Compare commits

...

200 Commits

Author SHA1 Message Date
Erick Friis
07f930b174 merge 2024-01-16 09:59:09 -08:00
Erick Friis
ce62c90f28 merge 2024-01-16 09:56:42 -08:00
Erick Friis
b57df42279 core[patch]: fallbacks error chain 2024-01-16 09:54:16 -08:00
Christophe Bornet
6b6269441c docs: Add page for AstraDB self retriever (#16077)
Preview:
https://langchain-git-fork-cbornet-astra-self-retriever-docs-langchain.vercel.app/docs/integrations/retrievers/self_query/astradb
2024-01-16 09:50:30 -08:00
Juan Bustos
5f057f24ac docs: Update elasticsearch.ipynb (#16090)
Fixed a typo, the parameter used for the Elasticsearch API key was
called api_key, but the parameter is called es_api_key.
2024-01-16 09:49:42 -08:00
Bagatur
076593382a core[patch]: Release 0.1.11 (#16100) 2024-01-16 09:46:04 -08:00
Bagatur
c5656a4905 core[patch]: pass exceptions to fallbacks (#16048) 2024-01-16 09:36:43 -08:00
Nuno Campos
770f57196e Add unit test for overridden lc_namespace (#16093) 2024-01-16 09:22:52 -08:00
Erick Friis
52114bdfac community[patch]: release 0.0.13 (#16087) 2024-01-16 06:25:28 -08:00
James Briggs
ca288d8f2c community[patch]: add vector param to index query for pinecone vec store (#16054) 2024-01-16 06:12:19 -08:00
Antonio Morales
476fb328ee community[patch]: implement adelete from VectorStore in Qdrant (#16005)
**Description:**
Implement `adelete` function from `VectorStore` in `Qdrant` to support
other asynchronous flows such as async indexing (`aindex`) which
requires `adelete` to be implemented. Since `Qdrant` can be passed an
async qdrant client, this can be supported easily.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-15 19:57:09 -08:00
Bagatur
697a6f2c80 langchain[patch]: fix requests lint (#16049) 2024-01-15 12:54:30 -08:00
高远
061e63eef2 community[minor]: add vikingdb vecstore (#15155)
---------

Co-authored-by: gaoyuan <gaoyuan.20001218@bytedance.com>
2024-01-15 12:34:01 -08:00
andrijdavid
d196646811 community[patch]: Refactor OpenAIWhisperParserLocal (#15150)
This PR addresses an issue in OpenAIWhisperParserLocal where requesting
CUDA without availability leads to an AttributeError #15143

Changes:

- Refactored Logic for CUDA Availability: The initialization now
includes a check for CUDA availability. If CUDA is not available, the
code falls back to using the CPU. This ensures seamless operation
without manual intervention.
- Parameterizing Batch Size and Chunk Size: The batch_size and
chunk_size are now configurable parameters, offering greater flexibility
and optimization options based on the specific requirements of the use
case.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-15 12:29:14 -08:00
Zhichao HAN
5cf06db3b3 community[minor]: add JsonRequestsWrapper tool (#15374)
**Description:** This new feature enhances the flexibility of pipeline
integration, particularly when working with RESTful APIs.
``JsonRequestsWrapper`` allows for the decoding of JSON output, instead
of the only option for text output.

---------

Co-authored-by: Zhichao HAN <hanzhichao2000@hotmail.com>
2024-01-15 12:27:19 -08:00
chyroc
d334efc848 community[patch]: fix top_p type hint (#15452)
fix: https://github.com/langchain-ai/langchain/issues/15341

@efriis
2024-01-15 11:59:39 -08:00
Mateusz Szewczyk
251afda549 community[patch]: fix stop (stop_sequences) param on WatsonxLLM (#15541)
- **Description:** Fix to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (stop
(`stop_sequences`) param on watsonxLLM)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
2024-01-15 11:44:57 -08:00
Funkeke
7220124368 community[patch]: fix tongyi completion and params error (#15544)
fix tongyi completion json parse error and prompt's params error

---------

Co-authored-by: fangkeke <3339698829@qq.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-15 11:43:13 -08:00
Averi Kitsch
ee378a0f40 docs: add page for Firestore Chat Message History integration (#15554)
- **Description:** Adds documentation for the
`FirestoreChatMessageHistory` integration and lists integration in
Google's documentation
  - **Issue:** NA
  - **Dependencies:** No

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-15 11:42:33 -08:00
盐粒 Yanli
ddf4e7c633 community[minor]: Update pgvecto_rs to use its high level sdk (#15574)
- **Description:** Update pgvecto_rs to use its high level sdk, 
  - **Issue:** fix #15173
2024-01-15 11:41:59 -08:00
YHW
ce21392a21 community: add a flag that determines whether to load the milvus collection (#15693)
fix https://github.com/langchain-ai/langchain/issues/15694

---------

Co-authored-by: hyungwookyang <hyungwookyang@worksmobile.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-15 11:25:23 -08:00
Mohammad Mohtashim
9e779ca846 community[patch]: Fixing the SlackGetChannel Tool Input Error (#15725)
Fixed the issue mentioned in #15698 for SlackGetChannel Tool.

@baskaryan.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-15 11:23:55 -08:00
axiangcoding
daa9ccae52 community[patch]: deprecate ErnieBotChat and ErnieEmbeddings classes (#15862)
- **Description:** add deprecated warning for ErnieBotChat and
ErnieEmbeddings.
- These two classes **lack maintenance** and do not use the sdk provided
by qianfan, which means hard to implement some key feature like
streaming.
- The alternative `langchain_community.chat_models.QianfanChatEndpoint`
and `langchain_community.embeddings.QianfanEmbeddingsEndpoint` can
completely replace these two classes, only need to change configuration
items.
  - **Issue:** None,
  - **Dependencies:** None,
  - **Twitter handle:** None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-15 11:14:44 -08:00
Eugene Yurtsev
7c57cfd8f0 docs: Update OpenAI functions agent (#15894)
Add info and a tip explaining when to use this agent.
2024-01-15 11:14:29 -08:00
Eugene Yurtsev
beec7259c8 docs: Add info admonitions to a few agents (#15899)
Add admonitions directly in the agent page to explain constraints and
include a
link to agent types.
2024-01-15 11:14:11 -08:00
JaguarDB
b11fd3bedc community[patch]: jaguar vector store fix integer-element error when joining metadata values (#15939)
- **Description:** some document loaders add integer-type metadata
values which cause error
  - **Issue:** 15937
  - **Dependencies:** none

---------

Co-authored-by: JY <jyjy@jaguardb>
2024-01-15 11:13:45 -08:00
Bigtable123
7306032dcf docs: update baidu_qianfan_endpoint.ipynb doc (#15940)
- **Description:** Updated the docs for the chat integration module
baidu_qianfan_endpoint.ipynb
  - **Issue:**  #15664 
  - **Dependencies:**N/A
2024-01-15 11:13:21 -08:00
Neo Zhao
21e0df937f community[patch]: fix a bug that mistakenly handle zip iterator in FAISS.from_embeddings (#16020)
**Description**: `zip` is iterator that will only produce result once,
so the previous code will cause the `embeddings` to be an empty list.

**Issue**: I could not find a related issue.

**Dependencies**: this PR does not introduce or affect dependencies.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-15 11:13:14 -08:00
Christophe Bornet
15c2b4a47e community[minor]: Add AstraDB self query retriever (#15738)
- **Description:** this change adds a self-query retriever for AstraDB
  - **Twitter handle:** cbornet_
2024-01-15 11:04:11 -08:00
Leonid Ganeline
fb676d8a9b community[minor], langchain[minor]: refactor output_parsers Rail (#15852)
Moved Rail parser to `community` package.
2024-01-15 10:54:49 -08:00
Bhadresh Savani
6137c7608d docs: Integration Documentation updated run to invoke for llms/ai21.ipynb (#15889)
- **Description:** Updated Integration Documentation for
[llms/ai21.ipynb](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/llms/ai21.ipynb)
  - **Issue:** #15664,
  - **Dependencies:** NA,
  - **Twitter handle:** @BhadreshSavani
2024-01-15 10:53:22 -08:00
Massimiliano Pronesti
e80aab2275 docs(community): update Amadeus toolkit to langchain v0.1 (#15976)
- **Description:** docs update following the changes introduced in
#15879

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-15 10:50:47 -08:00
Ashley Xu
ce7723c1e5 community[minor]: add additional support for BigQueryVectorSearch (#15904)
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.

This PR:
1. Add `metadata[_job_ib]` in Document returned by any similarity search
2. Add `explore_job_stats` to enable users to explore job statistics and
better the debuggability
3. Set the minimum row limit for running create vector index.
2024-01-15 10:45:15 -08:00
Mohammed Naqi
8799b028a6 community[minor]: Adding asynchronous function implementation for Doctran (#15941)
## Description 
In this update, I addressed the missing implementation for
atransform_document, which is the asynchronous counterpart of
transform_document in Doctran.

### Usage Example:
```py
# Instantiate DoctranPropertyExtractor with specified properties
property_extractor = DoctranPropertyExtractor(properties=properties)

# Asynchronously extract properties from a list of documents
extracted_document = await property_extractor.atransform_documents(
    documents, properties=properties
)

# Display metadata of the first extracted document
print(json.dumps(extracted_document[0].metadata, indent=2))

```

## Issue
- Pull request #14525 has caused a break in the aforementioned code.
Instead of removing an asynchronous implementation of a function,
consider implementing a synchronous version alongside it.
2024-01-15 10:39:25 -08:00
Antonio Mindov
fb7e66b809 docs: fix typo in inspect runnables docs (#15994)
- **Description:** Fixing a typo related to prompts in the inspecting
runnables docs
2024-01-15 10:35:26 -08:00
Raunak
c0773ab329 community[patch]: Fixed 'coroutine' object is not subscriptable error (#15986)
- **Description:** Added parenthesis in return statement of
aembed_query() funtion to fix 'coroutine' object is not subscriptable
error.
  - **Dependencies:** NA

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-15 10:34:10 -08:00
Karim Lalani
14244bd7e5 community[minor]: Added document loader for SurrealDB (#15995)
Added a simple document loader to work with SurrealDB.
2024-01-15 10:32:42 -08:00
Karim Lalani
768e5e33bc community[minor]: Fix to match SurrealDB 0.3.2 SDK (#15996)
New version of SurrealDB python sdk was causing the integration to
break.
This fix addresses that change.
2024-01-15 10:31:59 -08:00
shahrin014
86321a949f community: Ollama - Parameter structure to follow official documentation (#16035)
## Feature
- Follow parameter structure as per official documentation 
- top level parameters (e.g. model, system, template) will be passed as
top level parameters
  - other parameters will be sent in options unless options is provided

![image](https://github.com/langchain-ai/langchain/assets/17451563/d14715d9-9701-4ee3-b44b-89fffea62389)

