Compare commits

...

420 Commits

Author SHA1 Message Date
Eugene Yurtsev
ad40f44a59 x 2023-08-14 13:45:49 -04:00
Eugene Yurtsev
8bc4649ad1 x 2023-08-14 13:44:55 -04:00
Eugene Yurtsev
c1fc61cfa0 x 2023-08-14 13:42:53 -04:00
Eugene Yurtsev
5ed303eb98 x 2023-08-14 13:42:33 -04:00
Eugene Yurtsev
57a73d7ab0 x 2023-08-14 13:42:16 -04:00
Eugene Yurtsev
4f1feaca83 Wrap OpenAPI features in conditionals for pydantic v2 compatibility (#9205)
Wrap OpenAPI in conditionals for pydantic v2 compatibility.
2023-08-14 13:40:58 -04:00
Glauco Custódio
89be10f6b4 add ttl to RedisCache (#9068)
Add `ttl` (time to live) to `RedisCache`
2023-08-14 12:59:18 -04:00
Eugene Yurtsev
04bc5f3b18 Conditionally add pydantic v1 to namespace (#9202)
Conditionally add pydantic_v1 to namespace.
2023-08-14 11:26:45 -04:00
shibuiwilliam
feec422bf7 fix logging to logger (#9192)
# What
- fix logging to logger
2023-08-14 08:21:09 -07:00
Bagatur
5935767056 bump lc 246, lce 9 (#9207) 2023-08-14 08:14:37 -07:00
Bagatur
b5a57acf6c lite llm lint (#9208) 2023-08-14 11:03:06 -04:00
Krish Dholakia
49f1d8477c Adding ChatLiteLLM model (#9020)
Description: Adding a langchain integration for the LiteLLM library 
Tag maintainer: @hwchase17, @baskaryan
Twitter handle: @krrish_dh / @Berri_AI

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 07:43:40 -07:00
Emmanuel Gautier
f11e5442d6 docs: update LlamaCpp input args (#9173)
This PR only updates the LlamaCpp args documentation. The input arg has
been flattened.
2023-08-14 07:42:03 -07:00
Eugene Yurtsev
72f9150a50 Update 2 more pydantic imports (#9203)
Update two more pydantic imports to use v1 explicitly
2023-08-14 10:11:30 -04:00
Eugene Yurtsev
c172f972ea Create pydantic v1 namespace, add partial compatibility for pydantic v2 (#9123)
First of a few PRs to add full compatibility to both pydantic v1 and v2.

This PR creates pydantic v1 namespace and adds it to sys.modules.

Upcoming changes: 
1. Handle `openapi-schema-pydantic = "^1.2"` and dependent chains/tools
2. bump dependencies to versions that are cross compatible for pydantic
or remove them (see below)
3. Add tests to github workflows to test with pydantic v1 and v2

**Dependencies**

From a quick look (could be wrong since was done manually)

**dependencies pinning pydantic below 2** (some of these can be bumped
to newer versions are provide cross-compatible code)
anthropic
bentoml
confection
fastapi
langsmith
octoai-sdk
openapi-schema-pydantic
qdrant-client
spacy
steamship
thinc
zep-python

Unpinned

marqo (*)
nomic (*)
xinference(*)
2023-08-14 09:37:32 -04:00
Evan Schultz
8189dea0d8 Fixes typing issues in BaseOpenAI (#9183)
## Description: 

Sets default values for `client` and `model` attributes in the
BaseOpenAI class to fix Pylance Typing issue.

  - Issue: #9182.
  - Twitter handle: @evanmschultz
2023-08-13 23:03:28 -07:00
Massimiliano Pronesti
d95eeaedbe feat(llms): support vLLM's OpenAI-compatible server (#9179)
This PR aims at supporting [vLLM's OpenAI-compatible server
feature](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html#openai-compatible-server),
i.e. allowing to call vLLM's LLMs like if they were OpenAI's.

I've also udpated the related notebook providing an example usage. At
the moment, vLLM only supports the `Completion` API.
2023-08-13 23:03:05 -07:00
Michael Goin
621da3c164 Adds DeepSparse as an LLM (#9184)
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.

Twitter handles: @mgoin_ @neuralmagic


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-13 22:35:58 -07:00
Bagatur
0fa69d8988 Bagatur/zep python 1.0 (#9186)
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
2023-08-13 21:52:53 -07:00
Eugene Yurtsev
9b24f0b067 Enhance deprecation decorator to modify docs with sphinx directives (#9069)
Enhance deprecation decorator
2023-08-13 15:35:01 -04:00
Harrison Chase
8d69dacdf3 multiple retreival in parralel (#9174) 2023-08-13 10:03:54 -07:00
Bagatur
cdfe2c96c5 bump 263 (#9156) 2023-08-12 12:36:44 -07:00
Leonid Ganeline
19f504790e docstrings: document_loaders consitency 2 (#9148)
This is Part 2. See #9139 (Part 1).
2023-08-11 16:25:40 -07:00
Harrison Chase
1b58460fe3 update keys for chain (#5164)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 16:25:13 -07:00
Eugene Yurtsev
aca8cb5fba API Reference: Do not document private modules (#9042)
This PR prevents documentation of private modules in the API reference
2023-08-11 15:58:14 -07:00
胡亮
7edf4ca396 Support multi gpu inference for HuggingFaceEmbeddings (#4732)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 15:55:44 -07:00
UmerHA
8aab39e3ce Added SmartGPT workflow (issue #4463) (#4816)
# Added SmartGPT workflow by providing SmartLLM wrapper around LLMs
Edit:
As @hwchase17 suggested, this should be a chain, not an LLM. I have
adapted the PR.

It is used like this:
```
from langchain.prompts import PromptTemplate
from langchain.chains import SmartLLMChain
from langchain.chat_models import ChatOpenAI

hard_question = "I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?"
hard_question_prompt = PromptTemplate.from_template(hard_question)

llm = ChatOpenAI(model_name="gpt-4")
prompt = PromptTemplate.from_template(hard_question)
chain = SmartLLMChain(llm=llm, prompt=prompt, verbose=True)

chain.run({})
```


Original text: 
Added SmartLLM wrapper around LLMs to allow for SmartGPT workflow (as in
https://youtu.be/wVzuvf9D9BU). SmartLLM can be used wherever LLM can be
used. E.g:

```
smart_llm = SmartLLM(llm=OpenAI())
smart_llm("What would be a good company name for a company that makes colorful socks?")
```
or
```
smart_llm = SmartLLM(llm=OpenAI())
prompt = PromptTemplate(
    input_variables=["product"],
    template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=smart_llm, prompt=prompt)
chain.run("colorful socks")
```

SmartGPT consists of 3 steps:

1. Ideate - generate n possible solutions ("ideas") to user prompt
2. Critique - find flaws in every idea & select best one
3. Resolve - improve upon best idea & return it

Fixes #4463

## Who can review?

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:

- @hwchase17
- @agola11

Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 15:44:27 -07:00
Lucas Pickup
1d3735a84c Ensure deployment_id is set to provided deployment, required for Azure OpenAI. (#5002)
# Ensure deployment_id is set to provided deployment, required for Azure
OpenAI.
---------

Co-authored-by: Lucas Pickup <lupickup@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 15:43:01 -07:00
Bagatur
45741bcc1b Bagatur/vectara nit (#9140)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
2023-08-11 15:32:03 -07:00
Dominick DEV
9b64932e55 Add LangChain utility for real-time crypto exchange prices (#4501)
This commit adds the LangChain utility which allows for the real-time
retrieval of cryptocurrency exchange prices. With LangChain, users can
easily access up-to-date pricing information by running the command
".run(from_currency, to_currency)". This new feature provides a
convenient way to stay informed on the latest exchange rates and make
informed decisions when trading crypto.


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 14:45:06 -07:00
Joshua Sundance Bailey
eaa505fb09 Create ArcGISLoader & example notebook (#8873)
- Description: Adds the ArcGISLoader class to
`langchain.document_loaders`
  - Allows users to load data from ArcGIS Online, Portal, and similar
- Users can authenticate with `arcgis.gis.GIS` or retrieve public data
anonymously
  - Uses the `arcgis.features.FeatureLayer` class to retrieve the data
  - Defines the most relevant keywords arguments and accepts `**kwargs`
- Dependencies: Using this class requires `arcgis` and, optionally,
`bs4.BeautifulSoup`.

Tagging maintainers:
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 14:33:40 -07:00
Bagatur
e21152358a fix (#9145) 2023-08-11 13:58:23 -07:00
Leonid Ganeline
edb585228d docstrings: document_loaders consitency (#9139)
Formatted docstrings from different formats to consistent format, lile:
>Loads processed docs from Docugami.
"Load from `Docugami`."

>Loader that uses Unstructured to load HTML files.
"Load `HTML` files using `Unstructured`."

>Load documents from a directory.
"Load from a directory."
 
- `Load` - no `Loads`
- DocumentLoader always loads Documents, so no more
"documents/docs/texts/ etc"
- integrated systems and APIs enclosed in backticks,
2023-08-11 13:09:31 -07:00
Aashish Saini
0aabded97f Updating interactive walkthrough link in index.md to resolve 404 error (#9063)
Updated interactive walkthrough link in index.md to resolve 404 error.
Also, expressing deep gratitude to LangChain library developers for
their exceptional efforts 🥇 .

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 13:08:56 -07:00
Markus Schiffer
00bf472265 Fix for SVM retriever discarding document metadata (#9141)
As stated in the title the SVM retriever discarded the metadata of
passed in docs. This code fixes that. I also added one unit test that
should test that.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 13:08:17 -07:00
Bagatur
bace17e0aa rm integration deps (#9142) 2023-08-11 12:43:08 -07:00
Eugene Yurtsev
44bc89b7bf Support a few list like operations on ChatPromptTemplate (#9077)
Make it easier to work with chat prompt template
2023-08-11 14:49:51 -04:00
Hai The Dude
e4418d1b7e Added new use case docs for Web Scraping, Chromium loader, BS4 transformer (#8732)
- Description: Added a new use case category called "Web Scraping", and
a tutorial to scrape websites using OpenAI Functions Extraction chain to
the docs.
  - Tag maintainer:@baskaryan @hwchase17 ,
- Twitter handle: https://www.linkedin.com/in/haiphunghiem/ (I'm on
LinkedIn mostly)

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-11 11:46:59 -07:00
sseide
6cb763507c add basic support for redis cluster server (#9128)
This change updates the central utility class to recognize a Redis
cluster server after connection and returns an new cluster aware Redis
client. The "normal" Redis client would not be able to talk to a cluster
node because keys might be stored on other shards of the Redis cluster
and therefor not readable or writable.

With this patch clients do not need to know what Redis server it is,
they just connect though the same API calls for standalone and cluster
server.

There are no dependencies added due to this MR.

Remark - with current redis-py client library (4.6.0) a cluster cannot
be used as VectorStore. It can be used for other use-cases. There is a
bug / missing feature(?) in the Redis client breaking the VectorStore
implementation. I opened an issue at the client library too
(redis/redis-py#2888) to fix this. As soon as this is fixed in
`redis-py` library it should be usable there too.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 11:37:44 -07:00
David Duong
6d03f8b5d8 Add serialisable support for Replicate (#8525) 2023-08-11 11:35:21 -07:00
niklub
16af5f8690 Add LabelStudio integration (#8880)
This PR introduces [Label Studio](https://labelstud.io/) integration
with LangChain via `LabelStudioCallbackHandler`:

- sending data to the Label Studio instance
- labeling dataset for supervised LLM finetuning
- rating model responses
- tracking and displaying chat history
- support for custom data labeling workflow

### Example

```
chat_llm = ChatOpenAI(callbacks=[LabelStudioCallbackHandler(mode="chat")])
chat_llm([
    SystemMessage(content="Always use emojis in your responses."),
        HumanMessage(content="Hey AI, how's your day going?"),
    AIMessage(content="🤖 I don't have feelings, but I'm running smoothly! How can I help you today?"),
        HumanMessage(content="I'm feeling a bit down. Any advice?"),
    AIMessage(content="🤗 I'm sorry to hear that. Remember, it's okay to seek help or talk to someone if you need to. 💬"),
        HumanMessage(content="Can you tell me a joke to lighten the mood?"),
    AIMessage(content="Of course! 🎭 Why did the scarecrow win an award? Because he was outstanding in his field! 🌾"),
        HumanMessage(content="Haha, that was a good one! Thanks for cheering me up."),
    AIMessage(content="Always here to help! 😊 If you need anything else, just let me know."),
        HumanMessage(content="Will do! By the way, can you recommend a good movie?"),
])
```

<img width="906" alt="image"
src="https://github.com/langchain-ai/langchain/assets/6087484/0a1cf559-0bd3-4250-ad96-6e71dbb1d2f3">


### Dependencies
- [label-studio](https://pypi.org/project/label-studio/)
- [label-studio-sdk](https://pypi.org/project/label-studio-sdk/)

https://twitter.com/labelstudiohq

---------

Co-authored-by: nik <nik@heartex.net>
2023-08-11 11:24:10 -07:00
Bagatur
8cb2594562 Bagatur/dingo (#9079)
Co-authored-by: gary <1625721671@qq.com>
2023-08-11 10:54:45 -07:00
Jacques Arnoux
926c64da60 Fix web research retriever for unknown links in results (#9115)
Fixes an issue with web research retriever for unknown links in results.
This is currently making the retrieve crash sometimes.

