Compare commits

..

184 Commits

Author SHA1 Message Date
William Fu-Hinthorn
650a51854d Update 2023-11-16 11:28:55 -08:00
Bagatur
9f543634e2 Agent window management how to (#13033) 2023-11-15 09:38:02 -08:00
Nuno Campos
d5aeff706a Make it easier to subclass RunnableEach (#13346)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-15 13:12:57 +00:00
Erick Friis
bed06a4f4a IMPROVEMENT research-assistant configurable report type (#13312)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-14 21:04:57 -08:00
竹内謙太
3b5e8bacfa FEAT Add some properties to NotionDBLoader (#13358)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

fix #13356

Add supports following properties for metadata to NotionDBLoader.

- `checkbox`
- `email`
- `number`
- `select`

There are no relevant tests for this code to be updated.
2023-11-14 20:31:12 -08:00
Leonid Ganeline
c9b9359647 FEAT docs integration cards site (#13379)
The `Integrations` site is hidden now.
I've added it into the `More` menu.
The name is `Integration Cards` otherwise, it is confused with the
`Integrations` menu.

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-11-14 19:49:17 -08:00
Erick Friis
0f25ea9671 api doc newlines (#13378)
cc @leo-gan 

Deploying at
https://api.python.langchain.com/en/erick-api-doc-newlines-/api_reference.html
(will take a bit)
2023-11-14 19:16:31 -08:00
Fielding Johnston
37eb44c591 BUG Add limit_to_domains to APIChain based tools (#13367)
- **Description:** Adds `limit_to_domains` param to the APIChain based
tools (open_meteo, TMDB, podcast_docs, and news_api)
- **Issue:** I didn't open an issue, but after upgrading to 0.0.328
using these tools would throw an error.
  - **Dependencies:** N/A
  - **Tag maintainer:** @baskaryan 
  
  
**Note**: I included the trailing / simply because the docs here did
fc886cc303/docs/docs/use_cases/apis.ipynb (L246)
, but I checked the code and it is using `urlparse`. SoI followed the
docs since it comes down to stylee.
2023-11-14 19:07:16 -08:00
Predrag Gruevski
91443cacdb Update templates/rag-self-query with newer dependencies without CVEs. (#13362)
The `langchain` repo was being flagged for using vulnerable
dependencies, some of which were in this template's lockfile. Updating
to newer versions should fix that.
2023-11-14 19:06:18 -08:00
Predrag Gruevski
ac7e88fbbe Update rag-timescale-conversation to dependencies without CVEs. (#13364)
Just `poetry lock` and moving `langchain` to the latest version, in case
folks copy this template.

This resolves some vulnerable dependency alerts GitHub code scanning was
flagging.
2023-11-14 19:05:12 -08:00
Leonid Ganeline
342ed5c77a Yi model from 01.ai , example (#13375)
Added an example with new soa `Yi` model to `HuggingFace-hub` notebook
2023-11-14 17:10:53 -08:00
Bagatur
38180ad25f bump openai support (#13262) 2023-11-14 16:50:23 -08:00
Erick Friis
9545f0666d fix cli release (#13373)
My thought is that the ==version would prevent pip from finding the
package on regular [pypi.org](http://pypi.org/), so it would look at
[test.pypi.org](http://test.pypi.org/) for that. Otherwise it'll pull
package from [pypi.org](http://pypi.org/) (e.g. sub deps)

Right now, the cli release is failing because it's going to
test.pypi.org by default, so it finds this incorrect FASTAPI package
instead of the real one: https://test.pypi.org/project/FASTAPI/
2023-11-14 15:08:35 -08:00
Erick Friis
7c3066f9ec more cli interactivity, bugfix (#13360) 2023-11-14 14:49:43 -08:00
Bagatur
3596be5210 DOCS: format notebooks (#13371) 2023-11-14 14:17:44 -08:00
Predrag Gruevski
d63d4994c0 Bump all libraries to the latest ruff version. (#13350)
This version of `ruff` is the one we'll be using to lint the docs and
cookbooks (#12677), so I'm making it used everywhere else too.
2023-11-14 16:00:21 -05:00
Predrag Gruevski
2ebd167dba Lint Python notebooks with ruff. (#12677)
The new ruff version fixed the blocking bugs, and I was able to fairly
easily us to a passing state: ruff fixed some issues on its own, I fixed
a handful by hand, and I added a list of narrowly-targeted exclusions
for files that are currently failing ruff rules that we probably should
look into eventually.

I went pretty lenient on the docs / cookbooks rules, allowing dead code
and such things. Perhaps in the future we may want to tighten the rules
further, but this is already a good set of checks that found real issues
and will prevent them going forward.
2023-11-14 15:58:22 -05:00
Massimiliano Pronesti
344cab0739 IMPROVEMENT: support Openai API v1 for Azure OpenAI completions (#13231)
Hi,
this PR adds support for OpenAI API v1 for Azure OpenAI completion API.
@baskaryan @hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-14 12:10:18 -08:00
dependabot[bot]
fc886cc303 Bump pyarrow from 13.0.0 to 14.0.1 in /libs/langchain (#13363)
Bumps [pyarrow](https://github.com/apache/arrow) from 13.0.0 to 14.0.1.
<details>
<summary>Commits</summary>
<ul>
<li><a
href="ba53748361"><code>ba53748</code></a>
MINOR: [Release] Update versions for 14.0.1</li>
<li><a
href="529f3768fa"><code>529f376</code></a>
MINOR: [Release] Update .deb/.rpm changelogs for 14.0.1</li>
<li><a
href="b84bbcac64"><code>b84bbca</code></a>
MINOR: [Release] Update CHANGELOG.md for 14.0.1</li>
<li><a
href="f141709763"><code>f141709</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38607">GH-38607</a>:
[Python] Disable PyExtensionType autoload (<a
href="https://redirect.github.com/apache/arrow/issues/38608">#38608</a>)</li>
<li><a
href="5a37e74198"><code>5a37e74</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38431">GH-38431</a>:
[Python][CI] Update fs.type_name checks for s3fs tests (<a
href="https://redirect.github.com/apache/arrow/issues/38455">#38455</a>)</li>
<li><a
href="2dcee3f82c"><code>2dcee3f</code></a>
MINOR: [Release] Update versions for 14.0.0</li>
<li><a
href="297428cbf2"><code>297428c</code></a>
MINOR: [Release] Update .deb/.rpm changelogs for 14.0.0</li>
<li><a
href="3e9734f883"><code>3e9734f</code></a>
MINOR: [Release] Update CHANGELOG.md for 14.0.0</li>
<li><a
href="9f90995c8c"><code>9f90995</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38332">GH-38332</a>:
[CI][Release] Resolve symlinks in RAT lint (<a
href="https://redirect.github.com/apache/arrow/issues/38337">#38337</a>)</li>
<li><a
href="bd61239a32"><code>bd61239</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/35531">GH-35531</a>:
[Python] C Data Interface PyCapsule Protocol (<a
href="https://redirect.github.com/apache/arrow/issues/37797">#37797</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/apache/arrow/compare/go/v13.0.0...go/v14.0.1">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=pyarrow&package-manager=pip&previous-version=13.0.0&new-version=14.0.1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/langchain-ai/langchain/network/alerts).

</details>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Predrag Gruevski <2348618+obi1kenobi@users.noreply.github.com>
2023-11-14 14:23:52 -05:00
Leonid Ganeline
f5bf3bdf14 added Cookbooks link (#13078)
It is a temporary solution before major documents refactoring.
Related to #13070 (not solving it)
2023-11-14 10:52:47 -08:00
Erick Friis
c0e6045c0b cli 0.0.17 (#13359) 2023-11-14 09:56:18 -08:00
Erick Friis
927824b7cb CLI interactivity (#13148)
Will implement more later
2023-11-14 09:53:29 -08:00
billytrend-cohere
2f6fe6ddf3 Fix latest message index (#13355)
There is a bug which caused the earliest message rather than the latest
message being sent
2023-11-14 09:23:25 -08:00
Manuel Soria
58f5a4d30a Pgvector template (#13267)
Including pvector template, adapting what is covered in the
[cookbook](https://github.com/langchain-ai/langchain/blob/master/cookbook/retrieval_in_sql.ipynb).

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-14 07:47:48 -08:00
Harrison Chase
be854225c7 add more reasonable arxiv retriever (#13327) 2023-11-13 20:54:14 -08:00
Harrison Chase
4b7a85887e arxiv retrieval agent improvement (#13329) 2023-11-13 20:54:03 -08:00
Krish Dholakia
5a920e14c0 fix litellm openai imports (#13307) 2023-11-13 17:55:10 -08:00
Bagatur
1c67db4c18 Move OAI assistants to langchain and add callbacks (#13236) 2023-11-13 17:42:07 -08:00
Bagatur
8006919e52 DOCS: cleanup docs directory (#13301) 2023-11-13 17:38:45 -08:00
Bagatur
c3f94f4c12 Update main readme (#13298) 2023-11-13 17:37:54 -08:00
Harrison Chase
5f60439221 add retrieval agent (#13317) 2023-11-13 17:22:39 -08:00
Harrison Chase
2ff30b50f2 FEATURE gpt researcher template (#13062)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 15:52:25 -08:00
Erick Friis
280ecfd8eb IMPROVEMENT redirect root to docs in langserve app template (#13303) 2023-11-13 15:51:41 -08:00
wemysschen
a591cdb67d add cookbook for RAG with baidu QIANFAN and elasticsearch (#13287)
**Description:** 
Add cookbook for RAG with baidu QIANFAN and elasticsearch.

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-13 14:45:24 -08:00
mertkayhan
9b4974871d IMPROVEMENT Increase flexibility of ElasticVectorSearch (#6863)
Hey @rlancemartin, @eyurtsev ,

I did some minimal changes to the `ElasticVectorSearch` client so that
it plays better with existing ES indices.

Main changes are as follows:

1. You can pass the dense vector field name into `_default_script_query`
2. You can pass a custom script query implementation and the respective
parameters to `similarity_search_with_score`
3. You can pass functions for building page content and metadata for the
resulting `Document`

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  4. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-11-13 14:36:03 -08:00
Lance Martin
39852dffd2 Cookbook for multi-modal RAG eval (#13272) 2023-11-13 14:26:02 -08:00
Erick Friis
50a5c919f0 IMPROVEMENT self-query template (#13305)
- [ ]
https://github.com/langchain-ai/langchain/pull/12694#discussion_r1391334719
-> keep date
- [x]
https://github.com/langchain-ai/langchain/pull/12694#discussion_r1391336586
2023-11-13 14:03:15 -08:00
Yasin
b46f88d364 IMPROVEMENT add license file to subproject (#8403)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

hi!
This is pretty straight-forward: The sdist package does not contain the
license file (which is needed by e.g. conda) because the package is
built from the subdir and can't see the license.
I _copied_ the license but since I'm unfamiliar with the projects
direction, I'm not sure that's correct.
thanks!

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 11:48:21 -08:00
Rui Ramos
ff19a62afc Fix Pinecone cosine relevance score (#8920)
Fixes: #8207

Description:
Pinecone returns scores (not distances) with cosine similarity. The
values according to the docs are [-1, 1], although I could never
reproduce negative values.

This PR ensures that the score returned from Pinecone is preserved,
rather than inverted, so the most relevant documents can be filtered (eg
when using similarity thresholds)

I'll leave this as a draft PR as I couldn't run the tests (my pinecone
account might not be enough - some errors were being thrown around
namespaces) so hopefully someone who _can_ will pick this up.

Maintainers:
@rlancemartin, @eyurtsev

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 11:47:38 -08:00
Bagatur
2e42ed5de6 Self-query template (#12694)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 11:44:19 -08:00
Konstantin Spieß
1e43025bf5 Fix serialization issue in Matching Engine Vector Store (#13266)
- **Description:** Fixed a serialization issue in the add_texts method
of the Matching Engine Vector Store caused by a typo, leading to an
attempt to serialize the json module itself.
  - **Issue:** #12154 
  - **Dependencies:** ./.
  - **Tag maintainer:**
2023-11-13 11:04:11 -08:00
William FH
9169d77cf6 Update error message in evaluation runner (#13296) 2023-11-13 11:03:20 -08:00
Leonie
32c493e3df Refine Weaviate docs and add RAG example (#13057)
- **Description:** Refine Weaviate tutorial and add an example for
Retrieval-Augmented Generation (RAG)
  - **Issue:** (not applicable),
  - **Dependencies:** none
  - **Tag maintainer:** @baskaryan <!--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
  - **Twitter handle:** @helloiamleonie

Co-authored-by: Leonie <leonie@Leonies-MBP-2.fritz.box>
2023-11-13 10:59:19 -08:00
takatost
f22f273f93 FIX: 'from_texts' method in Weaviate with non-existent kwargs param (#11604)
Due to the possibility of external inputs including UUIDs, there may be
additional values in **kwargs, while Weaviate's `__init__` method does
not support passing extra **kwarg parameters.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 10:32:20 -08:00
Frank995
971d2b2e34 Add missing filter to max_marginal_relevance_search inner call to max_marginal_relevance_search_by_vector (#13260)
When calling max_marginal_relevance_search from PGVector the filter
param is not carried over to max_marginal_relevance_search_by_vector

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-13 10:31:34 -08:00
chevalmuscle
3ad78e48e2 Use endpoint_url if provided with boto3 session for dynamodb (#11622)
- **Description:** Uses `endpoint_url` if provided with a boto3 session.
When running dynamodb locally, credentials are required even if invalid.
With this change, it will be possible to pass a boto3 session with
credentials and specify an endpoint_url

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 10:31:16 -08:00
Erick Friis
18acc22f29 Ollama pass kwargs as options instead of top (#13280)
Noticed params are really in `options` instead while reviewing #12895
2023-11-13 10:28:47 -08:00
刘 方瑞
46af56dc4f Add MyScaleWithoutJSON which allows user to wrap columns into Document's Metadata (#13164)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
Replace this entire comment with:
- **Description:** Add MyScaleWithoutJSON which allows user to wrap
columns into Document's Metadata
  - **Tag maintainer:** @baskaryan
2023-11-13 10:10:36 -08:00
Michael Landis
2aa13f1e10 chore: bump momento dependency version and refactor search hit usage (#13111)
**Description**

Bumps the Momento dependency to the latest version and refactors the
usage of `SearchHit` in the Momento Vector Index (MVI) vector store
integration. This change is a one liner where we use the preferred
attribute `score` to read the query-document similarity instead of
`distance`. The latest versions of Momento clients will use this
attribute going forward.