## Tests
- Test if top level parameters handled properly
- Test if parameters that are not top level parameters are handled as
options
- Test if options is provided, it will be passed as is
2024-01-15 10:17:58 -08:00
Bagatur
60d6a416e6 docs: fix self query diagram (#16043) 2024-01-15 10:09:20 -08:00
Mahad
f7706637a8 docs: fix documentation broken link in integrations chroma (#16041)
- **Description:** Fixed broken link in the documentation for Chroma.,
  - **Issue:** 
  - **Dependencies:**
2024-01-15 08:37:03 -08:00
Nir Kopler
0fa06732b7 community: add new gpt-3.5-turbo-1106 finetuned for cost calculation (#16039)
**Description:** Added the new gpt-3.5-turbo-1106 for **finetuned** cost
calculation,
**Issue:** no issue found open

By the information in OpenAI the pricing is the same as the older model
(0613)
2024-01-15 08:36:54 -08:00
Erick Friis
7b084b4cc7 docs: more pip installs (#15771)
- vertex chat
- google
- some pip openai
- percent and openai
- all percent
- more
- pip
- fmt
- docs: google vertex partner docs
- fmt
- docs: more pip installs
2024-01-12 18:16:00 -08:00
Bagatur
bccb07f93e core[patch]: simple prompt pretty printing (#15968) 2024-01-12 21:08:51 -05:00
Bagatur
3f75fd41cc docs: agent table fix (#15964) 2024-01-12 17:54:55 -08:00
Virat Singh
eb6e385dc5 community: Add PolygonAPIWrapper and get_last_quote endpoint (#15971)
- **Description:** Added a `PolygonAPIWrapper` and an initial
`get_last_quote` endpoint, which allows us to get the last price quote
for a given `ticker`. Once merged, I can add a Polygon tool in `tools/`
for agents to use.
- **Twitter handle:** [@virattt](https://twitter.com/virattt)

The Polygon.io Stocks API provides REST endpoints that let you query the
latest market data from all US stock exchanges.
2024-01-12 17:52:09 -08:00
Erick Friis
74bac7bda1 community[patch]: core min 0.1.9 (#15974) 2024-01-12 15:32:06 -08:00
Erick Friis
845e407e08 community[patch]: release 0.0.12 (#15973) 2024-01-12 15:27:05 -08:00
Jonathan Algar
a74f3a4979 Batch update of alt text and title attributes for images in md/mdx files across repo (#15357)
**Description:** Batch update of alt text and title attributes for
images in `md` & `mdx` files across the repo using
[alttexter](https://github.com/jonathanalgar/alttexter)/[alttexter-ghclient](https://github.com/jonathanalgar/alttexter-ghclient)
(built using LangChain/LangSmith).

**Limitation:** cannot update `ipynb` files because of [this
issue](https://github.com/langchain-ai/langchain/pull/15357#issuecomment-1885037250).
Can revisit when Docusaurus is bumped to v3.

I checked all the generated alt texts and titles and didn't find any
technical inaccuracies. That's not to say they're _perfect_, but a lot
better than what's there currently.


[Deployed](https://langchain-819yf1tbk-langchain.vercel.app/docs/modules/model_io/)
image example:


![chrome_yZQ7BF2GTj](https://github.com/langchain-ai/langchain/assets/93204286/43a9a4d4-70fd-41c4-8978-b6240ff63ffa)

You can see LangSmith traces for all the calls out to the LLM in the PRs
merged into this one:

* https://github.com/jonathanalgar/langchain/pull/6
* https://github.com/jonathanalgar/langchain/pull/4
* https://github.com/jonathanalgar/langchain/pull/3

I didn't add the following files to the PR as the images already have OK
alt texts:

*
27dca2d92f/docs/docs/integrations/providers/argilla.mdx (L3)
*
27dca2d92f/docs/docs/integrations/providers/apify.mdx (L11)

---------

Co-authored-by: github-actions <github-actions@github.com>
2024-01-12 14:37:48 -08:00
Varik Matevosyan
efe6cfafe2 community: Added Lantern as VectorStore (#12951)
Support [Lantern](https://github.com/lanterndata/lantern) as a new
VectorStore type.

- Added Lantern as VectorStore.
It will support 3 distance functions `l2 squared`, `cosine` and
`hamming` and will use `HNSW` index.
- Added tests
- Added example notebook
2024-01-12 12:00:16 -08:00
Harrison Chase
1afac77439 stop making copies of inputs (#15926) 2024-01-12 11:49:26 -08:00
Edwin Wenink
9fb09c1c30 community: fix the "page" mode in the AzureAIDocumentIntelligenceParser (bug) (#15958)
**Description**: the "page" mode in the
AzureAIDocumentIntelligenceParser is not accessible due to a wrong
membership test. The mode argument can only be a string (also see the
assertion in the `__init__`: `assert self.mode in ["single", "page",
"object", "markdown"]`, so the check `elif self.mode == ["page"]:`
always fails.
As a result, effectively the "object" mode is used when selecting the
"page" mode, which may lead to errors.

The docstring of the `AzureAIDocumentIntelligenceLoader` also ommitted
the `mode` parameter alltogether, so I added it.

**Issue**: I could not find a related issue (this class is only 3 weeks
old anyways)

**Dependencies**: this PR does not introduce or affect dependencies.

The current demo notebook and examples are not affected because they all
use the default markdown mode.
2024-01-12 11:01:28 -08:00
Mahdi Setayesh
eb76f9c9fe community: Fixing a performance issue with AzureSearch to perform batch embedding (#15594)
- **Description:** Azure Cognitive Search vector DB store performs slow
embedding as it does not utilize the batch embedding functionality. This
PR provide a fix to improve the performance of Azure Search class when
adding documents to the vector search,
  - **Issue:** #11313 ,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-12 10:58:55 -08:00
Christophe Bornet
bc60203d0f Add documentation for AstraDBStore (#15953)
Preview:
https://langchain-git-fork-cbornet-astradb-store-doc-langchain.vercel.app/docs/integrations/stores/astradb
2024-01-12 10:44:46 -08:00
Bagatur
c697c89ca4 docs: add agent prompt creation examples (#15957) 2024-01-12 10:26:12 -08:00
Erick Friis
69533c8628 multiple[patch]: .post releases and pyproject metadata (#15962) 2024-01-12 10:09:02 -08:00
Rihards Gravis
6a48ea43ec docs: Update Robocorp Action Server installation instructions (#15943)
**Description:**

Remove section on how to install Action Server and direct the users t o
the instructions on Robocorp repository.

**Reason:**

Robocorp Action Server has moved from a pip installation to a standalone
cli application and is due for changes. Because of that, leaving only
LangChain integration relevant part in the documentation.
2024-01-12 09:46:18 -08:00
Erick Friis
6a2889a4ec infra: retry release if not found on test pypi (#15913)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-12 09:36:52 -08:00
Erick Friis
95020637bc openai[patch]: 0.0.2.post1, urls (#15961) 2024-01-12 09:36:37 -08:00
ChengZi
d5808f786c community: Support milvus partition key. (#15740)
- **Description:** Milvus's partition key is an important feature. It
can support multi-tenancy. We hope to introduce this feature.
https://milvus.io/docs/partition_key.md
  - **Issue:** No
  - **Dependencies:** No
  - **Twitter handle:** No

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-12 09:15:03 -08:00
enfeng
13b90232c1 langchain-google-genai[patch]: Add support for end_point and transport parameters to the Gemini API (#15532)
Add support for end_point and transport parameters to the Gemini API

---------

Co-authored-by: yangenfeng <yangenfeng@xiaoniangao.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-12 08:52:00 -08:00
ohbeep
9b3962fc25 community: Add support of "http" URI for Milvus (#12710) (#15683)
- **Description:** Add support of HTTP URI for Milvus
  - **Issue:** #12710 
  - **Dependencies:** N/A,
2024-01-11 21:55:35 -08:00
Raunak
e26e1f8b37 community: Added functions to make async calls to HuggingFaceHub's embedding endpoint in HuggingFaceHubEmbeddings class (#15737)
**Description:**
Added aembed_documents() and aembed_query() async functions in
HuggingFaceHubEmbeddings class in
langchain_community\embeddings\huggingface_hub.py file. It will support
to make async calls to HuggingFaceHub's
embedding endpoint and generate embeddings asynchronously.

Test Cases: Added test_huggingfacehub_embedding_async_documents() and
test_huggingfacehub_embedding_async_query()
functions in test_huggingface_hub.py file to test the two async
functions created in HuggingFaceHubEmbeddings class.

Documentation: Updated huggingfacehub.ipynb with steps to install
huggingface_hub package and use
HuggingFaceHubEmbeddings.

**Dependencies:** None,
**Twitter handle:** I do not have a Twitter account

---------

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-11 21:52:55 -08:00
Tal
eb9b334a6b Enable customizing the output parser of OpenAIFunctionsAgent (#15827)
- **Description:** This PR defines the output parser of
OpenAIFunctionsAgent as an attribute, enabling customization and
subclassing of the parser logic.
- **Issue:** Subclassing is currently impossible as the
`OpenAIFunctionsAgentOutputParser` class is hard coded into the `plan`
and `aplan` methods
  - **Dependencies:** None

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-11 21:52:36 -08:00
Mu Xian Ming
560bb49c99 docs: redis_chat_message_history.ipynb integration doc (#15789)
- **Description:** Updated the docs for the memory integration module
redis_chat_message_history.ipynb
  - **Issue:** #15664
  - **Dependencies:** N/A

Co-authored-by: Mu Xianming <mu.xianming@lmwn.com>
2024-01-11 21:42:31 -08:00
Christophe Bornet
81d1ba05dc Add a BaseStore backed by AstraDB (#15812)
- **Description:** this change adds a `BaseStore` backed by AstraDB
  - **Twitter handle:** cbornet_
2024-01-11 21:41:24 -08:00
manishsahni2000
74d9fc2f9e PR community:Removing knn beta content in mongodb atlas vectorstore (#15865)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-11 21:40:54 -08:00
shahrin014
bdd90ae2ee community: Ollama - Pass headers to post request (#15881)
## Feature
- Set additional headers in constructor
- Headers will be sent in post request

This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.

## Tests
- Test if header is passed
- Test if header is not passed
2024-01-11 21:40:35 -08:00
Xin Liu
5efec068c9 feat: Implement stream interface (#15875)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Major changes:

- Rename `wasm_chat.py` to `llama_edge.py`
- Rename the `WasmChatService` class to `ChatService`
- Implement the `stream` interface for `ChatService`
- Add `test_chat_wasm_service_streaming` in the integration test
- Update `llama_edge.ipynb`

---------

Signed-off-by: Xin Liu <sam@secondstate.io>
2024-01-11 21:32:48 -08:00
Massimiliano Pronesti
ec4dab0449 feat(community): make Amadeus toolkit LLM-agnostic (#15879)
- **Description:** `AmadeusToolkit` and `AmadeusClosestAirport`
contained a hardcoded call to `ChatOpenAI`. This PR makes it
LLM-independent, while guaranteeing backward compatibility.
  - **Issue:** #15847 
  - **Dependencies:** None
   
@baskaryan 

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-11 21:32:03 -08:00
JanHorcicka
f454e95461 langchain: fix OutputParserException (#15914) (#15916)
**Description:**

Fixes OutputParserException thrown by the output_parser when 'query' is
'Null'.

