Problem statement:
In the `integrations/llms` and `integrations/chat` pages, we have a
sidebar with ToC, and we also have a ToC at the end of the page.
The ToC at the end of the page is not necessary, and it is confusing
when we mix the index page styles; moreover, it requires manual work.
So, I removed ToC at the end of the page (it was discussed with and
approved by @baskaryan)
If user function is wrapped as a traceable function, this will help hand
off the trace between the two.
Also update handling fields to reflect optional values
- **Description**: Fix for the SPARQL QA chain: fixed SPARQL queries for
retrieving information about relations in the graph to create a textual
description of the schema for the language model. This should resolve
#8907
- **Issue**: #8907
- **Dependencies**: None
- **Tag maintainer**: @baskaryan, @hwchase17
**Description:** When llms output leading or trailing whitespace for xml
(when using XMLOutputParser) the parser would raise a `ValueError: Could
not parse output: ...`. However, leading or trailing whitespace are
"ignorable" in the sense of XML standard.
**Issue:** I did not find an issue related.
**Dependencies:** None
**Tag maintainer:**
**Twitter handle:** donatoaz
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
Done, updated unit test and ran `make docker_test`.
- **Description:** Response parser for arcee retriever,
- **Issue:** follow-up pr on #11578 and
[discussion](https://github.com/arcee-ai/arcee-python/issues/15#issuecomment-1759874053),
- **Dependencies:** NA
This pr implements a parser for the response from ArceeRetreiver to
convert to langchain `Document`. This closes the loop of generation and
retrieval for Arcee DALMs in langchain.
The reference for the response parser is
[api-docs:retrieve](https://api.arcee.ai/docs#/v2/retrieve_model)
Attaching screenshot of working implementation:
<img width="1984" alt="Screenshot 2023-10-25 at 7 42 34 PM"
src="https://github.com/langchain-ai/langchain/assets/65639964/026987b9-34b2-4e4b-b87d-69fcd0c6641a">
\*api key deleted
---
Successful tests, lints, etc.
```shell
Re-run pytest with --snapshot-update to delete unused snapshots.
==================================================================================================================== slowest 5 durations =====================================================================================================================
1.56s call tests/unit_tests/schema/runnable/test_runnable.py::test_retrying
0.63s call tests/unit_tests/schema/runnable/test_runnable.py::test_map_astream
0.33s call tests/unit_tests/schema/runnable/test_runnable.py::test_map_stream_iterator_input
0.30s call tests/unit_tests/schema/runnable/test_runnable.py::test_map_astream_iterator_input
0.20s call tests/unit_tests/indexes/test_indexing.py::test_cleanup_with_different_batchsize
======================================================================================================= 1265 passed, 270 skipped, 32 warnings in 6.55s =======================================================================================================
[ "." = "" ] || poetry run black .
All done! ✨🍰✨
1871 files left unchanged.
[ "." = "" ] || poetry run ruff --select I --fix .
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run black . --check
All done! ✨🍰✨
1871 files would be left unchanged.
[ "." = "" ] || poetry run mypy .
Success: no issues found in 1868 source files
poetry run codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml -w
```
Co-authored-by: Shubham Kushwaha <shwu@Shubhams-MacBook-Pro.local>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Documents further usage of RetrievalQAWithSourcesChain in an existing
test. I'd not found much documented usage of RetrievalQAWithSourcesChain
and how to get the sources out. This additional code will hopefully be
useful to other potential users of this retriever.
**Issue:** No raised issue
**Dependencies:** No new dependencies needed to run the test (it already
needs `open-ai`, `faiss-cpu` and `unstructured`).
Note - `make lint` showed 8 linting errors in unrelated files
---------
Co-authored-by: richarda23 <richard.c.adams@infinityworks.com>
If I go traceable -> runnable when the project is manually specified,
the runnable wont be logged. This makes sure the session/project is
threaded through appropriately.
- Move Document AI provider to the Google provider page
- Change Vertex AI Matching Engine to Vector Search
- Change references from GCP to Google Cloud
- Add Gmail chat loader to Google provider page
- Change Serper page title to "Serper - Google Search API" since it is
not a Google product.
* Add a type literal for the generation and sub-classes for serialization purposes.
* Fix the root validator of ChatGeneration to return ValueError instead of KeyError or Attribute error if intialized improperly.
* This change is done for langserve to make sure that llm related callbacks can be serialized/deserialized properly.
Fix Description:
For Redis Vector integration in add_texts method, there were two issues
that lead to this bug.
1. Vector index is not being created leading to no such_index error
2. `doc:index` prefix was also missing for Redis Keys.
resolves#11197
Maintainer: @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Add cost calculation for fine tuned models (new and legacy), this is
required after OpenAI added new models for fine tuning and separated the
costs of I/O for fine tuned models.
Also I updated the relevant unit tests
see https://platform.openai.com/docs/guides/fine-tuning for more
information.
issue: https://github.com/langchain-ai/langchain/issues/11715
- **Issue:** 11715
- **Twitter handle:** @nirkopler
- replace `requests` package with `langchain.requests`
- add `_acall` support
- add `_stream` and `_astream`
- freshen up the documentation a bit
- update vendor doc
Allows for passing arguments into the LLM chains used by the
GraphCypherQAChain. This is to address a request by a user to include
memory in the Cypher creating chain. Will keep the prompt variables
as-is to be backward compatible. But, would be a good idea to deprecate
them and use the **kwargs variables. Added a test case.
In general, I think it would be good for any chain to automatically pass
in a readonlymemory(of its input) to its subchains whilist allowing for
an override. But, this would be a different change.
- **Description:**
Add missing apostrophe in `user's` in stuff_prompt's system_template.
The first sentence in the system template went from:
> Use the following pieces of context to answer the users question.
to
> Use the following pieces of context to answer the user's question.
- **Issue:**
- **Dependencies:** none
- **Tag maintainer:** @baskaryan
- **Twitter handle:** ojohnnyo
- This is used internally to gather aggregate usage metrics for the
LangChain integrations
- Note: This cannot be added to some of the Vertex AI integrations at
this time because the SDK doesn't allow overriding the
[`ClientInfo`](https://googleapis.dev/python/google-api-core/latest/client_info.html#module-google.api_core.client_info)
- Added to:
- BigQuery
- Google Cloud Storage
- Document AI
- Vertex AI Model Garden
- Document AI Warehouse
- Vertex AI Search
- Vertex AI Matching Engine (Cloud Storage Client)
@baskaryan, @eyurtsev, @hwchase17
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
code of conduct.md file is missing it is generally present in good repos
which have large community
Replace this entire comment with:
- **Description:** Added a `code_of_conduct.md` file to the repository
to establish community standards and guidelines for contributors.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** N/A
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** In the max_marginal_relevance_search function of the
ElasticsearchStore vector store, the name of the field corresponding to
the vector embedding of the document is hard coded in the delete
statement that drops the field from the document metadata. This results
in an exception if the vector embedding field is customized. This PR
changes the hard-coded "vector" into the vector_query_field variable.
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
Co-authored-by: Shilong Dai <sdai@viperfish.net>
**Description: Allow to inject boto3 client for Cross account access
type of scenarios in using SagemakerEndpointEmbeddings and also updated
the documentation for same in the sample notebook**
**Issue:SagemakerEndpointEmbeddings cross account capability #10634
#10184**
Dependencies: None
Tag maintainer:
Twitter handle:lethargicoder
Co-authored-by: Vikram(VS) <vssht@amazon.com>
- **Description:** sqlalchemy create_engine() does not take into account
connect_args which are mandatory for managed PGSQL instances on cloud
providers (ssl_context for example).
Also re-enabled create_vector_extension at post_init for using pgvector
class seamlessly
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Sami Bargaoui <bargaoui.sam@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
If non-pickleable objects (like locks) get passed to the tracing
callback, they'll fail in the deepcopy. Fallback to a shallow copy in
these instances .
We don't use any of the new functionality at the moment. Just making
sure we don't fall back on versions and fail to benefit from new
patches. This is an easy upgrade and it's always harder to upgrade
across multiple major versions at once.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adding Tavily Search API as a tool. I will be the maintainer and
assaf_elovic is the twitter handler.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Current ChatTongyi is not compatible with DashScope API, which will
cause error when passing api key to chat model directly.
- **Description:** Update tongyi.py to be compatible with DashScope API.
Specifically, update parameter name "dashscope_api_key" to "api_key".
- **Issue:** None.
- **Dependencies:** Nothing new, Tongyi would require DashScope as
before.
- **Description:**
- Replace Telegram with Whatsapp in whatsapp.ipynb
- Add # to mark the telegram as heading in telegram.ipynb
- **Issue:** None
- **Dependencies:** None
- **Description:** Implementing the Google Scholar Tool as requested in
PR #11505. The tool will be using the [serpapi python
package](https://serpapi.com/integrations/python#search-google-scholar).
The main idea of the tool will be to return the results from a Google
Scholar search given a query as an input to the tool.
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17
Replace this entire comment with:
- **Description:** Fix superfluous [Auto-fixing
parser](https://python.langchain.com/docs/modules/model_io/output_parsers/output_fixing_parser)
docs. Also switching to `langchain.pydantic_v1` from the direct
reference to `pydantic`,
- **Issue:** N/A,
- **Dependencies:** N/A,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @dosuken123
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
- Fixes error:
```
ValueError: "GoogleVertexAISearchRetriever" object has no field "_serving_config"
```
Introduced in #11736
@baskaryan, @eyurtsev, @hwchase17 if you could review and merge quickly,
that would be appreciated :)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** The return info in the documentation for
similarity_search_by_vector and similarity_search_with_relevance_scores
is wrong
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This reverts commit a46eef64a7.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Provide a way to use different text for embedding.
- For example, if you are ingesting stack-overflow Q&As for RAG, you
would want to embed the questions and return the answer(s) for the hits.
With this change, the consumer of langchain can implement that easily.
- I noticed the similar function is added on faiss.py with #1912 which
was for performance reason, but I see the same function can be used to
achieve what I thought. So instead of changing Document class to have
embedding_content, I mimicked the implementation of faiss.py.
- The test should provide some guidance on how to use it. It would be
more intuitive if I just pass texts and embedding_texts as separate
arguments, but I chose to use `zip`-ed object for the consistency with
faiss.py implementation.
- I plan to make similar pull request for OpenSearch.
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Adding Pydantic v2 support for OpenAPI Specs
- **Issue:**
- OpenAPI spec support was disabled because `openapi-schema-pydantic`
doesn't support Pydantic v2:
#9205
- Caused errors in `get_openapi_chain`
- This may be the cause of #9520.
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** kreneskyp
The root cause was that `openapi-schema-pydantic` hasn't been updated in
some time but
[openapi-pydantic](https://github.com/mike-oakley/openapi-pydantic)
forked and updated the project.
Added a notebook with examples of the creation of a retriever from the
SingleStoreDB vector store, and further usage.
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Updated the elasticsearch self query retriever to use the match clause
for LIKE operator instead of the non-analyzed fuzzy search clause.
Other small updates include:
- fixing the stack inference integration test where the index's default
pipeline didn't use the inference pipeline created
- adding a user-agent to the old implementation to track usage
- improved the documentation for ElasticsearchStore filters
### Description:
To provide an eas llm service access methods in this pull request by
impletementing `PaiEasEndpoint` and `PaiEasChatEndpoint` classes in
`langchain.llms` and `langchain.chat_models` modules. Base on this pr,
langchain users can build up a chain to call remote eas llm service and
get the llm inference results.
### About EAS Service
EAS is a Alicloud product on Alibaba Cloud Machine Learning Platform for
AI which is short for AliCloud PAI. EAS provides model inference
deployment services for the users. We build up a llm inference services
on EAS with a general llm docker images. Therefore, end users can
quickly setup their llm remote instances to load majority of the
hugginface llm models, and serve as a backend for most of the llm apps.
### Dependencies
This pr does't involve any new dependencies.
---------
Co-authored-by: 子洪 <gaoyihong.gyh@alibaba-inc.com>
Description: Supported RetryOutputParser & RetryWithErrorOutputParser
max_retries
- max_retries: Maximum number of retries to parser.
Issue: None
Dependencies: None
Tag maintainer: @baskaryan
Twitter handle:
We now require uses to have the pip package `llmonitor` installed. It
allows us to have cleaner code and avoid duplicates between our library
and our code in Langchain.
FAISS does not implement embeddings method and use embed_query to
embedding texts which is wrong for some embedding models.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
feat: Raise KeyError when 'prompt' key is missing in JSON response
This commit updates the error handling in the code to raise a KeyError
when the 'prompt' key is not found in the JSON response. This change
makes the code more explicit about the nature of the error, helping to
improve clarity and debugging.
@baskaryan, @eyurtsev.
I may be missing something but it seems like we inappropriately overrode
the 'stream()' method, losing callbacks in the process. I don't think
(?) it gave us anything in this case to customize it here?
See new trace:
https://smith.langchain.com/public/fbb82825-3a16-446b-8207-35622358db3b/r
and confirmed it streams.
Also fixes the stopwords issues from #12000
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t, add ERNIE-Bot-4
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-4, you should have the
model's access authority.
By default replace input_variables with the correct value
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
.dict() is a Pydantic method that cannot raise exceptions, as it is used
eg. in `__eq__`
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Type hinting `*args` as `List[Any]` means that each positional argument
should be a list. Type hinting `**kwargs` as `Dict[str, Any]` means that
each keyword argument should be a dict of strings.
This is almost never what we actually wanted, and doesn't seem to be
what we want in any of the cases I'm replacing here.
The Docs folder changed its structure, and the notebook example for
SingleStoreDChatMessageHistory has not been copied to the new place due
to a merge conflict. Adding the example to the correct place.
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
- Update Zep Memory and Retriever docstrings
- Zep Memory Retriever: Add support for native MMR
- Add MMR example to existing ZepRetriever Notebook
@baskaryan
Example
```
from langchain.schema.runnable import RunnableLambda
from langsmith import traceable
chain = RunnableLambda(lambda x: x)
@traceable(run_type = "chain")
def my_traceable(a):
chain.invoke(a)
my_traceable(5)
```
Would have a nested result.
This would NOT work for interleaving chains and traceables. E.g., things
like thiswould still not work well
```
from langchain.schema.runnable import RunnableLambda
from langsmith import traceable
@traceable()
def other_traceable(a):
return a
def foo(x):
return other_traceable(x)
chain = RunnableLambda(foo)
@traceable(run_type = "chain")
def my_traceable(a):
chain.invoke(a)
my_traceable(5)
```
Minor lint dependency version upgrade to pick up latest functionality.
Ruff's new v0.1 version comes with lots of nice features, like
fix-safety guarantees and a preview mode for not-yet-stable features:
https://astral.sh/blog/ruff-v0.1.0
- **Description:** Chroma >= 0.4.10 added support for batch sizes
validation of add/upsert. This batch size is dependent on the SQLite
limits of the target system and varies. In this change, for
Chroma>=0.4.10 batch splitting was added as the aforementioned
validation is starting to surface in the Chroma community (users using
LC)
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** t_azarov
- Description: Considering the similarity computation method of
[BGE](https://github.com/FlagOpen/FlagEmbedding) model is cosine
similarity, set normalize_embeddings to be True.
- Tag maintainer: @baskaryan
Co-authored-by: Erick Friis <erick@langchain.dev>
Description: A large language models developed by Baichuan Intelligent
Technology,https://www.baichuan-ai.com/home
Issue: None
Dependencies: None
Tag maintainer:
Twitter handle:
This adds security notices to toolkits init, and to several toolkits.
We'll need to continue documenting the rest of the toolkits.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Fix some typing issues found while doing that
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
the updated value was:
` Criteria.MISOGYNY: "Is the submission misogynistic? If so, respond Y."
`
The " If so, respond Y." should not be here. This sub-string is not
presented in any other criteria and should not be presented here.
I also added a synonym to "misogynistic" as it done in many other
criteria.
The current ToC on the index page and on navbar don't match. Page titles
and Titles in ToC doesn't match
Changes:
- made ToCs equal
- made titles equal
- updated some page formattings.