**Dependencies**

Updated the Momento dependency to latest version.

**Tests**

💚 I re-ran the existing MVI integration tests
(`tests/integration_tests/vectorstores/test_momento_vector_index.py`)
and they pass.

**Review**
cc @baskaryan @eyurtsev
2023-11-13 09:12:21 -08:00
Junlin Zhou
4da2faba41 docs: align custom_tool document headers (#13252)
On the [Defining Custom
Tools](https://python.langchain.com/docs/modules/agents/tools/custom_tools)
page, there's a 'Subclassing the BaseTool class' paragraph under the
'Completely New Tools - String Input and Output' header. Also there's
another 'Subclassing the BaseTool' paragraph under no header, which I
think may belong to the 'Custom Structured Tools' header.

Another thing is, there's a 'Using the tool decorator' and a 'Using the
decorator' paragraph, I think should belong to 'Completely New Tools -
String Input and Output' and 'Custom Structured Tools' separately.

This PR moves those paragraphs to corresponding headers.
2023-11-13 09:03:56 -08:00
Ikko Eltociear Ashimine
700293cae9 Fix typo in timescalevector.ipynb (#13239)
enviornment -> environment
2023-11-13 09:03:07 -08:00
kYLe
cc55d2fcee Add OpenAI API v1 support for ChatAnyscale and fixed a bug with openai_api_key (#13237)
1. Add OpenAI API v1 support
2. Fixed a bug to call `get_secret_value` on a str value
(values["openai_api_key"])
2023-11-13 09:01:54 -08:00
juan-calvo-datatonic
545b76b0fd Add rag google vertex ai search template (#13294)
- **Description:** This is a template demonstrating how to utilize
Google Vertex AI Search in conjunction with ChatVertexAI()
2023-11-13 08:45:36 -08:00
Govind.S.B
9024593468 added system prompt and template fields to ollama (#13022)
**Description**
the ollama api now supports passing system prompt and template directly
instead of modifying the model file , but the ollama integration in
langchain did not have this change updated . The update just adds these
two parameters to it ( there are 2 more parameters that are pending to
be updated, I was not sure about their utility wrt to langchain )
Refer :
8713ac23a8

**Issue** : None Applicable

**Dependencies** : None Changed

**Twitter handle** : https://twitter.com/violetto96

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-13 08:45:11 -08:00
langchain-infra
f55f67055f Add dockerfile template (#13240) 2023-11-13 10:33:01 -05:00
Shaurya Rohatgi
f70aa82c84 Update README.md - Added notebook for extraction_openai_tools (#13205)
added Parallel Function Calling for Structured Data Extraction notebook

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 00:12:46 -08:00
Guillem Orellana Trullols
0f31cd8b49 Remove _get_kwarg_value function (#13184)
`_get_kwarg_value` function is useless, one can rely on python builtin
functionalities to do the exact same thing.

- **Description:** Removed `_get_kwarg_value`. Helps with code
readability.
  - **Issue:** the issue # it fixes (if applicable),
  - **Twitter handle:** @Guillem_96
2023-11-13 00:09:54 -08:00
SuperDa Fu
e1c020dfe1 dalle add model parameter (#13201)
- **Description:** dalle_image_generator adding a new model parameter,
  - **Issue:** N/A,
  - **Dependencies:** 
  - **Tag maintainer: @hwchase17
  - **Twitter handle:**

---------

Co-authored-by: dafu <xiangbingze@wenru.wang>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-11-13 00:09:20 -08:00
Mario Angst
96b56a4d4f Typo fix to quickstart.mdx (#13178)
- **Description:** I fixed a very small typo in the quickstart docs
(BaeMessage -> BaseMessage)
2023-11-13 00:02:18 -08:00
Dennis de Greef
64e11592bb Improve CSV reader which can't call .strip() on NoneType (#13079)
Improve CSV reader which can't call .strip() on NoneType if there are
less cells in the row compared to the header

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** 
I have a CSV file as followed

```
headerA,headerB,headerC
v1A,v1B,v1C,
v2A,v2B
v3A,v3B,v3C
```
In this case, row 2 is missing a value, which results in reading a None
type. The strip() method can not be called on None, hence raising. In
this PR I am making the change to only call strip if the value if not
None.

  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-12 23:51:39 -08:00
glad4enkonm
339973db47 Update ollama.py (#12895)
duplicate option removed
**Description:**  An issue fix, http stop option duplicate removed.
**Issue:** the issue #12892 fix
**Dependencies:** no
**Tag maintainer:** @eyurtsev

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-12 23:43:59 -08:00
刘 方瑞
e89e830c55 Free knowledge base pod information update (#12813)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

We updated MyScale free knowledge base, where you can try your RAG with
36 million paragraphs from wikipedia and 2 million paragraphs from
ArXiv.

The pod has two tables
```sql
CREATE TABLE default.ChatArXiv (
    `abstract` String, 
    `id` String, 
    `vector` Array(Float32), 
    `metadata` Object('JSON'), 
    `pubdate` DateTime,
    `title` String,
    `categories` Array(String),
    `authors` Array(String), 
    `comment` String,
    `primary_category` String,
    VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'), 
    CONSTRAINT vec_len CHECK length(vector) = 768) 
ENGINE = ReplacingMergeTree ORDER BY id;

CREATE TABLE wiki.Wikipedia (
    `id` String, 
    `title` String, 
    `text` String,
    `url` String,
    `wiki_id` UInt64,
    `views` Float32,
    `paragraph_id` UInt64,
    `langs` UInt32, 
    `emb` Array(Float32), 
    VECTOR INDEX emb_idx emb TYPE MSTG('metric_type=Cosine'), 
    CONSTRAINT emb_len CHECK length(emb) = 768) 
ENGINE = ReplacingMergeTree ORDER BY id;
```

You can connect those two tables using credentials below (just the same
to the old one)
URL: `msc-4a9e710a.us-east-1.aws.staging.myscale.cloud`
Port: `443`
Username: `chatdata`
Password: `myscale_rocks`

It's FREE and you can also use it with 
ChatData: https://github.com/myscale/ChatData
Retrieval-QA-Benchmark:
https://github.com/myscale/Retrieval-QA-Benchmark
... and also LangChain!

Request for review @baskaryan
2023-11-12 23:22:42 -08:00
Luis Valencia
c40973814d Update README.md (#8570)
- Description: updated readme.
  - Tag maintainer: @baskaryan
  - Twitter handle: @Levalencia

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-11-12 22:07:49 -08:00
Isak Nyberg
8f81703d76 Add new models to openai callback (#13244)
**Description:** Adding the new models to the openai callback function,
info taken from [model
announcement](https://platform.openai.com/docs/models) and
[pricing](https://openai.com/pricing)

A short description for a short PR :)
2023-11-12 12:01:19 -08:00
Bagatur
ea6dd3a550 bump 335 (#13261) 2023-11-12 11:30:25 -08:00
William FH
a837b03e55 Update langsmith version 0.63 (#13208) 2023-11-12 11:29:25 -08:00
Harrison Chase
7f1d26160d update tools (#13243) 2023-11-12 10:22:54 -08:00
Nuno Campos
8d6faf5665 Make it easier to subclass runnable binding with custom init args (#13189) 2023-11-11 09:01:17 +00:00
Peter Vandenabeele
7f1964b264 Fix BeautifulSoupTransformer: no more duplicates and correct order of tags + tests (#12596) 2023-11-11 08:56:37 +00:00
Bagatur
937d7c41f3 update stack diagram (#13213) 2023-11-10 16:50:20 -08:00
Erick Friis
9c7afa8adb Upgrade cohere embedding model to v3 (#13219)
Just updates API docs, doesn't change default param from 2.0 (could be
breaking change)
2023-11-10 16:25:58 -08:00
Matvey Arye
180657ca7a Add template for conversational rag with timescale vector (#13041)
**Description:** This is like the rag-conversation template in many
ways. What's different is:
- support for a timescale vector store.
- support for time-based filters.
- support for metadata filters.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-10 16:12:32 -08:00
Andrew Zhou
1a1a1a883f fleet_context docs update (#13221)
- **Description:** Changed the fleet_context documentation to use
`context.download_embeddings()` from the latest release from our
package. More details here:
https://github.com/fleet-ai/context/tree/main#api
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** @andrewthezhou
2023-11-10 14:53:57 -08:00
Erick Friis
8fdf15c023 Fix Document Loader Unit Test - Docusaurus (#13228) 2023-11-10 14:52:01 -08:00
Lee
72ad448daa feat: Docusaurus Loader (#9138)
Added a Docusaurus Loader

Issue: #6353

I had to implement this for working with the Ionic documentation, and
wanted to open this up as a draft to get some guidance on building this
out further. I wasn't sure if having it be a light extension of the
SitemapLoader was in the spirit of a proper feature for the library --
but I'm grateful for the opportunities Langchain has given me and I'd
love to build this out properly for the sake of the community.

Any feedback welcome!
2023-11-10 14:21:55 -08:00
VAS
8fa960641a Update Documentation: Corrected Typos and Improved Clarity (#11725)
Docs updates

---------

Co-authored-by: Advaya <126754021+bluevayes@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-10 14:14:44 -08:00
Leonid Ganeline
e165daa0ae new course on DeepLearning.ai (#12755)
Added a new course on
[DeepLearning.ai](https://learn.deeplearning.ai/functions-tools-agents-langchain)
Added the LangChain `Wikipedia` link. Probably, it can be placed in the
"More" menu.
2023-11-10 13:55:27 -08:00
Erick Friis
93ae589f1b Add mongo parent template to index (#13222) 2023-11-10 11:56:44 -08:00
Tomaz Bratanic
0dc4ab0be1 Neo4j chat message history (#13008) 2023-11-10 11:53:34 -08:00
Bagatur
bf8cf7e042 Bagatur/langserve blurb (#13217) 2023-11-10 14:05:43 -05:00
fyasla
d266b3ea4a issue #12165 mask API key in chat_models/azureml_endpoint module (#12836)
- **Description:** `AzureMLChatOnlineEndpoint` object from
langchain/chat_models/azureml_endpoint.py safe to print
without having any secrets included in raw format in the string
representation.
  - **Issue:** #12165,
  - **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Faysal Bougamale <faysal.bougamale@horiba.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-10 14:05:19 -05:00
Anush
52f34de9b7 feat: FastEmbed embedding provider (#13109)
## Description:
This PR intends to add
[Qdrant/FastEmbed](https://qdrant.github.io/fastembed/) as a local
embeddings provider, associated tests and documentation.

**Documentation preview:**
https://langchain-git-fork-anush008-master-langchain.vercel.app/docs/integrations/text_embedding/fastembed

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-10 13:51:52 -05:00
Eugene Yurtsev
b0e8cbe0b3 Add RunnableSequence documentation (#13094)
Add RunnableSequence documentation
2023-11-10 13:44:43 -05:00
Eugene Yurtsev
869df62736 Document RunnableWithFallbacks (#13088)
Add documentation to RunnableWithFallbacks
2023-11-10 13:16:21 -05:00
Eugene Yurtsev
8313c218da Add more runnable documentation (#13083)
- Adding documentation to the runnable.
- Documentation is not organized in the best way for the runnable; i.e.,
in
terms of LCEL vs. other standard methods, will follow up with more
edits.
2023-11-10 13:14:57 -05:00
Erick Friis
a26105de8e vectara rag mq (#13214)
Description: another Vectara template for MultiQuery RAG flow
Twitter handle: @ofermend

Fixes to #13106

---------

Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-11-10 10:08:45 -08:00
Bagatur
24386e0860 bump 334, exp 40 (#13211) 2023-11-10 09:43:29 -08:00
Lance Martin
d2e50b3108 Add Chroma multimodal cookbook (#12952)
Pending:
* https://github.com/chroma-core/chroma/pull/1294
* https://github.com/chroma-core/chroma/pull/1293

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-10 09:43:10 -08:00
The1Bill
55912868da Update toolkit.py to remove single quotes around table names (#12445)
**Description:** Removing the single quote wrapper around the table
names in the SQL agent toolkit.py file as it misleads the LLM into
querying against tables with single quotes around their names.
**Issue:** #7457 
**Dependencies:** None
**Tag maintainer:** @hwchase17 
**Twitter handle:** None
2023-11-10 06:39:15 -08:00
Nuno Campos
362a446999 Changes to root listener (#12174)
- Implement config_specs to include session_id
- Remove Runnable method and update notebook
- Add more details to notebook, eg. show input schema and config schema
before and after adding message history

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-10 09:53:48 +00:00
Nuno Campos
b2b94424db Update return type for Runnable.__or__ (#12880)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-10 09:52:38 +00:00
Bagatur
dd7959f4ac template readme's in docs (#13152) 2023-11-09 23:36:21 -08:00
Bagatur
86b93b5810 Add serve to quickstart (#13174) 2023-11-09 23:10:26 -08:00
Bagatur
fbf7047468 Bagatur/update agent docs (#13167) 2023-11-09 21:14:30 -08:00
Harrison Chase
0a2b1c7471 improve duck duck go tool (#13165) 2023-11-09 20:49:39 -08:00
Bagatur
850336bcf1 Update model i/o docs (#13160) 2023-11-09 20:35:55 -08:00
Jacob Lee
cf271784fa Add basic critique revise template (#12688)
@baskaryan @hwchase17

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-09 17:33:29 -08:00
Cweili
ee3ceb0fb8 Document: Fix "Biadu" typo (#12985)
Fix document "Baidu Cloud ElasticSearch VectorSearch" `Biadu` typo.
2023-11-09 17:32:38 -08:00
Chenyu Zhao
defd4b4f11 Clean up Fireworks provider documentation (#13157) 2023-11-09 16:35:05 -08:00
Bagatur
d9e493e96c fix module sidebar (#13158) 2023-11-09 16:31:45 -08:00
wemysschen
e76ff63125 fix baiducloud_vector_search document typo (#12976)
**Issue:**
fix baiducloud_vector_search document typo

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-09 16:27:04 -08:00
Holt Skinner
fceae456b9 fix: Updates to formatting in Google Drive Retriever docs (#13015)
- Minor updates to formatting to make easier to read
2023-11-09 16:15:55 -08:00
Bagatur
c63eb9d797 LCEL nits (#13155) 2023-11-09 16:09:33 -08:00
Shinya Maeda
28cc60b347 Fix langchain.llms OpenAI completion doesn't work due to v1 client update (#13099)
This commit fixes the issue that langchain.llms OpenAI completion
stopped working since the V1 openai client update.