Replace this entire comment with:
- **Description:** Current implentation of output_parser throws
OutputParserException if the response from the LLM contains `query:
null`. This unfortunately happens for my use case. And since there is no
way to modify the prompt used in SelfQueryRetriever, then we have to fix
it here, so it doesn't crash.
  - **Issue:** https://github.com/langchain-ai/langchain/issues/15914

Didn't run tests. `make test` is not working. There is no `test` rule in
the `Makefile`.

Co-authored-by: Jan Horcicka <jhorcick@amazon.com>
2024-01-11 21:26:45 -08:00
Yacine
782dd44be9 <langchain_community.vectorstores>:<Fix pinecone.py __init__ docsrting instruction> (#15922)
- **Description:** The pinecone docstring instructs to pass the
embedding query text causing the warning below. It should be the
embeddings object.
warning message: UserWarning: Passing in `embedding` as a Callable is
deprecated. Please pass in an Embeddings object instead.
  - **Issue:** NA
  - **Dependencies:** None


@baskaryan
2024-01-11 21:26:33 -08:00
Nuno Campos
112208baa5 Passthrough configurable primitive values as tracer metadata (#15915)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-11 18:47:55 -08:00
William FH
129552e3d6 Rm deprecated (#15920)
Remove the usage of deprecated methods in the test runner.
2024-01-11 18:10:49 -08:00
Nuno Campos
438beb6c94 Pass config specs through ensemble retriever (#15917)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-11 16:22:17 -08:00
Erick Friis
ebb6ad4f7a mistralai[patch]: release 0.0.2 (#15912) 2024-01-11 13:42:04 -08:00
Erick Friis
437cebc955 core[patch]: release 0.1.10 (#15911) 2024-01-11 13:39:06 -08:00
Harrison Chase
80d41a8da3 add old serializable mapping (#15906) 2024-01-11 13:03:12 -08:00
Erick Friis
623f87c888 community[patch]: pinecone bug (#15905) 2024-01-11 11:44:07 -08:00
Eugene Yurtsev
44101b6b0e Docs[patch]: Update OpenAI tools agent description (#15896)
Update OpenAI tools agent description.
2024-01-11 14:39:11 -05:00
Eugene Yurtsev
46b7a8d913 Docs[patch]: Update agent quick start for agents (#15892)
Minor change:

1) Update tool invocation to use .invoke
2) Show hub prompt
2024-01-11 14:38:48 -05:00
Jacob Lee
c11dbefedc docs[patch]: Fix bad headers in output parser docs (#15778)
Currently looks like this:

<img width="282" alt="Screenshot 2024-01-09 at 1 08 53 PM"
src="https://github.com/langchain-ai/langchain/assets/6952323/58f3d368-6588-418e-8502-30d13757cb99">

CC @efriis @baskaryan
2024-01-11 10:24:15 -08:00
Christophe Bornet
c56060bb7d Add document loader section to Astra provider doc page (#15882)
See preview:
https://langchain-git-fork-cbornet-provider-astra-doc-loader-langchain.vercel.app/docs/integrations/providers/astradb#ocument-loader
2024-01-11 07:52:29 -08:00
xvjixiang
611f18c944 Docs: Fix a typo in elasticsearch vectorstore notebook (#15807)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-10 20:30:44 -08:00
axiangcoding
d5aa277b94 community: add collection_properties parameter to Milvus (#15788)
- **Description:** add collection_properties parameter to Milvus. See
[pymilvus set_properties()
description](https://milvus.io/api-reference/pymilvus/v2.3.x/Collection/set_properties().md)
  - **Issue:** None
  - **Dependencies:** None
  - **Twitter handle:** None
2024-01-10 20:29:01 -08:00
mogith-pn
9e1ed17bfb Community : Modified doc strings and example notebook for Clarifai (#15816)
Community : Modified doc strings and example notebook for Clarifai

Description:
1. Modified doc strings inside clarifai vectorstore class and
embeddings.
2. Modified notebook examples.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-10 19:33:10 -08:00
Harrison Chase
97411e998f [docs] add beautiful soup dependency (#15860) 2024-01-10 19:32:55 -08:00
Daniel
6d299a55c0 docs: Update cohere.mdx, Text embedding had incorrect code snippet (#15840)
text embedding code snippet was incorrect.
2024-01-10 19:25:29 -08:00
Sagar B Manjunath
e6240fecab templates: Add NVIDIA Canonical RAG example chain (#15758)
- **Description:** Adds a RAG template that uses NVIDIA AI playground
and embedding models, along with Milvus vector store

- **Dependencies:** This template depends on the AI playground service
in NVIDIA NGC. API keys with a significant trial compute are available
(10k queries at the time of writing). This template also depends on the
Milvus Vector store which is publicly available.

Note: [A quick link to get a
key](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/codellama-13b/api)
when you have an NGC account. Generate Key button at the top right of
the code window.

---------

Co-authored-by: Sagar B Manjunath <sbogadimanju@nvidia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-10 18:39:16 -08:00
Erick Friis
38523d7c57 together[minor]: add llm (#15853) 2024-01-10 17:55:34 -08:00
William FH
2895ca87cf Update Evals Notebook (#15851) 2024-01-10 16:33:34 -08:00
Erick Friis
ee708739c3 community[patch]: pinecone v3 support (#15849)
Info in slack

---------

Co-authored-by: Roie Schwaber-Cohen <roie.cohen@gmail.com>
2024-01-10 14:54:50 -08:00
Bagatur
18411c379c docs: fix links (#15848) 2024-01-10 17:39:06 -05:00
Lance Martin
9c871f427b TogetherAI RAG (#15846) 2024-01-10 14:28:05 -08:00
Eugene Yurtsev
a06db53c37 Add unit tests to test openai tools agent (#15843)
This PR adds unit testing to test openai tools agent.
2024-01-10 17:06:30 -05:00
Harrison Chase
21a1538949 add raga reranker (#15838) 2024-01-10 11:07:19 -08:00
Eugene Yurtsev
45f49ca439 infra: fix issue preview (#15836)
Fixing the placeholder for the code example. GitHub collapses newlines
when
trying to use the text area, which is super confusing.
2024-01-10 13:27:07 -05:00
Eugene Yurtsev
c425e6f740 More updates to issue template (#15833)
More update to issue template
2024-01-10 13:16:02 -05:00
Eugene Yurtsev
65980c22b8 Infra: Fix syntax error in BUG REPORT template (#15831)
Fix syntax error in issue template
2024-01-10 12:39:08 -05:00
Eugene Yurtsev
e182d630f7 ISSUE_TEMPLATE: Update issue template (#15757)
Drop some fields, re-order, start directing folks towards QA.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-10 12:35:41 -05:00
Bagatur
6432494f9d infra: explicitly specify py path (#15826) 2024-01-10 11:59:43 -05:00
Bagatur
79124fd71d experimental[patch]: Release 0.0.49 (#15823) 2024-01-10 11:23:19 -05:00
Harrison Chase
20abe24819 experimental[minor]: Add semantic chunker (#15799) 2024-01-10 11:18:30 -05:00
Harrison Chase
a1d7f2b3e1 add dspy notebook (#15798) 2024-01-10 08:01:08 -08:00
Eugene Yurtsev
feb41c5e28 langchain[patch]: Improve stream_log with AgentExecutor and Runnable Agent (#15792)
This PR fixes an issue where AgentExecutor with RunnableAgent does not allow users to see individual llm tokens if streaming=True is not set explicitly on the underlying chat model.

The majority of this PR is testing code:

1. Create a test chat model that makes it easier to test streaming and
supports AIMessages that include function invocation information.
2. Tests for the chat model
3. Tests for RunnableAgent (previously untested)
4. Tests for openai agent (previously untested)
2024-01-10 10:53:01 -05:00
Erick Friis
85a4594ed7 community[patch]: more deprecations (#15782) 2024-01-09 20:36:16 -08:00
Erick Friis
33dccf0f66 core[patch]: release 0.1.9 (#15794) 2024-01-09 19:27:19 -08:00
Bagatur
942071bf57 docs: collapse structured use case (#15791) 2024-01-09 21:47:09 -05:00
Erick Friis
0c95f3a981 mistralai[patch]: warn on stop token, fix on_llm_new_token (#15787)
Fixes #15269

Addresses with warning. MistralAI API doesn't support stop token yet.

---------

Co-authored-by: Niels Garve <info@nielsgarve.com>
2024-01-09 16:27:20 -08:00
Erick Friis
323941a90a mistralai[patch]: persist async client (#15786) 2024-01-09 16:21:39 -08:00
Tomaz Bratanic
3e0cd11f51 templates: Add neo4j semantic layer template (#15652)
Co-authored-by: Tomaz Bratanic <tomazbratanic@Tomazs-MacBook-Pro.local>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-09 15:33:44 -08:00
NuODaniel
70b6315b23 community[patch]: fix qianfan chat stream calling caused exception (#13800)
- **Description:** 
`QianfanChatEndpoint` extends `BaseChatModel` as a super class, which
has a default stream implement might concat the MessageChunk with
`__add__`. When call stream(), a ValueError for duplicated key will be
raise.
  - **Issues:** 
     * #13546  
     * #13548
     * merge two single test file related to qianfan.
  - **Dependencies:** no
  - **Tag maintainer:**

---------

Co-authored-by: root <liujun45@baidu.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-09 15:29:25 -08:00
Erick Friis
656e87beb9 core[patch]: add alternative_import to deprecated (#15781) 2024-01-09 14:45:28 -08:00
Erick Friis
04a5a37e92 robocorp[patch]: fix readme, release 0.0.1.post1 (#15777) 2024-01-09 12:53:57 -08:00
Erick Friis
ae67ba4dbb templates: robocorp action server template (#15776)
---------

Co-authored-by: Rihards Gravis <rihards@gravis.lv>
Co-authored-by: Mikko Korpela <mikko@robocorp.com>
2024-01-09 12:41:20 -08:00
Erick Friis
91ec9da534 openai[patch]: unit test load (#15624) 2024-01-09 11:54:11 -08:00
Erick Friis
7be72e1103 openai[patch], docs: readme (#15773) 2024-01-09 11:52:24 -08:00
Bagatur
ee5bd986de community[patch]: update oai deprecation message (#15681)
addresses #15674
2024-01-09 14:36:58 -05:00
Erick Friis
7562f70c95 robocorp[minor]: Add robocorp action server toolkit (#15766)
Co-authored-by: Rihards Gravis <rihards@gravis.lv>
Co-authored-by: Mikko Korpela <mikko@robocorp.com>
2024-01-09 11:29:19 -08:00
Erick Friis
7bc100fd43 docs: integration package pip installs (#15762)
More than 300 files - will fail check_diff. Will merge after Vercel
deploy succeeds

Still occurrences that need changing - will update more later
2024-01-09 11:13:10 -08:00
Bagatur
1b0db82dbe docs: fix recognition (#15769) 2024-01-09 13:57:28 -05:00
Erick Friis
4ed3d17c47 community[patch]: release 0.0.11 (#15760) 2024-01-09 09:44:26 -08:00
Bagatur
da395f3182 experimental[patch]: loosen core max version (#15763) 2024-01-09 12:10:14 -05:00
Shoya SHIRAKI
123e01b9d8 docs: remove unnecessary description (#15752)
| before | after |
| ---- | ---- |
|
![image](https://github.com/langchain-ai/langchain/assets/1635118/c108c53c-2665-46c3-82bf-8f74005f9ac9)
|
![image](https://github.com/langchain-ai/langchain/assets/1635118/2da3427a-1bac-4e9e-9fb2-509c9674d8a1)
|

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-09 11:29:39 -05:00
Eugene Yurtsev
7db680fd4b CI: Fix template for questions (#15756)
CI: Workflow fix template for questions
2024-01-09 09:49:49 -05:00
Eugene Yurtsev
ce68be67ad Update template to direct questions to discussions rather than issues (#15721)
Update PR template to direct questions to discussions rather than issues
2024-01-09 09:46:03 -05:00
William FH
04caf07dee Make packages optional (#15727)
So we don't have to instruct people to modify the Dockerfile every time
they delete the packages directory.