I have fixed some typos in file
`cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb`. I kindly
request the repo maintainers to review and merge it. Thanks!
I have fixed some typos in file
`cookbook/Semi_structured_and_multi_modal_RAG.ipynb`. I kindly request
the repo maintainers to review and merge it. Thanks!
**Description**
- Added the `SingleStoreDBChatMessageHistory` class that inherits
`BaseChatMessageHistory` and allows to use of a SingleStoreDB database
as a storage for chat message history.
- Added integration test to check that everything works (requires
`singlestoredb` to be installed)
- Added notebook with usage example
- Removed custom retriever for SingleStoreDB vector store (as it is
useless)
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
## Description
| Tool | Original Tool Name |
|-----------------------------|---------------------------|
| open-meteo-api | Open Meteo API |
| news-api | News API |
| tmdb-api | TMDB API |
| podcast-api | Podcast API |
| golden_query | Golden Query |
| dall-e-image-generator | Dall-E Image Generator |
| twilio | Text Message |
| searx_search_results | Searx Search Results |
| dataforseo | DataForSeo Results JSON |
When using these tools through `load_tools`, I encountered the following
validation error:
```console
openai.error.InvalidRequestError: 'TMDB API' does not match '^[a-zA-Z0-9_-]{1,64}$' - 'functions.0.name'
```
In order to avoid this error, I replaced spaces with hyphens in the tool
names:
| Tool | Corrected Tool Name |
|-----------------------------|---------------------------|
| open-meteo-api | Open-Meteo-API |
| news-api | News-API |
| tmdb-api | TMDB-API |
| podcast-api | Podcast-API |
| golden_query | Golden-Query |
| dall-e-image-generator | Dall-E-Image-Generator |
| twilio | Text-Message |
| searx_search_results | Searx-Search-Results |
| dataforseo | DataForSeo-Results-JSON |
This correction resolved the validation error.
Additionally, a unit test,
`tests/unit_tests/schema/runnable/test_runnable.py::test_stream_log_retriever`,
was failing at random. Upon further investigation, I confirmed that the
failure was not related to the above-mentioned changes. The `stream_log`
variable was generating the order of logs in two ways at random The
reason for this behavior is unclear, but in the assertion, I included
both possible orders to account for this variability.
Fixed a typo :
"asyncrhonized" > "asynchronized"
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Hello Folks,
Alibaba Cloud OpenSearch has released a new version of the vector
storage engine, which has significantly improved performance compared to
the previous version. At the same time, the sdk has also undergone
changes, requiring adjustments alibaba opensearch vector store code to
adapt.
This PR includes:
Adapt to the latest version of Alibaba Cloud OpenSearch API.
More comprehensive unit testing.
Improve documentation.
I have read your contributing guidelines. And I have passed the tests
below
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
---------
Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
This patch fixes some spelling typo in
learned_prompt_optimization.ipynb.
It only changed messages, no logic changed.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
**Description:**
While working on the Docusaurus site loader #9138, I noticed some
outdated docs and tests for the Sitemap Loader.
**Issue:**
This is tangentially related to #6691 in reference to doc links. I plan
on digging in to a few of these issue when I find time next.
- **Description:** added examples to Vertex chat models as optional
class attributes, so that a model with examples can be used inside a
chain
- **Twitter handle:** lkuligin
Adding description of the `View deployment` button on the PR page. This
nice feature was not documented.
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Related to #10800
- Errors in the Docstring of GradientLLM / Gradient.ai LLM
- Renamed the `model_id` to `model` and adapting this in all tests.
Reason to so is to be in Sync with `GradientEmbeddings` and other LLM's.
- inmproving tests so they check the headers in the sent request.
- making the aiosession a private attribute in the docs, as in the
future `pip install gradientai` will be replacing aiosession.
- adding a example how to fine-tune on the Prompt Template as suggested
in #10800
- Description: Adds the ChatEverlyAI class with llama-2 7b on [EverlyAI
Hosted
Endpoints](https://everlyai.xyz/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
---------
Co-authored-by: everly-studio <127131037+everly-studio@users.noreply.github.com>
- **Description:**
- If the Elasticsearch field used for Langchain > Document.page_content
is missing because the specific document is
somehow malformed fail gracefully.
- **Tag maintainer:**
- @joemcelroy
Reverts langchain-ai/langchain#11714
This has linting and formatting issues, plus it's added to chat models
folder but doesn't subclass Chat Model base class
Motivation and Context
At present, the Baichuan Large Language Model is relatively popular and
efficient in performance. Due to widespread market recognition, this
model has been added to enhance the scalability of Langchain's ability
to access the big language model, so as to facilitate application access
and usage for interested users.
System Info
langchain: 0.0.295
python:3.8.3
IDE:vs code
Description
Add the following files:
1. Add baichuan_baichuaninc_endpoint.py in the
libs/langchain/langchain/chat_models
2. Modify the __init__.py file,which is located in the
libs/langchain/langchain/chat_models/__init__.py:
a. Add "from langchain.chat_models.baichuan_baichuaninc_endpoint import
BaichuanChatEndpoint"
b. Add "BaichuanChatEndpoint" In the file's __ All__ method
Your contribution
I am willing to help implement this feature and submit a PR, but I would
appreciate guidance from the maintainers or community to ensure the
changes are made correctly and in line with the project's standards and
practices.
- **Description:** Add `TrainableLLM` for those LLM support fine-tuning
- **Tag maintainer:** @hwchase17
This PR add training methods to `GradientLLM`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hi there
This PR is aim to implement chat model for Alibaba Tongyi LLM model. It
contains work below:
1.Implement ChatTongyi chat model in langchain.chat_models.tongyi. Note
this is different with tongyi llm model to another PR
https://github.com/langchain-ai/langchain/pull/10878.
For detail it implements _generate() and _stream() function in
ChatTongyi.
2. Add some examples in chat/tongyi.ipynb.
3. Add integration test in chat_models/test_tongyi.py
Note async completion for the Text API is not yet supported.
Dependencies: dashscope. It will be installed manually cause it is not
need by everyone.
**Description**
This PR adds the `ElasticsearchChatMessageHistory` implementation that
stores chat message history in the configured
[Elasticsearch](https://www.elastic.co/elasticsearch/) deployment.
```python
from langchain.memory.chat_message_histories import ElasticsearchChatMessageHistory
history = ElasticsearchChatMessageHistory(
es_url="https://my-elasticsearch-deployment-url:9200", index="chat-history-index", session_id="123"
)
history.add_ai_message("This is me, the AI")
history.add_user_message("This is me, the human")
```
**Dependencies**
- [elasticsearch client](https://elasticsearch-py.readthedocs.io/)
required
Co-authored-by: Bagatur <baskaryan@gmail.com>
Instead of accessing `langchain.debug`, `langchain.verbose`, or
`langchain.llm_cache`, please use the new getter/setter functions in
`langchain.globals`:
- `langchain.globals.set_debug()` and `langchain.globals.get_debug()`
- `langchain.globals.set_verbose()` and
`langchain.globals.get_verbose()`
- `langchain.globals.set_llm_cache()` and
`langchain.globals.get_llm_cache()`
Using the old globals directly will now raise a warning.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
Add a document loader for the RSpace Electronic Lab Notebook
(www.researchspace.com), so that scientific documents and research notes
can be easily pulled into Langchain pipelines.
**Issue**
This is an new contribution, rather than an issue fix.
**Dependencies:**
There are no new required dependencies.
In order to use the loader, clients will need to install rspace_client
SDK using `pip install rspace_client`
---------
Co-authored-by: richarda23 <richard.c.adams@infinityworks.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Update Indexing API docs to specify vectorstores that
are compatible with the Indexing API. I add a unit test to remind
developers to update the documentation whenever they add or change a
vectorstore in a way that affects compatibility. For the unit test I
repurposed existing code from
[here](https://github.com/langchain-ai/langchain/blob/v0.0.311/libs/langchain/langchain/indexes/_api.py#L245-L257).
This is my first PR to an open source project. This is a trivially
simple PR whose main purpose is to make me more comfortable submitting
Langchain PRs. If this PR goes through I plan to submit PRs with more
substantive changes in the near future.
**Issue:** Resolves
[10482](https://github.com/langchain-ai/langchain/discussions/10482).
**Dependencies:** No new dependencies.
**Twitter handle:** None.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Allows MMR functionality only for the case where we have access to the
embedding function. Also allows for users to request for fields from
elasticsearch store. These are added to the document metadata.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Introducing an ability to load a transcription document of
audio file using [Yandex
SpeechKit](https://cloud.yandex.com/en-ru/services/speechkit)
Issue: None
Dependencies: yandex-speechkit
Tag maintainer: @rlancemartin, @eyurtsev
**Description**
This PR implements the usage of the correct tokenizer in Bedrock LLMs,
if using anthropic models.
**Issue:** #11560
**Dependencies:** optional dependency on `anthropic` python library.
**Twitter handle:** jtolgyesi
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Modify Anyscale integration to work with [Anyscale
Endpoint](https://docs.endpoints.anyscale.com/)
and it supports invoke, async invoke, stream and async invoke features
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Should delegate to parse_result, not to aparse, as parse_result is a
method that some output parsers override
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Avoid huggingfacepipeline to truncate the response if
user setup return_full_text as False within huggingface pipeline.
**Dependencies:** : None
**Tag maintainer:** Maybe @sam-h-bean ?
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
No relevant documents may be found for a given question. In some use
cases, we could directly respond with a fixed message instead of doing
an LLM call with an empty context. This PR exposes this as an option:
response_if_no_docs_found.
---------
Co-authored-by: Sudharsan Rangarajan <sudranga@nile-global.com>
Fix the documentation in
https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/ngram_overlap.
It's currently declaring unrelated variables, for example, `examples`
local variable is declared twice and the first one is overwritten
immediately.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @dosuken123
Replace this entire comment with:
- **Description:** In this modified version of the function, if the
metadatas parameter is not None, the function includes the corresponding
metadata in the JSON object for each text. This allows the metadata to
be stored alongside the text's embedding in the vector store.
-
- **Issue:** #10924
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
@agola11
- **Twitter handle:** @MelliJoaco
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added demo for QA system with anonymization. It will be part of
LangChain's privacy webinar.
@hwchase17 @baskaryan @nfcampos
Twitter handle: @MaksOpp
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** fixed a bug in pal-chain when it reports Python
code validation errors. When node.func does not have any ids, the
original code tried to print node.func.id in raising ValueError.
- **Issue:** n/a,
- **Dependencies:** no dependencies,
- **Tag maintainer:** @hazzel-cn, @eyurtsev
- **Twitter handle:** @lazyswamp
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I am merely making some minor adjustments to the function documentation.
I hope to provide a small assistance to LangChain.
- **Description:** Change the docs of JSONAgentOutputParser. It will be
`JSON` better,
- **Issue:** no,
- **Dependencies:** no,
- **Tag maintainer:** @hwchase17,
- **Twitter handle:** Not worth mentioning.
**Description:** This PR adds support for ChatOpenAI models in the
Infino callback handler. In particular, this PR implements
`on_chat_model_start` callback, so that ChatOpenAI models are supported.
With this change, Infino callback handler can be used to track latency,
errors, and prompt tokens for ChatOpenAI models too (in addition to the
support for OpenAI and other non-chat models it has today). The existing
example notebook is updated to show how to use this integration as well.
cc/ @naman-modi @savannahar68
**Issue:** https://github.com/langchain-ai/langchain/issues/11607
**Dependencies:** None
**Tag maintainer:** @hwchase17
**Twitter handle:** [@vkakade](https://twitter.com/vkakade)
* Should use non chunked messages for Invoke/Batch
* After this PR, stream output type is not represented, do we want to
use the union?
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Adds standard `type` field for all messages that will be
serialized/validated by pydantic.
* The presence of `type` makes it easier for developers consuming
schemas to write client code to serialize/deserialize.
* In LangServe `type` will be used for both validation and will appear
in the generated openapi specs
Preventing error caused by attempting to move the model that was already
loaded on the GPU using the Accelerate module to the same or another
device. It is not possible to load model with Accelerate/PEFT to CPU for
now
Addresses:
[#10985](https://github.com/langchain-ai/langchain/issues/10985)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This is an update to OctoAI LLM provider that adds
support for llama2 endpoints hosted on OctoAI and updates MPT-7b url
with the current one.
@baskaryan
Thanks!
---------
Co-authored-by: ML Wiz <bassemgeorgi@gmail.com>
**Description:** I noticed the metadata returned by the url_selenium
loader was missing several values included by the web_base loader. (The
former returned `{source: ...}`, the latter returned `{source: ...,
title: ..., description: ..., language: ...}`.) This change fixes it so
both loaders return all 4 key value pairs.
Files have been properly formatted and all tests are passing. Note,
however, that I am not much of a python expert, so that whole "Adding
the imports inside the code so that tests pass" thing seems weird to me.
Please LMK if I did anything wrong.
- **Description:** Assigning the custom_llm_provider to the default
params function so that it will be passed to the litellm
- **Issue:** Even though the custom_llm_provider argument is being
defined it's not being assigned anywhere in the code and hence its not
being passed to litellm, therefore any litellm call which uses the
custom_llm_provider as required parameter is being failed. This
parameter is mainly used by litellm when we are doing inference via
Custom API server.
https://docs.litellm.ai/docs/providers/custom_openai_proxy
- **Dependencies:** No dependencies are required
@krrishdholakia , @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
There is some invalid link in open ai platform
[docs](https://python.langchain.com/docs/integrations/platforms/openai).
So i fixed it to valid links.
- `/docs/integrations/chat_models/openai` ->
`/docs/integrations/chat/openai`
- `/docs/integrations/chat_models/azure_openai` ->
`/docs/integrations/chat/azure_chat_openai`
Thanks! ☺️
- **Description:** This PR introduces a new LLM and Retriever API to
https://arcee.ai for the python client
- **Issue:** implements the integrations as requested in #11578 ,
- **Dependencies:** no dependencies are required,
- **Tag maintainer:** @hwchase17
- **Twitter handle:** shwooobham
**✅ `make format`, `make lint` and `make test` runs locally.**
```shell
=========== 1245 passed, 277 skipped, 20 warnings in 16.26s ===========
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run black . --check
All done! ✨🍰✨
1818 files would be left unchanged.
[ "." = "" ] || poetry run mypy .
Success: no issues found in 1815 source files
[ "." = "" ] || poetry run black .
All done! ✨🍰✨
1818 files left unchanged.
[ "." = "" ] || poetry run ruff --select I --fix .
poetry run codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml -w
```
**Contributions**
1. Arcee (langchain/llms), ArceeRetriever (langchain/retrievers),
ArceeWrapper (langchain/utilities)
2. docs for Arcee (llms/arcee.py) and
ArceeRetriever(retrievers/arcee.py)
3.
cc: @jacobsolawetz @ben-epstein
---------
Co-authored-by: Shubham <shubham@sORo.local>
jinja2 templates are not sandboxed and are at risk for arbitrary code
execution. To mitigate this risk:
- We no longer support loading jinja2-formatted prompt template files.
- `PromptTemplate` with jinja2 may still be constructed manually, but
the class carries a security warning reminding the user to not pass
untrusted input into it.
Resolves#4394.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** CohereRerank is missing `cohere_api_key` as a field and
since extras are forbidden, it is not possible to pass-in the key. The
only way is to use an env variable named `COHERE_API_KEY`.