Replace this entire comment with:
- **Description:** This PR fixes the issue [AttributeError: module
'openai' has no attribute
'Completion'](https://github.com/langchain-ai/langchain/issues/12967)
similar to
8e0cb2eb84
and https://github.com/langchain-ai/langchain/pull/12969,
  - **Issue:** https://github.com/langchain-ai/langchain/issues/12967,
  - **Dependencies:** `openai` v1.x.x client,
  - **Tag maintainer:** @baskaryan,
  - **Twitter handle:** @dosuken123 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-09 15:12:19 -08:00
Bagatur
555ce600ef Bagatur/docs serve context (#13150) 2023-11-09 15:05:18 -08:00
Bagatur
ff43cd6701 OpenAI remove httpx typing (#13154)
Addresses #13124
2023-11-09 14:32:09 -08:00
Erick Friis
8ad3b255dc Pirate Speak Configurable Template (#13153) 2023-11-09 22:13:45 +00:00
Bagatur
eb51150557 update oai tool agent doc (#13147) 2023-11-09 12:37:30 -08:00
Bagatur
b298f550fe update modules sidebar (#13141) 2023-11-09 11:57:09 -08:00
Bagatur
84e65533e9 Docs: combine LCEL index and why (#13142) 2023-11-09 11:16:45 -08:00
Bagatur
1311450646 fix langsmith links (#13144) 2023-11-09 11:12:50 -08:00
Bagatur
8b2a82b5ce Bagatur/docs smith context (#13139) 2023-11-09 10:22:49 -08:00
Erick Friis
58da6e0d47 Multimodal rag traces (#13140) 2023-11-09 09:54:00 -08:00
Bagatur
150d58304d update oai cookbooks (#13135) 2023-11-09 08:04:51 -08:00
Bagatur
f04cc4b7e1 bump 333 (#13131) 2023-11-09 07:33:15 -08:00
billytrend-cohere
b346d4a455 Add message to documents (#12552)
This adds the response message as a document to the rag retriever so
users can choose to use this. Also drops document limit.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-09 07:30:48 -08:00
Harrison Chase
5f38770161 Support oai tool call (#13110)
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-09 07:29:29 -08:00
Stefano Lottini
c52725bdc5 (Astra DB/Cassandra) Minor clarification about dependencies in the demo notebook (#13118)
This PR helps developers trying the Astra DB / Cassandra vector store
quickstart notebook by making it clear what other dependencies are
required.
2023-11-09 09:19:15 -05:00
Holt Skinner
0fc8fd12bd feat: Vertex AI Search - Add Snippet Retrieval for Non-Advanced Website Data Stores (#13020)
https://cloud.google.com/generative-ai-app-builder/docs/snippets#snippets

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-08 21:52:50 -05:00
Erick Friis
3dbaaf59b2 Tool Retrieval Template (#13104)
Adds a template like
https://python.langchain.com/docs/modules/agents/how_to/custom_agent_with_tool_retrieval

Uses OpenAI functions, LCEL, and FAISS
2023-11-08 18:33:31 -08:00
Jacob Lee
76283e9625 Adds embeddings filter option to return scores in state (#12489)
CC @baskaryan @assafelovic
2023-11-08 17:50:06 -08:00
jakerachleff
18601bd4c8 Get project from langchain sdk (#13100)
## Description
We need to centralize the API we use to get the project name for our
tracers. This PR makes it so we always get this from a shared function
in the langsmith sdk.

## Dependencies
Upgraded langsmith from 0.52 to 0.62 to include the new API
`get_tracer_project`
2023-11-08 17:10:12 -08:00
Bagatur
72e12f6bcf update more azure docs (#13093) 2023-11-08 14:11:16 -08:00
Bagatur
1703f132c6 update azure embedding docs (#13091) 2023-11-08 13:39:31 -08:00
Bagatur
9fdfac22c2 bump 332 (#13089) 2023-11-08 13:23:16 -08:00
Bagatur
1f85ec34d5 bump 331rc3 exp 39 (#13086) 2023-11-08 13:00:13 -08:00
Anton Troynikov
9f077270c8 Don't pass EF to chroma (#13085)
- **Description:** 

Recently Chroma rolled out a breaking change on the way we handle
embedding functions, in order to support multi-modal collections.

This broke the way LangChain's `Chroma` objects get created, because we
were passing the EF down into the Chroma collection:
https://docs.trychroma.com/migration#migration-to-0416---november-7-2023

However, internally, we are never actually using embeddings on the
chroma collection - LangChain's `Chroma` object calls it instead. Thus
we just don't pass an `embedding_function` to Chroma itself, which fixes
the issue.
2023-11-08 12:55:35 -08:00
Erick Friis
f15f8e01cf Azure OpenAI Embeddings (#13039)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-08 12:37:17 -08:00
David Peterson
37561d8986 Add Proper Import Error (#13042)
- **Description:** The issue was not listing the proper import error for
amazon textract loader.
- **Issue:** Time wasted trying to figure out what to install...
(langchain docs don't list the dependency either)
  - **Dependencies:** N/A
  - **Tag maintainer:** @sbusso 
  - **Twitter handle:** @h9ste

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-08 10:29:08 -08:00
Eugene Yurtsev
06c503f672 Add RunnableRetry Documentation (#13074) 2023-11-08 18:20:18 +00:00
Bagatur
55aeff6777 oai assistant multiple actions (#13068) 2023-11-08 08:25:37 -08:00
Erick Friis
a9b70baef9 cli updates, 0.0.16 (#13034)
- confirm flags, serve detection
- 0.0.16
- always gen code
- pip bool
2023-11-08 07:47:30 -08:00
Bagatur
1f27104626 Fleet context (#13038)
cc @adrwz
2023-11-07 18:57:09 -08:00
Bagatur
d26fd6f0d1 redirect langsmith walkthrough (#13040) 2023-11-07 18:24:13 -08:00
Erick Friis
6f45532620 Upgrade docs postcss (#13031) 2023-11-07 15:50:25 -08:00
Erick Friis
54ad3cc2b8 template versions again (#13030)
- scipy was locked due to py version
- same guardrails-output-parser
- rag-redis
2023-11-07 15:15:18 -08:00
Erick Friis
506f81563f Update Deps in Experimental (#13029) 2023-11-07 15:15:09 -08:00
Erick Friis
db4b97d590 Relock Templates (#13028) 2023-11-07 15:01:49 -08:00
Stefano Lottini
4f4b020582 Add "Astra DB" vector store integration (#12966)
# Astra DB Vector store integration

- **Description:** This PR adds a `VectorStore` implementation for
DataStax Astra DB using its HTTP API
  - **Issue:** (no related issue)
- **Dependencies:** A new required dependency is `astrapy` (`>=0.5.3`)
which was added to pyptoject.toml, optional, as per guidelines
- **Tag maintainer:** I recently mentioned to @baskaryan this
integration was coming
  - **Twitter handle:** `@rsprrs` if you want to mention me

This PR introduces the `AstraDB` vector store class, extensive
integration test coverage, a reworking of the documentation which
conflates Cassandra and Astra DB on a single "provider" page and a new,
completely reworked vector-store example notebook (common to the
Cassandra store, since parts of the flow is shared by the two APIs). I
also took care in ensuring docs (and redirects therein) are behaving
correctly.

All style, linting, typechecks and tests pass as far as the `AstraDB`
integration is concerned.

I could build the documentation and check it all right (but ran into
trouble with the `api_docs_build` makefile target which I could not
verify: `Error: Unable to import module
'plan_and_execute.agent_executor' with error: No module named
'langchain_experimental'` was the first of many similar errors)

Thank you for a review!
Stefano

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-07 14:45:33 -08:00
Tomaz Bratanic
13bd83bd61 Add neo4j vector memory template (#12993) 2023-11-07 13:00:49 -08:00
Bagatur
5ac2fc5bb2 update stack diagram (#13021) 2023-11-07 12:59:24 -08:00
Yang, Bo
600caff03c Add Memorize tool (#11722)
- **Description:** Add `Memorize` tool
  - **Tag maintainer:** @hwchase17

This PR added a new tool `Memorize` so that an agent can use it to
fine-tune itself. This tool requires `TrainableLLM` introduced in #11721

DEMO:
6a9003d5db

![image](https://github.com/langchain-ai/langchain/assets/601530/d6f0cb45-54df-4dcf-b143-f8aefb1e76e3)
2023-11-07 12:42:10 -08:00
Bagatur
cf481c9418 bump exp 38 (#13016) 2023-11-07 11:49:23 -08:00
Bagatur
57e19989f6 Bagatur/oai assistant (#13010) 2023-11-07 11:44:53 -08:00
Erick Friis
74134dd7e1 cli pyproject updating (#12945)
`langchain app add` and `langchain app remove` will now keep the
dependencies list updated.

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-07 11:06:08 -08:00
Tomaz Bratanic
d9abcf1aae Neo4j conversation cypher template (#12927)
Adding custom graph memory to Cypher chain

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-07 11:05:28 -08:00
Lance Martin
2287a311cf Multi modal RAG + QA Cookbooks (#12946)
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Vinzenz Klass <76391770+VinzenzKlass@users.noreply.github.com>
Co-authored-by: Praveen Venkateswaran <praveenv@uci.edu>
Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
Co-authored-by: Kacper Łukawski <kacperlukawski@users.noreply.github.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-07 09:10:24 -08:00
Bagatur
6175dc30aa bump 331rc2 (#13006) 2023-11-07 08:52:17 -08:00
Jasan
ff87f4b4f9 Fix for rag-supabase readme (#12869)
- **Description:** Correct naming for package in README
- **Issue:** README wasn't aligned with pyproject.toml, resulting in not
being able to install the rag-supabase package.
  - **Tag maintainer:** @gregnr
2023-11-06 19:38:22 -08:00
Harrison Chase
99ffeb239f add ingest for mongo (#12897) 2023-11-06 19:28:22 -08:00
Ofer Mendelevitch
ce21308f29 Vectara RAG template (#12975)
- **Description:** RAG template using Vectara
  - **Twitter handle:** @ofermend
2023-11-06 19:24:00 -08:00
Erick Friis
0c81cd923e oai v1 embeddings (#12969)
Initial PR to get OpenAIEmbeddings working with the new sdk

fyi @rlancemartin 

Fixes #12943

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-06 18:52:33 -08:00
Bagatur
fdbb45d79e bump 331rc1 (#12965) 2023-11-06 15:36:43 -08:00
Bagatur
3bb8030a6e fix max_tokens (#12964) 2023-11-06 15:36:05 -08:00
Bagatur
a9002a82b8 bump 331rc0 (#12963) 2023-11-06 15:19:33 -08:00
Harrison Chase
c27400efeb Support multimodal messages (#11320)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-06 15:14:18 -08:00
Bagatur
388f248391 add oai v1 cookbook (#12961) 2023-11-06 14:28:32 -08:00
Bagatur
4f7dff9d66 Record system fingerprint chat openai (#12960) 2023-11-06 14:25:53 -08:00
Bagatur
8e0cb2eb84 ChatOpenAI and AzureChatOpenAI openai>=1 compatible (#12948) 2023-11-06 13:24:18 -08:00
Kacper Łukawski
52d0055a91 Add support of Cohere Embed v3 (#12940)
Cohere released the new embedding API (Embed v3:
https://txt.cohere.com/introducing-embed-v3/) that treats document and
query embeddings differently. This PR updated the `CohereEmbeddings` to
use them appropriately. It also works with the old models.
2023-11-06 15:06:58 -05:00
Praveen Venkateswaran
8e0dcb37d2 Add SecretStr for Symbl.ai Nebula API (#12896)
Description: This PR masks API key secrets for the Nebula model from
Symbl.ai
Issue: #12165 
Maintainer: @eyurtsev

