ff5024634e fix: openapi controller prompt, when bot is unable to resolve an api … (#7525)
…call, it needs retry

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Co-authored-by: yangdihang <yangdihang@bytedance.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:43 -07:00
Kenny
1e8fca5518 Add ConcurrentLoader (#7512)
Works just like the GenericLoader but concurrently for those who choose
to optimize their workflow.

@rlancemartin @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:31 -07:00
Kevin Buckley
8061994c61 AzureSearch Vector Store: Moving the usage of additional_fields into context of it's definition (bug fix from python error) (#8551)
Description: Using Azure Cognitive Search as a VectorStore. Calling the
`add_texts` method throws an error if there is no metadata property
specified. The `additional_fields` field is set in an `if` statement and
then is used later outside the if statement. This PR just moves the
declaration of `additional_fields` below and puts the usage of it in
context.

Issue: https://github.com/langchain-ai/langchain/issues/8544

Tagging @rlancemartin, @eyurtsev as this is related to Vector stores.

`make format`, `make lint`, `make spellcheck`, and `make test` have been
run
2023-07-31 17:25:57 -07:00
Danny Davenport
8d2344db43 updates some spelling mistakes (#8537)
Just updating some spelling / grammar issues in the documentation. No
code changes.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:15:29 -07:00
Leonid Kuligin
b4a126ae71 Updated docs on Vertex AI going GA (#8531)
#8074

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-31 17:15:04 -07:00
Pranay Chandekar
7e70cd2a28 Bug Fix - #8415 (#8417)
- Issue: #8415

Signed-off-by: Pranay Chandekar <pranayc6@gmail.com>
2023-07-31 17:08:46 -07:00
shibuiwilliam
de61ebd9e0 add tests to redis vectorstore (#8116)
# What
- Add function to get similarity with score with threshold in Redis
vector store.
- Add tests to Redis vector store.
2023-07-31 17:07:09 -07:00
Bharat Raghunathan
c19a0b9c10 doc(prompts): Follow up on broken Prompt Sublink pages (#8530)
- Description: Follow up of #8478  
  - Issue: #8477
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](twitter.com/BharatR123)

The links were still broken after #8478 and sadly the issue was not
caught with either the Vercel app build and `make docs_linkcheck`
2023-07-31 16:46:13 -07:00
Bruno Bornsztein
5a490a79f4 fix issue #8357 by making json backtick regex greedy (#8528)
- Description: Markdown code blocks in json response should not break
the parser
  - Issue: #8357

@baskaryan @hinthornw
2023-07-31 16:36:57 -07:00
Gordon Clark
64d0a0fcc0 Updating docstings in utilities (#8411)
Updating docstrings on utility packages
 @baskaryan
2023-07-31 16:34:53 -07:00
Harrison Chase
bca0749a11 conversational retrieval chain in lcel (#8532) 2023-07-31 16:33:07 -07:00
Jeff Huber
07d6d1ca38 fix error in chroma docker instructions (#8533)
This makes the Chroma instructions for Docker work! 


https://python.langchain.com/docs/integrations/vectorstores/chroma#basic-example-using-the-docker-container
2023-07-31 16:32:53 -07:00
Mohammad Mohtashim
144b4c0c78 SQL Query Prompt update + added _execute method for SQLDatabase (#8100)
- Description: This pull request (PR) includes two minor changes:

1. Updated the default prompt for SQL Query Checker: The current prompt
does not clearly specify the final response that the LLM (Language
Model) should provide when checking for the query if `use_query_checker`
is enabled in SQLDatabase Chain. As a result, the LLM adds extra words
like "Here is your updated query" to the response. However, this causes
a syntax error when executing the SQL command in SQLDatabaseChain, as
these additional words are also included in the SQL query.

2. Moved the query's execution part into a separate method for
SQLDatabase: The purpose of this change is to provide users with more
flexibility when obtaining the result of an SQL query in the original
form returned by sqlalchemy. In the previous implementation, the run
method returned the results as a string. By creating a distinct method
for execution, users can now receive the results in original format,
which proves helpful in various scenarios. For example, during the
development of a tool, I found it advantageous to obtain results in
original format rather than a string, as currently done by the run
method.

- Tag maintainer: @hinthornw

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 16:28:08 -07:00
Matthew DeGuzman
844eca98d5 Add LLaMa Formatter and AzureML Chat Endpoint (#8382)
## Description

Microsoft and Meta recently [announced their
collaboration](https://blogs.microsoft.com/blog/2023/07/18/microsoft-and-meta-expand-their-ai-partnership-with-llama-2-on-azure-and-windows/)
on LLaMa2. This PR extends the current LLM wrapper and introduces a new
Chat Model wrapper for AzureML to support LLaMa2.

## Dependencies

No dependencies added :)

## Twitter Handles

[@matthew_d13](https://twitter.com/matthew_d13)
[@prakhar_in](https://twitter.com/prakhar_in)

maintainers - @hwchase17, @baskaryan
2023-07-31 16:26:25 -07:00
Anthony Mahanna
1ab773c742 docs: Update ArangoDB Colab URL (#8547)
1-commit PR to update the Google Colab URL of the ArangoDB Graph QA
Chain notebook
2023-07-31 16:11:21 -07:00
Harrison Chase
15de57b848 fix web loader (#8538) 2023-07-31 12:47:33 -07:00
Nuno Campos
4780156955 Rely less on positional arg order in subclasses of vector store when calling async methods (#8534) 2023-07-31 20:13:11 +01:00
Harrison Chase
5e3b968078 router runnable (#8496)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-31 11:07:10 -07:00
Anubhav Bindlish
913a156cff Minor improvements to rockset vectorstore (#8416)
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 09:54:59 -07:00
Harrison Chase
893f3014af add xml agent notebook 2023-07-31 07:33:22 -07:00
Bagatur
a8be207ea3 bump 248 (#8518) 2023-07-31 07:14:45 -07:00
Harrison Chase
6556a8fcfd add initial anthropic agent (#8468)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-30 21:30:49 -07:00
os1ma
a795c3d860 Fix GitLoader to handle repeated load calls (#8412)
**Description: a description of the change**

In this pull request, GitLoader has been updated to handle multiple load
calls, provided the same repository is being cloned. Previously, calling
`load` multiple times would raise an error if a clone URL was provided.

Additionally, a check has been added to raise a ValueError when
attempting to clone a different repository into an existing path.

New tests have also been introduced to verify the correct behavior of
the GitLoader class when `load` is called multiple times.

Lastly, the GitPython package, a dependency for the GitLoader class, has
been added to the project dependencies (pyproject.toml and poetry.lock).

**Issue: the issue # it fixes (if applicable)**

None

**Dependencies: any dependencies required for this change**

GitPython

**Tag maintainer: for a quicker response, tag the relevant maintainer
(see below)**

- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
2023-07-30 21:27:20 -07:00
Muhammed Al-Dulaimi
9975ba4124 Fix ChromaDB integration -> docker container instructions (#8447)
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:

```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset()  # resets the database
collection = client.create_collection("my_collection")
...
```

`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`

This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it

## Issue
This fixes the runtime error that occurs when running the docker
container example code

## Tag Maintainer
@rlancemartin, @eyurtsev
2023-07-30 21:11:56 -07:00
Nicolas Raoul
7f9c6c3baa Fixed typo: papaer -> paper (#8500) 2023-07-30 21:08:11 -07:00
Piyush Jain
b2f8a5bae9 Fixed exports for NeptuneOpenCypherQAChain (#8439)
## Description
The imports for `NeptuneOpenCypherQAChain` are failing. This PR adds the
chain class to the `__init__.py` file to fix this issue.

## Maintainers
@dev2049 
@krlawrence
2023-07-30 20:36:22 -07:00
Eugene Yurtsev
e98e2b2b81 ChatPromptTemplate: clean up doc-string (#8473)
Minor doc-string clean up

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-30 20:11:04 -07:00
Eugene Yurtsev
529cb2e30c Update doc-string in few shot template (#8474)
Partial update of doc-string, need to update other instances in
documentation
2023-07-30 19:39:14 -07:00
Bharat Raghunathan
04ebdbe98f doc(prompts): Add redirects in Prompt subcategories pages (#8478)
- Description: Fixes broken links in some Prompts subcategories in
documentation (Example Selectors, Prompt Templates)
  - Issue: #8477 (Fixes #8477)
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](https://twitter.com/BharatR123)
2023-07-30 19:38:52 -07:00
Ludwig Hubert
08f5e6b801 Fix documentation for from_documents signature (#8482)
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .

fixes #8457 

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 13:24:44 -07:00
Muneeb Ahmad
4923cf029a Added Proper Documentation for faiss-gpu Installation (#8492)
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.

### Issue: 
Documentation / Comments Related.

### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.

### Tag maintainer:
 @rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
2023-07-30 13:24:30 -07:00
shibuiwilliam
549720ae51 add test to ensure values in time weighted retriever are updated (#8479)
# What
- add test to ensure values in time weighted retriever are updated

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add test to ensure values in time weighted retriever are
updated
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ


Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 11:42:25 -07:00
Harrison Chase
18a2452121 prompt cleanup (#8470) 2023-07-30 10:47:31 -07:00
Harrison Chase
4d526c49ed bump experimental to 008 (#8490) 2023-07-30 07:28:18 -07:00
Harrison Chase
8f14ddefdf add anthropic functions wrapper (#8475)
a cheeky wrapper around claude that adds in function calling support
(kind of, hence it going in experimental)
2023-07-30 07:23:46 -07:00
Harrison Chase
490ad93b3c fix links generation (#8471) 2023-07-29 18:31:33 -07:00
Nuno Campos
b65a9414bb runnable.bind().bind() should combine kwargs, instead of nesting wrappers (#8467)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-29 15:48:30 -07:00
Harrison Chase
ae4638aa35 improve notebooks (#8461) 2023-07-29 12:49:11 -07:00
Nuno Campos
872abb4198 Implement Runnable for Tools (#8460)
- Make _arun optional
- Pass run_manager to inner chains in tools that have them

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-29 10:01:18 -07:00
Harrison Chase
412fa4e1db add guide notebook (#8258)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-29 09:42:59 -07:00
William FH
b7c0eb9ecb Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
Harrison Chase
13b4f465e2 log output parser (#8446) 2023-07-29 07:53:45 +01:00
William FH
7d79178827 Wfh/update guide imports (#8452) 2023-07-28 23:12:10 -07:00
William FH
d935573362 Partial formatting for chat messages (#8450) 2023-07-28 23:08:33 -07:00
William FH
3314f54383 Update supabase docstrings (#8443) 2023-07-28 23:08:14 -07:00
Harrison Chase
f63240649c cr 2023-07-28 17:47:00 -07:00
Harrison Chase
17953ab61f add notebook for sql query (#8442) 2023-07-28 17:44:59 -07:00
Harrison Chase
2448043b84 bump and fix (#8441) 2023-07-28 17:16:51 -07:00
Zack Proser
3892cefac6 Minor fixes to enhance notebook usability: (#8389)
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: none,
  - Tag maintainer: @rlancemartin @eyurtsev,
  - Twitter handle: @zackproser (certainly not necessary!)
2023-07-28 17:10:03 -07:00
Amélie
8ee56b9a5b Feature: Add support for meilisearch vectorstore (#7649)
**Description:**

Add support for Meilisearch vector store.
Resolve #7603 

- No external dependencies added
- A notebook has been added

@rlancemartin

https://twitter.com/meilisearch

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 17:06:54 -07:00
Bearnardd
b7d6e1909c fix empty ids when metadatas is provided (#8127)
Fixes https://github.com/hwchase17/langchain/issues/7865 and
https://github.com/hwchase17/langchain/issues/8061

- [x] fixes returning empty ids when metadatas argument is provided

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:17:31 -07:00
Bharat Raghunathan
62b8b459c6 doc(prompts): Add redirect to fix broken link on Prompts Page (#8408)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:08:06 -07:00
Bagatur
2311d57df4 mv dropbox (#8438) 2023-07-28 16:07:56 -07:00
Luis Valencia
7124377524 Devcontainer README -> Clarification. (#8414)
- Description: The contribution guidlelines using devcontainer refer to
the main repo and not the forked repo. We should create our changes in
our own forked repo, not on langchain/main
  - Issue: Just documentation
  - Dependencies: N/A,
  - Tag maintainer: @baskaryan
  - Twitter handle: @levalencia
2023-07-28 15:09:42 -07:00
lvisdd
abe4c361f9 update get_num_tokens_from_messages model (#8431)
(#8430)

Co-authored-by: Kano Kunihiko <kkano@heroz.co.jp>
2023-07-28 15:07:03 -07:00
Jeffrey Wang
e0de62f6da Add RoPE Scaling params from llamacpp (#8422)
Description:
Just adding parameters from `llama-python-cpp` that support RoPE
scaling.
@hwchase17, @baskaryan

sources:
papers and explanation:
https://kaiokendev.github.io/context
llamacpp conversation:
https://github.com/ggerganov/llama.cpp/discussions/1965 
Supports models like:
https://huggingface.co/conceptofmind/LLongMA-2-13b
2023-07-28 14:42:41 -07:00
Bagatur
2db2987b1b add experimental ref (#8435) 2023-07-28 14:26:47 -07:00
Harrison Chase
fab24457bc remove code (#8425) 2023-07-28 13:19:44 -07:00
Harrison Chase
3a78450883 update experimental (#8402)
some changes were made to experimental, porting them over
2023-07-28 13:01:36 -07:00
Harrison Chase
af7e70d4af expose function for converting messages to messages (#8426) 2023-07-28 13:00:54 -07:00
Eugene Yurtsev
06bdbe06fe PromptTemplate update documentation and expand kwarg (#8423)
# PromptTemplate

* Update documentation to highlight the classmethod for instantiating a
prompt template.
* Expand kwargs in the classmethod to make parameters easier to discover

This PR got reverted here:
https://github.com/langchain-ai/langchain/pull/8395/files
2023-07-28 14:11:49 -04:00
Eugene Yurtsev
e62a1686e2 ChatPromptTemplate: minor fix in doc string (#8424)
Minor fix in doc-string to use `ai` rather than `assistant`
2023-07-28 13:01:13 -04:00
Eugene Yurtsev
760c278fe0 ChatPromptTemplate: Expand support for message formats and documentation (#8244)
* Expands support for a variety of message formats in the
`from_messages` classmethod. Ideally, we could deprecate the other
on-ramps to reduce the amount of classmethods users need to know about.
* Expand documentation with code examples.
2023-07-28 12:48:08 -04:00
Bagatur
61dd92f821 bump 246 (#8410) 2023-07-28 01:18:37 -07:00
Harrison Chase
394b67ab92 add kwargs to llm runnables (#8388) 2023-07-28 09:13:11 +01:00
HeTaoPKU
d5884017a9 Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
James Campbell
0ad2d5f27a [nit] Add default value for ChatOpenAI client (#7939)
Micro convenience PR to avoid warning regarding missing `client`
parameter. It is always set during initialization.

@baskaryan

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:38:32 -07:00
Harrison Chase
82df923f37 Merge branch 'master' of github.com:hwchase17/langchain 2023-07-27 22:01:20 -07:00
Harrison Chase
1b0bfa54cf cr 2023-07-27 22:00:52 -07:00
Jeff Vestal
c7ff5f19a8 ElasticKnnSearch rewrite - bug fix - return Document (#8180)
Fixes: 
https://github.com/hwchase17/langchain/issues/7117
https://github.com/hwchase17/langchain/issues/5760

Adding back `create_index` , `add_texts`, `from_texts` to
ElasticKnnSearch

`from_texts` matches standard `from_texts` methods as quick start up
method

`knn_search` and `hybrid_result` return a list of [`Document()`,
`score`,]

# Test `from_texts` for quick start
```
# create new index using from_text

from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
from langchain.embeddings import ElasticsearchEmbeddings

model_id = "sentence-transformers__all-distilroberta-v1" 
dims = 768
es_cloud_id = ""
es_user = ""
es_password = ""
test_index = "knn_test_index_305"

embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    #input_field=input_field,
    es_cloud_id=es_cloud_id,
    es_user=es_user,
    es_password=es_password,
)

# add texts and create class instance
texts = ["This is a test document", "This is another test document"]
knnvectorsearch = ElasticKnnSearch.from_texts(
    texts=texts,
    embedding=embeddings,
    index_name= test_index,
    vector_query_field='vector',
    query_field='text',
    model_id=model_id,
    dims=dims,
	es_cloud_id=es_cloud_id, 
	es_user=es_user, 
	es_password=es_password
)

# Test `add_texts` method
texts2 = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knnvectorsearch.add_texts(texts2)

query = "Hello"
knn_result = knnvectorsearch.knn_search(query = query, model_id= model_id, k=2)

hybrid_result = knnvectorsearch.knn_hybrid_search(query = query, model_id= model_id, k=2)

```

The  mapping is as follows:
```
{
  "knn_test_index_012": {
    "mappings": {
      "properties": {
        "text": {
          "type": "text"
        },
        "vector": {
          "type": "dense_vector",
          "dims": 768,
          "index": true,
          "similarity": "dot_product"
        }
      }
    }
  }
}
```

# Check response type
```
>>> hybrid_result
[(Document(page_content='Hello, world!', metadata={}), 0.94232327), (Document(page_content='I love Python.', metadata={}), 0.5321523)]

>>> hybrid_result[0]
(Document(page_content='Hello, world!', metadata={}), 0.94232327)

>>> hybrid_result[0][0]
Document(page_content='Hello, world!', metadata={})

>>> type(hybrid_result[0][0])
<class 'langchain.schema.document.Document'>
```

# Test with existing Index
```
from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
from langchain.embeddings import ElasticsearchEmbeddings

## Initialize ElasticsearchEmbeddings
model_id = "sentence-transformers__all-distilroberta-v1" 
dims = 768
es_cloud_id = 
es_user = ""
es_password = ""
test_index = "knn_test_index_012"

embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    es_cloud_id=es_cloud_id,
    es_user=es_user,
    es_password=es_password,
)

## Initialize ElasticKnnSearch
knn_search = ElasticKnnSearch(
	es_cloud_id=es_cloud_id, 
	es_user=es_user, 
	es_password=es_password, 
	index_name= test_index, 
	embedding= embeddings
)


## Test adding vectors

### Test `add_texts` method when index created
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)

```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:00:18 -07:00
Harrison Chase
a221a9ced0 Harrison/sql query (#8370)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-27 21:55:17 -07:00
Bagatur
a1a650c743 Bagatur/from texts bug fix (#8394)
---------

Co-authored-by: Davit Buniatyan <davit@loqsh.com>
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
Co-authored-by: Ivo Stranic <istranic@gmail.com>
2023-07-27 21:52:38 -07:00
Jiayi Ni
1efb9bae5f FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Bagatur
877d384bc9 Revert "PromptTemplate update documentation and expand kwargs (#8234)" (#8395)
fyi @eyurtsev was failing a unit test
2023-07-27 21:11:10 -07:00
Gordon Clark
e66759cc9d Github add "Create PR" tool + Docs update (#8235)
Added a new tool to the Github toolkit called **Create Pull Request.**
Now we can make our own langchain contributor in langchain 😁

In order to have somewhere to pull from, I also added a new env var,
"GITHUB_BASE_BRANCH." This will allow the existing env var,
"GITHUB_BRANCH," to be a working branch for the bot (so that it doesn't
have to always commit on the main/master). For example, if you want the
bot to work in a branch called `bot_dev` and your repo base is `main`,
you would set up the vars like:
```
GITHUB_BASE_BRANCH = "main"
GITHUB_BRANCH = "bot_dev"
``` 

Maintainer responsibilities:
  - Agents / Tools / Toolkits: @hinthornw
2023-07-27 19:19:44 -07:00
William FH
ecd4aae818 Few Shot Chat Prompt (#8038)
Proposal for a few shot chat message example selector

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-27 18:46:10 -07:00
Eugene Yurtsev
6dd18eee26 PromptTemplate update documentation and expand kwargs (#8234)
# PromptTemplate

* Update documentation to highlight the classmethod for instantiating a
prompt template.
* Expand kwargs in the classmethod to make parameters easier to discover
2023-07-27 18:11:39 -07:00
Karan V
a003a0baf6 fix(petals) allows to run models that aren't Bloom (Support for LLama and newer models) (#8356)
In this PR:

- Removed restricted model loading logic for Petals-Bloom
- Removed petals imports (DistributedBloomForCausalLM,
BloomTokenizerFast)
- Instead imported more generalized versions of loader
(AutoDistributedModelForCausalLM, AutoTokenizer)
- Updated the Petals example notebook to allow for a successful
installation of Petals in Apple Silicon Macs

- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 18:01:04 -07:00
lars.gersmann
e758e9e7f5 fix(openapi): openapi chain will work without/empty description/summa… (#8351)
Description: 

This PR will enable the Open API chain to work with valid Open API
specifications missing `description` and `summary` properties for path
and operation nodes in open api specs.

Since both `description` and `summary` property are declared optional we
cannot be sure they are defined. This PR resolves this problem by
providing an empty (`''`) description as fallback.

The previous behavior of the Open API chain was that the underlying LLM
(OpenAI) throw ed an exception since `None` is not of type string:

```
openai.error.InvalidRequestError: None is not of type 'string' - 'functions.0.description'
```

Using this PR the Open API chain will succeed also using Open API specs
lacking `description` and `summary` properties for path and operation
nodes.

Thanks for your amazing work !

Tag maintainer: @baskaryan

---------

Co-authored-by: Lars Gersmann <lars.gersmann@cm4all.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:58:43 -07:00
ljeagle
caa6caeb8a Upgrade the AwaDB from v0.3.7 to v0.3.9 and change the default embeddings (#8281)
1. Upgrade the AwaDB from v0.3.7 to v0.3.9
2. Change the default embedding to AwaEmbedding

---------

Co-authored-by: ljeagle <awadb.vincent@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-27 17:20:50 -07:00
Harrison Chase
25b8cc7e3d Harrison/update memory docs (#8384)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:18:19 -07:00
Holt Skinner
d7e6770de8 refactor: Code refactoring & simplification for Google Cloud Enterprise Search retriever (#8369)
Followup to https://github.com/langchain-ai/langchain/pull/7857

- Changes `_convert_search_response()` to use object attributes instead
of converting to dictionary
- Simplifies logic for readability
2023-07-27 17:13:49 -07:00
Taozhi Wang
594f195e54 Add embeddings for AwaEmbedding (#8353)
- Description: Adds AwaEmbeddings class for embeddings, which provides
users with a convenient way to do fine-tuning, as well as the potential
need for multimodality

  - Tag maintainer: @baskaryan

Create `Awa.ipynb`: an example notebook for AwaEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/awa.py`: The embedding class
Create `embeddings/test_awa.py`: The test file.

---------

Co-authored-by: taozhiwang <taozhiwa@gmail.com>
2023-07-27 17:08:00 -07:00
thehunmonkgroup
ba4e82bb47 fix missing _identifying_params() in _VertexAICommon (#8303)
Full set of params are missing from Vertex* LLMs when `dict()` method is
called.

```
>>> from langchain.chat_models.vertexai import ChatVertexAI
>>> from langchain.llms.vertexai import VertexAI
>>> chat_llm = ChatVertexAI()
l>>> llm = VertexAI()
>>> chat_llm.dict()
{'_type': 'vertexai'}
>>> llm.dict()
{'_type': 'vertexai'}
```

This PR just uses the same mechanism used elsewhere to expose the full
params.

Since `_identifying_params()` is on the `_VertexAICommon` class, it
should cover the chat and non-chat cases.
2023-07-27 16:59:10 -07:00
bheroder
dc3ca44e05 Add an example for azure ml managed feature store (#8324)
We are adding an example of how one can connect to azure ml managed
feature store and use such a prompt template in a llm chain. @baskaryan
2023-07-27 16:56:06 -07:00
Caitlin2694
b2e4b9dca4 Fix exception caused by restrictions in OWL (#8341)
Description: Fix exception caused by restrictions in OWL
Issue: #8331
Dependencies: none
Maintainer: @baskaryan
2023-07-27 16:51:32 -07:00
Harrison Chase
cddd8ae83d update release yml (#8364)
only do the step that tags and adds release notes if its langchain
2023-07-27 16:49:04 -07:00
Nikita Pokidyshev
f499e6ea6a Add FunctionMessage to _message_from_dict (#8374)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:45:27 -07:00
evelynmitchell
539574670c Update tot.ipynb (#8387)
Spelling error fix

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:44:41 -07:00
emarco177
2ab13ab743 added unit tests for mrkl output_parser.py (#8321)
- Description: added unit tests for mrkl output_parser.py, 
  - Tag maintainer: @hinthornw
  - Twitter handle: EdenEmarco177
2023-07-27 13:46:06 -07:00
Sachin Varghese
01217b2247 Update sql database agent example (#8354)
This PR fixes a minor documentation issue on the SQL database toolkit
example notebook.
2023-07-27 13:44:02 -07:00
Bagatur
55beab326c cleanup warnings (#8379) 2023-07-27 13:43:05 -07:00
William FH
41524304bf Update local script for docs build (#8377) 2023-07-27 13:13:59 -07:00
Harrison Chase
f5bf893035 rename to str output parser (#8373) 2023-07-27 12:57:34 -07:00
William FH
0e9e5b5202 Retry events on any run type (#8375) 2023-07-27 12:56:46 -07:00
Bagatur
68763bd25f mv popular and additional chains to use cases (#8242) 2023-07-27 12:55:13 -07:00
William FH
ff98fad2d9 Add Retry Events (#8053)
![image](https://github.com/hwchase17/langchain/assets/13333726/59a5c3b4-4367-47e6-9f58-5b6557576a8a)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 12:39:39 -07:00
William FH
94a693e2ee Link to use cases from tutorials (#8371) 2023-07-27 11:54:04 -07:00
Nuno Campos
0eca3e7d90 Add Runnable.bind method to attach kwargs to a Runnable that will be passed to all invoke/stream/batch calls when it is run (#8368)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 11:16:30 -07:00
Harrison Chase
cf608f876b update link 2023-07-27 09:47:57 -07:00
Nuno Campos
1bbadde77b Support using RunnableMap directly (#8317)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 17:24:29 +01:00
Bagatur
944321c6ab bump 245 (#8359) 2023-07-27 06:53:24 -07:00
Rubén Barragán
ef6332ead6 Support loading files from Dropbox (#8271)
## Description
This commit introduces the `DropboxLoader` class, a new document loader
that allows loading files from Dropbox into the application. The loader
relies on a Dropbox app, which requires creating an app on Dropbox,
obtaining the necessary scope permissions, and generating an access
token. Additionally, the dropbox Python package is required.

The `DropboxLoader` class is designed to be used as a document loader
for processing various file types, including text files, PDFs, and
Dropbox Paper files.

## Dependencies
`pip install dropbox` and `pip install unstructured` for PDF reading.

## Tag maintainer
@rlancemartin, @eyurtsev (from Data Loaders). I'd appreciate some
feedback here 🙏 .

## Social Networks
https://github.com/rubenbarragan
https://www.linkedin.com/in/rgbarragan/
https://twitter.com/RubenBarraganP

---------

Co-authored-by: Ruben Barragan <rbarragan@Rubens-MacBook-Air.local>
2023-07-27 06:36:08 -07:00
Pranay Chandekar
41bb3a6f9b fixed the bug #8343 (#8345)
- Issue: #8343

Signed-off-by: Pranay Chandekar <pranayc6@gmail.com>
2023-07-27 06:33:15 -07:00
Ikko Eltociear Ashimine
934ea80780 Fix typo in Etherscan.ipynb (#8340)
specifc  -> specific
2023-07-27 01:57:19 -07:00
Martin Krasser
93260a9922 Fix broken make targets format_diff and lint_diff (#8344)
Since the refactoring into sub-projects `libs/langchain` and
`libs/experimental`, the `make` targets `format_diff` and `lint_diff` do
not work anymore when running `make` from these subdirectories. Reason
is that

```
PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
```

generates paths from the project's root directory instead of the
corresponding subdirectories. This PR fixes this by adding a
`--relative` command line option.

- Tag maintainer: @baskaryan
2023-07-27 01:56:55 -07:00
Harrison Chase
ae78ef7fe6 bump experimental to 005 (#8339) 2023-07-26 21:46:28 -07:00
Vadim Gubergrits
e7e5cb9d08 Tree of Thought introducing a new ToTChain. (#5167)
# [WIP] Tree of Thought introducing a new ToTChain.

This PR adds a new chain called ToTChain that implements the ["Large
Language Model Guided
Tree-of-Though"](https://arxiv.org/pdf/2305.08291.pdf) paper.

There's a notebook example `docs/modules/chains/examples/tot.ipynb` that
shows how to use it.


Implements #4975


## Who can review?

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:

- @hwchase17
- @vowelparrot

---------

Co-authored-by: Vadim Gubergrits <vgubergrits@outbox.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-26 21:29:39 -07:00
William FH
412e29d436 Fix notebook that 'cannot convert' via nbdoc_build (#8333) 2023-07-26 18:54:23 -07:00
William FH
9eb7e6e27f Delete Old Evals Examples (#8252)
Still retain:
- Comparison Examples
- Data + QA walkthrough
- QA (but really minimize it)
2023-07-26 18:46:54 -07:00
Saurabh Misra
db9d5b213a Optimize the cosine_similarity_top_k function performance (#8151)
Optimizing important numerical code and making it run faster.

Performance went up by 1.48x (148%). Runtime went down from 138715us to
56020us

Optimization explanation:

The `cosine_similarity_top_k` function is where we made the most
significant optimizations.
Instead of sorting the entire score_array which needs considering all
elements, `np.argpartition` is utilized to find the top_k largest scores
indices, this operation has a time complexity of O(n), higher
performance than sorting. Remember, `np.argpartition` doesn't guarantee
the order of the values. So we need to use argsort() to get the indices
that would sort our top-k values after partitioning, which is much more
efficient because it only sorts the top-K elements, not the entire
array. Then to get the row and column indices of sorted top_k scores in
the original score array, we use `np.unravel_index`. This operation is
more efficient and cleaner than a list comprehension.

The code has been tested for correctness by running the following
snippet on both the original function and the optimized function and
averaged over 5 times.
```
def test_cosine_similarity_top_k_large_matrices():
    X = np.random.rand(1000, 1000)
    Y = np.random.rand(1000, 1000)
    top_k = 100
    score_threshold = 0.5
    gc.disable()
    counter = time.perf_counter_ns()
    return_value = cosine_similarity_top_k(X, Y, top_k, score_threshold)
    duration = time.perf_counter_ns() - counter
    gc.enable()
```

@hwaking @hwchase17 @jerwelborn 

Unit tests pass, I also generated more regression tests which all
passed.
2023-07-26 18:03:49 -07:00
Fabrizio Ruocco
ddc353a768 Azure Cognitive Search: Custom index and scoring profile support (#6843)
Description: Adding support for custom index and scoring profile support
in Azure Cognitive Search
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 17:58:01 -07:00
Leonid Ganeline
ed24de8467 removed namespace title (#8208)
This change compacts the left-side Navbar (ToC) of the [API
Reference](https://api.python.langchain.com/en/latest/api_reference.html).
Now almost each namespace item is split into two lines. For example
`langchain.chat_models: Chat Models`
We remove the `Chat Models` and leave one the `langchain.chat_models`. 
This effectively compacts the navbar and increases the main page's
usability. On my screen, it reduces # of lines in Toc from 28 t to 18,
which is huge.

Removing the namespace "title" (like `Chat Models`) does not remove any
information because the title is composed directly from the namespace.
API Reference users are developers. Usability for them is very
important. We see less text => we find faster.
2023-07-26 16:45:23 -07:00
Kacper Łukawski
c5988c1d4b Implement async support for Cohere (#8237)
This PR introduces async API support for Cohere, both LLM and
embeddings. It requires updating `cohere` package to `^4`.

Tagging @hwchase17, @baskaryan, @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:51:18 -07:00
Daniel Alexander Brenot
bf1357f584 Added async support to PlanAndExecute Chain (#8239)
- Description: Adds async support to the PlanAndExecute Chain

Maintainer responsibilities:
  - Async: @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:16:07 -07:00
Bastin Florian
a3ac9b23eb feat(confluence): add markdown format option (#8246)
# Description:
**Add the possibility to keep text as Markdown in the ConfluenceLoader**
Add a bool variable that allows to keep the Markdown format of the
Confluence pages.
It is useful because it allows to use MarkdownHeaderTextSplitter as a
DataSplitter.
If this variable in set to True in the load() method, the pages are
extracted using the markdownify library.

  # Issue: 
[4407](https://github.com/langchain-ai/langchain/issues/4407)
  # Dependencies: 
Add the markdownify library
  # Tag maintainer:
 @rlancemartin, @eyurtsev
  # Twitter handle:
 FloBastinHeyI - https://twitter.com/FloBastinHeyI

---------

Co-authored-by: Florian Bastin <florian.bastin@octo.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:00:27 -07:00
Leonid Ganeline
ee6ff96e28 docstrings cleanup (#8311)
- added missed docstrings
 - changed docstrings into consistent format
  
@baskaryan
2023-07-26 14:13:10 -07:00
Bagatur
ceab0a7c1f update api ref style (#8318) 2023-07-26 14:12:44 -07:00
Rohit Gupta
e5dba8978a Avoid re-computation of embedding in weaviate similarity search (#8284)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 13:31:55 -07:00
William FH
01a9b06400 Add api cross ref linking (#8275)
Example of how it would show up in our python docs:


![image](https://github.com/langchain-ai/langchain/assets/13333726/0f0a88cc-ba4a-4778-bc47-118c66807f15)


Examples added to the reference docs:

https://api.python.langchain.com/en/wfh-api_crosslink/vectorstores/langchain.vectorstores.chroma.Chroma.html#langchain.vectorstores.chroma.Chroma


![image](https://github.com/langchain-ai/langchain/assets/13333726/dcd150de-cb56-4d42-b49a-a76a002a5a52)
2023-07-26 12:38:58 -07:00
Nuno Campos
a612800ef0 Runnable single protocol (#7800)
Objects implementing Runnable: BasePromptTemplate, LLM, ChatModel,
Chain, Retriever, OutputParser

- [x] Implement Runnable in base Retriever
- [x] Raise TypeError in operator methods for unsupported things 
- [x] Implement dict which calls values in parallel and outputs dict
with results
- [x] Merge in `+` for prompts
- [x] Confirm precedence order for operators, ideal would be `+` `|`,
https://docs.python.org/3/reference/expressions.html#operator-precedence
- [x] Add support for openai functions, ie. Chat Models must return
messages
- [x] Implement BaseMessageChunk return type for BaseChatModel, a
subclass of BaseMessage which implements __add__ to return
BaseMessageChunk, concatenating all str args
- [x] Update implementation of stream/astream for llm and chat models to
use new `_stream`, `_astream` optional methods, with default
implementation in base class `raise NotImplementedError` use
https://stackoverflow.com/a/59762827 to see if it is implemented in base
class
- [x] Delete the IteratorCallbackHandler (leave the async one because
people using)
- [x] Make BaseLLMOutputParser implement Runnable, accepting either str
or BaseMessage
---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-26 12:16:46 -07:00
Bharat
04a4d3e312 Fixes #8310 Fix maximum recursion depth exceeded error (#8313)
ElasticsearchVectorStore.as_retriever() method is returning 
`RecursionError: maximum recursion depth exceeded` 
because of incorrect field reference in
 `embeddings()` method

  - Description: Fix RecursionError because of a typo
  - Issue: the issue #8310 
  - Dependencies: None,
  - Tag maintainer: @eyurtsev
  - Twitter handle: bpatel
2023-07-26 12:15:37 -07:00
Caitlin2694
b9db3dd09b Fix "missing key op" RDFGraph OWL serialization (#8276)
Replace this comment with:
- Description: Fix "missing key op" error in RDFGraph OWL Serialization
  - Issue: #8263
  - Dependencies: None
  - Tag maintainer: @baskaryan
2023-07-26 12:14:56 -07:00
Eugene Yurtsev
862e9aed66 ChatPromptTemplate: Update doc-strings, update from_role_strings behavior (#8308)
* Update doc-strings in ChatPromptTemplate
* Update from_role_strings classmethod to use well known roles
2023-07-26 15:02:36 -04:00
Bagatur
2c2fd9ff13 bump 244 (#8314) 2023-07-26 11:58:26 -07:00
Lance Martin
77c0582243 Clean queries prior to search (#8309)
With some search tools, we see no results returned if the query is a
numeric list.