For example, if trying to create a compressor like this:
```python
cohere_api_key = "......Cohere api key......"
compressor = CohereRerank(cohere_api_key=cohere_api_key)
```
you will get the following error:
```
File "/langchain/.venv/lib/python3.10/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for CohereRerank
cohere_api_key
extra fields not permitted (type=value_error.extra)
```
- **Description:** Fixes minor typo for the
query_sql_database_tool_description in the db toolkit
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @nfcampos
- **Twitter handle:** N/A
LangChain relies on NumPy to compute cosine distances, which becomes a
bottleneck with the growing dimensionality and number of embeddings. To
avoid this bottleneck, in our libraries at
[Unum](https://github.com/unum-cloud), we have created a specialized
package - [SimSIMD](https://github.com/ashvardanian/simsimd), that knows
how to use newer hardware capabilities. Compared to SciPy and NumPy, it
reaches 3x-200x performance for various data types. Since publication,
several LangChain users have asked me if I can integrate it into
LangChain to accelerate their workflows, so here I am 🤗
## Benchmarking
To conduct benchmarks locally, run this in your Jupyter:
```py
import numpy as np
import scipy as sp
import simsimd as simd
import timeit as tt
def cosine_similarity_np(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity
def cosine_similarity_sp(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
return 1 - sp.spatial.distance.cdist(X, Y, metric='cosine')
def cosine_similarity_simd(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
return 1 - simd.cdist(X, Y, metric='cosine')
X = np.random.randn(1, 1536).astype(np.float32)
Y = np.random.randn(1, 1536).astype(np.float32)
repeat = 1000
print("NumPy: {:,.0f} ops/s, SciPy: {:,.0f} ops/s, SimSIMD: {:,.0f} ops/s".format(
repeat / tt.timeit(lambda: cosine_similarity_np(X, Y), number=repeat),
repeat / tt.timeit(lambda: cosine_similarity_sp(X, Y), number=repeat),
repeat / tt.timeit(lambda: cosine_similarity_simd(X, Y), number=repeat),
))
```
## Results
I ran this on an M2 Pro Macbook for various data types and different
number of rows in `X` and reformatted the results as a table for
readability:
| Data Type | NumPy | SciPy | SimSIMD |
| :--- | ---: | ---: | ---: |
| `f32, 1` | 59,114 ops/s | 80,330 ops/s | 475,351 ops/s |
| `f16, 1` | 32,880 ops/s | 82,420 ops/s | 650,177 ops/s |
| `i8, 1` | 47,916 ops/s | 115,084 ops/s | 866,958 ops/s |
| `f32, 10` | 40,135 ops/s | 24,305 ops/s | 185,373 ops/s |
| `f16, 10` | 7,041 ops/s | 17,596 ops/s | 192,058 ops/s |
| `f16, 10` | 21,989 ops/s | 25,064 ops/s | 619,131 ops/s |
| `f32, 100` | 3,536 ops/s | 3,094 ops/s | 24,206 ops/s |
| `f16, 100` | 900 ops/s | 2,014 ops/s | 23,364 ops/s |
| `i8, 100` | 5,510 ops/s | 3,214 ops/s | 143,922 ops/s |
It's important to note that SimSIMD will underperform if both matrices
are huge.
That, however, seems to be an uncommon usage pattern for LangChain
users.
You can find a much more detailed performance report for different
hardware models here:
- [Apple M2
Pro](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-1-performance-on-apple-m2-pro).
- [4th Gen Intel Xeon
Platinum](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-2-performance-on-4th-gen-intel-xeon-platinum-8480).
- [AWS Graviton
3](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-3-performance-on-aws-graviton-3).
## Additional Notes
1. Previous version used `X = np.array(X)`, to repackage lists of lists.
It's an anti-pattern, as it will use double-precision floating-point
numbers, which are slow on both CPUs and GPUs. I have replaced it with
`X = np.array(X, dtype=np.float32)`, but a more selective approach
should be discussed.
2. In numerical computations, it's recommended to explicitly define
tolerance levels, which were previously avoided in
`np.allclose(expected, actual)` calls. For now, I've set absolute
tolerance to distance computation errors as 0.01: `np.allclose(expected,
actual, atol=1e-2)`.
---
- **Dependencies:** adds `simsimd` dependency
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @ashvardanian
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
#### Description
This PR adds the option to specify additional metadata columns in the
CSVLoader beyond just `Source`.
The current CSV loader includes all columns in `page_content` and if we
want to have columns specified for `page_content` and `metadata` we have
to do something like the below.:
```
csv = pd.read_csv(
"path_to_csv"
).to_dict("records")
documents = [
Document(
page_content=doc["content"],
metadata={
"last_modified_by": doc["last_modified_by"],
"point_of_contact": doc["point_of_contact"],
}
) for doc in csv
]
```
#### Usage
Example Usage:
```
csv_test = CSVLoader(
file_path="path_to_csv",
metadata_columns=["last_modified_by", "point_of_contact"]
)
```
Example CSV:
```
content, last_modified_by, point_of_contact
"hello world", "Person A", "Person B"
```
Example Result:
```
Document {
page_content: "hello world"
metadata: {
row: '0',
source: 'path_to_csv',
last_modified_by: 'Person A',
point_of_contact: 'Person B',
}
```
---------
Co-authored-by: Ben Chello <bchello@dropbox.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Fixes the comments in the ConvoOutputParser. Because
the \\\\ is escaping a single \\, they render something like:
`"action_input": string \ The input to the action` in the prompt.
Changing this to \\\\\\\\ lets it escape two slashes so that it renders
a proper comment: `"action_input": string \\ The input to the action`
- **Issue:** N/A
- **Dependencies:**
- **Tag maintainer:** @hwchase17
- **Twitter handle:**
**Description**:
- Added Momento Vector Index (MVI) as a vector store provider. This
includes an implementation with docstrings, integration tests, a
notebook, and documentation on the docs pages.
- Updated the Momento dependency in pyproject.toml and the lock file to
enable access to MVI.
- Refactored the Momento cache and chat history session store to prefer
using "MOMENTO_API_KEY" over "MOMENTO_AUTH_TOKEN" for consistency with
MVI. This change is backwards compatible with the previous "auth_token"
variable usage. Updated the code and tests accordingly.
**Dependencies**:
- Updated Momento dependency in pyproject.toml.
**Testing**:
- Run the integration tests with a Momento API key. Get one at the
[Momento Console](https://console.gomomento.com) for free. MVI is
available in AWS us-west-2 with a superuser key.
- `MOMENTO_API_KEY=<your key> poetry run pytest
tests/integration_tests/vectorstores/test_momento_vector_index.py`
**Tag maintainer:**
@eyurtsev
**Twitter handle**:
Please mention @momentohq for this addition to langchain. With the
integration of Momento Vector Index, Momento caching, and session store,
Momento provides serverless support for the core langchain data needs.
Also mention @mlonml for the integration.
**Description**
This PR adds an additional Example to the Redis integration
documentation. [The
example](https://learn.microsoft.com/azure/azure-cache-for-redis/cache-tutorial-vector-similarity)
is a step-by-step walkthrough of using Azure Cache for Redis and Azure
OpenAI for vector similarity search, using LangChain extensively
throughout.
**Issue**
Nothing specific, just adding an additional example.
**Dependencies**
None.
**Tag Maintainer**
Tagging @hwchase17 :)
Wraps every callback handler method in error handlers to avoid breaking
users' programs when an error occurs inside the handler.
Thanks @valdo99 for the suggestion 🙂
[The `duckduckgo-search` v3.9.2 was removed from
PyPi](https://pypi.org/project/duckduckgo-search/#history). That breaks
the build.
- **Description:** refreshes the Poetry dependency to v3.9.3
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ashvardanian
updating query constructor and self query retriever to
- make it easier to pass in examples
- validate attributes used in query
- remove invalid parts of query
- make it easier to get + edit prompt
- make query constructor a runnable
- make self query retriever use as runnable
- keep alias for RunnableMap
- update docs to use RunnableParallel and RunnablePassthrough.assign
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Add support for a SQLRecordManager in async
environments. It includes the creation of `RecorManagerAsync` abstract
class.
- **Issue:** None
- **Dependencies:** Optional `aiosqlite`.
- **Tag maintainer:** @nfcampos
- **Twitter handle:** @jvelezmagic
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Use `.copy()` to fix the bug that the first `llm_inputs` element is
overwritten by the second `llm_inputs` element in `intermediate_steps`.
***Problem description:***
In [line 127](
c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L127C17-L127C17)),
the `llm_inputs` of the sql generation step is appended as the first
element of `intermediate_steps`:
```
intermediate_steps.append(llm_inputs) # input: sql generation
```
However, `llm_inputs` is a mutable dict, it is updated in [line
179](https://github.com/langchain-ai/langchain/blob/master/libs/experimental/langchain_experimental/sql/base.py#L179)
for the final answer step:
```
llm_inputs["input"] = input_text
```
Then, the updated `llm_inputs` is appended as another element of
`intermediate_steps` in [line
180](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L180)):
```
intermediate_steps.append(llm_inputs) # input: final answer
```
As a result, the final `intermediate_steps` returned in [line
189](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L189C43-L189C43))
actually contains two same `llm_inputs` elements, i.e., the `llm_inputs`
for the sql generation step overwritten by the one for final answer step
by mistake. Users are not able to get the actual `llm_inputs` for the
sql generation step from `intermediate_steps`
Simply calling `.copy()` when appending `llm_inputs` to
`intermediate_steps` can solve this problem.
### Description
This pull request involves modifications to the extraction method for
abstracts/summaries within the PubMed utility. A condition has been
added to verify the presence of unlabeled abstracts. Now an abstract
will be extracted even if it does not have a subtitle. In addition, the
extraction of the abstract was extended to books.
### Issue
The PubMed utility occasionally returns an empty result when extracting
abstracts from articles, despite the presence of an abstract for the
paper on PubMed. This issue arises due to the varying structure of
articles; some articles follow a "subtitle/label: text" format, while
others do not include subtitles in their abstracts. An example of the
latter case can be found at:
[https://pubmed.ncbi.nlm.nih.gov/37666905/](url)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
SelfQueryRetriever is missing async support, so I am adding it.
I also removed deprecated predict_and_parse method usage here, and added
some tests.
### Issue
N/A
### Tag maintainer
Not yet
### Twitter handle
N/A
**Description**
It is for #10423 that it will be a useful feature if we can extract
images from pdf and recognize text on them. I have implemented it with
`PyPDFLoader`, `PyPDFium2Loader`, `PyPDFDirectoryLoader`,
`PyMuPDFLoader`, `PDFMinerLoader`, and `PDFPlumberLoader`.
[RapidOCR](https://github.com/RapidAI/RapidOCR.git) is used to recognize
text on extracted images. It is time-consuming for ocr so a boolen
parameter `extract_images` is set to control whether to extract and
recognize. I have tested the time usage for each parser on my own laptop
thinkbook 14+ with AMD R7-6800H by unit test and the result is:
| extract_images | PyPDFParser | PDFMinerParser | PyMuPDFParser |
PyPDFium2Parser | PDFPlumberParser |
| ------------- | ------------- | ------------- | ------------- |
------------- | ------------- |
| False | 0.27s | 0.39s | 0.06s | 0.08s | 1.01s |
| True | 17.01s | 20.67s | 20.32s | 19,75s | 20.55s |
**Issue**
#10423
**Dependencies**
rapidocr_onnxruntime in
[RapidOCR](https://github.com/RapidAI/RapidOCR/tree/main)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: The previous version of the MarkdownHeaderTextSplitter
did not take into account the possibility of '#' appearing within code
blocks, which caused segmentation anomalies in these situations. This PR
has fixed this issue.
- Issue:
- Dependencies: No
- Tag maintainer:
- Twitter handle:
cc @baskaryan @eyurtsev @rlancemartin
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: This PR adds a new chain `rl_chain.PickBest` for learned
prompt variable injection, detailed description and usage can be found
in the example notebook added. It essentially adds a
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) layer
before the llm call in order to learn or personalize prompt variable
selections.
Most of the code is to make the API simple and provide lots of defaults
and data wrangling that is needed to use Vowpal Wabbit, so that the user
of the chain doesn't have to worry about it.
- Dependencies:
[vowpal-wabbit-next](https://pypi.org/project/vowpal-wabbit-next/),
- sentence-transformers (already a dep)
- numpy (already a dep)
- tagging @ataymano who contributed to this chain
- Tag maintainer: @baskaryan
- Twitter handle: @olgavrou
Added example notebook and unit tests
Replace this entire comment with:
- **Description:** minor update to constructor to allow for
specification of "source"
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ofermend
# Description
Attempts to fix RedisCache for ChatGenerations using `loads` and `dumps`
used in SQLAlchemy cache by @hwchase17 . this is better than pickle
dump, because this won't execute any arbitrary code during
de-serialisation.
# Issues
#7722 & #8666
# Dependencies
None, but removes the warning introduced in #8041 by @baskaryan
Handle: @jaikanthjay46
- Description: Updated output parser for mrkl to remove any
hallucination actions after the final answer; this was encountered when
using Anthropic claude v2 for planning; reopening PR with updated unit
tests
- Issue: #10278
- Dependencies: N/A
- Twitter handle: @johnreynolds
Description: this PR changes the `ArcGISLoader` to set
`return_all_records` to `False` when `result_record_count` is provided
as a keyword argument. Previously, `return_all_records` was `True` by
default and this made the API ignore `result_record_count`.
Issue: `ArcGISLoader` would ignore `result_record_count` unless user
also passed `return_all_records=False`.
- **Description:** This commit corrects a minor typo in the
documentation. It changes "frum" to "from" in the sentence: "The results
from search are passed back to the LLM for synthesis into an answer" in
the file `docs/extras/use_cases/more/agents/agents.ipynb`. This typo fix
enhances the clarity and accuracy of the documentation.
- **Tag maintainer:** @baskaryan
- **Description:** Fix the `PyMuPDFLoader` to accept `loader_kwargs`
from the document loader's `loader_kwargs` option. This provides more
flexibility in formatting the output from documents.
- **Issue:** The `loader_kwargs` is not passed into the `load` method
from the document loader, which limits configuration options.
- **Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I have restructured the code to ensure uniform handling of ImportError.
In place of previously used ValueError, I've adopted the standard
practice of raising ImportError with explanatory messages. This
modification enhances code readability and clarifies that any problems
stem from module importation.
- **Description:** Just docs related to csharp code splitter
- **Issue:** It's related to a request made by @baskaryan in a comment
on my previous PR #10350
- **Dependencies:** None
- **Twitter handle:** @ather19
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
Add instance anonymization - if `John Doe` will appear twice in the
text, it will be treated as the same entity.
The difference between `PresidioAnonymizer` and
`PresidioReversibleAnonymizer` is that only the second one has a
built-in memory, so it will remember anonymization mapping for multiple
texts:
```
>>> anonymizer = PresidioAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Brett Russell. Hi Brett Russell!'
```
```
>>> anonymizer = PresidioReversibleAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
```
### Twitter handle
@deepsense_ai / @MaksOpp
### Tag maintainer
@baskaryan @hwchase17 @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
PyPDF does not chunk at the character level to my understanding.
Description: PyPDF does not chunk at the character level, but instead
breaks up content by page. Fixup comment
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: There are cases when the output from the LLM comes fine
(i.e. function_call["arguments"] is a valid JSON object), but it does
not contain the key "actions". So I split the validation in 2 steps:
loading arguments as JSON and then checking for "actions" in it.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Google Cloud Enterprise Search was renamed to Vertex AI
Search
-
https://cloud.google.com/blog/products/ai-machine-learning/vertex-ai-search-and-conversation-is-now-generally-available
- This PR updates the documentation and Retriever class to use the new
terminology.
- Changed retriever class from `GoogleCloudEnterpriseSearchRetriever` to
`GoogleVertexAISearchRetriever`
- Updated documentation to specify that `extractive_segments` requires
the new [Enterprise
edition](https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#enterprise-features)
to be enabled.
- Fixed spelling errors in documentation.
- Change parameter for Retriever from `search_engine_id` to
`data_store_id`
- When this retriever was originally implemented, there was no
distinction between a data store and search engine, but now these have
been split.
- Fixed an issue blocking some users where the api_endpoint can't be set
### Description
When using Weaviate Self-Retrievers, certain common filter comparators
generated by user queries were unimplemented, resulting in errors. This
PR implements some of them. All linting and format commands have been
run and tests passed.
### Issue
#10474
### Dependencies
timestamp module
---------
Co-authored-by: Patrick Randell <prandell@deloitte.com.au>
**Description:** Previously if the access to Azure Cognitive Search was
not done via an API key, the default credential was called which doesn't
allow to use an interactive login. I simply added the option to use
"INTERACTIVE" as a key name, and this will launch a login window upon
initialization of the AzureSearch object.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
I was hoping this would pick up numpy 1.26, which is required to support
the new Python 3.12 release, but it didn't. It seems that some
transitive dependency requirement on numpy is preventing that, and the
highest we can currently go is 1.24.x.