---------

Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
2023-11-06 14:13:59 -05:00
Vinzenz Klass
59d0bd2150 feat: acquire advisory lock before creating extension in pgvector (#12935)
- **Description:** Acquire advisory lock before attempting to create
extension on postgres server, preventing errors in concurrent
executions.
  - **Issue:** #12933
  - **Dependencies:** None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-06 14:00:39 -05:00
Eugene Yurtsev
b376854b26 Fix for anyscale chat model api key (#12938)
* ChatAnyscale was missing coercion to SecretStr for anyscale api key
* The model inherits from ChatOpenAI so it should not force the openai
api key to be secret str until openai model has the same changes

https://github.com/langchain-ai/langchain/issues/12841
2023-11-06 13:28:02 -05:00
Bagatur
58889149c2 fix guides link (#12941) 2023-11-06 08:13:02 -08:00
matthieudelaro
52503a367f Remove useless line of code from sql.ipynb (#12906)
This PR remove a single line of code from a notebook of the
documentation. This line used to define a variable, which is never used
in the code.
For further context, for reviewers, here is the online documentation:
https://python.langchain.com/docs/use_cases/qa_structured/sql#case-3-sql-agents
2023-11-06 07:59:12 -08:00
hmasdev
622bf12c2e fix regex pattern of structured output parser (#12929)
- **Description:** fix the regex pattern of
[StructuredChatOutputParser](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/agents/structured_chat/output_parser.py#L18)
and add unit tests for the code change.
- **Issue:** #12158 #12922
- **Dependencies:** None
- **Tag maintainer:** 
- **Twitter handle:** @hmdev3
- **NOTE:** This PR conflicts #7495 . After #7495 is merged, I am going
to update PR.
2023-11-06 07:53:14 -08:00
wemysschen
8c02f4fbd8 add baidu cloud vectorsearch document (#12928)
**Description:** 
Add BaiduCloud VectorSearch document with implement of BESVectorSearch
in langchain vectorstores

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-06 07:52:50 -08:00
wemysschen
8d7144e6a6 fix baiducloud directory loader import file loader (#12924)
**Issue:** 
fix baiducloud BOS directory loader imports its file loader

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-06 07:52:31 -08:00
Alex Howard
5bb2ea51a5 docs: clean up vestigial markdown (#12907)
- **Description:** Remove text "LangChain currently does not support"
which appears to be vestigial leftovers from a previous change.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @baskaryan, @eyurtsev
  - **Twitter handle:** thezanke
2023-11-06 07:51:56 -08:00
Praveen Venkateswaran
1eb7d3a862 docs: update hf pipeline docs (#12908)
- **Description:** Noticed that the Hugging Face Pipeline documentation
was a bit out of date.
Updated with information about passing in a pipeline directly
(consistent with docstring) and a recent contribution of mine on adding
support for multi-gpu specifications with Accelerate in
21eeba075c
2023-11-06 07:51:31 -08:00
Christoffer Bo Petersen
37da6e546b Fix typo in e2b_data_analysis.ipynb (#12930)
Just a small typo fix
2023-11-06 07:37:30 -08:00
Kacper Łukawski
621419f71e Fix normalizing the cosine distance in Qdrant (#12934)
Qdrant was incorrectly calculating the cosine similarity and returning
`0.0` for the best match, instead of `1.0`. Internally Qdrant returns a
cosine score from `-1.0` (worst match) to `1.0` (best match), and the
current formula reflects it.
2023-11-06 07:36:59 -08:00
Hech
8fe6bcc662 Fix return metadata when searching for DingoDB (#12937) 2023-11-06 07:35:36 -08:00
Jakub Novák
ada3d2cbd1 Add possibility to pass on_artifacts for a specific conversation (#12687)
Possibility to pass on_artifacts to a conversation. It can be then
achieved by adding this way:

```python
result = agent.run(
    input=message.text,
    metadata={
        "on_artifact": CALLBACK_FUNCTION
    },
)
```
2023-11-06 07:29:47 -08:00
Bagatur
0378662e1d fix langsmith link (#12939) 2023-11-06 07:17:05 -08:00
Harrison Chase
1a92d2245d Harrison/docs smith serve (#12898)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-06 07:07:25 -08:00
Bagatur
53f453f01a bump 331 (#12932) 2023-11-06 05:58:12 -08:00
Priyadutt
a4d9e986fb Update csv.ipynb description (#12878)
The line removed is not required as there are no other alternative
solutions above than that.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-06 03:32:04 -08:00
Erick Friis
5000c7308e cli template gitignores (#12914)
- ap gitignore
- package
2023-11-05 22:34:45 -08:00
Harrison Chase
aba407f774 use keys not items (#12918) 2023-11-05 22:08:29 -08:00
Harrison Chase
60d025b83b mongo parent document retrieval (#12887) 2023-11-04 10:16:02 -07:00
Michael Hunger
e43b4079c8 template: use dashes instead of underscores for neo4j-cypher package and path in readme (#12827)
Minimal readme template update

underscores didn't work, dashes do
2023-11-03 15:54:48 -07:00
wemysschen
e14aa37d59 fix bes vector store search (#12828)
**Issue:** 
fix search body in baidu cloud vectorsearch

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-03 15:39:19 -07:00
standby24x7
f04e4df7f9 coockbook: Fix typo in wikibase_agent.ipynb (#12839)
This patch fixes a spelling typo in message
within wikibase_agent.ipynb.

Signed-off-by: Masanari Iida <standby24x7@gmail.com>

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2023-11-03 14:57:37 -07:00
944 changed files with 62617 additions and 18675 deletions

View File

@@ -17,13 +17,16 @@ For more info, check out the [GitHub documentation](https://docs.github.com/en/f
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
Note: If you click the link above you will open the main repo (langchain-ai/langchain) and not your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
```
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<yourusername>/<yourclonedreponame>
```
Then you will have a local cloned repo where you can contribute and then create pull requests.
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
Alternatively you can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).

View File

@@ -97,19 +97,18 @@ jobs:
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
# Here we specify:
# - The test PyPI index as the *primary* index, meaning that it takes priority.
# - The regular PyPI index as an extra index, so that any dependencies that
# Here we use:
# - The default regular PyPI index as the *primary* index, meaning
# that it takes priority (https://pypi.org/simple)
# - The test PyPI index as an extra index, so that any dependencies that
# are not found on test PyPI can be resolved and installed anyway.
#
# Without the former, we might install the wrong langchain release.
# Without the latter, we might not be able to install langchain's dependencies.
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
# package because VERSION will not have been uploaded to regular PyPI yet.
#
# TODO: add more in-depth pre-publish tests after testing that importing works
run: |
pip install \
--index-url https://test.pypi.org/simple/ \
--extra-index-url https://pypi.org/simple/ \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION"
# Replace all dashes in the package name with underscores,

View File

@@ -3,6 +3,8 @@ import toml
pyproject_toml = toml.load("pyproject.toml")
# Extract the ignore words list (adjust the key as per your TOML structure)
ignore_words_list = pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
ignore_words_list = (
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
)
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
print(f"::set-output name=ignore_words_list::{ignore_words_list}")

1
.gitignore vendored
View File

@@ -178,3 +178,4 @@ docs/docs/build
docs/docs/node_modules
docs/docs/yarn.lock
_dist
docs/docs/templates

View File

@@ -1,9 +1,18 @@
# Migrating to `langchain_experimental`
# Migrating
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
### Migrating to `langchain_experimental`
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
This guide covers how to migrate.
## Installation
### Installation
Previously:
@@ -13,7 +22,7 @@ Now (only if you want to access things in experimental):
`pip install -U langchain langchain_experimental`
## Things in `langchain.experimental`
### Things in `langchain.experimental`
Previously:
@@ -23,7 +32,7 @@ Now:
`from langchain_experimental import ...`
## PALChain
### PALChain
Previously:
@@ -33,7 +42,7 @@ Now:
`from langchain_experimental.pal_chain import PALChain`
## SQLDatabaseChain
### SQLDatabaseChain
Previously:
@@ -47,7 +56,7 @@ Alternatively, if you are just interested in using the query generation part of
`from langchain.chains import create_sql_query_chain`
## `load_prompt` for Python files
### `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.
If you want to load json/yaml files, no change is needed.

View File

@@ -43,10 +43,10 @@ spell_fix:
lint:
poetry run ruff docs templates cookbook
poetry run black docs templates cookbook --diff
poetry run ruff format docs templates cookbook --diff
format format_diff:
poetry run black docs templates cookbook
poetry run ruff format docs templates cookbook
poetry run ruff --select I --fix docs templates cookbook
######################

View File

@@ -15,71 +15,72 @@
[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/issues)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
Read how to migrate your code [here](MIGRATE.md).
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team.
## Quick Install
`pip install langchain`
or
`pip install langsmith && conda install langchain -c conda-forge`
With pip:
```bash
pip install langchain
```
## 🤔 What is this?
With conda:
```bash
pip install langsmith && conda install langchain -c conda-forge
```
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
## 🤔 What is LangChain?
This library aims to assist in the development of those types of applications. Common examples of these applications include:
**LangChain** is a framework for developing applications powered by language models. It enables applications that:
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
**❓ Question Answering over specific documents**
This framework consists of several parts.
- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
**This repo contains the `langchain` ([here](libs/langchain)), `langchain-experimental` ([here](libs/experimental)), and `langchain-cli` ([here](libs/cli)) Python packages, as well as [LangChain Templates](templates).**
![LangChain Stack](docs/static/img/langchain_stack.png)
## 🧱 What can you build with LangChain?
**❓ Retrieval augmented generation**
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
**💬 Chatbots**
**💬 Analyzing structured data**
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots/)
- End-to-end Example: [Chat-LangChain](https://github.com/langchain-ai/chat-langchain)
- [Documentation](https://python.langchain.com/docs/use_cases/qa_structured/sql)
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain/tree/master/templates/sql-llama2)
**🤖 Agents**
**🤖 Chatbots**
- [Documentation](https://python.langchain.com/docs/modules/agents/)
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots)
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
## 📖 Documentation
And much more! Head to the [Use cases](https://python.langchain.com/docs/use_cases/) section of the docs for more.
Please see [here](https://python.langchain.com) for full documentation on:
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
## 🚀 What can this help with?
Components fall into the following **modules**:
There are six main areas that LangChain is designed to help with.
These are, in increasing order of complexity:
**📃 LLMs and Prompts:**
**📃 Model I/O:**
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
**🔗 Chains:**
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
**📚 Data Augmented Generation:**
**📚 Retrieval:**
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
@@ -87,15 +88,16 @@ Data Augmented Generation involves specific types of chains that first interact
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
**🧠 Memory:**
## 📖 Documentation
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
Please see [here](https://python.langchain.com) for full documentation, which includes:
**🧐 Evaluation:**
- [Getting started](https://python.langchain.com/docs/get_started/introduction): installation, setting up the environment, simple examples
- Overview of the [interfaces](https://python.langchain.com/docs/expression_language/), [modules](https://python.langchain.com/docs/modules/) and [integrations](https://python.langchain.com/docs/integrations/providers)
- [Use case](https://python.langchain.com/docs/use_cases/qa_structured/sql) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/adapters/openai)
- [LangSmith](https://python.langchain.com/docs/langsmith/), [LangServe](https://python.langchain.com/docs/langserve), and [LangChain Template](https://python.langchain.com/docs/templates/) overviews
- [Reference](https://api.python.langchain.com): full API docs
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is by using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
## 💁 Contributing

View File

@@ -67,7 +67,6 @@
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
"\n",
"# API\n",
"from getpass import getpass\n",
"from langchain.llms import Replicate\n",
"\n",
"# REPLICATE_API_TOKEN = getpass()\n",

File diff suppressed because one or more lines are too long

View File

@@ -20,6 +20,7 @@ Notebook | Description
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools
[forward_looking_retrieval_augm...](https://github.com/langchain-ai/langchain/tree/master/cookbook/forward_looking_retrieval_augmented_generation.ipynb) | Implement the forward-looking active retrieval augmented generation (flare) method, which generates answers to questions, identifies uncertain tokens, generates hypothetical questions based on these tokens, and retrieves relevant documents to continue generating the answer.
[generative_agents_interactive_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb) | Implement a generative agent that simulates human behavior, based on a research paper, using a time-weighted memory object backed by a langchain retriever.
[gymnasium_agent_simulation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/gymnasium_agent_simulation.ipynb) | Create a simple agent-environment interaction loop in simulated environments like text-based games with gymnasium.
@@ -38,6 +39,7 @@ Notebook | Description
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[openai_v1_cookbook.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_v1_cookbook.ipynb) | Explore new functionality released alongside the V1 release of the OpenAI Python library.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).