See:
https://stackoverflow.com/questions/70096208/dockerfile-copy-folder-if-it-exists-conditional-copy/70096420#70096420

Tested on a new repo
2024-01-08 17:09:21 -08:00
Eugene Yurtsev
3a8ad90509 langchain(patch): Fix output type for pydantic output parser (#15714)
This PR fixes the output type for the pydantic output parser.

Fix for: https://github.com/langchain-ai/langserve/issues/301
2024-01-08 16:53:10 -05:00
Erick Friis
95a2c92e26 experimental[patch]: minimum version bump (#15724)
- experimental: minimum version bump
- actually 0.1.5
- actually 0.1.7
2024-01-08 13:04:57 -08:00
Erick Friis
6c9b7c2cec experimental: minimum version bump (#15722)
experimental relies on `from langchain_core.runnables.config import
run_in_executor` which was introduced in core 0.1.5.

Updated pyproject dependency as well as minimum version test.
2024-01-08 12:58:24 -08:00
Kane Sweet
167a0ac5f5 docs: update aws_dynamodb integration doc (#15666)
- **Description:** 
- Updated the docs for the memory integration module
`aws_dynamodb.ipynb`
  - **Issue:** 
    - #15664 
  - **Dependencies:** 
    - N/A
2024-01-08 12:27:29 -08:00
Ian
32ec56194b community: fix myscale delete function bug (#15675)
Now the SQL used to delete vector doc from myscale is as follow:
```sql
DELETE FROM collection WHERE id = '1' AND id = '2' AND id = '3'
```

But the expected one should be 

```sql
DELETE FROM collection WHERE id IN ('1', '2', '3')
```
2024-01-08 12:26:29 -08:00
Hamza Kyamanywa
fc3cb64dc3 langchain-docs: Correct the word "iteratively" in use-cases documentation (#15697)
Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
**Description:** Fixes the word "iteratively" in the use-cases
documentation
**Twitter handle:** @untilhamza
2024-01-08 12:24:00 -08:00
Christophe Bornet
a466f79ac9 Fix AstraDB logical operator filtering (#15699)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
This change fixes the AstraDB logical operator filtering (`$and,`
`$or`).
The `metadata` prefix must not be added if the key is `$and` or `$or`.
2024-01-08 12:23:46 -08:00
Christophe Bornet
1f5f6381ec Add doc for AstraDB document loader (#15703)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
See preview :
https://langchain-git-fork-cbornet-astra-loader-doc-langchain.vercel.app/docs/integrations/document_loaders/astradb
2024-01-08 12:21:46 -08:00
Eugene Yurtsev
b508fcce65 core(minor): Add a way to print out system information for debugging purposes. (#15718)
To use: 

```bash
python -m langchain_core.sys_info
```
2024-01-08 12:20:18 -08:00
MING KANG
c3624b416d docs: fix llm/chat_model tables (#15716)
- **Description:** This PR aims to fix the documentation for
langchain-commnuity.

- **Issue:** The table In this page :
[https://python.langchain.com/docs/integrations/llms/](https://urldefense.com/v3/__https://python.langchain.com/docs/integrations/llms/__;!!ACWV5N9M2RV99hQ!Jqw8gWnQrL1H6blPiGN10jrh1TDAzqGcKAaTAZv7TBy1X_m-03E7T-alOrWY5_71R8QUdONvF2wMRK54D50$)
is built based on old module. The proposed fix is to modify the import
from langchain-commnuity.
  
  - **Dependencies:** N/A
  - **Twitter handle:** N/A
2024-01-08 11:40:35 -08:00
Erick Friis
94911ae503 community[patch]: Support different Pinecone initializations depending on the version (#15717)
Co-authored-by: DosticJelena <jelenadostic2@gmail.com>
2024-01-08 11:33:36 -08:00
Bagatur
c0eb2482c3 docs: add LangGraph (#15682) 2024-01-08 08:38:14 -08:00
Harrison Chase
3e7a590a43 dont use docarray (#15710)
theres some issue with the integration currently so dont use it
2024-01-08 07:54:10 -08:00
Bagatur
4c47f39fcb community[patch]: Release 0.0.10 (#15678) 2024-01-08 00:24:45 -05:00
Bagatur
60f925d678 core[patch]: Release 0.1.8 (#15677) 2024-01-08 00:05:12 -05:00
Nuno Campos
7ce4cd0709 Do not issue beta or deprecation warnings on internal calls (#15641) 2024-01-07 20:54:45 -08:00
Nuno Campos
ef22559f1f Populate streamed_output for all runs handled by atransform_stream_with_config (#15599)
This means that users of astream_log() now get streamed output of
virtually all requested runs, whereas before the only streamed output
would be for the root run and raw llm runs

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-07 19:35:43 -08:00
abzachshan
7025fa23aa Docs: Add missing import of 'ConfigurableField' in 'Full code comparison' example in LCEL (#15661)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Add missing import of 'ConfigurableField' in 'Full
code comparison' example in LCEL
  - **Issue:** Example code not running
  - **Dependencies:** None
  - **Twitter handle:** @heyyoshan
2024-01-07 13:45:32 -08:00
Harrison Chase
38ae4df3a1 update ragatouille integration (#15658) 2024-01-07 10:51:34 -08:00
Earlee
98c6c9603e community: fix: should flush after inserting data on milvus (#15568)
The inserted data cannot take effect immediately. We should flush after
inserting data on milvus.
2024-01-07 09:33:47 -08:00
chyroc
a17a3638b5 Docs: fix excel document loader typo (#15470) 2024-01-07 09:33:35 -08:00
Shaurya Rohatgi
1bfb1725a1 fix: Ollama import statements (#15493)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-07 09:31:24 -08:00
chyroc
9ae901c5e6 Feat: add CHM file loader (#15519)
fix https://github.com/langchain-ai/langchain/issues/15469
2024-01-07 09:28:52 -08:00
Nan LI
0b393315ce community: Correct Input API Key Name in Notebook and Enhance Readability of Comments for ZhipuAI Chat Model (#15529)
- **Description:** This update rectifies an error in the notebook by
changing the input variable from `zhipu_api_key` to `api_key`. It also
includes revisions to comments to improve program readability.
- **Issue:** The input variable in the notebook example should be
`api_key` instead of `zhipu_api_key`.
- **Dependencies:** No additional dependencies are required for this
change.

To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
2024-01-07 09:27:47 -08:00
kursathalat
9ea28ee464 fix: Fix DEFAULT_API_KEY for ArgillaCallbackHandler (#15534)
- ArgillaCallbackHandler does not properly set the default values while
initializing. This PR corrects the line.
- Issue: #15531 
- Dependencies: Argilla

- Also corrected some dead links.
2024-01-07 09:26:51 -08:00
V.Prasanna kumar
378d40f3ea changed broken link for wandb tracing with agent (#15578)
fix of #14905 

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-07 08:48:15 -08:00
Ammar Azman
a37389ac59 Adding reading source for Curie model (#15569)
Improving documentation

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** Adding resource for Curie model
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
  - **Twitter handle:** @mmarccode

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-07 08:42:17 -08:00
Bagatur
4759d10cf6 docs: add changelog (#15606)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-07 08:34:34 -08:00
Chad Norvell
d1bfb70bc4 community: Allow deleting by ID and collection in pgvector (#15627)
- **Description:** The `delete_collection` method deletes an entire
collection regardless of custom ID. The `delete` method deletes
everything with the provided custom IDs regardless of collection. It can
be useful to restrict deletion to both the collection and a set of
custom IDs. This change adds support for that by allowing you to
optionally specify that `delete` should be restricted to the collection
defined on the `PGVector` instance.
2024-01-07 08:33:21 -08:00
Chad Norvell
f6226d464e community: Include PDF ID in MathPix metadata (#15629)
- **Description:** Includes the PDF ID in the MathPix document metadata.
This is useful in case you need to re-request a processed PDF from the
MathPix API later.
2024-01-07 08:31:53 -08:00
Chad Norvell
d2a686b165 community: Provide more actionable errors in the MathPix PDF loader (#15630)
- **Description:** The `error_info['id']` can be cross-referenced with
the MathPix API documentation to get very specific information about why
an error occurred.
2024-01-07 08:31:09 -08:00
Usama Shahid
f0128dbcde Update openai_tools.ipynb (#15649)
Description: Update openai_tools.ipynb
Issue: The distinction between OpenAI function agents and OpenAI tools
was not adequately emphasised.
2024-01-07 08:30:30 -08:00
Kai
5d05df4bce community: Fixed bug of "system message check" in chat_models/tongyi. (#15631)
- **Description:** This PR is to fix a bug of "system message check" in
langchain_community/ chat_models/tongyi.py
- **Issue:** In term of current logic, if there's no system message in
the chat messages, an error of "System message can only be the first
message." will be wrongly raised.
  - **Dependencies:** No.
  - **Twitter handle:** I don't have a Twitter account.
2024-01-07 08:30:18 -08:00
Erick Friis
08be477c24 templates: 0.1 bump (#15648) 2024-01-06 18:31:46 -08:00
Raunak
64f5968a81 community: Replaced hardcoded "metadata" with FIELDS_METADATA variable in semantic_hybrid_search_with_score_and_rerank (#15642)
- **Description:** This PR is to fix a bug in
semantic_hybrid_search_with_score_and_rerank() function in
langchain_community/vectorstores/azuresearch.py. The hardcoded
"metadata" name is replaced with FIELDS_METADATA variable with an if
block to check if the metadata column exists or not.
- **Issue:** Fixed #15581
- **Dependencies:** No
- **Twitter handle:** None

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-06 17:04:59 -08:00
Harrison Chase
472f70c54b fix docs build (#15645) 2024-01-06 16:26:34 -08:00
Erick Friis
b1fa726377 docs: langchain-openai (#15513)
Updates docs and cookbooks to import ChatOpenAI, OpenAI, and OpenAI
Embeddings from `langchain_openai`