But to find this out required a 15min `poetry lock`, so I figured we
might as well upgrade the dependencies we can and hopefully make the
next dependency upgrade a bit smaller.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
There are several pages in `integrations/providers/more` that belongs to
Google and AWS `integrations/providers`.
- moved content of these pages into the Google and AWS
`integrations/providers` pages
- removed these individual pages
Consolidating to a single README for now, will be easier to maintain we
can differentiate between poetry and pip later. Does not seem critical.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
First version of CLI command to create a new langchain project template
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Description
Currently SQLAlchemy >=1.4.0 is a hard requirement. We are unable to run
`from langchain.vectorstores import FAISS` with SQLAlchemy <1.4.0 due to
top-level imports, even if we aren't even using parts of the library
that use SQLAlchemy. See Testing section for repro. Let's make it so
that langchain is still compatible with SQLAlchemy <1.4.0, especially if
we aren't using parts of langchain that require it.
The main conflict is that SQLAlchemy removed `declarative_base` from
`sqlalchemy.ext.declarative` in 1.4.0 and moved it to `sqlalchemy.orm`.
We can fix this by try-catching the import. This is the same fix as
applied in https://github.com/langchain-ai/langchain/pull/883.
(I see that there seems to be some refactoring going on about isolating
dependencies, e.g.
c87e9fb2ce,
so if this issue will be eventually fixed by isolating imports in
langchain.vectorstores that also works).
## Issue
I can't find a matching issue.
## Dependencies
No additional dependencies
## Maintainer
@hwchase17 since you reviewed
https://github.com/langchain-ai/langchain/pull/883
## Testing
I didn't add a test, but I manually tested this.
1. Current failure:
```
langchain==0.0.305
sqlalchemy==1.3.24
```
``` python
python -i
>>> from langchain.vectorstores import FAISS
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/pay/src/zoolander/vendor3/lib/python3.8/site-packages/langchain/vectorstores/__init__.py", line 58, in <module>
from langchain.vectorstores.pgembedding import PGEmbedding
File "/pay/src/zoolander/vendor3/lib/python3.8/site-packages/langchain/vectorstores/pgembedding.py", line 10, in <module>
from sqlalchemy.orm import Session, declarative_base, relationship
ImportError: cannot import name 'declarative_base' from 'sqlalchemy.orm' (/pay/src/zoolander/vendor3/lib/python3.8/site-packages/sqlalchemy/orm/__init__.py)
```
2. This fix:
```
langchain==<this PR>
sqlalchemy==1.3.24
```
``` python
python -i
>>> from langchain.vectorstores import FAISS
<succeeds>
```
- Make logs a dictionary keyed by run name (and counter for repeats)
- Ensure no output shows up in lc_serializable format
- Fix up repr for RunLog and RunLogPatch
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- default MessagesPlaceholder one to list of messages
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Removes human prompt prefix before system message for anthropic models
Bedrock anthropic api enforces that Human and Assistant messages must be
interleaved (cannot have same type twice in a row). We currently treat
System Messages as human messages when converting messages -> string
prompt. Our validation when using Bedrock/BedrockChat raises an error
when this happens. For ChatAnthropic we don't validate this so no error
is raised, but perhaps the behavior is still suboptimal
- **Description:** add a paragraph to the GoogleDriveLoader doc on how
to bypass errors on authentication.
For some reason, specifying credential path via `credentials_path`
constructor parameter when creating `GoogleDriveLoader` makes it so that
the oAuth screen is never showing up when first using GoogleDriveLoader.
Instead, the `RefreshError: ('invalid_grant: Bad Request', {'error':
'invalid_grant', 'error_description': 'Bad Request'})` error happens.
Setting it via `os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ...`
solves the problem. Also, `token_path` constructor parameter is
mandatory, otherwise another error happens when trying to `load()` for
the first time.
These errors are tricky and time-consuming to figure out, so I believe
it's good to mention them in the docs.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Added support for Cohere command model via Bedrock.
With this change it is now possible to use the `cohere.command-text-v14`
model via Bedrock API.
About Streaming: Cohere model outputs 2 additional chunks at the end of
the text being generated via streaming: a chunk containing the text
`<EOS_TOKEN>`, and a chunk indicating the end of the stream. In this
implementation I chose to ignore both chunks. An alternative solution
could be to replace `<EOS_TOKEN>` with `\n`
Tests: manually tested that the new model work with both
`llm.generate()` and `llm.stream()`.
Tested with `temperature`, `p` and `stop` parameters.
**Issue:** #11181
**Dependencies:** No new dependencies
**Tag maintainer:** @baskaryan
**Twitter handle:** mangelino
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Similar in concept to the `MarkdownHeaderTextSplitter`, the
`HTMLHeaderTextSplitter` is a "structure-aware" chunker that splits text
at the element level and adds metadata for each header "relevant" to any
given chunk. It can return chunks element by element or combine elements
with the same metadata, with the objectives of (a) keeping related text
grouped (more or less) semantically and (b) preserving context-rich
information encoded in document structures. It can be used with other
text splitters as part of a chunking pipeline.
Dependency: lxml python package
Maintainer: @hwchase17
Twitter handle: @MartinZirulnik
---------
Co-authored-by: PresidioVantage <github@presidiovantage.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Doc corrections and resolve notebook rendering issue
on GH
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @baskaryan
- **Twitter handle:** `@isaacchung1217`
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
Examples in the "Select by similarity" section were not really
highlighting capabilities of similarity search.
E.g. "# Input is a measurement, so should select the tall/short example"
was still outputting the "mood" example.
I tweaked the inputs a bit and fixed the examples (checking that those
are indeed what the search outputs).
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
I've refactored the code to ensure that ImportError is consistently
handled. Instead of using ValueError as before, I've now followed the
standard practice of raising ImportError along with clear and
informative error messages. This change enhances the code's clarity and
explicitly signifies that any problems are associated with module
imports.
- **Description:** Fix typo about `RetrievalQAWithSourceChain` ->
`RetrievalQAWithSourcesChain`
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Adds Kotlin language to `TextSplitter`
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
For external libraries that depend on `type_to_cls_dict`, adds a
workaround to continue using the old format.
Recommend people use `get_type_to_cls_dict()` instead and only resolve
the imports when they're used.
- **Description:** use term keyword according to the official python doc
glossary, see https://docs.python.org/3/glossary.html
- **Issue:** not applicable
- **Dependencies:** not applicable
- **Tag maintainer:** @hwchase17
- **Twitter handle:** vreyespue
The previous API of the `_execute()` function had a few rough edges that
this PR addresses:
- The `fetch` argument was type-hinted as being able to take any string,
but any string other than `"all"` or `"one"` would `raise ValueError`.
The new type hints explicitly declare that only those values are
supported.
- The return type was type-hinted as `Sequence` but using `fetch =
"one"` would actually return a single result item. This was incorrectly
suppressed using `# type: ignore`. We now always return a list.
- Using `fetch = "one"` would return a single item if data was found, or
an empty *list* if no data was found. This was confusing, and we now
always return a list to simplify.
- The return type was `Sequence[Any]` which was a bit difficult to use
since it wasn't clear what one could do with the returned rows. I'm
making the new type `Dict[str, Any]` that corresponds to the column
names and their values in the query.
I've updated the use of this method elsewhere in the file to match the
new behavior.
continuation of PR #8550
@hwchase17 please see and merge. And also close the PR #8550.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
therefor -> therefore
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Instead of:
```
client = Client()
with collect_runs() as cb:
chain.invoke()
run = cb.traced_runs[0]
client.get_run_url(run)
```
it's
```
with tracing_v2_enabled() as cb:
chain.invoke()
cb.get_run_url()
```
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Similarly to Vertex classes, PaLM classes weren't marked as
serialisable. Should be working fine with LangSmith.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This PR uses 2 dedicated LangChain warnings types for deprecations
(mirroring python's built in deprecation and pending deprecation
warnings).
These deprecation types are unslienced during initialization in
langchain achieving the same default behavior that we have with our
current warnings approach. However, because these warnings have a
dedicated type, users will be able to silence them selectively (I think
this is strictly better than our current handling of warnings).
The PR adds a deprecation warning to llm symbolic math.
---------
Co-authored-by: Predrag Gruevski <2348618+obi1kenobi@users.noreply.github.com>
- Also move RunnableBranch to its own file
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
### Description
When I was reading the document, I found that some examples had extra
spaces and violated "Unexpected spaces around keyword / parameter equals
(E251)" in pep8. I removed these extra spaces.
### Tag maintainer
@eyurtsev
### Twitter handle
[billvsme](https://twitter.com/billvsme)
### Description
renamed several repository links from `hwchase17` to `langchain-ai`.
### Why
I discovered that the README file in the devcontainer contains an old
repository name, so I took the opportunity to rename the old repository
name in all files within the repository, excluding those that do not
require changes.
### Dependencies
none
### Tag maintainer
@baskaryan
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
updated `YouTube` and `tutorial` videos with new links.
Removed couple of duplicates.
Reordered several links by view counters
Some formatting: emphasized the names of products
- updated titles and descriptions of the `integrations/memory` notebooks
into consistent and laconic format;
- removed
`docs/extras/integrations/memory/motorhead_memory_managed.ipynb` file as
a duplicate of the
`docs/extras/integrations/memory/motorhead_memory.ipynb`;
- added `integrations/providers` Integration Cards for `dynamodb`,
`motorhead`.
- updated `integrations/providers/redis.mdx` with links
- renamed several notebooks; updated `vercel.json` to reroute new names.
**Description:** Adds streaming and many more sampling parameters to the
DeepSparse interface
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Fix a code injection vuln by adding one more keyword
into the filtering list
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:**
- **Twitter handle:**
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Passes through dict input and assigns additional keys
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<img width="1728" alt="Screenshot 2023-09-28 at 20 15 01"
src="https://github.com/langchain-ai/langchain/assets/56902/ed0644c3-6db7-41b9-9543-e34fce46d3e5">
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Enviroment -> Environment
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Suppress warnings in interactive environments that can arise from users
relying on tab completion (without even using deprecated modules).
jupyter seems to filter warnings by default (at least for me), but
ipython surfaces them all
- **Description:** A Document Loader for MongoDB
- **Issue:** n/a
- **Dependencies:** Motor, the async driver for MongoDB
- **Tag maintainer:** n/a
- **Twitter handle:** pigpenblue
Note that an initial mongodb document loader was created 4 months ago,
but the [PR ](https://github.com/langchain-ai/langchain/pull/4285)was
never pulled in. @leo-gan had commented on that PR, but given it is
extremely far behind the master branch and a ton has changed in
Langchain since then (including repo name and structure), I rewrote the
branch and issued a new PR with the expectation that the old one can be
closed.
Please reference that old PR for comments/context, but it can be closed
in favor of this one. Thanks!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
```
ChatPromptTemplate(messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a nice assistant.')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], template='{question}'))])
| RunnableLambda(lambda x: x)
| {
chat: FakeListChatModel(responses=["i'm a chatbot"]),
llm: FakeListLLM(responses=["i'm a textbot"])
}
```
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
be able to use langchain with other version than tiktoken 0.3.3 i.e
0.5.1
- **Issue:**
cannot installed the conda-forge version since it applied all optional
dependency:
https://github.com/conda-forge/langchain-feedstock/pull/85
replace "^0.3.2" by "">=0.3.2,<0.6.0" and "^3.9" by python=">=3.9"
Tested with python 3.10, langchain=0.0.288 and tiktoken==0.5.0
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
As of now, when instantiating and during inference, `LlamaCppEmbeddings`
outputs (a lot of) verbose when controlled from Langchain binding - it
is a bit annoying when computing the embeddings of long documents, for
instance.
This PR adds `verbose` for `LlamaCppEmbeddings` objects to be able
**not** to print the verbose of the model to `stderr`. It is natively
supported by `llama-cpp-python` and directly passed to the library – the
PR is hence very small.
The value of `verbose` is `True` by default, following the way it is
defined in [`LlamaCpp` (`llamacpp.py`
#L136-L137)](c87e9fb2ce/libs/langchain/langchain/llms/llamacpp.py (L136-L137))
## Issue
_No issue linked_
## Dependencies
_No additional dependency needed_
## To see it in action
```python
from langchain.embeddings import LlamaCppEmbeddings
MODEL_PATH = "<path_to_gguf_file>"
if __name__ == "__main__":
llm_embeddings = LlamaCppEmbeddings(
model_path=MODEL_PATH,
n_gpu_layers=1,
n_batch=512,
n_ctx=2048,
f16_kv=True,
verbose=False,
)
```
Co-authored-by: Bagatur <baskaryan@gmail.com>
Based on the customers' requests for native langchain integration,
SearchApi is ready to invest in AI and LLM space, especially in
open-source development.
- This is our initial PR and later we want to improve it based on
customers' and langchain users' feedback. Most likely changes will
affect how the final results string is being built.
- We are creating similar native integration in Python and JavaScript.
- The next plan is to integrate into Java, Ruby, Go, and others.
- Feel free to assign @SebastjanPrachovskij as a main reviewer for any
SearchApi-related searches. We will be glad to help and support
langchain development.
- **Description:**
- Make running integration test for opensearch easy
- Provide a way to use different text for embedding: refer to #11002 for
more of the use case and design decision.
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
Both black and mypy expect a list of files or directories as input.
As-is the Makefile computes a list files changed relative to the last
commit; these are passed to black and mypy in the `format_diff` and
`lint_diff` targets. This is done by way of the Makefile variable
`PYTHON_FILES`. This is to save time by skipping running mypy and black
over the whole source tree.
When no changes have been made, this variable is empty, so the call to
black (and mypy) lacks input files. The call exits with error causing
the Makefile target to error out with:
```bash
$ make format_diff
poetry run black
Usage: black [OPTIONS] SRC ...
One of 'SRC' or 'code' is required.
make: *** [format_diff] Error 1
```
This is unexpected and undesirable, as the naive caller (that's me! 😄 )
will think something else is wrong. This commit smooths over this by
short circuiting when `PYTHON_FILES` is empty.
- **Description:** The types of 'destination_chains' and 'default_chain'
in 'MultiPromptChain' were changed from 'LLMChain' to 'Chain'. and
removed variables declared overlapping with the parent class
- **Issue:** When a class that inherits only Chain and not LLMChain,
such as 'SequentialChain' or 'RetrievalQA', is entered in
'destination_chains' and 'default_chain', a pydantic validation error is
raised.
- - codes
```
retrieval_chain = ConversationalRetrievalChain(
retriever=doc_retriever,
combine_docs_chain=combine_docs_chain,
question_generator=question_gen_chain,
)
destination_chains = {
'retrieval': retrieval_chain,
}
main_chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
verbose=True,
)
```
✅ `make format`, `make lint` and `make test`
## Description
Expanded the upper bound for `networkx` dependency to allow installation
of latest stable version. Tested the included sample notebook with
version 3.1, and all steps ran successfully.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds support for the `$vectorSearch` operator for
MongoDBAtlasVectorSearch, which was announced at .Local London
(September 26th, 2023). This change maintains breaks compatibility
support for the existing `$search` operator used by the original
integration (https://github.com/langchain-ai/langchain/pull/5338) due to
incompatibilities in the Atlas search implementations.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
We noticed that as we have been moving developers to the new
`ElasticsearchStore` implementation, we want to keep the
ElasticVectorSearch class still available as developers transition
slowly to the new store.
To speed up this process, I updated the blurb giving them a better
recommendation of why they should use ElasticsearchStore.
Description: Add "source" metadata to OutlookMessageLoader
This pull request adds the "source" metadata to the OutlookMessageLoader
class in the load method. The "source" metadata is required when
indexing with RecordManager in order to sync the index documents with a
source.
Issue: None
Dependencies: None
Twitter handle: @ATelders
Co-authored-by: Arthur Telders <arthur.telders@roquette.com>
- **Description:** Bedrock updated boto service name to
"bedrock-runtime" for the InvokeModel and InvokeModelWithResponseStream
APIs. This update also includes new model identifiers for Titan text,
embedding and Anthropic.