View File

@@ -102,9 +102,9 @@
"metadata": {},
"outputs": [],
"source": [
"from lxml import html\n",
"from typing import Any\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import Any, Optional\n",
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Get elements\n",
@@ -317,11 +317,12 @@
"outputs": [],
"source": [
"import uuid\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.schema.document import Document\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
@@ -373,7 +374,6 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"# Prompt template\n",

View File

@@ -92,9 +92,9 @@
"metadata": {},
"outputs": [],
"source": [
"from lxml import html\n",
"from typing import Any\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import Any, Optional\n",
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Get elements\n",
@@ -224,7 +224,7 @@
"outputs": [],
"source": [
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\\n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
@@ -313,7 +313,7 @@
" # Execute the command and save the output to the defined output file\n",
" /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p \"Describe the image in detail. Be specific about graphs, such as bar plots.\" --image \"$img\" > \"$output_file\"\n",
"\n",
"done"
"done\n"
]
},
{
@@ -337,7 +337,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os, glob\n",
"import glob\n",
"import os\n",
"\n",
"# Get all .txt file summaries\n",
"file_paths = glob.glob(os.path.expanduser(os.path.join(path, \"*.txt\")))\n",
@@ -371,11 +372,12 @@
"outputs": [],
"source": [
"import uuid\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.schema.document import Document\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
@@ -644,7 +646,6 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"# Prompt template\n",

View File

@@ -82,10 +82,9 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from lxml import html\n",
"from typing import Any\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import Any, Optional\n",
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Path to save images\n",
@@ -223,7 +222,7 @@
"outputs": [],
"source": [
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\\n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
@@ -312,7 +311,7 @@
" # Execute the command and save the output to the defined output file\n",
" /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p \"Describe the image in detail. Be specific about graphs, such as bar plots.\" --image \"$img\" > \"$output_file\"\n",
"\n",
"done"
"done\n"
]
},
{
@@ -322,7 +321,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os, glob\n",
"import glob\n",
"import os\n",
"\n",
"# Get all .txt files in the directory\n",
"file_paths = glob.glob(os.path.expanduser(os.path.join(path, \"*.txt\")))\n",
@@ -375,11 +375,12 @@
],
"source": [
"import uuid\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.schema.document import Document\n",
"\n",
"from langchain.embeddings import GPT4AllEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
@@ -531,7 +532,6 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"# Prompt template\n",

File diff suppressed because one or more lines are too long

View File

@@ -27,10 +27,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SerpAPIWrapper\n",
"from langchain.agents import Tool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.utilities import SerpAPIWrapper\n",
"\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
@@ -61,9 +61,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings"
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS"
]
},
{
@@ -100,8 +100,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain.chat_models import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT"
]
},
{

View File

@@ -34,16 +34,15 @@
"outputs": [],
"source": [
"# General\n",
"import os\n",
"import pandas as pd\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain.docstore.document import Document\n",
"import asyncio\n",
"import nest_asyncio\n",
"import os\n",
"\n",
"import nest_asyncio\n",
"import pandas as pd\n",
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore.document import Document\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"\n",
"# Needed synce jupyter runs an async eventloop\n",
"nest_asyncio.apply()"
@@ -92,6 +91,7 @@
"import os\n",
"from contextlib import contextmanager\n",
"from typing import Optional\n",
"\n",
"from langchain.agents import tool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
@@ -223,14 +223,13 @@
},
"outputs": [],
"source": [
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"from pydantic import Field\n",
"from langchain.chains.qa_with_sources.loading import (\n",
" load_qa_with_sources_chain,\n",
" BaseCombineDocumentsChain,\n",
" load_qa_with_sources_chain,\n",
")\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
"from pydantic import Field\n",
"\n",
"\n",
"def _get_text_splitter():\n",
@@ -311,10 +310,9 @@
"source": [
"# Memory\n",
"import faiss\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.tools.human.tool import HumanInputRun\n",
"from langchain.vectorstores import FAISS\n",
"\n",
"embeddings_model = OpenAIEmbeddings()\n",
"embedding_size = 1536\n",

View File

@@ -29,16 +29,10 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional, Any\n",
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\nfrom langchain.llms import OpenAI\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.schema.vectorstore import VectorStore\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains.base import Chain\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
@@ -59,8 +53,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore"
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -25,16 +25,12 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional, Any\n",
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\nfrom langchain.llms import OpenAI\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.schema.vectorstore import VectorStore\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains.base import Chain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
@@ -66,8 +62,8 @@
"source": [
"%pip install faiss-cpu > /dev/null\n",
"%pip install google-search-results > /dev/null\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore"
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.vectorstores import FAISS"
]
},
{
@@ -110,8 +106,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import ZeroShotAgent, Tool, AgentExecutor\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SerpAPIWrapper\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",

View File

@@ -35,16 +35,17 @@
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" SystemMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -47,10 +47,9 @@
"outputs": [],
"source": [
"from IPython.display import SVG\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.cpal.base import CPALChain\n",
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0, max_tokens=512)\n",
"cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)\n",

View File

@@ -177,7 +177,7 @@
" try:\n",
" loader = TextLoader(os.path.join(dirpath, file), encoding=\"utf-8\")\n",
" docs.extend(loader.load_and_split())\n",
" except Exception as e:\n",
" except Exception:\n",
" pass\n",
"print(f\"{len(docs)}\")"
]
@@ -717,7 +717,6 @@
"source": [
"from langchain.vectorstores import DeepLake\n",
"\n",
"\n",
"username = \"<USERNAME_OR_ORG>\"\n",
"\n",
"\n",
@@ -834,8 +833,8 @@
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",

View File

@@ -32,19 +32,20 @@
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Union\n",
"\n",
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.tools.plugin import AIPlugin\n",
"import re"
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.tools.plugin import AIPlugin"
]
},
{
@@ -113,9 +114,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document"
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -56,20 +56,21 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
")\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.tools.plugin import AIPlugin\n",
"import re\n",
"import plugnplai"
"from typing import Union\n",
"\n",
"import plugnplai\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.tools.plugin import AIPlugin"
]
},
{
@@ -137,9 +138,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document"
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -48,18 +48,17 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"from langchain.document_loaders import PyPDFLoader, TextLoader\n",
"import os\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.text_splitter import (\n",
" RecursiveCharacterTextSplitter,\n",
" CharacterTextSplitter,\n",
" RecursiveCharacterTextSplitter,\n",
")\n",
"from langchain.vectorstores import DeepLake\n",
"from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",

View File

@@ -38,9 +38,8 @@
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain"
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
"from langchain.chat_models import ChatOpenAI"
]
},
{
@@ -112,7 +111,6 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.elasticsearch_database.prompts import DEFAULT_DSL_TEMPLATE\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",

View File

@@ -0,0 +1,214 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2def22ea",
"metadata": {},
"source": [
"# Extraction with OpenAI Tools\n",
"\n",
"Performing extraction has never been easier! OpenAI's tool calling ability is the perfect thing to use as it allows for extracting multiple different elements from text that are different types. \n",
"\n",
"Models after 1106 use tools and support \"parallel function calling\" which makes this super easy."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5c628496",
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Optional\n",
"\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.pydantic_v1 import BaseModel"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "afe9657b",
"metadata": {},
"outputs": [],
"source": [
"# Make sure to use a recent model that supports tools\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bc0ca3b6",
"metadata": {},
"outputs": [],
"source": [
"# Pydantic is an easy way to define a schema\n",
"class Person(BaseModel):\n",
" \"\"\"Information about people to extract.\"\"\"\n",
"\n",
" name: str\n",
" age: Optional[int] = None"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2036af68",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain_pydantic(Person, model)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1748ad21",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Person(name='jane', age=2), Person(name='bob', age=3)]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"jane is 2 and bob is 3\"})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c8262ce5",
"metadata": {},
"outputs": [],
"source": [
"# Let's define another element\n",
"class Class(BaseModel):\n",
" \"\"\"Information about classes to extract.\"\"\"\n",
"\n",
" teacher: str\n",
" students: List[str]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4973c104",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain_pydantic([Person, Class], model)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e976a15e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Person(name='jane', age=2),\n",
" Person(name='bob', age=3),\n",
" Class(teacher='Mrs Sampson', students=['jane', 'bob'])]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"jane is 2 and bob is 3 and they are in Mrs Sampson's class\"})"
]
},
{
"cell_type": "markdown",
"id": "6575a7d6",
"metadata": {},
"source": [
"## Under the hood\n",
"\n",
"Under the hood, this is a simple chain:"
]
},
{
"cell_type": "markdown",
"id": "b8ba83e5",
"metadata": {},
"source": [
"```python\n",
"from typing import Union, List, Type, Optional\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain.schema.runnable import Runnable\n",
"from langchain.pydantic_v1 import BaseModel\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.messages import SystemMessage\n",
"from langchain.schema.language_model import BaseLanguageModel\n",
"\n",
"_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n",
"in the following passage together with their properties.\n",
"\n",
"If a property is not present and is not required in the function parameters, do not include it in the output.\"\"\" # noqa: E501\n",
"\n",
"\n",
"def create_extraction_chain_pydantic(\n",
" pydantic_schemas: Union[List[Type[BaseModel]], Type[BaseModel]],\n",
" llm: BaseLanguageModel,\n",
" system_message: str = _EXTRACTION_TEMPLATE,\n",
") -> Runnable:\n",
" if not isinstance(pydantic_schemas, list):\n",
" pydantic_schemas = [pydantic_schemas]\n",
" prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", system_message),\n",
" (\"user\", \"{input}\")\n",
" ])\n",
" tools = [convert_pydantic_to_openai_tool(p) for p in pydantic_schemas]\n",
" model = llm.bind(tools=tools)\n",
" chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas)\n",
" return chain\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2eac6b68",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -30,9 +30,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -56,7 +56,8 @@
"source": [
"import os\n",
"\n",
"os.environ[\"SERPER_API_KEY\"] = \"\"os.environ[\"OPENAI_API_KEY\"] = \"\""
"os.environ[\"SERPER_API_KEY\"] = \"\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\""
]
},
{
@@ -66,21 +67,16 @@
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Any, List\n",
"\n",
"import numpy as np\n",
"\n",
"from langchain.schema import BaseRetriever\n",
"from langchain.callbacks.manager import (\n",
" AsyncCallbackManagerForRetrieverRun,\n",
" CallbackManagerForRetrieverRun,\n",
")\n",
"from langchain.utilities import GoogleSerperAPIWrapper\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.schema import Document\n",
"from typing import Any, List"
"from langchain.schema import BaseRetriever, Document\n",
"from langchain.utilities import GoogleSerperAPIWrapper"
]
},
{

View File

@@ -46,14 +46,13 @@
"source": [
"from datetime import datetime, timedelta\n",
"from typing import List\n",
"from termcolor import colored\n",
"\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
"from langchain.vectorstores import FAISS"
"from langchain.vectorstores import FAISS\n",
"from termcolor import colored"
]
},
{
@@ -153,6 +152,7 @@
"outputs": [],
"source": [
"import math\n",
"\n",
"import faiss\n",
"\n",
"\n",

View File

@@ -27,18 +27,12 @@
"metadata": {},
"outputs": [],
"source": [
"import gymnasium as gym\n",
"import inspect\n",
"import tenacity\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")\n",
"from langchain.output_parsers import RegexParser"
")"
]
},
{
@@ -131,7 +125,7 @@
" ):\n",
" with attempt:\n",
" action = self._act()\n",
" except tenacity.RetryError as e:\n",
" except tenacity.RetryError:\n",
" action = self.random_action()\n",
" return action"
]

View File

@@ -55,9 +55,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -28,9 +28,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -20,9 +20,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.chains import LLMChain, HypotheticalDocumentEmbedder\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate"
]
},

View File

@@ -790,8 +790,8 @@
}
],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.globals import set_debug\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"set_debug(True)\n",
"\n",

View File

@@ -43,8 +43,8 @@
}
],
"source": [
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
@@ -69,8 +69,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.chains.llm_bash.prompt import BashOutputParser\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"_PROMPT_TEMPLATE = \"\"\"If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put \"#!/bin/bash\" in your answer. Make sure to reason step by step, using this format:\n",
"Question: \"copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'\"\n",
@@ -185,7 +185,6 @@
"source": [
"from langchain_experimental.llm_bash.bash import BashProcess\n",
"\n",
"\n",
"persistent_process = BashProcess(persistent=True)\n",
"bash_chain = LLMBashChain.from_llm(llm, bash_process=persistent_process, verbose=True)\n",
"\n",

View File

@@ -45,7 +45,8 @@
}
],
"source": [
"from langchain.llms import OpenAI\nfrom langchain.chains import LLMMathChain\n",
"from langchain.chains import LLMMathChain\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",

View File

@@ -56,8 +56,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\nfrom langchain.chains import LLMChain\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.memory import ConversationBufferWindowMemory"
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"from langchain.prompts import PromptTemplate"
]
},
{
@@ -152,13 +154,13 @@
" for j in range(max_iters):\n",
" print(f\"(Step {j+1}/{max_iters})\")\n",
" print(f\"Assistant: {output}\")\n",
" print(f\"Human: \")\n",
" print(\"Human: \")\n",
" human_input = input()\n",
" if any(phrase in human_input.lower() for phrase in key_phrases):\n",
" break\n",
" output = chain.predict(human_input=human_input)\n",
" if success_phrase in human_input.lower():\n",
" print(f\"You succeeded! Thanks for playing!\")\n",
" print(\"You succeeded! Thanks for playing!\")\n",
" return\n",
" meta_chain = initialize_meta_chain()\n",
" meta_output = meta_chain.predict(chat_history=get_chat_history(chain.memory))\n",
@@ -166,7 +168,7 @@
" instructions = get_new_instructions(meta_output)\n",
" print(f\"New Instructions: {instructions}\")\n",
" print(\"\\n\" + \"#\" * 80 + \"\\n\")\n",
" print(f\"You failed! Thanks for playing!\")"
" print(\"You failed! Thanks for playing!\")"
]
},
{

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -29,9 +29,10 @@
"metadata": {},
"outputs": [],
"source": [
"from steamship import Block, Steamship\n",
"import re\n",
"from IPython.display import Image"
"\n",
"from IPython.display import Image\n",
"from steamship import Block, Steamship"
]
},
{
@@ -41,9 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent\n",
"from langchain.llms import OpenAI\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType\n",
"from langchain.tools import SteamshipImageGenerationTool"
]
},