@rlancemartin
2023-08-11 10:50:37 -07:00
Manuel Soria
31cfc00845 Code understanding use case (#8801)
Code understanding docs

---------

Co-authored-by: Manuel Soria <manuel.soria@greyscaleai.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-11 10:16:05 -07:00
Alvaro Bartolome
f7ae183f40 ArgillaCallbackHandler to properly use default values for api_url and api_key (#9113)
As of the recent PR at #9043, after some testing we've realised that the
default values were not being used for `api_key` and `api_url`. Besides
that, the default for `api_key` was set to `argilla.apikey`, but since
the default values are intended for people using the Argilla Quickstart
(easy to run and setup), the defaults should be instead `owner.apikey`
if using Argilla 1.11.0 or higher, or `admin.apikey` if using a lower
version of Argilla.

Additionally, we've removed the f-string replacements from the
docstrings.

---------

Co-authored-by: Gabriel Martin <gabriel@argilla.io>
2023-08-11 09:37:06 -07:00
Bagatur
0e5d09d0da dalle nb fix (#9125) 2023-08-11 08:21:48 -07:00
Francisco Ingham
9249d305af tagging docs refactor (#8722)
refactor of tagging use case according to new format

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-11 08:06:07 -07:00
Bagatur
01ef786e7e bump 262 (#9108) 2023-08-11 01:29:07 -07:00
Bagatur
3b754b5461 Bagatur/filter metadata (#9015)
Co-authored-by: Matt Robinson <mrobinson@unstructuredai.io>
2023-08-11 01:10:00 -07:00
Aayush Shah
a429145420 Minor grammatical error (#9102)
Have corrected a grammatical error in:
https://python.langchain.com/docs/modules/model_io/models/llms/ document
😄
2023-08-11 01:01:40 -07:00
Kim Minjong
7f0e847c13 Update pydantic format instruction prompt (#9095)
- remove unopened bracket
2023-08-11 00:22:13 -07:00
Ashutosh Sanzgiri
991b448dfc minor edits (#9093)
Description:

Minor edit to PR#845

Thanks!
2023-08-10 23:40:36 -07:00
Bagatur
3ab4e21579 fix json tool (#9096) 2023-08-10 23:39:25 -07:00
Sam Groenjes
2184e3a400 Fix IndexError when input_list is Empty in prep_prompts (#5769)
This MR corrects the IndexError arising in prep_prompts method when no
documents are returned from a similarity search.

Fixes #1733 
Co-authored-by: Sam Groenjes <sam.groenjes@darkwolfsolutions.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 22:50:39 -07:00
Chenyu Zhao
c0acbdca1b Update Fireworks model names (#9085) 2023-08-10 19:23:42 -07:00
Charles Lanahan
a2588d6c57 Update openai embeddings notebook with correct embedding model in section 2 (#5831)
In second section it looks like a copy/paste from the first section and
doesn't include the specific embedding model mentioned in the example so
I added it for clarity.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 19:02:10 -07:00
Bagatur
b80e3825a6 Bagatur/pinecone by vector (#9087)
Co-authored-by: joseph <joe@outverse.com>
2023-08-10 18:28:55 -07:00
Nikhil Kumar
6abb2c2c08 Buffer method of ConversationTokenBufferMemory should be able to return messages as string (#7057)
### Description:
`ConversationBufferTokenMemory` should have a simple way of returning
the conversation messages as a string.

Previously to complete this, you would only have the option to return
memory as an array through the buffer method and call
`get_buffer_string` by importing it from `langchain.schema`, or use the
`load_memory_variables` method and key into `self.memory_key`.

### Maintainer
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 18:17:22 -07:00
William FH
57dd4daa9a Add string example mapper (#9086)
Now that we accept any runnable or arbitrary function to evaluate, we
don't always look up the input keys. If an evaluator requires
references, we should try to infer if there's one key present. We only
have delayed validation here but it's better than nothing
2023-08-10 17:07:02 -07:00
Josh Phillips
5fc07fa524 change id column type to uuid to match function (#7456)
The table creation process in these examples commands do not match what
the recently updated functions in these example commands is looking for.
This change updates the type in the table creation command.
Issue Number for my report of the doc problem #7446
@rlancemartin and @eyurtsev I believe this is your area
Twitter: @j1philli

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 16:57:19 -07:00
Bidhan Roy
02430e25b6 BagelDB (bageldb.ai), VectorStore integration. (#8971)
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.

  - **Issue**: Not applicable.
  - **Dependencies**: `betabageldb` PyPi package.
  - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
  - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
  
We ran `make format`, `make lint` and `make test` locally.

Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

---------

Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
2023-08-10 16:48:36 -07:00
DJ Atha
ee52482db8 Fix issue 7445 (#7635)
Description: updated BabyAGI examples and experimental to append the
iteration to the result id to fix error storing data to vectorstore.
Issue: 7445
Dependencies: no
Tag maintainer: @eyurtsev
This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didn't want to over complicate the example.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 16:29:31 -07:00
Harrison Chase
bb6fbf4c71 openai adapters (#8988)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-10 16:08:50 -07:00
Harrison Chase
45f0f9460a add async for python repl (#9080) 2023-08-10 16:07:06 -07:00
Neil Murphy
105c787e5a Add convenience methods to ConversationBufferMemory and ConversationB… (#8981)
Add convenience methods to `ConversationBufferMemory` and
`ConversationBufferWindowMemory` to get buffer either as messages or as
string.

Helps when `return_messages` is set to `True` but you want access to the
messages as a string, and vice versa.

@hwchase17

One use case: Using a `MultiPromptRouter` where `default_chain` is
`ConversationChain`, but destination chains are `LLMChains`. Injecting
chat memory into prompts for destination chains prints a stringified
`List[Messages]` in the prompt, which creates a lot of noise. These
convenience methods allow caller to choose either as needed.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 15:45:30 -07:00
Zend
6221eb5974 Recursive url loader w/ test (#8813)
Description: Due to some issue on the test, this is a separate PR with
the test for #8502

Tag maintainer: @rlancemartin

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 14:50:31 -07:00
Junlin Zhou
cb5fb751e9 Enhance regex of structured_chat agents' output parser (#8965)
Current regex only extracts agent's action between '` ``` ``` `', this
commit will extract action between both '` ```json ``` `' and '` ``` ```
`'

This is very similar to #7511 
Co-authored-by: zjl <junlinzhou@yzbigdata.com>
2023-08-10 14:26:07 -07:00
Bagatur
16bd328aab Use Embeddings in pinecone (#8982)
cc @eyurtsev @olivier-lacroix @jamescalam 

redo of #2741
2023-08-10 14:22:41 -07:00
Piyush Jain
8eea46ed0e Bedrock embeddings async methods (#9024)
## Description
This PR adds the `aembed_query` and `aembed_documents` async methods for
improving the embeddings generation for large documents. The
implementation uses asyncio tasks and gather to achieve concurrency as
there is no bedrock async API in boto3.

### Maintainers
@agola11 
@aarora79  

### Open questions
To avoid throttling from the Bedrock API, should there be an option to
limit the concurrency of the calls?
2023-08-10 14:21:03 -07:00
Eugene Yurtsev
67ca187560 Fix incorrect code blocks in documentation (#9060)
Fixes incorrect code block syntax in doc strings.
2023-08-10 14:13:42 -07:00
Eugene Yurtsev
46f3428cb3 Fix more incorrect code blocks in doc strings (#9073)
Fix 2 more incorrect code blocks in strings
2023-08-10 13:49:15 -07:00
Nicolas
e3fb11bc10 docs: (Mendable Search) Fixes stuck when tabbing out issue (#9074)
This fixes Mendable not completing when tabbing out and fixes the
duplicate message issue as well.
2023-08-10 13:46:06 -07:00
Bagatur
1edead28b8 Add docs community page (#8992)
Co-authored-by: briannawolfson <brianna.wolfson@gmail.com>
2023-08-10 13:41:35 -07:00
Eugene Yurtsev
a5a4c53280 RedisStore: Update init and Documentation updates (#9044)
* Update Redis Store to support init from parameters
* Update notebook to show how to use redis store, and some fixes in
documentation
2023-08-10 15:30:29 -04:00
Bagatur
80b98812e1 Update README.md 2023-08-10 12:01:20 -07:00
Leonid Ganeline
fcbbddedae ArxivLoader fix for issue 9046 (#9061)
Fixed #9046 
Added ut-s for this fix.
 @eyurtsev
2023-08-10 14:59:39 -04:00
Mike Lambert
e94a5d753f Move from test to supported claude-instant-1 model (#9066)
Moves from "test" model to "claude-instant-1" model which is supported
and has actual capacity
2023-08-10 11:57:28 -07:00
Eugene Yurtsev
b7bc8ec87f Add excludes to FileSystemBlobLoader (#9064)
Add option to specify exclude patterns.

https://github.com/langchain-ai/langchain/discussions/9059
2023-08-10 14:56:58 -04:00
Eugene Yurtsev
6c70f491ba ChatPromptTemplate pending deprecation proposal (#9004)
Pending deprecations for ChatPromptTemplate proposals
2023-08-10 14:40:55 -04:00
Bagatur
f3f5853e9f update api ref exampels (#9065)
manually update for now
2023-08-10 11:28:24 -07:00
TRY-ER
2431eca700 Agent vector store tool doc (#9029)
I was initially confused weather to use create_vectorstore_agent or
create_vectorstore_router_agent due to lack of documentation so I
created a simple documentation for each of the function about their
different usecase.
Replace this comment with:
- Description: Added the doc_strings in create_vectorstore_agent and
create_vectorstore_router_agent to point out the difference in their
usecase
  - Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 11:13:12 -07:00
Bagatur
641cb80c9d update pr temp (#9062) 2023-08-10 11:10:06 -07:00
Alvaro Bartolome
08a0741d82 Update ArgillaCallbackHandler as of latest argilla release (#9043)
Hi @agola11, or whoever is reviewing this PR 😄 

## What's in this PR?

As of the latest Argilla release, we'll change and refactor some things
to make some workflows easier, one of those is how everything's pushed
to Argilla, so that now there's no need to call `push_to_argilla` over a
`FeedbackDataset` when either `push_to_argilla` is called for the first
time, or `from_argilla` is called; among others.

We also add some class variables to make sure those are easy to update
in case we update those internally in the future, also to make the
`warnings.warn` message lighter from the code view.

P.S. Regarding the Twitter/X mention feel free to do so at either
https://twitter.com/argilla_io or https://twitter.com/alvarobartt, or
both if applicable, otherwise, just the first Twitter/X handle.
2023-08-10 10:59:46 -07:00
Blake (Yung Cher Ho)
8d351bfc20 Takeoff integration (#9045)
## Description:
This PR adds the Titan Takeoff Server to the available LLMs in
LangChain.

Titan Takeoff is an inference server created by
[TitanML](https://www.titanml.co/) that allows you to deploy large
language models locally on your hardware in a single command. Most
generative model architectures are included, such as Falcon, Llama 2,
GPT2, T5 and many more.

Read more about Titan Takeoff here:
-
[Blog](https://medium.com/@TitanML/introducing-titan-takeoff-6c30e55a8e1e)
- [Docs](https://docs.titanml.co/docs/titan-takeoff/getting-started)

#### Testing
As Titan Takeoff runs locally on port 8000 by default, no network access
is needed. Responses are mocked for testing.

- [x] Make Lint
- [x] Make Format
- [x] Make Test

#### Dependencies
No new dependencies are introduced. However, users will need to install
the titan-iris package in their local environment and start the Titan
Takeoff inferencing server in order to use the Titan Takeoff
integration.

Thanks for your help and please let me know if you have any questions.

cc: @hwchase17 @baskaryan
2023-08-10 10:56:06 -07:00
Nuno Campos
3bdc273ab3 Implement .transform() in RunnablePassthrough() (#9032)
- This ensures passthrough doesnt break streaming
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 10:41:19 -07:00
Bagatur
206f809366 fix sched ci (more) (#9056) 2023-08-10 10:39:29 -07:00
Aashish Saini
8a320e55a0 Corrected grammatical errors and spelling mistakes in the index.mdx file. (#9026)
Expressing gratitude to the creator for crafting this remarkable
application. 🙌, Would like to Enhance grammar and spelling in the
documentation for a polished reader experience.