E.g., if we pass:
```
'1. "LangChain vs LangSmith: How do they differ?"'
```

We see:
```
No good Google Search Result was found
```

Local testing w/ Streamlit:

![image](https://github.com/langchain-ai/langchain/assets/122662504/0a7e3dca-59e8-415e-8df6-bd9e4ea962ee)
2023-07-26 11:48:28 -07:00
shibuiwilliam
6b88fbd9bb add test for embedding distance evaluation (#8285)
Add tests for embedding distance evaluation

  - Description: Add tests for embedding distance evaluation
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: @MlopsJ
2023-07-26 11:45:50 -07:00
Riche Akparuorji
f3d2fdd54c Fix for code snippet in documentation (#8290)
- Description: I fixed an issue in the code snippet related to the
variable name and the evaluation of its length. The original code used
the variable "docs," but the correct variable name is "docs_svm" after
using the SVMRetriever.
- maintainer: @baskaryan
- Twitter handle: @iamreechi_

Co-authored-by: iamreechi <richieakparuorji>
2023-07-26 11:31:08 -07:00
Bagatur
f27176930a fix geopandas link (#8305) 2023-07-26 11:30:17 -07:00
Timon Palm
70604e590f DuckDuckGoSearch News Tool (#8292)
Description: 
I wanted to use the DuckDuckGoSearch tool in an agent to let him get the
latest news for a topic. DuckDuckGoSearch has already an implemented
function for retrieving news articles. But there wasn't a tool to use
it. I simply adapted the SearchResult class with an extra argument
"backend". You can set it to "news" to only get news articles.

Furthermore, I added an example to the DuckDuckGo Notebook on how to
further customize the results by using the DuckDuckGoSearchAPIWrapper.

Dependencies: no new dependencies
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 11:30:01 -07:00
Aarav Borthakur
8ce661d5a1 Docs: Fix Rockset links (#8214)
Fix broken Rockset links.

Right now links at
https://python.langchain.com/docs/integrations/providers/rockset are
broken.
2023-07-26 10:38:37 -07:00
Byron Saltysiak
61347bd322 giving path to the copy command for *.toml files (#8294)
Description: in the .devcontainer, docker-compose build is currently
failing due to the src paths in the COPY command. This change adds the
full path to the pyproject.toml and poetry.toml to allow the build to
run.
Issue: 

You can see the issue if you try to build the dev docker image with:
```
cd .devcontainer
docker-compose build
```

Dependencies: none
Twitter handle: byronsalty
2023-07-26 10:37:03 -07:00
happyxhw
6384c1ec8f fix: ElasticVectorSearch.from_documents failed #8293 (#8296)
- Description: fix ElasticVectorSearch.from_documents with
elasticsearch_url param,
- Issue: ElasticVectorSearch.from_documents failed #8293 # it fixes (if
applicable),


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 10:33:52 -07:00
Jon Bennion
ad38eb2d50 correction to reference to code (#8301)
- Description: fixes typo referencing code

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 10:33:18 -07:00
jacobswe
83a53e2126 Bug Fix: AzureChatOpenAI streaming with function calls (#8300)
- Description: During streaming, the first chunk may only contain the
name of an OpenAI function and not any arguments. In this case, the
current code presumes there is a streaming response and tries to append
to it, but gets a KeyError. This fixes that case by checking if the
arguments key exists, and if not, creates a new entry instead of
appending.
  - Issue: Related to #6462

Sample Code:
```python
llm = AzureChatOpenAI(
    deployment_name=deployment_name,
    model_name=model_name,
    streaming=True
)

tools = [PythonREPLTool()]
callbacks = [StreamingStdOutCallbackHandler()]

agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.OPENAI_FUNCTIONS,
    callbacks=callbacks
)

agent('Run some python code to test your interpreter')
```

Previous Result:
```
File ...langchain/chat_models/openai.py:344, in ChatOpenAI._generate(self, messages, stop, run_manager, **kwargs)
    342         function_call = _function_call
    343     else:
--> 344         function_call["arguments"] += _function_call["arguments"]
    345 if run_manager:
    346     run_manager.on_llm_new_token(token)

KeyError: 'arguments'
```

New Result:
```python
{'input': 'Run some python code to test your interpreter',
 'output': "The Python code `print('Hello, World!')` has been executed successfully, and the output `Hello, World!` has been printed."}
```

Co-authored-by: jswe <jswe@polencapital.com>
2023-07-26 10:11:50 -07:00
German Martin
457a4730b2 Fix the mangling issue on several VectorStores child classes. (#8274)
- Description: Fix mangling issue affecting a couple of VectorStore
classes including Redis.
  - Issue: https://github.com/langchain-ai/langchain/issues/8185
  - @rlancemartin 
  
This is a simple issue but I lack of some context in the original
implementation.
My changes perhaps are not the definitive fix but to start a quick
discussion.

@hinthornw Tagging you since one of your changes introduced this
[here.](c38965fcba)
2023-07-26 09:48:55 -07:00
Alec Flett
4da43f77e5 Add ability to load (deserialize) objects from other namespaces (#7726)
I have some Prompt subclasses in my project that I'd like to be able to
deserialize in callbacks. Right now `loads()`/`load()` will bail when it
encounters my object, but I know I can trust the objects because they're
in my own projects.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-26 16:59:28 +01:00
Bagatur
5c6dcb1960 bump 243 (#8289) 2023-07-26 05:41:56 -07:00
William FH
adf019724f unpack later (#8278)
Fix https://github.com/langchain-ai/langchain/issues/8272
2023-07-26 01:53:22 -07:00
Naveen Tatikonda
9cbefcc56c [ OpenSearch ] : Add AOSS Support to OpenSearch (#8256)
### Description

This PR includes the following changes:

- Adds AOSS (Amazon OpenSearch Service Serverless) support to
OpenSearch. Please refer to the documentation on how to use it.
- While creating an index, AOSS only supports Approximate Search with
`nmslib` and `faiss` engines. During Search, only Approximate Search and
Script Scoring (on doc values) are supported.
- This PR also adds support to `efficient_filter` which can be used with
`faiss` and `lucene` engines.
- The `lucene_filter` is deprecated. Instead please use the
`efficient_filter` for the lucene engine.


Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-07-25 23:59:36 -07:00
Lance Martin
7a00f17033 Web research retriever (#8102)
Given a user question, this will -
* Use LLM to generate a set of queries.
* Query for each.
* The URLs from search results are stored in self.urls.
* A check is performed for any new URLs that haven't been processed yet
(not in self.url_database).
* Only these new URLs are loaded, transformed, and added to the
vectorstore.
* The vectorstore is queried for relevant documents based on the
questions generated by the LLM.
* Only unique documents are returned as the final result.

This code will avoid reprocessing of URLs across multiple runs of
similar queries, which should improve the performance of the retriever.
It also keeps track of all URLs that have been processed, which could be
useful for debugging or understanding the retriever's behavior.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-25 19:58:00 -07:00
Rithwik Ediga Lakhamsani
d1d691caa4 Added Databricks support to MLflow Callback (#7906)
Added a quick check to make integration easier with Databricks; another
option would be to make a new class, but this seemed more
straightfoward.

cc: @liangz1 Can this be done in a more straightfoward way?
2023-07-25 18:23:54 -07:00
William FH
479cc086ba Rm Github Import (#8257)
It's not a required dep but would break peoples builds

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-25 18:20:58 -07:00
Byron Saltysiak
68a906bb31 added lxml to the pip install example since it is required (#8260)
- Description: The trello dataloader example didn't work without an
additional dependency installed - lxml
  - Issue: na
2023-07-25 18:16:07 -07:00
Emory Petermann
7734a2b5ab update golden-query notebook and fix typo in golden docs (#8253)
updating the documentation to be consistent for Golden query tool and
have a better introduction to the tool
2023-07-25 18:15:48 -07:00
Erick Friis
c14571ab37 New enterprise support form (#8254) 2023-07-25 15:43:27 -07:00
William FH
dd87275dde Add LLMChain example of memory with chat models (#8250) 2023-07-25 15:20:32 -07:00
William FH
1f40d3e094 Update Broken Links (#8247) 2023-07-25 12:26:39 -07:00
Eugene Yurtsev
ec069381fb Remove operator overloading for BaseMessage (#8245)
This PR removes operator overloading for base message.

Removing the `+` operating from base message will help make sure that:

1) There's no need to re-define `+` for message chunks
2) That there's no unexpected behavior in terms of types changing
(adding two messages yields a ChatPromptTemplate which is not a message)
2023-07-25 20:12:19 +01:00
William FH
30c2d3cd06 Update references (#8243) 2023-07-25 11:49:25 -07:00
jacobswe
0af48b06d0 Bug Fix #6462 (#8241)
- Description: Small change to fix broken Azure streaming. More complete
migration probably still necessary once the new API behavior is
finalized.
- Issue: Implements fix by @rock-you in #6462 
- Dependencies: N/A

There don't seem to be any tests specifically for this, and I was having
some trouble adding some. This is just a small temporary fix to allow
for the new API changes that OpenAI are releasing without breaking any
other code.

---------

Co-authored-by: Jacob Swe <jswe@polencapital.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-25 11:30:22 -07:00
Bagatur
c1ea8da9bc bump 242 (#8238) 2023-07-25 08:01:37 -07:00
shibuiwilliam
af788b7cf0 Add/faiss test score threshold (#8224)
# What
- This is to add test for faiss vector store with score threshold

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: This is to add test for faiss vector store with score
threshold
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-25 09:56:29 -04:00
shibuiwilliam
bed8eb978e use logger instead of logging (#8225)
# What
- Use `logger` instead of using logging directly.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Use `logger` instead of using logging directly.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-25 09:55:30 -04:00
Leonid Ganeline
afc55a4fee Refactored requests (#8203)
Refactored `requests.py`. The same as
https://github.com/langchain-ai/langchain/pull/7961 #8098 #8099
requests.py is in the root code folder. This creates the
`langchain.requests: Requests` group on the API Reference navigation
ToC, on the same level as Chains and Agents which is incorrect.

Refactoring:

- copied requests.py content into utils/requests.py
- I added the backwards compatibility ref in the original requests.py. 
- updated imports to requests objects

@hwchase17, @baskaryan
2023-07-24 21:23:59 -07:00
William FH
0a16b3d84b Update Integrations links (#8206) 2023-07-24 21:20:32 -07:00
Alex Stachowiak
a7efa95775 Update base chain type hints (#7680)
Addresses #7578. `run()` can return dictionaries, Pydantic objects or
strings, so the type hints should reflect that. See the chain from
`create_structured_output_chain` for an example of a non-string return
type from `run()`.

I've updated the BaseLLMChain return type hint from `str` to `Any`.
Although, the differences between `run()` and `__call__()` seem less
clear now.

CC: @baskaryan

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 21:16:41 -07:00
Ani peter benjamin
e58b1d7073 feat: temp fixed Could not parse LLM output on agents folder (#7746)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 19:20:37 -07:00
Dayuan Jiang
125ae6d9de add Hybrid retriever that not require any external service (#8108)
- Until now, hybrid search was limited to modules requiring external
services, such as Weaviate/Pinecone Hybrid Search. However, I have
developed a hybrid retriever that can merge a list of retrievers using
the [Reciprocal Rank
Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf)
algorithm. This new approach, similar to Weaviate hybrid search, does
not require the initialization of any external service.
  - Dependencies: No  - Twitter handle: dayuanjian21687

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 19:16:10 -07:00
Dario Ruben
04e45f9cde Fixed grammar in LLM models documentation (#8210)
Description: I fixed a typo in the documentation related to LLMs
(https://python.langchain.com/docs/modules/model_io/models/llms/)
2023-07-24 19:14:32 -07:00
earonesty
59a7c5877a Update supabase.py, add filter to query (matches latest supabase docs & js) (#7721)
- Description: Update supabase to support optional filter argument (if
present, used, if not, doesn't break things)
- Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 19:13:52 -07:00
Aditya S
00de334f81 Fixed sparql SELECT and UPDATE query function (#7758)
- Description: Changed "SELECT" and "UPDTAE" intent check from "=" to
"in",
- Issue: Based on my own testing, most of the LLM (StarCoder, NeoGPT3,
etc..) doesn't return a single word response ("SELECT" / "UPDATE")
through this modification, we can accomplish the same output without
curated prompt engineering.
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: @aditya_0290


Thank you for maintaining this library, Keep up the good efforts.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 18:29:30 -07:00
William FH
3662aca7d4 Add async support for transform chain (#8205) 2023-07-24 17:45:17 -07:00
Taqi Jaffri
8f158b72fc Added stop sequence support to replicate (#8107)
Stop sequences are useful if you are doing long-running completions and
need to early-out rather than running for the full max_length... not
only does this save inference cost on Replicate, it is also much faster
if you are going to truncate the output later anyway.

Other LLMs support stop sequences natively (e.g. OpenAI) but I didn't
see this for Replicate so adding this via their prediction cancel
method.

Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.

I did update the replicate integration test and ran `poetry run pytest
tests/integration_tests/llms/test_replicate.py` successfully.

Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-07-24 17:34:13 -07:00
glaze
f7ad14acfa Add etherscan document loader (#7943)
@rlancemartin 
The modification includes:
* etherscanLoader
* test_etherscan
* document ipynb

I have run the test, lint, format, and spell check. I do encounter a
linting error on ipynb, I am not sure how to address that.
```
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:55: error: Name "null" is not defined  [name-defined]
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:76: error: Name "null" is not defined  [name-defined]
Found 2 errors in 1 file (checked 1 source file)
```
- Description: The Etherscan loader uses etherscan api to load
transaction histories under specific accounts on Ethereum Mainnet.
- No dependency is introduced by this PR.
- Twitter handle: glazecl

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 17:09:16 -07:00
Julien Salinas
73d5cba308 Allow user to modify the GPU and language settings when using NLP Cloud (#7985)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 17:08:56 -07:00
Bagatur
483f6c2fe3 mv eval docs (#8209) 2023-07-24 16:31:20 -07:00
Liu Ming
24f889f2bc Change with_history option to False for ChatGLM by default (#8076)
ChatGLM LLM integration will by default accumulate conversation
history(with_history=True) to ChatGLM backend api, which is not expected
in most cases. This PR set with_history=False by default, user should
explicitly set llm.with_history=True to turn this feature on. Related
PR: #8048 #7774

---------

Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:46:02 -07:00
Mahip Soni
1f055775f8 Fixing issue with MSSQL connection (#8040)
My team recently faced an issue while using MSSQL and passing a schema
name.

We noticed that "SET search_path TO {self.schema}" is being called for
us, which is not a valid ms-sql query, and is specific to postgresql
dialect.

We were able to run it locally after this fix.


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:45:40 -07:00
Anthony Mahanna
76102971c0 ArangoDB/AQL support for Graph QA Chain (#7880)
**Description**: Serves as an introduction to LangChain's support for
[ArangoDB](https://github.com/arangodb/arangodb), similar to
https://github.com/hwchase17/langchain/pull/7165 and
https://github.com/hwchase17/langchain/pull/4881

**Issue**: No issue has been created for this feature

**Dependencies**: `python-arango` has been added as an optional
dependency via the `CONTRIBUTING.md` guidelines
 
**Twitter handle**: [at]arangodb

- Integration test has been added
- Notebook has been added:
[graph_arangodb_qa.ipynb](https://github.com/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

[![Open In
Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

```
docker run -p 8529:8529 -e ARANGO_ROOT_PASSWORD= arangodb/arangodb
```

```
pip install git+https://github.com/amahanna/langchain.git
```

```python
from arango import ArangoClient

from langchain.chat_models import ChatOpenAI
from langchain.graphs import ArangoGraph
from langchain.chains import ArangoGraphQAChain

db = ArangoClient(hosts="localhost:8529").db(name="_system", username="root", password="", verify=True)

graph = ArangoGraph(db)

chain = ArangoGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph)

chain.run("Is Ned Stark alive?")
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:16:52 -07:00
Adilkhan Sarsen
3e7d2a1b64 SelfQuery support for deeplake (#7888)
Added support SelfQuery for Deeplake
2023-07-24 14:22:33 -07:00
Leonid Ganeline
c580c81cca docstrings experimental (#7969)
- added/changed docstring for `experimental`
- added/changed docstrings for different artifacts
- 
@baskaryan
2023-07-24 14:21:48 -07:00
Leonid Ganeline
3eb4112a1f Refactored example_generator (#8099)
Refactored `example_generator.py`. The same as #7961 
`example_generator.py` is in the root code folder. This creates the
`langchain.example_generator: Example Generator ` group on the API
Reference navigation ToC, on the same level as `Chains` and `Agents`
which is not correct.

Refactoring:
- moved `example_generator.py` content into
`chains/example_generator.py` (not in `utils` because the
`example_generator` has dependencies on other LangChain classes. It also
doesn't work for moving into `utilities/`)
- added the backwards compatibility ref in the original
`example_generator.py`

@hwchase17
2023-07-24 13:36:44 -07:00
Juan José Torres
1cc7d4c9eb Update SageMaker Endpoint Embeddings docs to be up to date with current requirements (#8103)
- **Description:** Simple change of the Class that ContentHandler
inherits from. To create an object of type SagemakerEndpointEmbeddings,
the property content_handler must be of type EmbeddingsContentHandler
not ContentHandlerBase anymore,
  - **Twitter handle:** @Juanjo_Torres11

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 13:35:06 -07:00
Leonid Ganeline
7cbe28ba9b Refactored input (#8202)
Refactored `input.py`. The same as
https://github.com/langchain-ai/langchain/pull/7961 #8098 #8099
input.py is in the root code folder. This creates the `langchain.input:
Input` group on the API Reference navigation ToC, on the same level as
Chains and Agents which is incorrect.

Refactoring:

- copied input.py file into utils/input.py
- I added the backwards compatibility ref in the original input.py. 
- changed several imports to a new ref

@hwchase17, @baskaryan
2023-07-24 13:10:03 -07:00
Monty Evans
72eb4fa4e8 Change WebBaseLoader metadata parsing to set missing metadata to descriptive string instead of None (#8175)
Solves #8174 & #3542

Co-authored-by: mevans <mevans@palantir.com>
2023-07-24 12:17:49 -07:00
Bagatur
1a7d8667c8 Bagatur/gateway chat (#8198)
Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: dbczumar <corey.zumar@databricks.com>
2023-07-24 12:17:00 -07:00
Ettore Di Giacinto
ae28568e2a Add embeddings for LocalAI (#8134)
Description:

This PR adds embeddings for LocalAI (
https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in
replacement. As LocalAI can re-use OpenAI clients it is mostly following
the lines of the OpenAI embeddings, however when embedding documents, it
just uses string instead of sending tokens as sending tokens is
best-effort depending on the model being used in LocalAI. Sending tokens
is also tricky as token id's can mismatch with the model - so it's safer
to just send strings in this case.

Partly related to: https://github.com/hwchase17/langchain/issues/5256

Dependencies: No new dependencies

Twitter: @mudler_it
---------

Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 12:16:49 -07:00
Mike Nitsenko
d983046f90 Extend Cube Semantic Loader functionality (#8186)
**PR Description:**

This pull request introduces several enhancements and new features to
the `CubeSemanticLoader`. The changes include the following:

1. Added imports for the `json` and `time` modules.
2. Added new constructor parameters: `load_dimension_values`,
`dimension_values_limit`, `dimension_values_max_retries`, and
`dimension_values_retry_delay`.
3. Updated the class documentation with descriptions for the new
constructor parameters.
4. Added a new private method `_get_dimension_values()` to retrieve
dimension values from Cube's REST API.
5. Modified the `load()` method to load dimension values for string
dimensions if `load_dimension_values` is set to `True`.
6. Updated the API endpoint in the `load()` method from the base URL to
the metadata endpoint.
7. Refactored the code to retrieve metadata from the response JSON.
8. Added the `column_member_type` field to the metadata dictionary to
indicate if a column is a measure or a dimension.
9. Added the `column_values` field to the metadata dictionary to store
the dimension values retrieved from Cube's API.
10. Modified the `page_content` construction to include the column title
and description instead of the table name, column name, data type,
title, and description.

These changes improve the functionality and flexibility of the
`CubeSemanticLoader` class by allowing the loading of dimension values
and providing more detailed metadata for each document.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 12:11:58 -07:00
Bagatur
82b8d8596c bump lc241 exp3 (#8193) 2023-07-24 11:52:44 -07:00
Leonid Ganeline
848454d1e7 Refactored formatting (#8191)
Refactored `formatting.py`. The same as
https://github.com/langchain-ai/langchain/pull/7961 #8098 #8099
formatting.py is in the root code folder. This creates the
`langchain.formatting: Formatting` group on the API Reference navigation
ToC, on the same level as Chains and Agents which is incorrect.

Refactoring:

- moved formatting.py content into utils/formatting.py
- I did not add the backwards compatibility ref in the original
formatting.py. It seems unnecessary.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 11:34:15 -07:00
Bagatur
4928f7a9f5 undo bump (#8192) 2023-07-24 11:32:17 -07:00
Bagatur
14aa27b5f4 redirect (#8189) 2023-07-24 10:45:12 -07:00
Bagatur
e7d64f8b15 Bagatur/vercel test 3 (#8188) 2023-07-24 10:11:54 -07:00
Leonid Ganeline
120cdf813d docstrings memory (#8018)
docstrings `memory`:
- added module summary
- added missed docstrings
- updated docstrings into consistent format
- 
@baskaryan
2023-07-24 10:05:36 -07:00
Bagatur
026269bfa9 redirects (#8183) 2023-07-24 08:32:49 -07:00
Bagatur
d5689d58ab Bagatur/bump 241 (#8182) 2023-07-24 07:47:40 -07:00
Harrison Chase
3caccf304c Harrison/hugginggpt (#8162)
Co-authored-by: Yongliang Shen <withsyl@163.com>
2023-07-24 07:36:24 -07:00
rajib
f3908627ed changed to mlflow-ai-gateway in llms/__init__.py (#8114)
- Description: In the llms/__init__.py, the key name is wrong for
mlflowaigateway. It should be mlflow-ai-gateway
  - Issue: NA
  - Dependencies: NA
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: na

Without this fix, when we run the code for mlflowaigateway, we will get
error as below

ValueError: Loading mlflow-ai-gateway LLM not supported

---------

Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-23 23:30:46 -07:00
Bagatur
c8c8635dc9 mv module integrations docs (#8101) 2023-07-23 23:23:16 -07:00
Adarsh Shirawalmath
8ea840432f Generalize Comment on Streaming Support for LLM Implementations and add examples (#8115)
The example provided demonstrates the usage of the
HuggingFaceTextGenInference implementation with streaming enabled.
2023-07-23 22:59:59 -07:00
Gordon Clark
80b3ec5869 GitHub toolkit improvements (#8121)
Fixes an issue with the github tool where the API returned special
objects but the tool was expecting dictionaries.

Also added proper docstrings to the GitHubAPIWraper methods and a (very
basic) integration test.

Maintainer responsibilities:
  - Agents / Tools / Toolkits: @hinthornw

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-23 20:17:53 -07:00
Harrison Chase
33fd6184ba beef up getting started (#8139)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-23 19:57:43 -07:00
Lawrence Lim
fa8906a9b7 fix typo: Entity Summary Memory documentation (#8145)
Fixed a small typo I came across in the Memory documentation.
2023-07-23 19:36:50 -07:00
shibuiwilliam
8f5000146c add faiss test for score threshold (#8143)
# What
- Add faiss vector search test for score threshold
- Fix failing faiss vector search test; filtering with list value is
wrong.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: Add faiss vector search test for score threshold; Fix
failing faiss vector search test; filtering with list value is wrong.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-23 19:36:38 -07:00
Nolan
7686dabd36 Unbreak devcontainer (#8154)
Codespaces and devcontainer was broken by the [repo
restructure](https://github.com/langchain-ai/langchain/discussions/8043).



- Description: Add libs/langchain to container so it can be built
without error.
  - Issue: -
  - Dependencies: -
  - Tag maintainer: @hwchase17 @baskaryan 
  - Twitter handle: @finnless

The failed build log says:
```
#10 [langchain-dev-dependencies 2/2] RUN poetry install --no-interaction --no-ansi --with dev,test,docs
#10 sha256:e850ee99fc966158bfd2d85e82b7c57244f47ecbb1462e75bd83b981a56a1929
2023-07-23 23:30:33.692Z: #10 0.827 
#10 0.827 Directory libs/langchain does not exist
2023-07-23 23:30:33.738Z: #10 ERROR: executor failed running [/bin/sh -c poetry install --no-interaction --no-ansi --with dev,test,docs]: exit code: 1
```

The new pyproject.toml imports from libs/langchain:

77bf75c236/pyproject.toml (L14-L16)

But libs/langchain is never added to the dev.Dockerfile:


77bf75c236/libs/langchain/dev.Dockerfile (L37-L39)
2023-07-23 19:33:47 -07:00
Fielding Johnston
fb62f2be70 nit: small typo in evaluation module docs (#8155)
Hopefully, this doesn't come across as nitpicky! That isn't the
intention. I only noticed it, because I enjoy reading the documentation
and when I hit a mental road bump it is usually due to a missing word or
something =)

@baskaryan
2023-07-23 18:25:14 -07:00
Harrison Chase
9205919ad2 actually use input key (#8136) 2023-07-23 18:02:45 -07:00
Leonid Ganeline
670304a8b3 simplified nmspace (#8152)
recreated #7894 (it is easy to recreate than resolve conflicts)
A small refactoring to improve the API Reference Agents table
 @baskaryan
2023-07-23 18:02:20 -07:00
William FH
c5b50be225 Function calling logging fixup (#8153)
Fix bad overwriting of "functions" arg in invocation params.
Cleanup precedence in the dict
Clean up some inappropriate types (mapping should be dict)


Example:
https://dev.smith.langchain.com/public/9a7a6817-1679-49d8-8775-c13916975aae/r


![image](https://github.com/langchain-ai/langchain/assets/13333726/94cd0775-b6ef-40c3-9e5a-3ab65e466ab9)
2023-07-23 18:01:33 -07:00
SlapDrone
961a0e200f Implement AgentExecutorIterator (#6929)
- Description: Implements a `.iter()` method for the `AgentExecutor`
class. This allows hooking into and intercepting intermediate agent
steps.
  - Issue: #6925 
  - Dependencies: None
  - Tag maintainer: @vowelparrot @agola11 
  - Twitter handle: @SlapDron3 @lacicocodes

---------

Co-authored-by: Lacico <Lacicocodes@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-23 18:00:22 -07:00
Harrison Chase
77bf75c236 bump experimental to 002 (#8150) 2023-07-23 09:22:39 -07:00
Harrison Chase
e46126eac6 add llamaapi (#8140) 2023-07-23 09:16:16 -07:00
Harrison Chase
f0eb5db670 Harrison/agent intro (#8138)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-22 22:14:59 -07:00
Harrison Chase
cbf2fc8af8 prompt ergonomics (#7799) 2023-07-22 14:19:17 -07:00
Samuel Berthe
d81d6e874f doc(sqldatabasechain): use views when jsonb column description is not available (#8133)
I think the PR diff is self explaining ;)

@baskaryan
2023-07-22 11:30:04 -07:00
Harrison Chase
506b21bfc2 Update MIGRATE.md 2023-07-22 09:11:43 -07:00
Harrison Chase
9854d9e5cb cr 2023-07-22 09:07:26 -07:00
Harrison Chase
9f3073d418 bump versions (#8129) 2023-07-22 08:46:37 -07:00
Harrison Chase
86946a47a8 Harrison/add back in experimental (#8128) 2023-07-22 08:27:29 -07:00
Karthik Raja A
8b08687fc4 MultiOn client toolkit (#8110)
Addition of MultiOn Client Agent Toolkit
Dependencies: multion pip package
This PR consists of the following:
- MultiOn utility,tools and integration with agent
- sample jupyter notebook.
Request @hwchase17 , @hinthornw

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-22 08:19:01 -07:00
Harrison Chase
aa0e69bc98 Harrison/official pre release (#8106) 2023-07-21 18:44:32 -07:00
Philip Kiely - Baseten
95bcf68802 add kwargs support for Baseten models (#8091)
This bugfix PR adds kwargs support to Baseten model invocations so that
e.g. the following script works properly:

```python
chatgpt_chain = LLMChain(
    llm=Baseten(model="MODEL_ID"),
    prompt=prompt,
    verbose=False,
    memory=ConversationBufferWindowMemory(k=2),
    llm_kwargs={"max_length": 4096}
)
```
2023-07-21 13:56:27 -07:00
Harrison Chase
8dcabd9205 bump releases rc0 (#8097) 2023-07-21 13:54:57 -07:00
Bagatur
58f65fcf12 use top nav docs (#8090) 2023-07-21 13:52:03 -07:00
Harrison Chase
0faba034b1 add experimental release action (#8096) 2023-07-21 13:38:35 -07:00
Harrison Chase
d353d668e4 remove CVEs (#8092)
This PR aims to move all code with CVEs into `langchain.experimental`.
Note that we are NOT yet removing from the core `langchain` package - we
will give people a week to migrate here.

See MIGRATE.md for how to migrate

Zero changes to functionality

Vulnerabilities this addresses:

PALChain:
- https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5752409
- https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5759265

SQLDatabaseChain
- https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5759268

`load_prompt` (Python files only)
- https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5725807
2023-07-21 13:32:39 -07:00
Bagatur
08c658d3f8 fix api ref (#8083) 2023-07-21 12:37:21 -07:00
Harrison Chase
344cbd9c90 update contributor guide (#8088) 2023-07-21 12:01:05 -07:00
Harrison Chase
17c06ee456 cr 2023-07-21 10:48:00 -07:00
Harrison Chase
da04760de1 Harrison/move experimental (#8084) 2023-07-21 10:36:28 -07:00
Harrison Chase
f35db9f43e (WIP) set up experimental (#7959) 2023-07-21 09:20:24 -07:00
c-bata
623b321e75 Fix allowed_search_types in VectorStoreRetriever (#8064)
Unexpectedly changed at
6792a3557d

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

I guess `allowed_search_types` is unexpectedly changed in
6792a3557d,
so that we cannot specify `similarity_score_threshold` here.