There are likely more

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-06 15:54:48 -08:00
Harrison Chase
be612f408e move output parser table (#15637) 2024-01-06 15:40:13 -08:00
Bagatur
14c5c15958 experimental[patch]: Release 0.0.48 (#15483) 2024-01-06 12:46:00 -05:00
Erick Friis
d136925c49 community[patch]: fix deprecation warnings on openai subclasses (#15621) 2024-01-05 18:02:17 -08:00
Bagatur
4ac61670b2 infra: fix langchain openai test dep (#15620) 2024-01-05 20:14:22 -05:00
Bagatur
81810cec2e langchain[minor]: Release 0.1.0 (#15619) 2024-01-05 19:33:35 -05:00
Bagatur
c5226d7a18 docs: update cohere chat integration (#15562)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-05 16:33:29 -08:00
Erick Friis
1bc6b19ea7 openai[patch]: v0.0.2 (#15618) 2024-01-05 16:33:10 -08:00
Bagatur
46446a100d core[patch]: deprecate v1 tracer (#15608) 2024-01-05 19:25:19 -05:00
Bagatur
dbb582d227 infra: community bump min core version (#15617) 2024-01-05 19:17:48 -05:00
Bagatur
1e4b8f0453 community[patch]: Release 0.0.9 (#15615) 2024-01-05 19:11:18 -05:00
Erick Friis
7f8baa030b openai: core version, rc1 (#15614) 2024-01-05 15:57:23 -08:00
Erick Friis
98be1e5ed0 infra: title release action runs (#15612)
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#run-name
2024-01-05 15:24:57 -08:00
Erick Friis
5ac3a06378 google-vertexai: release 0.0.1 (#15613) 2024-01-05 15:24:23 -08:00
Bagatur
96b47e18e0 core[patch]: Release 0.1.7 (#15610) 2024-01-05 18:24:11 -05:00
Erick Friis
b257c7d0ea google-vertexai, openai: release candidate version (#15611) 2024-01-05 15:05:27 -08:00
Erick Friis
1a42ad353a infra: vertex integration test creds (#15609) 2024-01-05 15:03:39 -08:00
Erick Friis
ebc75c5ca7 openai[minor]: implement langchain-openai package (#15503)
Todo

- [x] copy over integration tests
- [x] update docs with new instructions in #15513 
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models

Contributor steps:

- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml

Maintainer steps (Contributors should not do these):

- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge


Functional changes to existing classes:

- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package

Codebase organization

- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
2024-01-05 15:03:28 -08:00
Bagatur
a7d023aaf0 core[patch], community[patch]: mark runnable context, lc load as beta (#15603) 2024-01-05 17:54:26 -05:00
Bagatur
75281af822 docs: Fix chain redirects (#15600) 2024-01-05 15:07:30 -05:00
Leonid Kuligin
f73bf4ee54 google-vertexai: added langchain_google_vertexai package (#15218)
added langchain_google_vertexai package

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-05 10:44:10 -08:00
Bagatur
e1fc4d5b95 core[patch]: add beta decorator (#15589) 2024-01-05 13:16:27 -05:00
Harrison Chase
b484d941ae update memory (#15507) 2024-01-05 09:49:26 -08:00
Bagatur
68eb3053e7 langchain[patch]: deprecate old agent classes and methods (#15558) 2024-01-05 12:42:54 -05:00
Harrison Chase
9b9449750c update chain docs (#15495)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-05 09:15:00 -08:00
Bagatur
00dfbd2a99 core[minor], langchain[minor]: deprecate old Chain and LLM methods (#15499) 2024-01-05 11:58:35 -05:00
Harrison Chase
fd5fbb507d fix links (#15566)
there are still a few broken ones:

- some in the chains docs, which I will delete soon :)
- some pointing to a sqlite tool, which we should add
2024-01-04 21:57:30 -08:00
Matthew Kwiatkowski
7c4fe58f55 Docs: Fix typos in question_answering (#15565)
**Description**: Fixed a minor typo in the RAG Docs:
- ~~This usually happen offline~~ -> This usually happen**s** offline
2024-01-04 21:57:21 -08:00
chyroc
f12b5c1222 Feat: support Milvus more params (#15447)
fix https://github.com/langchain-ai/langchain/issues/15442
2024-01-04 20:07:23 -08:00
V.Prasanna kumar
aa1c7a56a9 docs: removed deprecated openai model (#15533)
removed the deprecated model from text embedding page of openai notebook
and added the suggested model from openai page


<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-04 17:53:42 -08:00
Bagatur
f5e4f0b30b langchain[minor]: add warnings when importing integrations (#15505)
Should be imported from community directly
2024-01-04 17:41:45 -05:00
Harrison Chase
14966581df add ragatouille (#15561) 2024-01-04 13:45:20 -08:00
Eugene Yurtsev
bf0b3cc0b5 core[patch]: Further restrict recursive URL loader (#15559)
Includes code from this PR:  https://github.com/langchain-ai/langchain/compare/HEAD...m0kr4n3:security/fix_ssrf 
with additional fixes 

Unit tests cover new test cases
2024-01-04 16:33:57 -05:00
Bagatur
817b84de9e core[patch]: Release 0.1.6 (#15547) 2024-01-04 11:02:04 -05:00
Bagatur
b2f15738dd core[patch], langchain[patch], community[patch]: Revert #15326 (#15546) 2024-01-04 10:39:37 -05:00
Harrison Chase
7a93356cbc add new chain howtos (#15430) 2024-01-03 21:19:58 -08:00
Erick Friis
81886ad345 docs: fix broken link (#15509) 2024-01-03 16:00:18 -08:00
1279 changed files with 50128 additions and 19657 deletions

View File

@@ -5,60 +5,84 @@ body:
- type: markdown
attributes:
value: >
Thank you for taking the time to file a bug report. Before creating a new
issue, please make sure to take a few moments to check the issue tracker
for existing issues about the bug.
Thank you for taking the time to file a bug report.
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://api.python.langchain.com/en/stable/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue)
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this issue.
required: true
- label: I searched the LangChain documentation with the integrated search.
required: true
- label: I used the GitHub search to find a similar question and didn't find it.
required: true
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Example Code
description: |
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
If you're including an error message, please include the full stack trace not just the last error.
**Important!** Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
The following code:
```python
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
```
Include both the error and the full stack trace if reporting an exception!
- type: textarea
id: description
attributes:
label: Description
description: |
What is the problem, question, or error?
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
placeholder: |
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required: true
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us.
placeholder: LangChain version, platform, python version, ...
placeholder: |
"pip freeze | grep langchain"
platform
python version
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
The core maintainers strive to read all issues, but tagging them will help them prioritize.
Please tag fewer than 3 people.
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoader Abstractions
- @eyurtsev
LLM/Chat Wrappers
- @hwchase17
- @agola11
Tools / Toolkits
- ...
placeholder: "@Username ..."
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: "The problem arises when using:"
options:
- label: "The official example notebooks/scripts"
- label: "My own modified scripts"
- type: checkboxes
id: related-components
attributes:
@@ -77,30 +101,3 @@ body:
- label: "Chains"
- label: "Callbacks/Tracing"
- label: "Async"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

View File

@@ -1,6 +1,9 @@
blank_issues_enabled: true
version: 2.1
contact_links:
- name: 🤔 Question or Problem
about: Ask a question or ask about a problem in GitHub Discussions.
url: https://github.com/langchain-ai/langchain/discussions
- name: Discord
url: https://discord.gg/6adMQxSpJS
about: General community discussions

View File

@@ -1,18 +0,0 @@
name: Other Issue
description: Raise an issue that wouldn't be covered by the other templates.
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
labels: [04 - Other]
body:
- type: textarea
attributes:
label: "Issue you'd like to raise."
description: >
Please describe the issue you'd like to raise as clearly as possible.
Make sure to include any relevant links or references.
- type: textarea
attributes:
label: "Suggestion:"
description: >
Please outline a suggestion to improve the issue here.

View File

@@ -28,6 +28,7 @@ runs:
steps:
- uses: actions/setup-python@v5
name: Setup python ${{ inputs.python-version }}
id: setup-python
with:
python-version: ${{ inputs.python-version }}
@@ -74,7 +75,8 @@ runs:
env:
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
run: pipx install "poetry==$POETRY_VERSION" --python "python$PYTHON_VERSION" --verbose
# Install poetry using the python version installed by setup-python step.
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v3

View File

@@ -37,6 +37,12 @@ jobs:
shell: bash
run: poetry install --with test,test_integration
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Run integration tests
shell: bash
env:
@@ -44,6 +50,7 @@ jobs:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: |
make integration_tests

View File

@@ -1,5 +1,5 @@
name: release
run-name: Release ${{ inputs.working-directory }} by @${{ github.actor }}
on:
workflow_call:
inputs:
@@ -117,11 +117,18 @@ jobs:
# are not found on test PyPI can be resolved and installed anyway.
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
# package because VERSION will not have been uploaded to regular PyPI yet.
#
# - attempt install again after 5 seconds if it fails because there is
# sometimes a delay in availability on test pypi
run: |
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION"
"$PKG_NAME==$VERSION" || \
( \
sleep 5 && \
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" \
)
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
@@ -149,6 +156,12 @@ jobs:
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Run integration tests
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
env:
@@ -156,6 +169,7 @@ jobs:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -49,7 +49,7 @@ The LangChain libraries themselves are made up of several different packages.
- **[`langchain-community`](libs/community)**: Third party integrations.
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
![LangChain Stack](docs/static/img/langchain_stack.png)
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/img/langchain_stack.png "LangChain Architecture Overview")
## 🧱 What can you build with LangChain?
**❓ Retrieval augmented generation**

View File

@@ -149,7 +149,7 @@
],
"source": [
"# Prompt\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"# Update the template based on the type of SQL Database like MySQL, Microsoft SQL Server and so on\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
@@ -278,7 +278,7 @@
"source": [
"# Prompt\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",

View File

@@ -198,9 +198,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"# Generate summaries of text elements\n",
@@ -355,9 +355,9 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"\n",
"def create_multi_vector_retriever(\n",

View File

@@ -235,9 +235,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
]
},
{
@@ -320,9 +320,9 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",

View File

@@ -211,9 +211,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
]
},
{
@@ -375,9 +375,9 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",

View File

@@ -209,9 +209,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.output_parsers import StrOutputParser"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate"
]
},
{

View File

@@ -132,8 +132,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"baseline = Chroma.from_texts(\n",
" texts=all_splits_pypdf_texts,\n",
@@ -160,9 +160,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",

View File

@@ -29,9 +29,8 @@
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"\n",
"llm = OpenAI(temperature=0)"
]
@@ -161,7 +160,7 @@
"source": [
"# Import things that are needed generically\n",
"from langchain.agents import AgentType, Tool, initialize_agent\n",
"from langchain_community.llms import OpenAI"
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -29,7 +29,7 @@
"outputs": [],
"source": [
"from langchain.chains import AnalyzeDocumentChain\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
]

View File

@@ -62,8 +62,8 @@
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
@@ -100,8 +100,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT"
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -41,8 +41,8 @@
"import pandas as pd\n",
"from langchain.docstore.document import Document\n",
"from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Needed synce jupyter runs an async eventloop\n",
"nest_asyncio.apply()"
@@ -311,8 +311,8 @@
"# Memory\n",
"import faiss\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings_model = OpenAIEmbeddings()\n",
"embedding_size = 1536\n",