Your feedback is valuable as always 

@baskaryan , @hwchase17 , @eyurtsev
2023-08-10 10:17:09 -07:00
Bagatur
e5db8a16c0 Bagatur/fix sched (#9054) 2023-08-10 09:34:44 -07:00
Bagatur
e162fd418a fix sched ci (#9053) 2023-08-10 09:29:46 -07:00
Ismail Pelaseyed
abb1264edf Fix issue with Metaphor Search Tool throwing error on missing keys in API response (#9051)
- Description: Fixes an issue with Metaphor Search Tool throwing when
missing keys in API response.
  - Issue: #9048 
  - Tag maintainer: @hinthornw @hwchase17 
  - Twitter handle: @pelaseyed
2023-08-10 09:07:00 -07:00
Eugene Yurtsev
5e05ba2140 Add embeddings cache (#8976)
This PR adds the ability to temporarily cache or persistently store
embeddings. 

A notebook has been included showing how to set up the cache and how to
use it with a vectorstore.
2023-08-10 11:15:30 -04:00
Bagatur
6e14f9548b bump 261 (#9041) 2023-08-10 07:59:27 -07:00
Lance Martin
2380492c8e API use case (#8546)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 07:52:54 -07:00
Eugene Yurtsev
d21333d710 Add redis storage (#8980)
Add a redis implementation of a BaseStore
2023-08-10 10:48:35 -04:00
Luca Foppiano
dfb93dd2b5 Improved grobid documentation (#9025)
- Description: Improvement in the Grobid loader documentation, typos and
suggesting to use the docker image instead of installing Grobid in local
(the documentation was also limited to Mac, while docker allow running
in any platform)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @whitenoise
2023-08-10 10:47:22 -04:00
Hiroshige Umino
2c7297d243 Fix a broken code block display (#9034)
- Description: Fix a broken code block in this page:
https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/
- Issue: N/A
- Dependencies: None
- Tag maintainer: @baskaryan
- Twitter handle: yaotti
2023-08-10 10:39:01 -04:00
Bagatur
434a96415b make runnable dir (#9016)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-10 08:56:37 +01:00
Nuno Campos
c7a489ae0d Small improvements for tracer and debug output of runnables (#8683)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-10 07:24:12 +01:00
EricFan
618cf5241e Open file in UTF-8 encoding (#6919) (#8943)
FileCallbackHandler cannot handle some language, for example: Chinese. 
Open file using UTF-8 encoding can fix it.
@agola11
  
**Issue**: #6919 
**Dependencies**: NO dependencies,

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 17:54:21 -07:00
colegottdank
f4a47ec717 Add optional model kwargs to ChatAnthropic to allow overrides (#9013)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 17:34:00 -07:00
Piyush Jain
3b51817706 Updating port and ssl use in sample notebook (#8995)
## Description
This PR updates the sample notebook to use the default port (8182) and
the ssl for the Neptune database connection.
2023-08-09 17:08:48 -07:00
Kaizen
bbbd2b076f DirectoryLoader slicing (#8994)
DirectoryLoader can now return a random sample of files in a directory.
Parameters added are:
sample_size
randomize_sample
sample_seed


@rlancemartin, @eyurtsev

---------

Co-authored-by: Andrew Oseen <amovfx@protonmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 16:05:16 -07:00
IanRogers-101Ways
d248481f13 skip over empty google spreadsheets (#8974)
- Description: Allow GoogleDriveLoader to handle empty spreadsheets  
- Issue: Currently GoogleDriveLoader will crash if it tries to load a
spreadsheet with an empty sheet
  - Dependencies: n/a
  - Tag maintainer: @rlancemartin, @eyurtsev
2023-08-09 16:05:02 -07:00
Eugene Yurtsev
efa02ed768 Suppress divide by zero wranings for cosine similarity (#9006)
Suppress run time warnings for divide by zero as the downstream code
handles the scenario (handling inf and nan)
2023-08-09 15:56:51 -07:00
Leonid Ganeline
5454591b0a docstrings cleanup (#8993)
Added/Updated docstrings

 @baskaryan
2023-08-09 15:49:06 -07:00
Massimiliano Pronesti
c72da53c10 Add logprobs to SamplingParameters in vllm (#9010)
This PR aims at amending #8806 , that I opened a few days ago, adding
the extra `logprobs` parameter that I accidentally forgot
2023-08-09 15:48:29 -07:00
Bagatur
8dd071ad08 import airbyte loaders (#9009) 2023-08-09 14:51:15 -07:00
Bagatur
96d064e305 bump 260 (#9002) 2023-08-09 13:40:49 -07:00
Michael Shen
c2f46b2cdb Fixed wrong paper reference (#8970)
The ReAct reference references to MRKL paper. Corrected so that it
points to the actual ReAct paper #8964.
2023-08-09 16:17:46 -04:00
Nuno Campos
808248049d Implement a router for openai functions (#8589) 2023-08-09 21:17:04 +01:00
Eugene Yurtsev
a6e6e9bb86 Fix airbyte loader (#8998)
Fix airbyte loader

https://github.com/langchain-ai/langchain/issues/8996
2023-08-09 16:13:06 -04:00
William FH
90579021f8 Update Key Check (#8948)
In eval loop. It needn't be done unless you are creating the
corresponding evaluators
2023-08-09 12:33:00 -07:00
Jerzy Czopek
539672a7fd Feature/fix azureopenai model mappings (#8621)
This pull request aims to ensure that the `OpenAICallbackHandler` can
properly calculate the total cost for Azure OpenAI chat models. The
following changes have resolved this issue:

- The `model_name` has been added to the ChatResult llm_output. Without
this, the default values of `gpt-35-turbo` were applied. This was
causing the total cost for Azure OpenAI's GPT-4 to be significantly
inaccurate.
- A new parameter `model_version` has been added to `AzureChatOpenAI`.
Azure does not include the model version in the response. With the
addition of `model_name`, this is not a significant issue for GPT-4
models, but it's an issue for GPT-3.5-Turbo. Version 0301 (default) of
GPT-3.5-Turbo on Azure has a flat rate of 0.002 per 1k tokens for both
prompt and completion. However, version 0613 introduced a split in
pricing for prompt and completion tokens.
- The `OpenAICallbackHandler` implementation has been updated with the
proper model names, versions, and cost per 1k tokens.

Unit tests have been added to ensure the functionality works as
expected; the Azure ChatOpenAI notebook has been updated with examples.

Maintainers: @hwchase17, @baskaryan

Twitter handle: @jjczopek

---------

Co-authored-by: Jerzy Czopek <jerzy.czopek@avanade.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 10:56:15 -07:00
Bagatur
269f85b7b7 scheduled gha fix (#8977) 2023-08-09 09:44:25 -07:00
shibuiwilliam
3adb1e12ca make trajectory eval chain stricter and add unit tests (#8909)
- update trajectory eval logic to be stricter
- add tests to trajectory eval chain
2023-08-09 10:57:18 -04:00
Nuno Campos
b8df15cd64 Adds transform support for runnables (#8762)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 12:34:23 +01:00
Harrison Chase
4d72288487 async output parser (#8894)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-09 08:25:38 +01:00
Bagatur
3c6eccd701 bump 259 (#8951) 2023-08-09 00:07:47 -07:00
Harrison Chase
7de6a1b78e parent document retriever (#8941) 2023-08-08 22:39:08 -07:00
arjunbansal
a2681f950d add instructions on integrating Log10 (#8938)
- Description: Instruction for integration with Log10: an [open
source](https://github.com/log10-io/log10) proxiless LLM data management
and application development platform that lets you log, debug and tag
your Langchain calls
  - Tag maintainer: @baskaryan
  - Twitter handle: @log10io @coffeephoenix

Several examples showing the integration included
[here](https://github.com/log10-io/log10/tree/main/examples/logging) and
in the PR
2023-08-08 19:15:31 -07:00
Aarav Borthakur
3f64b8a761 Integrate Rockset as a chat history store (#8940)
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17

This PR passes linting and testing. 

I added a test for the integration and an example notebook showing its
use.
2023-08-08 18:54:07 -07:00
Bagatur
0a1be1d501 document lcel fallbacks (#8942) 2023-08-08 18:49:33 -07:00
William FH
e3056340da Add id in error in tracer (#8944) 2023-08-08 18:25:27 -07:00
Molly Cantillon
99b5a7226c Weaviate: adding auth example + fixing spelling in ReadME (#8939)
Added basic auth example to Weaviate notebook @baskaryan
2023-08-08 16:24:17 -07:00
Bagatur
95cf7de112 scheduled tests GHA (#8879)
Adding scheduled daily GHA that runs marked integration tests. To start
just marking some tests in test_openai
2023-08-08 14:55:25 -07:00
Joe Reuter
8f0cd91d57 Airbyte based loaders (#8586)
This PR adds 8 new loaders:
* `AirbyteCDKLoader` This reader can wrap and run all python-based
Airbyte source connectors.
* Separate loaders for the most commonly used APIs:
  * `AirbyteGongLoader`
  * `AirbyteHubspotLoader`
  * `AirbyteSalesforceLoader`
  * `AirbyteShopifyLoader`
  * `AirbyteStripeLoader`
  * `AirbyteTypeformLoader`
  * `AirbyteZendeskSupportLoader`

## Documentation and getting started
I added the basic shape of the config to the notebooks. This increases
the maintenance effort a bit, but I think it's worth it to make sure
people can get started quickly with these important connectors. This is
also why I linked the spec and the documentation page in the readme as
these two contain all the information to configure a source correctly
(e.g. it won't suggest using oauth if that's avoidable even if the
connector supports it).

## Document generation
The "documents" produced by these loaders won't have a text part
(instead, all the record fields are put into the metadata). If a text is
required by the use case, the caller needs to do custom transformation
suitable for their use case.

## Incremental sync
All loaders support incremental syncs if the underlying streams support
it. By storing the `last_state` from the reader instance away and
passing it in when loading, it will only load updated records.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 14:49:25 -07:00
Eugene Yurtsev
15f650ae8c Add base storage interface, 2 implementations and utility encoder (#8895)
This PR defines an abstract interface for key value stores.

It provides 2 implementations: 
1. Local File System
2. In memory -- used to facilitate testing

It also provides an encoder utility to help take care of serialization
from arbitrary data to data that can be stored by the given store
2023-08-08 17:29:06 -04:00
Harrison Chase
7543a3d70e Harrison/image (#845)
Co-authored-by: Ashutosh Sanzgiri <sanzgiri@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 13:58:27 -07:00
Bagatur
ab193338aa bump 258 (#8932) 2023-08-08 12:54:51 -07:00
Eugene Yurtsev
bb12184551 Internal code deprecation API (#8763)
Proposal for an internal API to deprecate LangChain code.

This PR is heavily based on:
https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/_api/deprecation.py

This PR only includes deprecation functionality (no renaming etc.). 
Additional functionality can be added on a need basis (e.g., renaming
parameters), but best to roll out as an MVP to test this
out.

DeprecationWarnings are ignored by default. We can change the policy for
the deprecation warnings, but we'll need to make sure we're not creating
noise for users due to internal code invoking deprecated functionality.
2023-08-08 15:42:22 -04:00
Leonid Ganeline
33a2f58fbf tensoflow_datasets document loader (#8721)
This PR adds `tensoflow_datasets` document loader
2023-08-08 15:19:28 -04:00
Holt Skinner
fad26e79a3 fix: Resolve AttributeError in Google Cloud Enterprise Search retriever (#8872)
- Reverting some of the changes made in
https://github.com/langchain-ai/langchain/pull/8369
2023-08-08 12:11:12 -07:00
William FH
b2eb4ff0fc Relax Validation in Eval (#8902)
Just check for missing keys
2023-08-08 11:59:30 -07:00
Leonid Ganeline
2d078c7767 PubMed document loader (#8893)
- added `PubMed Document Loader` artifacts; ut-s; examples 
- fixed `PubMed utility`; ut-s

@hwchase17
2023-08-08 14:26:03 -04:00
Ofer Mendelevitch
a7824f16f2 Added consistent timeout for Vectara calls (#8892)
- Description: consistent timeout at 60s for all calls to Vectara API
- Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 11:10:32 -07:00
Bagatur
642b57c7ff nit (#8927) 2023-08-08 10:54:25 -07:00
manmax31
4a07fba9f0 Improve query prompt of BGE embeddings (#8908)
Replace this comment with:
- Description: Improved query of BGE embeddings after talking with the
devs of BGE embeddings ,
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @hwchase17 ,
  - Twitter handle: @ManabChetia3

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-08-08 10:20:37 -07:00
Jeremy W
c5c0735fc4 Remove Evaluation from Modules page (#8926)
Remove Evaluation link (which gives 404 now) from Modules page, since it
lives under Guides page now
2023-08-08 10:20:24 -07:00
Seif
6327eecdaf Fix typo in Vectara docs (#8925)
Fixed a typo in the Vectara docs description.
2023-08-08 10:11:07 -07:00
Chris Pappalardo
beab637f04 added filter kwarg to VectorStoreIndexWrapper query and query_with_so… (#8844)
- Description: added filter to query methods in VectorStoreIndexWrapper
for filtering by metadata (i.e. search_kwargs)
- Tag maintainer: @rlancemartin, @eyurtsev

Updated the doc snippet on this topic as well. It took me a long while
to figure out how to filter the vectorstore by filename, so this might
help someone else out.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 10:10:45 -07:00
Apurv Agarwal
4a63533216 addition to docs at 'Store and reference chat history' (#8910)
- Description: I have added an example showing how to pass a custom
template to ConversationRetrievalChain. Instead of
CONDENSE_QUESTION_PROMPT we can pass any prompt in the argument
condense_question_prompt. Look in Use cases -> QA over Documents -> How
to -> Store and reference chat history,
  - Issue: #8864,
  - Dependencies: NA,
  - Tag maintainer: @hinthornw,
  - Twitter handle:

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 10:10:11 -07:00
David vonThenen
bf4a112aa6 Fixes to the Nebula LLM Integration (#8918)
This addresses some issues with introducing the Nebula LLM to LangChain
in this PR:
https://github.com/langchain-ai/langchain/pull/8876

This fixes the following:
- Removes `SYMBLAI` from variable names
- Fixes bug with `Bearer` for the API KEY


Thanks again in advance for your help!
cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
2023-08-08 10:04:43 -07:00
Jacob Lee
d1e305028f Automatically set docs appearance to system default (#8924)
@baskaryan
2023-08-08 09:54:18 -07:00
Marie-Philippe Gill
6b9f266837 Add user_context to AmazonKendraRetriever (#8869)
### Description 

Now, we can pass information like a JWT token using user_context:  

```python
self.retriever = AmazonKendraRetriever(index_id=kendraIndexId, user_context={"Token": jwt_token})
```

- [x] `make lint`
- [x] `make format`
- [x] `make test`

Also tested by pip installing in my own project, and it allows access
through the token.