```python
class VectorStoreRetriever(BaseRetriever):
    ...
    allowed_search_types: ClassVar[Collection[str]] = (
        "similarity",
        "similarityatscore_threshold",
        "mmr",
    )

    @root_validator()
    def validate_search_type(cls, values: Dict) -> Dict:
        """Validate search type."""
        search_type = values["search_type"]
        if search_type not in cls.allowed_search_types:
            raise ValueError(...)
        if search_type == "similarity_score_threshold":
            ... # UNREACHABLE CODE
```

VectorStores Maintainers: @rlancemartin @eyurtsev
2023-07-21 08:39:36 -07:00
Bagatur
95e369b38d bump 239 (#8077) 2023-07-21 07:31:14 -07:00
William FH
c38965fcba Add embedding and vectorstore provider info as tags (#8027)
Example:
https://smith.langchain.com/public/bcd3714d-abba-4790-81c8-9b5718535867/r


The vectorstore implementations aren't super standardized yet, so just
adding an optional embeddings property to pass in.
2023-07-20 22:40:01 -07:00
Mohammad Mohtashim
355b7d8b86 Getting SQL cmd directly from SQLDatabase Chain. (#7940)
- Description: Get SQL Cmd directly generated by SQL-Database Chain
without executing it in the DB engine.
- Issue: #4853 
- Tag maintainer: @hinthornw,@baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-20 22:36:55 -07:00
Lance Martin
5a084e1b20 Async HTML loader and HTML2Text transformer (#8036)
New HTML loader that asynchronously loader a list of urls. 
 
New transformer using [HTML2Text](https://github.com/Alir3z4/html2text/)
for HTML to clean, easy-to-read plain ASCII text (valid Markdown).
2023-07-20 22:30:59 -07:00
Wey Gu
cf60cff1ef feat: Add with_history option for chatglm (#8048)
In certain 0-shot scenarios, the existing stateful language model can
unintentionally send/accumulate the .history.

This commit adds the "with_history" option to chatglm, allowing users to
control the behavior of .history and prevent unintended accumulation.

Possible reviewers @hwchase17 @baskaryan @mlot

Refer to discussion over this thread:
https://twitter.com/wey_gu/status/1681996149543276545?s=20
2023-07-20 22:25:37 -07:00
Harrison Chase
1f3b987860 Harrison/GitHub toolkit (#8047)
Co-authored-by: Trevor Dobbertin <trevordobbertin@gmail.com>
2023-07-20 22:24:55 -07:00
Leonid Ganeline
ae8bc9e830 Refactored sql_database (#7945)
The `sql_database.py` is unnecessarily placed in the root code folder.
A similar code is usually placed in the `utilities/`.
As a byproduct of this placement, the sql_database is [placed on the top
level of classes in the API
Reference](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.sql_database)
which is confusing and not correct.


- moved the `sql_database.py` from the root code folder to the
`utilities/`

@baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-20 22:17:55 -07:00
William FH
dc9d6cadab Dedup methods (#8049) 2023-07-20 22:13:22 -07:00
Harrison Chase
f99f497b2c Harrison/predibase (#8046)
Co-authored-by: Abhay Malik <32989166+Abhay-765@users.noreply.github.com>
2023-07-20 19:26:50 -07:00
Jacob Lee
56c6ab1715 Fix bad docs sidebar header (#7966)
Quick fix for:

<img width="283" alt="Screenshot 2023-07-19 at 2 49 44 PM"
src="https://github.com/hwchase17/langchain/assets/6952323/91e4868c-b75e-413d-9f8f-d34762abf164">

CC @baskaryan
2023-07-20 19:06:57 -07:00
Wian Stipp
ebc5ff2948 HuggingFaceTextGenInference bug fix: Multiple values for keyword argument (#8044)
Fixed the bug causing: `TypeError: generate() got multiple values for
keyword argument 'stop_sequences'`

```python
res = await self.async_client.generate(
                prompt,
                **self._default_params,
                stop_sequences=stop,
                **kwargs,
            )
```
The above throws an error because stop_sequences is in also in the
self._default_params.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 19:05:08 -07:00
Kacper Łukawski
ed6a5532ac Implement async support in Qdrant local mode (#8001)
I've extended the support of async API to local Qdrant mode. It is faked
but allows prototyping without spinning a container. The tests are
improved to test the in-memory case as well.

@baskaryan @rlancemartin @eyurtsev @agola11
2023-07-20 19:04:33 -07:00
Bagatur
7717c24fc4 fix redis cache chat model (#8041)
Redis cache currently stores model outputs as strings. Chat generations
have Messages which contain more information than just a string. Until
Redis cache supports fully storing messages, cache should not interact
with chat generations.
2023-07-20 19:00:05 -07:00
Taqi Jaffri
973593c5c7 Added streaming support to Replicate (#8045)
Streaming support is useful if you are doing long-running completions or
need interactivity e.g. for chat... adding it to replicate, using a
similar pattern to other LLMs that support streaming.

Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.

I did update the replicate integration test but ran into some issues,
specifically:

1. The original test was failing for me due to the model argument not
being specified... perhaps this test is not regularly run? I fixed it by
adding a call to the lightweight hello world model which should not be
burdensome for replicate infra.
2. I couldn't get the `make integration_tests` command to pass... a lot
of failures in other integration tests due to missing dependencies...
however I did make sure the particluar test file I updated does pass, by
running `poetry run pytest
tests/integration_tests/llms/test_replicate.py`

Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)

Tagging model maintainers @hwchase17  @baskaryan 

Thank for all the awesome work you folks are doing.

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-07-20 18:59:54 -07:00
Piyush Jain
31b7ddc12c Neptune graph and openCypher QA Chain (#8035)
## Description
This PR adds a graph class and an openCypher QA chain to work with the
Amazon Neptune database.

## Dependencies
`requests` which is included in the LangChain dependencies.

## Maintainers for Review
@krlawrence
@baskaryan

### Twitter handle
pjain7
2023-07-20 18:56:47 -07:00
Leonid Ganeline
995220b797 Refactored math_utils (#7961)
`math_utils.py` is in the root code folder. This creates the
`langchain.math_utils: Math Utils` group on the API Reference navigation
ToC, on the same level with `Chains` and `Agents` which is not correct.

Refactoring:
- created the `utils/` folder
- moved `math_utils.py` to `utils/math.py`
- moved `utils.py` to `utils/utils.py`
- split `utils.py` into `utils.py, env.py, strings.py`
- added module description

@baskaryan
2023-07-20 18:55:43 -07:00
Paolo Picello
5137f40dd6 Update mongodb_atlas.py docstrings (#8033)
Hi all, I just added the "index_name" parameter to the docstrings for
mongodb_atlas.py (it is missing in the [public doc
page](https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch.html#langchain-vectorstores-mongodb-atlas-mongodbatlasvectorsearch).

Thanks
2023-07-20 17:35:07 -07:00
felixocker
9226fda58b fix: create schema description from URIs and str w/out rdflib warnings (#8025)
- Description: fix to avoid rdflib warnings when concatenating URIs and
strings to create the text snippet for the knowledge graph's schema.
@marioscrock pointed this out in a comment related to #7165
- Issue: None, but the problem was mentioned as a comment in #7165
- Dependencies: None
- Tag maintainer: Related to memory -> @hwchase17, maybe @baskaryan as
it is a fix
2023-07-20 15:55:19 -07:00
Emory Petermann
7239d57a53 Update Golden integration documentation (#8030)
fixes some typos and cleans up onboarding for golden, thank you!

@hinthornw
2023-07-20 15:53:44 -07:00
Jonathon Belotti
021bb9be84 Update Modal.com integration docs (#8014)
Hey, I'm a Modal Labs engineer and I'm making this docs update after
getting a user question in [our beta Slack
space](https://join.slack.com/t/modalbetatesters/shared_invite/zt-1xl9gbob8-1QDgUY7_PRPg6dQ49hqEeQ)
about the Langchain integration docs.

🔗 [Modal beta-testers link to docs discussion
thread](https://modalbetatesters.slack.com/archives/C031Z7DBQFL/p1689777700594819?thread_ts=1689775859.855849&cid=C031Z7DBQFL)
2023-07-20 15:53:06 -07:00
Jeffrey Wang
62d0475c29 Add Metaphor new field and reformat docs (#8022)
This PR reformats our python notebook example and also adds a new field
we have.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-07-20 15:50:54 -07:00
William FH
e2a99bd169 Different error strings (#8010) 2023-07-20 09:58:25 -07:00
Bagatur
ec4f93b629 bump 238 (#8012) 2023-07-20 09:21:15 -07:00
vrushankportkey
5f10d2ea1d Add Portkey LLMOps integration (#7877)
Integrating Portkey, which adds production features like caching,
tracing, tagging, retries, etc. to langchain apps.

  - Dependencies: None
  - Twitter handle: https://twitter.com/portkeyai
  - test_portkey.py added for tests
  - example notebook added in new utilities folder in modules
  
 Also fixed a bug with OpenAIEmbeddings where headers weren't passing.

cc @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 09:08:44 -07:00
Boris Nieuwenhuis
095937ad52 Add google place ID to google places tool response (#7789)
- Description: this change will add the google place ID of the found
location to the response of the GooglePlacesTool
  - Issue: Not applicable
  - Dependencies: no dependencies
  - Tag maintainer: @hinthornw
  - Twitter handle: Not applicable
2023-07-20 09:04:31 -07:00
Bagatur
7c24a6b9d1 Bagatur/apify (#8008)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Jiří Moravčík <jiri.moravcik@gmail.com>
Co-authored-by: Jan Čurn <jan.curn@gmail.com>
2023-07-20 08:36:01 -07:00
Aiden Le
1d7414a371 Feature: Add openai_api_model attribute to Doctran models (#7868)
- Description: Added the ability to define the open AI model.
- Issue: Currently the Doctran instance uses gpt-4 by default, this does
not work if the user has no access to gpt -4.
  - rlancemartin, @eyurtsev, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 07:27:56 -07:00
Dwai Banerjee
d8c40253c3 Adding endpoint_url to embeddings/bedrock.py and updated docs (#7927)
BedrockEmbeddings does not have endpoint_url so that switching to custom
endpoint is not possible. I have access to Bedrock custom endpoint and
cannot use BedrockEmbeddings

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 07:25:59 -07:00
Bagatur
ea028b66ab undo vectstore memory bug (#8007) 2023-07-20 07:25:23 -07:00
Mohammad Mohtashim
453d4c3a99 VectorStoreRetrieverMemory exclude additional input keys feature (#7941)
- Description: Added a parameter in VectorStoreRetrieverMemory which
filters the input given by the key when constructing the buffering the
document for Vector. This feature is helpful if you have certain inputs
apart from the VectorMemory's own memory_key that needs to be ignored
e.g when using combined memory, we might need to filter the memory_key
of the other memory, Please see the issue.
  - Issue: #7695
  - Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 07:23:27 -07:00
Constantin Musca
d593833e4d Add Golden Query Tool (#7930)
**Description:** Golden Query is a wrapper on top of the [Golden Query
API](https://docs.golden.com/reference/query-api) which enables
programmatic access to query results on entities across Golden's
Knowledge Base. For more information about Golden API, please see the
[Golden API Getting
Started](https://docs.golden.com/reference/getting-started) page.
**Issue:** None
**Dependencies:** requests(already present in project)
**Tag maintainer:** @hinthornw

Signed-off-by: Constantin Musca <constantin.musca@gmail.com>
2023-07-20 07:03:20 -07:00
eahova
aea97efe8b Adding code to allow pandas to show all columns instead of truncating… (#7901)
- Description: Adding code to set pandas dataframe to display all the
columns. Otherwise, some data get truncated (it puts a "..." in the
middle and just shows the first 4 and last 4 columns) and the LLM
doesn't realize it isn't getting the full data. Default value is 8, so
this helps Dataframes larger than that.
  - Issue: none
  - Dependencies: none
  - Tag maintainer: @hinthornw 
  - Twitter handle: none
2023-07-20 07:02:01 -07:00
Santiago Delgado
c416dbe8e0 Amadeus Flight and Travel Search Tool (#7890)
## Background
With the addition on email and calendar tools, LangChain is continuing
to complete its functionality to automate business processes.

## Challenge
One of the pieces of business functionality that LangChain currently
doesn't have is the ability to search for flights and travel in order to
book business travel.

## Changes
This PR implements an integration with the
[Amadeus](https://developers.amadeus.com/) travel search API for
LangChain, enabling seamless search for flights with a single
authentication process.

## Who can review?
@hinthornw

## Appendix
@tsolakoua and @minjikarin, I utilized your
[amadeus-python](https://github.com/amadeus4dev/amadeus-python) library
extensively. Given the rising popularity of LangChain and similar AI
frameworks, the convergence of libraries like amadeus-python and tools
like this one is likely. So, I wanted to keep you updated on our
progress.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 06:59:29 -07:00
Hanit
ea149dbd89 Allowing outside parameters for Qdrant. (#7910)
@baskaryan @rlancemartin, @eyurtsev
2023-07-20 06:58:54 -07:00
Sheik Irfan Basha
d6493590da Add Verbose support (#7982) (#7984)
- Description: Add verbose support for the extraction_chain
- Issue: Fixes #7982 
- Dependencies: NA
- Twitter handle: sheikirfanbasha
@hwchase17 and @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 06:52:13 -07:00
Junlin Zhou
812a1643db chore(hf-text-gen): extract default params for reusing (#7929)
This PR extract common code (default generation params) for
`HuggingFaceTextGenInference`.

Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
2023-07-20 06:49:12 -07:00
Yun Kim
54e02e4392 Add datadog-langchain integration doc (#7955)
## Description
Added a doc about the [Datadog APM integration for
LangChain](https://github.com/DataDog/dd-trace-py/pull/6137).
Note that the integration is on `ddtrace`'s end and so no code is
introduced/required by this integration into the langchain library. For
that reason I've refrained from adding an example notebook (although
I've added setup instructions for enabling the integration in the doc)
as no code is technically required to enable the integration.

Tagging @baskaryan as reviewer on this PR, thank you very much!

## Dependencies
Datadog APM users will need to have `ddtrace` installed, but the
integration is on `ddtrace` end and so does not introduce any external
dependencies to the LangChain project.


Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-20 06:44:58 -07:00
Wian Stipp
0ffb7fc10c One Line Fix: missing text output with huggingface TGI LLM (#7972)
Small bug fix. The async _call method was missing a line to return the
generated text.

@baskaryan
2023-07-20 06:44:29 -07:00
Jithin James
493cbc9410 docs: fix a couple of small indentation errors in the strings (#7951)
Fixed a few indentations I came across in the docs @baskaryan
2023-07-20 06:34:01 -07:00
Bhashithe Abeysinghe
73901ef132 Added windows specific instructions to Llama.cpp documentation. (#8000)
- Description: Added windows specific instructions on llama.cpp in the
notebook file
  - Issue: #6356 
  - Dependencies: None
  - Tag maintainer: @baskaryan
2023-07-20 06:31:25 -07:00
Leonid Ganeline
24b26a922a docstrings for embeddings (#7973)
Added/updated docstrings for the `embeddings`

@baskaryan
2023-07-20 06:26:44 -07:00
Leonid Ganeline
0613ed5b95 docstrings for LLMs (#7976)
docstrings for the `llms/`:
- added missed docstrings
- update existing docstrings to consistent format (no `Wrappers`!)
@baskaryan
2023-07-20 06:26:16 -07:00
Jeff Huber
5694e7b8cf Update chroma notebook (#7978)
Fix up the Chroma notebook
- remove `.persist()` -- this is no longer in Chroma as of `0.4.0`
- update output to match `0.4.0`
- other cleanup work
2023-07-20 06:25:31 -07:00
Harutaka Kawamura
4a5894db47 Fix incorrect field name in MLflow AI Gateway config example (#7983) 2023-07-20 06:24:59 -07:00
Kacper Łukawski
19e8472521 Add async Qdrant to async_agent.ipynb (#7993)
I added Qdrant to the async API docs. This is the only vector store that
supports full async API.

@baskaryan @rlancemartin, @eyurtsev
2023-07-20 06:23:15 -07:00
Nuno Campos
8edb1db9dc Fix key errors in weaviate hybrid retriever init (#7988) 2023-07-20 06:22:18 -07:00
Harrison Chase
df84e1bb64 pass callbacks along baby ai (#7908) 2023-07-19 22:40:33 -07:00
William FH
a4c5914c9a Bump LS Version (#7970) 2023-07-19 17:12:16 -07:00
Bagatur
5d021c0962 nb fix (#7962) 2023-07-19 15:27:43 -07:00
Julien Salinas
3adab5e5be Integrate NLP Cloud embeddings endpoint (#7931)
Add embeddings for [NLPCloud](https://docs.nlpcloud.com/#embeddings).

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-19 15:27:34 -07:00
Bagatur
854a2be0ca Add debugging guide (#7956) 2023-07-19 14:15:11 -07:00
Brendan Collins
9aef79c2e3 Add Geopandas.GeoDataFrame Document Loader (#3817)
Work in Progress.
WIP
Not ready...

Adds Document Loader support for
[Geopandas.GeoDataFrames](https://geopandas.org/)

Example:
- [x] stub out `GeoDataFrameLoader` class
- [x] stub out integration tests
- [ ] Experiment with different geometry text representations
- [ ] Verify CRS is successfully added in metadata
- [ ] Test effectiveness of searches on geometries
- [ ] Test with different geometry types (point, line, polygon with
multi-variants).
- [ ] Add documentation

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
2023-07-19 12:14:41 -07:00
Lance Martin
dfc533aa74 Add llama-v2 to local document QA (#7952) 2023-07-19 11:15:47 -07:00
Bagatur
d9b5bcd691 bump (#7948) 2023-07-19 10:23:21 -07:00
Bagatur
f97535b33e fix (#7947) 2023-07-19 10:23:10 -07:00
Adilkhan Sarsen
7bb843477f Removed kwargs from add_texts (#7595)
Removing **kwargs argument from add_texts method in DeepLake vectorstore
as it confuses users and doesn't fail when user is typing incorrect
parameters.

Also added small test to ensure the change is applies correctly.

Guys could pls take a look: @rlancemartin, @eyurtsev, this is a small
PR.

Thx so much!
2023-07-19 09:23:49 -07:00
Bagatur
4d8b48bdb3 bump 236 (#7938) 2023-07-19 07:51:40 -07:00
Harutaka Kawamura
f6839a8682 Add integration for MLflow AI Gateway (#7113)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->


- Adds integration for MLflow AI Gateway (this will be shipped in MLflow
2.5 this week).


Manual testing:

```sh
# Move to mlflow repo
cd /path/to/mlflow

# install langchain
pip install git+https://github.com/harupy/langchain.git@gateway-integration

# launch gateway service
mlflow gateway start --config-path examples/gateway/openai/config.yaml

# Then, run the examples in this PR
```
2023-07-19 07:40:55 -07:00
David Preti
6792a3557d Update openai.py compatibility with azure 2023-07-01-preview (#7937)
Fixed missing "content" field in azure. 
Added a check for "content" in _dict (missing for azure
api=2023-07-01-preview)
@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-19 07:31:18 -07:00
王斌(Bin Wang)
b65102bdb2 fix: pgvector search_type of similarity_score_threshold not working (#7771)
- Description: VectorStoreRetriever->similarity_score_threshold with
search_type of "similarity_score_threshold" not working with the
following two minor issues,
- Issue: 1. In line 237 of `vectorstores/base.py`, "score_threshold" is
passed to `_similarity_search_with_relevance_scores` as in the kwargs,
while score_threshold is not a valid argument of this method. As a fix,
before calling `_similarity_search_with_relevance_scores`,
score_threshold is popped from kwargs. 2. In line 596 to 607 of
`vectorstores/pgvector.py`, it's checking the distance_strategy against
the string in Enum. However, self.distance_strategy will get the
property of distance_strategy from line 316, where the callable function
is passed. To solve this issue, self.distance_strategy is changed to
self._distance_strategy to avoid calling the property method.,
  - Dependencies: No,
  - Tag maintainer: @rlancemartin, @eyurtsev,
  - Twitter handle: No

---------

Co-authored-by: Bin Wang <bin@arcanum.ai>
2023-07-19 07:20:52 -07:00
William FH
9d7e57f5c0 Docs Nit (#7918) 2023-07-18 21:47:28 -07:00
Wilson Leao Neto
8bb33f2296 Exposes Kendra result item DocumentAttributes in the document metadata (#7781)
- Description: exposes the ResultItem DocumentAttributes as document
metadata with key 'document_attributes' and refactors
AmazonKendraRetriever by providing a ResultItem base class in order to
avoid duplicate code;
- Tag maintainer: @3coins @hupe1980 @dev2049 @baskaryan
- Twitter handle: wilsonleao

### Why?
Some use cases depend on specific document attributes returned by the
retriever in order to improve the quality of the overall completion and
adjust what will be displayed to the user. For the sake of consistency,
we need to expose the DocumentAttributes as document metadata so we are
sure that we are using the values returned by the kendra request issued
by langchain.

I would appreciate your review @3coins @hupe1980 @dev2049. Thank you in
advance!

### References
- [Amazon Kendra
DocumentAttribute](https://docs.aws.amazon.com/kendra/latest/APIReference/API_DocumentAttribute.html)
- [Amazon Kendra
DocumentAttributeValue](https://docs.aws.amazon.com/kendra/latest/APIReference/API_DocumentAttributeValue.html)

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2023-07-18 18:46:38 -07:00
Wilson Leao Neto
efa67ed0ef fix #7782: check title and excerpt separately for page_content (#7783)
- Description: check title and excerpt separately for page_content so
that if title is empty but excerpt is present, the page_content will
only contain the excerpt
  - Issue: #7782 
  - Tag maintainer: @3coins @baskaryan 
  - Twitter handle: wilsonleao
2023-07-18 18:46:23 -07:00
Leonid Ganeline
d92926cbc2 docstrings chains (#7892)
Added/updated docstrings.
2023-07-18 18:25:42 -07:00
Leonid Ganeline
4a810756f8 docstrings chains (#7892)
Added/updated docstrings.

@baskaryan
2023-07-18 18:25:27 -07:00
Jarek Kazmierczak
f2ef3ff54a Google Cloud Enterprise Search retriever (#7857)
Added a retriever that encapsulated Google Cloud Enterprise Search.


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 18:24:08 -07:00
Alonso Silva Allende
1152f4d48b Allow chat models that do not return token usage (#7907)
- Description: It allows to use chat models that do not return token
usage
- Issue: [#7900](https://github.com/hwchase17/langchain/issues/7900)
- Dependencies: None
- Tag maintainer: @agola11 @hwchase17 
- Twitter handle: @alonsosilva

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
2023-07-18 18:12:09 -07:00
Zizhong Zhang
bdf0c2267f docs(custom_chain) fix typo (#7898)
Fix typo in the document of custom_chain
2023-07-18 18:03:19 -07:00
Jeff Huber
2139d0197e upgrade chroma to 0.4.0 (#7749)
** This should land Monday the 17th ** 

Chroma is upgrading from `0.3.29` to `0.4.0`. `0.4.0` is easier to
build, more durable, faster, smaller, and more extensible. This comes
with a few changes:

1. A simplified and improved client setup. Instead of having to remember
weird settings, users can just do `EphemeralClient`, `PersistentClient`
or `HttpClient` (the underlying direct `Client` implementation is also
still accessible)

2. We migrated data stores away from `duckdb` and `clickhouse`. This
changes the api for the `PersistentClient` that used to reference
`chroma_db_impl="duckdb+parquet"`. Now we simply set
`is_persistent=true`. `is_persistent` is set for you to `true` if you
use `PersistentClient`.

3. Because we migrated away from `duckdb` and `clickhouse` - this also
means that users need to migrate their data into the new layout and
schema. Chroma is committed to providing extension notification and
tooling around any schema and data migrations (for example - this PR!).

After upgrading to `0.4.0` - if users try to access their data that was
stored in the previous regime, the system will throw an `Exception` and
instruct them how to use the migration assistant to migrate their data.
The migration assitant is a pip installable CLI: `pip install
chroma_migrate`. And is runnable by calling `chroma_migrate`

-- TODO ADD here is a short video demonstrating how it works. 

Please reference the readme at
[chroma-core/chroma-migrate](https://github.com/chroma-core/chroma-migrate)
to see a full write-up of our philosophy on migrations as well as more
details about this particular migration.

Please direct any users facing issues upgrading to our Discord channel
called
[#get-help](https://discord.com/channels/1073293645303795742/1129200523111841883).
We have also created a [email
listserv](https://airtable.com/shrHaErIs1j9F97BE) to notify developers
directly in the future about breaking changes.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 17:20:54 -07:00
Gergely Papp
10246375a5 Gpapp/chromadb (#7891)
- Description: version check to make sure chromadb >=0.4.0 does not
throw an error, and uses the default sqlite persistence engine when the
directory is set,
  - Issue: the issue #7887 

For attention of
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 17:03:42 -07:00
Lance Martin
41c841ec85 Add Llama-v2 to Llama.cpp notebook (#7913) 2023-07-18 15:13:27 -07:00
Bagatur
b9639f6067 fix docs (#7911) 2023-07-18 14:25:45 -07:00
Jeff Huber
dc8b790214 Improve vector store onboarding exp (#6698)
This PR
- fixes the `similarity_search_by_vector` example, makes the code run
and adds the example to mirror `similarity_search`
- reverts back to chroma from faiss to remove sharp edges / create a
happy path for new developers. (1) real metadata filtering, (2) expected
functionality like `update`, `delete`, etc to serve beyond the most
trivial use cases

@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 13:48:42 -07:00
Bagatur
25a2bdfb70 add pr template instructions (#7904) 2023-07-18 13:22:28 -07:00
Hanit
0d23c0c82a Allowing additional params for OpenAIEmbeddings. (#7752)
(#7654)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 12:14:51 -07:00
Lance Martin
862268175e Add llama-v2 to docs (#7893) 2023-07-18 12:09:09 -07:00
TRY-ER
21d1c988a9 Try er/redis index retrieval retry00 (#7773)
Replace this comment with:
- Description: Modified the code to return the document id from the
redis document search as metadata.
  - Issue: the issue # it fixes retrieval of id as metadata as string 
  - Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 10:49:50 -07:00
shibuiwilliam
177baef3a1 Add test for svm retriever (#7768)
# What
- This is to add unit test for svm retriever.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 09:57:24 -07:00
Filip Michalsky
69b9db2b5e Notebook update: sales agent with tools (#7753)
- Description: This is an update to a previously published notebook. 
Sales Agent now has access to tools, and this notebook shows how to use
a Product Knowledge base
  to reduce hallucinations and act as a better sales person!
  - Issue: N/A
  - Dependencies: `chromadb openai tiktoken`
  - Tag maintainer:  @baskaryan @hinthornw
  - Twitter handle: @FilipMichalsky
2023-07-18 09:53:12 -07:00
shibuiwilliam
f29a5d4bcc add test for knn retriever (#7769)
# What
- This is to add test for knn retriever.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 09:52:11 -07:00
Orgil
75d3f1e5e6 remove unused import in voice assistant doc (#7757)
Description: Removed unused import in voice_assistant doc. 
Tag maintainer: @baskaryan
2023-07-18 09:51:28 -07:00
maciej-skorupka
c6d1d6d7fc feat: moving azure OpenAI API version to the latest 2023-05-15 (#7764)
Moving to the latest non-preview Azure OpenAI API version=2023-05-15.
The previous 2023-03-15-preview doesn't have support, SLA etc. For
instance, OpenAI SDK has moved to this version
https://github.com/openai/openai-python/releases/tag/v0.27.7

@baskaryan
2023-07-18 09:50:15 -07:00
satorioh
259a409998 docs(zilliz): connection_args add token description for serverless cl… (#7810)
Description:

Currently, Zilliz only support dedicated clusters using a pair of
username and password for connection. Regarding serverless clusters,
they can connect to them by using API keys( [ see official note
detail](https://docs.zilliz.com/docs/manage-cluster-credentials)), so I
add API key(token) description in Zilliz docs to make it more obvious
and convenient for this group of users to better utilize Zilliz. No
changes done to code.

---------

Co-authored-by: Robin.Wang <3Jg$94sbQ@q1>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 09:31:39 -07:00
shibuiwilliam
235264a246 Add/test faiss (#7809)
# What
- Add missing test cases to faiss vectore stores
2023-07-18 08:30:35 -07:00
maciej-skorupka
5de7815310 docs: added comment from azure llm to azure chat about GPT-4 (#7884)
Azure GPT-4 models can't be accessed via LLM model. It's easy to miss
that and a lot of discussions about that are on the Internet. Therefore
I added a comment in Azure LLM docs that mentions that and points to
Azure Chat OpenAI docs.
@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 08:05:41 -07:00
Leonid Ganeline
4a05b7f772 docstrings prompts (#7844)
Added missed docstrings in `prompts`
@baskaryan
2023-07-18 07:58:22 -07:00
Bill Zhang
dda11d2a05 WeaviateHybridSearchRetriever option to enable scores. (#7861)
Description: This PR adds the option to retrieve scores and explanations
in the WeaviateHybridSearchRetriever. This feature improves the
usability of the retriever by allowing users to understand the scoring
logic behind the search results and further refine their search queries.

Issue: This PR is a solution to the issue #7855 
Dependencies: This PR does not introduce any new dependencies.

Tag maintainer: @rlancemartin, @eyurtsev

I have included a unit test for the added feature, ensuring that it
retrieves scores and explanations correctly. I have also included an
example notebook demonstrating its use.
2023-07-18 07:57:17 -07:00
Leonid Ganeline
527210972e docstrings output_parsers (#7859)
Added/updated the docstrings from `output_parsers`
 @baskaryan
2023-07-18 07:51:44 -07:00
Jonathan Pedoeem
c460c29a64 Adding Docs for PromptLayerCallbackHandler (#7860)
Here I am adding documentation for the `PromptLayerCallbackHandler`.
When we created the initial PR for the callback handler the docs were
causing issues, so we merged without the docs.
2023-07-18 07:51:16 -07:00
ljeagle
3902b85657 Add metadata and page_content filters of documents in AwaDB (#7862)
1. Add the metadata filter of documents.
2. Add the text page_content filter of documents
3. fix the bug of similarity_search_with_score

Improvement and fix bug of AwaDB
Fix the conflict https://github.com/hwchase17/langchain/pull/7840
@rlancemartin @eyurtsev  Thanks!

---------

Co-authored-by: vincent <awadb.vincent@gmail.com>
2023-07-18 07:50:17 -07:00
German Martin
f1eaa9b626 Lost in the middle: We have been ordering documents the WRONG way. (for long context) (#7520)
Motivation, it seems that when dealing with a long context and "big"
number of relevant documents we must avoid using out of the box score
ordering from vector stores.
See: https://arxiv.org/pdf/2306.01150.pdf

So, I added an additional parameter that allows you to reorder the
retrieved documents so we can work around this performance degradation.
The relevance respect the original search score but accommodates the
lest relevant document in the middle of the context.
Extract from the paper (one image speaks 1000 tokens):

![image](https://github.com/hwchase17/langchain/assets/1821407/fafe4843-6e18-4fa6-9416-50cc1d32e811)
This seems to be common to all diff arquitectures. SO I think we need a
good generic way to implement this reordering and run some test in our
already running retrievers.
It could be that my approach is not the best one from the architecture
point of view, happy to have a discussion about that.
For me this was the best place to introduce the change and start
retesting diff implementations.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-18 07:45:15 -07:00
Bagatur
6a32f93669 add ls link (#7847) 2023-07-18 07:39:26 -07:00
Leonid Ganeline
17956ff08e docstrings agents (#7866)
Added/Updated docstrings for `agents`
@baskaryan
2023-07-18 02:23:24 -07:00
William FH
c6f2d27789 Docs Nits (#7874)
Add links to reference docs
2023-07-18 01:50:14 -07:00
William FH
3179ee3a56 Evals docs (#7460)
Still don't have good "how to's", and the guides / examples section
could be further pruned and improved, but this PR adds a couple examples
for each of the common evaluator interfaces.

- [x] Example docs for each implemented evaluator
- [x] "how to make a custom evalutor" notebook for each low level APIs
(comparison, string, agent)
- [x] Move docs to modules area
- [x] Link to reference docs for more information
- [X] Still need to finish the evaluation index page
- ~[ ] Don't have good data generation section~
- ~[ ] Don't have good how to section for other common scenarios / FAQs
like regression testing, testing over similar inputs to measure
sensitivity, etc.~
2023-07-18 01:00:01 -07:00
William FH
d87564951e LS0010 (#7871)
Bump langsmith version. Has some additional UX improvements
2023-07-18 00:28:37 -07:00
William FH
e294ba475a Some mitigations for RCE in PAL chain (#7870)
Some docstring / small nits to #6003

---------

Co-authored-by: BoazWasserman <49598618+boazwasserman@users.noreply.github.com>
Co-authored-by: HippoTerrific <49598618+HippoTerrific@users.noreply.github.com>
Co-authored-by: Or Raz <orraz1994@gmail.com>
2023-07-17 22:58:47 -07:00
Nicolas
46330da2e7 docs: Mendable: Fixes pretty sources not working (#7863)
This new version fixes the"Verified Sources" display that got broken.
Instead of displaying the full URL, it shows the title of the page the
source is from.
2023-07-17 18:23:46 -07:00
Leonid Ganeline
f5ae8f1980 docstrings tools (#7848)
Added docstrings in `tools`.

 @baskaryan
2023-07-17 17:50:19 -07:00
Leonid Ganeline
74b701f42b docstrings retrievers (#7858)
Added/updated docstrings `retrievers`

@baskaryan
2023-07-17 17:47:17 -07:00
Jasper
5b4d53e8ef Add text_content kwarg to BrowserlessLoader (#7856)
Added keyword argument to toggle between getting the text content of a
site versus its HTML when using the `BrowserlessLoader`
2023-07-17 17:02:19 -07:00
William FH
2aa3cf4e5f update notebook (#7852) 2023-07-17 14:46:42 -07:00
Matt Robinson
3c489be773 feat: optional post-processing for Unstructured loaders (#7850)
### Summary

Adds a post-processing method for Unstructured loaders that allows users
to optionally modify or clean extracted elements.

### Testing