View File

@@ -31,9 +31,8 @@
"source": [
"from typing import Optional\n",
"\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
"from langchain_experimental.autonomous_agents import BabyAGI\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
]
},
{

View File

@@ -29,9 +29,8 @@
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
"from langchain_experimental.autonomous_agents import BabyAGI\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings"
]
},
{
@@ -108,8 +107,8 @@
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain_openai import OpenAI\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",

View File

@@ -46,7 +46,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -47,9 +47,9 @@
"outputs": [],
"source": [
"from IPython.display import SVG\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.cpal.base import CPALChain\n",
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0, max_tokens=512)\n",
"cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)\n",

View File

@@ -657,7 +657,7 @@
}
],
"source": [
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"embeddings"
@@ -834,7 +834,7 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",

View File

@@ -44,8 +44,8 @@
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.tools.plugin import AIPlugin"
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_openai import OpenAI"
]
},
{
@@ -115,8 +115,8 @@
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{

View File

@@ -69,8 +69,8 @@
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.tools.plugin import AIPlugin"
"from langchain_community.tools.plugin import AIPlugin\n",
"from langchain_openai import OpenAI"
]
},
{
@@ -139,8 +139,8 @@
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{

View File

@@ -41,8 +41,8 @@
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import SerpAPIWrapper"
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain_openai import OpenAI"
]
},
{
@@ -104,8 +104,8 @@
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{

View File

@@ -93,7 +93,7 @@
"outputs": [],
"source": [
"# Creating a OpenAI Chat LLM wrapper\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
]

View File

@@ -56,9 +56,8 @@
" CharacterTextSplitter,\n",
" RecursiveCharacterTextSplitter,\n",
")\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.vectorstores import DeepLake\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",

View File

@@ -475,8 +475,8 @@
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_openai import ChatOpenAI"
]
},
{
@@ -547,9 +547,9 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"\n",
"def build_retriever(text_elements, tables, table_summaries):\n",

View File

@@ -39,7 +39,7 @@
"source": [
"from elasticsearch import Elasticsearch\n",
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -22,8 +22,8 @@
"from typing import List, Optional\n",
"\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.pydantic_v1 import BaseModel"
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_openai import ChatOpenAI"
]
},
{
@@ -153,7 +153,7 @@
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain_core.runnables import Runnable\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.messages import SystemMessage\n",
"from langchain_core.language_models import BaseLanguageModel\n",
"\n",

View File

@@ -74,9 +74,8 @@
" CallbackManagerForRetrieverRun,\n",
")\n",
"from langchain.schema import BaseRetriever, Document\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import GoogleSerperAPIWrapper"
"from langchain_community.utilities import GoogleSerperAPIWrapper\n",
"from langchain_openai import ChatOpenAI, OpenAI"
]
},
{

View File

@@ -49,9 +49,8 @@
"\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"from termcolor import colored"
]
},

View File

@@ -75,8 +75,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
"from langchain_openai import OpenAI\n",
"\n",
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
]

View File

@@ -159,7 +159,7 @@
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent, load_tools\n",
"from langchain_community.llms import OpenAI"
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -22,8 +22,7 @@
"source": [
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI"
"from langchain_openai import OpenAI, OpenAIEmbeddings"
]
},
{

View File

@@ -49,7 +49,7 @@
"source": [
"# pick and configure the LLM of your choice\n",
"\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")"
]

View File

@@ -43,8 +43,8 @@
}
],
"source": [
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",

View File

@@ -42,7 +42,7 @@
],
"source": [
"from langchain.chains import LLMCheckerChain\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0.7)\n",
"\n",

View File

@@ -46,7 +46,7 @@
],
"source": [
"from langchain.chains import LLMMathChain\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",

View File

@@ -331,7 +331,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2)\n",
@@ -822,7 +822,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3)\n",
@@ -1096,7 +1096,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, max_checks=3, verbose=True)\n",

View File

@@ -14,8 +14,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm)"

View File

@@ -59,7 +59,7 @@
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import OpenAI"
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -91,8 +91,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -315,10 +315,10 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"def prompt_func(data_dict):\n",

View File

@@ -44,7 +44,7 @@
"source": [
"from langchain.agents import AgentType, initialize_agent\n",
"from langchain.tools import SteamshipImageGenerationTool\n",
"from langchain_community.llms import OpenAI"
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -32,7 +32,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -41,7 +41,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -33,7 +33,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -32,9 +32,9 @@
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import SQLDatabase\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain_openai import OpenAI\n",
"from sqlalchemy import MetaData, create_engine\n",
"\n",
"MYSCALE_HOST = \"msc-4a9e710a.us-east-1.aws.staging.myscale.cloud\"\n",
@@ -75,10 +75,10 @@
"outputs": [],
"source": [
"from langchain.callbacks import StdOutCallbackHandler\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities.sql_database import SQLDatabase\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain_openai import OpenAI\n",
"\n",
"chain = VectorSQLDatabaseChain(\n",
" llm_chain=LLMChain(\n",
@@ -117,7 +117,6 @@
"outputs": [],
"source": [
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.retrievers.vector_sql_database import (\n",
" VectorSQLDatabaseChainRetriever,\n",
")\n",
@@ -126,6 +125,7 @@
" VectorSQLDatabaseChain,\n",
" VectorSQLRetrieveAllOutputParser,\n",
")\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings(\n",
" output_parser.model\n",

View File

@@ -22,8 +22,8 @@
"from langchain.chains import RetrievalQA\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma"
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings"
]
},
{
@@ -53,7 +53,7 @@
"from langchain.chains import create_qa_with_sources_chain\n",
"from langchain.chains.combine_documents.stuff import StuffDocumentsChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -28,8 +28,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_openai import ChatOpenAI"
]
},
{
@@ -414,7 +414,7 @@
"BREAKING CHANGES:\n",
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
"```python\n",
"from langchain_community.embeddings import AzureOpenAIEmbeddings\n",
"from langchain_openai import AzureOpenAIEmbeddings\n",
"```\n",
"\n",
"\n",
@@ -456,8 +456,8 @@
"from typing import Literal\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",

View File

@@ -52,7 +52,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -30,15 +30,14 @@
"outputs": [],
"source": [
"from langchain.chains import LLMMathChain\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.tools import Tool\n",
"from langchain_experimental.plan_and_execute import (\n",
" PlanAndExecute,\n",
" load_agent_executor,\n",
" load_chat_planner,\n",
")"
")\n",
"from langchain_openai import ChatOpenAI, OpenAI"
]
},
{

View File

@@ -82,7 +82,7 @@
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.retrievers import KayAiRetriever\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(\n",

View File

@@ -17,8 +17,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.pal_chain import PALChain"
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -27,7 +27,7 @@
],
"source": [
"from langchain.chains import create_citation_fuzzy_match_chain\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"import pinecone\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Pinecone\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"pinecone.init(api_key=\"...\", environment=\"...\")"
]
@@ -86,8 +86,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -43,7 +43,7 @@
"outputs": [],
"source": [
"from langchain.sql_database import SQLDatabase\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"CONNECTION_STRING = \"postgresql+psycopg2://postgres:test@localhost:5432/vectordb\" # Replace with your own\n",
"db = SQLDatabase.from_uri(CONNECTION_STRING)"
@@ -88,7 +88,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings_model = OpenAIEmbeddings()"
]
@@ -219,7 +219,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"You are a Postgres expert. Given an input question, first create a syntactically correct Postgres query to run, then look at the results of the query and return the answer to the input question.\n",
"Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per Postgres. You can order the results to return the most informative data in the database.\n",
@@ -267,9 +267,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n",

View File

@@ -31,11 +31,11 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough"
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -53,10 +53,9 @@
"from langchain.prompts.base import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.llms import BaseLLM, OpenAI\n",
"from langchain_community.llms import BaseLLM\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings\n",
"from pydantic import BaseModel, Field"
]
},

View File

@@ -18,9 +18,9 @@
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompt_values import PromptValue"
"from langchain_core.prompt_values import PromptValue\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -255,7 +255,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4\")\n",
"res = model.predict(\n",
@@ -1083,8 +1083,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import ElasticsearchStore\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]

View File

@@ -26,8 +26,8 @@
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import GoogleSearchAPIWrapper"
"from langchain_community.utilities import GoogleSearchAPIWrapper\n",
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -52,8 +52,8 @@
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.smart_llm import SmartLLMChain"
"from langchain_experimental.smart_llm import SmartLLMChain\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -9,7 +9,7 @@ To set it up, follow the instructions on https://database.guide/2-sample-databas
```python
from langchain_community.llms import OpenAI
from langchain_openai import OpenAI
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -200,7 +200,7 @@ result["intermediate_steps"]
How to add memory to a SQLDatabaseChain:
```python
from langchain_community.llms import OpenAI
from langchain_openai import OpenAI
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```

View File

@@ -23,10 +23,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda"
"from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_openai import ChatOpenAI"
]
},
{

156
cookbook/together_ai.ipynb Normal file
View File

@@ -0,0 +1,156 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
"metadata": {},
"source": [
"## Together AI + RAG\n",
" \n",
"[Together AI](https://python.langchain.com/docs/integrations/llms/together) has a broad set of OSS LLMs via inference API.\n",
"\n",
"See [here](https://api.together.xyz/playground). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
"\n",
"Download the paper:\n",
"https://arxiv.org/pdf/2401.04088.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ab49327-0532-4480-804c-d066c302a322",
"metadata": {},
"outputs": [],
"source": [
"# Load\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(\"~/Desktop/mixtral.pdf\")\n",
"data = loader.load()\n",
"\n",
"# Split\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"\"\"\"\n",
"from langchain_together.embeddings import TogetherEmbeddings\n",
"embeddings = TogetherEmbeddings(model=\"togethercomputer/m2-bert-80M-8k-retrieval\")\n",
"\"\"\"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=all_splits,\n",
" collection_name=\"rag-chroma\",\n",
" embedding=OpenAIEmbeddings(),\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",
"# RAG prompt\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"from langchain_community.llms import Together\n",
"\n",
"llm = Together(\n",
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
" temperature=0.0,\n",
" max_tokens=2000,\n",
" top_k=1,\n",
")\n",
"\n",
"# RAG chain\n",
"chain = (\n",
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
]
},
{
"cell_type": "markdown",
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
"metadata": {},
"source": [
"Trace: \n",
"\n",
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -24,7 +24,7 @@
}
],
"source": [
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(temperature=1, max_tokens=512, model=\"gpt-3.5-turbo-instruct\")"
]

View File

@@ -37,8 +37,8 @@
"import getpass\n",
"import os\n",
"\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import DeepLake\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
@@ -3809,7 +3809,7 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"

View File

@@ -30,7 +30,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -28,7 +28,7 @@
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI"
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -599,7 +599,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
]

View File

@@ -20,4 +20,4 @@ wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O
yarn
quarto preview docs
poetry run quarto preview docs

View File

@@ -0,0 +1,27 @@
# langchain-core
## 0.1.7 (Jan 5, 2024)
#### Deleted
No deletions.
#### Deprecated
- `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
- `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
- `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
#### Fixed
- Restrict recursive URL scraping: [#15559](https://github.com/langchain-ai/langchain/pull/15559)
#### Added
No additions.
#### Beta
- Marked `langchain_core.load.load` and `langchain_core.load.loads` as beta.
- Marked `langchain_core.beta.runnables.context.ContextGet` and `langchain_core.beta.runnables.context.ContextSet` as beta.