View File

@@ -26,13 +26,12 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Callable\n",
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -27,26 +27,20 @@
"metadata": {},
"outputs": [],
"source": [
"from collections import OrderedDict\n",
"import functools\n",
"import random\n",
"import re\n",
"import tenacity\n",
"from typing import List, Dict, Callable\n",
"from collections import OrderedDict\n",
"from typing import Callable, List\n",
"\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" PromptTemplate,\n",
")\n",
"from langchain.chains import LLMChain\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import (\n",
" PromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -24,17 +24,15 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"import re\n",
"from typing import Callable, List\n",
"\n",
"import tenacity\n",
"from typing import List, Dict, Callable\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -27,18 +27,15 @@
"metadata": {},
"outputs": [],
"source": [
"from os import environ\n",
"import getpass\n",
"from typing import Dict, Any\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SQLDatabase\n",
"from os import environ\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from sqlalchemy import create_engine, Column, MetaData\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"\n",
"\n",
"from sqlalchemy import create_engine\n",
"from langchain.utilities import SQLDatabase\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from sqlalchemy import MetaData, create_engine\n",
"\n",
"MYSCALE_HOST = \"msc-4a9e710a.us-east-1.aws.staging.myscale.cloud\"\n",
"MYSCALE_PORT = 443\n",
@@ -77,9 +74,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.callbacks import StdOutCallbackHandler\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities.sql_database import SQLDatabase\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
@@ -120,15 +116,16 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
"\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.retrievers.vector_sql_database import (\n",
" VectorSQLDatabaseChainRetriever,\n",
")\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLRetrieveAllOutputParser\n",
"from langchain_experimental.sql.vector_sql import (\n",
" VectorSQLDatabaseChain,\n",
" VectorSQLRetrieveAllOutputParser,\n",
")\n",
"\n",
"output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings(\n",
" output_parser.model\n",

View File

@@ -50,10 +50,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import create_qa_with_sources_chain\n",
"from langchain.chains.combine_documents.stuff import StuffDocumentsChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import create_qa_with_sources_chain"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate"
]
},
{
@@ -230,9 +230,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chains import ConversationalRetrievalChain, LLMChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import LLMChain\n",
"\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)\n",
"_template = \"\"\"Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\\\n",
@@ -357,12 +356,10 @@
"source": [
"from typing import List\n",
"\n",
"from pydantic import BaseModel, Field\n",
"\n",
"from langchain.chains.openai_functions import create_qa_with_structure_chain\n",
"\n",
"from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate\n",
"from langchain.schema import SystemMessage, HumanMessage"
"from langchain.schema import HumanMessage, SystemMessage\n",
"from pydantic import BaseModel, Field"
]
},
{

View File

@@ -0,0 +1,506 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f970f757-ec76-4bf0-90cd-a2fb68b945e3",
"metadata": {},
"source": [
"# Exploring OpenAI V1 functionality\n",
"\n",
"On 11.06.23 OpenAI released a number of new features, and along with it bumped their Python SDK to 1.0.0. This notebook shows off the new features and how to use them with LangChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee897729-263a-4073-898f-bb4cf01ed829",
"metadata": {},
"outputs": [],
"source": [
"# need openai>=1.1.0, langchain>=0.0.335, langchain-experimental>=0.0.39\n",
"!pip install -U openai langchain langchain-experimental"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c3e067ce-7a43-47a7-bc89-41f1de4cf136",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import HumanMessage, SystemMessage"
]
},
{
"cell_type": "markdown",
"id": "fa7e7e95-90a1-4f73-98fe-10c4b4e0951b",
"metadata": {},
"source": [
"## [Vision](https://platform.openai.com/docs/guides/vision)\n",
"\n",
"OpenAI released multi-modal models, which can take a sequence of text and images as input."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1c8c3965-d3c9-4186-b5f3-5e67855ef916",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The image appears to be a diagram representing the architecture or components of a software system or framework related to language processing, possibly named LangChain or associated with a project or product called LangChain, based on the prominent appearance of that term. The diagram is organized into several layers or aspects, each containing various elements or modules:\\n\\n1. **Protocol**: This may be the foundational layer, which includes \"LCEL\" and terms like parallelization, fallbacks, tracing, batching, streaming, async, and composition. These seem related to communication and execution protocols for the system.\\n\\n2. **Integrations Components**: This layer includes \"Model I/O\" with elements such as the model, output parser, prompt, and example selector. It also has a \"Retrieval\" section with a document loader, retriever, embedding model, vector store, and text splitter. Lastly, there\\'s an \"Agent Tooling\" section. These components likely deal with the interaction with external data, models, and tools.\\n\\n3. **Application**: The application layer features \"LangChain\" with chains, agents, agent executors, and common application logic. This suggests that the system uses a modular approach with chains and agents to process language tasks.\\n\\n4. **Deployment**: This contains \"Lang')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=256)\n",
"chat.invoke(\n",
" [\n",
" HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"What is this image showing\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/img/langchain_stack.png\",\n",
" \"detail\": \"auto\",\n",
" },\n",
" },\n",
" ]\n",
" )\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "210f8248-fcf3-4052-a4a3-0684e08f8785",
"metadata": {},
"source": [
"## [OpenAI assistants](https://platform.openai.com/docs/assistants/overview)\n",
"\n",
"> The Assistants API allows you to build AI assistants within your own applications. An Assistant has instructions and can leverage models, tools, and knowledge to respond to user queries. The Assistants API currently supports three types of tools: Code Interpreter, Retrieval, and Function calling\n",
"\n",
"\n",
"You can interact with OpenAI Assistants using OpenAI tools or custom tools. When using exclusively OpenAI tools, you can just invoke the assistant directly and get final answers. When using custom tools, you can run the assistant and tool execution loop using the built-in AgentExecutor or easily write your own executor.\n",
"\n",
"Below we show the different ways to interact with Assistants. As a simple example, let's build a math tutor that can write and run code."
]
},
{
"cell_type": "markdown",
"id": "318da28d-4cec-42ab-ae3e-76d95bb34fa5",
"metadata": {},
"source": [
"### Using only OpenAI tools"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a9064bbe-d9f7-4a29-a7b3-73933b3197e7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents.openai_assistant import OpenAIAssistantRunnable"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7a20a008-49ac-46d2-aa26-b270118af5ea",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ThreadMessage(id='msg_g9OJv0rpPgnc3mHmocFv7OVd', assistant_id='asst_hTwZeNMMphxzSOqJ01uBMsJI', content=[MessageContentText(text=Text(annotations=[], value='The result of \\\\(10 - 4^{2.7}\\\\) is approximately \\\\(-32.224\\\\).'), type='text')], created_at=1699460600, file_ids=[], metadata={}, object='thread.message', role='assistant', run_id='run_nBIT7SiAwtUfSCTrQNSPLOfe', thread_id='thread_14n4GgXwxgNL0s30WJW5F6p0')]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interpreter_assistant = OpenAIAssistantRunnable.create_assistant(\n",
" name=\"langchain assistant\",\n",
" instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
" tools=[{\"type\": \"code_interpreter\"}],\n",
" model=\"gpt-4-1106-preview\",\n",
")\n",
"output = interpreter_assistant.invoke({\"content\": \"What's 10 - 4 raised to the 2.7\"})\n",
"output"
]
},
{
"cell_type": "markdown",
"id": "a8ddd181-ac63-4ab6-a40d-a236120379c1",
"metadata": {},
"source": [
"### As a LangChain agent with arbitrary tools\n",
"\n",
"Now let's recreate this functionality using our own tools. For this example we'll use the [E2B sandbox runtime tool](https://e2b.dev/docs?ref=landing-page-get-started)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee4cc355-f2d6-4c51-bcf7-f502868357d3",
"metadata": {},
"outputs": [],
"source": [
"!pip install e2b duckduckgo-search"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "48681ac7-b267-48d4-972c-8a7df8393a21",
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools import DuckDuckGoSearchRun, E2BDataAnalysisTool\n",
"\n",
"tools = [E2BDataAnalysisTool(api_key=\"...\"), DuckDuckGoSearchRun()]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1c01dd79-dd3e-4509-a2e2-009a7f99f16a",
"metadata": {},
"outputs": [],
"source": [
"agent = OpenAIAssistantRunnable.create_assistant(\n",
" name=\"langchain assistant e2b tool\",\n",
" instructions=\"You are a personal math tutor. Write and run code to answer math questions. You can also search the internet.\",\n",
" tools=tools,\n",
" model=\"gpt-4-1106-preview\",\n",
" as_agent=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1ac71d8b-4b4b-4f98-b826-6b3c57a34166",
"metadata": {},
"source": [
"#### Using AgentExecutor"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1f137f94-801f-4766-9ff5-2de9df5e8079",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'content': \"What's the weather in SF today divided by 2.7\",\n",
" 'output': \"The weather in San Francisco today is reported to have temperatures as high as 66 °F. To get the temperature divided by 2.7, we will calculate that:\\n\\n66 °F / 2.7 = 24.44 °F\\n\\nSo, when the high temperature of 66 °F is divided by 2.7, the result is approximately 24.44 °F. Please note that this doesn't have a meteorological meaning; it's purely a mathematical operation based on the given temperature.\"}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.agents import AgentExecutor\n",
"\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools)\n",
"agent_executor.invoke({\"content\": \"What's the weather in SF today divided by 2.7\"})"
]
},
{
"cell_type": "markdown",
"id": "2d0a0b1d-c1b3-4b50-9dce-1189b51a6206",
"metadata": {},
"source": [
"#### Custom execution"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c0475fa7-b6c1-4331-b8e2-55407466c724",
"metadata": {},
"outputs": [],
"source": [
"agent = OpenAIAssistantRunnable.create_assistant(\n",
" name=\"langchain assistant e2b tool\",\n",
" instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
" tools=tools,\n",
" model=\"gpt-4-1106-preview\",\n",
" as_agent=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b76cb669-6aba-4827-868f-00aa960026f2",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.agent import AgentFinish\n",
"\n",
"\n",
"def execute_agent(agent, tools, input):\n",
" tool_map = {tool.name: tool for tool in tools}\n",
" response = agent.invoke(input)\n",
" while not isinstance(response, AgentFinish):\n",
" tool_outputs = []\n",
" for action in response:\n",
" tool_output = tool_map[action.tool].invoke(action.tool_input)\n",
" print(action.tool, action.tool_input, tool_output, end=\"\\n\\n\")\n",
" tool_outputs.append(\n",
" {\"output\": tool_output, \"tool_call_id\": action.tool_call_id}\n",
" )\n",
" response = agent.invoke(\n",
" {\n",
" \"tool_outputs\": tool_outputs,\n",
" \"run_id\": action.run_id,\n",
" \"thread_id\": action.thread_id,\n",
" }\n",
" )\n",
"\n",
" return response"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7946116a-b82f-492e-835e-ca958a8949a5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"e2b_data_analysis {'python_code': 'print(10 - 4 ** 2.7)'} {\"stdout\": \"-32.22425314473263\", \"stderr\": \"\", \"artifacts\": []}\n",
"\n",
"\\( 10 - 4^{2.7} \\) is approximately \\(-32.22425314473263\\).\n"
]
}
],
"source": [
"response = execute_agent(agent, tools, {\"content\": \"What's 10 - 4 raised to the 2.7\"})\n",
"print(response.return_values[\"output\"])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f2744a56-9f4f-4899-827a-fa55821c318c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"e2b_data_analysis {'python_code': 'result = 10 - 4 ** 2.7\\nprint(result + 17.241)'} {\"stdout\": \"-14.983253144732629\", \"stderr\": \"\", \"artifacts\": []}\n",
"\n",
"When you add \\( 17.241 \\) to \\( 10 - 4^{2.7} \\), the result is approximately \\( -14.98325314473263 \\).\n"
]
}
],
"source": [
"next_response = execute_agent(\n",
" agent, tools, {\"content\": \"now add 17.241\", \"thread_id\": response.thread_id}\n",
")\n",
"print(next_response.return_values[\"output\"])"
]
},
{
"cell_type": "markdown",
"id": "71c34763-d1e7-4b9a-a9d7-3e4cc0dfc2c4",
"metadata": {},
"source": [
"## [JSON mode](https://platform.openai.com/docs/guides/text-generation/json-mode)\n",
"\n",
"Constrain the model to only generate valid JSON. Note that you must include a system message with instructions to use JSON for this mode to work.\n",
"\n",
"Only works with certain models. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db6072c4-f3f3-415d-872b-71ea9f3c02bb",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
" response_format={\"type\": \"json_object\"}\n",
")\n",
"\n",
"output = chat.invoke(\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
" ),\n",
" ]\n",
")\n",
"print(output.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08e00ccf-b991-4249-846b-9500a0ccbfa0",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"json.loads(output.content)"
]
},
{
"cell_type": "markdown",
"id": "aa9a94d9-4319-4ab7-a979-c475ce6b5f50",
"metadata": {},
"source": [
"## [System fingerprint](https://platform.openai.com/docs/guides/text-generation/reproducible-outputs)\n",
"\n",
"OpenAI sometimes changes model configurations in a way that impacts outputs. Whenever this happens, the system_fingerprint associated with a generation will change."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1281883c-bf8f-4665-89cd-4f33ccde69ab",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")\n",
"output = chat.generate(\n",
" [\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
" ),\n",
" ]\n",
" ]\n",
")\n",
"print(output.llm_output)"
]
},
{
"cell_type": "markdown",
"id": "aa6565be-985d-4127-848e-c3bca9d7b434",
"metadata": {},
"source": [
"## Breaking changes to Azure classes\n",
"\n",
"OpenAI V1 rewrote their clients and separated Azure and OpenAI clients. This has led to some changes in LangChain interfaces when using OpenAI V1.\n",
"\n",
"BREAKING CHANGES:\n",
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
"```python\n",
"from langchain.embeddings import AzureOpenAIEmbeddings\n",
"```\n",
"\n",
"\n",
"RECOMMENDED CHANGES:\n",
"- When using `AzureChatOpenAI` or `AzureOpenAI`, if passing in an Azure endpoint (eg https://example-resource.azure.openai.com/) this should be specified via the `azure_endpoint` parameter or the `AZURE_OPENAI_ENDPOINT`. We're maintaining backwards compatibility for now with specifying this via `openai_api_base`/`base_url` or env var `OPENAI_API_BASE` but this shouldn't be relied upon.\n",
"- When using Azure chat or embedding models, pass in API keys either via `openai_api_key` parameter or `AZURE_OPENAI_API_KEY` parameter. We're maintaining backwards compatibility for now with specifying this via `OPENAI_API_KEY` but this shouldn't be relied upon."
]
},
{
"cell_type": "markdown",
"id": "49944887-3972-497e-8da2-6d32d44345a9",
"metadata": {},
"source": [
"## Tools\n",
"\n",
"Use tools for parallel function calling."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "916292d8-0f89-40a6-af1c-5a1122327de8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[GetCurrentWeather(location='New York, NY', unit='fahrenheit'),\n",
" GetCurrentWeather(location='Los Angeles, CA', unit='fahrenheit'),\n",
" GetCurrentWeather(location='San Francisco, CA', unit='fahrenheit')]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Literal\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel, Field\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"\n",
"\n",
"class GetCurrentWeather(BaseModel):\n",
" \"\"\"Get the current weather in a location.\"\"\"\n",
"\n",
" location: str = Field(description=\"The city and state, e.g. San Francisco, CA\")\n",
" unit: Literal[\"celsius\", \"fahrenheit\"] = Field(\n",
" default=\"fahrenheit\", description=\"The temperature unit, default to fahrenheit\"\n",
" )\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", \"You are a helpful assistant\"), (\"user\", \"{input}\")]\n",
")\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
" tools=[convert_pydantic_to_openai_tool(GetCurrentWeather)]\n",
")\n",
"chain = prompt | model | PydanticToolsParser(tools=[GetCurrentWeather])\n",
"\n",
"chain.invoke({\"input\": \"what's the weather in NYC, LA, and SF\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -45,14 +45,14 @@
"source": [
"import collections\n",
"import inspect\n",
"import tenacity\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain.output_parsers import RegexParser"
")"
]
},
{
@@ -146,7 +146,7 @@
" ):\n",
" with attempt:\n",
" action = self._act()\n",
" except tenacity.RetryError as e:\n",
" except tenacity.RetryError:\n",
" action = self.random_action()\n",
" return action"
]