```python
from langchain.document_loaders import UnstructuredFileLoader
from unstructured.cleaners.core import clean_extra_whitespace

loader = UnstructuredFileLoader(
    "./example_data/layout-parser-paper.pdf",
    mode="elements",
    post_processors=[clean_extra_whitespace],
)

docs = loader.load()
docs[:5]
```


### Reviewrs
  - @rlancemartin
  - @eyurtsev
  - @hwchase17
2023-07-17 12:13:05 -07:00
Bagatur
2a315dbee9 fix nb (#7843) 2023-07-17 09:39:11 -07:00
Bagatur
3f1302a4ab bump 235 (#7836) 2023-07-17 09:37:20 -07:00
Mike Lambert
9cdea4e0e1 Update to Anthropic's claude-v2 (#7793) 2023-07-17 08:55:49 -07:00
Bagatur
98c48f303a fix (#7838) 2023-07-17 07:53:11 -07:00
Bagatur
111bd7ddbe specify comparators (#7805) 2023-07-17 07:30:48 -07:00
Dayuan Jiang
ee40d37098 add bm25 module (#7779)
- Description: Add a BM25 Retriever that do not need Elastic search
- Dependencies: rank_bm25(if it is not installed it will be install by
using pip, just like TFIDFRetriever do)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: DayuanJian21687

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-17 07:30:17 -07:00
Liu Ming
fa0a9e502a Add LLM for ChatGLM(2)-6B API (#7774)
Description:
Add LLM for ChatGLM-6B & ChatGLM2-6B API

Related Issue: 
Will the langchain support ChatGLM? #4766
Add support for selfhost models like ChatGLM or transformer models #1780

Dependencies: 
No extra library install required. 
It wraps api call to a ChatGLM(2)-6B server(start with api.py), so api
endpoint is required to run.

Tag maintainer:  @mlot 

Any comments on this PR would be appreciated.
---------

Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-17 07:27:17 -07:00
sseide
25e3d3f283 Support Redis Sentinel database connections (#5196)
# Support Redis Sentinel database connections

This PR adds the support to connect not only to Redis standalone servers
but High Availability Replication sets too
(https://redis.io/docs/management/sentinel/)
Redis Replica Sets have on Master allowing to write data and 2+ replicas
with read-only access to the data. The additional Redis Sentinel
instances monitor all server and reconfigure the RW-Master on the fly if
it comes unavailable.

Therefore all connections must be made through the Sentinels the query
the current master for a read-write connection. This PR adds basic
support to also allow a redis connection url specifying a Sentinel as
Redis connection.

Redis documentation and Jupyter notebook with Redis examples are updated
to mention how to connect to a redis Replica Set with Sentinels

        - 

Remark - i did not found test cases for Redis server connections to add
new cases here. Therefor i tests the new utility class locally with
different kind of setups to make sure different connection urls are
working as expected. But no test case here as part of this PR.
2023-07-17 07:18:51 -07:00
Yifei Song
2e47412073 Add Xorbits agent (#7647)
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.

- This PR added support for the Xorbits agent, which allows langchain to
interact with Xorbits Pandas dataframe and Xorbits Numpy array.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @hinthornw
- Twitter handle: https://twitter.com/Xorbitsio
2023-07-17 07:09:51 -07:00
Ankush Gola
ff3aada0b2 minor langsmith notebook fixes (#7814)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-16 21:27:03 -07:00
William FH
ca79044948 Export Tracer from callbacks (#7812)
Improve discoverability
2023-07-16 20:58:13 -07:00
William FH
beb38f4f4d Share client in evaluation callback (#7807)
Guarantee the evaluator traces go to same endpoint
2023-07-16 17:47:38 -07:00
William FH
1db13e8a85 Fix chat example output mapper (#7808)
Was only serializing when no key was provided
2023-07-16 17:47:05 -07:00
William FH
c58d35765d Add examples to docstrings (#7796)
and:
- remove dataset name from autogenerated project name
- print out project name to view
2023-07-16 12:05:56 -07:00
William FH
ed97af423c Accept LLM via constructor (#7794) 2023-07-16 08:46:36 -07:00
Ankush Gola
c4ece52dac update LangSmith notebook (#7767)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-15 21:05:09 -07:00
Kenny
0d058d4046 Add try except block to OpenAIWhisperParser (#7505) 2023-07-15 15:42:00 -07:00
William FH
4cb9f1eda8 Update langsmith version (#7759) 2023-07-15 12:01:41 -07:00
Lance Martin
1d06eee3b5 Fix ntbk link in docs (#7755)
Minor fix to running to
[docs](https://python.langchain.com/docs/use_cases/question_answering/local_retrieval_qa).
2023-07-15 09:11:18 -07:00
William FH
2e3d77c34e Fix eval loader when overriding arguments (#7734)
- Update the negative criterion descriptions to prevent bad predictions
- Add support for normalizing the string distance
- Fix potential json deserializing into float issues in the example
mapper
2023-07-15 08:30:32 -07:00
Bagatur
c871c04270 bump 234 (#7754) 2023-07-15 10:49:51 -04:00
Gordon Clark
96f3dff050 MediaWiki docloader improvements + unit tests (#5879)
Starting over from #5654 because I utterly borked the poetry.lock file.

Adds new paramerters for to the MWDumpLoader class:

* skip_redirecst (bool) Tells the loader to skip articles that redirect
to other articles. False by default.
* stop_on_error (bool) Tells the parser to skip any page that causes a
parse error. True by default.
* namespaces (List[int]) Tells the parser which namespaces to parse.
Contains namespaces from -2 to 15 by default.

Default values are chosen to preserve backwards compatibility.

Sample dump XML and full unit test coverage (with extended tests that
pass!) also included!

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-15 10:49:36 -04:00
Xavier
4c8106311f Add pip install langsmith for Quick Install part of README (#7694)
**Issue**
When I use conda to install langchain, a dependency error throwed -
"ModuleNotFoundError: No module named 'langsmith'"

**Updated**
Run `pip install langsmith` when install langchain with conda

Co-authored-by: xaver.xu <xavier.xu@batechworks.com>
2023-07-15 10:27:32 -04:00
Mohammad Mohtashim
b8b8a138df Simple Import fix in Tools Exception Docs (#7740)
Issue: #7720
 @hinthornw
2023-07-15 10:25:34 -04:00
Nicolas
43f900fd38 docs: Mendable Search Improvements (#7744)
- New pin-to-side (button). This functionality allows you to search the
docs while asking the AI for questions
- Fixed the search bar in Firefox that won't detect a mouse click
- Fixes and improvements overall in the model's performance
2023-07-15 10:19:21 -04:00
rjarun8
b7c409152a Document loader/debug (#7750)
Description: Added debugging output in DirectoryLoader to identify the
file being processed.
Issue: [Need a trace or debug feature in Lanchain DirectoryLoader
#7725](https://github.com/hwchase17/langchain/issues/7725)
Dependencies: No additional dependencies are required.
Tag maintainer: @rlancemartin, @eyurtsev
This PR enhances the DirectoryLoader with debugging output to help
diagnose issues when loading documents. This new feature does not add
any dependencies and has been tested on a local machine.
2023-07-15 10:18:27 -04:00
Lance Martin
b015647e31 Add GPT4All embeddings (#7743)
Support for [GPT4All
embeddings](https://docs.gpt4all.io/gpt4all_python_embedding.html)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-15 10:04:29 -04:00
Chang Sau Sheong
b6a7f40ad3 added support for Google Images search (#7751)
- Description: Added Google Image Search support for SerpAPIWrapper 
  - Issue: NA
  - Dependencies: None
  - Tag maintainer: @hinthornw
  - Twitter handle: @sausheong

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-15 10:04:18 -04:00
Kacper Łukawski
1ff5b67025 Implement async API for Qdrant vector store (#7704)
Inspired by #5550, I implemented full async API support in Qdrant. The
docs were extended to mention the existence of asynchronous operations
in Langchain. I also used that chance to restructure the tests of Qdrant
and provided a suite of tests for the async version. Async API requires
the GRPC protocol to be enabled. Thus, it doesn't work on local mode
yet, but we're considering including the support to be consistent.
2023-07-15 09:33:26 -04:00
Bearnardd
275b926cf7 add missing import (#7730)
Just a nit documentation fix

 @baskaryan
2023-07-14 20:03:23 -04:00
Bearnardd
9800c6051c add support for truncate arg for HuggingFaceTextGenInference class (#7728)
Fixes https://github.com/hwchase17/langchain/issues/7650

* add support for `truncate` argument of `HugginFaceTextGenInference`

@baskaryan
2023-07-14 16:23:56 -04:00
Lorenzo
77e6bbe6f0 fix typo in deeplake.ipynb (#7718)
- Fixing typos in deeplake documentation
- @baskaryan
2023-07-14 13:38:31 -04:00
Samuel Berthe
2be3515a66 SQLDatabase: adding security disclamer (#7710)
It might be obvious to most engineers, but I think everybody should be
cautious when using such a chain.

![image](https://github.com/hwchase17/langchain/assets/2951285/a1df6567-9d56-4c12-98ea-767401ae2ac8)
2023-07-14 13:38:16 -04:00
William FH
fcf98dc4c1 Check for Tiktoken (#7705) 2023-07-14 09:49:01 -07:00
Bagatur
bae93682f6 update docs (#7714) 2023-07-14 11:49:09 -04:00
Bagatur
b065da6933 Bagatur/docs nit (#7712) 2023-07-14 11:13:02 -04:00
Bagatur
87d81b6acc Redirect old text splitter page (#7708)
related to #7665
2023-07-14 11:12:18 -04:00
Aarav Borthakur
210296a71f Integrate Rockset as a document loader (#7681)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Integrate [Rockset](https://rockset.com/docs/) as a document loader.

Issue: None
Dependencies: Nothing new (rockset's dependency was already added
[here](https://github.com/hwchase17/langchain/pull/6216))
Tag maintainer: @rlancemartin

I have added a test for the integration and an example notebook showing
its use. I ran `make lint` and everything looks good.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-14 07:58:13 -07:00
Bagatur
ad7d97670b bump 233 (#7707) 2023-07-14 10:38:13 -04:00
Samuel Berthe
7d4843fe84 feat(chains): adding ElasticsearchDatabaseChain for interacting with analytics database (#7686)
This pull request adds a ElasticsearchDatabaseChain chain for
interacting with analytics database, in the manner of the
SQLDatabaseChain.

Maintainer: @samber
Twitter handler: samuelberthe

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-14 10:30:57 -04:00
Daniel
6d88b23ef7 Update pgembedding.ipynb (#7699)
Update the extension name. It changed from pg_hnsw to pg_embedding.

Thank you. I missed this in my previous commit.
2023-07-14 08:39:01 -04:00
Eric Speidel
663b0933e4 Allow passing auth objects in TextRequestsWrapper (#7701)
- Description: This allows passing auth objects in request wrappers.
Currently, we can handle auth by editing headers in the
RequestsWrappers, but more complex auth methods, such as Kerberos, could
be handled better by using existing functionality within the requests
library. There are many authentication options supported both natively
and by extensions, such as requests-kerberos or requests-ntlm.
  
  - Issue: Fixes #7542
  - Dependencies: none

Co-authored-by: eric.speidel@de.bosch.com <eric.speidel@de.bosch.com>
2023-07-14 08:38:24 -04:00
Nuno Campos
1e40427755 Enabled nesting chain group (#7697)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-14 10:03:16 +01:00
Leonid Kuligin
85e1c9b348 Added support for examples for VertexAI chat models. (#7636)
#5278

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-14 02:03:04 -04:00
Richy Wang
45bb414be2 Add LLM for Alibaba's Damo Academy's Tongyi Qwen API (#7477)
- Add langchain.llms.Tonyi for text completion, in examples into the
Tonyi Text API,
- Add system tests.

Note async completion for the Text API is not yet supported and will be
included in a future PR.

Dependencies: dashscope. It will be installed manually cause it is not
need by everyone.

Happy for feedback on any aspect of this PR @hwchase17 @baskaryan.
2023-07-14 01:58:22 -04:00
Lance Martin
6325a3517c Make recursive loader yield while crawling (#7568)
Support actual lazy_load since it can take a while to crawl larger
directories.
2023-07-13 21:55:20 -07:00
UmerHA
82f3e32d8d [Small upgrade] Allow document limit in AzureCognitiveSearchRetriever (#7690)
Multiple people have asked in #5081 for a way to limit the documents
returned from an AzureCognitiveSearchRetriever. This PR adds the `top_n`
parameter to allow that.


Twitter handle:
 [@UmerHAdil](twitter.com/umerHAdil)
2023-07-13 23:04:40 -04:00
AI-Chef
af6d333147 Fix same issue #7524 in FileCallbackHandler (#7687)
Fix for Serializable class to include name, used in FileCallbackHandler
as same issue #7524

Description: Fixes the Serializable class to include 'name' attribute
(class_name) in the dict created,
This is used in Callbacks, specifically the StdOutCallbackHandler,
FileCallbackHandler.
Issue: As described in issue #7524
Dependencies: None
Tag maintainer: SInce this is related to the callback module, tagging
@agola11 @idoru
Comments:

Glad to see issue #7524 fixed in pull #6124, but you forget to change
the same place in FileCallbackHandler
2023-07-13 22:39:21 -04:00
Ben Perry
3874bb256e Weaviate: Batch embed texts (#5903)
When a custom Embeddings object is set, embed all given texts in a batch
instead of passing them through individually. Any code calling add_texts
can then appropriately size the chunks of texts that are passed through
to take full advantage of the hardware it's running on.
2023-07-13 20:57:58 -04:00
Charles P
574698a5fb Make so explicit class constructor is called in ElasticVectorSearch from_texts (#6199)
Fixes #6198 

ElasticKnnSearch.from_texts is actually ElasticVectorSearch.from_texts
and throws because it calls ElasticKnnSearch constructor with the wrong
arguments.

Now ElasticKnnSearch has its own from_texts, which constructs a proper
ElasticKnnSearch.

---------

Co-authored-by: Charles Parker <charlesparker@FiltaMacbook.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 19:55:20 -04:00
Daniel
854f3fe9b1 Update pgembedding.ipynb (#7682)
Correct links to the pg_embedding repository and the Neon documentation.
2023-07-13 19:54:07 -04:00
William FH
051fac1e66 Improve walkthrough links for sphinx (#7672)
Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
2023-07-13 16:08:31 -07:00
Bagatur
5db4dba526 add integrations hub link to docs (#7675) 2023-07-13 18:44:10 -04:00
Kenton Parton
9124221d31 Fixed handling of absolute URLs in RecursiveUrlLoader (#7677)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description:
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

## Description
This PR addresses a bug in the RecursiveUrlLoader class where absolute
URLs were being treated as relative URLs, causing malformed URLs to be
produced. The fix involves using the urljoin function from the
urllib.parse module to correctly handle both absolute and relative URLs.

@rlancemartin @eyurtsev

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-13 15:34:00 -07:00
EllieRoseS
c087ce74f7 Added matching async load func to PlaywrightURLLoader (#5938)
Fixes # (issue)

The existing PlaywrightURLLoader load() function uses a synchronous
browser which is not compatible with jupyter.
This PR adds a sister function aload() which can be run insisde a
notebook.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-13 17:51:38 -04:00
William FH
ae7714f1ba Configure Tracer Workers (#7676)
Mainline the tracer to avoid calling feedback before run is posted.
Chose a bool over `max_workers` arg for configuring since we don't want
to support > 1 for now anyway. At some point may want to manage the pool
ourselves (ordering only really matters within a run and with parent
runs)
2023-07-13 14:00:14 -07:00
Jasper
fbc97a77ed add browserless loader (#7562)
# Browserless

Added support for Browserless' `/content` endpoint as a document loader.

### About Browserless

Browserless is a cloud service that provides access to headless Chrome
browsers via a REST API. It allows developers to automate Chromium in a
serverless fashion without having to configure and maintain their own
Chrome infrastructure.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-13 13:18:28 -07:00
mebstyne-msft
120c52589b Enabled Azure Active Directory token-based auth access to OpenAI completions (#6313)
With AzureOpenAI openai_api_type defaulted to "azure" the logic in
utils' get_from_dict_or_env() function triggered by the root validator
never looks to environment for the user's runtime openai_api_type
values. This inhibits folks using token-based auth, or really any auth
model other than "azure."

By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.

---------

Co-authored-by: Ebo <mebstyne@microsoft.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-07-13 16:05:47 -04:00
frangin2003
c7b687e944 Simplify GraphQL Tool Initialization documentation by Removing 'llm' Argument (#7651)
This PR is aimed at enhancing the clarity of the documentation in the
langchain project.

**Description**:
In the graphql.ipynb file, I have removed the unnecessary 'llm' argument
from the initialization process of the GraphQL tool (of type
_EXTRA_OPTIONAL_TOOLS). The 'llm' argument is not required for this
process. Its presence could potentially confuse users. This modification
simplifies the understanding of tool initialization and minimizes
potential confusion.

**Issue**: Not applicable, as this is a documentation improvement.

**Dependencies**: None.

**I kindly request a review from the following maintainer**: @hinthornw,
who is responsible for Agents / Tools / Toolkits.

No new integration is being added in this PR, hence no need for a test
or an example notebook.

Please see the changes for more detail and let me know if any further
modification is necessary.
2023-07-13 14:52:07 -04:00
William FH
aab2a7cd4b Normalize Trajectory Eval Score (#7668) 2023-07-13 09:58:28 -07:00
William FH
5f03cc3511 spelling nit (#7667) 2023-07-13 09:12:57 -07:00
Bagatur
3dd0704e38 bump 232 (#7659) 2023-07-13 10:32:39 -04:00
Tamas Molnar
24c1654208 Fix SQLAlchemy LLM cache clear (#7653)
Fixes #7652 

Description: 
This is a fix for clearing the cache for SQL Alchemy based LLM caches. 

The langchain.llm_cache.clear() did not take effect for SQLite cache. 
Reason: it didn't commit the deletion database change.

See SQLAlchemy documentation for proper usage:

https://docs.sqlalchemy.org/en/20/orm/session_basics.html#opening-and-closing-a-session
https://docs.sqlalchemy.org/en/20/orm/session_basics.html#deleting

@hwchase17 @baskaryan

---------

Co-authored-by: Tamas Molnar <tamas.molnar@nagarro.com>
2023-07-13 09:39:04 -04:00
Bagatur
c17a80f11c fix chroma updated upsert interface (#7643)
new chroma release seems to not support empty dicts for metadata.

related to #7633
2023-07-13 09:27:14 -04:00
William FH
a673a51efa [Breaking] Update Evaluation Functionality (#7388)
- Migrate from deprecated langchainplus_sdk to `langsmith` package
- Update the `run_on_dataset()` API to use an eval config
- Update a number of evaluators, as well as the loading logic
- Update docstrings / reference docs
- Update tracer to share single HTTP session
2023-07-13 02:13:06 -07:00
Sam Coward
224199083b Fix missing chain classname in StdOutCallbackHandler.on_chain_start (#6124)
Retrieves the name of the class from new location as of commit
18af149e91


Co-authored-by: Zander Chase <130414180+vowelparrot@users.noreply.github.com>
2023-07-13 03:05:36 -04:00
lucasiscovici
af3f401015 update base class of ListStepContainer to BaseStepContainer (#6232)
update base class of ListStepContainer to BaseStepContainer

Fixes #6231
2023-07-13 03:03:02 -04:00
Matt Adams
98e1bbfbbd Add missing dependencies to apify.ipynb (#6331)
Fixes errors caused by missing dependencies when running the notebook.
2023-07-13 03:02:23 -04:00
Ma Donghao
6f62e5461c Update the parser regex of map_rerank (#6419)
Sometimes the score responded by chatgpt would be like 'Respone
example\nScore: 90 (fully answers the question, but could provide more
detail on the specific error message)'
For the score contains not only numbers, it raise a ValueError like 


Update the RegexParser from `.*` to `\d*` would help us to ignore the
text after number.

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 03:01:42 -04:00
Bagatur
b08f903755 fix chroma init bug (#7639) 2023-07-13 03:00:33 -04:00
Nir Gazit
f307ca094b fix(memory): allow internal chains to use memory (#6769)
Fixed #6768.

This is a workaround only. I think a better longer-term solution is for
chains to declare how many input variables they *actually* need (as
opposed to ones that are in the prompt, where some may be satisfied by
the memory). Then, a wrapping chain can check the input match against
the actual input variables.

@hwchase17
2023-07-13 02:47:44 -04:00
Francisco Ingham
488d2d5da9 Entity extraction improvements (#6342)
Added fix to avoid irrelevant attributes being returned plus an example
of extracting unrelated entities and an exampe of using an 'extra_info'
attribute to extract unstructured data for an entity.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 02:16:05 -04:00
Nir Gazit
a8bbfb2da3 feat(agents): allow trimming of intermediate steps to last N (#6476)
Added an option to trim intermediate steps to last N steps. This is
especially useful for long-running agents. Users can explicitly specify
N or provide a function that does custom trimming/manipulation on
intermediate steps. I've mimicked the API of the `handle_parsing_errors`
parameter.
2023-07-13 02:09:25 -04:00
Zeeland
92ef77da35 fix: remove useless variable k (#6524)
remove useless variable k

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 01:58:36 -04:00
Bagatur
7f8ff2a317 add tagger nb (#7637) 2023-07-13 01:48:23 -04:00
Sidchat95
c5e50c40c9 Fix Document Similarity Check with passed Threshold (#6845)
Converting the Similarity obtained in the
similarity_search_with_score_by_vector method whilst comparing to the
passed
threshold. This is because the passed threshold is a number between 0 to
1 and is already in the relevance_score_fn format.
As of now, the function is comparing two different scoring parameters
and that wouldn't work.

Dependencies
None

Issue:
Different scores being compared in
similarity_search_with_score_by_vector method in FAISS.

Tag maintainer
@hwchase17



<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 01:30:47 -04:00
Jacob Ajit
a08baa97c5 Use modern OpenAI endpoints for embeddings (#6573)
- Description: 

LangChain passes
[engine](https://github.com/hwchase17/langchain/blob/master/langchain/embeddings/openai.py#L256)
and not `model` as a field when making OpenAI requests. Within the
`openai` Python library, for OpenAI requests, this [makes a
call](https://github.com/openai/openai-python/blob/main/openai/api_resources/abstract/engine_api_resource.py#L58)
to an endpoint of the form
`https://api.openai.com/v1/engines/{engine_id}/embeddings`.

These endpoints are
[deprecated](https://help.openai.com/en/articles/6283125-what-happened-to-engines)
in favor of endpoints of the format
`https://api.openai.com/v1/embeddings`, where `model` is passed as a
parameter in the request body.

While these deprecated endpoints continue to function for now, they may
not be supported indefinitely and should be avoided in favor of the
newer API format.

It appears that `engine` was passed in instead of `model` to make both
Azure OpenAI and OpenAI calls work similarly. However, the inclusion of
`engine`
[causes](https://github.com/openai/openai-python/blob/main/openai/api_resources/abstract/engine_api_resource.py#L58)
OpenAI to use the deprecated endpoint, requiring a diverging code path
for Azure OpenAI calls where `engine` is passed in additionally (Azure
OpenAI requires `engine` to specify a deployment, and can optionally
take in `model`).

In the long-term, it may be worth considering spinning off Azure OpenAI
embeddings into a separate class for ease of use and maintenance,
similar to the [implementation for chat
models](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py).
2023-07-13 01:23:17 -04:00
Jacob Lee
cdb93ab5ca Adds OpenAI functions powered document metadata tagger (#7521)
Adds a new document transformer that automatically extracts metadata for
a document based on an input schema. I also moved
`document_transformers.py` to `document_transformers/__init__.py` to
group it with this new transformer - it didn't seem to cause issues in
the notebook, but let me know if I've done something wrong there.

Also had a linter issue I couldn't figure out:

```
MacBook-Pro:langchain jacoblee$ make lint
poetry run mypy .
docs/dist/conf.py: error: Duplicate module named "conf" (also at "./docs/api_reference/conf.py")
docs/dist/conf.py: note: See https://mypy.readthedocs.io/en/stable/running_mypy.html#mapping-file-paths-to-modules for more info
docs/dist/conf.py: note: Common resolutions include: a) using `--exclude` to avoid checking one of them, b) adding `__init__.py` somewhere, c) using `--explicit-package-bases` or adjusting MYPYPATH
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint] Error 2
```

@rlancemartin @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 01:12:41 -04:00
Jason Fan
8effd90be0 Add new types of document transformers (#7379)
- Description: Add two new document transformers that translates
documents into different languages and converts documents into q&a
format to improve vector search results. Uses OpenAI function calling
via the [doctran](https://github.com/psychic-api/doctran/tree/main)
library.
  - Issue: N/A
  - Dependencies: `doctran = "^0.0.5"`
  - Tag maintainer: @rlancemartin @eyurtsev @hwchase17 
  - Twitter handle: @psychicapi or @jfan001

Notes
- Adheres to the `DocumentTransformer` abstraction set by @dev2049 in
#3182
- refactored `EmbeddingsRedundantFilter` to put it in a file under a new
`document_transformers` module
- Added basic docs for `DocumentInterrogator`, `DocumentTransformer` as
well as the existing `EmbeddingsRedundantFilter`

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 23:53:30 -04:00
Piyush Jain
f11d845dee Fixed validation error when credentials_profile_name, or region_name is not passed (#7629)
## Summary
This PR corrects the checks for credentials_profile_name, and
region_name attributes. This was causing validation exceptions when
either of these values were missing during creation of the retriever
class.

Fixes #7571 

#### Requested reviewers:
@baskaryan
2023-07-12 23:47:35 -04:00
Jamie Broomall
0e1d7a27c6 WhyLabsCallbackHandler updates (#7621)
Updates to the WhyLabsCallbackHandler and example notebook
- Update dependency to langkit 0.0.6 which defines new helper methods
for callback integrations
- Update WhyLabsCallbackHandler to use the new `get_callback_instance`
so that the callback is mostly defined in langkit
- Remove much of the implementation of the WhyLabsCallbackHandler here
in favor of the callback instance

This does not change the behavior of the whylabs callback handler
implementation but is a reorganization that moves some of the
implementation externally to our optional dependency package, and should
make future updates easier.

@agola11
2023-07-12 23:46:56 -04:00
Gaurang Pawar
53722dcfdc Fixed a typo in pinecone_hybrid_search.ipynb (#7627)
Fixed a small typo in documentation
2023-07-12 23:46:41 -04:00
Bagatur
1d4db1327a fix openai structured chain with pydantic (#7622)
should return pydantic class
2023-07-12 23:46:13 -04:00
Bagatur
ee70d4a0cd mv tutorials (#7614) 2023-07-12 17:33:36 -04:00
William FH
9b215e761e Stop warning when parent run ID not present (#7611) 2023-07-12 14:04:32 -07:00
William FH
2f848294cb Rm Warning that Tracing is Experimental (#7612) 2023-07-12 14:04:28 -07:00
Yaohui Wang
d85c33a5c3 Fix the markdown rendering issue with a code block inside a markdown code block (#6625)
### Description

- Fix the markdown rendering issue with a code block inside a markdown,
using a different number of backticks for the delimiters.

Current doc site:
<https://python.langchain.com/docs/modules/data_connection/document_transformers/text_splitters/code_splitter#markdown>

After fix:
<img width="480" alt="image"
src="https://github.com/hwchase17/langchain/assets/3115235/d9921d59-64e6-4a34-9c62-79743667f528">


### Who can review

PTAL @dev2049 

Co-authored-by: Yaohui Wang <wangyaohui.01@bytedance.com>
2023-07-12 16:29:25 -04:00
Yaroslav Halchenko
0d92a7f357 codespell: workflow, config + some (quite a few) typos fixed (#6785)
Probably the most  boring PR to review ;)

Individual commits might be easier to digest

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-07-12 16:20:08 -04:00
Sam
931e68692e Adds a chain around sympy for symbolic math (#6834)
- Description: Adds a new chain that acts as a wrapper around Sympy to
give LLMs the ability to do some symbolic math.
- Dependencies: SymPy

---------

Co-authored-by: sreiswig <sreiswig@github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 15:17:32 -04:00
Bharat Ramanathan
be29a6287d feat: add model architecture back to wandb tracer (#6806)
# Description

This PR adds model architecture to the `WandbTracer` from the Serialized
Run kwargs. This allows visualization of the calling parameters of an
Agent, LLM and Tool in Weights & Biases.
    1. Safely serialize the run objects to WBTraceTree model_dict
    2. Refactors the run processing logic to be more organized.

- Twitter handle: @parambharat

---------

Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 15:00:18 -04:00
Alex Iribarren
adc96d60b6 Implement Function Callback tracer (#6835)
Description: I wanted to be able to redirect debug output to a function,
but it wasn't very easy. I figured it would make sense to implement a
`FunctionCallbackHandler`, and reimplement `ConsoleCallbackHandler` as a
subclass that calls the `print` function. Now I can create a simple
subclass in my project that calls `logging.info` or whatever I need.

Tag maintainer: @agola11
Twitter handle: `@andandaraalex`
2023-07-12 14:38:41 -04:00
Ducasse-Arthur
93a84f6182 Update bedrock.py - support of other endpoint url (esp. for users of … (#7592)
Added an _endpoint_url_ attribute to Bedrock(LLM) class - I have access
to Bedrock only via us-west-2 endpoint and needed to change the endpoint
url, this could be useful to other users
2023-07-12 10:43:23 -04:00
Bagatur
22525bad65 bump 231 (#7584) 2023-07-12 10:43:12 -04:00
Subsegment
6e1000dc8d docs : Use more meaningful cnosdb examples (#7587)
This change makes the ecosystem integrations cnosdb documentation more
realistic and easy to understand.

- change examples of question and table
- modify typo and format
2023-07-12 10:31:55 -04:00
Samuel ROZE
f3c9bf5e4b fix(typo): Clarify the point of llm_chain (#7593)
Fixes a typo introduced in
https://github.com/hwchase17/langchain/pull/7080 by @hwchase17.

In the example (visible on [the online
documentation](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain.html#langchain-chains-conversational-retrieval-base-conversationalretrievalchain)),
the `llm_chain` variable is unused as opposed to being used for the
question generator. This change makes it clearer.
2023-07-12 10:31:00 -04:00
Alec Flett
6cdd4b5edc only add handlers if they are new (#7504)
When using callbacks, there are times when callbacks can be added
redundantly: for instance sometimes you might need to create an llm with
specific callbacks, but then also create and agent that uses a chain
that has those callbacks already set. This means that "callbacks" might
get passed down again to the llm at predict() time, resulting in
duplicate calls to the `on_llm_start` callback.

For the sake of simplicity, I made it so that langchain never adds an
exact handler/callbacks object in `add_handler`, thus avoiding the
duplicate handler issue.

Tagging @hwchase17 for callback review

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 03:48:29 -04:00
ausboss
50316f6477 Adding LLM wrapper for Kobold AI (#7560)
- Description: add wrapper that lets you use KoboldAI api in langchain
  - Issue: n/a
  - Dependencies: none extra, just what exists in lanchain
  - Tag maintainer: @baskaryan 
  - Twitter handle: @zanzibased
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 03:48:12 -04:00
Rohit Kumar Singh
603a0bea29 Fixes incorrect docstore creation in faiss.py (#7026)
- **Description**: Current implementation assumes that the length of
`texts` and `ids` should be same but if the passed `ids` length is not
equal to the passed length of `texts`, current code
`dict(zip(index_to_id.values(), documents))` is not failing or giving
any warning and silently creating docstores only for the passed `ids`
i.e. if `ids = ['A']` and `texts=["I love Open Source","I love
langchain"]` then only one `docstore` will be created. But either two
docstores should be created assuming same id value for all the elements
of `texts` or an error should be raised.
  
- **Issue**: My change fixes this by using dictionary comprehension
instead of `zip`. This was if lengths of `ids` and `texts` mismatches an
explicit `IndexError` will be raised.
  
@rlancemartin, @eyurtsev
2023-07-12 03:35:49 -04:00
Tommy Hyeonwoo Kim
3f7213586e add supported properties for notiondb document loader's metadata (#7570)
fix #7569

add following properties for Notion DB document loader's metadata
- `unique_id`
- `status`
- `people`

@rlancemartin, @eyurtsev (Since this is a change related to
`DataLoaders`)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 03:34:54 -04:00
Junlin Zhou
5f17c57174 Update chat agents' output parser to extract action by regex (#7511)
Currently `ChatOutputParser` extracts actions by splitting the text on
"```", and then load the second part as a json string.

But sometimes the LLM will wrap the action in markdown code block like:

````markdown
```json
{
  "action": "foo",
  "action_input": "bar"
}
```
````

Splitting text on "```" will cause `OutputParserException` in such case.

This PR changes the behaviour to extract the `$JSON_BLOB` by regex, so
that it can handle both ` ``` ``` ` and ` ```json ``` `

@hinthornw

---------

Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
2023-07-12 03:12:02 -04:00
Bagatur
ebcb144342 unit test sqlalachemy (#7582) 2023-07-12 03:03:16 -04:00
Harrison Chase
641fd74baa Harrison/pg vector move (#7580) 2023-07-12 02:22:34 -04:00
os1ma
2667ddc686 Fix make docs_build and related scripts (#7276)
**Description: a description of the change**

Fixed `make docs_build` and related scripts which caused errors. There
are several changes.

First, I made the build of the documentation and the API Reference into
two separate commands. This is because it takes less time to build. The
commands for documents are `make docs_build`, `make docs_clean`, and
`make docs_linkcheck`. The commands for API Reference are `make
api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`.

It looked like `docs/.local_build.sh` could be used to build the
documentation, so I used that. Since `.local_build.sh` was also building
API Rerefence internally, I removed that process. `.local_build.sh` also
added some Bash options to stop in error or so. Futher more added `cd
"${SCRIPT_DIR}"` at the beginning so that the script will work no matter
which directory it is executed in.

`docs/api_reference/api_reference.rst` is removed, because which is
generated by `docs/api_reference/create_api_rst.py`, and added it to
.gitignore.

Finally, the description of CONTRIBUTING.md was modified.

**Issue: the issue # it fixes (if applicable)**

https://github.com/hwchase17/langchain/issues/6413

**Dependencies: any dependencies required for this change**

`nbdoc` was missing in group docs so it was added. I installed it with
the `poetry add --group docs nbdoc` command. I am concerned if any
modifications are needed to poetry.lock. I would greatly appreciate it
if you could pay close attention to this file during the review.

**Tag maintainer**
- General / Misc / if you don't know who to tag: @baskaryan

If this PR needs any additional changes, I'll be happy to make them!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 22:05:14 -04:00
Pharbie
74c28df363 Update Pinecone Upsert method usage (#7358)
Description: Refactor the upsert method in the Pinecone class to allow
for additional keyword arguments. This change adds flexibility and
extensibility to the method, allowing for future modifications or
enhancements. The upsert method now accepts the `**kwargs` parameter,
which can be used to pass any additional arguments to the Pinecone
index. This change has been made in both the `upsert` method in the
`Pinecone` class and the `upsert` method in the
`similarity_search_with_score` class method. Falls in line with the
usage of the upsert method in
[Pinecone-Python-Client](4640c4cf27/pinecone/index.py (L73))
Issue: [This feature request in Pinecone
Repo](https://github.com/pinecone-io/pinecone-python-client/issues/184)

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - Memory: @hwchase17

---------

Co-authored-by: kwesi <22204443+yankskwesi@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
2023-07-11 21:14:42 -04:00
Kazuki Maeda
5c3fe8b0d1 Enhance Makefile with 'format_diff' Option and Improved Readability (#7394)
### Description:

This PR introduces a new option format_diff to the existing Makefile.
This option allows us to apply the formatting tools (Black and isort)
only to the changed Python and ipynb files since the last commit. This
will make our development process more efficient as we only format the
codes that we modify. Along with this change, comments were added to
make the Makefile more understandable and maintainable.

### Issue:

N/A

### Dependencies:

Add dependency to black.

### Tag maintainer:

@baskaryan

### Twitter handle:

[kzk_maeda](https://twitter.com/kzk_maeda)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 21:03:17 -04:00
Bagatur
2babe3069f Revert pinecone v4 support (#7566)
Revert 9d13dcd
2023-07-11 20:58:59 -04:00
schop-rob
e811c5e8c6 Add OpenAI organization ID to docs (#7398)
Description: I added an example of how to reference the OpenAI API
Organization ID, because I couldn't find it before. In the example, it
is mentioned how to achieve this using environment variables as well as
parameters for the OpenAI()-class
Issue: -
Dependencies: -
Twitter @schop-rob
2023-07-11 20:51:58 -04:00
Kenny
8741e55e7c Template formats documentation (#7404)
Simple addition to the documentation, adding the correct import
statement & showcasing using Python FStrings.
2023-07-11 18:24:24 -04:00
Fielding Johnston
00c466627a minor bug fix: properly await AsyncRunManager's method call in MulitRouteChain (#7487)
This simply awaits `AsyncRunManager`'s method call in `MulitRouteChain`.
Noticed this while playing around with Langchain's implementation of
`MultiPromptChain`. @baskaryan

cheers

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 18:18:47 -04:00
tonomura
cc0585af42 Improvement/add finish reason to generation info in chat open ai (#7478)
Description: ChatOpenAI model does not return finish_reason in
generation_info.
Issue: #2702
Dependencies: None
Tag maintainer: @baskaryan 

Thank you

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 18:12:57 -04:00
Junlin Zhou
b96ac13f3d Minor update to reference other sql tool by tool names instead of hard coded string. (#7514)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Currently there are 4 tools in SQL agent-toolkits, and 2 of them have
reference to the other 2.

This PR change the reference from hard coded string to `{tool.name}`

Co-authored-by: Junlin Zhou <jlzhou@zjuici.com>
2023-07-11 17:44:23 -04:00
OwenElliott
9cb2347453 Fix broken link from Marqo Ecosystem (#7510)
Small fix to a link from the Marqo page in the ecosystem.

The link was not updated correctly when the documentation structure
changed to html pages instead of links to notebooks.
2023-07-11 17:15:15 -04:00
Matt Robinson
c4d53f98dc docs: update unstructured docstrings (#7561)
### Summary

Updates the docstrings in the Unstructured document loaders to display
more useful information on the integrations page.
2023-07-11 17:12:05 -04:00
Ben Auffarth
2c2f0e15a6 clarify about api key (#7540)
I found it unclear, where to get the API keys for JinaChat. Mentioning
this in the docstring should be helpful.
#7490 

Twitter handle: benji1a

@delgermurun
2023-07-11 16:46:06 -04:00
Jona Sassenhagen
0ea7224535 [Minor] Remove tagger from spacy sentencizer (#7534)
@svlandeg gave me a tip for how to improve a bit on
https://github.com/hwchase17/langchain/pull/7442 for some extra speed
and memory gains. The tagger isn't needed for sentencization, so can be
disabled too.
2023-07-11 16:43:46 -04:00
Kacper Łukawski
1f83b5f47e Reuse the existing collection if configured properly in Qdrant.from_texts (#7530)
This PR changes the behavior of `Qdrant.from_texts` so the collection is
reused if not requested to recreate it. Previously, calling
`Qdrant.from_texts` or `Qdrant.from_documents` resulted in removing the
old data which was confusing for many.
2023-07-11 16:24:35 -04:00
Leonid Kuligin
6674b33cf5 Added support for chat_history (#7555)
#7469

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-11 15:27:26 -04:00
Felix Brockmeier
406a9dc11f Add notebook example for Lemon AI NLP Workflow Automation (#7556)
- Description: Added notebook to LangChain docs that explains how to use
Lemon AI NLP Workflow Automation tool with Langchain
  
- Issue: not applicable
  
- Dependencies: not applicable
  
- Tag maintainer: @agola11
  
- Twitter handle: felixbrockm
2023-07-11 15:15:11 -04:00
Lance Martin
9e067b8cc9 Add env setup (#7550)
Include setup
2023-07-11 09:48:40 -07:00
Bagatur
3c4338470e bump 230 (#7544) 2023-07-11 11:24:08 -04:00
Bagatur
d2137eea9f fix cpal docs (#7545) 2023-07-11 11:07:45 -04:00
Boris
9129318466 CPAL (#6255)
# Causal program-aided language (CPAL) chain

## Motivation

This builds on the recent [PAL](https://arxiv.org/abs/2211.10435) to
stop LLM hallucination. The problem with the
[PAL](https://arxiv.org/abs/2211.10435) approach is that it hallucinates
on a math problem with a nested chain of dependence. The innovation here
is that this new CPAL approach includes causal structure to fix
hallucination.

For example, using the below word problem, PAL answers with 5, and CPAL
answers with 13.

    "Tim buys the same number of pets as Cindy and Boris."
    "Cindy buys the same number of pets as Bill plus Bob."
    "Boris buys the same number of pets as Ben plus Beth."
    "Bill buys the same number of pets as Obama."
    "Bob buys the same number of pets as Obama."
    "Ben buys the same number of pets as Obama."
    "Beth buys the same number of pets as Obama."
    "If Obama buys one pet, how many pets total does everyone buy?"

The CPAL chain represents the causal structure of the above narrative as
a causal graph or DAG, which it can also plot, as shown below.


![complex-graph](https://github.com/hwchase17/langchain/assets/367522/d938db15-f941-493d-8605-536ad530f576)

.

The two major sections below are:

1. Technical overview
2. Future application

Also see [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.


## 1. Technical overview

### CPAL versus PAL

Like [PAL](https://arxiv.org/abs/2211.10435), CPAL intends to reduce
large language model (LLM) hallucination.

The CPAL chain is different from the PAL chain for a couple of reasons. 

* CPAL adds a causal structure (or DAG) to link entity actions (or math
expressions).
* The CPAL math expressions are modeling a chain of cause and effect
relations, which can be intervened upon, whereas for the PAL chain math
expressions are projected math identities.

PAL's generated python code is wrong. It hallucinates when complexity
increases.