### Maintainers 

 @rlancemartin, @eyurtsev

### My twitter handle 

[girlknowstech](https://twitter.com/girlknowstech)
2023-08-08 08:37:03 -07:00
Josh Hart
6116cbf0de Fix imports in awslambda docs (#8916)
Minor doc fix to awslambda tool notebook. 

Add missing import for initialize_agent to awslambda agent example

Co-authored-by: Josh Hart <josharj@amazon.com>
2023-08-08 08:29:28 -07:00
GitHub-L
67718c1d6b Update OpenAPI code to fetch use the requestBody
- Description: The API doc passed to LLM only included the content of
responses but did not include the content of requestBody, causing the
agent to be unable to construct the correct request parameters based on
the requestBody information. Add two lines of code fixed the bug,
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @hinthornw ,
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
2023-08-08 10:33:21 -04:00
Maurits de Groot
61c2d918c6 Fixed inaccurate import in integrations:providers:bedrock documentation (#8915)
Description:
Fixed inaccurate import in integrations:providers:bedrock documentation

In the current version of the bedrock documentation, page
https://python.langchain.com/docs/integrations/providers/bedrock it
states that the import is from langchain import Bedrock

This has been changed to from langchain.llms.bedrock import Bedrock as
stated in https://python.langchain.com/docs/integrations/llms/bedrock

Issue:
Not applicable

Dependencies
No dependencies required

Tag maintainer
@baskaryan

Twitter handle:
Not applicable
2023-08-08 07:24:36 -07:00
Leonid Kuligin
52d6b91c18 Fixed a source for documents uploaded from GCS (#8912)
Sets source for documents uploaded from GCS to source on gcs
#8911

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-08 09:34:43 -04:00
Manuel Soria
e74a605379 SQL use case docs (#8513) 2023-08-08 03:30:18 -07:00
Bagatur
022ef170f8 bump 257 (#8903) 2023-08-08 01:16:33 -07:00
Jacob Lee
fa30a57034 Adds Ollama as an LLM (#8829)
Adds Ollama as an LLM. Ollama can run various open source models locally
e.g. Llama 2 and Vicuna, automatically configuring and GPU-optimizing
them.

@rlancemartin @hwchase17

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-07 21:19:22 -07:00
Ash Vardanian
1f9124ceaa Add: USearch Vector Store (#8835)
## Description

I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.

## Dependencies

It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.

## Profiles

- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud

---------

Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 20:41:00 -07:00
Leonid Kuligin
b52a3785c9 Allow to specify a custom loader for GcsFileLoader (#8868)
Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-07 22:57:31 -04:00
Jeffrey Wang
ff44fe4e16 Change default Metaphor search example to use prompt optimizer (#8890)
- fix install command
- change example notebook to use Metaphor autoprompt by default

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 17:25:36 -07:00
Bruno Bornsztein
d56eff042a Make json output parser handle newlines inside markdown code blocks (#8682)
Update to #8528

Newlines and other special characters within markdown code blocks
returned as `action_input` should be handled correctly (in particular,
unescaped `"` => `\"` and `\n` => `\\n`) so they don't break JSON
parsing.

@baskaryan
2023-08-07 15:49:54 -07:00
Jeffrey Wang
ce3666c28b Fix metaphor install command in guide (#8888) 2023-08-07 15:43:47 -07:00
Oege Dijk
cff52638b2 when encountering error during fetch return "" in web_base.py (#8753)
when e.g. downloading a sitemap with a malformed url (e.g.
"ttp://example.com/index.html" with the h omitted at the beginning of
the url), this will ensure that the sitemap download does not crash, but
just emits a warning. (maybe should be optional with e.g. a
`skip_faulty_urls:bool=True` parameter, but this was the most
straightforward fix)

@rlancemartin, @eyurtsev
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 15:35:41 -07:00
Harrison Chase
bbd22b9b76 update metaphor docs (#8886) 2023-08-07 14:44:41 -07:00
Bennji94
33cdb06b5c Async RetryOutputParser, RetryWithErrorOutputParser and OutputFixingParser (#8776)
Added async parsing functions for RetryOutputParser,
RetryWithErrorOutputParser and OutputFixingParser.

The async parse functions call the arun methods of the used LLMChains.

Fix for #7989

---------

Co-authored-by: Benjamin May <benjamin.may94@gmail.com>
2023-08-07 14:42:48 -07:00
Carson
cc908d49a3 Fixes typo in documentation (#8882)
Fixes a simple typo in the google search engine tool documentation
@baskaryan
2023-08-07 14:33:21 -07:00
Joshua Sundance Bailey
7fc07ba5df Create ChatAnyscale (#8770)
- Description: Adds the ChatAnyscale class with llama-2 7b, llama-2 13b,
and llama-2 70b on [Anyscale
Endpoints](https://app.endpoints.anyscale.com/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
- Inspired by https://github.com/langchain-ai/langchain/pull/8434
(@kylehh and @baskaryan )
2023-08-07 13:21:05 -07:00
idcore
fe78aff1f2 Add new parameter forced_decoder_ids to OpenAIWhisperParserLocal + small bug fix (#8793)
- Description: new parameter forced_decoder_ids for
OpenAIWhisperParserLocal to force input language, and enable optional
translate mode. Usage example:
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="french",
task="transcribe")
#forced_decoder_ids =
processor.get_decoder_prompt_ids(language="french", task="translate")
loader = GenericLoader(YoutubeAudioLoader(urls, save_dir),
OpenAIWhisperParserLocal(lang_model="openai/whisper-medium",forced_decoder_ids=forced_decoder_ids))
  - Issue #8792
  - Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: idcore <eugene.novozhilov@gmail.com>
2023-08-07 13:17:58 -07:00
David vonThenen
40079d4936 Introduce Nebula LLM to LangChain (#8876)
## Description

This PR adds Nebula to the available LLMs in LangChain.

Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.

Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?

You can read more about Nebula here:

https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/

#### Integration Test 

An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.

#### Linting

- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format

### Dependencies

No new dependencies were introduced.

### Twitter handle

[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)


If you have any questions, please let me know.

cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 13:15:26 -07:00
Lance Martin
84c1ad7eaa Fix colab link for extraction ntbk (#8878)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 11:36:46 -07:00
Nuno Campos
9892e95d03 Add flush=True to stream examples (#8862) 2023-08-07 14:33:17 -04:00
Eugene Yurtsev
f616aee35a JsonOutputFunctionParser: Fix mutation in place bug (#8758)
Fixes mutation in place in the JsonOutputFunctionParser. This causes
issues when trying to re-use the original AI message.
2023-08-07 14:32:46 -04:00
shibuiwilliam
ab47557db3 fix evaluation parse test (#8859)
# What
- fix evaluation parse test

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Fix evaluation parse test
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: @MLOpsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 11:15:41 -07:00
manmax31
40096c73cd Add BGE embeddings support (#8848)
- Description: [BGE-large](https://huggingface.co/BAAI/bge-large-en)
embeddings from BAAI are at the top of [MTEB
leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Hence
adding support for it.
- Tag maintainer: @baskaryan
- Twitter handle: @ManabChetia3

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 11:15:30 -07:00
shibuiwilliam
fbc83dfdbb Fix/abstract add message (#8856)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Fix/abstract add message
  - Issue: None
  - Dependencies: None
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
  - Twitter handle: @MLOpsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 11:02:19 -07:00
William FH
91be7eee66 Add concurrency support for run_on_dataset (#8841)
Long-term, would be better to use the lower-level batch() method(s) but
it may take me a bit longer to clean up. This unblocks in the meantime,
though it may fail when the evaluated chain raises a
`NotImplementedError` for a corresponding async method
2023-08-07 09:24:48 -07:00
Bagatur
fc2f450f2d bump 256 (#8870) 2023-08-07 08:29:02 -07:00
Tudor Golubenco
aeaef8f3a3 Add support for Xata as a vector store (#8822)
This adds support for [Xata](https://xata.io) (data platform based on
Postgres) as a vector store. We have recently added [Xata to
Langchain.js](https://github.com/hwchase17/langchainjs/pull/2125) and
would love to have the equivalent in the Python project as well.

The PR includes integration tests and a Jupyter notebook as docs. Please
let me know if anything else would be needed or helpful.

I have added the xata python SDK as an optional dependency.

## To run the integration tests

You will need to create a DB in xata (see the docs), then run something
like:

```
OPENAI_API_KEY=sk-... XATA_API_KEY=xau_... XATA_DB_URL='https://....xata.sh/db/langchain'  poetry run pytest tests/integration_tests/vectorstores/test_xata.py
```

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Philip Krauss <35487337+philkra@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 08:14:52 -07:00
Harrison Chase
472f00ada7 add moderation example (#8718) 2023-08-07 07:50:11 -07:00
Leonid Kuligin
6e3fa59073 Added chat history to codey models (#8831)
#7469

since 1.29.0, Vertex SDK supports a chat history provided to a codey
chat model.

Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 07:34:35 -07:00
Massimiliano Pronesti
a616e19975 feat(llms): add support for vLLM (#8806)
Hello langchain maintainers, 
this PR aims at integrating
[vllm](https://vllm.readthedocs.io/en/latest/#) into langchain. This PR
closes #8729.

This feature clearly depends on `vllm`, but I've seen other models
supported here depend on packages that are not included in the
pyproject.toml (e.g. `gpt4all`, `text-generation`) so I thought it was
the case for this as well.

@hwchase17, @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 07:32:02 -07:00
Bagatur
100d9ce4c7 bump 255 (#8865) 2023-08-07 07:25:23 -07:00
Vic Cao
c9da300e4d fix: overwrite stream for ChatOpenAI in runtime (#8288)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
@hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-07 10:18:30 +01:00
Karthik Raja A
5a9765b1b5 MultiOn client toolkit update 2.0 (#8750)
- Updated to use newer better function interaction
 - Previous version had only one callback
 - @hinthornw @hwchase17  Can you look into this
 -  Shout out to @MultiON_AI @DivGarg9 on twitter

---------

Co-authored-by: Naman Garg <ngarg3@binghamton.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 22:24:10 -07:00
Emre
454998c1fb Fix invalid escape sequence warnings (#8771)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Description: The lines I have changed looks like incorrectly escaped for
regex. In python 3.11, I receive DeprecationWarning for these lines.
You don't see any warnings unless you explicitly run python with `-W
always::DeprecationWarning` flag. So, this is my attempt to fix it.