View File

@@ -17,8 +17,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain.llms import OpenAI"
"from langchain.llms import OpenAI\n",
"from langchain_experimental.pal_chain import PALChain"
]
},
{

View File

@@ -0,0 +1,181 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAG based on Qianfan and BES"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook is an implementation of Retrieval augmented generation (RAG) using Baidu Qianfan Platform combined with Baidu ElasricSearch, where the original data is located on BOS.\n",
"## Baidu Qianfan\n",
"Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open-source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n",
"\n",
"## Baidu ElasticSearch\n",
"[Baidu Cloud VectorSearch](https://cloud.baidu.com/doc/BES/index.html?from=productToDoc) is a fully managed, enterprise-level distributed search and analysis service which is 100% compatible to open source. Baidu Cloud VectorSearch provides low-cost, high-performance, and reliable retrieval and analysis platform level product services for structured/unstructured data. As a vector database , it supports multiple index types and similarity distance methods. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation and Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install qianfan\n",
"#!pip install bce-python-sdk\n",
"#!pip install elasticsearch == 7.11.0"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from baidubce.auth.bce_credentials import BceCredentials\n",
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
"from langchain.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader\n",
"from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n",
"from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.vectorstores import BESVectorStore"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Document loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bos_host = \"your bos eddpoint\"\n",
"access_key_id = \"your bos access ak\"\n",
"secret_access_key = \"your bos access sk\"\n",
"\n",
"# create BceClientConfiguration\n",
"config = BceClientConfiguration(\n",
" credentials=BceCredentials(access_key_id, secret_access_key), endpoint=bos_host\n",
")\n",
"\n",
"loader = BaiduBOSDirectoryLoader(conf=config, bucket=\"llm-test\", prefix=\"llm/\")\n",
"documents = loader.load()\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0)\n",
"split_docs = text_splitter.split_documents(documents)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Embedding and VectorStore"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = HuggingFaceEmbeddings(model_name=\"shibing624/text2vec-base-chinese\")\n",
"embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name)\n",
"\n",
"db = BESVectorStore.from_documents(\n",
" documents=split_docs,\n",
" embedding=embeddings,\n",
" bes_url=\"your bes url\",\n",
" index_name=\"test-index\",\n",
" vector_query_field=\"vector\",\n",
")\n",
"\n",
"db.client.indices.refresh(index=\"test-index\")\n",
"retriever = db.as_retriever()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## QA Retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = QianfanLLMEndpoint(\n",
" model=\"ERNIE-Bot\",\n",
" qianfan_ak=\"your qianfan ak\",\n",
" qianfan_sk=\"your qianfan sk\",\n",
" streaming=True,\n",
")\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"refine\", retriever=retriever, return_source_documents=True\n",
")\n",
"\n",
"query = \"什么是张量?\"\n",
"print(qa.run(query))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"> 张量Tensor是一个数学概念用于表示多维数据。它是一个可以表示多个数值的数组可以是标量、向量、矩阵等。在深度学习和人工智能领域中张量常用于表示神经网络的输入、输出和权重等。"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.17"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"import pinecone\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Pinecone\n",
"\n",
"pinecone.init(api_key=\"...\", environment=\"...\")"
]
@@ -87,7 +87,6 @@
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser"
]
},

View File

@@ -28,8 +28,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = os.environ.get(\"OPENAI_API_KEY\") or getpass.getpass(\n",
" \"OpenAI API Key:\"\n",
@@ -42,8 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.sql_database import SQLDatabase\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.sql_database import SQLDatabase\n",
"\n",
"CONNECTION_STRING = \"postgresql+psycopg2://postgres:test@localhost:5432/vectordb\" # Replace with your own\n",
"db = SQLDatabase.from_uri(CONNECTION_STRING)"
@@ -323,6 +323,7 @@
"outputs": [],
"source": [
"import re\n",
"\n",
"from langchain.schema.runnable import RunnableLambda\n",
"\n",
"\n",

View File

@@ -31,12 +31,10 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough, RunnableLambda\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper"
]
},

View File

@@ -42,22 +42,22 @@
"OPENAI_API_KEY = \"sk-xx\"\n",
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY\n",
"\n",
"from typing import Dict, List, Any, Union, Callable\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains import LLMChain\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.llms import BaseLLM\n",
"from langchain.chains.base import Chain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import Tool, LLMSingleActionAgent, AgentExecutor\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from typing import Any, Callable, Dict, List, Union\n",
"\n",
"from langchain.agents import AgentExecutor, LLMSingleActionAgent, Tool\n",
"from langchain.agents.agent import AgentOutputParser\n",
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
"from langchain.schema import AgentAction, AgentFinish"
"from langchain.chains import LLMChain, RetrievalQA\n",
"from langchain.chains.base import Chain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM, OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from pydantic import BaseModel, Field"
]
},
{

View File

@@ -17,12 +17,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.prompt import PromptValue\n",
"from langchain.schema.messages import BaseMessage\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from typing import Union, Sequence"
"from langchain.schema.prompt import PromptValue"
]
},
{

View File

@@ -1084,7 +1084,6 @@
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain.vectorstores import ElasticsearchStore\n",
"\n",
"embeddings = OpenAIEmbeddings()"

View File

@@ -51,8 +51,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.smart_llm import SmartLLMChain"
]
},

View File

@@ -131,7 +131,6 @@
"source": [
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"\n",
"\n",
"search = DuckDuckGoSearchAPIWrapper(max_results=4)\n",
"\n",
"\n",

View File

@@ -84,10 +84,11 @@
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Tuple\n",
"\n",
"from langchain_experimental.tot.checker import ToTChecker\n",
"from langchain_experimental.tot.thought import ThoughtValidity\n",
"import re\n",
"\n",
"\n",
"class MyChecker(ToTChecker):\n",

View File

@@ -34,8 +34,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import os\n",
"\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import DeepLake\n",
@@ -109,6 +109,7 @@
"outputs": [],
"source": [
"import os\n",
"\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"root_dir = \"./the-algorithm\"\n",
@@ -118,7 +119,7 @@
" try:\n",
" loader = TextLoader(os.path.join(dirpath, file), encoding=\"utf-8\")\n",
" docs.extend(loader.load_and_split())\n",
" except Exception as e:\n",
" except Exception:\n",
" pass"
]
},
@@ -3807,8 +3808,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"

View File

@@ -22,17 +22,14 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Callable\n",
"from langchain.chains import ConversationChain\n",
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},
@@ -49,10 +46,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType\n",
"from langchain.agents import load_tools"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -22,7 +22,8 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Callable\n",
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" HumanMessage,\n",

View File

@@ -35,7 +35,7 @@
"tags": []
},
"source": [
"### API keys and other secrats\n",
"### API keys and other secrets\n",
"\n",
"We use an `.ini` file, like this: \n",
"```\n",
@@ -192,10 +192,10 @@
" return current\n",
"\n",
"\n",
"import requests\n",
"\n",
"from typing import Optional\n",
"\n",
"import requests\n",
"\n",
"\n",
"def vocab_lookup(\n",
" search: str,\n",
@@ -319,9 +319,10 @@
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"from typing import List, Dict, Any\n",
"import json\n",
"from typing import Any, Dict, List\n",
"\n",
"import requests\n",
"\n",
"\n",
"def run_sparql(\n",
@@ -389,17 +390,18 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
")\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import OpenAI\nfrom langchain.chains import LLMChain\n",
"import re\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"import re"
"\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
" Tool,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish"
]
},
{

View File

@@ -15,7 +15,7 @@ poetry run python scripts/model_feat_table.py
poetry run nbdoc_build --srcdir docs
cp ../cookbook/README.md src/pages/cookbook.mdx
cp ../.github/CONTRIBUTING.md docs/contributing.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/guides/deployments/langserve.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
poetry run python scripts/generate_api_reference_links.py
yarn install
yarn start

View File

@@ -15,3 +15,11 @@ pre {
#my-component-root *, #headlessui-portal-root * {
z-index: 10000;
}
table.longtable code {
white-space: normal;
}
table.longtable td {
max-width: 600px;
}

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 559 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -1,21 +0,0 @@
pre {
white-space: break-spaces;
}
@media (min-width: 1200px) {
.container,
.container-lg,
.container-md,
.container-sm,
.container-xl {
max-width: 2560px !important;
}
}
#my-component-root *, #headlessui-portal-root * {
z-index: 10000;
}
.content-container p {
margin: revert;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -1,56 +0,0 @@
document.addEventListener('DOMContentLoaded', () => {
// Load the external dependencies
function loadScript(src, onLoadCallback) {
const script = document.createElement('script');
script.src = src;
script.onload = onLoadCallback;
document.head.appendChild(script);
}
function createRootElement() {
const rootElement = document.createElement('div');
rootElement.id = 'my-component-root';
document.body.appendChild(rootElement);
return rootElement;
}
function initializeMendable() {
const rootElement = createRootElement();
const { MendableFloatingButton } = Mendable;
const iconSpan1 = React.createElement('span', {
}, '🦜');
const iconSpan2 = React.createElement('span', {
}, '🔗');
const icon = React.createElement('p', {
style: { color: '#ffffff', fontSize: '22px',width: '48px', height: '48px', margin: '0px', padding: '0px', display: 'flex', alignItems: 'center', justifyContent: 'center', textAlign: 'center' },
}, [iconSpan1, iconSpan2]);
const mendableFloatingButton = React.createElement(
MendableFloatingButton,
{
style: { darkMode: false, accentColor: '#010810' },
floatingButtonStyle: { color: '#ffffff', backgroundColor: '#010810' },
anon_key: '82842b36-3ea6-49b2-9fb8-52cfc4bde6bf', // Mendable Search Public ANON key, ok to be public
messageSettings: {
openSourcesInNewTab: false,
prettySources: true // Prettify the sources displayed now
},
icon: icon,
}
);
ReactDOM.render(mendableFloatingButton, rootElement);
}
loadScript('https://unpkg.com/react@17/umd/react.production.min.js', () => {
loadScript('https://unpkg.com/react-dom@17/umd/react-dom.production.min.js', () => {
loadScript('https://unpkg.com/@mendable/search@0.0.102/dist/umd/mendable.min.js', initializeMendable);
});
});
});

Binary file not shown.