```python
def solution():
    """Tim buys the same number of pets as Cindy and Boris.Cindy buys the same number of pets as Bill plus Bob.Boris buys the same number of pets as Ben plus Beth.Bill buys the same number of pets as Obama.Bob buys the same number of pets as Obama.Ben buys the same number of pets as Obama.Beth buys the same number of pets as Obama.If Obama buys one pet, how many pets total does everyone buy?"""
    obama_pets = 1
    tim_pets = obama_pets
    cindy_pets = obama_pets + obama_pets
    boris_pets = obama_pets + obama_pets
    total_pets = tim_pets + cindy_pets + boris_pets
    result = total_pets
    return result  # math result is 5
```

CPAL's generated python code is correct.

```python
story outcome data
    name                                   code  value      depends_on
0  obama                                   pass    1.0              []
1   bill               bill.value = obama.value    1.0         [obama]
2    bob                bob.value = obama.value    1.0         [obama]
3    ben                ben.value = obama.value    1.0         [obama]
4   beth               beth.value = obama.value    1.0         [obama]
5  cindy   cindy.value = bill.value + bob.value    2.0     [bill, bob]
6  boris   boris.value = ben.value + beth.value    2.0     [ben, beth]
7    tim  tim.value = cindy.value + boris.value    4.0  [cindy, boris]

query data
{
    "question": "how many pets total does everyone buy?",
    "expression": "SELECT SUM(value) FROM df",
    "llm_error_msg": ""
}
# query result is 13
```

Based on the comments below, CPAL's intended location in the library is
`experimental/chains/cpal` and PAL's location is`chains/pal`.

### CPAL vs Graph QA

Both the CPAL chain and the Graph QA chain extract entity-action-entity
relations into a DAG.

The CPAL chain is different from the Graph QA chain for a few reasons.

* Graph QA does not connect entities to math expressions
* Graph QA does not associate actions in a sequence of dependence.
* Graph QA does not decompose the narrative into these three parts:
  1. Story plot or causal model
  4. Hypothetical question
  5. Hypothetical condition 

### Evaluation

Preliminary evaluation on simple math word problems shows that this CPAL
chain generates less hallucination than the PAL chain on answering
questions about a causal narrative. Two examples are in [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.

## 2. Future application

### "Describe as Narrative, Test as Code"

The thesis here is that the Describe as Narrative, Test as Code approach
allows you to represent a causal mental model both as code and as a
narrative, giving you the best of both worlds.

#### Why describe a causal mental mode as a narrative?

The narrative form is quick. At a consensus building meeting, people use
narratives to persuade others of their causal mental model, aka. plan.
You can share, version control and index a narrative.

#### Why test a causal mental model as a code?

Code is testable, complex narratives are not. Though fast, narratives
are problematic as their complexity increases. The problem is LLMs and
humans are prone to hallucination when predicting the outcomes of a
narrative. The cost of building a consensus around the validity of a
narrative outcome grows as its narrative complexity increases. Code does
not require tribal knowledge or social power to validate.

Code is composable, complex narratives are not. The answer of one CPAL
chain can be the hypothetical conditions of another CPAL Chain. For
stochastic simulations, a composable plan can be integrated with the
[DoWhy library](https://github.com/py-why/dowhy). Lastly, for the
futuristic folk, a composable plan as code allows ordinary community
folk to design a plan that can be integrated with a blockchain for
funding.

An explanation of a dependency planning application is
[here.](https://github.com/borisdev/cpal-llm-chain-demo)

--- 
Twitter handle: @boris_dev

---------

Co-authored-by: Boris Dev <borisdev@Boriss-MacBook-Air.local>
2023-07-11 10:11:21 -04:00
Alejandra De Luna
2e4047e5e7 feat: support generate as an early stopping method for OpenAIFunctionsAgent (#7229)
This PR proposes an implementation to support `generate` as an
`early_stopping_method` for the new `OpenAIFunctionsAgent` class.

The motivation behind is to facilitate the user to set a maximum number
of actions the agent can take with `max_iterations` and force a final
response with this new agent (as with the `Agent` class).

The following changes were made:

- The `OpenAIFunctionsAgent.return_stopped_response` method was
overwritten to support `generate` as an `early_stopping_method`
- A boolean `with_functions` parameter was added to the
`OpenAIFunctionsAgent.plan` method

This way the `OpenAIFunctionsAgent.return_stopped_response` method can
call the `OpenAIFunctionsAgent.plan` method with `with_function=False`
when the `early_stopping_method` is set to `generate`, making a call to
the LLM with no functions and forcing a final response from the
`"assistant"`.

  - Relevant maintainer: @hinthornw
  - Twitter handle: @aledelunap

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 09:25:02 -04:00
Hashem Alsaket
1dd4236177 Fix HF endpoint returns blank for text-generation (#7386)
Description: Current `_call` function in the
`langchain.llms.HuggingFaceEndpoint` class truncates response when
`task=text-generation`. Same error discussed a few days ago on Hugging
Face: https://huggingface.co/tiiuae/falcon-40b-instruct/discussions/51
Issue: Fixes #7353 
Tag maintainer: @hwchase17 @baskaryan @hinthornw

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 03:06:05 -04:00
Lance Martin
4a94f56258 Minor edits to QA docs (#7507)
Small clean-ups
2023-07-10 22:15:05 -07:00
Raymond Yuan
5171c3bcca Refactor vector storage to correctly handle relevancy scores (#6570)
Description: This pull request aims to support generating the correct
generic relevancy scores for different vector stores by refactoring the
relevance score functions and their selection in the base class and
subclasses of VectorStore. This is especially relevant with VectorStores
that require a distance metric upon initialization. Note many of the
current implenetations of `_similarity_search_with_relevance_scores` are
not technically correct, as they just return
`self.similarity_search_with_score(query, k, **kwargs)` without applying
the relevant score function

Also includes changes associated with:
https://github.com/hwchase17/langchain/pull/6564 and
https://github.com/hwchase17/langchain/pull/6494

See more indepth discussion in thread in #6494 

Issue: 
https://github.com/hwchase17/langchain/issues/6526
https://github.com/hwchase17/langchain/issues/6481
https://github.com/hwchase17/langchain/issues/6346

Dependencies: None

The changes include:
- Properly handling score thresholding in FAISS
`similarity_search_with_score_by_vector` for the corresponding distance
metric.
- Refactoring the `_similarity_search_with_relevance_scores` method in
the base class and removing it from the subclasses for incorrectly
implemented subclasses.
- Adding a `_select_relevance_score_fn` method in the base class and
implementing it in the subclasses to select the appropriate relevance
score function based on the distance strategy.
- Updating the `__init__` methods of the subclasses to set the
`relevance_score_fn` attribute.
- Removing the `_default_relevance_score_fn` function from the FAISS
class and using the base class's `_euclidean_relevance_score_fn`
instead.
- Adding the `DistanceStrategy` enum to the `utils.py` file and updating
the imports in the vector store classes.
- Updating the tests to import the `DistanceStrategy` enum from the
`utils.py` file.

---------

Co-authored-by: Hanit <37485638+hanit-com@users.noreply.github.com>
2023-07-10 20:37:03 -07:00
Lance Martin
bd0c6381f5 Minor update to clarify map-reduce custom prompt usage (#7453)
Update docs for map-reduce custom prompt usage
2023-07-10 16:43:44 -07:00
Lance Martin
28d2b213a4 Update landing page for "question answering over documents" (#7152)
Improve documentation for a central use-case, qa / chat over documents.

This will be merged as an update to `index.mdx`
[here](https://python.langchain.com/docs/use_cases/question_answering/).

Testing w/ local Docusaurus server:

```
From `docs` directory:
mkdir _dist
cp -r {docs_skeleton,snippets} _dist
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
yarn install
yarn start
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-10 14:15:13 -07:00
William FH
dd648183fa Rm create_project line (#7486)
not needed
2023-07-10 10:49:55 -07:00
Leonid Ganeline
5eec74d9a5 docstrings document_loaders 3 (#6937)
- Updated docstrings for `document_loaders`
- Mass update `"""Loader that loads` to `"""Loads`

@baskaryan  - please, review
2023-07-10 08:56:53 -07:00
Stanko Kuveljic
9d13dcd17c Pinecone: Add V4 support (#7473) 2023-07-10 08:39:47 -07:00
Adilkhan Sarsen
5debd5043e Added deeplake use case examples of the new features (#6528)
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.

Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.

After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.

Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->

<!-- Remove if not applicable -->

Fixes # (issue)

#### Before submitting

<!-- If you're adding a new integration, please include:

1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use


See contribution guidelines for more information on how to write tests,
lint
etc:


https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

#### Who can review?

Tag maintainers/contributors who might be interested:

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @hwchase17

  VectorStores / Retrievers / Memory
  - @dev2049

 -->
 
 1. Added use cases of the new features
 2. Done some code refactoring

---------

Co-authored-by: Ivo Stranic <istranic@gmail.com>
2023-07-10 07:04:29 -07:00
Bagatur
9b615022e2 bump 229 (#7467) 2023-07-10 04:38:55 -04:00
Kazuki Maeda
92b4418c8c Datadog logs loader (#7356)
### Description
Created a Loader to get a list of specific logs from Datadog Logs.

### Dependencies
`datadog_api_client` is required.

### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-10 04:27:55 -04:00
Yifei Song
7d29bb2c02 Add Xorbits Dataframe as a Document Loader (#7319)
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.

- This PR added support for the Xorbits document loader, which allows
langchain to leverage Xorbits to parallelize and distribute the loading
of data.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @rlancemartin, @eyurtsev
- Twitter handle: https://twitter.com/Xorbitsio

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-10 04:24:47 -04:00
Sergio Moreno
21a353e9c2 feat: ctransformers support async chain (#6859)
- Description: Adding async method for CTransformers 
- Issue: I've found impossible without this code to run Websockets
inside a FastAPI micro service and a CTransformers model.
  - Tag maintainer: Not necessary yet, I don't like to mention directly 
  - Twitter handle: @_semoal
2023-07-10 04:23:41 -04:00
Paul-Emile Brotons
d2cf0d16b3 adding max_marginal_relevance_search method to MongoDBAtlasVectorSearch (#7310)
Adding a maximal_marginal_relevance method to the
MongoDBAtlasVectorSearch vectorstore enhances the user experience by
providing more diverse search results

Issue: #7304
2023-07-10 04:04:19 -04:00
Bagatur
04cddfba0d Add lark import error (#7465) 2023-07-10 03:21:23 -04:00
Matt Robinson
bcab894f4e feat: Add UnstructuredTSVLoader (#7367)
### Summary

Adds an `UnstructuredTSVLoader` for TSV files. Also updates the doc
strings for `UnstructuredCSV` and `UnstructuredExcel` loaders.

### Testing

```python
from langchain.document_loaders.tsv import UnstructuredTSVLoader

loader = UnstructuredTSVLoader(
    file_path="example_data/mlb_teams_2012.csv", mode="elements"
)
docs = loader.load()
```
2023-07-10 03:07:10 -04:00
Ronald Li
490f4a9ff0 Fixes KeyError in AmazonKendraRetriever initializer (#7464)
### Description
argument variable client is marked as required in commit
81e5b1ad36 which breaks the default way of
initialization providing only index_id. This commit avoid KeyError
exception when it is initialized without a client variable
### Dependencies
no dependency required
2023-07-10 03:02:36 -04:00
Jona Sassenhagen
7ffc431b3a Add spacy sentencizer (#7442)
`SpacyTextSplitter` currently uses spacy's statistics-based
`en_core_web_sm` model for sentence splitting. This is a good splitter,
but it's also pretty slow, and in this case it's doing a lot of work
that's not needed given that the spacy parse is then just thrown away.
However, there is also a simple rules-based spacy sentencizer. Using
this is at least an order of magnitude faster than using
`en_core_web_sm` according to my local tests.
Also, spacy sentence tokenization based on `en_core_web_sm` can be sped
up in this case by not doing the NER stage. This shaves some cycles too,
both when loading the model and when parsing the text.

Consequently, this PR adds the option to use the basic spacy
sentencizer, and it disables the NER stage for the current approach,
*which is kept as the default*.

Lastly, when extracting the tokenized sentences, the `text` attribute is
called directly instead of doing the string conversion, which is IMO a
bit more idiomatic.
2023-07-10 02:52:05 -04:00
charosen
50a9fcccb0 feat(module): add param ids to ElasticVectorSearch.from_texts method (#7425)
# add param ids to ElasticVectorSearch.from_texts method.

- Description: add param ids to ElasticVectorSearch.from_texts method.
- Issue: NA. It seems `add_texts` already supports passing in document
ids, but param `ids` is omitted in `from_texts` classmethod,
- Dependencies: None,
- Tag maintainer: @rlancemartin, @eyurtsev please have a look, thanks

```
    # ElasticVectorSearch add_texts
    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        refresh_indices: bool = True,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        ...

```

```
    # ElasticVectorSearch from_texts
    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        elasticsearch_url: Optional[str] = None,
        index_name: Optional[str] = None,
        refresh_indices: bool = True,
        **kwargs: Any,
    ) -> ElasticVectorSearch:

```


Co-authored-by: charosen <charosen@bupt.cn>
2023-07-10 02:25:35 -04:00
James Yin
a5fd8873b1 fix: type hint of get_chat_history in BaseConversationalRetrievalChain (#7461)
The type hint of `get_chat_history` property in
`BaseConversationalRetrievalChain` is incorrect. @baskaryan
2023-07-10 02:14:00 -04:00
nikkie
dfc3f83b0f docs(vectorstores/integrations/chroma): Fix loading and saving (#7437)
- Description: Fix loading and saving code about Chroma
- Issue: the issue #7436 
- Dependencies: -
- Twitter handle: https://twitter.com/ftnext
2023-07-10 02:05:15 -04:00
Daniel Chalef
c7f7788d0b Add ZepMemory; improve ZepChatMessageHistory handling of metadata; Fix bugs (#7444)
Hey @hwchase17 - 

This PR adds a `ZepMemory` class, improves handling of Zep's message
metadata, and makes it easier for folks building custom chains to
persist metadata alongside their chat history.

We've had plenty confused users unfamiliar with ChatMessageHistory
classes and how to wrap the `ZepChatMessageHistory` in a
`ConversationBufferMemory`. So we've created the `ZepMemory` class as a
light wrapper for `ZepChatMessageHistory`.

Details:
- add ZepMemory, modify notebook to demo use of ZepMemory
- Modify summary to be SystemMessage
- add metadata argument to add_message; add Zep metadata to
Message.additional_kwargs
- support passing in metadata
2023-07-10 01:53:49 -04:00
Saurabh Chaturvedi
8f8e8d701e Fix info about YouTube (#7447)
(Unintentionally mean 😅) nit: YouTube wasn't created by Google, this PR
fixes the mention in docs.
2023-07-10 01:52:55 -04:00
Leonid Ganeline
560c4dfc98 docstrings: docstore and client (#6783)
updated docstrings in `docstore/` and `client/`

@baskaryan
2023-07-09 01:34:28 -04:00
Jeroen Van Goey
f5bd88757e Fix typo (#7416)
`quesitons` -> `questions`.
2023-07-09 00:54:48 -04:00
Alejandro Garrido Mota
ea9c3cc9c9 Fix syntax erros in documentation (#7409)
- Description: Tiny documentation fix. In Python, when defining function
parameters or providing arguments to a function or class constructor, we
do not use the `:` character.
- Issue: N/A
- Dependencies: N/A,
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @mogaal
2023-07-08 19:52:01 -04:00
Nolan
5da9f9abcb docs(agents/toolkits): Fix error in document_comparison_toolkit.ipynb (#7417)
Replace this comment with:
- Description: Removes unneeded output warning in documentation at
https://python.langchain.com/docs/modules/agents/toolkits/document_comparison_toolkit
  - Issue: -
  - Dependencies: -
  - Tag maintainer: @baskaryan
  - Twitter handle: @finnless
2023-07-08 19:51:08 -04:00
nikkie
2eb4a2ceea docs(retrievers/get-started): Fix broken state_of_the_union.txt link (#7399)
Thank you for this awesome library.

- Description: Fix broken link in documentation 
- Issue:
-
https://python.langchain.com/docs/modules/data_connection/retrievers/#get-started
- the URL:
https://github.com/hwchase17/langchain/blob/master/docs/modules/state_of_the_union.txt
- I think the right one is
https://github.com/hwchase17/langchain/blob/master/docs/extras/modules/state_of_the_union.txt
- Dependencies: -
- Tag maintainer: @baskaryan
- Twitter handle: -
2023-07-08 11:11:05 -04:00
Delgermurun
e7420789e4 improve description of JinaChat (#7397)
very small doc string change in the `JinaChat` class.
2023-07-08 10:57:11 -04:00
Bagatur
26c86a197c bump 228 (#7393) 2023-07-08 03:05:20 -04:00
SvMax
1d649b127e Added param to return only a structured json from the get_format_instructions method (#5848)
I just added a parameter to the method get_format_instructions, to
return directly the JSON instructions without the leading instruction
sentence. I'm planning to use it to define the structure of a JSON
object passed in input, the get_format_instructions().

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-08 02:57:26 -04:00
Bagatur
362bc301df fix jina (#7392) 2023-07-08 02:41:54 -04:00
Delgermurun
a1603fccfb integrate JinaChat (#6927)
Integration with https://chat.jina.ai/api. It is OpenAI compatible API.

- Twitter handle:
[https://twitter.com/JinaAI_](https://twitter.com/JinaAI_)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-08 02:17:04 -04:00
William FH
4ba7396f96 Add single run eval loader (#7390)
Plus 
- add evaluation name to make string and embedding validators work with
the run evaluator loader.
- Rm unused root validator
2023-07-07 23:06:49 -07:00
Roger Yu
633b673b85 Update pinecone.ipynb (#7382)
Fix typo
2023-07-08 01:48:03 -04:00
Oleg Zabluda
4d697d3f24 Allow passing custom prompts to GraphIndexCreator (#7381)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-08 01:47:53 -04:00
William FH
612a74eb7e Make Ref Example Threadsafe (#7383)
Have noticed transient ref example misalignment. I believe this is
caused by the logic of assigning an example within the thread executor
rather than before.
2023-07-07 21:50:42 -07:00
William FH
4789c99bc2 Add String Distance and Embedding Evaluators (#7123)
Add a string evaluator and pairwise string evaluator implementation for:
- Embedding distance
- String distance

Update docs
2023-07-07 21:44:31 -07:00
ljeagle
fb6e63dc36 Upgrade the AwaDB from 0.3.5 to 0.3.6 (#7363) 2023-07-07 20:41:17 -07:00
William FH
c5edbea34a Load Run Evaluator (#7101)
Current problems:
1. Evaluating LLMs or Chat models isn't smooth. Even specifying
'generations' as the output inserts a redundant list into the eval
template
2. Configuring input / prediction / reference keys in the
`get_qa_evaluator` function is confusing. Unless you are using a chain
with the default keys, you have to specify all the variables and need to
reason about whether the key corresponds to the traced run's inputs,
outputs or the examples inputs or outputs.


Proposal:
- Configure the run evaluator according to a model. Use the model type
and input/output keys to assert compatibility where possible. Only need
to specify a reference_key for certain evaluators (which is less
confusing than specifying input keys)


When does this work:
- If you have your langchain model available (assumed always for
run_on_dataset flow)
- If you are evaluating an LLM, Chat model, or chain
- If the LLM or chat models are traced by langchain (wouldn't work if
you add an incompatible schema via the REST API)

When would this fail:
- Currently if you directly create an example from an LLM run, the
outputs are generations with all the extra metadata present. A simple
`example_key` and dumping all to the template could make the evaluations
unreliable
- Doesn't help if you're not using the low level API
- If you want to instantiate the evaluator without instantiating your
chain or LLM (maybe common for monitoring, for instance) -> could also
load from run or run type though

What's ugly:
- Personally think it's better to load evaluators one by one since
passing a config down is pretty confusing.
- Lots of testing needs to be added
- Inconsistent in that it makes a separate run and example input mapper
instead of the original `RunEvaluatorInputMapper`, which maps a run and
example to a single input.

Example usage running the for an LLM, Chat Model, and Agent.

```
# Test running for the string evaluators
evaluator_names = ["qa", "criteria"]

model = ChatOpenAI()
configured_evaluators = load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer")
run_on_dataset(ds_name, model, run_evaluators=configured_evaluators)
```


<details>
  <summary>Full code with dataset upload</summary>
```
## Create dataset
from langchain.evaluation.run_evaluators.loading import load_run_evaluators_for_model
from langchain.evaluation import load_dataset
import pandas as pd

lcds = load_dataset("llm-math")
df = pd.DataFrame(lcds)

from uuid import uuid4
from langsmith import Client
client = Client()
ds_name = "llm-math - " + str(uuid4())[0:8]
ds = client.upload_dataframe(df, name=ds_name, input_keys=["question"], output_keys=["answer"])



## Define the models we'll test over
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, AgentType

from langchain.tools import tool

llm = OpenAI(temperature=0)
chat_model = ChatOpenAI(temperature=0)

@tool
    def sum(a: float, b: float) -> float:
        """Add two numbers"""
        return a + b
    
def construct_agent():
    return initialize_agent(
        llm=chat_model,
        tools=[sum],
        agent=AgentType.OPENAI_MULTI_FUNCTIONS,
    )

agent = construct_agent()

# Test running for the string evaluators
evaluator_names = ["qa", "criteria"]

models = [llm, chat_model, agent]
run_evaluators = []
for model in models:
    run_evaluators.append(load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer"))
    

# Run on LLM, Chat Model, and Agent
from langchain.client.runner_utils import run_on_dataset

to_test = [llm, chat_model, construct_agent]

for model, configured_evaluators in zip(to_test, run_evaluators):
    run_on_dataset(ds_name, model, run_evaluators=configured_evaluators, verbose=True)
```
</details>

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-07 19:57:59 -07:00
Bagatur
1ac347b4e3 update databerry-chaindesk redirect (#7378) 2023-07-07 19:11:46 -04:00
Joshua Carroll
705d2f5b92 Update the API Reference link in Streamlit integration docs (#7377)
This page:


https://python.langchain.com/docs/modules/callbacks/integrations/streamlit

Has a bad API Reference link currently. This PR fixes it to the correct
link.

Also updates the embedded app link to
https://langchain-mrkl.streamlit.app/ (better name) which is hosted in
langchain-ai/streamlit-agent repo
2023-07-07 17:35:57 -04:00
Georges Petrov
ec033ae277 Rename Databerry to Chaindesk (#7022)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 17:28:04 -04:00
Philip Meier
da5b0723d2 update MosaicML inputs and outputs (#7348)
As of today (July 7, 2023), the [MosaicML
API](https://docs.mosaicml.com/en/latest/inference.html#text-completion-requests)
uses `"inputs"` for the prompt

This PR adds support for this new format.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 17:23:11 -04:00
Bearnardd
184ede4e48 Fix buggy output from GraphQAChain (#7372)
fixes https://github.com/hwchase17/langchain/issues/7289
A simple fix of the buggy output of `graph_qa`. If we have several
entities with triplets then the last entry of `triplets` for a given
entity merges with the first entry of the `triplets` of the next entity.
2023-07-07 17:19:53 -04:00
Harrison Chase
7cdf97ba9b Harrison/add to imports (#7370)
pgvector cleanup
2023-07-07 16:27:44 -04:00
Bagatur
4d427b2397 Base language model docstrings (#7104) 2023-07-07 16:09:10 -04:00
ॐ shivam mamgain
2179d4eef8 Fix for KeyError in MlflowCallbackHandler (#7051)
- Description: `MlflowCallbackHandler` fails with `KeyError: "['name']
not in index"`. See https://github.com/hwchase17/langchain/issues/5770
for more details. Root cause is that LangChain does not pass "name" as a
part of `serialized` argument to `on_llm_start()` callback method. The
commit where this change was made is probably this:
18af149e91.
My bug fix derives "name" from "id" field.
  - Issue: https://github.com/hwchase17/langchain/issues/5770
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 16:08:06 -04:00
Alex Gamble
df746ad821 Add a callback handler for Context (https://getcontext.ai) (#7151)
### Description

Adding a callback handler for Context. Context is a product analytics
platform for AI chat experiences to help you understand how users are
interacting with your product.

I've added the callback library + an example notebook showing its use.

### Dependencies

Requires the user to install the `context-python` library. The library
is lazily-loaded when the callback is instantiated.

### Announcing the feature

We spoke with Harrison a few weeks ago about also doing a blog post
announcing our integration, so will coordinate this with him. Our
Twitter handle for the company is @getcontextai, and the founders are
@_agamble and @HenrySG.

Thanks in advance!
2023-07-07 15:33:29 -04:00
Austin
c9a0f24646 Add verbose parameter for llamacpp (#7253)
**Title:** Add verbose parameter for llamacpp

**Description:**
This pull request adds a 'verbose' parameter to the llamacpp module. The
'verbose' parameter, when set to True, will enable the output of
detailed logs during the execution of the Llama model. This added
parameter can aid in debugging and understanding the internal processes
of the module.

The verbose parameter is a boolean that prints verbose output to stderr
when set to True. By default, the verbose parameter is set to True but
can be toggled off if less output is desired. This new parameter has
been added to the `validate_environment` method of the `LlamaCpp` class
which initializes the `llama_cpp.Llama` API:

```python
class LlamaCpp(LLM):
    ...
    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        ...
        model_param_names = [
            ...
            "verbose",  # New verbose parameter added
        ]
        ...
        values["client"] = Llama(model_path, **model_params)
        ...
```
---------

Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
2023-07-07 15:08:25 -04:00
Kenny
34a2755a54 Allow passing api key into OpenAIWhisperParser (#7281)
This just allows the user to pass in an api_key directly into
OpenAIWhisperParser. Very simple addition.
2023-07-07 15:07:45 -04:00
mrkhalil6
4e7d0c115b Add support for filters and namespaces in similarity search in Pinecone similarity_score_threshold (#7301)
At the moment, pinecone vectorStore does not support filters and
namespaces when using similarity_score_threshold search type.
In this PR, I've implemented that. It passes all the kwargs except
"score_threshold" as that is not a supported argument for method
"similarity_search_with_score".
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 15:03:59 -04:00
Manuel Saelices
01dca1e438 Add context to an output parsing error on Pydantic schema to improve exception handling (#7344)
## Changes

- [X] Fill the `llm_output` param when there is an output parsing error
in a Pydantic schema so that we can get the original text that failed to
parse when handling the exception

## Background

With this change, we could do something like this:

```
output_parser = PydanticOutputParser(pydantic_object=pydantic_obj)
chain = ConversationChain(..., output_parser=output_parser)
try:
    response: PydanticSchema = chain.predict(input=input)
except OutputParserException as exc:
    logger.error(
        'OutputParserException while parsing chatbot response: %s', exc.llm_output,
    )
```
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 14:49:37 -04:00
Raouf Chebri
1ac6deda89 update extension name (#7359)
hi @rlancemartin ,

We had a new deployment and the `pg_extension` creation command was
updated from `CREATE EXTENSION pg_embedding` to `CREATE EXTENSION
embedding`.

https://github.com/neondatabase/neon/pull/4646

The extension not made public yet. No users will be affected by this.
Will be public next week.

Please let me know if you have any questions.

Thank you in advance 🙏
2023-07-07 11:35:51 -07:00
William FH
4e180dc54e Unset Cache in Tests (#7362)
This is impacting other unit tests that use callbacks since the cache is
still set (just empty)
2023-07-07 11:05:09 -07:00
German Martin
3ce4e46c8c The Fellowship of the Vectors: New Embeddings Filter using clustering. (#7015)
Continuing with Tolkien inspired series of langchain tools. I bring to
you:
**The Fellowship of the Vectors**, AKA EmbeddingsClusteringFilter.
This document filter uses embeddings to group vectors together into
clusters, then allows you to pick an arbitrary number of documents
vector based on proximity to the cluster centers. That's a
representative sample of the cluster.

The original idea is from [Greg Kamradt](https://github.com/gkamradt)
from this video (Level4):
https://www.youtube.com/watch?v=qaPMdcCqtWk&t=365s

I added few tricks to make it a bit more versatile, so you can
parametrize what to do with duplicate documents in case of cluster
overlap: replace the duplicates with the next closest document or remove
it. This allow you to use it as an special kind of redundant filter too.
Additionally you can choose 2 diff orders: grouped by cluster or
respecting the original retriever scores.
In my use case I was using the docs grouped by cluster to run refine
chains per cluster to generate summarization over a large corpus of
documents.
Let me know if you want to change anything!

@rlancemartin, @eyurtsev, @hwchase17,

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-07 10:28:17 -07:00
Leonid Ganeline
b489466488 docs: dependents update 4 (#7360)
Updated links and counters of the `dependents` page.
2023-07-07 13:22:30 -04:00
William FH
38ca5c84cb Explicitly list requires_reference in function (#7357) 2023-07-07 10:04:03 -07:00
Harrison Chase
49b2b0e3c0 change embedding to None (#7355) 2023-07-07 12:33:03 -04:00
imaprogrammer
a2830e3056 Update chroma.py: Persist directory from client_settings if provided there (#7087)
Change details:
- Description: When calling db.persist(), a check prevents from it
proceeding as the constructor only sets member `_persist_directory` from
parameters. But the ChromaDB client settings also has this parameter,
and if the client_settings parameter is used without passing the
persist_directory (which is optional), the `persist` method raises
`ValueError` for not setting `_persist_directory`. This change fixes it
by setting the member `_persist_directory` variable from client_settings
if it is set, else uses the constructor parameter.
- Issue: I didn't find any github issue of this, but I discovered it
after calling the persist method
  - Dependencies: None
- Tag maintainer: vectorstore related change - @rlancemartin, @eyurtsev
  - Twitter handle: Don't have one :(

*Additional discussion*: We may need to discuss the way I implemented
the fallback using `or`.