Co-authored-by: Mani Kumar Adari <maniadar@amazon.com>
The key of stopping strings used in text-generation-webui api is
[`stopping_strings`](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py#L51),
not `stop`.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Fixed Typo Error in Update get_started.mdx file by addressing a minor
typographical error.
This improvement enhances the readability and correctness of the
notebook, making it easier for users to understand and follow the
demonstration. The commit aims to maintain the quality and accuracy of
the content within the repository.
please review the change at your convenience.
@baskaryan , @hwaking
- **Description:** Changed data type from `text` to `json` in xata for
improved performance. Also corrected the `additionalKwargs` key in the
`messages()` function to `additional_kwargs` to adhere to `BaseMessage`
requirements.
- **Issue:** The Chathisroty.messages() will return {} of
`additional_kwargs`, as the name is wrong for `additionalKwargs` .
- **Dependencies:** N/A
- **Tag maintainer:** N/A
- **Twitter handle:** N/A
My PR is passing linting and testing before submitting.
This adds `input_schema` and `output_schema` properties to all
runnables, which are Pydantic models for the input and output types
respectively. These are inferred from the structure of the Runnable as
much as possible, the only manual typing needed is
- optionally add type hints to lambdas (which get translated to
input/output schemas)
- optionally add type hint to RunnablePassthrough
These schemas can then be used to create JSON Schema descriptions of
input and output types, see the tests
- [x] Ensure no InputType and OutputType in our classes use abstract
base classes (replace with union of subclasses)
- [x] Implement in BaseChain and LLMChain
- [x] Implement in RunnableBranch
- [x] Implement in RunnableBinding, RunnableMap, RunnablePassthrough,
RunnableEach, RunnableRouter
- [x] Implement in LLM, Prompt, Chat Model, Output Parser, Retriever
- [x] Implement in RunnableLambda from function signature
- [x] Implement in Tool
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds LangServe package
* Integrate Runnables with Fast API creating Server and a RemoteRunnable
client
* Support multiple runnables for a given server
* Support sync/async/batch/abatch/stream/astream/astream_log on the
client side (using async implementations on server)
* Adds validation using annotations (relying on pydantic under the hood)
-- this still has some rough edges -- e.g., open api docs do NOT
generate correctly at the moment
* Uses pydantic v1 namespace
Known issues: type translation code doesn't handle a lot of types (e.g.,
TypedDicts)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
The current behaviour just calls the handler without awaiting the
coroutine, which results in exceptions/warnings, and obviously doesn't
actually execute whatever the callback handler does
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Prompt wrapping requirements have been implemented on
the service side of AWS Bedrock for the Anthropic Claude models to
provide parity between Anthropic's offering and Bedrock's offering. This
overnight change broke most existing implementations of Claude, Bedrock
and Langchain. This PR just steals the the Anthropic LLM implementation
to enforce alias/role wrapping and implements it in the existing
mechanism for building the request body. This has also been tested to
fix the chat_model implementation as well. Happy to answer any further
questions or make changes where necessary to get things patched and up
to PyPi ASAP, TY.
- **Issue:** No issue opened at the moment, though will update when
these roll in.
- **Dependencies:** None
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description:
NotionDB supports a number of common property types. I have found three
common types that are not included in notiondb loader. When programs
loaded them with notiondb, which will cause some metadata information
not to be passed to langchain. Therefore, I added three common types:
- date
- created_time
- last_edit_time.
### Issue:
no
### Dependencies:
No dependencies added :)
### Tag maintainer:
@rlancemartin, @eyurtsev
### Twitter handle:
@BJTUTC
Reverts langchain-ai/langchain#8610
this is actually an oversight - this merges all dfs into one df. we DO
NOT want to do this - the idea is we work and manipulate multiple dfs
This removes the use of the intermediate df list and directly
concatenates the dataframes if path is a list of strings. The pd.concat
function combines the dataframes efficiently, making it faster and more
memory-efficient compared to appending dataframes to a list.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: this PR adds the support for arxiv identifier of the
ArxivAPIWrapper. I modified the `run()` and `load()` functions in
`arxiv.py`, using regex to recognize if the query is in the form of
arxiv identifier (see
[https://info.arxiv.org/help/find/index.html](https://info.arxiv.org/help/find/index.html)).
If so, it will directly search the paper corresponding to the arxiv
identifier. I also modified and added tests in `test_arxiv.py`.
- Issue: #9047
- Dependencies: N/A
- Tag maintainer: N/A
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The new Fireworks and FireworksChat implementations are awesome! Added
in this PR https://github.com/langchain-ai/langchain/pull/11117 thank
you @ZixinYang
However, I think stop words were not plumbed correctly. I've made some
simple changes to do that, and also updated the notebook to be a bit
clearer with what's needed to use both new models.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
The intermediate steps example in docs has an example on how to retrieve
and display the intermediate steps.
But the intermediate steps object is of type AgentAction which cannot be
passed to json.dumps (it raises an error).
I replaced it with Langchain's dumps function (from langchain.load.dump
import dumps) which is the preferred way to do so.
**Description:**
As long as `enforce_stop_tokens` returns a first occurrence, we can
speed up the execution by setting the optional `maxsplit` parameter to
1.
Tag maintainer:
@agola11
@hwchase17
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** New metadata fields were added to
`unstructured==0.10.15`, and our hosted api has been updated to reflect
this. When users call `partition_via_api` with an older version of the
library, they'll hit a parsing error related to the new fields.
Description
* Refactor Fireworks within Langchain LLMs.
* Remove FireworksChat within Langchain LLMs.
* Add ChatFireworks (which uses chat completion api) to Langchain chat
models.
* Users have to install `fireworks-ai` and register an api key to use
the api.
Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin @baskaryan
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:**: Adds LLM as a judge as an eval chain
- **Tag maintainer:** @hwchase17
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
This enables bulk args like `chunk_size` to be passed down from the
ingest methods (from_text, from_documents) to be passed down to the bulk
API.
This helps alleviate issues where bulk importing a large amount of
documents into Elasticsearch was resulting in a timeout.
Contribution Shoutout
- @elastic
- [x] Updated Integration tests
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fixed navbar:
- renamed several files, so ToC is sorted correctly
- made ToC items consistent: formatted several Titles
- added several links
- reformatted several docs to a consistent format
- renamed several files (removed `_example` suffix)
- added renamed files to the `docs/docs_skeleton/vercel.json`
Sometimes you don't want the LLM to be aware of the whole graph schema,
and want it to ignore parts of the graph when it is constructing Cypher
statements.
- **Description**: Adding retrievers for [kay.ai](https://kay.ai) and
SEC filings powered by Kay and Cybersyn. Kay provides context as a
service: it's an API built for RAG.
- **Issue**: N/A
- **Dependencies**: Just added a dep to the
[kay](https://pypi.org/project/kay/) package
- **Tag maintainer**: @baskaryan @hwchase17 Discussed in slack
- **Twtter handle:** [@vishalrohra_](https://twitter.com/vishalrohra_)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The huggingface pipeline in langchain (used for locally hosted models)
does not support batching. If you send in a batch of prompts, it just
processes them serially using the base implementation of _generate:
https://github.com/docugami/langchain/blob/master/libs/langchain/langchain/llms/base.py#L1004C2-L1004C29
This PR adds support for batching in this pipeline, so that GPUs can be
fully saturated. I updated the accompanying notebook to show GPU batch
inference.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Closes#8842
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
- Description: fix `ChatMessageChunk` concat error
- Issue: #10173
- Dependencies: None
- Tag maintainer: @baskaryan, @eyurtsev, @rlancemartin
- Twitter handle: None
---------
Co-authored-by: wangshuai.scotty <wangshuai.scotty@bytedance.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
This PR aims at showcasing how to use vLLM's OpenAI-compatible chat API.
### Context
Lanchain already supports vLLM and its OpenAI-compatible `Completion`
API. However, the `ChatCompletion` API was not aligned with OpenAI and
for this reason I've waited for this
[PR](https://github.com/vllm-project/vllm/pull/852) to be merged before
adding this notebook to langchain.
### Description
This PR makes the following changes to OpenSearch:
1. Pass optional ids with `from_texts`
2. Pass an optional index name with `add_texts` and `search` instead of
using the same index name that was used during `from_texts`
### Issue
https://github.com/langchain-ai/langchain/issues/10967
### Maintainers
@rlancemartin, @eyurtsev, @navneet1v
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
LLMRails Embedding Integration
This PR provides integration with LLMRails. Implemented here are:
langchain/embeddings/llm_rails.py
docs/extras/integrations/text_embedding/llm_rails.ipynb
Hi @hwchase17 after adding our vectorstore integration to langchain with
confirmation of you and @baskaryan, now we want to add our embedding
integration
---------
Co-authored-by: Anar Aliyev <aaliyev@mgmt.cloudnet.services>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds support for gradient.ai's embedding model.
This will remain a Draft, as the code will likely be refactored with the
`pip install gradientai` python sdk.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** a fix for `index`.
- **Issue:** Not applicable.
- **Dependencies:** None
- **Tag maintainer:**
- **Twitter handle:** richarddwang
# Problem
Replication code
```python
from pprint import pprint
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain.vectorstores import Qdrant
from langchain_setup.qdrant import pprint_qdrant_documents, create_inmemory_empty_qdrant
# Documents
metadata1 = {"source": "fullhell.alchemist"}
doc1_1 = Document(page_content="1-1 I have a dog~", metadata=metadata1)
doc1_2 = Document(page_content="1-2 I have a daugter~", metadata=metadata1)
doc1_3 = Document(page_content="1-3 Ahh! O..Oniichan", metadata=metadata1)
doc2 = Document(page_content="2 Lancer died again.", metadata={"source": "fate.docx"})
# Create empty vectorstore
collection_name = "secret_of_D_disk"
vectorstore: Qdrant = create_inmemory_empty_qdrant()
# Create record Manager
import tempfile
from pathlib import Path
record_manager = SQLRecordManager(
namespace="qdrant/{collection_name}",
db_url=f"sqlite:///{Path(tempfile.gettempdir())/collection_name}.sql",
)
record_manager.create_schema() # 必須
sync_result = index(
[doc1_1, doc1_2, doc1_2, doc2],
record_manager,
vectorstore,
cleanup="full",
source_id_key="source",
)
print(sync_result, end="\n\n")
pprint_qdrant_documents(vectorstore)
```
<details>
<summary>Code of helper functions `pprint_qdrant_documents` and
`create_inmemory_empty_qdrant`</summary>
```python
def create_inmemory_empty_qdrant(**from_texts_kwargs):
# Qdrant requires vector size, which can be only know after applying embedder
vectorstore = Qdrant.from_texts(["dummy"], location=":memory:", embedding=OpenAIEmbeddings(), **from_texts_kwargs)
dummy_document_id = vectorstore.client.scroll(vectorstore.collection_name)[0][0].id
vectorstore.delete([dummy_document_id])
return vectorstore
def pprint_qdrant_documents(vectorstore, limit: int = 100, **scroll_kwargs):
document_ids, documents = [], []
for record in vectorstore.client.scroll(
vectorstore.collection_name, limit=100, **scroll_kwargs
)[0]:
document_ids.append(record.id)
documents.append(
Document(
page_content=record.payload["page_content"],
metadata=record.payload["metadata"] or {},
)
)
pprint_documents(documents, document_ids=document_ids)
def pprint_document(document: Document = None, document_id=None, return_string=False):
displayed_text = ""
if document_id:
displayed_text += f"Document {document_id}:\n\n"
displayed_text += f"{document.page_content}\n\n"
metadata_text = pformat(document.metadata, indent=1)
if "\n" in metadata_text:
displayed_text += f"Metadata:\n{metadata_text}"
else:
displayed_text += f"Metadata:{metadata_text}"
if return_string:
return displayed_text
else:
print(displayed_text)
def pprint_documents(documents, document_ids=None):
if not document_ids:
document_ids = [i + 1 for i in range(len(documents))]
displayed_texts = []
for document_id, document in zip(document_ids, documents):
displayed_text = pprint_document(
document_id=document_id, document=document, return_string=True
)
displayed_texts.append(displayed_text)
print(f"\n{'-' * 100}\n".join(displayed_texts))
```
</details>
You will get
```
{'num_added': 3, 'num_updated': 0, 'num_skipped': 0, 'num_deleted': 0}
Document 1b19816e-b802-53c0-ad60-5ff9d9b9b911:
1-2 I have a daugter~
Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document 3362f9bc-991a-5dd5-b465-c564786ce19c:
1-1 I have a dog~
Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document a4d50169-2fda-5339-a196-249b5f54a0de:
1-2 I have a daugter~
Metadata:{'source': 'fullhell.alchemist'}
```
This is not correct. We should be able to expect that the vectorsotre
now includes doc1_1, doc1_2, and doc2, but not doc1_1, doc1_2, and
doc1_2.
# Reason
In `index`, the original code is
```python
uids = []
docs_to_index = []
for doc, hashed_doc, doc_exists in zip(doc_batch, hashed_docs, exists_batch):
if doc_exists:
# Must be updated to refresh timestamp.
record_manager.update([hashed_doc.uid], time_at_least=index_start_dt)
num_skipped += 1
continue
uids.append(hashed_doc.uid)
docs_to_index.append(doc)
```
In the aforementioned example, `len(doc_batch) == 4`, but
`len(hashed_docs) == len(exists_batch) == 3`. This is because the
deduplication of input documents [doc1_1, doc1_2, doc1_2, doc2] is
[doc1_1, doc1_2, doc2]. So `index` insert doc1_1, doc1_2, doc1_2 with
the uid of doc1_1, doc1_2, doc2.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR makes `ChatAnthropic.anthropic_api_key` a `pydantic.SecretStr`
to avoid inadvertently exposing API keys when the `ChatAnthropic` object
is represented as a str.
**Description**
Fixes broken link to `CONTRIBUTING.md` in `libs/langchain/README.md`.
Because`libs/langchain/README.md` was copied from the top level README,
and because the README contains a link to `.github/CONTRIBUTING.md`, the
copied README's link relative path must be updated. This commit fixes
that link.
**Description:**
Default refine template does not actually use the refine template
defined above, it uses a string with the variable name.
@baskaryan, @eyurtsev, @hwchase17
- chat vertex async
- vertex stream
- vertex full generation info
- vertex use server-side stopping
- model garden async
- update docs for all the above
in follow up will add
[] chat vertex full generation info
[] chat vertex retries
[] scheduled tests
- Description:
Updated JSONLoader usage documentation which was making it unusable
- Issue: JSONLoader if used with the documented arguments was failing on
various JSON documents.
- Dependencies:
no dependencies
- Twitter handle: @TheSlnArchitect
This adds a section on usage of `CassandraCache` and
`CassandraSemanticCache` to the doc notebook about caching LLMs, as
suggested in [this
comment](https://github.com/langchain-ai/langchain/pull/9772/#issuecomment-1710544100)
on a previous merged PR.
I also spotted what looks like a mismatch between different executions
and propose a fix (line 98).
Being the result of several runs, the cell execution numbers are
scrambled somewhat, so I volunteer to refine this PR by (manually)
re-numbering the cells to restore the appearance of a single, smooth
running (for the sake of orderly execution :)
**Description:**
This commit adds a vector store for the Postgres-based vector database
(`TimescaleVector`).
Timescale Vector(https://www.timescale.com/ai) is PostgreSQL++ for AI
applications. It enables you to efficiently store and query billions of
vector embeddings in `PostgreSQL`:
- Enhances `pgvector` with faster and more accurate similarity search on
1B+ vectors via DiskANN inspired indexing algorithm.
- Enables fast time-based vector search via automatic time-based
partitioning and indexing.
- Provides a familiar SQL interface for querying vector embeddings and
relational data.
Timescale Vector scales with you from POC to production:
- Simplifies operations by enabling you to store relational metadata,
vector embeddings, and time-series data in a single database.
- Benefits from rock-solid PostgreSQL foundation with enterprise-grade
feature liked streaming backups and replication, high-availability and
row-level security.