View File

@@ -0,0 +1,36 @@
# langchain
## 0.1.0 (Jan 5, 2024)
#### Deleted
No deletions.
#### Deprecated
Deprecated classes and methods will be removed in 0.2.0
| Deprecated | Alternative | Reason |
|---------------------------------|-----------------------------------|------------------------------------------------|
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| NatBotChain | | Not used |
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
| VectorDBQA | RetrievalQA | More general to all retrievers |
| Sequential Chain | LCEL | Obviated by LCEL |
| SimpleSequentialChain | LCEL | Obviated by LCEL |
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
| ChatAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
| XMLAgent | create_xml_agent | Use LCEL builder over a class |

View File

@@ -1,53 +0,0 @@
# Community navigator
Hi! Thanks for being here. Were lucky to have a community of so many passionate developers building with LangChainwe have so much to teach and learn from each other. Community members contribute code, host meetups, write blog posts, amplify each others work, become each other's customers and collaborators, and so much more.
Whether youre new to LangChain, looking to go deeper, or just want to get more exposure to the world of building with LLMs, this page can point you in the right direction.
- **🦜 Contribute to LangChain**
- **🌍 Meetups, Events, and Hackathons**
- **📣 Help Us Amplify Your Work**
- **💬 Stay in the loop**
# 🦜 Contribute to LangChain
LangChain is the product of over 5,000+ contributions by 1,500+ contributors, and there is ******still****** so much to do together. Here are some ways to get involved:
- **[Open a pull request](https://github.com/langchain-ai/langchain/issues):** Wed appreciate all forms of contributionsnew features, infrastructure improvements, better documentation, bug fixes, etc. If you have an improvement or an idea, wed love to work on it with you.
- **[Read our contributor guidelines:](./contributing/)** We ask contributors to follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow, run a few local checks for formatting, linting, and testing before submitting, and follow certain documentation and testing conventions.
- **First time contributor?** [Try one of these PRs with the “good first issue” tag](https://github.com/langchain-ai/langchain/contribute).
- **Become an expert:** Our experts help the community by answering product questions in Discord. If thats a role youd like to play, wed be so grateful! (And we have some special experts-only goodies/perks we can tell you more about). Send us an email to introduce yourself at hello@langchain.dev and well take it from there!
- **Integrate with LangChain:** If your product integrates with LangChainor aspires towe want to help make sure the experience is as smooth as possible for you and end users. Send us an email at hello@langchain.dev and tell us what youre working on.
- **Become an Integration Maintainer:** Partner with our team to ensure your integration stays up-to-date and talk directly with users (and answer their inquiries) in our Discord. Introduce yourself at hello@langchain.dev if youd like to explore this role.
# 🌍 Meetups, Events, and Hackathons
One of our favorite things about working in AI is how much enthusiasm there is for building together. We want to help make that as easy and impactful for you as possible!
- **Find a meetup, hackathon, or webinar:** You can find the one for you on our [global events calendar](https://mirror-feeling-d80.notion.site/0bc81da76a184297b86ca8fc782ee9a3?v=0d80342540df465396546976a50cfb3f).
- **Submit an event to our calendar:** Email us at events@langchain.dev with a link to your event page! We can also help you spread the word with our local communities.
- **Host a meetup:** If you want to bring a group of builders together, we want to help! We can publicize your event on our event calendar/Twitter, share it with our local communities in Discord, send swag, or potentially hook you up with a sponsor. Email us at events@langchain.dev to tell us about your event!
- **Become a meetup sponsor:** We often hear from groups of builders that want to get together, but are blocked or limited on some dimension (space to host, budget for snacks, prizes to distribute, etc.). If youd like to help, send us an email to events@langchain.dev we can share more about how it works!
- **Speak at an event:** Meetup hosts are always looking for great speakers, presenters, and panelists. If youd like to do that at an event, send us an email to hello@langchain.dev with more information about yourself, what you want to talk about, and what city youre based in and well try to match you with an upcoming event!
- **Tell us about your LLM community:** If you host or participate in a community that would welcome support from LangChain and/or our team, send us an email at hello@langchain.dev and let us know how we can help.
# 📣 Help Us Amplify Your Work
If youre working on something youre proud of, and think the LangChain community would benefit from knowing about it, we want to help you show it off.
- **Post about your work and mention us:** We love hanging out on Twitter to see what people in the space are talking about and working on. If you tag [@langchainai](https://twitter.com/LangChainAI), well almost certainly see it and can show you some love.
- **Publish something on our blog:** If youre writing about your experience building with LangChain, wed love to post (or crosspost) it on our blog! E-mail hello@langchain.dev with a draft of your post! Or even an idea for something you want to write about.
- **Get your product onto our [integrations hub](https://integrations.langchain.com/):** Many developers take advantage of our seamless integrations with other products, and come to our integrations hub to find out who those are. If you want to get your product up there, tell us about it (and how it works with LangChain) at hello@langchain.dev.
# ☀️ Stay in the loop
Heres where our team hangs out, talks shop, spotlights cool work, and shares what were up to. Wed love to see you there too.
- **[Twitter](https://twitter.com/LangChainAI):** We post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can show you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with over 30,000 developers who are building with LangChain.
- **[GitHub](https://github.com/langchain-ai/langchain):** Open pull requests, contribute to a discussion, and/or contribute
- **[Subscribe to our bi-weekly Release Notes](https://6w1pwbss0py.typeform.com/to/KjZB1auB):** a twice/month email roundup of the coolest things going on in our orbit

View File

@@ -40,3 +40,8 @@ smooth for future contributors.
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
we do not want these to get in the way of getting good code into the codebase.
# 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.

View File

@@ -53,9 +53,9 @@ And we would write tests in:
- Integration tests: `libs/community/tests/integration_tests/chat_models/test_parrot_link.py`
And add documentation to:
- `docs/docs/integrations/chat/parrot_link.ipynb`
- `docs/docs/
## Partner Packages
Partner packages are in `libs/partners/*` and are installed by users with `pip install langchain-{partner}`, and exported members can be imported with code like

View File

@@ -1,56 +0,0 @@
---
sidebar_label: Package Versioning
sidebar_position: 4
---
# 📕 Package Versioning
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a maintainer and published to [PyPI](https://pypi.org/).
The different packages are versioned slightly differently.
## `langchain-core`
`langchain-core` is currently on version `0.1.x`.
As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:
- Breaking changes for any public interfaces NOT in `langchain_core.beta`
Patch version increases will occur for:
- Bug fixes
- New features
- Any changes to private interfaces
- Any changes to `langchain_core.beta`
## `langchain`
`langchain` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase. Any changes to public interfaces are nearly always done in a backwards compatible way and will be communicated ahead of time when they are not backwards compatible.
We are targeting January 2024 for a release of `langchain` v0.1, at which point `langchain` will adopt the same versioning policy as `langchain-core`.
## `langchain-community`
`langchain-community` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
## `langchain-experimental`
`langchain-experimental` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
## Partner Packages
Partner packages are versioned independently.
# 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.

View File

@@ -10,6 +10,16 @@
"Example of how to use LCEL to write Python code."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0653c7c7",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain-experimental langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -17,12 +27,12 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import (\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import (\n",
" ChatPromptTemplate,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_experimental.utilities import PythonREPL"
"from langchain_experimental.utilities import PythonREPL\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -12,6 +12,16 @@
"One especially useful technique is to use embeddings to route a query to the most relevant prompt. Here's a very simple example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b793a0aa",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -19,12 +29,11 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.utils.math import cosine_similarity\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",

View File

@@ -10,6 +10,16 @@
"This shows how to add memory to an arbitrary chain. Right now, you can use the memory classes but need to hook it up manually"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18753dee",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -20,9 +30,9 @@
"from operator import itemgetter\n",
"\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_messages(\n",

View File

@@ -10,6 +10,16 @@
"This shows how to add in moderation (or other safeguards) around your LLM application."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6acf3505",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 20,
@@ -18,8 +28,8 @@
"outputs": [],
"source": [
"from langchain.chains import OpenAIModerationChain\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.llms import OpenAI"
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import OpenAI"
]
},
{

View File

@@ -19,6 +19,14 @@
"Runnables can easily be used to string together multiple Chains"
]
},
{
"cell_type": "raw",
"id": "0f316b5c",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 4,
@@ -39,9 +47,9 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\"what is the city {person} is from?\")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",

View File

@@ -35,6 +35,14 @@
"Note, you can mix and match PromptTemplate/ChatPromptTemplates and LLMs/ChatModels as you like here."
]
},
{
"cell_type": "raw",
"id": "ef79a54b",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -42,8 +50,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
"model = ChatOpenAI()\n",

View File

@@ -12,6 +12,16 @@
"With LCEL, it's easy to add custom functionality for managing the size of prompts within your chain or agent. Let's look at simple agent example that can search Wikipedia for information."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1846587d",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai wikipedia"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -19,19 +29,17 @@
"metadata": {},
"outputs": [],
"source": [
"# !pip install langchain wikipedia\n",
"\n",
"from operator import itemgetter\n",
"\n",
"from langchain.agents import AgentExecutor, load_tools\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.prompts.chat import ChatPromptValue\n",
"from langchain.tools import WikipediaQueryRun\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_community.utilities import WikipediaAPIWrapper"
"from langchain_community.utilities import WikipediaAPIWrapper\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install langchain openai faiss-cpu tiktoken"
"%pip install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken"
]
},
{
@@ -38,12 +38,11 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough"
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings"
]
},
{

View File

@@ -19,6 +19,14 @@
"We can replicate our SQLDatabaseChain with Runnables."
]
},
{
"cell_type": "raw",
"id": "b3121aa8",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -26,7 +34,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
@@ -93,9 +101,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"\n",