Here are the warnings from log files:

```
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:919: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:918: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:917: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:916: DeprecationWarning: invalid escape sequence '\c'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:903: DeprecationWarning: invalid escape sequence '\*'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:804: DeprecationWarning: invalid escape sequence '\*'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:804: DeprecationWarning: invalid escape sequence '\*'
```

cc @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 17:01:18 -07:00
Harrison Chase
0adc282d70 Harrison/as retriever docstring (#8840)
Co-authored-by: Bytestorm <31070777+Bytestorm5@users.noreply.github.com>
2023-08-06 17:00:57 -07:00
Zend
bd4865b6fe Async Recursive URL loader (#8502)
Description: This PR improves the function of recursive_url_loader, such
as limiting the depth of the access, and customizable extractors(from
the raw webpage to the text of the Document object), so that users can
use other tools to extract the webpage. This PR also includes the
document and test for the new loader.
Old PR closed due to project structure change. #7756

Because socket requests are not allowed, the old unit test was removed.
Issue: N/A
Dependencies: asyncio, aiohttp
Tag maintainer: @rlancemartin
Twitter handle: @ Zend_Nihility

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-06 16:22:31 -07:00
fqassemi
485d716c21 Feature faiss delete (#8135)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: docstore had two main method: add and search, however,
dealing with docstore sometimes requires deleting an entry from
docstore. So I have added a simple delete method that deletes items from
docstore. Additionally, I have added the delete method to faiss
vectorstore for the very same reason.
  - Issue: NA
  - Dependencies: NA
  - Tag maintainer:  @rlancemartin, @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 15:46:30 -07:00
Nicolas
b57fa1a39c docs: Improvements on Mendable Search (#8808)
- Balancing prioritization between keyword / AI search
- Show snippets of highlighted keywords when searching 
- Improved keyword search
- Fixed bugs and issues

Shoutout to @calebpeffer for implementing and gathering feedback on it 

cc: @dev2049 @rlancemartin @hwchase17
2023-08-06 15:32:06 -07:00
Ikko Eltociear Ashimine
6b93670410 Fix typo in long_context_reorder.ipynb (#8811)
begining -> beginning

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-06 15:31:38 -07:00
Harrison Chase
2bb1d256f3 add example of memory and returning retrieved docs (#8830) 2023-08-06 15:25:12 -07:00
Pierre Alexandre SCHEMBRI
4a7ebb7184 Fix issue #7616 (#7617)
Fix Issue #7616 with a simpler approach to extract function names (use
`__name__` attribute)

@hwchase17

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 15:12:03 -07:00
Ankur Agarwal
797c9e92c8 #8786 Fixed: Callback handler disconnect in between (#8787)
Fixes for  #8786 @agola11 

- Description: The flow of callback is breaking till the last chain, as
callbacks are missed in between chain along nested path. This will help
get full trace and correlate parent child relationship in all nested
chains.

  - Issue: the issue #8786 
  - Dependencies: NA
  - Tag maintainer: @agola11 
  - Twitter handle: Agarwal_Ankur
2023-08-06 15:11:45 -07:00
Kshitij Wadhwa
5f1aab5487 Fix docs for Rockset (#8807)
* remove error output for notebook
* add comment about vector length for ingest transformation
* change OPENAI_KEY -> OPENAI_API_KEY

cc @baskaryan
2023-08-06 15:04:01 -07:00
William FH
983678dedc Add Dist Metrics for String Distance Evaluation (#8837)
Co-authored-by: shibuiwilliam <shibuiyusuke@gmail.com>
2023-08-06 14:05:00 -07:00
William FH
f76d50d8dc fix exception inconsistencies (#8812) (#8839)
Merge #8812 with main to fix unrelated test failure

Co-authored-by: shibuiwilliam <shibuiyusuke@gmail.com>
2023-08-06 14:04:49 -07:00
Bagatur
15c271e7b3 bump 254 (#8834) 2023-08-06 11:34:54 -07:00
Bagatur
d7b613a293 Bagatur/revert revert nuclia (#8833) 2023-08-06 11:24:36 -07:00
Bagatur
2f309a4ce6 Revert "Bagatur/nuclia (#8404)" (#8832) 2023-08-06 11:14:01 -07:00
Paul Hager
2111ed3c75 Improving the text of the invalid tool to list the available tools. (#8767)
Description: When using a ReAct Agent with tools and no tool is found,
the InvalidTool gets called. Previously it just asked for a different
action, but I've found that if you list the available actions it
improves the chances of getting a valid action in the next round. I've
added a UnitTest for it also.

@hinthornw
2023-08-05 18:09:32 -07:00
shibuiwilliam
d9bc46186d Add missing test for retrievers self_query (#8783)
# What
- Add missing test for retrievers self_query
- Add missing import validation

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add missing test for retrievers self_query
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ
  
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-05 17:31:41 -07:00
Snehil Kumar
1bd4890506 Update links on QA Use Case docs (#8784)
- Description: 2 links were not working on Question Answering Use Cases
documentation page. Hence, changed them to nearest useful links,
  - Issue: NA,
  - Dependencies: NA,
  - Tag maintainer: @baskaryan,
  - Twitter handle: NA

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-05 17:30:56 -07:00
Wilson Leao Neto
b0d0338f21 feat: expose Kendra result item id and document id as document metadata (#8796)
- Description: we expose Kendra result item id and document id as
document metadata.
  - Tag maintainer: @3coins @baskaryan 
  - Twitter handle: wilsonleao

**Why**
The result item id and document id might be used to keep track of the
retrieved resources.
2023-08-05 17:21:24 -07:00
Bal Narendra Sapa
a22d502248 added the embeddings part (#8805)
Description: forgot to add the embeddings part in the documentation.
sorry 😅

@baskaryan
2023-08-05 17:16:33 -07:00
Bagatur
9b86235a56 bump 253 (#8798) 2023-08-05 10:57:22 -07:00
Bagatur
9fc9018951 Bagatur/nuclia (#8404)
Co-authored-by: Eric BREHAULT <ebrehault@gmail.com>
2023-08-05 10:44:43 -07:00
Francisco Ingham
ef5bc1fef1 Refactor for extraction docs (#8465)
Refactor for the extraction use case documentation

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-05 10:09:14 -07:00
William FH
1d68470bac Same Project for Eval Runs (#8781) 2023-08-04 17:51:49 -07:00
William FH
c8f3615aa6 Support evaluating runnables and arbitrary functions (#8698)
Added a couple of "integration tests" for these that I ran.

Main design point of feedback: at this point, would it just be better to
have separate arguments for each type? Little confusing what is or isn't
supported and what is the intended usage at this point since I try to
wrap the function as runnable or pack or unpack chains/llms.

```
run_on_dataset(
...
llm_or_chain_factory = None,
llm = None,
chain = NOne,
runnable=None,
function=None
):
# raise error if none set
```

Downside with runnables and arbitrary function support is that you get
much less helpful validation and error messages, but I don't think we
should block you from this, at least.
2023-08-04 16:39:04 -07:00
liguoqinjim
d00a247da7 fix:get bilibili subtitles (#8165)
- Description: fix the Loader 'BiliBiliLoader'
  - Issue: the API response was changed

![image](https://github.com/langchain-ai/langchain/assets/2113954/91216793-82f8-4c82-a018-d49f36f5f6aa)
The previously used API no longer returns the "subtitle_url" property.

![image](https://github.com/langchain-ai/langchain/assets/2113954/a8ec2a7a-f40d-4c2a-b7d0-0ccdf2b327cc)
We should use another API to get `subtitle_url` property. 
The `subtitle_url` returned by this API does not include the http schema
and needs to be added.

  - Dependencies: Nope
  - Tag maintainer: @rlancemartin
2023-08-04 14:30:41 -07:00
Bagatur
21771a6f1c rm sklearn links (#8773) 2023-08-04 14:28:00 -07:00
Joshua Carroll
e5fed7d535 Extend the StreamlitChatMessageHistory docs with a fuller example and… (#8774)
Add more details to the [notebook for
StreamlitChatMessageHistory](https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history),
including a link to a [running example
app](https://langchain-st-memory.streamlit.app/).

Original PR: https://github.com/langchain-ai/langchain/pull/8497
2023-08-04 14:27:46 -07:00
Eugene Yurtsev
19dfe166c9 Update documentation for prompts (#8381)
* Documentation to favor creation without declaring input_variables
* Cut out obvious examples, but add more description in a few places

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-08-04 14:25:03 -07:00
Dayou Liu
91a0817e39 docs: llamacpp minor fixes (#8738)
- Description: minor updates on llama cpp doc
2023-08-04 14:19:43 -07:00
Bagatur
f437311eef Bagatur/runnable with fallbacks (#8543) 2023-08-04 14:06:05 -07:00
Eugene Yurtsev
003e1ca9a0 Update api references (#8646)
Update API reference documentation. This PR will pick up a number of missing classes, it also applies selective formatting based on the class / object type.
2023-08-04 16:10:58 -04:00
Piyush Jain
8374367de2 Amazon Textract as document loader (#8661)
Description: Adding support for [Amazon
Textract](https://aws.amazon.com/textract/) as a PDF document loader

---------

Co-authored-by: schadem <45048633+schadem@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-04 15:55:06 -04:00
Leonid Ganeline
82ef1f587d fix makefile help (#8723)
Fixed the `makefile` help. It was not up-to-date.
 @baskaryan
2023-08-04 15:37:00 -04:00
Neil Murphy
b0d0399d34 (issue #5163) Append reminder to nest multi-prompt router prompt output in JSON markdown code block, resolving JSON parsing error. (#8709)
Resolves occasional JSON parsing error when some predictions are passed
through a `MultiPromptChain`.

Makes [this
modification](https://github.com/langchain-ai/langchain/issues/5163#issuecomment-1652220401)
to `multi_prompt_prompt.py`, which is much cleaner than appending an
entire example object, which is another community-reported solution.

@hwchase17, @baskaryan

cc: @SimasJan
2023-08-04 15:36:34 -04:00
Snehil Kumar
a6ee646ef3 Update get_started.mdx (#8744)
- Description: Added a missing word and rearranged a sentence in the
documentation of Self Query Retrievers.,
  - Issue: NA,
  - Dependencies: NA,
  - Tag maintainer: @baskaryan,
  - Twitter handle: NA

Thanks for your time.
2023-08-04 15:32:19 -04:00
Bal Narendra Sapa
bd61757423 add documentation for serializer function (#8769)
Description: Added necessary documentation for serializer functions

@baskaryan
2023-08-04 14:39:40 -04:00
rjanardhan3
affaaea87b Updates fireworks (#8765)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Updates to Fireworks Documentation, 
  - Issue: N/A,
  - Dependencies: N/A,
  - Tag maintainer: @rlancemartin,

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-04 10:32:22 -07:00
Bagatur
8c35fcb571 update rss doc (#8761) 2023-08-04 08:25:20 -07:00
Bagatur
e45be8b3f6 bump 252 (#8759) 2023-08-04 08:22:16 -07:00
Bagatur
0d5a90f30a Revert "add filter to sklearn vector store functions (#8113)" (#8760) 2023-08-04 08:13:32 -07:00
Ben Auffarth
6b007e2829 update repo username to langchain-ai (#8747)
Time for this minor update? @hwchase17
2023-08-04 07:31:39 -07:00
Lance Martin
be638ad77d Chatbots use case (#8554)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-04 07:02:14 -07:00
Bagatur
115a77142a support for arbitrary kwargs for llamacpp (#8727)
llamacpp params (per their own code) are unstable, so instead of
adding/deleting them constantly adding a model_kwargs parameter that
allows for arbitrary additional kwargs

cc @jsjolund and @zacps re #8599 and #8704
2023-08-04 06:52:02 -07:00
Alec Flett
f0b0c72d98 add load() deserializer function that bypasses need for json serialization (#7626)
There is already a `loads()` function which takes a JSON string and
loads it using the Reviver

But in the callbacks system, there is a `serialized` object that is
passed in and that object is already a deserialized JSON-compatible
object. This allows you to call `load(serialized)` and bypass
intermediate JSON encoding.

I found one other place in the code that benefited from this
short-circuiting (string_run_evaluator.py) so I fixed that too.

Tagging @baskaryan for general/utility stuff.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-04 09:49:41 +01:00
Ruiqi Guo
6aee589eec Add ScaNN support in vectorstore. (#8251)
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann

- Dependencies: scann

Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py

@rlancemartin, @eyurtsev for review.

Thanks!
2023-08-03 23:41:30 -07:00
Moonsik Kang
5b7ff215e8 Fix load map reduce documents chain (#7915)
This PR updates _load_reduce_documents_chain to handle
`reduce_documents_chain` and `combine_documents_chain` config

Please review @hwchase17, @baskaryan

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:27:38 -07:00
shibuiwilliam
0f0ccfe7f6 add filter to sklearn vector store functions (#8113)
# What
- This is to add filter option to sklearn vectore store functions

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add filter to sklearn vectore store functions.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:41 -07:00
shibuiwilliam
2759e2d857 add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:27 -07:00
aerickson-clt
0f68054401 Issue #8089 Improve painless script scoring with params.query_value. (#8086)
This is a minor improvement that replaces the full query_vector with the
reference string `params.query_value` used in the painless scripting
docs. I have tested it manually and it works on an example. This makes
the query about half the size and much easier to read.


https://opensearch.org/docs/latest/search-plugins/knn/painless-functions/#get-started-with-k-nns-painless-scripting-functions

@babbldev 
#8089

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:17 -07:00
linpan
0ead8ea708 typo: ignored to ignore (#8740)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 23:05:59 -07:00
aerickson-clt
c7ea6e9ff8 Issue 8081 Fix query results size bug. Other bug: pass vector_field param. (#8085)
@baskaryan
#8081 

Likely the reason why the issue occurred is that OpenSearch's default k
is 10, so it needs to be specified.