- Enables a worry-free experience with enterprise-grade security and
compliance.
Timescale Vector is available on Timescale, the cloud PostgreSQL
platform. (There is no self-hosted version at this time.) LangChain
users get a 90-day free trial for Timescale Vector.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Avthar Sewrathan <avthar@timescale.com>
- **Description:** This PR implements a new LLM API to
https://gradient.ai
- **Issue:** Feature request for LLM #10745
- **Dependencies**: No additional dependencies are introduced.
- **Tag maintainer:** I am opening this PR for visibility, once ready
for review I'll tag.
- ```make format && make lint && make test``` is running.
- added a `integration` and `mock unit` test.
Co-authored-by: michaelfeil <me@michaelfeil.eu>
Co-authored-by: Bagatur <baskaryan@gmail.com>
We are introducing the py integration to Javelin AI Gateway
www.getjavelin.io. Javelin is an enterprise-scale fast llm router &
gateway. Could you please review and let us know if there is anything
missing.
Javelin AI Gateway wraps Embedding, Chat and Completion LLMs. Uses
javelin_sdk under the covers (pip install javelin_sdk).
Author: Sharath Rajasekar, Twitter: @sharathr, @javelinai
Thanks!!
### Description
- Add support for streaming with `Bedrock` LLM and `BedrockChat` Chat
Model.
- Bedrock as of now supports streaming for the `anthropic.claude-*` and
`amazon.titan-*` models only, hence support for those have been built.
- Also increased the default `max_token_to_sample` for Bedrock
`anthropic` model provider to `256` from `50` to keep in line with the
`Anthropic` defaults.
- Added examples for streaming responses to the bedrock example
notebooks.
**_NOTE:_**: This PR fixes the issues mentioned in #9897 and makes that
PR redundant.
- **Description:** QianfanEndpoint bugs for SystemMessages. When the
`SystemMessage` is input as the messages to
`chat_models.QianfanEndpoint`. A `TypeError` will be raised.
- **Issue:** #10643
- **Dependencies:**
- **Tag maintainer:** @baskaryan
- **Twitter handle:** no
This PR addresses the limitation of Azure OpenAI embeddings, which can
handle at maximum 16 texts in a batch. This can be solved setting
`chunk_size=16`. However, I'd love to have this automated, not to force
the user to figure where the issue comes from and how to solve it.
Closes#4575.
@baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** Possible to filter with substrings in
similarity_search_with_score, for example: filter={'user_id':
{'substring': 'user'}}
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
changed return parameter of YouTubeSearchTool
1. changed the returning links of youtube videos by adding prefix
"https://www.youtube.com", now this will return the exact links to the
videos
2. updated the returning type from 'string' to 'list', which will be
more suited for further processings
**Issue:**
Fixes#10742
**Dependencies:**
None
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** changed return parameter of YouTubeSearchTool
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** None
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** This PR adds HTTP PUT support for the langchain openapi
agent toolkit by leveraging existing structure and HTTP put request
wrapper. The PUT method is almost identical to HTTP POST but should be
idempotent and therefore tighter than POST which is not idempotent. Some
APIs may consider to use PUT instead of POST which is unfortunately not
supported with the current toolkit yet.
### Description
Implements synthetic data generation with the fields and preferences
given by the user. Adds showcase notebook.
Corresponding prompt was proposed for langchain-hub.
### Example
```
output = chain({"fields": {"colors": ["blue", "yellow"]}, "preferences": {"style": "Make it in a style of a weather forecast."}})
print(output)
# {'fields': {'colors': ['blue', 'yellow']},
'preferences': {'style': 'Make it in a style of a weather forecast.'},
'text': "Good morning! Today's weather forecast brings a beautiful combination of colors to the sky, with hues of blue and yellow gently blending together like a mesmerizing painting."}
```
### Twitter handle
@deepsense_ai @matt_wosinski
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** upgrade the `dataclasses_json` dependency to its latest
version ([no real breaking
change](https://github.com/lidatong/dataclasses-json/releases/tag/v0.6.0)
if used correctly), while allowing previous version to not break other
users' setup
**Issue:** I need to use the latest version of that dependency in my
project, but `langchain` prevents it.
Note: it looks like running `poetry lock --no-update` did some changes
to the lockfiles as it was the first time it was with the
`macosx_11_0_arm64` architecture 🤷
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description**
Adds new output parser, this time enabling the output of LLM to be of an
XML format. Seems to be particularly useful together with Claude model.
Addresses [issue
9820](https://github.com/langchain-ai/langchain/issues/9820).
**Twitter handle**
@deepsense_ai @matt_wosinski
using sample:
```
endpoint_url = API URL
ChatGLM_llm = ChatGLM(
endpoint_url=endpoint_url,
api_key=Your API Key by ChatGLM
)
print(ChatGLM_llm("hello"))
```
```
model = ChatChatGLM(
chatglm_api_key="api_key",
chatglm_api_base="api_base_url",
model_name="model_name"
)
chain = LLMChain(llm=model)
```
Description: The call of ChatGLM has been adapted.
Issue: The call of ChatGLM has been adapted.
Dependencies: Need python package `zhipuai` and `aiostream`
Tag maintainer: @baskaryan
Twitter handle: None
I remove the compatibility test for pydantic version 2, because pydantic
v2 can't not pickle classmethod,but BaseModel use @root_validator is a
classmethod decorator.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
If metadata field returned in results, previous behavior unchanged. If
metadata field does not exist in results, expand metadata to any fields
returned outside of content field.
There's precedence for this as well, see the retriever:
https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/azure_cognitive_search.py#L96C46-L96C46
Issue:
#9765 - Ameliorates hard-coding in case you already indexed to cognitive
search without a metadata field but rather placed metadata in separate
fields.
@hwchase17
## Description
This PR updates the `NeptuneGraph` class to start using the boto API for
connecting to the Neptune service. With boto integration, the graph
class now supports authenticating requests using Sigv4; this is
encapsulated with the boto API, and users only have to ensure they have
the correct AWS credentials setup in their workspace to work with the
graph class.
This PR also introduces a conditional prompt that uses a simpler prompt
when using the `Anthropic` model provider. A simpler prompt have seemed
to work better for generating cypher queries in our testing.
**Note**: This version will require boto3 version 1.28.38 or greater to
work.
**Description:**
This commit enriches the `WeaviateHybridSearchRetriever` class by
introducing a new parameter, `hybrid_search_kwargs`, within the
`_get_relevant_documents` method. This parameter accommodates arbitrary
keyword arguments (`**kwargs`) which can be channeled to the inherited
public method, `get_relevant_documents`, originating from the
`BaseRetriever` class.
This modification facilitates more intricate querying capabilities,
allowing users to convey supplementary arguments to the `.with_hybrid()`
method. This expansion not only makes it possible to perform a more
nuanced search targeting specific properties but also grants the ability
to boost the weight of searched properties, to carry out a search with a
custom vector, and to apply the Fusion ranking method. The documentation
has been updated accordingly to delineate these new possibilities in
detail.
In light of the layered approach in which this search operates,
initiating with `query.get()` and then transitioning to
`.with_hybrid()`, several advantageous opportunities are unlocked for
the hybrid component that were previously unattainable.
Here’s a representative example showcasing a query structure that was
formerly unfeasible:
[Specific Properties
Only](https://weaviate.io/developers/weaviate/search/hybrid#selected-properties-only)
"The example below illustrates a BM25 search targeting the keyword
'food' exclusively within the 'question' property, integrated with
vector search results corresponding to 'food'."
```python
response = (
client.query
.get("JeopardyQuestion", ["question", "answer"])
.with_hybrid(
query="food",
properties=["question"], # Will now be possible moving forward
alpha=0.25
)
.with_limit(3)
.do()
)
```
This functionality is now accessible through my alterations, by
conveying `hybrid_search_kwargs={"properties": ["question", "answer"]}`
as an argument to
`WeaviateHybridSearchRetriever.get_relevant_documents()`. For example:
```python
import os
from weaviate import Client
from langchain.retrievers import WeaviateHybridSearchRetriever
client = Client(
url=os.getenv("WEAVIATE_CLIENT_URL"),
additional_headers={
"X-OpenAI-Api-Key": os.getenv("OPENAI_API_KEY"),
"Authorization": f"Bearer {os.getenv('WEAVIATE_API_KEY')}",
},
)
index_name = "Document"
text_key = "content"
attributes = ["title", "summary", "header", "url"]
retriever = ExtendedWeaviateHybridSearchRetriever(
client=client,
index_name=index_name,
text_key=text_key,
attributes=attributes,
)
# Warning: to utilize properties in this way, each use property must also be in the list `attributes + [text_key]`.
hybrid_search_kwargs = {"properties": ["summary^2", "content"]}
query_text = "Some Query Text"
relevant_docs = retriever.get_relevant_documents(
query=query_text,
hybrid_search_kwargs=hybrid_search_kwargs
)
```
In my experience working with the `weaviate-client` library, I have
found that these supplementary options stand as vital tools for
refining/finetuning searches, notably within multifaceted datasets. As a
final note, this implementation supports both backwards and forward
(within reason) compatiblity. It accommodates any future additional
parameters Weaviate may add to `.with_hybrid()`, without necessitating
further alterations.
**Additional Documentation:**
For a more comprehensive understanding and to explore a myriad of useful
options that are now accessible, please refer to the Weaviate
documentation:
- [Fusion Ranking
Method](https://weaviate.io/developers/weaviate/search/hybrid#fusion-ranking-method)
- [Selected Properties
Only](https://weaviate.io/developers/weaviate/search/hybrid#selected-properties-only)
- [Weight Boost Searched
Properties](https://weaviate.io/developers/weaviate/search/hybrid#weight-boost-searched-properties)
- [With a Custom
Vector](https://weaviate.io/developers/weaviate/search/hybrid#with-a-custom-vector)
**Tag Maintainer:**
@hwchase17 - I have tagged you based on your frequent contributions to
the pertinent file, `/retrievers/weaviate_hybrid_search.py`. My
apologies if this was not the appropriate choice.
Thank you for considering my contribution, I look forward to your
feedback, and to future collaboration.
I was trying to use web loaders on some spanish documentation (e.g.
[this site](https://www.fromdoppler.com/es/mailing-tendencias/), but the
auto-encoding introduced in
https://github.com/langchain-ai/langchain/pull/3602 was detected as
"MacRoman" instead of the (correct) "UTF-8".
To address this, I've added the ability to disable the auto-encoding, as
well as the ability to explicitly tell the loader what encoding to use.
- **Description:** Makes auto-setting the encoding optional in
`WebBaseLoader`, and introduces an `encoding` option to explicitly set
it.
- **Dependencies:** N/A
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @czue
**Description:**
Pinecone hybrid search is now limited to default namespace. There is no
option for the user to provide a namespace to partition an index, which
is one of the most important features of pinecone.
**Resource:**
https://docs.pinecone.io/docs/namespaces
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Added integration instructions for Remembrall.
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @raunakdoesdev
Fun fact, this project originated at the Modal Hackathon in NYC where it
won the Best LLM App prize sponsored by Langchain. Thanks for your
support 🦜
~~Because we can't pass extra parameters into a prompt, we have to
prepend a function before the runnable calls in the branch and it's a
bit less elegant than I'd like.~~
All good now that #10765 has landed!
@eyurtsev @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Updating URL in Context Callback Docstrings and
update metadata key Context CallbackHandler uses to send model names.
- **Issue:** The URL in ContextCallbackHandler is out of date. Model
data being sent to Context should be under the "model" key and not
"llm_model". This allows Context to do more sophisticated analysis.
- **Dependencies:** None
Tagging @agamble.
- This pr adds `llm_kwargs` to the initialization of Xinference LLMs
(integrated in #8171 ).
- With this enhancement, users can not only provide `generate_configs`
when calling the llms for generation but also during the initialization
process. This allows users to include custom configurations when
utilizing LangChain features like LLMChain.
- It also fixes some format issues for the docstrings.
Hello @hwchase17
**Issue**:
The class WebResearchRetriever accept only
RecursiveCharacterTextSplitter, but never uses a specification of this
class. I propose to change the type to TextSplitter. Then, the lint can
accept all subtypes.
- tools invoked in async methods would not work due to missing await
- RunnableSequence.stream() was creating an extra root run by mistake,
and it can simplified due to existence of default implementation for
.transform()
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Renamed argument `database` in
`SQLDatabaseSequentialChain.from_llm()` to `db`,
I realize it's tiny and a bit of a nitpick but for consistency with
SQLDatabaseChain (and all the others actually) I thought it should be
renamed. Also got me while working and using it today.
✔️ Please make sure your PR is passing linting and
testing before submitting. Run `make format`, `make lint` and `make
test` to check this locally.
This PR is a documentation fix.
Description:
* fixes imports in the code samples in the docstrings of
`create_openai_fn_chain` and `create_structured_output_chain`
* fixes imports in
`docs/extras/modules/chains/how_to/openai_functions.ipynb`
* removes unused imports from the notebook
Issues:
* the docstrings use `from pydantic_v1 import BaseModel, Field` which
this PR changes to `from langchain.pydantic_v1 import BaseModel, Field`
* importing `pydantic` instead of `langchain.pydantic_v1` leads to
errors later in the notebook
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Description: This PR changes the import section of the
`PydanticOutputParser` notebook.
* Import from `langchain.pydantic_v1` instead of `pydantic`
* Remove unused imports
Issue: running the notebook as written, when pydantic v2 is installed,
results in the following:
```python
PydanticDeprecatedSince20: Pydantic V1 style `@validator` validators are deprecated. You should migrate to Pydantic V2 style `@field_validator` validators, see the migration guide for more details. Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.3/migration/
```
[...]
```python
PydanticUserError: The `field` and `config` parameters are not available in Pydantic V2, please use the `info` parameter instead.
For further information visit https://errors.pydantic.dev/2.3/u/validator-field-config-info
```
**Description:**
I've added a new use-case to the Web scraping docs. I also fixed some
typos in the existing text.
---------
Co-authored-by: davidjohnbarton <41335923+davidjohnbarton@users.noreply.github.com>
@@ -5,10 +5,10 @@ This project includes a [dev container](https://containers.dev/), which lets you
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
## GitHub Codespaces
[](https://codespaces.new/hwchase17/langchain)
[](https://codespaces.new/langchain-ai/langchain)
You may use the button above, or follow these steps to open this repo in a Codespace:
1. Click the **Code** drop-down menu at the top of https://github.com/hwchase17/langchain.
1. Click the **Code** drop-down menu at the top of https://github.com/langchain-ai/langchain.
Hi there! Thank you for even being interested in contributing to LangChain.
As an opensource project in a rapidly developing field, we are extremely open
As an open-source project in a rapidly developing field, we are extremely open
to contributions, whether they be in the form of new features, improved infra, better documentation, or bug fixes.
## 🗺️ Guidelines
@@ -9,19 +9,19 @@ to contributions, whether they be in the form of new features, improved infra, b
### 👩💻 Contributing Code
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are maintainer.
Please do not try to push directly to this repo unless you are a maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting and testing checks first. See
[Common Tasks](#-common-tasks) for how to run these checks locally.
Pull requests cannot land without passing the formatting, linting, and testing checks first. See [Testing](#testing) and
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
- Fix a bug
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
- Make an improvement
- Update any affected example notebooks and documentation. These lives in `docs`.
- Update any affected example notebooks and documentation. These live in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/modules`.
@@ -32,7 +32,7 @@ best way to get our attention.
### 🚩GitHub Issues
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date
with bugs, improvements, and feature requests.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help
@@ -43,7 +43,7 @@ If you start working on an issue, please assign it to yourself.
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
If two issues are related, or blocking, please link them rather than combining them.
We will try to keep these issues as uptodate as possible, though
We will try to keep these issues as up-to-date as possible, though
with the rapid rate of development in this field some may get out of date.
If you notice this happening, please let us know.
@@ -59,43 +59,85 @@ we do not want these to get in the way of getting good code into the codebase.