View File

@@ -17,7 +17,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install duckduckgo-search"
"%pip install --upgrade --quiet langchain langchain-openai duckduckgo-search"
]
},
{
@@ -27,10 +27,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -30,30 +30,38 @@
"The most basic and common use case is chaining a prompt template and a model together. To see how this works, let's create a chain that takes a topic and generates a joke:"
]
},
{
"cell_type": "raw",
"id": "278b0027",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain-core langchain-community langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 1,
"id": "466b65b3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why did the ice cream go to therapy?\\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\""
"\"Why don't ice creams ever get invited to parties?\\n\\nBecause they always drip when things heat up!\""
]
},
"execution_count": 7,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
"model = ChatOpenAI()\n",
"model = ChatOpenAI(model=\"gpt-4\")\n",
"output_parser = StrOutputParser()\n",
"\n",
"chain = prompt | model | output_parser\n",
@@ -89,7 +97,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"id": "b8656990",
"metadata": {},
"outputs": [
@@ -99,7 +107,7 @@
"ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])"
]
},
"execution_count": 8,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -111,7 +119,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"id": "e6034488",
"metadata": {},
"outputs": [
@@ -121,7 +129,7 @@
"[HumanMessage(content='tell me a short joke about ice cream')]"
]
},
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -132,7 +140,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 4,
"id": "60565463",
"metadata": {},
"outputs": [
@@ -142,7 +150,7 @@
"'Human: tell me a short joke about ice cream'"
]
},
"execution_count": 10,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -163,17 +171,17 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 5,
"id": "33cf5f72",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Why did the ice cream go to therapy? \\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\")"
"AIMessage(content=\"Why don't ice creams ever get invited to parties?\\n\\nBecause they always bring a melt down!\")"
]
},
"execution_count": 11,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -193,23 +201,23 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 6,
"id": "8feb05da",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nRobot: Why did the ice cream go to therapy? Because it had a rocky road.'"
"'\\n\\nRobot: Why did the ice cream truck break down? Because it had a meltdown!'"
]
},
"execution_count": 12,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.llms import OpenAI\n",
"from langchain_openai.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm.invoke(prompt_value)"
@@ -324,12 +332,12 @@
"# Requires:\n",
"# pip install langchain docarray tiktoken\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"from langchain_openai.chat_models import ChatOpenAI\n",
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_texts(\n",
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
@@ -486,7 +494,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -12,6 +12,16 @@
"Suppose we have a simple prompt + model sequence:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5dad8b5",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -19,10 +29,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import RunnablePassthrough"
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -34,6 +34,16 @@
"With LLMs we can configure things like temperature"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40ed76a2",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 35,
@@ -42,8 +52,8 @@
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(temperature=0).configurable_fields(\n",
" temperature=ConfigurableField(\n",
@@ -264,8 +274,9 @@
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain_core.runnables import ConfigurableField"
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_openai import ChatOpenAI"
]
},
{

View File

@@ -0,0 +1,136 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b45110ef",
"metadata": {},
"source": [
"# Create a runnable with the `@chain` decorator\n",
"\n",
"You can also turn an arbitrary function into a chain by adding a `@chain` decorator. This is functionaly equivalent to wrapping in a [`RunnableLambda`](./functions).\n",
"\n",
"This will have the benefit of improved observability by tracing your chain correctly. Any calls to runnables inside this function will be traced as nested childen.\n",
"\n",
"It will also allow you to use this as any other runnable, compose it in chain, etc.\n",
"\n",
"Let's take a look at this in action!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23b2b564",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d9370420",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import chain\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b7f74f7e",
"metadata": {},
"outputs": [],
"source": [
"prompt1 = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
"prompt2 = ChatPromptTemplate.from_template(\"What is the subject of this joke: {joke}\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2b0365c4",
"metadata": {},
"outputs": [],
"source": [
"@chain\n",
"def custom_chain(text):\n",
" prompt_val1 = prompt1.invoke({\"topic\": text})\n",
" output1 = ChatOpenAI().invoke(prompt_val1)\n",
" parsed_output1 = StrOutputParser().invoke(output1)\n",
" chain2 = prompt2 | ChatOpenAI() | StrOutputParser()\n",
" return chain2.invoke({\"joke\": parsed_output1})"
]
},
{
"cell_type": "markdown",
"id": "904d6872",
"metadata": {},
"source": [
"`custom_chain` is now a runnable, meaning you will need to use `invoke`"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6448bdd3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The subject of this joke is bears.'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"custom_chain.invoke(\"bears\")"
]
},
{
"cell_type": "markdown",
"id": "aa767ea9",
"metadata": {},
"source": [
"If you check out your LangSmith traces, you should see a `custom_chain` trace in there, with the calls to OpenAI nested underneath"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1245bdc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -24,6 +24,16 @@
"IMPORTANT: By default, a lot of the LLM wrappers catch errors and retry. You will most likely want to turn those off when working with fallbacks. Otherwise the first wrapper will keep on retrying and not failing."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ebb61b1f",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -31,7 +41,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatAnthropic, ChatOpenAI"
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_openai import ChatOpenAI"
]
},
{
@@ -141,7 +152,7 @@
}
],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
@@ -241,7 +252,7 @@
"source": [
"# Now lets create a chain with the normal OpenAI model\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"prompt_template = \"\"\"Instructions: You should always include a compliment in your response.\n",
"\n",
@@ -291,7 +302,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -24,6 +24,14 @@
"Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single input and unpacks it into multiple argument."
]
},
{
"cell_type": "raw",
"id": "9a5fe916",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -33,9 +41,9 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"def length_function(text):\n",
@@ -190,7 +198,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
"version": "3.10.1"
}
},
"nbformat": 4,

View File

@@ -24,6 +24,15 @@
"## Sync version"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -33,8 +42,8 @@
"from typing import Iterator, List\n",
"\n",
"from langchain.prompts.chat import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",

View File

@@ -0,0 +1,234 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "8c5eb99a",
"metadata": {},
"source": [
"# Inspect your runnables\n",
"\n",
"Once you create a runnable with LCEL, you may often want to inspect it to get a better sense for what is going on. This notebook covers some methods for doing so.\n",
"\n",
"First, let's create an example LCEL. We will create one that does retrieval"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d816e954",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a88f4b24",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "139228c2",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"model = ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "70e3fe93",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "849e3c42",
"metadata": {},
"source": [
"## Get a graph\n",
"\n",
"You can get a graph of the runnable"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2448b6c2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Graph(nodes={'7308e6063c6d40818c5a0cc1cc7444f2': Node(id='7308e6063c6d40818c5a0cc1cc7444f2', data=<class 'pydantic.main.RunnableParallel<context,question>Input'>), '292bbd8021d44ec3a31fbe724d9002c1': Node(id='292bbd8021d44ec3a31fbe724d9002c1', data=<class 'pydantic.main.RunnableParallel<context,question>Output'>), '9212f219cf05488f95229c56ea02b192': Node(id='9212f219cf05488f95229c56ea02b192', data=VectorStoreRetriever(tags=['FAISS', 'OpenAIEmbeddings'], vectorstore=<langchain_community.vectorstores.faiss.FAISS object at 0x117334f70>)), 'c7a8e65fa5cf44b99dbe7d1d6e36886f': Node(id='c7a8e65fa5cf44b99dbe7d1d6e36886f', data=RunnablePassthrough()), '818b9bfd40a341008373d5b9f9d0784b': Node(id='818b9bfd40a341008373d5b9f9d0784b', data=ChatPromptTemplate(input_variables=['context', 'question'], messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template='Answer the question based only on the following context:\\n{context}\\n\\nQuestion: {question}\\n'))])), 'b9f1d3ddfa6b4334a16ea439df22b11e': Node(id='b9f1d3ddfa6b4334a16ea439df22b11e', data=ChatOpenAI(client=<class 'openai.api_resources.chat_completion.ChatCompletion'>, openai_api_key='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', openai_proxy='')), '2bf84f6355c44731848345ca7d0f8ab9': Node(id='2bf84f6355c44731848345ca7d0f8ab9', data=StrOutputParser()), '1aeb2da5da5a43bb8771d3f338a473a2': Node(id='1aeb2da5da5a43bb8771d3f338a473a2', data=<class 'pydantic.main.StrOutputParserOutput'>)}, edges=[Edge(source='7308e6063c6d40818c5a0cc1cc7444f2', target='9212f219cf05488f95229c56ea02b192'), Edge(source='9212f219cf05488f95229c56ea02b192', target='292bbd8021d44ec3a31fbe724d9002c1'), Edge(source='7308e6063c6d40818c5a0cc1cc7444f2', target='c7a8e65fa5cf44b99dbe7d1d6e36886f'), Edge(source='c7a8e65fa5cf44b99dbe7d1d6e36886f', target='292bbd8021d44ec3a31fbe724d9002c1'), Edge(source='292bbd8021d44ec3a31fbe724d9002c1', target='818b9bfd40a341008373d5b9f9d0784b'), Edge(source='818b9bfd40a341008373d5b9f9d0784b', target='b9f1d3ddfa6b4334a16ea439df22b11e'), Edge(source='2bf84f6355c44731848345ca7d0f8ab9', target='1aeb2da5da5a43bb8771d3f338a473a2'), Edge(source='b9f1d3ddfa6b4334a16ea439df22b11e', target='2bf84f6355c44731848345ca7d0f8ab9')])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.get_graph()"
]
},
{
"cell_type": "markdown",
"id": "065b02fb",
"metadata": {},
"source": [
"## Print a graph\n",
"\n",
"While that is not super legible, you can print it to get a display that's easier to understand"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d5ab1515",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" +---------------------------------+ \n",
" | Parallel<context,question>Input | \n",
" +---------------------------------+ \n",
" ** ** \n",
" *** *** \n",
" ** ** \n",
"+----------------------+ +-------------+ \n",
"| VectorStoreRetriever | | Passthrough | \n",
"+----------------------+ +-------------+ \n",
" ** ** \n",
" *** *** \n",
" ** ** \n",
" +----------------------------------+ \n",
" | Parallel<context,question>Output | \n",
" +----------------------------------+ \n",
" * \n",
" * \n",
" * \n",
" +--------------------+ \n",
" | ChatPromptTemplate | \n",
" +--------------------+ \n",
" * \n",
" * \n",
" * \n",
" +------------+ \n",
" | ChatOpenAI | \n",
" +------------+ \n",
" * \n",
" * \n",
" * \n",
" +-----------------+ \n",
" | StrOutputParser | \n",
" +-----------------+ \n",
" * \n",
" * \n",
" * \n",
" +-----------------------+ \n",
" | StrOutputParserOutput | \n",
" +-----------------------+ \n"
]
}
],
"source": [
"chain.get_graph().print_ascii()"
]
},
{
"cell_type": "markdown",
"id": "2babf851",
"metadata": {},
"source": [
"## Get the prompts\n",
"\n",
"An important part of every chain is the prompts that are used. You can get the prompts present in the chain:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "34b2118d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ChatPromptTemplate(input_variables=['context', 'question'], messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template='Answer the question based only on the following context:\\n{context}\\n\\nQuestion: {question}\\n'))])]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.get_prompts()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ed965769",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,7 +1,7 @@
{
"cells": [
{
"cell_type": "markdown",
"cell_type": "raw",
"id": "e2596041-9b76-4e74-836f-e6235086bbf0",
"metadata": {},
"source": [
@@ -26,6 +26,16 @@
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2627ffd7",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 3,
@@ -44,12 +54,11 @@
}
],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
@@ -128,12 +137,11 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
@@ -192,9 +200,9 @@
}
],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableParallel\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"joke_chain = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",

View File

@@ -41,7 +41,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install -U langchain redis anthropic"
"%pip install --upgrade --quiet langchain redis anthropic"
]
},
{
@@ -131,10 +131,10 @@
"source": [
"from typing import Optional\n",
"\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_community.chat_message_histories import RedisChatMessageHistory\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory"
]
},

View File

@@ -28,6 +28,16 @@
"See the example below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e169b952",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 11,
@@ -97,12 +107,11 @@
}
],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",

Some files were not shown because too many files have changed in this diff Show More