Before

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

View File

@@ -1,15 +1,18 @@
# Tutorials
Below are links to tutorials and courses on LangChain. For written guides on common use cases for LangChain, check out the [use cases guides](/docs/use_cases/qa_structured/sql).
Below are links to tutorials and courses on LangChain. For written guides on common use cases for LangChain, check out the [use cases guides](/docs/use_cases).
⛓ icon marks a new addition [last update 2023-09-21]
---------------------
### [LangChain on Wikipedia](https://en.wikipedia.org/wiki/LangChain)
### DeepLearning.AI courses
by [Harrison Chase](https://github.com/hwchase17) and [Andrew Ng](https://en.wikipedia.org/wiki/Andrew_Ng)
by [Harrison Chase](https://en.wikipedia.org/wiki/LangChain) and [Andrew Ng](https://en.wikipedia.org/wiki/Andrew_Ng)
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
- [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
- ⛓ [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
### Handbook
[LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**

View File

@@ -17,7 +17,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import XMLAgent, tool, AgentExecutor\n",
"from langchain.agents import AgentExecutor, XMLAgent, tool\n",
"from langchain.chat_models import ChatAnthropic"
]
},

View File

@@ -20,8 +20,6 @@
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain_experimental.utilities import PythonREPL"

View File

@@ -26,7 +26,6 @@
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
"from langchain.utils.math import cosine_similarity\n",
"\n",
"\n",
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",
"When you don't know the answer to a question you admit that you don't know.\n",

View File

@@ -18,10 +18,11 @@
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.schema.runnable import RunnablePassthrough, RunnableLambda\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_messages(\n",

View File

@@ -69,7 +69,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableMap, RunnablePassthrough\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\n",
" \"generate a {attribute} color. Return the name of the color and nothing else:\"\n",

View File

@@ -42,8 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
"model = ChatOpenAI()\n",

File diff suppressed because one or more lines are too long

View File

@@ -38,11 +38,11 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough, RunnableLambda\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
"from langchain.vectorstores import FAISS"
]
},
@@ -170,8 +170,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableMap\n",
"from langchain.schema import format_document"
"from langchain.schema import format_document\n",
"from langchain.schema.runnable import RunnableMap"
]
},
{
@@ -231,7 +231,7 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import Tuple, List\n",
"from typing import List, Tuple\n",
"\n",
"\n",
"def _format_chat_history(chat_history: List[Tuple]) -> str:\n",
@@ -335,6 +335,7 @@
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.memory import ConversationBufferMemory"
]
},

View File

@@ -12,6 +12,19 @@
"Suppose we have a simple prompt + model sequence:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "950297ed-2d67-4091-8ea7-1d412d259d04",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough"
]
},
{
"cell_type": "code",
"execution_count": 11,
@@ -37,11 +50,6 @@
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
@@ -105,31 +113,29 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 3,
"id": "f66a0fe4-fde0-4706-8863-d60253f211c7",
"metadata": {},
"outputs": [],
"source": [
"functions = [\n",
" {\n",
" \"name\": \"solver\",\n",
" \"description\": \"Formulates and solves an equation\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"equation\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The algebraic expression of the equation\",\n",
" },\n",
" \"solution\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The solution to the equation\",\n",
" },\n",
"function = {\n",
" \"name\": \"solver\",\n",
" \"description\": \"Formulates and solves an equation\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"equation\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The algebraic expression of the equation\",\n",
" },\n",
" \"solution\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The solution to the equation\",\n",
" },\n",
" \"required\": [\"equation\", \"solution\"],\n",
" },\n",
" }\n",
"]"
" \"required\": [\"equation\", \"solution\"],\n",
" },\n",
"}"
]
},
{
@@ -161,19 +167,70 @@
" ]\n",
")\n",
"model = ChatOpenAI(model=\"gpt-4\", temperature=0).bind(\n",
" function_call={\"name\": \"solver\"}, functions=functions\n",
" function_call={\"name\": \"solver\"}, functions=[function]\n",
")\n",
"runnable = {\"equation_statement\": RunnablePassthrough()} | prompt | model\n",
"runnable.invoke(\"x raised to the third plus seven equals 12\")"
]
},
{
"cell_type": "markdown",
"id": "f07d7528-9269-4d6f-b12e-3669592a9e03",
"metadata": {},
"source": [
"## Attaching OpenAI tools"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "2cdeeb4c-0c1f-43da-bd58-4f591d9e0671",
"metadata": {},
"outputs": [],
"source": []
"source": [
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" },\n",
" }\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "2b65beab-48bb-46ff-a5a4-ef8ac95a513c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_zHN0ZHwrxM7nZDdqTp6dkPko', 'function': {'arguments': '{\"location\": \"San Francisco, CA\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}, {'id': 'call_aqdMm9HBSlFW9c9rqxTa7eQv', 'function': {'arguments': '{\"location\": \"New York, NY\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}, {'id': 'call_cx8E567zcLzYV2WSWVgO63f1', 'function': {'arguments': '{\"location\": \"Los Angeles, CA\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}]})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(tools=tools)\n",
"model.invoke(\"What's the weather in SF, NYC and LA?\")"
]
}
],
"metadata": {

View File

@@ -5,7 +5,7 @@
"id": "39eaf61b",
"metadata": {},
"source": [
"# Configuration\n",
"# Configure chain internals at runtime\n",
"\n",
"Oftentimes you may want to experiment with, or even expose to the end user, multiple different ways of doing things.\n",
"In order to make this experience as easy as possible, we have defined two methods.\n",
@@ -262,9 +262,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI, ChatAnthropic\n",
"from langchain.schema.runnable import ConfigurableField\n",
"from langchain.prompts import PromptTemplate"
"from langchain.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.runnable import ConfigurableField"
]
},
{
@@ -594,7 +594,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -31,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI, ChatAnthropic"
"from langchain.chat_models import ChatAnthropic, ChatOpenAI"
]
},
{
@@ -50,6 +50,7 @@
"outputs": [],
"source": [
"from unittest.mock import patch\n",
"\n",
"from openai.error import RateLimitError"
]
},

View File

@@ -5,7 +5,7 @@
"id": "fbc4bf6e",
"metadata": {},
"source": [
"# Run arbitrary functions\n",
"# Run custom functions\n",
"\n",
"You can use arbitrary functions in the pipeline\n",
"\n",
@@ -19,11 +19,12 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableLambda\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.runnable import RunnableLambda\n",
"\n",
"\n",
"def length_function(text):\n",
" return len(text)\n",
@@ -91,8 +92,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableConfig\n",
"from langchain.schema.output_parser import StrOutputParser"
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnableConfig"
]
},
{
@@ -175,7 +176,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Custom generator functions\n",
"# Stream custom generator functions\n",
"\n",
"You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a LCEL pipeline.\n",
"\n",
@@ -21,15 +21,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"lion, tiger, wolf, gorilla, panda\n"
]
}
],
"outputs": [],
"source": [
"from typing import Iterator, List\n",
"\n",
@@ -37,22 +29,56 @@
"from langchain.prompts.chat import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",
")\n",
"model = ChatOpenAI(temperature=0.0)\n",
"\n",
"\n",
"str_chain = prompt | model | StrOutputParser()\n",
"\n",
"print(str_chain.invoke({\"animal\": \"bear\"}))"
"str_chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"lion, tiger, wolf, gorilla, panda"
]
}
],
"source": [
"for chunk in str_chain.stream({\"animal\": \"bear\"}):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'lion, tiger, wolf, gorilla, panda'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"str_chain.invoke({\"animal\": \"bear\"})"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# This is a custom parser that splits an iterator of llm tokens\n",
@@ -77,22 +103,61 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"list_chain = str_chain | split_into_list"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['lion', 'tiger', 'wolf', 'gorilla', 'panda']\n"
"['lion']\n",
"['tiger']\n",
"['wolf']\n",
"['gorilla']\n",
"['panda']\n"
]
}
],
"source": [
"list_chain = str_chain | split_into_list\n",
"\n",
"print(list_chain.invoke({\"animal\": \"bear\"}))"
"for chunk in list_chain.stream({\"animal\": \"bear\"}):\n",
" print(chunk, flush=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['lion', 'tiger', 'wolf', 'gorilla', 'panda']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_chain.invoke({\"animal\": \"bear\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -111,9 +176,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -5,7 +5,7 @@
"id": "b022ab74-794d-4c54-ad47-ff9549ddb9d2",
"metadata": {},
"source": [
"# Use RunnableParallel/RunnableMap\n",
"# Parallelize steps\n",
"\n",
"RunnableParallel (aka. RunnableMap) makes it easy to execute multiple Runnables in parallel, and to return the output of these Runnables as a map."
]
@@ -33,7 +33,6 @@
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.runnable import RunnableParallel\n",
"\n",
"\n",
"model = ChatOpenAI()\n",
"joke_chain = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",
"poem_chain = (\n",
@@ -195,7 +194,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -5,7 +5,7 @@
"id": "4b47436a",
"metadata": {},
"source": [
"# Route between multiple Runnables\n",
"# Dynamically route logic based on input\n",
"\n",
"This notebook covers how to do routing in the LangChain Expression Language.\n",
"\n",
@@ -40,8 +40,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser"
]
},

View File

@@ -4,33 +4,30 @@ sidebar_class_name: hidden
# LangChain Expression Language (LCEL)
LangChain Expression Language or LCEL is a declarative way to easily compose chains together.
There are several benefits to writing chains in this manner (as opposed to writing normal code):
LangChain Expression Language, or LCEL, is a declarative way to easily compose chains together.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
**Async, Batch, and Streaming Support**
Any chain constructed this way will automatically have full sync, async, batch, and streaming support.
This makes it easy to prototype a chain in a Jupyter notebook using the sync interface, and then expose it as an async streaming interface.
**Streaming support**
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
**Fallbacks**
The non-determinism of LLMs makes it important to be able to handle errors gracefully.
With LCEL you can easily attach fallbacks to any chain.
**Async support**
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langsmith) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
**Parallelism**
Since LLM applications involve (sometimes long) API calls, it often becomes important to run things in parallel.
With LCEL syntax, any components that can be run in parallel automatically are.
**Optimized parallel execution**
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
**Seamless LangSmith Tracing Integration**
**Retries and fallbacks**
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
**Access intermediate results**
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
**Input and output schemas**
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
**Seamless LangSmith tracing integration**
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](https://smith.langchain.com) for maximal observability and debuggability.
With LCEL, **all** steps are automatically logged to [LangSmith](/docs/langsmith/) for maximum observability and debuggability.
#### [Interface](/docs/expression_language/interface)
The base interface shared by all LCEL objects
#### [How to](/docs/expression_language/how_to)
How to use core features of LCEL
#### [Cookbook](/docs/expression_language/cookbook)
Examples of common LCEL usage patterns
#### [Why use LCEL](/docs/expression_language/why)
A deeper dive into the benefits of LCEL
**Seamless LangServe deployment integration**
Any chain created with LCEL can be easily deployed using LangServe.

View File

@@ -8,7 +8,7 @@
"---\n",
"sidebar_position: 0\n",
"title: Interface\n",
"---\n"
"---"
]
},
{
@@ -31,26 +31,17 @@
"- [`abatch`](#async-batch): call the chain on a list of inputs async\n",
"- [`astream_log`](#async-stream-intermediate-steps): stream back intermediate steps as they happen, in addition to the final response\n",
"\n",
"The **input type** varies by component:\n",
"The **input type** and **output type** varies by component:\n",
"\n",
"| Component | Input Type |\n",
"| --- | --- |\n",
"|Prompt|Dictionary|\n",
"|Retriever|Single string|\n",
"|LLM, ChatModel| Single string, list of chat messages or a PromptValue|\n",
"|Tool|Single string, or dictionary, depending on the tool|\n",
"|OutputParser|The output of an LLM or ChatModel|\n",
"| Component | Input Type | Output Type |\n",
"| --- | --- | --- |\n",
"| Prompt | Dictionary | PromptValue |\n",
"| ChatModel | Single string, list of chat messages or a PromptValue | ChatMessage |\n",
"| LLM | Single string, list of chat messages or a PromptValue | String |\n",
"| OutputParser | The output of an LLM or ChatModel | Depends on the parser |\n",
"| Retriever | Single string | List of Documents |\n",
"| Tool | Single string or dictionary, depending on the tool | Depends on the tool |\n",
"\n",
"The **output type** also varies by component:\n",
"\n",
"| Component | Output Type |\n",
"| --- | --- |\n",
"| LLM | String |\n",
"| ChatModel | ChatMessage |\n",
"| Prompt | PromptValue |\n",
"| Retriever | List of documents |\n",
"| Tool | Depends on the tool |\n",
"| OutputParser | Depends on the parser |\n",
"\n",
"All runnables expose input and output **schemas** to inspect the inputs and outputs:\n",
"- [`input_schema`](#input-schema): an input Pydantic model auto-generated from the structure of the Runnable\n",
@@ -66,8 +57,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\")\n",
@@ -1161,7 +1152,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -1,11 +0,0 @@
# Why use LCEL?
The LangChain Expression Language was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully running in production LCEL chains with 100s of steps). To highlight a few of the reasons you might want to use LCEL:
- first-class support for streaming: when you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens. Were constantly improving streaming support, recently we added a [streaming JSON parser](https://twitter.com/LangChainAI/status/1709690468030914584), and more is in the works.
- first-class async support: any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](https://github.com/langchain-ai/langserve) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
- optimised parallel execution: whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
- support for retries and fallbacks: more recently weve added support for configuring retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
- accessing intermediate results: for more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used let end-users know something is happening, or even just to debug your chain. Weve added support for [streaming intermediate results](https://x.com/LangChainAI/status/1711806009097044193?s=20), and its available on every LangServe server.
- [input and output schemas](https://x.com/LangChainAI/status/1711805322195861934?s=20): input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
- tracing with LangSmith: all chains built with LCEL have first-class tracing support, which can be used to debug your chains, or to understand whats happening in production. To enable this all you have to do is add your [LangSmith](https://www.langchain.com/langsmith) API key as an environment variable.

Some files were not shown because too many files have changed in this diff Show More