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-07 09:20:27 -07:00
Bagatur
cb4e88e4fb bump 227 (#7354) 2023-07-07 11:52:35 -04:00
Bagatur
d1c7237034 openai fn update nb (#7352) 2023-07-07 11:52:21 -04:00
Bagatur
0ed2da7020 bump 226 (#7335) 2023-07-07 05:59:13 -04:00
Bagatur
1c8cff32f1 Generic OpenAI fn chain (#7270)
Add loading functions for openai function chains and add docs page
2023-07-07 05:44:53 -04:00
Bagatur
fd7145970f Output parser redirect (#7330)
Related to ##7311
2023-07-07 04:26:34 -04:00
OwenElliott
3074306ae1 Marqo Vector Store Examples & Type Hints (#7326)
This PR improves the example notebook for the Marqo vectorstore
implementation by adding a new RetrievalQAWithSourcesChain example. The
`embedding` parameter in `from_documents` has its type updated to
`Union[Embeddings, None]` and a default parameter of None because this
is ignored in Marqo.

This PR also upgrades the Marqo version to 0.11.0 to remove the device
parameter after a breaking change to the API.

Related to #7068 @tomhamer @hwchase17

---------

Co-authored-by: Tom Hamer <tom@marqo.ai>
2023-07-07 04:11:20 -04:00
Nayjest
5809c3d29d Pack of small fixes and refactorings that don't affect functionality (#6990)
Description: Pack of small fixes and refactorings that don't affect
functionality, just making code prettier & fixing some misspelling
(hand-filtered improvements proposed by SeniorAi.online, prototype of
code improving tool based on gpt4), agents and callbacks folders was
covered.

Dependencies: Nothing changed

Twitter: https://twitter.com/nayjest

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 03:40:49 -04:00
Bagatur
87f75cb322 Add base Chain docstrings (#7114) 2023-07-07 03:06:33 -04:00
Leonid Ganeline
284d40b7af docstrings top level update (#7173)
Updated docstrings so, that [API
Reference](https://api.python.langchain.com/en/latest/api_reference.html)
page has text in the second column (class/function/... description.
2023-07-07 02:42:28 -04:00
Stav Sapir
8d961b9e33 add preset ability to textgen llm (#7196)
add an ability for textgen llm to work with preset provided by text gen
webui API.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 02:41:24 -04:00
Bagatur
a9c5b4bcea Bagatur/clarifai update (#7324)
This PR improves upon the Clarifai LangChain integration with improved docs, errors, args and the addition of embedding model support in LancChain for Clarifai's embedding models and an overview of the various ways you can integrate with Clarifai added to the docs.

---------

Co-authored-by: Matthew Zeiler <zeiler@clarifai.com>
2023-07-07 02:23:20 -04:00
Oleg Zabluda
9954eff8fd Rename prompt_template => _DEFAULT_GRAPH_QA_TEMPLATE and PROMPT => GRAPH_QA_PROMPT to make consistent with the rest of the files (#7250)
Rename prompt_template => _DEFAULT_GRAPH_QA_TEMPLATE to make consistent
with the rest of the file.
2023-07-07 02:17:40 -04:00
Nikhil Kumar Gupta
6095a0a310 Added number_of_head_rows to pandas agent parameters (#7271)
Description: Added number_of_head_rows as a parameter to pandas agent.
number_of_head_rows allows the user to select the number of rows to pass
with the prompt when include_df_in_prompt is True. This gives the
ability to control the token length and can be helpful in dealing with
large dataframe.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 02:17:26 -04:00
John Landahl
e047541b5f Corrected a typo in elasticsearch.ipynb (#7318)
Simple typo fix
2023-07-07 01:35:32 -04:00
Subsegment
152dc59060 docs : add cnosdb to Ecosystem Integrations (#7316)
- Implement a `from_cnosdb` method for the `SQLDatabase` class
  - Write CnosDB documentation and add it to Ecosystem Integrations
2023-07-07 01:35:22 -04:00
Bagatur
927c8eb91a Refac package version check (#7312) 2023-07-07 01:21:53 -04:00
Sparsh Jain
bac56618b4 Solving anthropic packaging version issue (#7306)
- Description: Solving, anthropic packaging version issue by clearing
the mixup from package.version that is being confused with version from
- importlib.metadata.version.

  - Issue: it fixes the issue #7283 
  - Maintainer: @hwchase17 

The following change has been explained in the comment -
https://github.com/hwchase17/langchain/issues/7283#issuecomment-1624328978
2023-07-06 19:35:42 -04:00
Jason B. Koh
d642609a23 Fix: Recognize List at from_function (#7178)
- Description: pydantic's `ModelField.type_` only exposes the native
data type but not complex type hints like `List`. Thus, generating a
Tool with `from_function` through function signature produces incorrect
argument schemas (e.g., `str` instead of `List[str]`)
  - Issue: N/A
  - Dependencies: N/A
  - Tag maintainer: @hinthornw
  - Twitter handle: `mapped`

All the unittest (with an additional one in this PR) passed, though I
didn't try integration tests...
2023-07-06 17:22:09 -04:00
Chathura Rathnayake
ec10787bc7 Fixed the confluence loader ".csv" files loading issue (#7195)
- Description: Sometimes there are csv attachments with the media type
"application/vnd.ms-excel". These files failed to be loaded via the xlrd
library. It throws a corrupted file error. I fixed it by separately
processing excel files using pandas. Excel files will be processed just
like before.

- Dependencies: pandas, os, io

---------

Co-authored-by: Chathura <chathurar@yaalalabs.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-06 17:21:43 -04:00
Andre Elizondo
b21c2f8704 Update docs for whylabs (langkit) callback handler (#7293)
- Description: Update docs for whylabs callback handler
  - Issue: none
  - Dependencies: none
  - Tag maintainer: @agola11 
  - Twitter handle: @useautomation @whylabs

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Jamie Broomall <jamie@whylabs.ai>
2023-07-06 17:21:28 -04:00
William FH
e736d60516 Load Evaluator (#6942)
Create a `load_evaluators()` function so you don't have to import all
the individual evaluator classes
2023-07-06 13:58:58 -07:00
David Duong
12d14f8947 Fix secrets serialisation for ChatAnthropic (#7300) 2023-07-06 21:57:12 +01:00
William FH
cb9ff6efb8 Add function call params to invocation params (#7240) 2023-07-06 13:56:07 -07:00
William FH
1f4a51cb9c Add Agent Trajectory Interface (#7122) 2023-07-06 13:33:33 -07:00
Bagatur
a6b39afe0e rm side nav (#7297) 2023-07-06 15:19:29 -04:00
Bruno Bornsztein
1a4ca3eff9 handle missing finish_reason (#7296)
In some cases, the OpenAI response is missing the `finish_reason`
attribute. It seems to happen when using Ada or Babbage and
`stream=true`, but I can't always reproduce it. This change just
gracefully handles the missing key.
2023-07-06 15:13:51 -04:00
Leonid Ganeline
6ff9e9b34a updated huggingface_hub examples (#7292)
Added examples for models:
- Google `Flan`
- TII `Falcon`
- Salesforce `XGen`
2023-07-06 15:04:37 -04:00
Avinash Raj
09acbb8410 Modified PromptLayerChatOpenAI class to support function call (#6366)
Introduction of newest function calling feature doesn't work properly
with PromptLayerChatOpenAI model since on the `_generate` method,
functions argument are not even getting passed to the `ChatOpenAI` base
class which results in empty `ai_message.additional_kwargs`

Fixes  #6365
2023-07-06 13:16:04 -04:00
Dídac Sabatés
e0cb3ea90c Fix sql_database.ipynb link (#6525)
Looks like the
[SQLDatabaseChain](https://langchain.readthedocs.io/en/latest/modules/chains/examples/sqlite.html)
in the SQL Database Agent page was broken I've change it to the SQL
Chain page
2023-07-06 13:07:37 -04:00
Leonid Ganeline
4450791edd docs: tutorials update (#7230)
updated `tutorials.mdx`:
- added a link to new `Deeplearning AI` course on LangChain
- added links to other tutorial videos
- fixed format

@baskaryan, @hwchase17
2023-07-06 12:44:23 -04:00
Diego Machado
a7ae35fe4e Fix duplicated sentence in documentation's introduction (#6351)
Fix duplicated sentence in documentation's introduction
2023-07-06 12:12:18 -04:00
Bagatur
681f2678a3 add elasticknn to init (#7284) 2023-07-06 11:58:24 -04:00
hayao-k
c23e16c459 docs: Fixed typos in Amazon Kendra Retriever documentation (#7261)
## Description
Fixed to the official service name Amazon Kendra.

## Tag maintainer
@baskaryan
2023-07-06 11:56:52 -04:00
zhujiangwei
8c371e12eb refactor BedrockEmbeddings class (#7266)
#### Description
refactor BedrockEmbeddings class to clean code as below:

1. inline content type and accept
2. rewrite input_body as a dictionary literal
3. no need to declare embeddings variable, so remove it
2023-07-06 11:56:30 -04:00
Chui
c7cf11b8ab Remove whitespace in filename (#7264) 2023-07-06 11:55:42 -04:00
Jan Kubica
fed64ae060 Chroma: add vector search with scores (#6864)
- Description: Adding to Chroma integration the option to run a
similarity search by a vector with relevance scores. Fixing two minor
typos.
  
  - Issue: The "lambda_mult" typo is related to #4861 
  
  - Maintainer: @rlancemartin, @eyurtsev
2023-07-06 10:01:55 -04:00
William FH
576880abc5 Re-use Trajectory Evaluator (#7248)
Use the trajectory eval chain in the run evaluation implementation and
update the prepare inputs method to apply to both asynca nd sync
2023-07-06 07:00:24 -07:00
zhaoshengbo
e8f24164f0 Improve the alibaba cloud opensearch vector store documentation (#6964)
Based on user feedback, we have improved the Alibaba Cloud OpenSearch
vector store documentation.

Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
2023-07-06 09:47:49 -04:00
Eduard van Valkenburg
ae5aa496ee PowerBI updates (#7143)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Several updates for the PowerBI tools:

- Handle 0 records returned by requesting redo with different filtering
- Handle too large results by optionally tokenizing the result and
comparing against a max (change in signature, non-breaking)
- Implemented LLMChain with Chat for chat models for the tools. 
- Updates to the main prompt including tables
- Update to Tool prompt with TOPN function
- Split the tool prompt to allow the LLMChain with ChatPromptTemplate

Smaller fixes for stability.

For visibility: @hinthornw
2023-07-06 09:39:23 -04:00
emarco177
b9d6d4cd4c added template repo for CI/CD deployment on Google Cloud Run (#7218)
Replace this comment with:
- Description: added documentation for a template repo that helps
dockerizing and deploying a LangChain using a Cloud Build CI/CD pipeline
to Google Cloud build serverless
  - Issue: None,
  - Dependencies: None,
  - Tag maintainer: @baskaryan,
  - Twitter handle: EdenEmarco177

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.
2023-07-06 09:38:38 -04:00
Leonid Kuligin
8b19f6a0da Added retries for Vertex LLM (#7219)
#7217

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-06 09:38:01 -04:00
William FH
ec66d5188c Add Better Errors for Comparison Chain (#7033)
+ change to ABC - this lets us add things like the evaluation name for
loading
2023-07-06 06:37:04 -07:00
Stefano Lottini
e61cfb6e99 FLARE Example notebook: switch to named arg to pass pydantic validation (#7267)
Adding the name of the parameter to comply with latest requirements by
Pydantic usage for BaseModels.
2023-07-06 09:32:00 -04:00
Sasmitha Manathunga
0c7a5cb206 Fix inconsistent behavior of CharacterTextSplitter when changing keep_separator (#7263)
- Description:
- When `keep_separator` is `True` the `_split_text_with_regex()` method
in `text_splitter` uses regex to split, but when `keep_separator` is
`False` it uses `str.split()`. This causes problems when the separator
is a special regex character like `.` or `*`. This PR fixes that by
using `re.split()` in both cases.
- Issue: #7262 
- Tag maintainer: @baskaryan
2023-07-06 09:30:03 -04:00
os1ma
b151d4257a docs: Update documentation for Wikipedia tool to use WikipediaQueryRun (#7258)
**Description**
In the following page, "Wikipedia" tool is explained.

https://python.langchain.com/docs/modules/agents/tools/integrations/wikipedia

However, the WikipediaAPIWrapper being used is not a tool. This PR
updated the documentation to use a tool WikipediaQueryRun.

**Issue**
None

**Tag maintainer**
Agents / Tools / Toolkits: @hinthornw
2023-07-06 09:29:38 -04:00
Jeroen Van Goey
887bb12287 Use correct Language for html_splitter (#7274)
`html_splitter` was using `Language.MARKDOWN`.
2023-07-06 09:24:25 -04:00
Shantanu Nair
f773c21723 Update supabase match_docs ddl and notebook to use expected id type (#7257)
- Description: Switch supabase match function DDL to use expected uuid
type instead of bigint
- Issue: https://github.com/hwchase17/langchain/issues/6743,
https://github.com/hwchase17/langchain/issues/7179
  - Tag maintainer:  @rlancemartin, @eyurtsev
  - Twitter handle: https://twitter.com/ShantanuNair
2023-07-06 09:22:41 -04:00
Myeongseop Kim
0e878ccc2d Add HumanInputChatModel (#7256)
- Description: This is a chat model equivalent of HumanInputLLM. An
example notebook is also added.
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: N/A
2023-07-06 09:21:03 -04:00
Myeongseop Kim
57d8a3d1e8 Make tqdm for OpenAIEmbeddings optional (#7247)
- Description: I have added a `show_progress_bar` parameter (defaults.to
`False`) to the `OpenAIEmbeddings`. If the user sets `show_progress_bar`
to `True`, a progress bar will be displayed.
  - Issue: #7246
  - Dependencies: N/A
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: N/A
2023-07-05 23:36:01 -04:00
Harrison Chase
c36f852846 fix conversational retrieval docs (#7245) 2023-07-05 21:51:33 -04:00
Harrison Chase
035ad33a5b bump ver to 225 (#7244) 2023-07-05 21:22:18 -04:00
Shantanu Nair
cabd358c3a Add missing token_max in reduce.py acombine_docs (#7241)
Replace this comment with:
- Description: reduce.py reduce chain implementation's acombine_docs
call does not propagate token_max. Without this, the async call will end
up using 3000 tokens, the default, for the collapse chain.
  - Tag maintainer: @hwchase17 @agola11 @baskaryan 
  - Twitter handle: https://twitter.com/ShantanuNair

Related PR: https://github.com/hwchase17/langchain/pull/7201 and
https://github.com/hwchase17/langchain/pull/7204

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 21:02:45 -04:00
Harrison Chase
52b016920c Harrison/update anthropic (#7237)
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
2023-07-05 21:02:35 -04:00
Harrison Chase
695e7027e6 Harrison/parameter (#7081)
add parameter to use original question or not

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-05 20:51:25 -04:00
Yevgnen
930e319ca7 Add concurrency to GitbookLoader (#7069)
- Description: Fetch all pages concurrently.
- Dependencies: `scrape_all` -> `fetch_all` -> `_fetch_with_rate_limit`
-> `_fetch` (might be broken currently:
https://github.com/hwchase17/langchain/pull/6519)
  - Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 20:51:10 -04:00
Hashem Alsaket
6aa66fd2b0 Update Hugging Face Hub notebook (#7236)
Description: `flan-t5-xl` hangs, updated to `flan-t5-xxl`. Tested all
stabilityai LLMs- all hang so removed from tutorial. Temperature > 0 to
prevent unintended determinism.
Issue: #3275 
Tag maintainer: @baskaryan
2023-07-05 20:45:02 -04:00
Mykola Zomchak
8afc8e6f5d Fix web_base.py (#6519)
Fix for bug in SitemapLoader

`aiohttp` `get` does not accept `verify` argument, and currently throws
error, so SitemapLoader is not working

This PR fixes it by removing `verify` param for `get` function call

Fixes #6107

#### Who can review?

Tag maintainers/contributors who might be interested:

@eyurtsev

---------

Co-authored-by: techcenary <127699216+techcenary@users.noreply.github.com>
2023-07-05 16:53:57 -07:00
William FH
f891f7d69f Skip evaluation of unfinished runs (#7235)
Cut down on errors logged

Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
2023-07-05 16:35:20 -07:00
William FH
83cf01683e Add 'eval' tag (#7209)
Add an "eval" tag to traced evaluation runs

Most of this PR is actually
https://github.com/hwchase17/langchain/pull/7207 but I can't diff off
two separate PRs

---------

Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
2023-07-05 16:28:34 -07:00
William FH
607708a411 Add tags support for langchaintracer (#7207) 2023-07-05 16:19:04 -07:00
William FH
75aa408f10 Send evaluator logs to new session (#7206)
Also stop specifying "eval" mode since explicit project modes are
deprecated
2023-07-05 16:15:29 -07:00
Harrison Chase
0dc700eebf Harrison/scene xplain (#7228)
Co-authored-by: Kevin Pham <37129444+deoxykev@users.noreply.github.com>
2023-07-05 18:34:50 -04:00
Harrison Chase
d6541da161 remove arize nb (#7238)
was causing some issues with docs build
2023-07-05 18:34:20 -04:00
Mike Nitsenko
d669b9ece9 Document loader for Cube Semantic Layer (#6882)
### Description

This pull request introduces the "Cube Semantic Layer" document loader,
which demonstrates the retrieval of Cube's data model metadata in a
format suitable for passing to LLMs as embeddings. This enhancement aims
to provide contextual information and improve the understanding of data.

Twitter handle:
@the_cube_dev

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-05 15:18:12 -07:00
Tom
e533da8bf2 Adding Marqo to vectorstore ecosystem (#7068)
This PR brings in a vectorstore interface for
[Marqo](https://www.marqo.ai/).

The Marqo vectorstore exposes some of Marqo's functionality in addition
the the VectorStore base class. The Marqo vectorstore also makes the
embedding parameter optional because inference for embeddings is an
inherent part of Marqo.

Docs, notebook examples and integration tests included.

Related PR:
https://github.com/hwchase17/langchain/pull/2807

---------

Co-authored-by: Tom Hamer <tom@marqo.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 14:44:12 -07:00
Filip Haltmayer
836d2009cb Update milvus and zilliz docstring (#7216)
Description:

Updating the docstrings for Milvus and Zilliz so that they appear
correctly on https://integrations.langchain.com/vectorstores. No changes
done to code.

Maintainer: 

@baskaryan

Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
2023-07-05 17:03:51 -04:00
Matt Robinson
d65b1951bd docs: update docs strings for base unstructured loaders (#7222)
### Summary

Updates the docstrings for the unstructured base loaders so more useful
information appears on the integrations page. If these look good, will
add similar docstrings to the other loaders.

### Reviewers
  - @rlancemartin
  - @eyurtsev
  - @hwchase17
2023-07-05 17:02:26 -04:00
Mike Salvatore
265f05b10e Enable InMemoryDocstore to be constructed without providing a dict (#6976)
- Description: Allow `InMemoryDocstore` to be created without passing a
dict to the constructor; the constructor can create a dict at runtime if
one isn't provided.
- Tag maintainer: @dev2049
2023-07-05 16:56:31 -04:00
Harrison Chase
47e7d09dff fix arize nb (#7227) 2023-07-05 16:55:48 -04:00
Feras Almannaa
79b59a8e06 optimize pgvector add_texts (#7185)
- Description: At the moment, inserting new embeddings to pgvector is
querying all embeddings every time as the defined `embeddings`
relationship is using the default params, which sets `lazy="select"`.
This change drastically improves the performance and adds a few
additional cleanups:
* remove `collection.embeddings.append` as it was querying all
embeddings on insert, replace with `collection_id` param
* centralize storing logic in add_embeddings function to reduce
duplication
  * remove boilerplate

- Issue: No issue was opened.
- Dependencies: None.
- Tag maintainer: this is a vectorstore update, so I think
@rlancemartin, @eyurtsev
- Twitter handle: @falmannaa
2023-07-05 13:19:42 -07:00
Harrison Chase
6711854e30 Harrison/dataforseo (#7214)
Co-authored-by: Alexander <sune357@gmail.com>
2023-07-05 16:02:02 -04:00
Richy Wang
cab7d86f23 Implement delete interface of vector store on AnalyticDB (#7170)
Hi, there
  This pull request contains two commit:
**1. Implement delete interface with optional ids parameter on
AnalyticDB.**
**2. Allow customization of database connection behavior by exposing
engine_args parameter in interfaces.**
- This commit adds the `engine_args` parameter to the interfaces,
allowing users to customize the behavior of the database connection. The
`engine_args` parameter accepts a dictionary of additional arguments
that will be passed to the create_engine function. Users can now modify
various aspects of the database connection, such as connection pool size
and recycle time. This enhancement provides more flexibility and control
to users when interacting with the database through the exposed
interfaces.

This commit is related to VectorStores @rlancemartin @eyurtsev 

Thank you for your attention and consideration.
2023-07-05 13:01:00 -07:00
Mike Salvatore
3ae11b7582 Handle kwargs in FAISS.load_local() (#6987)
- Description: This allows parameters such as `relevance_score_fn` to be
passed to the `FAISS` constructor via the `load_local()` class method.
-  Tag maintainer: @rlancemartin @eyurtsev
2023-07-05 15:56:40 -04:00
Jamal
a2f191a322 Replace JIRA Arbitrary Code Execution vulnerability with finer grain API wrapper (#6992)
This fixes #4833 and the critical vulnerability
https://nvd.nist.gov/vuln/detail/CVE-2023-34540

Previously, the JIRA API Wrapper had a mode that simply pipelined user
input into an `exec()` function.
[The intended use of the 'other' mode is to cover any of Atlassian's API
that don't have an existing
interface](cc33bde74f/langchain/tools/jira/prompt.py (L24))

Fortunately all of the [Atlassian JIRA API methods are subfunctions of
their `Jira`
class](https://atlassian-python-api.readthedocs.io/jira.html), so this
implementation calls these subfunctions directly.

As well as passing a string representation of the function to call, the
implementation flexibly allows for optionally passing args and/or
keyword-args. These are given as part of the dictionary input. Example:
```
    {
        "function": "update_issue_field",   #function to execute
        "args": [                           #list of ordered args similar to other examples in this JiraAPIWrapper
            "key",
            {"summary": "New summary"}
        ],
        "kwargs": {}                        #dict of key value keyword-args pairs
    }
```

the above is equivalent to `self.jira.update_issue_field("key",
{"summary": "New summary"})`

Alternate query schema designs are welcome to make querying easier
without passing and evaluating arbitrary python code. I considered
parsing (without evaluating) input python code and extracting the
function, args, and kwargs from there and then pipelining them into the
callable function via `*f(args, **kwargs)` - but this seemed more
direct.

@vowelparrot @dev2049

---------

Co-authored-by: Jamal Rahman <jamal.rahman@builder.ai>
2023-07-05 15:56:01 -04:00
Hakan Tekgul
61938a02a1 Create arize_llm_observability.ipynb (#7000)
Adding documentation and notebook for Arize callback handler. 

  - @dev2049
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
2023-07-05 15:55:47 -04:00
Leonid Ganeline
ecee4d6e92 docs: update youtube videos and tutorials (#6515)
added tutorials.mdx; updated youtube.mdx

Rationale: the Tutorials section in the documentation is top-priority.
(for example, https://pytorch.org/docs/stable/index.html) Not every
project has resources to make tutorials. We have such a privilege.
Community experts created several tutorials on YouTube. But the tutorial
links are now hidden on the YouTube page and not easily discovered by
first-time visitors.

- Added new videos and tutorials that were created since the last
update.
- Made some reprioritization between videos on the base of the view
numbers.

#### Who can review?

  - @hwchase17
    - @dev2049
2023-07-05 12:50:31 -07:00
Santiago Delgado
fa55c5a16b Fixed Office365 tool __init__.py files, tests, and get_tools() function (#7046)
## Description
Added Office365 tool modules to `__init__.py` files
## Issue
As described in Issue
https://github.com/hwchase17/langchain/issues/6936, the Office365
toolkit can't be loaded easily because it is not included in the
`__init__.py` files.
## Reviewer
@dev2049
2023-07-05 15:46:21 -04:00
wewebber-merlin
8a7c95e555 Retryable exception for empty OpenAI embedding. (#7070)
Description:

The OpenAI "embeddings" API intermittently falls into a failure state
where an embedding is returned as [ Nan ], rather than the expected 1536
floats. This patch checks for that state (specifically, for an embedding
of length 1) and if it occurs, throws an ApiError, which will cause the
chunk to be retried.

Issue:

I have been unable to find an official langchain issue for this problem,
but it is discussed (by another user) at
https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings

Maintainer: @dev2049

Testing: 

Since this is an intermittent OpenAI issue, I have not provided a unit
or integration test. The provided code has, though, been run
successfully over several million tokens.

---------

Co-authored-by: William Webber <william@williamwebber.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 15:23:45 -04:00
Nuno Campos
e4459e423b Mark some output parsers as serializable (cross-checked w/ JS) (#7083)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-05 14:53:56 -04:00
Ankush Gola
4c1c05c2c7 support adding custom metadata to runs (#7120)
- [x] wire up tools
- [x] wire up retrievers
- [x] add integration test

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-05 11:11:38 -07:00
Josh Reini
30d8d1d3d0 add trulens integration (#7096)
Description: Add TruLens integration.

Twitter: @trulensml

For review:
  - Tracing: @agola11
  - Tools: @hinthornw
2023-07-05 14:04:55 -04:00
Hyoseung Kim
9abf1847f4 Fix steamship import error (#7133)
Description: Fix steamship import error

When running multi_modal_output_agent:
field "steamship" not yet prepared so type is still a ForwardRef, you
might need to call SteamshipImageGenerationTool.update_forward_refs().

Tag maintainer: @hinthornw

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 14:04:38 -04:00
Mohammad Mohtashim
7d92e9407b Jinja2 validation changed to issue warnings rather than issuing exceptions. (#7161)
- Description: If their are missing or extra variables when validating
Jinja 2 template then a warning is issued rather than raising an
exception. This allows for better flexibility for the developer as
described in #7044. Also changed the relevant test so pytest is checking
for raised warnings rather than exceptions.
  - Issue: #7044 
  - Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 14:04:29 -04:00
whying
e288410e72 fix: Chroma filter symbols not supporting LIKE and CONTAIN (#7169)
Fixing issue with SelfQueryRetriever due to unsupported LIKE and CONTAIN
comparators in Chroma's WHERE filter statements. This pull request
introduces a redefined set of comparators in Chroma to address the
problem and make it compatible with SelfQueryRetriever. For information
on the comparators supported by Chroma's filter, please refer to
https://docs.trychroma.com/usage-guide#using-where-filters.
<img width="495" alt="image"
src="https://github.com/hwchase17/langchain/assets/22267652/34789191-0293-4f63-9bdf-ad1e1f2567c4">

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 14:04:18 -04:00
Nuno Campos
26409b01bd Remove extra base model (#7213)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-05 14:02:27 -04:00
Samhita Alla
6f358bb04a make textstat optional in the flyte callback handler (#7186)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

This PR makes the `textstat` library optional in the Flyte callback
handler.

@hinthornw, would you mind reviewing this PR since you merged the flyte
callback handler code previously?

---------

Signed-off-by: Samhita Alla <aallasamhita@gmail.com>
2023-07-05 13:15:56 -04:00
Conrad Fernandez
6eff0fa2ca Added documentation for add_texts function for Pinecone integration (#7134)
- Description: added some documentation to the Pinecone vector store
docs page.
- Issue: #7126 
- Dependencies: None
- Tag maintainer: @baskaryan 

I can add more documentation on the Pinecone integration functions as I
am going to go in great depth into this area. Just wanted to check with
the maintainers is if this is all good.
2023-07-05 13:11:37 -04:00
Nuno Campos
81e5b1ad36 Add serialized object to retriever start callback (#7074)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-05 18:04:43 +01:00
Efkan S. Goktepe
baf48d3583 Replace stop clause with shorter, pythonic alternative (#7159)
Replace this comment with:
- Description: Replace `if var is not None:` with `if var:`, a concise
and pythonic alternative
  - Issue: N/A
  - Dependencies: None
  - Tag maintainer: Unsure
  - Twitter handle: N/A

Signed-off-by: serhatgktp <efkan@ibm.com>
2023-07-05 13:03:22 -04:00
Shuqian
8045870a0f fix: prevent adding an empty string to the result queue in AsyncIteratorCallbackHandler (#7180)
- Description: Modify the code for
AsyncIteratorCallbackHandler.on_llm_new_token to ensure that it does not
add an empty string to the result queue.
- Tag maintainer: @agola11

When using AsyncIteratorCallbackHandler with OpenAIFunctionsAgent, if
the LLM response function_call instead of direct answer, the
AsyncIteratorCallbackHandler.on_llm_new_token would be called with empty
string.
see also: langchain.chat_models.openai.ChatOpenAI._generate

An alternative solution is to modify the
langchain.chat_models.openai.ChatOpenAI._generate and do not call the
run_manager.on_llm_new_token when the token is empty string.
I am not sure which solution is better.

@hwchase17

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 13:00:35 -04:00
felixocker
db98c44f8f Support for SPARQL (#7165)
# [SPARQL](https://www.w3.org/TR/rdf-sparql-query/) for
[LangChain](https://github.com/hwchase17/langchain)

## Description
LangChain support for knowledge graphs relying on W3C standards using
RDFlib: SPARQL/ RDF(S)/ OWL with special focus on RDF \
* Works with local files, files from the web, and SPARQL endpoints
* Supports both SELECT and UPDATE queries
* Includes both a Jupyter notebook with an example and integration tests

## Contribution compared to related PRs and discussions
* [Wikibase agent](https://github.com/hwchase17/langchain/pull/2690) -
uses SPARQL, but specifically for wikibase querying
* [Cypher qa](https://github.com/hwchase17/langchain/pull/5078) - graph
DB question answering for Neo4J via Cypher
* [PR 6050](https://github.com/hwchase17/langchain/pull/6050) - tries
something similar, but does not cover UPDATE queries and supports only
RDF
* Discussions on [w3c mailing list](mailto:semantic-web@w3.org) related
to the combination of LLMs (specifically ChatGPT) and knowledge graphs

## Dependencies
* [RDFlib](https://github.com/RDFLib/rdflib)

## Tag maintainer
Graph database related to memory -> @hwchase17
2023-07-05 13:00:16 -04:00
Paul Cook
7cd0936b1c Update in_memory.py to fix "TypeError: keywords must be strings" (#7202)
Update in_memory.py to fix "TypeError: keywords must be strings" on
certain dictionaries

Simple fix to prevent a "TypeError: keywords must be strings" error I
encountered in my use case.

@baskaryan 

Thanks! Hope useful!

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 12:48:38 -04:00
Prakul Agarwal
38f853dfa3 Fixed typos in MongoDB Atlas Vector Search documentation (#7174)
Fix for typos in MongoDB Atlas Vector Search documentation
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-05 12:48:00 -04:00
Shuqian
ee1d488c03 fix: rename the invalid function name of GoogleSerperResults Tool for OpenAIFunctionCall (#7176)
- Description: rename the invalid function name of GoogleSerperResults
Tool for OpenAIFunctionCall
- Tag maintainer: @hinthornw

When I use the GoogleSerperResults in OpenAIFunctionCall agent, the
following error occurs:
```shell
openai.error.InvalidRequestError: 'Google Serrper Results JSON' does not match '^[a-zA-Z0-9_-]{1,64}$' - 'functions.0.name'
```

So I rename the GoogleSerperResults's property "name" from "Google
Serrper Results JSON" to "google_serrper_results_json" just like
GoogleSerperRun's name: "google_serper", and it works.
I guess this should be reasonable.
2023-07-05 12:47:50 -04:00
Nir Gazit
6666e422c6 fix: missing parameter in POST/PUT/PATCH HTTP requests (#7194)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
@hinthornw

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 12:47:30 -04:00
Harrison Chase
8410c6a747 add token max parameter (#7204) 2023-07-05 12:09:25 -04:00
Harrison Chase
7b585c7585 add tqdm to embeddings (#7205)
for longer running embeddings, can be helpful to visualize
2023-07-05 12:04:22 -04:00
Raouf Chebri
6fc24743b7 Add pg_hnsw vectorstore integration (#6893)
Hi @rlancemartin, @eyurtsev!

- Description: Adding HNSW extension support for Postgres. Similar to
pgvector vectorstore, with 3 differences
      1. it uses HNSW extension for exact and ANN searches, 
      2. Vectors are of type array of real
      3. Only supports L2
      
- Dependencies: [HNSW](https://github.com/knizhnik/hnsw) extension for
Postgres
  
  - Example:
  ```python
    db = HNSWVectoreStore.from_documents(
      embedding=embeddings,
      documents=docs,
      collection_name=collection_name,
      connection_string=connection_string
  )
  
  query = "What did the president say about Ketanji Brown Jackson"
docs_with_score: List[Tuple[Document, float]] =
db.similarity_search_with_score(query)
  ```

The example notebook is in the PR too.
2023-07-05 08:10:10 -07:00
Harrison Chase
79fb90aafd bump version to 224 (#7203) 2023-07-05 10:41:26 -04:00
Harrison Chase
1415966d64 propogate token max (#7201) 2023-07-05 10:25:48 -04:00
Harrison Chase
a94c4cca68 more formatting (#7200) 2023-07-05 10:03:02 -04:00
Harrison Chase
e18e838aae fix weird bold issues in docs (#7198) 2023-07-05 09:52:49 -04:00
Baichuan Sun
e27ba9d92b fix AmazonAPIGateway _identifying_params (#7167)
- correct `endpoint_name` to `api_url`
- add `headers`

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-04 23:14:51 -04:00
Harrison Chase
39e685b80f Harrison/conv retrieval docs (#7080)
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-04 20:17:43 -04:00
Shuqian
bf9e4ef35f feat: implement python repl tool arun (#7125)
Description: implement python repl tool arun
Tag maintainer: @agola11
2023-07-04 20:15:49 -04:00
Alex Iribarren
9cfb311ecb Remove duplicate lines (#7138)
I believe these two lines are unnecessary, the variable `function_call`
is already defined.
2023-07-04 20:13:27 -04:00
volodymyr-memsql
405865c91a feat(SingleStoreVectorStore): change connection attributes in the database connection (#7142)
Minor change to the SingleStoreVectorStore:

Updated connection attributes names according to the SingleStoreDB
recommendations

@rlancemartin, @eyurtsev

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2023-07-04 20:12:56 -04:00
Hashem Alsaket
c9f696f063 LlamaCppEmbeddings not under langchain.llms (#7164)
Description: doc string suggests `from langchain.llms import
LlamaCppEmbeddings` under `LlamaCpp()` class example but
`LlamaCppEmbeddings` is not in `langchain.llms`
Issue: None open
Tag maintainer: @baskaryan
2023-07-04 19:32:40 -04:00
Harrison Chase
e8531769f7 improve docstring of doc formatting (#7162)
so it shows up nice
2023-07-04 19:31:29 -04:00
Max Cembalest
2984803597 cleaned Arthur tracking demo notebook (#7147)
Cleaned title and reduced clutter for integration demo notebook for the
Arthur callback handler
2023-07-04 18:15:25 -04:00
Deepankar Mahapatro
da69a6771f docs: update Jina ecosystem (#7149)
Documentation update for [Jina
ecosystem](https://python.langchain.com/docs/ecosystem/integrations/jina)
and `langchain-serve` in the deployments section to latest features.