## 🚀 Quick Start
> **Note:** You can run this repository locally (which is described below) or in a [development container](https://containers.dev/) (which is described in the [.devcontainer folder](https://github.com/hwchase17/langchain/tree/master/.devcontainer)).
This quick start describes running the repository locally.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
This project uses [Poetry](https://python-poetry.org/) v1.5.1 as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
### Dependency Management: Poetry and other env/dependency managers
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
1.*Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
2. Install Poetry v1.5.1 (see above)
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
This project uses [Poetry](https://python-poetry.org/) v1.6.1+ as a dependency manager.
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
Install Poetry: **[documentation on how to install it](https://python-poetry.org/docs/#installation)**.
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
### Core vs. Experimental
There are two separate projects in this repository:
-`langchain`: core langchain code, abstractions, and use cases
-`langchain.experimental`: more experimental code
-`langchain.experimental`: see the [Experimental README](https://github.com/langchain-ai/langchain/tree/master/libs/experimental/README.md) for more information.
Each of these has their OWN development environment.
In order to run any of the commands below, please move into their respective directories.
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
To install requirements:
For this quickstart, start with langchain core:
```bash
cd libs/langchain
```
### Local Development Dependencies
Install langchain development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
```bash
poetry install --with test
```
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage.
Then verify dependency installation:
❗Note: If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running Poetry v1.5.1. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases. If you are still seeing this bug on v1.5.1, you may also try disabling "modern installation" (`poetry config installer.modern-installation false`) and re-installing requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
```bash
make test
```
Now assuming `make` and `pytest` are installed, you should be able to run the common tasks in the following section. To double check, run `make test` under `libs/langchain`, all tests should pass. If they don't, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
If the tests don't pass, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
## ✅ Common Tasks
If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running
Poetry v1.6.1+. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases.
If you are still seeing this bug on v1.6.1, you may also try disabling "modern installation"
(`poetry config installer.modern-installation false`) and re-installing requirements.
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Type `make` for a list of common tasks.
### Testing
### Code Formatting
_some test dependencies are optional; see section about optional dependencies_.
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
Unit tests cover modular logic that does not require calls to outside APIs.
If you add new logic, please add a unit test.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
There are also [integration tests and code-coverage](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests/README.md) available.
### Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
#### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [ruff](https://docs.astral.sh/ruff/rules/).
To run formatting for this project:
@@ -111,9 +153,9 @@ make format_diff
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
### Linting
#### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [ruff](https://docs.astral.sh/ruff/rules/), and [mypy](http://mypy-lang.org/).
To run linting for this project:
@@ -131,7 +173,7 @@ This can be very helpful when you've made changes to only certain parts of the p
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Spellcheck
#### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
@@ -157,24 +199,14 @@ If codespell is incorrectly flagging a word, you can skip spellcheck for that wo
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md)
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
**Production Support:** As you move your LangChains into production, we'd love to offer more hands-on support.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to share more about what you're building, and our team will get in touch.
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/hwchase17/langchain/discussions/8043).
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
Read how to migrate your code [here](MIGRATE.md).
## Quick Install
@@ -49,7 +50,7 @@ This library aims to assist in the development of those types of applications. C
@@ -92,7 +93,7 @@ Memory refers to persisting state between calls of a chain/agent. LangChain prov
**🧐 Evaluation:**
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is by using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
"To create this particular DB, you can use the code and follow the steps shown [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb)."
Example code for building applications with LangChain, with an emphasis on more applied and end-to-end examples than contained in the [main documentation](https://python.langchain.com).
Notebook | Description
:- | :-
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a SQL database using an open source llm (llama2), specifically demonstrated on an SQLite database containing rosters.
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
[baby_agi.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi.ipynb) | Implement babyagi, an ai agent that can generate and execute tasks based on a given objective, with the flexibility to swap out specific vectorstores/model providers.
[baby_agi_with_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi_with_agent.ipynb) | Swap out the execution chain in the babyagi notebook with an agent that has access to tools, aiming to obtain more reliable information.
[camel_role_playing.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/camel_role_playing.ipynb) | Implement the camel framework for creating autonomous cooperative agents in large-scale language models, using role-playing and inception prompting to guide chat agents towards task completion.
[causal_program_aided_language_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/causal_program_aided_language_model.ipynb) | Implement the causal program-aided language (cpal) chain, which improves upon the program-aided language (pal) by incorporating causal structure to prevent hallucination in language models, particularly when dealing with complex narratives and math problems with nested dependencies.
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[forward_looking_retrieval_augm...](https://github.com/langchain-ai/langchain/tree/master/cookbook/forward_looking_retrieval_augmented_generation.ipynb) | Implement the forward-looking active retrieval augmented generation (flare) method, which generates answers to questions, identifies uncertain tokens, generates hypothetical questions based on these tokens, and retrieves relevant documents to continue generating the answer.
[generative_agents_interactive_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb) | Implement a generative agent that simulates human behavior, based on a research paper, using a time-weighted memory object backed by a langchain retriever.
[gymnasium_agent_simulation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/gymnasium_agent_simulation.ipynb) | Create a simple agent-environment interaction loop in simulated environments like text-based games with gymnasium.
[hugginggpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/hugginggpt.ipynb) | Implement hugginggpt, a system that connects language models like chatgpt with the machine learning community via hugging face.
[hypothetical_document_embeddin...](https://github.com/langchain-ai/langchain/tree/master/cookbook/hypothetical_document_embeddings.ipynb) | Improve document indexing with hypothetical document embeddings (hyde), an embedding technique that generates and embeds hypothetical answers to queries.
[learned_prompt_optimization.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/learned_prompt_optimization.ipynb) | Automatically enhance language model prompts by injecting specific terms using reinforcement learning, which can be used to personalize responses based on user preferences.
[llm_bash.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_bash.ipynb) | Perform simple filesystem commands using language learning models (llms) and a bash process.
[llm_checker.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_checker.ipynb) | Create a self-checking chain using the llmcheckerchain function.
[llm_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_math.ipynb) | Solve complex word math problems using language models and python repls.
[llm_summarization_checker.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_summarization_checker.ipynb) | Check the accuracy of text summaries, with the option to run the checker multiple times for improved results.
[llm_symbolic_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_symbolic_math.ipynb) | Solve algebraic equations with the help of llms (language learning models) and sympy, a python library for symbolic mathematics.
[meta_prompt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/meta_prompt.ipynb) | Implement the meta-prompt concept, which is a method for building self-improving agents that reflect on their own performance and modify their instructions accordingly.
[multi_modal_output_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_output_agent.ipynb) | Generate multi-modal outputs, specifically images and text.
[multi_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_player_dnd.ipynb) | Simulate multi-player dungeons & dragons games, with a custom function determining the speaking schedule of the agents.
[multiagent_authoritarian.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_authoritarian.ipynb) | Implement a multi-agent simulation where a privileged agent controls the conversation, including deciding who speaks and when the conversation ends, in the context of a simulated news network.
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
[smart_llm.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/smart_llm.ipynb) | Implement a smartllmchain, a self-critique chain that generates multiple output proposals, critiques them to find the best one, and then improves upon it to produce a final output.
[tree_of_thought.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/tree_of_thought.ipynb) | Query a large language model using the tree of thought technique.
[twitter-the-algorithm-analysis...](https://github.com/langchain-ai/langchain/tree/master/cookbook/twitter-the-algorithm-analysis-deeplake.ipynb) | Analyze the source code of the Twitter algorithm with the help of gpt4 and activeloop's deep lake.
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
"The CPAL chain builds on the recent PAL to stop LLM hallucination. The problem with the PAL approach is that it hallucinates on a math problem with a nested chain of dependence. The innovation here is that this new CPAL approach includes causal structure to fix hallucination.\n",
"\n",
"The original [PR's description](https://github.com/hwchase17/langchain/pull/6255) contains a full overview.\n",
"The original [PR's description](https://github.com/langchain-ai/langchain/pull/6255) contains a full overview.\n",
"\n",
"Using the CPAL chain, the LLM translated this\n",
"[](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/extras/use_cases/qa_structured/integrations/elasticsearch.ipynb)\n",
"[](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/use_cases/qa_structured/integrations/elasticsearch.ipynb)\n",
"\n",
"We can use LLMs to interact with Elasticsearch analytics databases in natural language.\n",
"1. define a format they will produce their outputs in\n",
"2. parse their outputs\n",
"\n",
"We can subclass the [RegexParser](https://github.com/hwchase17/langchain/blob/master/langchain/output_parsers/regex.py) to implement our own custom output parser for bids."
"We can subclass the [RegexParser](https://github.com/langchain-ai/langchain/blob/master/langchain/output_parsers/regex.py) to implement our own custom output parser for bids."
"Plan-and-execute agents accomplish an objective by first planning what to do, then executing the sub tasks. This idea is largely inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) and then the [\"Plan-and-Solve\" paper](https://arxiv.org/abs/2305.04091).\n",
"\n",
"The planning is almost always done by an LLM.\n",
"\n",
"The execution is usually done by a separate agent (equipped with tools)."
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction:\n",
"{\n",
" \"action\": \"Search\",\n",
" \"action_input\": \"current prime minister of the UK\"\n",
"}\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction:\n",
"```\n",
"{\n",
" \"action\": \"Search\",\n",
" \"action_input\": \"current prime minister of the UK\"\n",
"}\n",
"```\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mBottom right: Rishi Sunak is the current prime minister and the first non-white prime minister. The prime minister of the United Kingdom is the principal minister of the crown of His Majesty's Government, and the head of the British Cabinet. 3 min. British Prime Minister Rishi Sunak asserted his stance on gender identity in a speech Wednesday, stating it was \"common sense\" that \"a man is a man and a woman is a woman\" — a ... The former chancellor Rishi Sunak is the UK's new prime minister. Here's what you need to know about him. He won after running for the second time this year He lost to Liz Truss in September,... Isaeli Prime Minister Benjamin Netanyahu spoke with US President Joe Biden on Wednesday, the prime minister's office said in a statement. Netanyahu \"thanked the President for the powerful words of ... By Yasmeen Serhan/London Updated: October 25, 2022 12:56 PM EDT | Originally published: October 24, 2022 9:17 AM EDT S top me if you've heard this one before: After a tumultuous period of political...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe search results indicate that Rishi Sunak is the current prime minister of the UK. However, it's important to note that this information may not be accurate or up to date.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction:\n",
"```\n",
"{\n",
" \"action\": \"Search\",\n",
" \"action_input\": \"current age of the prime minister of the UK\"\n",
"}\n",
"```\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mHow old is Rishi Sunak? Mr Sunak was born on 12 May, 1980, making him 42 years old. He first became an MP in 2015, aged 34, and has served the constituency of Richmond in Yorkshire ever since. He... Prime Ministers' ages when they took office From oldest to youngest, the ages of the PMs were as follows: Winston Churchill - 65 years old James Callaghan - 64 years old Clement Attlee - 62 years... Anna Kaufman USA TODAY Just a few days after Liz Truss resigned as prime minister, the UK has a new prime minister. Truss, who lasted a mere 45 days in office, will be replaced by Rishi... Advertisement Rishi Sunak is the youngest British prime minister of modern times. Mr. Sunak is 42 and started out in Parliament in 2015. Rishi Sunak was appointed as chancellor of the Exchequer... The first prime minister of the current United Kingdom of Great Britain and Northern Ireland upon its effective creation in 1922 (when 26 Irish counties seceded and created the Irish Free State) was Bonar Law, [10] although the country was not renamed officially until 1927, when Stanley Baldwin was the serving prime minister. [11]\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mBased on the search results, it seems that Rishi Sunak is the current prime minister of the UK. However, I couldn't find any specific information about his age. Would you like me to search again for the current age of the prime minister?\n",
"\n",
"Action:\n",
"```\n",
"{\n",
" \"action\": \"Search\",\n",
" \"action_input\": \"age of Rishi Sunak\"\n",
"}\n",
"```\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mRishi Sunak is 42 years old, making him the youngest person to hold the office of prime minister in modern times. How tall is Rishi Sunak? How Old Is Rishi Sunak? Rishi Sunak was born on May 12, 1980, in Southampton, England. Parents and Nationality Sunak's parents were born to Indian-origin families in East Africa before... Born on May 12, 1980, Rishi is currently 42 years old. He has been a member of parliament since 2015 where he was an MP for Richmond and has served in roles including Chief Secretary to the Treasury and the Chancellor of Exchequer while Boris Johnson was PM. Family Murty, 42, is the daughter of the Indian billionaire NR Narayana Murthy, often described as the Bill Gates of India, who founded the software company Infosys. According to reports, his... Sunak became the first non-White person to lead the country and, at age 42, the youngest to take on the role in more than a century. Like most politicians, Sunak is revered by some and...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mBased on the search results, Rishi Sunak is currently 42 years old. He was born on May 12, 1980.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: To calculate the age raised to the power of 0.43, I can use the calculator tool.\n",
"\n",
"Action:\n",
"```json\n",
"{\n",
" \"action\": \"Calculator\",\n",
" \"action_input\": \"42^0.43\"\n",
"}\n",
"```\u001b[0m\n",
"\n",
"\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
"Press Releases data powered by [Kay.ai](https://kay.ai).\n",
"\n",
">Press releases are used by companies to announce something noteworthy, including product launches, financial performance reports, partnerships, and other significant news. They are widely used by analysts to track corporate strategy, operational updates and financial performance.\n",
"Kay.ai obtains press releases of all US public companies from a variety of sources, which include the company's official press room and partnerships with various data API providers. \n",
"This data is updated till Sept 30th for free access, if you want to access the real-time feed, reach out to us at hello@kay.ai or [tweet at us](https://twitter.com/vishalrohra_)"
]
},
{
"cell_type": "markdown",
"id": "8183d85d-365f-4672-a963-52b533547de0",
"metadata": {},
"source": [
"Setup\n",
"=\n",
"\n",
"First you will need to install the `kay` package. You will also need an API key: you can get one for free at [https://kay.ai](https://kay.ai/). Once you have an API key, you must set it as an environment variable `KAY_API_KEY`.\n",
"\n",
"In this example we're going to use the `KayAiRetriever`. Take a look at the [kay notebook](/docs/integrations/retrievers/kay) for more detailed information for the parmeters that it accepts."
"-> **Question**: How is the healthcare industry adopting generative AI tools? \n",
"\n",
"**Answer**: The healthcare industry is adopting generative AI tools to improve various aspects of patient care and administrative tasks. Companies like HCA Healthcare Inc, Amazon Com Inc, and Mayo Clinic have collaborated with technology providers like Google Cloud, AWS, and Microsoft to implement generative AI solutions.\n",
"\n",
"HCA Healthcare is testing a nurse handoff tool that generates draft reports quickly and accurately, which nurses have shown interest in using. They are also exploring the use of Google's medically-tuned Med-PaLM 2 LLM to support caregivers in asking complex medical questions.\n",
"\n",
"Amazon Web Services (AWS) has introduced AWS HealthScribe, a generative AI-powered service that automatically creates clinical documentation. However, integrating multiple AI systems into a cohesive solution requires significant engineering resources, including access to AI experts, healthcare data, and compute capacity.\n",
"\n",
"Mayo Clinic is among the first healthcare organizations to deploy Microsoft 365 Copilot, a generative AI service that combines large language models with organizational data from Microsoft 365. This tool has the potential to automate tasks like form-filling, relieving administrative burdens on healthcare providers and allowing them to focus more on patient care.\n",
"\n",
"Overall, the healthcare industry is recognizing the potential benefits of generative AI tools in improving efficiency, automating tasks, and enhancing patient care. \n",
"\n"
]
}
],
"source": [
"# More sample questions in the Playground on https://kay.ai\n",
"questions = [\n",
" \"How is the healthcare industry adopting generative AI tools?\",\n",
" #\"What are some recent challenges faced by the renewable energy sector?\",\n",
"]\n",
"chat_history = []\n",
"\n",
"for question in questions:\n",
" result = qa({\"question\": question, \"chat_history\": chat_history})\n",
"Re-implemented from [this GitHub repo](https://github.com/Raudaschl/rag-fusion), all credit to original author\n",
"\n",
"> RAG-Fusion, a search methodology that aims to bridge the gap between traditional search paradigms and the multifaceted dimensions of human queries. Inspired by the capabilities of Retrieval Augmented Generation (RAG), this project goes a step further by employing multiple query generation and Reciprocal Rank Fusion to re-rank search results."