@hwchase17 

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-04 18:07:50 -04:00
Harrison Chase
b39017dc11 add docstring for in memory class (#7160) 2023-07-04 14:59:17 -07:00
Bagatur
898087d02c bump 223 (#7155) 2023-07-04 14:13:41 -06:00
Harrison Chase
0ad984fa27 Docs combine document chain (#6994)
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-04 12:51:04 -06:00
Simon Cheung
81eebc4070 Add HugeGraphQAChain to support gremlin generating chain (#7132)
[Apache HugeGraph](https://github.com/apache/incubator-hugegraph) is a
convenient, efficient, and adaptable graph database, compatible with the
Apache TinkerPop3 framework and the Gremlin query language.

In this PR, the HugeGraph and HugeGraphQAChain provide the same
functionality as the existing integration with Neo4j and enables query
generation and question answering over HugeGraph database. The
difference is that the graph query language supported by HugeGraph is
not cypher but another very popular graph query language
[Gremlin](https://tinkerpop.apache.org/gremlin.html).

A notebook example and a simple test case have also been added.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-04 10:21:21 -06:00
Saverio Proto
5585607654 Improve Bing Search example (#7128)
# Description

Improve Bing Search example:
2023-07-04 09:58:03 -06:00
Lance Martin
265c285057 Fix GPT4All bug w/ "n_ctx" param (#7093)
Running `GPT4All` per the
[docs](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/gpt4all),
I see:

```
$ from langchain.llms import GPT4All
$ model = GPT4All(model=local_path)
$ model("The capital of France is ", max_tokens=10)
TypeError: generate() got an unexpected keyword argument 'n_ctx'
```

It appears `n_ctx` is [no longer a supported
param](https://docs.gpt4all.io/gpt4all_python.html#gpt4all.gpt4all.GPT4All.generate)
in the GPT4All API from https://github.com/nomic-ai/gpt4all/pull/1090.

It now uses `max_tokens`, so I set this.

And I also set other defaults used in GPT4All client
[here](https://github.com/nomic-ai/gpt4all/blob/main/gpt4all-bindings/python/gpt4all/gpt4all.py).

Confirm it now works:
```
$ from langchain.llms import GPT4All
$ model = GPT4All(model=local_path)
$ model("The capital of France is ", max_tokens=10)
< Model logging > 
"....Paris."
```

---------

Co-authored-by: R. Lance Martin <rlm@Rs-MacBook-Pro.local>
2023-07-04 08:53:52 -07:00
Stefano Lottini
6631fd5168 Align cassio versions between examples for Cassandra integration (#7099)
Just reducing confusion by requiring cassio>=0.0.7 consistently across
examples.
2023-07-04 04:21:48 -06:00
Nuno Campos
696886f397 Use serialized format for messages in tracer (#6827)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-04 10:19:08 +01:00
Ruixi Fan
0b69a7e9ab [Document fix] Fix an expired link qa_benchmarking_pg.ipynb (#7110)
## Change description

- Description: Fix an expired link that points to the readthedocs site.
  - Dependencies: No
2023-07-03 19:03:16 -06:00
Lance Martin
9ca4c54428 Minor updates to notebook for MultiQueryRetriever (#7102)
* Add an easier-to-run example.
* Add logging per https://github.com/hwchase17/langchain/pull/6891.
* Updated params per https://github.com/hwchase17/langchain/pull/5962.

---------

Co-authored-by: R. Lance Martin <rlm@Rs-MacBook-Pro.local>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-03 17:32:50 -07:00
William FH
dfa48dc3b5 Update sdk version (#7109) 2023-07-03 16:42:08 -07:00
William FH
04001ff077 Log errors (#7105)
Re-add change that was inadvertently undone in #6995
2023-07-03 14:47:32 -07:00
William FH
3f9744c9f4 Accept no 'reasoning' response in qa evaluator (#7107)
Re add since #6995 inadvertently undid #7031
2023-07-03 14:47:17 -07:00
Bagatur
fd3f8efec7 fix retriever signatures (#7097) 2023-07-03 14:21:36 -06:00
Nicolas
490fcf9d98 docs: New experimental UI for Mendable Search (#6558)
This PR introduces a new Mendable UI tailored to a better search
experience.

We're more closely integrating our traditional search with our AI
generation.
With this change, you won't have to tab back and forth between the
mendable bot and the keyword search. Both types of search are handled in
the same bar. This should make the docs easier to navigate. while still
letting users get code generations or AI-summarized answers if they so
wish. Also, it should reduce the cost.

Would love to hear your feedback :)

Cc: @dev2049 @hwchase17
2023-07-03 20:52:13 +01:00
Nuno Campos
c8f8b1b327 Add events to tracer runs (#7090)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-03 12:43:43 -07:00
genewoo
e49abd1277 Add Metal support to llama.cpp doc (#7092)
- Description: Add Metal support to llama.cpp doc
  - Issue: #7091 
  - Dependencies: N/A
  - Twitter handle: gene_wu
2023-07-03 13:35:39 -06:00
Bagatur
fad2c7e5e0 update pr tmpl (#7095) 2023-07-03 13:34:03 -06:00
Nuno Campos
98dbea6310 Add tags to all callback handler methods (#7073)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-03 10:39:46 -07:00
Mike Salvatore
d0c7f7c317 Remove None default value for FAISS relevance_score_fn (#7085)
## Description

The type hint for `FAISS.__init__()`'s `relevance_score_fn` parameter
allowed the parameter to be set to `None`. However, a default function
is provided by the constructor. This led to an unnecessary check in the
code, as well as a test to verify this check.

**ASSUMPTION**: There's no reason to ever set `relevance_score_fn` to
`None`.

This PR changes the type hint and removes the unnecessary code.
2023-07-03 10:11:49 -06:00
2674 changed files with 138344 additions and 42550 deletions

View File

@@ -15,7 +15,11 @@ You may use the button above, or follow these steps to open this repo in a Codes
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<yourusername>/<yourclonedreponame>
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
@@ -25,7 +29,7 @@ You can also follow these steps to open this repo in a container using the VS Co
2. Open a locally cloned copy of the code:
- Clone this repository to your local filesystem.
- Fork and Clone this repository to your local filesystem.
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
- Select the cloned copy of this folder, wait for the container to start, and try things out!

View File

@@ -2,7 +2,7 @@ version: '3'
services:
langchain:
build:
dockerfile: dev.Dockerfile
dockerfile: libs/langchain/dev.Dockerfile
context: ..
volumes:
# Update this to wherever you want VS Code to mount the folder of your project

View File

@@ -69,6 +69,14 @@ This project uses [Poetry](https://python-poetry.org/) as a dependency manager.
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
There are two separate projects in this repository:
- `langchain`: core langchain code, abstractions, and use cases
- `langchain.experimental`: more experimental code
Each of these has their OWN development environment.
In order to run any of the commands below, please move into their respective directories.
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
To install requirements:
```bash
@@ -95,6 +103,14 @@ To run formatting for this project:
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
make format_diff
```
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
@@ -105,8 +121,42 @@ To run linting for this project:
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
make lint_diff
```
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
To check spelling for this project:
```bash
make spell_check
```
To fix spelling in place:
```bash
make spell_fix
```
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
```python
[tool.codespell]
...
# Add here:
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
```
### Coverage
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
@@ -206,32 +256,43 @@ When you run `poetry install`, the `langchain` package is installed as editable
## Documentation
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
This covers how to get started contributing to documentation.
### Contribute Documentation
Docs are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
The docs directory contains Documentation and API Reference.
Documentation is built using [Docusaurus 2](https://docusaurus.io/).
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
make api_docs_clean
```
Next, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
```
Finally, you can build the documentation as outlined below:
Next, you can build the documentation as outlined below:
```bash
make docs_build
make api_docs_build
```
Finally, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
make api_docs_linkcheck
```
## 🏭 Release Process

View File

@@ -7,16 +7,18 @@ Replace this comment with:
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11

View File

@@ -52,11 +52,13 @@ runs:
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check

View File

@@ -1,15 +1,21 @@
name: lint
on:
push:
branches: [master]
pull_request:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.4.2"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
@@ -31,6 +37,10 @@ jobs:
- name: Install dependencies
run: |
poetry install
- name: Install langchain editable
if: ${{ inputs.working-directory != 'langchain' }}
run: |
pip install -e ../langchain
- name: Analysing the code with our lint
run: |
make lint

View File

@@ -1,13 +1,12 @@
name: release
on:
pull_request:
types:
- closed
branches:
- master
paths:
- 'pyproject.toml'
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.4.2"
@@ -18,6 +17,9 @@ jobs:
${{ github.event.pull_request.merged == true }}
&& ${{ contains(github.event.pull_request.labels.*.name, 'release') }}
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v3
- name: Install poetry
@@ -35,6 +37,7 @@ jobs:
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
if: ${{ inputs.working-directory == 'libs/langchain' }}
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,16 +1,25 @@
name: test
on:
push:
branches: [master]
pull_request:
workflow_dispatch:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
test_type:
type: string
description: "Test types to run"
default: '["core", "extended"]'
env:
POETRY_VERSION: "1.4.2"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
@@ -19,9 +28,7 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
test_type:
- "core"
- "extended"
test_type: ${{ fromJSON(inputs.test_type) }}
name: Python ${{ matrix.python-version }} ${{ matrix.test_type }}
steps:
- uses: actions/checkout@v3
@@ -29,6 +36,7 @@ jobs:
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
working-directory: ${{ inputs.working-directory }}
poetry-version: "1.4.2"
cache-key: ${{ matrix.test_type }}
install-command: |
@@ -39,6 +47,10 @@ jobs:
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
fi
- name: Install langchain editable
if: ${{ inputs.working-directory != 'langchain' }}
run: |
pip install -e ../langchain
- name: Run ${{matrix.test_type}} tests
run: |
if [ "${{ matrix.test_type }}" == "core" ]; then

24
.github/workflows/codespell.yml vendored Normal file
View File

@@ -0,0 +1,24 @@
---
name: Codespell
on:
push:
branches: [master]
pull_request:
branches: [master]
permissions:
contents: read
jobs:
codespell:
name: Check for spelling errors
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Codespell
uses: codespell-project/actions-codespell@v2
with:
skip: guide_imports.json

27
.github/workflows/langchain_ci.yml vendored Normal file
View File

@@ -0,0 +1,27 @@
---
name: libs/langchain CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/langchain/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/langchain
secrets: inherit

View File

@@ -0,0 +1,29 @@
---
name: libs/langchain-experimental CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_experimental_ci.yml'
- 'libs/langchain/**'
- 'libs/experimental/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/experimental
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/experimental
test_type: '["core"]'
secrets: inherit

View File

@@ -0,0 +1,20 @@
---
name: libs/langchain-experimental Release
on:
pull_request:
types:
- closed
branches:
- master
paths:
- 'libs/experimental/pyproject.toml'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/experimental
secrets: inherit

20
.github/workflows/langchain_release.yml vendored Normal file
View File

@@ -0,0 +1,20 @@
---
name: libs/langchain Release
on:
pull_request:
types:
- closed
branches:
- master
paths:
- 'libs/langchain/pyproject.toml'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/langchain
secrets: inherit

6
.gitignore vendored
View File

@@ -161,7 +161,13 @@ docs/node_modules/
docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/api_reference.rst
docs/api_reference/experimental_api_reference.rst
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/
!docs/api_reference/templates/
!docs/api_reference/themes/
docs/docs_skeleton/build
docs/docs_skeleton/node_modules
docs/docs_skeleton/yarn.lock

View File

@@ -24,6 +24,6 @@ sphinx:
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: docs/requirements.txt
- requirements: docs/api_reference/requirements.txt
- method: pip
path: .

61
MIGRATE.md Normal file
View File

@@ -0,0 +1,61 @@
# Migrating to `langchain_experimental`
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
This guide covers how to migrate.
## Installation
Previously:
`pip install -U langchain`
Now (only if you want to access things in experimental):
`pip install -U langchain langchain_experimental`
## Things in `langchain.experimental`
Previously:
`from langchain.experimental import ...`
Now:
`from langchain_experimental import ...`
## PALChain
Previously:
`from langchain.chains import PALChain`
Now:
`from langchain_experimental.pal_chain import PALChain`
## SQLDatabaseChain
Previously:
`from langchain.chains import SQLDatabaseChain`
Now:
`from langchain_experimental.sql import SQLDatabaseChain`
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out [`create_sql_query_chain`](https://github.com/langchain-ai/langchain/blob/master/docs/extras/use_cases/tabular/sql_query.ipynb)
`from langchain.chains import create_sql_query_chain`
## `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.
If you want to load json/yaml files, no change is needed.
Previously:
`from langchain.prompts import load_prompt`
Now:
`from langchain_experimental.prompts import load_prompt`

View File

@@ -1,73 +1,54 @@
.PHONY: all clean format lint test tests test_watch integration_tests docker_tests help extended_tests
.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck
# Default target executed when no arguments are given to make.
all: help
coverage:
poetry run pytest --cov \
--cov-config=.coveragerc \
--cov-report xml \
--cov-report term-missing:skip-covered
clean: docs_clean
######################
# DOCUMENTATION
######################
clean: docs_clean api_docs_clean
docs_compile:
poetry run nbdoc_build --srcdir $(srcdir)
docs_build:
cd docs && poetry run make html
docs/.local_build.sh
docs_clean:
cd docs && poetry run make clean
rm -r docs/_dist
docs_linkcheck:
poetry run linkchecker docs/_build/html/index.html
poetry run linkchecker docs/_dist/docs_skeleton/ --ignore-url node_modules
format:
poetry run black .
poetry run ruff --select I --fix .
api_docs_build:
poetry run python docs/api_reference/create_api_rst.py
cd docs/api_reference && poetry run make html
PYTHON_FILES=.
lint: PYTHON_FILES=.
lint_diff: PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$')
api_docs_clean:
rm -f docs/api_reference/api_reference.rst
cd docs/api_reference && poetry run make clean
lint lint_diff:
poetry run mypy $(PYTHON_FILES)
poetry run black $(PYTHON_FILES) --check
poetry run ruff .
api_docs_linkcheck:
poetry run linkchecker docs/api_reference/_build/html/index.html
TEST_FILE ?= tests/unit_tests/
spell_check:
poetry run codespell --toml pyproject.toml
test:
poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE)
spell_fix:
poetry run codespell --toml pyproject.toml -w
tests:
poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE)
extended_tests:
poetry run pytest --disable-socket --allow-unix-socket --only-extended tests/unit_tests
test_watch:
poetry run ptw --now . -- tests/unit_tests
integration_tests:
poetry run pytest tests/integration_tests
docker_tests:
docker build -t my-langchain-image:test .
docker run --rm my-langchain-image:test
######################
# HELP
######################
help:
@echo '----'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'clean - run docs_clean and api_docs_clean'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'test - run unit tests'
@echo 'tests - run unit tests'
@echo 'test TEST_FILE=<test_file> - run all tests in file'
@echo 'extended_tests - run only extended unit tests'
@echo 'test_watch - run unit tests in watch mode'
@echo 'integration_tests - run integration tests'
@echo 'docker_tests - run unit tests in docker'
@echo 'api_docs_build - build the API Reference documentation'
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
@echo 'spell_check - run codespell on the project'
@echo 'spell_fix - run codespell on the project and fix the errors'

View File

@@ -3,8 +3,8 @@
⚡ Building applications with LLMs through composability ⚡
[![Release Notes](https://img.shields.io/github/release/hwchase17/langchain)](https://github.com/hwchase17/langchain/releases)
[![lint](https://github.com/hwchase17/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/lint.yml)
[![test](https://github.com/hwchase17/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/test.yml)
[![CI](https://github.com/hwchase17/langchain/actions/workflows/langchain_ci.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/langchain_ci.yml)
[![Experimental CI](https://github.com/hwchase17/langchain/actions/workflows/langchain_experimental_ci.yml/badge.svg)](https://github.com/hwchase17/langchain/actions/workflows/langchain_experimental_ci.yml)
[![Downloads](https://static.pepy.tech/badge/langchain/month)](https://pepy.tech/project/langchain)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
@@ -12,20 +12,28 @@
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/hwchase17/langchain)
[![GitHub star chart](https://img.shields.io/github/stars/hwchase17/langchain?style=social)](https://star-history.com/#hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/hwchase17/langchain)](https://libraries.io/github/hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/hwchase17/langchain)](https://github.com/hwchase17/langchain/issues)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
Please fill out [this form](https://forms.gle/57d8AmXBYp8PP8tZA) and we'll set up a dedicated support Slack channel.
**Production Support:** As you move your LangChains into production, we'd love to offer more hands-on support.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to share more about what you're building, and our team will get in touch.
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/hwchase17/langchain/discussions/8043).
Read how to migrate your code [here](MIGRATE.md).
## Quick Install
`pip install langchain`
or
`conda install langchain -c conda-forge`
`pip install langsmith && conda install langchain -c conda-forge`
## 🤔 What is this?

View File

@@ -1,12 +1,18 @@
mkdir _dist
#!/usr/bin/env bash
set -o errexit
set -o nounset
set -o pipefail
set -o xtrace
SCRIPT_DIR="$(cd "$(dirname "$0")"; pwd)"
cd "${SCRIPT_DIR}"
mkdir -p _dist/docs_skeleton
cp -r {docs_skeleton,snippets} _dist
mkdir -p _dist/docs_skeleton/static/api_reference
cd api_reference
poetry run make html
cp -r _build/* ../_dist/docs_skeleton/static/api_reference
cd ..
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
poetry run nbdoc_build
poetry run python generate_api_reference_links.py
yarn install
yarn start

File diff suppressed because it is too large Load Diff

View File

@@ -7,19 +7,67 @@
# -- Path setup --------------------------------------------------------------
import json
import os
import sys
from pathlib import Path
import toml
from docutils import nodes
from sphinx.util.docutils import SphinxDirective
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
import toml
_DIR = Path(__file__).parent.absolute()
sys.path.insert(0, os.path.abspath("."))
sys.path.insert(0, os.path.abspath("../../libs/langchain"))
sys.path.insert(0, os.path.abspath("../../libs/experimental"))
with open("../../pyproject.toml") as f:
with (_DIR.parents[1] / "libs" / "langchain" / "pyproject.toml").open("r") as f:
data = toml.load(f)
with (_DIR / "guide_imports.json").open("r") as f:
imported_classes = json.load(f)
class ExampleLinksDirective(SphinxDirective):
"""Directive to generate a list of links to examples.
We have a script that extracts links to API reference docs
from our notebook examples. This directive uses that information
to backlink to the examples from the API reference docs."""
has_content = False
required_arguments = 1
def run(self):
"""Run the directive.
Called any time :example_links:`ClassName` is used
in the template *.rst files."""
class_or_func_name = self.arguments[0]
links = imported_classes.get(class_or_func_name, {})
list_node = nodes.bullet_list()
for doc_name, link in links.items():
item_node = nodes.list_item()
para_node = nodes.paragraph()
link_node = nodes.reference()
link_node["refuri"] = link
link_node.append(nodes.Text(doc_name))
para_node.append(link_node)
item_node.append(para_node)
list_node.append(item_node)
if list_node.children:
title_node = nodes.title()
title_node.append(nodes.Text(f"Examples using {class_or_func_name}"))
return [title_node, list_node]
return [list_node]
def setup(app):
app.add_directive("example_links", ExampleLinksDirective)
# -- Project information -----------------------------------------------------
@@ -52,6 +100,9 @@ extensions = [
]
source_suffix = [".rst"]
# some autodoc pydantic options are repeated in the actual template.
# potentially user error, but there may be bugs in the sphinx extension
# with options not being passed through correctly (from either the location in the code)
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
autodoc_pydantic_config_members = False
@@ -64,13 +115,6 @@ autodoc_member_order = "groupwise"
autoclass_content = "both"
autodoc_typehints_format = "short"
autodoc_default_options = {
"members": True,
"show-inheritance": True,
"inherited-members": "BaseModel",
"undoc-members": True,
"special-members": "__call__",
}
# autodoc_typehints = "description"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["templates"]

View File

@@ -1,81 +1,257 @@
"""Script for auto-generating api_reference.rst"""
import glob
import re
"""Script for auto-generating api_reference.rst."""
import importlib
import inspect
import typing
from pathlib import Path
from typing import TypedDict, Sequence, List, Dict, Literal, Union
from enum import Enum
from pydantic import BaseModel
ROOT_DIR = Path(__file__).parents[2].absolute()
PKG_DIR = ROOT_DIR / "langchain"
WRITE_FILE = Path(__file__).parent / "api_reference.rst"
HERE = Path(__file__).parent
PKG_DIR = ROOT_DIR / "libs" / "langchain" / "langchain"
EXP_DIR = ROOT_DIR / "libs" / "experimental" / "langchain_experimental"
WRITE_FILE = HERE / "api_reference.rst"
EXP_WRITE_FILE = HERE / "experimental_api_reference.rst"
def load_members() -> dict:
members: dict = {}
for py in glob.glob(str(PKG_DIR) + "/**/*.py", recursive=True):
module = py[len(str(PKG_DIR)) + 1 :].replace(".py", "").replace("/", ".")
top_level = module.split(".")[0]
if top_level not in members:
members[top_level] = {"classes": [], "functions": []}
with open(py, "r") as f:
for line in f.readlines():
cls = re.findall(r"^class ([^_].*)\(", line)
members[top_level]["classes"].extend([module + "." + c for c in cls])
func = re.findall(r"^def ([^_].*)\(", line)
members[top_level]["functions"].extend([module + "." + f for f in func])
return members
ClassKind = Literal["TypedDict", "Regular", "Pydantic", "enum"]
def construct_doc(members: dict) -> str:
full_doc = """\
.. _api_reference:
class ClassInfo(TypedDict):
"""Information about a class."""
=============
API Reference
=============
name: str
"""The name of the class."""
qualified_name: str
"""The fully qualified name of the class."""
kind: ClassKind
"""The kind of the class."""
is_public: bool
"""Whether the class is public or not."""
class FunctionInfo(TypedDict):
"""Information about a function."""
name: str
"""The name of the function."""
qualified_name: str
"""The fully qualified name of the function."""
is_public: bool
"""Whether the function is public or not."""
class ModuleMembers(TypedDict):
"""A dictionary of module members."""
classes_: Sequence[ClassInfo]
functions: Sequence[FunctionInfo]
def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
"""Load all members of a module.
Args:
module_path: Path to the module.
namespace: the namespace of the module.
Returns:
list: A list of loaded module objects.
"""
classes_: List[ClassInfo] = []
functions: List[FunctionInfo] = []
module = importlib.import_module(module_path)
for name, type_ in inspect.getmembers(module):
if not hasattr(type_, "__module__"):
continue
if type_.__module__ != module_path:
continue
if inspect.isclass(type_):
if type(type_) == typing._TypedDictMeta: # type: ignore
kind: ClassKind = "TypedDict"
elif issubclass(type_, Enum):
kind = "enum"
elif issubclass(type_, BaseModel):
kind = "Pydantic"
else:
kind = "Regular"
classes_.append(
ClassInfo(
name=name,
qualified_name=f"{namespace}.{name}",
kind=kind,
is_public=not name.startswith("_"),
)
)
elif inspect.isfunction(type_):
functions.append(
FunctionInfo(
name=name,
qualified_name=f"{namespace}.{name}",
is_public=not name.startswith("_"),
)
)
else:
continue
return ModuleMembers(
classes_=classes_,
functions=functions,
)
def _merge_module_members(
module_members: Sequence[ModuleMembers],
) -> ModuleMembers:
"""Merge module members."""
classes_: List[ClassInfo] = []
functions: List[FunctionInfo] = []
for module in module_members:
classes_.extend(module["classes_"])
functions.extend(module["functions"])
return ModuleMembers(
classes_=classes_,
functions=functions,
)
def _load_package_modules(
package_directory: Union[str, Path]
) -> Dict[str, ModuleMembers]:
"""Recursively load modules of a package based on the file system.
Traversal based on the file system makes it easy to determine which
of the modules/packages are part of the package vs. 3rd party or built-in.
Parameters:
package_directory: Path to the package directory.
Returns:
list: A list of loaded module objects.
"""
package_path = (
Path(package_directory)
if isinstance(package_directory, str)
else package_directory
)
modules_by_namespace = {}
package_name = package_path.name
for file_path in package_path.rglob("*.py"):
if not file_path.name.startswith("__"):
relative_module_name = file_path.relative_to(package_path)
# Get the full namespace of the module
namespace = str(relative_module_name).replace(".py", "").replace("/", ".")
# Keep only the top level namespace
top_namespace = namespace.split(".")[0]
try:
module_members = _load_module_members(
f"{package_name}.{namespace}", namespace
)
# Merge module members if the namespace already exists
if top_namespace in modules_by_namespace:
existing_module_members = modules_by_namespace[top_namespace]
_module_members = _merge_module_members(
[existing_module_members, module_members]
)
else:
_module_members = module_members
modules_by_namespace[top_namespace] = _module_members
except ImportError as e:
print(f"Error: Unable to import module '{namespace}' with error: {e}")
return modules_by_namespace
def _construct_doc(pkg: str, members_by_namespace: Dict[str, ModuleMembers]) -> str:
"""Construct the contents of the reference.rst file for the given package.
Args:
pkg: The package name
members_by_namespace: The members of the package, dict organized by top level
module contains a list of classes and functions
inside of the top level namespace.
Returns:
The contents of the reference.rst file.
"""
full_doc = f"""\
=======================
``{pkg}`` API Reference
=======================
"""
for module, _members in sorted(members.items(), key=lambda kv: kv[0]):
classes = _members["classes"]
namespaces = sorted(members_by_namespace)
for module in namespaces:
_members = members_by_namespace[module]
classes = _members["classes_"]
functions = _members["functions"]
if not (classes or functions):
continue
module_title = module.replace("_", " ").title()
if module_title == "Llms":
module_title = "LLMs"
section = f":mod:`langchain.{module}`: {module_title}"
section = f":mod:`{pkg}.{module}`"
underline = "=" * (len(section) + 1)
full_doc += f"""\
{section}
{'=' * (len(section) + 1)}
{underline}
.. automodule:: langchain.{module}
.. automodule:: {pkg}.{module}
:no-members:
:no-inherited-members:
"""
if classes:
cstring = "\n ".join(sorted(classes))
full_doc += f"""\
Classes
--------------
.. currentmodule:: langchain
.. currentmodule:: {pkg}
.. autosummary::
:toctree: {module}
:template: class.rst
{cstring}
"""
for class_ in classes:
if not class_['is_public']:
continue
if class_["kind"] == "TypedDict":
template = "typeddict.rst"
elif class_["kind"] == "enum":
template = "enum.rst"
elif class_["kind"] == "Pydantic":
template = "pydantic.rst"
else:
template = "class.rst"
full_doc += f"""\
:template: {template}
{class_["qualified_name"]}
"""
if functions:
fstring = "\n ".join(sorted(functions))
_functions = [f["qualified_name"] for f in functions if f["is_public"]]
fstring = "\n ".join(sorted(_functions))
full_doc += f"""\
Functions
--------------
.. currentmodule:: langchain
.. currentmodule:: {pkg}
.. autosummary::
:toctree: {module}
:template: function.rst
{fstring}
@@ -84,10 +260,17 @@ Functions
def main() -> None:
members = load_members()
full_doc = construct_doc(members)
"""Generate the reference.rst file for each package."""
lc_members = _load_package_modules(PKG_DIR)
lc_doc = ".. _api_reference:\n\n" + _construct_doc("langchain", lc_members)
with open(WRITE_FILE, "w") as f:
f.write(full_doc)
f.write(lc_doc)
exp_members = _load_package_modules(EXP_DIR)
exp_doc = ".. _experimental_api_reference:\n\n" + _construct_doc(
"langchain_experimental", exp_members
)
with open(EXP_WRITE_FILE, "w") as f:
f.write(exp_doc)
if __name__ == "__main__":

File diff suppressed because one or more lines are too long

View File

@@ -1,3 +1,5 @@
-e libs/langchain
-e libs/experimental
autodoc_pydantic==1.8.0
myst_parser
nbsphinx==0.8.9
@@ -10,5 +12,3 @@ toml
myst_nb
sphinx_copybutton
pydata-sphinx-theme==0.13.1
nbdoc
urllib3<2

View File

@@ -5,17 +5,6 @@
.. autoclass:: {{ objname }}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
{% block attributes %}
{% if attributes %}
.. rubric:: {{ _('Attributes') }}
@@ -26,3 +15,22 @@
{%- endfor %}
{% endif %}
{% endblock %}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% for item in methods %}
.. automethod:: {{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,14 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% for item in attributes %}
.. autoattribute:: {{ item }}
{% endfor %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,8 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autofunction:: {{ objname }}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,22 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autopydantic_model:: {{ objname }}
:model-show-json: False
:model-show-config-summary: False
:model-show-validator-members: False
:model-show-field-summary: False
:field-signature-prefix: param
:members:
:undoc-members:
:inherited-members:
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
{% block attributes %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,14 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% for item in attributes %}
.. autoattribute:: {{ item }}
{% endfor %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -19,7 +19,7 @@
{% block htmltitle %}
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
{% endblock %}
<link rel="canonical" href="http://scikit-learn.org/stable/{{pagename}}.html" />
<link rel="canonical" href="https://api.python.langchain.com/en/latest/{{pagename}}.html" />
{% if favicon_url %}
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>

View File

@@ -6,33 +6,6 @@
{%- set top_container_cls = "sk-landing-container" %}
{%- endif %}
{% if theme_link_to_live_contributing_page|tobool %}
{# Link to development page for live builds #}
{%- set development_link = "https://scikit-learn.org/dev/developers/index.html" %}
{# Open on a new development page in new window/tab for live builds #}
{%- set development_attrs = 'target="_blank" rel="noopener noreferrer"' %}
{%- else %}
{%- set development_link = pathto('developers/index') %}
{%- set development_attrs = '' %}
{%- endif %}
{# title, link, link_attrs #}
{%- set drop_down_navigation = [
('Getting Started', pathto('getting_started'), ''),
('Tutorial', pathto('tutorial/index'), ''),
("What's new", pathto('whats_new/v' + version), ''),
('Glossary', pathto('glossary'), ''),
('Development', development_link, development_attrs),
('FAQ', pathto('faq'), ''),
('Support', pathto('support'), ''),
('Related packages', pathto('related_projects'), ''),
('Roadmap', pathto('roadmap'), ''),
('Governance', pathto('governance'), ''),
('About us', pathto('about'), ''),
('GitHub', 'https://github.com/scikit-learn/scikit-learn', ''),
('Other Versions and Download', 'https://scikit-learn.org/dev/versions.html', '')]
-%}
<nav id="navbar" class="{{ nav_bar_class }} navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid {{ top_container_cls }} px-0">
{%- if logo_url %}
@@ -61,6 +34,9 @@
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('api_reference') }}">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('experimental_api_reference') }}">Experimental</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://python.langchain.com/">Python Docs</a>
</li>

View File

@@ -745,6 +745,11 @@ span.descname {
background-color: transparent;
padding: 0;
font-family: monospace;
font-size: 1.2rem;
}
em.property {
font-weight: normal;
}
span.descclassname {

View File

Before

Width:  |  Height:  |  Size: 157 KiB

After

Width:  |  Height:  |  Size: 157 KiB

View File

@@ -51,7 +51,7 @@ Walkthroughs and best-practices for common end-to-end use cases, like:
Learn best practices for developing with LangChain.
### [Ecosystem](/docs/ecosystem/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/ecosystem/integrations/) and [dependent repos](/docs/ecosystem/dependents.html).
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/) and [dependent repos](/docs/ecosystem/dependents).
### [Additional resources](/docs/additional_resources/)
Our community is full of prolific developers, creative builders, and fantastic teachers. Check out [YouTube tutorials](/docs/additional_resources/youtube.html) for great tutorials from folks in the community, and [Gallery](https://github.com/kyrolabs/awesome-langchain) for a list of awesome LangChain projects, compiled by the folks at [KyroLabs](https://kyrolabs.com).