]
},
{
"cell_type": "markdown",
"id": "ebcc6791",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"For this example, we will use Pinecone and some fake data"
"**Rewrite-Retrieve-Read** is a method proposed in the paper [Query Rewriting for Retrieval-Augmented Large Language Models](https://arxiv.org/pdf/2305.14283.pdf)\n",
"\n",
"> Because the original query can not be always optimal to retrieve for the LLM, especially in the real world... we first prompt an LLM to rewrite the queries, then conduct retrieval-augmented reading\n",
"\n",
"We show how you can easily do that with LangChain Expression Language"
]
},
{
"cell_type": "markdown",
"id": "eda93712",
"metadata": {},
"source": [
"## Baseline\n",
"\n",
"Baseline RAG (**Retrieve-and-read**) can be done like the following:"
"\"LangChain is a powerful and versatile Python library that enables developers and researchers to create, experiment with, and analyze language models and agents. It simplifies the development of language-based applications by providing a suite of features for artificial general intelligence. It can be used to build chatbots, perform document analysis and summarization, and streamline interaction with various large language model providers. LangChain's unique proposition is its ability to create logical links between one or more language models, known as Chains. It is an open-source library that offers a generic interface to foundation models and allows prompt management and integration with other components and tools.\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(simple_query)"
]
},
{
"cell_type": "markdown",
"id": "23bdb9bd",
"metadata": {},
"source": [
"While this is fine for well formatted queries, it can break down for more complicated queries"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8df6a814",
"metadata": {},
"outputs": [],
"source": [
"distracted_query = \"man that sam bankman fried trial was crazy! what is langchain?\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "16d7db64",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Based on the given context, there is no information provided about \"langchain.\"'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(distracted_query)"
]
},
{
"cell_type": "markdown",
"id": "0b4f8b93",
"metadata": {},
"source": [
"This is because the retriever does a bad job with these \"distracted\" queries"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3439d8dc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Business She\\'s the star witness against Sam Bankman-Fried. Her testimony was explosive Gary Wang, who co-founded both FTX and Alameda Research, said Bankman-Fried directed him to change a... The Verge, following the trial\\'s Oct. 4 kickoff: \"Is Sam Bankman-Fried\\'s Defense Even Trying to Win?\". CBS Moneywatch, from Thursday: \"Sam Bankman-Fried\\'s Lawyer Struggles to Poke ... Sam Bankman-Fried, FTX\\'s founder, responded with a single word: \"Oof.\". Less than a year later, Mr. Bankman-Fried, 31, is on trial in federal court in Manhattan, fighting criminal charges ... July 19, 2023. A U.S. judge on Wednesday overruled objections by Sam Bankman-Fried\\'s lawyers and allowed jurors in the FTX founder\\'s fraud trial to see a profane message he sent to a reporter days ... Sam Bankman-Fried, who was once hailed as a virtuoso in cryptocurrency trading, is on trial over the collapse of FTX, the financial exchange he founded. Bankman-Fried is accused of...'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever(distracted_query)"
]
},
{
"cell_type": "markdown",
"id": "7eb748ac",
"metadata": {},
"source": [
"## Rewrite-Retrieve-Read Implementation\n",
"\n",
"The main part is a rewriter to rewrite the search query"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "88ae702e",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Provide a better search query for \\\n",
"web search engine to answer the given question, end \\\n",
"'Based on the given context, LangChain is an open-source framework designed to simplify the creation of applications using large language models (LLMs). It enables LLM models to generate responses based on up-to-date online information and simplifies the organization of large volumes of data for easy access by LLMs. LangChain offers a standard interface for chains, integrations with other tools, and end-to-end chains for common applications. It is a robust library that streamlines interaction with various LLM providers. LangChain\\'s unique proposition is its ability to create logical links between one or more LLMs, known as Chains. It is an AI framework with features that simplify the development of language-based applications and offers a suite of features for artificial general intelligence. However, the context does not provide any information about the \"sam bankman fried trial\" mentioned in the question.'"
"SalesGPT is context-aware, which means it can understand what section of a sales conversation it is in and act accordingly.\n",
" \n",
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activites, such as outbound sales calls. \n",
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activities, such as outbound sales calls. \n",
"\n",
"Additionally, the AI Sales agent has access to tools, which allow it to interact with other systems.\n",
"\n",
"Here, we show how the AI Sales Agent can use a **Product Knowledge Base** to speak about a particular's company offerings,\n",
"hence increasing relevance and reducing hallucinations.\n",
"\n",
"We leverage the [`langchain`](https://github.com/hwchase17/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
"We leverage the [`langchain`](https://github.com/langchain-ai/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
@@ -277,7 +277,7 @@
" \n",
" ===\n",
"\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
This example demonstrates the use of the `SQLDatabaseChain` for answering questions over a SQL database.
Under the hood, LangChain uses SQLAlchemy to connect to SQL databases. The `SQLDatabaseChain` can therefore be used with any SQL dialect supported by SQLAlchemy, such as MS SQL, MySQL, MariaDB, PostgreSQL, Oracle SQL, [Databricks](/docs/ecosystem/integrations/databricks.html) and SQLite. Please refer to the SQLAlchemy documentation for more information about requirements for connecting to your database. For example, a connection to MySQL requires an appropriate connector such as PyMySQL. A URI for a MySQL connection might look like: `mysql+pymysql://user:pass@some_mysql_db_address/db_name`.
This demonstration uses SQLite and the example Chinook database.
@@ -31,8 +35,8 @@ db_chain.run("How many employees are there?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
How many employees are there?
SQLQuery:
@@ -71,8 +75,8 @@ db_chain.run("How many albums by Aerosmith?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
How many albums by Aerosmith?
SQLQuery:SELECT COUNT(*) FROM Album WHERE ArtistId = 3;
@@ -129,8 +133,8 @@ db_chain.run("How many employees are there in the foobar table?")
from langchain_experimental.sql import SQLDatabaseChain
```
Set up the SQLDatabase and LLM
```python
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db")
llm = OpenAI(temperature=0, verbose=True)
```
Set up the memory
```python
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
```
Now we need to add a place for memory in the prompt template
```python
from langchain.prompts import PromptTemplate
PROMPT_SUFFIX = """Only use the following tables:
{table_info}
Previous Conversation:
{history}
Question: {input}"""
_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
SQLQuery:SELECT FirstName, LastName FROM Employee LIMIT 1
SQLResult: [('Andrew', 'Adams')]
Answer:Andrew Adams
> Finished chain.
'Andrew Adams'
```
</CodeOutputBlock>
```python
db_chain.run("how many letters in their name?")
```
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
how many letters in their name?
SQLQuery:SELECT LENGTH(FirstName) + LENGTH(LastName) AS 'NameLength' FROM Employee WHERE FirstName = 'Andrew' AND LastName = 'Adams'
SQLResult: [(11,)]
Answer:Andrew Adams has 11 letters in their name.
> Finished chain.
'Andrew Adams has 11 letters in their name.'
```
</CodeOutputBlock>
## Choosing how to limit the number of rows returned
If you are querying for several rows of a table you can select the maximum number of results you want to get by using the 'top_k' parameter (default is 10). This is useful for avoiding query results that exceed the prompt max length or consume tokens unnecessarily.
@@ -207,8 +317,8 @@ db_chain.run("What are some example tracks by composer Johann Sebastian Bach?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
What are some example tracks by composer Johann Sebastian Bach?
SQLQuery:SELECT Name FROM Track WHERE Composer = 'Johann Sebastian Bach' LIMIT 3
TrackId Name AlbumId MediaTypeId GenreId Composer Milliseconds Bytes UnitPrice
@@ -286,8 +396,8 @@ db_chain.run("What are some example tracks by Bach?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
What are some example tracks by Bach?
SQLQuery:SELECT "Name", "Composer" FROM "Track" WHERE "Composer" LIKE '%Bach%' LIMIT 5
@@ -305,7 +415,7 @@ db_chain.run("What are some example tracks by Bach?")
</CodeOutputBlock>
### Custom Table Info
In some cases, it can be useful to provide custom table information instead of using the automatically generated table definitions and the first `sample_rows_in_table_info` sample rows. For example, if you know that the first few rows of a table are uninformative, it could help to manually provide example rows that are more diverse or provide more information to the model. It is also possible to limit the columns that will be visible to the model if there are unnecessary columns.
In some cases, it can be useful to provide custom table information instead of using the automatically generated table definitions and the first `sample_rows_in_table_info` sample rows. For example, if you know that the first few rows of a table are uninformative, it could help to manually provide example rows that are more diverse or provide more information to the model. It is also possible to limit the columns that will be visible to the model if there are unnecessary columns.
This information can be provided as a dictionary with table names as the keys and table information as the values. For example, let's provide a custom definition and sample rows for the Track table with only a few columns:
@@ -313,7 +423,7 @@ This information can be provided as a dictionary with table names as the keys an
```python
custom_table_info = {
"Track": """CREATE TABLE Track (
"TrackId" INTEGER NOT NULL,
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"Composer" NVARCHAR(220),
PRIMARY KEY ("TrackId")
@@ -342,22 +452,22 @@ print(db.table_info)
<CodeOutputBlock lang="python">
```
CREATE TABLE "Playlist" (
"PlaylistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
"PlaylistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
PRIMARY KEY ("PlaylistId")
)
/*
2 rows from Playlist table:
PlaylistId Name
1 Music
2 Movies
*/
CREATE TABLE Track (
"TrackId" INTEGER NOT NULL,
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"Composer" NVARCHAR(220),
PRIMARY KEY ("TrackId")
@@ -384,8 +494,8 @@ db_chain.run("What are some example tracks by Bach?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
What are some example tracks by Bach?
SQLQuery:SELECT "Name" FROM Track WHERE "Composer" LIKE '%Bach%' LIMIT 5;
@@ -395,31 +505,31 @@ db_chain.run("What are some example tracks by Bach?")
Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per SQLite. You can order the results to return the most informative data in the database.
Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers.
Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
Use the following format:
Question: "Question here"
SQLQuery: "SQL Query to run"
SQLResult: "Result of the SQLQuery"
Answer: "Final answer here"
Only use the following tables:
CREATE TABLE "Playlist" (
"PlaylistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
"PlaylistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
PRIMARY KEY ("PlaylistId")
)
/*
2 rows from Playlist table:
PlaylistId Name
1 Music
2 Movies
*/
CREATE TABLE Track (
"TrackId" INTEGER NOT NULL,
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"Composer" NVARCHAR(220),
PRIMARY KEY ("TrackId")
@@ -431,7 +541,7 @@ db_chain.run("What are some example tracks by Bach?")
2 Balls to the Wall None
3 My favorite song ever The coolest composer of all time
*/
Question: What are some example tracks by Bach?
SQLQuery:SELECT "Name" FROM Track WHERE "Composer" LIKE '%Bach%' LIMIT 5;
SQLResult: [('American Woman',), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata',)]
@@ -451,7 +561,7 @@ db_chain.run("What are some example tracks by Bach?")
### SQL Views
In some case, the table schema can be hidden behind a JSON or JSONB column. Adding row samples into the prompt might help won't always describe the data perfectly.
In some case, the table schema can be hidden behind a JSON or JSONB column. Adding row samples into the prompt might help won't always describe the data perfectly.
For this reason, a custom SQL views can help.
@@ -503,19 +613,19 @@ chain.run("How many employees are also customers?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseSequentialChain chain...
Table names to use:
['Employee', 'Customer']
> Entering new SQLDatabaseChain chain...
How many employees are also customers?
SQLQuery:SELECT COUNT(*) FROM Employee e INNER JOIN Customer c ON e.EmployeeId = c.SupportRepId;
SQLResult: [(59,)]
Answer:59 employees are also customers.
> Finished chain.
> Finished chain.
@@ -537,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
import logging
import torch
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from langchain import HuggingFacePipeline
from langchain.llms import HuggingFacePipeline
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
model_id = "google/flan-ul2"
@@ -586,8 +696,8 @@ local_chain("How many customers are there?")
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
How many customers are there?
SQLQuery:
@@ -773,8 +883,8 @@ print("\n" + yaml_example)
<CodeOutputBlock lang="python">
```
> Entering new SQLDatabaseChain chain...
List all the customer first names that start with 'a'
"One prompting technique called \"Step-Back\" prompting can improve performance on complex questions by first asking a \"step back\" question. This can be combined with regular question-answering applications by then doing retrieval on both the original and step-back question.\n",
"\n",
"Read the paper [here](https://arxiv.org/abs/2310.06117)\n",
"\n",
"See an excellent blog post on this by Cobus Greyling [here](https://cobusgreyling.medium.com/a-new-prompt-engineering-technique-has-been-introduced-called-step-back-prompting-b00e8954cacb)\n",
"\n",
"In this cookbook we will replicate this technique. We modify the prompts used slightly to work better with chat models."
" (\"system\", \"\"\"You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:\"\"\"),\n",
"'This includes content about former President Donald Trump. According to further tests, ChatGPT successfully wrote poems admiring all recent U.S. presidents, but failed when we entered a query for ... On Wednesday, a Twitter user posted screenshots of him asking OpenAI\\'s chatbot, ChatGPT, to write a positive poem about former President Donald Trump, to which the chatbot declined, citing it ... While impressive in many respects, ChatGPT also has some major flaws. ... [President\\'s Name],\" refused to write a poem about ex-President Trump, but wrote one about President Biden ... During the Trump administration, Altman gained new attention as a vocal critic of the president. It was against that backdrop that he was rumored to be considering a run for California governor.'"
]
},
"execution_count": 191,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever(question)"
]
},
{
"cell_type": "code",
"execution_count": 192,
"id": "00c77443",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Will Douglas Heaven March 3, 2023 Stephanie Arnett/MITTR | Envato When OpenAI launched ChatGPT, with zero fanfare, in late November 2022, the San Francisco-based artificial-intelligence company... ChatGPT, which stands for Chat Generative Pre-trained Transformer, is a large language model -based chatbot developed by OpenAI and launched on November 30, 2022, which enables users to refine and steer a conversation towards a desired length, format, style, level of detail, and language. ChatGPT is an artificial intelligence (AI) chatbot built on top of OpenAI's foundational large language models (LLMs) like GPT-4 and its predecessors. This chatbot has redefined the standards of... June 4, 2023 ⋅ 4 min read 124 SHARES 13K At the end of 2022, OpenAI introduced the world to ChatGPT. Since its launch, ChatGPT hasn't shown significant signs of slowing down in developing new...\""
"# response_prompt_template = \"\"\"You are an expert of world knowledge. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.\n",
"\"No, ChatGPT was not around while Donald Trump was president. ChatGPT was launched on November 30, 2022, which is after Donald Trump's presidency. The context provided mentions that during the Trump administration, Altman, the CEO of OpenAI, gained attention as a vocal critic of the president. This suggests that ChatGPT was not developed or available during that time.\""
]
},
"execution_count": 205,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "a9fb8dd2",
"metadata": {},
"source": [
"## Baseline"
]
},
{
"cell_type": "code",
"execution_count": 206,
"id": "00db8a15",
"metadata": {},
"outputs": [],
"source": [
"response_prompt_template = \"\"\"You are an expert of world knowledge. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.\n",
"\"Yes, ChatGPT was around while Donald Trump was president. However, it is important to note that the specific context you provided mentions that ChatGPT refused to write a positive poem about former President Donald Trump. This suggests that while ChatGPT was available during Trump's presidency, it may have had limitations or biases in its responses regarding him.\""
@@ -42,7 +42,7 @@ If you are using GitHub pages for hosting, this command is a convenient way to b
### Continuous Integration
Some common defaults for linting/formatting have been set for you. If you integrate your project with an opensource Continuous Integration system (e.g. Travis CI, CircleCI), you may check for issues using the following command.
Some common defaults for linting/formatting have been set for you. If you integrate your project with an open-source Continuous Integration system (e.g. Travis CI, CircleCI), you may check for issues using the following command.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.