View File

@@ -22,28 +22,74 @@ import OpenAISetup from "@snippets/get_started/quickstart/openai_setup.mdx"
## Building an application
Now we can start building our language model application. LangChain provides many modules that can be used to build language model applications. Modules can be used as stand-alones in simple applications and they can be combined for more complex use cases.
Now we can start building our language model application. LangChain provides many modules that can be used to build language model applications.
Modules can be used as stand-alones in simple applications and they can be combined for more complex use cases.
The core building block of LangChain applications is the LLMChain.
This combines three things:
- LLM: The language model is the core reasoning engine here. In order to work with LangChain, you need to understand the different types of language models and how to work with them.
- Prompt Templates: This provides instructions to the language model. This controls what the language model outputs, so understanding how to construct prompts and different prompting strategies is crucial.
- Output Parsers: These translate the raw response from the LLM to a more workable format, making it easy to use the output downstream.
In this getting started guide we will cover those three components by themselves, and then cover the LLMChain which combines all of them.
Understanding these concepts will set you up well for being able to use and customize LangChain applications.
Most LangChain applications allow you to configure the LLM and/or the prompt used, so knowing how to take advantage of this will be a big enabler.
## LLMs
#### Get predictions from a language model
The basic building block of LangChain is the LLM, which takes in text and generates more text.
There are two types of language models, which in LangChain are called:
As an example, suppose we're building an application that generates a company name based on a company description. In order to do this, we need to initialize an OpenAI model wrapper. In this case, since we want the outputs to be MORE random, we'll initialize our model with a HIGH temperature.
- LLMs: this is a language model which takes a string as input and returns a string
- ChatModels: this is a language model which takes a list of messages as input and returns a message
import LLM from "@snippets/get_started/quickstart/llm.mdx"
The input/output for LLMs is simple and easy to understand - a string.
But what about ChatModels? The input there is a list of `ChatMessage`s, and the output is a single `ChatMessage`.
A `ChatMessage` has two required components:
<LLM/>
- `content`: This is the content of the message.
- `role`: This is the role of the entity from which the `ChatMessage` is coming from.
## Chat models
LangChain provides several objects to easily distinguish between different roles:
Chat models are a variation on language models. While chat models use language models under the hood, the interface they expose is a bit different: rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
- `HumanMessage`: A `ChatMessage` coming from a human/user.
- `AIMessage`: A `ChatMessage` coming from an AI/assistant.
- `SystemMessage`: A `ChatMessage` coming from the system.
- `FunctionMessage`: A `ChatMessage` coming from a function call.
You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are `AIMessage`, `HumanMessage`, `SystemMessage`, and `ChatMessage` -- `ChatMessage` takes in an arbitrary role parameter. Most of the time, you'll just be dealing with `HumanMessage`, `AIMessage`, and `SystemMessage`.
If none of those roles sound right, there is also a `ChatMessage` class where you can specify the role manually.
For more information on how to use these different messages most effectively, see our prompting guide.
import ChatModel from "@snippets/get_started/quickstart/chat_model.mdx"
LangChain exposes a standard interface for both, but it's useful to understand this difference in order to construct prompts for a given language model.
The standard interface that LangChain exposes has two methods:
- `predict`: Takes in a string, returns a string
- `predict_messages`: Takes in a list of messages, returns a message.
Let's see how to work with these different types of models and these different types of inputs.
First, let's import an LLM and a ChatModel.
import ImportLLMs from "@snippets/get_started/quickstart/import_llms.mdx"
<ImportLLMs/>
The `OpenAI` and `ChatOpenAI` objects are basically just configuration objects.
You can initialize them with parameters like `temperature` and others, and pass them around.
Next, let's use the `predict` method to run over a string input.
import InputString from "@snippets/get_started/quickstart/input_string.mdx"
<InputString/>
Finally, let's use the `predict_messages` method to run over a list of messages.
import InputMessages from "@snippets/get_started/quickstart/input_messages.mdx"
<InputMessages/>
For both these methods, you can also pass in parameters as key word arguments.
For example, you could pass in `temperature=0` to adjust the temperature that is used from what the object was configured with.
Whatever values are passed in during run time will always override what the object was configured with.
<ChatModel/>
## Prompt templates
@@ -51,108 +97,66 @@ Most LLM applications do not pass user input directly into an LLM. Usually they
In the previous example, the text we passed to the model contained instructions to generate a company name. For our application, it'd be great if the user only had to provide the description of a company/product, without having to worry about giving the model instructions.
PromptTemplates help with exactly this!
They bundle up all the logic for going from user input into a fully formatted prompt.
This can start off very simple - for example, a prompt to produce the above string would just be:
import PromptTemplateLLM from "@snippets/get_started/quickstart/prompt_templates_llms.mdx"
import PromptTemplateChatModel from "@snippets/get_started/quickstart/prompt_templates_chat_models.mdx"
<Tabs>
<TabItem value="llms" label="LLMs" default>
With PromptTemplates this is easy! In this case our template would be very simple:
<PromptTemplateLLM/>
</TabItem>
<TabItem value="chat_models" label="Chat models">
Similar to LLMs, you can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplate`s. You can use `ChatPromptTemplate`'s `format_messages` method to generate the formatted messages.
However, the advantages of using these over raw string formatting are several.
You can "partial" out variables - eg you can format only some of the variables at a time.
You can compose them together, easily combining different templates into a single prompt.
For explanations of these functionalities, see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
Because this is generating a list of messages, it is slightly more complex than the normal prompt template which is generating only a string. Please see the detailed guides on prompts to understand more options available to you here.
PromptTemplates can also be used to produce a list of messages.
In this case, the prompt not only contains information about the content, but also each message (its role, its position in the list, etc)
Here, what happens most often is a ChatPromptTemplate is a list of ChatMessageTemplates.
Each ChatMessageTemplate contains instructions for how to format that ChatMessage - its role, and then also its content.
Let's take a look at this below:
<PromptTemplateChatModel/>
</TabItem>
</Tabs>
## Chains
ChatPromptTemplates can also include other things besides ChatMessageTemplates - see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
Now that we've got a model and a prompt template, we'll want to combine the two. Chains give us a way to link (or chain) together multiple primitives, like models, prompts, and other chains.
## Output Parsers
import ChainLLM from "@snippets/get_started/quickstart/chains_llms.mdx"
import ChainChatModel from "@snippets/get_started/quickstart/chains_chat_models.mdx"
OutputParsers convert the raw output of an LLM into a format that can be used downstream.
There are few main type of OutputParsers, including:
<Tabs>
<TabItem value="llms" label="LLMs" default>
- Convert text from LLM -> structured information (eg JSON)
- Convert a ChatMessage into just a string
- Convert the extra information returned from a call besides the message (like OpenAI function invocation) into a string.
The simplest and most common type of chain is an LLMChain, which passes an input first to a PromptTemplate and then to an LLM. We can construct an LLM chain from our existing model and prompt template.
For full information on this, see the [section on output parsers](/docs/modules/model_io/output_parsers)
<ChainLLM/>
In this getting started guide, we will write our own output parser - one that converts a comma separated list into a list.
There we go, our first chain! Understanding how this simple chain works will set you up well for working with more complex chains.
import OutputParser from "@snippets/get_started/quickstart/output_parser.mdx"
</TabItem>
<TabItem value="chat_models" label="Chat models">
<OutputParser/>
The `LLMChain` can be used with chat models as well:
## LLMChain
<ChainChatModel/>
</TabItem>
</Tabs>
We can now combine all these into one chain.
This chain will take input variables, pass those to a prompt template to create a prompt, pass the prompt to an LLM, and then pass the output through an (optional) output parser.
This is a convenient way to bundle up a modular piece of logic.
Let's see it in action!
## Agents
import LLMChain from "@snippets/get_started/quickstart/llm_chain.mdx"
import AgentLLM from "@snippets/get_started/quickstart/agents_llms.mdx"
import AgentChatModel from "@snippets/get_started/quickstart/agents_chat_models.mdx"
<LLMChain/>
Our first chain ran a pre-determined sequence of steps. To handle complex workflows, we need to be able to dynamically choose actions based on inputs.
## Next Steps
Agents do just this: they use a language model to determine which actions to take and in what order. Agents are given access to tools, and they repeatedly choose a tool, run the tool, and observe the output until they come up with a final answer.
This is it!
We've now gone over how to create the core building block of LangChain applications - the LLMChains.
There is a lot more nuance in all these components (LLMs, prompts, output parsers) and a lot more different components to learn about as well.
To continue on your journey:
To load an agent, you need to choose a(n):
- LLM/Chat model: The language model powering the agent.
- Tool(s): A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. For a list of predefined tools and their specifications, see the [Tools documentation](/docs/modules/agents/tools/).
- Agent name: A string that references a supported agent class. An agent class is largely parameterized by the prompt the language model uses to determine which action to take. Because this notebook focuses on the simplest, highest level API, this only covers using the standard supported agents. If you want to implement a custom agent, see [here](/docs/modules/agents/how_to/custom_agent.html). For a list of supported agents and their specifications, see [here](/docs/modules/agents/agent_types/).
For this example, we'll be using SerpAPI to query a search engine.
You'll need to install the SerpAPI Python package:
```bash
pip install google-search-results
```
And set the `SERPAPI_API_KEY` environment variable.
<Tabs>
<TabItem value="llms" label="LLMs" default>
<AgentLLM/>
</TabItem>
<TabItem value="chat_models" label="Chat models">
Agents can also be used with chat models, you can initialize one using `AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION` as the agent type.
<AgentChatModel/>
</TabItem>
</Tabs>
## Memory
The chains and agents we've looked at so far have been stateless, but for many applications it's necessary to reference past interactions. This is clearly the case with a chatbot for example, where you want it to understand new messages in the context of past messages.
The Memory module gives you a way to maintain application state. The base Memory interface is simple: it lets you update state given the latest run inputs and outputs and it lets you modify (or contextualize) the next input using the stored state.
There are a number of built-in memory systems. The simplest of these is a buffer memory which just prepends the last few inputs/outputs to the current input - we will use this in the example below.
import MemoryLLM from "@snippets/get_started/quickstart/memory_llms.mdx"
import MemoryChatModel from "@snippets/get_started/quickstart/memory_chat_models.mdx"
<Tabs>
<TabItem value="llms" label="LLMs" default>
<MemoryLLM/>
</TabItem>
<TabItem value="chat_models" label="Chat models">
You can use Memory with chains and agents initialized with chat models. The main difference between this and Memory for LLMs is that rather than trying to condense all previous messages into a string, we can keep them as their own unique memory object.
<MemoryChatModel/>
</TabItem>
</Tabs>
- [Dive deeper](/docs/modules/model_io) into LLMs, prompts, and output parsers
- Learn the other [key components](/docs/modules)
- Check out our [helpful guides](/docs/guides) for detailed walkthroughs on particular topics
- Explore [end-to-end use cases](/docs/use_cases)

View File

@@ -0,0 +1,24 @@
---
sidebar_position: 3
---
# Comparison Evaluators
Comparison evaluators in LangChain help measure two different chain or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
These evaluators inherit from the `PairwiseStringEvaluator` class, providing a comparison interface for two strings - typically, the outputs from two different prompts or models, or two versions of the same model. In essence, a comparison evaluator performs an evaluation on a pair of strings and returns a dictionary containing the evaluation score and other relevant details.
To create a custom comparison evaluator, inherit from the `PairwiseStringEvaluator` class and overwrite the `_evaluate_string_pairs` method. If you require asynchronous evaluation, also overwrite the `_aevaluate_string_pairs` method.
Here's a summary of the key methods and properties of a comparison evaluator:
- `evaluate_string_pairs`: Evaluate the output string pairs. This function should be overwritten when creating custom evaluators.
- `aevaluate_string_pairs`: Asynchronously evaluate the output string pairs. This function should be overwritten for asynchronous evaluation.
- `requires_input`: This property indicates whether this evaluator requires an input string.
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
Detailed information about creating custom evaluators and the available built-in comparison evaluators are provided in the following sections.
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -0,0 +1,12 @@
---
sidebar_position: 5
---
# Examples
🚧 _Docs under construction_ 🚧
Below are some examples for inspecting and checking different chains.
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -0,0 +1,31 @@
---
sidebar_position: 6
---
import DocCardList from "@theme/DocCardList";
# Evaluation
Building applications with language models involves many moving parts. One of the most critical components is ensuring that the outcomes produced by your models are reliable and useful across a broad array of inputs, and that they work well with your application's other software components. Ensuring reliability usually boils down to some combination of application design, testing & evaluation, and runtime checks.
The guides in this section review the APIs and functionality LangChain provides to help yous better evaluate your applications. Evaluation and testing are both critical when thinking about deploying LLM applications, since production environments require repeatable and useful outcomes.
LangChain offers various types of evaluators to help you measure performance and integrity on diverse data, and we hope to encourage the the community to create and share other useful evaluators so everyone can improve. These docs will introduce the evaluator types, how to use them, and provide some examples of their use in real-world scenarios.
Each evaluator type in LangChain comes with ready-to-use implementations and an extensible API that allows for customization according to your unique requirements. Here are some of the types of evaluators we offer:
- [String Evaluators](/docs/guides/evaluation/string/): These evaluators assess the predicted string for a given input, usually comparing it against a reference string.
- [Trajectory Evaluators](/docs/guides/evaluation/trajectory/): These are used to evaluate the entire trajectory of agent actions.
- [Comparison Evaluators](/docs/guides/evaluation/comparison/): These evaluators are designed to compare predictions from two runs on a common input.
These evaluators can be used across various scenarios and can be applied to different chain and LLM implementations in the LangChain library.
We also are working to share guides and cookbooks that demonstrate how to use these evaluators in real-world scenarios, such as:
- [Chain Comparisons](/docs/guides/evaluation/examples/comparisons): This example uses a comparison evaluator to predict the preferred output. It reviews ways to measure confidence intervals to select statistically significant differences in aggregate preference scores across different models or prompts.
## Reference Docs
For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
<DocCardList />

View File

@@ -0,0 +1,27 @@
---
sidebar_position: 2
---
# String Evaluators
A string evaluator is a component within LangChain designed to assess the performance of a language model by comparing its generated outputs (predictions) to a reference string or an input. This comparison is a crucial step in the evaluation of language models, providing a measure of the accuracy or quality of the generated text.
In practice, string evaluators are typically used to evaluate a predicted string against a given input, such as a question or a prompt. Often, a reference label or context string is provided to define what a correct or ideal response would look like. These evaluators can be customized to tailor the evaluation process to fit your application's specific requirements.
To create a custom string evaluator, inherit from the `StringEvaluator` class and implement the `_evaluate_strings` method. If you require asynchronous support, also implement the `_aevaluate_strings` method.
Here's a summary of the key attributes and methods associated with a string evaluator:
- `evaluation_name`: Specifies the name of the evaluation.
- `requires_input`: Boolean attribute that indicates whether the evaluator requires an input string. If True, the evaluator will raise an error when the input isn't provided. If False, a warning will be logged if an input _is_ provided, indicating that it will not be considered in the evaluation.
- `requires_reference`: Boolean attribute specifying whether the evaluator requires a reference label. If True, the evaluator will raise an error when the reference isn't provided. If False, a warning will be logged if a reference _is_ provided, indicating that it will not be considered in the evaluation.
String evaluators also implement the following methods:
- `aevaluate_strings`: Asynchronously evaluates the output of the Chain or Language Model, with support for optional input and label.
- `evaluate_strings`: Synchronously evaluates the output of the Chain or Language Model, with support for optional input and label.
The following sections provide detailed information on available string evaluator implementations as well as how to create a custom string evaluator.
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -0,0 +1,28 @@
---
sidebar_position: 4
---
# Trajectory Evaluators
Trajectory Evaluators in LangChain provide a more holistic approach to evaluating an agent. These evaluators assess the full sequence of actions taken by an agent and their corresponding responses, which we refer to as the "trajectory". This allows you to better measure an agent's effectiveness and capabilities.
A Trajectory Evaluator implements the `AgentTrajectoryEvaluator` interface, which requires two main methods:
- `evaluate_agent_trajectory`: This method synchronously evaluates an agent's trajectory.
- `aevaluate_agent_trajectory`: This asynchronous counterpart allows evaluations to be run in parallel for efficiency.
Both methods accept three main parameters:
- `input`: The initial input given to the agent.
- `prediction`: The final predicted response from the agent.
- `agent_trajectory`: The intermediate steps taken by the agent, given as a list of tuples.
These methods return a dictionary. It is recommended that custom implementations return a `score` (a float indicating the effectiveness of the agent) and `reasoning` (a string explaining the reasoning behind the score).
You can capture an agent's trajectory by initializing the agent with the `return_intermediate_steps=True` parameter. This lets you collect all intermediate steps without relying on special callbacks.
For a deeper dive into the implementation and use of Trajectory Evaluators, refer to the sections below.
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -0,0 +1,9 @@
# LangChain Expression Language
import DocCardList from "@theme/DocCardList";
LangChain Expression Language is a declarative way to easily compose chains together.
Any chain constructed this way will automatically have full sync, async, and streaming support.
See guides below for how to interact with chains constructed this way as well as cookbook examples.
<DocCardList />

View File

@@ -0,0 +1,12 @@
# LangSmith
import DocCardList from "@theme/DocCardList";
LangSmith helps you trace and evaluate your language model applications and intelligent agents to help you
move from prototype to production.
Check out the [interactive walkthrough](walkthrough) below to get started.
For more information, please refer to the [LangSmith documentation](https://docs.smith.langchain.com/)
<DocCardList />

View File

@@ -0,0 +1,6 @@
# Preventing harmful outputs
One of the key concerns with using LLMs is that they may generate harmful or unethical text. This is an area of active research in the field. Here we present some built-in chains inspired by this research, which are intended to make the outputs of LLMs safer.
- [Moderation chain](/docs/use_cases/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/use_cases/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.

View File

@@ -28,7 +28,7 @@ navigating around a browser.
### [OpenAI Functions](/docs/modules/agents/agent_types/openai_functions_agent.html)
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been explicitly fine-tuned to detect when a
function should to be called and respond with the inputs that should be passed to the function.
function should be called and respond with the inputs that should be passed to the function.
The OpenAI Functions Agent is designed to work with these models.
### [Conversational](/docs/modules/agents/agent_types/chat_conversation_agent.html)

View File

@@ -1,6 +1,6 @@
# OpenAI functions
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should to be called and respond with the inputs that should be passed to the function.
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should be called and respond with the inputs that should be passed to the function.
In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions.
The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.

View File

@@ -3,46 +3,80 @@ sidebar_position: 4
---
# Agents
Some applications require a flexible chain of calls to LLMs and other tools based on user input. The **Agent** interface provides the flexibility for such applications. An agent has access to a suite of tools, and determines which ones to use depending on the user input. Agents can use multiple tools, and use the output of one tool as the input to the next.
The core idea of agents is to use an LLM to choose a sequence of actions to take.
In chains, a sequence of actions is hardcoded (in code).
In agents, a language model is used as a reasoning engine to determine which actions to take and in which order.
There are two main types of agents:
There are several key components here:
- **Action agents**: at each timestep, decide on the next action using the outputs of all previous actions
- **Plan-and-execute agents**: decide on the full sequence of actions up front, then execute them all without updating the plan
## Agent
Action agents are suitable for small tasks, while plan-and-execute agents are better for complex or long-running tasks that require maintaining long-term objectives and focus. Often the best approach is to combine the dynamism of an action agent with the planning abilities of a plan-and-execute agent by letting the plan-and-execute agent use action agents to execute plans.
This is the class responsible for deciding what step to take next.
This is powered by a language model and a prompt.
This prompt can include things like:
For a full list of agent types see [agent types](/docs/modules/agents/agent_types/). Additional abstractions involved in agents are:
- [**Tools**](/docs/modules/agents/tools/): the actions an agent can take. What tools you give an agent highly depend on what you want the agent to do
- [**Toolkits**](/docs/modules/agents/toolkits/): wrappers around collections of tools that can be used together a specific use case. For example, in order for an agent to
interact with a SQL database it will likely need one tool to execute queries and another to inspect tables
1. The personality of the agent (useful for having it respond in a certain way)
2. Background context for the agent (useful for giving it more context on the types of tasks it's being asked to do)
3. Prompting strategies to invoke better reasoning (the most famous/widely used being [ReAct](https://arxiv.org/abs/2210.03629))
## Action agents
LangChain provides a few different types of agents to get started.
Even then, you will likely want to customize those agents with parts (1) and (2).
For a full list of agent types see [agent types](/docs/modules/agents/agent_types/)
At a high-level an action agent:
1. Receives user input
2. Decides which tool, if any, to use and the tool input
3. Calls the tool and records the output (also known as an "observation")
4. Decides the next step using the history of tools, tool inputs, and observations
5. Repeats 3-4 until it determines it can respond directly to the user
## Tools
Action agents are wrapped in **agent executors**, which are responsible for calling the agent, getting back an action and action input, calling the tool that the action references with the generated input, getting the output of the tool, and then passing all that information back into the agent to get the next action it should take.
Tools are functions that an agent calls.
There are two important considerations here:
Although an agent can be constructed in many ways, it typically involves these components:
1. Giving the agent access to the right tools
2. Describing the tools in a way that is most helpful to the agent
- **Prompt template**: Responsible for taking the user input and previous steps and constructing a prompt
to send to the language model
- **Language model**: Takes the prompt with use input and action history and decides what to do next
- **Output parser**: Takes the output of the language model and parses it into the next action or a final answer
Without both, the agent you are trying to build will not work.
If you don't give the agent access to a correct set of tools, it will never be able to accomplish the objective.
If you don't describe the tools properly, the agent won't know how to properly use them.
## Plan-and-execute agents
LangChain provides a wide set of tools to get started, but also makes it easy to define your own (including custom descriptions).
For a full list of tools, see [here](/docs/modules/agents/tools/)
At a high-level a plan-and-execute agent:
1. Receives user input
2. Plans the full sequence of steps to take
3. Executes the steps in order, passing the outputs of past steps as inputs to future steps
## Toolkits
The most typical implementation is to have the planner be a language model, and the executor be an action agent. Read more [here](/docs/modules/agents/agent_types/plan_and_execute.html).
Often the set of tools an agent has access to is more important than a single tool.
For this LangChain provides the concept of toolkits - groups of tools needed to accomplish specific objectives.
There are generally around 3-5 tools in a toolkit.
LangChain provides a wide set of toolkits to get started.
For a full list of toolkits, see [here](/docs/modules/agents/toolkits/)
## AgentExecutor
The agent executor is the runtime for an agent.
This is what actually calls the agent and executes the actions it chooses.
Pseudocode for this runtime is below:
```python
next_action = agent.get_action(...)
while next_action != AgentFinish:
observation = run(next_action)
next_action = agent.get_action(..., next_action, observation)
return next_action
```
While this may seem simple, there are several complexities this runtime handles for you, including:
1. Handling cases where the agent selects a non-existent tool
2. Handling cases where the tool errors
3. Handling cases where the agent produces output that cannot be parsed into a tool invocation
4. Logging and observability at all levels (agent decisions, tool calls) either to stdout or [LangSmith](https://smith.langchain.com).
## Other types of agent runtimes
The `AgentExecutor` class is the main agent runtime supported by LangChain.
However, there are other, more experimental runtimes we also support.
These include:
- [Plan-and-execute Agent](/docs/modules/agents/agent_types/plan_and_execute.html)
- [Baby AGI](/docs/use_cases/autonomous_agents/baby_agi.html)
- [Auto GPT](/docs/use_cases/autonomous_agents/autogpt.html)
## Get started

View File

@@ -3,8 +3,8 @@ sidebar_position: 3
---
# Toolkits
:::info
Head to [Integrations](/docs/integrations/toolkits/) for documentation on built-in toolkit integrations.
:::
Toolkits are collections of tools that are designed to be used together for specific tasks and have convenience loading methods.
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -3,6 +3,10 @@ sidebar_position: 2
---
# Tools
:::info
Head to [Integrations](/docs/integrations/tools/) for documentation on built-in tool integrations.
:::
Tools are interfaces that an agent can use to interact with the world.
## Get started

View File

@@ -1 +0,0 @@
label: 'Integrations'

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -3,6 +3,10 @@ sidebar_position: 5
---
# Callbacks
:::info
Head to [Integrations](/docs/integrations/callbacks/) for documentation on built-in callbacks integrations with 3rd-party tools.
:::
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
import GetStarted from "@snippets/modules/callbacks/get_started.mdx"

View File

@@ -1 +0,0 @@
label: 'Integrations'

View File

@@ -1,7 +0,0 @@
# Dynamically selecting from multiple prompts
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects the prompt to use for a given input. Specifically we show how to use the `MultiPromptChain` to create a question-answering chain that selects the prompt which is most relevant for a given question, and then answers the question using that prompt.
import Example from "@snippets/modules/chains/additional/multi_prompt_router.mdx"
<Example/>

View File

@@ -1,6 +1,6 @@
# Sequential
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! Instead, edit the notebook w/the location & name as this file. -->
The next step after calling a language model is make a series of calls to a language model. This is particularly useful when you want to take the output from one call and use it as the input to another.

View File

@@ -1,8 +0,0 @@
# Summarization
A summarization chain can be used to summarize multiple documents. One way is to input multiple smaller documents, after they have been divided into chunks, and operate over them with a MapReduceDocumentsChain. You can also choose instead for the chain that does summarization to be a StuffDocumentsChain, or a RefineDocumentsChain.
import Example from "@snippets/modules/chains/popular/summarize.mdx"
<Example/>

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -3,6 +3,10 @@ sidebar_position: 0
---
# Document loaders
:::info
Head to [Integrations](/docs/integrations/document_loaders/) for documentation on built-in document loader integrations with 3rd-party tools.
:::
Use document loaders to load data from a source as `Document`'s. A `Document` is a piece of text
and associated metadata. For example, there are document loaders for loading a simple `.txt` file, for loading the text
contents of any web page, or even for loading a transcript of a YouTube video.

View File

@@ -3,6 +3,10 @@ sidebar_position: 1
---
# Document transformers
:::info
Head to [Integrations](/docs/integrations/document_transformers/) for documentation on built-in document transformer integrations with 3rd-party tools.
:::
Once you've loaded documents, you'll often want to transform them to better suit your application. The simplest example
is you may want to split a long document into smaller chunks that can fit into your model's context window. LangChain
has a number of built-in document transformers that make it easy to split, combine, filter, and otherwise manipulate documents.
@@ -24,7 +28,7 @@ That means there are two different axes along which you can customize your text
1. How the text is split
2. How the chunk size is measured
## Get started with text splitters
### Get started with text splitters
import GetStarted from "@snippets/modules/data_connection/document_transformers/get_started.mdx"

View File

@@ -8,7 +8,7 @@ Many LLM applications require user-specific data that is not part of the model's
building blocks to load, transform, store and query your data via:
- [Document loaders](/docs/modules/data_connection/document_loaders/): Load documents from many different sources
- [Document transformers](/docs/modules/data_connection/document_transformers/): Split documents, drop redundant documents, and more
- [Document transformers](/docs/modules/data_connection/document_transformers/): Split documents, convert documents into Q&A format, drop redundant documents, and more
- [Text embedding models](/docs/modules/data_connection/text_embedding/): Take unstructured text and turn it into a list of floating point numbers
- [Vector stores](/docs/modules/data_connection/vectorstores/): Store and search over embedded data
- [Retrievers](/docs/modules/data_connection/retrievers/): Query your data

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -3,6 +3,10 @@ sidebar_position: 4
---
# Retrievers
:::info
Head to [Integrations](/docs/integrations/retrievers/) for documentation on built-in retriever integrations with 3rd-party tools.
:::
A retriever is an interface that returns documents given an unstructured query. It is more general than a vector store.
A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used
as the backbone of a retriever, but there are other types of retrievers as well.

View File

@@ -3,6 +3,10 @@ sidebar_position: 2
---
# Text embedding models
:::info
Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.
:::
The Embeddings class is a class designed for interfacing with text embedding models. There are lots of embedding model providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them.
Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space.

View File

@@ -3,11 +3,17 @@ sidebar_position: 3
---
# Vector stores
:::info
Head to [Integrations](/docs/integrations/vectorstores/) for documentation on built-in integrations with 3rd-party vector stores.
:::
One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding
vectors, and then at query time to embed the unstructured query and retrieve the embedding vectors that are
'most similar' to the embedded query. A vector store takes care of storing embedded data and performing vector search
for you.
![vector store diagram](/img/vector_stores.jpg)
## Get started
This walkthrough showcases basic functionality related to VectorStores. A key part of working with vector stores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [text embedding model](/docs/modules/data_connection/text_embedding/) interfaces before diving into this.
@@ -15,3 +21,11 @@ This walkthrough showcases basic functionality related to VectorStores. A key pa
import GetStarted from "@snippets/modules/data_connection/vectorstores/get_started.mdx"
<GetStarted/>
## Asynchronous operations
Vector stores are usually run as a separate service that requires some IO operations, and therefore they might be called asynchronously. That gives performance benefits as you don't waste time waiting for responses from external services. That might also be important if you work with an asynchronous framework, such as [FastAPI](https://fastapi.tiangolo.com/).
import AsyncVectorStore from "@snippets/modules/data_connection/vectorstores/async.mdx"
<AsyncVectorStore/>

View File

@@ -17,4 +17,6 @@ Let chains choose which tools to use given high-level directives
#### [Memory](/docs/modules/memory/)
Persist application state between runs of a chain
#### [Callbacks](/docs/modules/callbacks/)
Log and stream intermediate steps of any chain
Log and stream intermediate steps of any chain
#### [Evaluation](/docs/modules/evaluation/)
Evaluate the performance of a chain.

View File

@@ -0,0 +1,17 @@
---
sidebar_position: 1
---
# Chat Messages
:::info
Head to [Integrations](/docs/integrations/memory/) for documentation on built-in memory integrations with 3rd-party databases and tools.
:::
One of the core utility classes underpinning most (if not all) memory modules is the `ChatMessageHistory` class.
This is a super lightweight wrapper which exposes convenience methods for saving Human messages, AI messages, and then fetching them all.
You may want to use this class directly if you are managing memory outside of a chain.
import GetStarted from "@snippets/modules/memory/chat_messages/get_started.mdx"
<GetStarted/>

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -1,30 +1,62 @@
---
sidebar_position: 3
---
# Memory
🚧 _Docs under construction_ 🚧
Most LLM applications have a conversational interface. An essential component of a conversation is being able to refer to information introduced earlier in the conversation.
At bare minimum, a conversational system should be able to access some window of past messages directly.
A more complex system will need to have a world model that it is constantly updating, which allows it to do things like maintain information about entities and their relationships.
By default, Chains and Agents are stateless,
meaning that they treat each incoming query independently (like the underlying LLMs and chat models themselves).
In some applications, like chatbots, it is essential
to remember previous interactions, both in the short and long-term.
The **Memory** class does exactly that.
We call this ability to store information about past interactions "memory".
LangChain provides a lot of utilities for adding memory to a system.
These utilities can be used by themselves or incorporated seamlessly into a chain.
LangChain provides memory components in two forms.
First, LangChain provides helper utilities for managing and manipulating previous chat messages.
These are designed to be modular and useful regardless of how they are used.
Secondly, LangChain provides easy ways to incorporate these utilities into chains.
A memory system needs to support two basic actions: reading and writing.
Recall that every chain defines some core execution logic that expects certain inputs.
Some of these inputs come directly from the user, but some of these inputs can come from memory.
A chain will interact with its memory system twice in a given run.
1. AFTER receiving the initial user inputs but BEFORE executing the core logic, a chain will READ from its memory system and augment the user inputs.
2. AFTER executing the core logic but BEFORE returning the answer, a chain will WRITE the inputs and outputs of the current run to memory, so that they can be referred to in future runs.
![memory-diagram](/img/memory_diagram.png)
## Building memory into a system
The two core design decisions in any memory system are:
- How state is stored
- How state is queried
### Storing: List of chat messages
Underlying any memory is a history of all chat interactions.
Even if these are not all used directly, they need to be stored in some form.
One of the key parts of the LangChain memory module is a series of integrations for storing these chat messages,
from in-memory lists to persistent databases.
- [Chat message storage](/docs/modules/memory/chat_messages/): How to work with Chat Messages, and the various integrations offered
### Querying: Data structures and algorithms on top of chat messages
Keeping a list of chat messages is fairly straight-forward.
What is less straight-forward are the data structures and algorithms built on top of chat messages that serve a view of those messages that is most useful.
A very simply memory system might just return the most recent messages each run. A slightly more complex memory system might return a succinct summary of the past K messages.
An even more sophisticated system might extract entities from stored messages and only return information about entities referenced in the current run.
Each application can have different requirements for how memory is queried. The memory module should make it easy to both get started with simple memory systems and write your own custom systems if needed.
- [Memory types](/docs/modules/memory/types/): The various data structures and algorithms that make up the memory types LangChain supports
## Get started
Memory involves keeping a concept of state around throughout a user's interactions with an language model. A user's interactions with a language model are captured in the concept of ChatMessages, so this boils down to ingesting, capturing, transforming and extracting knowledge from a sequence of chat messages. There are many different ways to do this, each of which exists as its own memory type.
In general, for each type of memory there are two ways to understanding using memory. These are the standalone functions which extract information from a sequence of messages, and then there is the way you can use this type of memory in a chain.
Memory can return multiple pieces of information (for example, the most recent N messages and a summary of all previous messages). The returned information can either be a string or a list of messages.
Let's take a look at what Memory actually looks like in LangChain.
Here we'll cover the basics of interacting with an arbitrary memory class.
import GetStarted from "@snippets/modules/memory/get_started.mdx"
<GetStarted/>
## Next steps
And that's it for getting started!
Please see the other sections for walkthroughs of more advanced topics,
like custom memory, multiple memories, and more.

View File

@@ -1 +0,0 @@
label: 'Integrations'

View File

@@ -4,6 +4,6 @@ This notebook shows how to use `ConversationBufferMemory`. This memory allows fo
We can first extract it as a string.
import Example from "@snippets/modules/memory/how_to/buffer.mdx"
import Example from "@snippets/modules/memory/types/buffer.mdx"
<Example/>

View File

@@ -4,6 +4,6 @@
Let's first explore the basic functionality of this type of memory.
import Example from "@snippets/modules/memory/how_to/buffer_window.mdx"
import Example from "@snippets/modules/memory/types/buffer_window.mdx"
<Example/>

View File

@@ -4,6 +4,6 @@ Entity Memory remembers given facts about specific entities in a conversation. I
Let's first walk through using this functionality.
import Example from "@snippets/modules/memory/how_to/entity_summary_memory.mdx"
import Example from "@snippets/modules/memory/types/entity_summary_memory.mdx"
<Example/>

View File

@@ -0,0 +1,8 @@
---
sidebar_position: 2
---
# Memory Types
There are many different types of memory.
Each have their own parameters, their own return types, and are useful in different scenarios.
Please see their individual page for more detail on each one.

View File

@@ -4,6 +4,6 @@ Conversation summary memory summarizes the conversation as it happens and stores
Let's first explore the basic functionality of this type of memory.
import Example from "@snippets/modules/memory/how_to/summary.mdx"
import Example from "@snippets/modules/memory/types/summary.mdx"
<Example/>

View File

@@ -6,6 +6,6 @@ This differs from most of the other Memory classes in that it doesn't explicitly
In this case, the "docs" are previous conversation snippets. This can be useful to refer to relevant pieces of information that the AI was told earlier in the conversation.
import Example from "@snippets/modules/memory/how_to/vectorstore_retriever_memory.mdx"
import Example from "@snippets/modules/memory/types/vectorstore_retriever_memory.mdx"
<Example/>

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

View File

@@ -3,18 +3,16 @@ sidebar_position: 1
---
# Chat models
:::info
Head to [Integrations](/docs/integrations/chat/) for documentation on built-in integrations with chat model providers.
:::
Chat models are a variation on language models.
While chat models use language models under the hood, the interface they expose is a bit different.
Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
Chat model APIs are fairly new, so we are still figuring out the correct abstractions.
The following sections of documentation are provided:
- **How-to guides**: Walkthroughs of core functionality, like streaming, creating chat prompts, etc.
- **Integrations**: How to use different chat model providers (OpenAI, Anthropic, etc).
## Get started
import GetStarted from "@snippets/modules/model_io/models/chat/get_started.mdx"

View File

@@ -1,2 +0,0 @@
label: 'How-to'
position: 0

Some files were not shown because too many files have changed in this diff Show More