Here's a similar question about its cousin ElasticSearch

https://discuss.elastic.co/t/elasticsearch-returns-only-10-records-but-the-hit-is-507/136605

I tested this manually and also fixed the same issue in
`_default_painless_scripting_query`. In addition,
`_default_painless_scripting_query` was not passing the `vector_field`
name to a sub call, so I fixed that too.


![image](https://github.com/hwchase17/langchain/assets/32244272/cfb7aad1-f701-49d9-9beb-a723aa276817)

I also tested this in the aws opensearch developer tools.


![image](https://github.com/hwchase17/langchain/assets/32244272/24544682-1578-4bbb-9eb5-980463c5b41b)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 22:41:11 -07:00
Sidchat95
812419d946 Removing score threshold parameter of faiss _similarity_search_with_r… (#8093)
Removing score threshold parameter of faiss
_similarity_search_with_relevance_scores as the thresholding part is
implemented in similarity_search_with_relevance_scores method which
calls this method.

As this method is supposed to be a private method of faiss.py this will
never receive the score threshold parameter as it is popped in the super
method similarity_search_with_relevance_scores.

@baskaryan @hwchase17
2023-08-03 21:31:43 -07:00
Mathias Panzenböck
873a80e496 Reduce generation of temporary objects (#7950)
Just a tiny change to use `list.append(...)` and `list.extend(...)`
instead of `list += [...]` so that no unnecessary temporary lists are
created.

Since its a tiny miscellaneous thing I guess @baskaryan is the
maintainer to tag?

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:24:08 -07:00
Lance Martin
d1b95db874 Retriever that can re-phase user inputs (#8026)
Simple retriever that applies an LLM between the user input and the
query pass the to retriever.

It can be used to pre-process the user input in any way.

The default prompt:

```
DEFAULT_QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an assistant tasked with taking a natural languge query from a user
    and converting it into a query for a vectorstore. In this process, you strip out
    information that is not relevant for the retrieval task. Here is the user query: {question} """
)
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:23:59 -07:00
Harrison Chase
6c3573e7f6 Harrison/aleph alpha (#8735)
Co-authored-by: PiotrMazurek <piotr.mazurek@aleph-alpha.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 21:21:15 -07:00
Wilson Leao Neto
179a39954d Provides access to a Document page_content formatter in the AmazonKendraRetriever (#8034)
- Description: 
- Provides a new attribute in the AmazonKendraRetriever which processes
a ResultItem and returns a string that will be used as page_content;
- The excerpt metadata should not be changed, it will be kept as was
retrieved. But it is cleaned when composing the page_content;
    - Refactors the AmazonKendraRetriever to improve code reusability;
- Issue: #7787 
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao

**Why?**

Some use cases need to adjust the page_content by dynamically combining
the ResultItem attributes depending on the context of the item.
2023-08-03 20:54:49 -07:00
Ilya
6f0bccfeb5 Add regex control over separators in character text splitter (#7933)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
#7854

Added the ability to use the `separator` ase a regex or a simple
character.
Fixed a bug where `start_index` was incorrectly counting from -1.

Who can review?
@eyurtsev
@hwchase17 
@mmz-001
2023-08-03 20:25:23 -07:00
Vasileios Mansolas
e68a1d73d0 Fix Issue #6650: Enable Azure Active Directory token-based auth access for AzureChatOpenAI (#8622)
When using AzureChatOpenAI the openai_api_type defaults to "azure". The
utils' get_from_dict_or_env() function triggered by the root validator
does not look for user provided values from environment variables
OPENAI_API_TYPE, so other values like "azure_ad" are replaced with
"azure". This does not allow the use of token-based auth.

By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.

This fixes #6650

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:41 -07:00
Ofer Mendelevitch
29f51055e8 Updates to Vectara documentation (#8699)
- Description: updates to Vectara documentation with more details on how
to get started.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @vectara, @ofermend

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:17 -07:00
Alec Flett
5d765408ce propagate callbacks through load_summarize_chain (#7565)
This lets you pass callbacks when you create the summarize chain:

```
summarize = load_summarize_chain(llm, chain_type="map_reduce", callbacks=[my_callbacks])
summary = summarize(documents)
```
See #5572 for a similar surgical fix.

tagging @hwchase17 for callbacks work

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 20:12:34 -07:00
Alec Flett
404d103c41 propagate RetrievalQA chain callbacks through its own LLMChain and StuffDocumentsChain (#7853)
This is another case, similar to #5572 and #7565 where the callbacks are
getting dropped during construction of the chains.

tagging @hwchase17 and @agola11 for callbacks propagation

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-03 20:11:58 -07:00
Bal Narendra Sapa
47eea32f6a add serializer methods (#7914)
Description: I have added two methods serializer and deserializer
methods. There was method called save local but it saves the to the
local disk. I wanted the vectorstore in the format using which i can
push it to the sql database's blob field. I have used this while i was
working on something

@rlancemartin, @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 20:10:35 -07:00
Ryan Sloan
b786335dd1 fix RecursiveUrlLoader (#8582)
Description: the recursive url loader does not fully crawl for all urls
under base url
Maintainer: @baskaryan
2023-08-03 16:51:57 -07:00
William FH
f81e613086 Fix Async Retry Event Handling (#8659)
It fails currently because the event loop is already running.

The `retry` decorator alraedy infers an `AsyncRetrying` handler for
coroutines (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L535)))
However before_sleep always gets called synchronously (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L338))).


Instead, check for a running loop and use that it exists. Of course,
it's running an async method synchronously which is not _nice_. Given
how important LLMs are, it may make sense to have a task list or
something but I'd want to chat with @nfcampos on where that would live.

This PR also fixes the unit tests to check the handler is called and to
make sure the async test is run (it looks like it's just been being
skipped). It would have failed prior to the proposed fixes but passes
now.
2023-08-03 15:02:16 -07:00
ruze
8ef7e14a85 RSS Feed / OPML loader (#8694)
Replace this comment with:
- Description: added a document loader for a list of RSS feeds or OPML.
It iterates through the list and uses NewsURLLoader to load each
article.
  - Issue: N/A
  - Dependencies: feedparser, listparser
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:58:06 -07:00
sumandeng
53e4148a1b add model_revison parameter to ModelScopeEmbeddings (#8669)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:17:48 -07:00
Yoshi
4e8f11b36a Deterministic Fake Embedding Model (#8706)
Solves #8644 
This embedding models output identical random embedding vectors, given
the input texts are identical.
Useful when used in unittest.
@baskaryan
2023-08-03 13:36:45 -07:00
Leonid Kuligin
2928a1a3c9 added minimum expected version of SDK to the error description (#8712)
#7932

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-03 13:28:42 -07:00
Harrison Chase
814faa9de5 relax deps for yaml (#8713)
context: https://github.com/yaml/pyyaml/issues/724

I think this is fine? I don't think we use yaml too heavily
2023-08-03 13:22:17 -07:00
Holt Skinner
8a8917e0d9 feat: Add Spell Correction Spec to Google Cloud Enterprise Search connector (#8705) 2023-08-03 13:38:45 -04:00
Bagatur
b2b71b0d35 Bagatur/eden llm (#8670)
Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: KyrianC <ckyrian@protonmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-08-03 10:24:51 -07:00
William FH
8022293124 lint (#8702) 2023-08-03 09:33:28 -07:00
axa99
1f54ec899b updated interface jupyter notebook explanations (#8689)
Updated the documentation in the interface.ipynb to clearly show the
_input_ and _output_ types for various components @baskaryan
2023-08-03 11:53:31 -04:00
William FH
a137492b53 Permit none key in chain mapper (#8696) 2023-08-03 08:50:36 -07:00
Bagatur
e283dc8d50 bump 251 (#8690) 2023-08-03 06:28:36 -07:00
Eugene Yurtsev
81e0cbf2d5 Minor typo fix (#8657)
Fix typo in doc-string.
2023-08-02 23:20:25 -07:00
Lance Martin
37aade19da Minor formatting and additional figure for summarization use case (#8663) 2023-08-02 21:52:29 -07:00
Harrison Chase
43dffe39fb Harrison/conversational retrieval agent (#8639)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 18:05:15 -07:00
ruze
71f98db2fe Newspaper (#8647)
- Description: Added newspaper3k based news article loader. Provide a
list of urls.
  - Issue: N/A
  - Dependencies: newspaper3k,
  - Tag maintainer: @rlancemartin , @eyurtsev 
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:56:08 -07:00
shibuiwilliam
f68f3b23d7 add missing RemoteLangChainRetriever _get_relevant_documents test (#8628)
# What
- Add missing RemoteLangChainRetriever _get_relevant_documents test

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:20:40 -07:00
William FH
206901fa01 Use salt instead of datetime (#8653)
If you want to kick off two runs at the same time it'll cause errors.
Use a uuid instead
2023-08-02 17:15:50 -07:00
William FH
7ea2b08d1f Use call directly for chain (#8655)
for run_on_dataset since the `run()` method requires a single output
2023-08-02 17:11:39 -07:00
William FH
368aa4ede7 fix enum error message (#8652)
could be a string so don't directly call value
2023-08-02 17:11:27 -07:00
millerick
5018af8839 docs: fix some grammar (#8654)
### Description
Fixes a grammar issue I noticed when reading through the documentation.

### Maintainers
@baskaryan

Co-authored-by: mmillerick <mmillerick@blend.com>
2023-08-02 16:48:01 -07:00
Erick Friis
96b0ff182e Enterprise support form wording (#8641) 2023-08-02 15:18:20 -07:00
Lance Martin
59194c2214 Add summarization use-case (#8376)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 14:25:11 -07:00
Will Thompson
ee1d13678e 🐛 Docs Fixes [2 one-liners, examples broken] (#8519)
## Description: 
   
1)Map reduce example in docs is missing an important import statement.
Figured other people would benefit from being able to copy 🍝 the code.

2)RefineDocumentsChain example also broken.

## Issue: 

None

## Dependencies:

None. One liner.

## Tag maintainer:

@baskaryan

## Twitter handle: 

I mean, it's a one line fix lol. But @will_thompson_k is my twitter
handle.
2023-08-02 13:39:41 -07:00
Leonid Ganeline
1335f2b9f8 MLflow examples (#8642)
Updated `MLflow` examples with links to the examples from MLflow

 @baskaryan
2023-08-02 13:30:28 -07:00
Kacper Łukawski
16551536e3 Refactor Qdrant integration (#8634)
This small PR introduces new parameters into Qdrant (`on_disk`), fixes
some tests and changes the error message to be more clear.

Tagging: @baskaryan, @rlancemartin, @eyurtsev
2023-08-02 10:30:18 -07:00
Erick Friis
c5fb3b6069 Enterprise support form in airtable (#8607) 2023-08-02 09:49:59 -07:00
Eugene Yurtsev
1ec0b18379 Re-add __add__ functionality for messages (revert #8245) (#8489)
This PR reverts #8245, so `__add__` is defined on base messages.

Resolves issue: https://github.com/langchain-ai/langchain/issues/8472
2023-08-02 10:51:44 -04:00
Bagatur
f31047a394 bump 250 (#8632) 2023-08-02 07:47:36 -07:00
Comendeiro
5c516945d0 Add local support for audio models (PR #7329) (#7591)
- Description: run the poetry dependencies
  - Issue: #7329 
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @rlancemartin

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 01:24:53 -07:00
Naveen Tatikonda
d2adec3818 [Opensearch] : Fix the service validation in http_auth (#8609)
### Description
OpenSearch supports validation using both Master Credentials (Username
and password) and IAM. For Master Credentials users will not pass the
argument `service` in `http_auth` and the existing code will break. To
fix this, I have updated the condition to check if service attribute is
present in http_auth before accessing it.

### Maintainers
@baskaryan @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-08-02 01:16:38 -07:00
Harrison Chase
7c5c0557cb cast to string when measuring token length (#8617) 2023-08-02 00:12:59 -07:00
rjanardhan3
68113348cc Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Bagatur
b574507c51 normalized openai embeddings embed_query (#8604)
we weren't normalizing when embedding queries
2023-08-01 17:12:10 -07:00
Neil Murphy
31820a31e4 Add firestore_client param to FirestoreChatMessageHistory if caller already has one; also lets them specify GCP project, etc. (#8601)
Existing implementation requires that you install `firebase-admin`
package, and prevents you from using an existing Firestore client
instance if available.

This adds optional `firestore_client` param to
`FirestoreChatMessageHistory`, so users can just use their existing
client/settings. If not passed, existing logic executes to initialize a
`firestore_client`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 15:42:13 -07:00
Naveen Tatikonda
13ccf202de [OpenSearch] : Fix AOSS Initialization (#8600)
### Description
This PR fixes the AOSS Initialization in Opensearch.

### Maintainers
@rlancemartin, @eyurtsev, @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-08-01 15:33:51 -07:00
Joshua Carroll
6705928b9d Add StreamlitChatMessageHistory (#8497)
Add a StreamlitChatMessageHistory class that stores chat messages in
[Streamlit's Session
State](https://docs.streamlit.io/library/api-reference/session-state).

Note: The integration test uses a currently-experimental Streamlit
testing framework to simulate the execution of a Streamlit app. Marking
this PR as draft until I confirm with the Streamlit team that we're
comfortable supporting it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:28:15 -07:00
Matt Robinson
8961c720b8 docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8 mv (#8595) 2023-08-01 14:17:04 -07:00
brettdbrewer
2de028834f updated to use new llm_util query (#8591)
- Description: added memgraph_graph.py which defines the MemgraphGraph
class, subclassing off the existing Neo4jGraph class. This lets you
query the Memgraph graph database using natural language. It leverages
the Neo4j drivers and the bolt protocol.
- Dependencies: since it is a subclass off of Neo4jGraph, it is
dependent on it and the GraphCypherQA Chain implementations. It is
dependent on the Neo4j drivers being present. It is dependent on having
a running Memgraph instance to connect to.
  - Tag maintainer: @baskaryan
  - Twitter handle: @villageideate
- example usage can be seen in this repo
https://github.com/brettdbrewer/MemgraphGraph/

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:16:15 -07:00
Tesfagabir Meharizghi
a7000ee89e Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
Harrison Chase
9c2b29a1cb Harrison/loader bug (#8559)
Co-authored-by: ddroghini <d.droghini@mflgroup.com>
Co-authored-by: Buckler89 <Droghini.diego@gmail.com>
2023-08-01 13:31:49 -07:00
Kristelle Widjaja
f190bc3e83 Bug fix: feature/issue-7804-chroma-client_settings-bug (#8267)
Description: Made Chroma constructor more robust when client_settings is
provided. Otherwise, existing embeddings will not be loaded correctly
from Chroma.
Issue: #7804
Dependencies: None
Tag maintainer: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 13:31:35 -07:00
mpb159753
7df2dfc4c2 Add Support for Loading Documents from Huawei OBS (#8573)
Description:
This PR adds support for loading documents from Huawei OBS (Object
Storage Service) in Langchain. OBS is a cloud-based object storage
service provided by Huawei Cloud. With this enhancement, Langchain users
can now easily access and load documents stored in Huawei OBS directly
into the system.

Key Changes:
- Added a new document loader module specifically for Huawei OBS
integration.
- Implemented the necessary logic to authenticate and connect to Huawei
OBS using access credentials.
- Enabled the loading of individual documents from a specified bucket
and object key in Huawei OBS.
- Provided the option to specify custom authentication information or
obtain security tokens from Huawei Cloud ECS for easy access.

How to Test:
1. Ensure the required package "esdk-obs-python" is installed.
2. Configure the endpoint, access key, secret key, and bucket details
for Huawei OBS in the Langchain settings.
3. Load documents from Huawei OBS using the updated document loader
module.
4. Verify that documents are successfully retrieved and loaded into
Langchain for further processing.

Please review this PR and let us know if any further improvements are
needed. Your feedback is highly appreciated!

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 09:30:30 -07:00
Leonid Ganeline
ed9a0f8185 Docstrings: Module descriptions (#8262)
Added/changed the module descriptions (the firs-line docstrings in the
`__init__` files).
Added class hierarchy info.
 @baskaryan
2023-08-01 09:12:32 -07:00
shibuiwilliam
465faab935 fix apparent spelling inconsistencies (#8574)
Use ImportErrors where appropriate
2023-08-01 09:09:09 -07:00
Nuno Campos
0ec020698f Add new run types for Runnables (#8488)
- allow overriding run_type in on_chain_start

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-01 12:56:40 +01:00
Bagatur
bd2e298468 bump 249 (#8571) 2023-08-01 01:20:16 -07:00
Harrison Chase
66226d1d4d add example for memory (#8552) 2023-08-01 01:10:19 -07:00
William FH
e83250cc5f Rm RunTypeEnum (#8553)
We already support raw strings in the SDK but would like to deprecate
client-side validation of run types. This removes its usage
2023-08-01 07:32:07 +01:00
Jacob Lee
2a26cc6d2b Fix combining runnable sequences (#8557)
Combining runnable sequences was dropping a step in the middle.

@nfcampos @baskaryan
2023-07-31 18:17:46 -07:00
Mohamad Zamini
3fbb737bb3 Update combined.py (#7541)
from my understanding, the `check_repeated_memory_variable` validator
will raise an error if any of the variables in the `memories` list are
repeated. However, the `load_memory_variables` method does not check for
repeated variables. This means that it is possible for the
`CombinedMemory` instance to return a dictionary of memory variables
that contains duplicate values. This code will check for repeated
variables in the `data` dictionary returned by the
`load_memory_variables` method of each sub-memory. If a repeated
variable is found, an error will be raised.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:15:00 -07:00
Shantanu Nair
53f3793504 Fast load conversationsummarymemory from existing summary (#7533)
- Description: Adds an optional buffer arg to the memory's
from_messages() method. If provided the existing memory will be loaded
instead of regenerating a summary from the loaded messages.
 
Why? If we have past messages to load from, it is likely we also have an
existing summary. This is particularly helpful in cases where the chat
is ephemeral and/or is backed by serverless where the chat history is
not stored but where the updated chat history is passed back and forth
between a backend/frontend.

Eg: Take a stateless qa backend implementation that loads messages on
every request and generates a response — without this addition, each
time the messages are loaded via from_messages, the summaries are
recomputed even though they may have just been computed during the
previous response. With this, the previously computed summary can be
passed in and avoid:
  1) spending extra $$$ on tokens, and 
2) increased response time by avoiding regenerating previously generated
summary.

Tag maintainer: @hwchase17
Twitter handle: https://twitter.com/ShantanuNair

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:14:11 -07:00
DJ Atha
ec40ead980 Fixed bug7445 where a duplicate restuld_id is added to the vectorstore. (#7573)
- Description: updated BabyAGI examples to append the iteration to the
result id to fix error storing data to vectorstore.
  - Issue: 7445
  - Dependencies: no
  - Tag maintainer: @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didnt want to over complicate the example.
2023-07-31 18:00:01 -07:00
yangdihang
ff5024634e fix: openapi controller prompt, when bot is unable to resolve an api … (#7525)
…call, it needs retry

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Co-authored-by: yangdihang <yangdihang@bytedance.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:43 -07:00
Kenny
1e8fca5518 Add ConcurrentLoader (#7512)
Works just like the GenericLoader but concurrently for those who choose
to optimize their workflow.

@rlancemartin @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:31 -07:00
Kevin Buckley
8061994c61 AzureSearch Vector Store: Moving the usage of additional_fields into context of it's definition (bug fix from python error) (#8551)
Description: Using Azure Cognitive Search as a VectorStore. Calling the
`add_texts` method throws an error if there is no metadata property
specified. The `additional_fields` field is set in an `if` statement and
then is used later outside the if statement. This PR just moves the
declaration of `additional_fields` below and puts the usage of it in
context.

Issue: https://github.com/langchain-ai/langchain/issues/8544

Tagging @rlancemartin, @eyurtsev as this is related to Vector stores.

`make format`, `make lint`, `make spellcheck`, and `make test` have been
run
2023-07-31 17:25:57 -07:00
Danny Davenport
8d2344db43 updates some spelling mistakes (#8537)
Just updating some spelling / grammar issues in the documentation. No
code changes.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:15:29 -07:00
Leonid Kuligin
b4a126ae71 Updated docs on Vertex AI going GA (#8531)
#8074

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-31 17:15:04 -07:00
Pranay Chandekar
7e70cd2a28 Bug Fix - #8415 (#8417)
- Issue: #8415

Signed-off-by: Pranay Chandekar <pranayc6@gmail.com>
2023-07-31 17:08:46 -07:00
shibuiwilliam
de61ebd9e0 add tests to redis vectorstore (#8116)
# What
- Add function to get similarity with score with threshold in Redis
vector store.
- Add tests to Redis vector store.
2023-07-31 17:07:09 -07:00
Bharat Raghunathan
c19a0b9c10 doc(prompts): Follow up on broken Prompt Sublink pages (#8530)
- Description: Follow up of #8478  
  - Issue: #8477
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](twitter.com/BharatR123)

The links were still broken after #8478 and sadly the issue was not
caught with either the Vercel app build and `make docs_linkcheck`
2023-07-31 16:46:13 -07:00
Bruno Bornsztein
5a490a79f4 fix issue #8357 by making json backtick regex greedy (#8528)
- Description: Markdown code blocks in json response should not break
the parser
  - Issue: #8357

@baskaryan @hinthornw
2023-07-31 16:36:57 -07:00
Gordon Clark
64d0a0fcc0 Updating docstings in utilities (#8411)
Updating docstrings on utility packages
 @baskaryan
2023-07-31 16:34:53 -07:00
Harrison Chase
bca0749a11 conversational retrieval chain in lcel (#8532) 2023-07-31 16:33:07 -07:00
Jeff Huber
07d6d1ca38 fix error in chroma docker instructions (#8533)
This makes the Chroma instructions for Docker work! 


https://python.langchain.com/docs/integrations/vectorstores/chroma#basic-example-using-the-docker-container
2023-07-31 16:32:53 -07:00
Mohammad Mohtashim
144b4c0c78 SQL Query Prompt update + added _execute method for SQLDatabase (#8100)
- Description: This pull request (PR) includes two minor changes:

1. Updated the default prompt for SQL Query Checker: The current prompt
does not clearly specify the final response that the LLM (Language
Model) should provide when checking for the query if `use_query_checker`
is enabled in SQLDatabase Chain. As a result, the LLM adds extra words
like "Here is your updated query" to the response. However, this causes
a syntax error when executing the SQL command in SQLDatabaseChain, as
these additional words are also included in the SQL query.

2. Moved the query's execution part into a separate method for
SQLDatabase: The purpose of this change is to provide users with more
flexibility when obtaining the result of an SQL query in the original
form returned by sqlalchemy. In the previous implementation, the run
method returned the results as a string. By creating a distinct method
for execution, users can now receive the results in original format,
which proves helpful in various scenarios. For example, during the
development of a tool, I found it advantageous to obtain results in
original format rather than a string, as currently done by the run
method.

- Tag maintainer: @hinthornw

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 16:28:08 -07:00
Matthew DeGuzman
844eca98d5 Add LLaMa Formatter and AzureML Chat Endpoint (#8382)
## Description

Microsoft and Meta recently [announced their
collaboration](https://blogs.microsoft.com/blog/2023/07/18/microsoft-and-meta-expand-their-ai-partnership-with-llama-2-on-azure-and-windows/)
on LLaMa2. This PR extends the current LLM wrapper and introduces a new
Chat Model wrapper for AzureML to support LLaMa2.

## Dependencies

No dependencies added :)

## Twitter Handles

[@matthew_d13](https://twitter.com/matthew_d13)
[@prakhar_in](https://twitter.com/prakhar_in)

maintainers - @hwchase17, @baskaryan
2023-07-31 16:26:25 -07:00
Anthony Mahanna
1ab773c742 docs: Update ArangoDB Colab URL (#8547)
1-commit PR to update the Google Colab URL of the ArangoDB Graph QA
Chain notebook
2023-07-31 16:11:21 -07:00
Harrison Chase
15de57b848 fix web loader (#8538) 2023-07-31 12:47:33 -07:00
Nuno Campos
4780156955 Rely less on positional arg order in subclasses of vector store when calling async methods (#8534) 2023-07-31 20:13:11 +01:00
Harrison Chase
5e3b968078 router runnable (#8496)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-31 11:07:10 -07:00
Anubhav Bindlish
913a156cff Minor improvements to rockset vectorstore (#8416)
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 09:54:59 -07:00
Harrison Chase
893f3014af add xml agent notebook 2023-07-31 07:33:22 -07:00
Bagatur
a8be207ea3 bump 248 (#8518) 2023-07-31 07:14:45 -07:00
Harrison Chase
6556a8fcfd add initial anthropic agent (#8468)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-30 21:30:49 -07:00
os1ma
a795c3d860 Fix GitLoader to handle repeated load calls (#8412)
**Description: a description of the change**

In this pull request, GitLoader has been updated to handle multiple load
calls, provided the same repository is being cloned. Previously, calling
`load` multiple times would raise an error if a clone URL was provided.

Additionally, a check has been added to raise a ValueError when
attempting to clone a different repository into an existing path.

New tests have also been introduced to verify the correct behavior of
the GitLoader class when `load` is called multiple times.

Lastly, the GitPython package, a dependency for the GitLoader class, has
been added to the project dependencies (pyproject.toml and poetry.lock).

**Issue: the issue # it fixes (if applicable)**

None

**Dependencies: any dependencies required for this change**

GitPython

**Tag maintainer: for a quicker response, tag the relevant maintainer
(see below)**

- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
2023-07-30 21:27:20 -07:00
Muhammed Al-Dulaimi
9975ba4124 Fix ChromaDB integration -> docker container instructions (#8447)
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:

```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset()  # resets the database
collection = client.create_collection("my_collection")
...
```

`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`

This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it

## Issue
This fixes the runtime error that occurs when running the docker
container example code

## Tag Maintainer
@rlancemartin, @eyurtsev
2023-07-30 21:11:56 -07:00
Nicolas Raoul
7f9c6c3baa Fixed typo: papaer -> paper (#8500) 2023-07-30 21:08:11 -07:00
Piyush Jain
b2f8a5bae9 Fixed exports for NeptuneOpenCypherQAChain (#8439)
## Description
The imports for `NeptuneOpenCypherQAChain` are failing. This PR adds the
chain class to the `__init__.py` file to fix this issue.

## Maintainers
@dev2049 
@krlawrence
2023-07-30 20:36:22 -07:00
Eugene Yurtsev
e98e2b2b81 ChatPromptTemplate: clean up doc-string (#8473)
Minor doc-string clean up

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-30 20:11:04 -07:00
Eugene Yurtsev
529cb2e30c Update doc-string in few shot template (#8474)
Partial update of doc-string, need to update other instances in
documentation
2023-07-30 19:39:14 -07:00
Bharat Raghunathan
04ebdbe98f doc(prompts): Add redirects in Prompt subcategories pages (#8478)
- Description: Fixes broken links in some Prompts subcategories in
documentation (Example Selectors, Prompt Templates)
  - Issue: #8477 (Fixes #8477)
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](https://twitter.com/BharatR123)
2023-07-30 19:38:52 -07:00
Ludwig Hubert
08f5e6b801 Fix documentation for from_documents signature (#8482)
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .

fixes #8457 

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 13:24:44 -07:00
Muneeb Ahmad
4923cf029a Added Proper Documentation for faiss-gpu Installation (#8492)
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.

### Issue: 
Documentation / Comments Related.

### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.

### Tag maintainer:
 @rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
2023-07-30 13:24:30 -07:00
shibuiwilliam
549720ae51 add test to ensure values in time weighted retriever are updated (#8479)
# What
- add test to ensure values in time weighted retriever are updated

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add test to ensure values in time weighted retriever are
updated
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ


Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 11:42:25 -07:00
Harrison Chase
18a2452121 prompt cleanup (#8470) 2023-07-30 10:47:31 -07:00
Harrison Chase
4d526c49ed bump experimental to 008 (#8490) 2023-07-30 07:28:18 -07:00
Harrison Chase
8f14ddefdf add anthropic functions wrapper (#8475)
a cheeky wrapper around claude that adds in function calling support
(kind of, hence it going in experimental)
2023-07-30 07:23:46 -07:00
Harrison Chase
490ad93b3c fix links generation (#8471) 2023-07-29 18:31:33 -07:00
Nuno Campos
b65a9414bb runnable.bind().bind() should combine kwargs, instead of nesting wrappers (#8467)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-29 15:48:30 -07:00
Harrison Chase
ae4638aa35 improve notebooks (#8461) 2023-07-29 12:49:11 -07:00
Nuno Campos
872abb4198 Implement Runnable for Tools (#8460)
- Make _arun optional
- Pass run_manager to inner chains in tools that have them

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-29 10:01:18 -07:00
Harrison Chase
412fa4e1db add guide notebook (#8258)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-29 09:42:59 -07:00
William FH
b7c0eb9ecb Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
Harrison Chase
13b4f465e2 log output parser (#8446) 2023-07-29 07:53:45 +01:00
William FH
7d79178827 Wfh/update guide imports (#8452) 2023-07-28 23:12:10 -07:00
William FH
d935573362 Partial formatting for chat messages (#8450) 2023-07-28 23:08:33 -07:00
William FH
3314f54383 Update supabase docstrings (#8443) 2023-07-28 23:08:14 -07:00
Harrison Chase
f63240649c cr 2023-07-28 17:47:00 -07:00
Harrison Chase
17953ab61f add notebook for sql query (#8442) 2023-07-28 17:44:59 -07:00
Harrison Chase
2448043b84 bump and fix (#8441) 2023-07-28 17:16:51 -07:00
Zack Proser
3892cefac6 Minor fixes to enhance notebook usability: (#8389)
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: none,
  - Tag maintainer: @rlancemartin @eyurtsev,
  - Twitter handle: @zackproser (certainly not necessary!)
2023-07-28 17:10:03 -07:00
Amélie
8ee56b9a5b Feature: Add support for meilisearch vectorstore (#7649)
**Description:**

Add support for Meilisearch vector store.
Resolve #7603 

- No external dependencies added
- A notebook has been added

@rlancemartin

https://twitter.com/meilisearch

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 17:06:54 -07:00
Bearnardd
b7d6e1909c fix empty ids when metadatas is provided (#8127)
Fixes https://github.com/hwchase17/langchain/issues/7865 and
https://github.com/hwchase17/langchain/issues/8061

- [x] fixes returning empty ids when metadatas argument is provided

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:17:31 -07:00
Bharat Raghunathan
62b8b459c6 doc(prompts): Add redirect to fix broken link on Prompts Page (#8408)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:08:06 -07:00
Bagatur
2311d57df4 mv dropbox (#8438) 2023-07-28 16:07:56 -07:00
Luis Valencia
7124377524 Devcontainer README -> Clarification. (#8414)
- Description: The contribution guidlelines using devcontainer refer to
the main repo and not the forked repo. We should create our changes in
our own forked repo, not on langchain/main
  - Issue: Just documentation
  - Dependencies: N/A,
  - Tag maintainer: @baskaryan
  - Twitter handle: @levalencia
2023-07-28 15:09:42 -07:00
lvisdd
abe4c361f9 update get_num_tokens_from_messages model (#8431)
(#8430)

Co-authored-by: Kano Kunihiko <kkano@heroz.co.jp>
2023-07-28 15:07:03 -07:00
Jeffrey Wang
e0de62f6da Add RoPE Scaling params from llamacpp (#8422)
Description:
Just adding parameters from `llama-python-cpp` that support RoPE
scaling.
@hwchase17, @baskaryan

sources:
papers and explanation:
https://kaiokendev.github.io/context
llamacpp conversation:
https://github.com/ggerganov/llama.cpp/discussions/1965 
Supports models like:
https://huggingface.co/conceptofmind/LLongMA-2-13b
2023-07-28 14:42:41 -07:00
Bagatur
2db2987b1b add experimental ref (#8435) 2023-07-28 14:26:47 -07:00
Harrison Chase
fab24457bc remove code (#8425) 2023-07-28 13:19:44 -07:00
Harrison Chase
3a78450883 update experimental (#8402)
some changes were made to experimental, porting them over
2023-07-28 13:01:36 -07:00
Harrison Chase
af7e70d4af expose function for converting messages to messages (#8426) 2023-07-28 13:00:54 -07:00
Eugene Yurtsev
06bdbe06fe PromptTemplate update documentation and expand kwarg (#8423)
# PromptTemplate

* Update documentation to highlight the classmethod for instantiating a
prompt template.
* Expand kwargs in the classmethod to make parameters easier to discover

This PR got reverted here:
https://github.com/langchain-ai/langchain/pull/8395/files
2023-07-28 14:11:49 -04:00
Eugene Yurtsev
e62a1686e2 ChatPromptTemplate: minor fix in doc string (#8424)
Minor fix in doc-string to use `ai` rather than `assistant`
2023-07-28 13:01:13 -04:00
Eugene Yurtsev
760c278fe0 ChatPromptTemplate: Expand support for message formats and documentation (#8244)
* Expands support for a variety of message formats in the
`from_messages` classmethod. Ideally, we could deprecate the other
on-ramps to reduce the amount of classmethods users need to know about.
* Expand documentation with code examples.
2023-07-28 12:48:08 -04:00
Bagatur
61dd92f821 bump 246 (#8410) 2023-07-28 01:18:37 -07:00
Harrison Chase
394b67ab92 add kwargs to llm runnables (#8388) 2023-07-28 09:13:11 +01:00
HeTaoPKU
d5884017a9 Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
James Campbell
0ad2d5f27a [nit] Add default value for ChatOpenAI client (#7939)
Micro convenience PR to avoid warning regarding missing `client`
parameter. It is always set during initialization.

@baskaryan

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:38:32 -07:00
Harrison Chase
82df923f37 Merge branch 'master' of github.com:hwchase17/langchain 2023-07-27 22:01:20 -07:00
Harrison Chase
1b0bfa54cf cr 2023-07-27 22:00:52 -07:00
Jeff Vestal
c7ff5f19a8 ElasticKnnSearch rewrite - bug fix - return Document (#8180)
Fixes: 
https://github.com/hwchase17/langchain/issues/7117
https://github.com/hwchase17/langchain/issues/5760

Adding back `create_index` , `add_texts`, `from_texts` to
ElasticKnnSearch

`from_texts` matches standard `from_texts` methods as quick start up
method

`knn_search` and `hybrid_result` return a list of [`Document()`,
`score`,]

# Test `from_texts` for quick start
```
# create new index using from_text

from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
from langchain.embeddings import ElasticsearchEmbeddings

model_id = "sentence-transformers__all-distilroberta-v1" 
dims = 768
es_cloud_id = ""
es_user = ""
es_password = ""
test_index = "knn_test_index_305"

embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    #input_field=input_field,
    es_cloud_id=es_cloud_id,
    es_user=es_user,
    es_password=es_password,
)

# add texts and create class instance
texts = ["This is a test document", "This is another test document"]
knnvectorsearch = ElasticKnnSearch.from_texts(
    texts=texts,
    embedding=embeddings,
    index_name= test_index,
    vector_query_field='vector',
    query_field='text',
    model_id=model_id,
    dims=dims,
	es_cloud_id=es_cloud_id, 
	es_user=es_user, 
	es_password=es_password
)

# Test `add_texts` method
texts2 = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knnvectorsearch.add_texts(texts2)

query = "Hello"
knn_result = knnvectorsearch.knn_search(query = query, model_id= model_id, k=2)

hybrid_result = knnvectorsearch.knn_hybrid_search(query = query, model_id= model_id, k=2)

```

The  mapping is as follows:
```
{
  "knn_test_index_012": {
    "mappings": {
      "properties": {
        "text": {
          "type": "text"
        },
        "vector": {
          "type": "dense_vector",
          "dims": 768,
          "index": true,
          "similarity": "dot_product"
        }
      }
    }
  }
}
```

# Check response type
```
>>> hybrid_result
[(Document(page_content='Hello, world!', metadata={}), 0.94232327), (Document(page_content='I love Python.', metadata={}), 0.5321523)]

>>> hybrid_result[0]
(Document(page_content='Hello, world!', metadata={}), 0.94232327)

>>> hybrid_result[0][0]
Document(page_content='Hello, world!', metadata={})

>>> type(hybrid_result[0][0])
<class 'langchain.schema.document.Document'>
```

# Test with existing Index
```
from langchain.vectorstores.elastic_vector_search import ElasticKnnSearch
from langchain.embeddings import ElasticsearchEmbeddings

## Initialize ElasticsearchEmbeddings
model_id = "sentence-transformers__all-distilroberta-v1" 
dims = 768
es_cloud_id = 
es_user = ""
es_password = ""
test_index = "knn_test_index_012"

embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    es_cloud_id=es_cloud_id,
    es_user=es_user,
    es_password=es_password,
)

## Initialize ElasticKnnSearch
knn_search = ElasticKnnSearch(
	es_cloud_id=es_cloud_id, 
	es_user=es_user, 
	es_password=es_password, 
	index_name= test_index, 
	embedding= embeddings
)


## Test adding vectors

### Test `add_texts` method when index created
texts = ["Hello, world!", "Machine learning is fun.", "I love Python."]
knn_search.add_texts(texts)

```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:00:18 -07:00
Harrison Chase
a221a9ced0 Harrison/sql query (#8370)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-27 21:55:17 -07:00
Bagatur
a1a650c743 Bagatur/from texts bug fix (#8394)
---------

Co-authored-by: Davit Buniatyan <davit@loqsh.com>
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
Co-authored-by: Ivo Stranic <istranic@gmail.com>
2023-07-27 21:52:38 -07:00
Jiayi Ni
1efb9bae5f FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Bagatur
877d384bc9 Revert "PromptTemplate update documentation and expand kwargs (#8234)" (#8395)
fyi @eyurtsev was failing a unit test
2023-07-27 21:11:10 -07:00
Gordon Clark
e66759cc9d Github add "Create PR" tool + Docs update (#8235)
Added a new tool to the Github toolkit called **Create Pull Request.**
Now we can make our own langchain contributor in langchain 😁

In order to have somewhere to pull from, I also added a new env var,
"GITHUB_BASE_BRANCH." This will allow the existing env var,
"GITHUB_BRANCH," to be a working branch for the bot (so that it doesn't
have to always commit on the main/master). For example, if you want the
bot to work in a branch called `bot_dev` and your repo base is `main`,
you would set up the vars like:
```
GITHUB_BASE_BRANCH = "main"
GITHUB_BRANCH = "bot_dev"
``` 

Maintainer responsibilities:
  - Agents / Tools / Toolkits: @hinthornw
2023-07-27 19:19:44 -07:00
William FH
ecd4aae818 Few Shot Chat Prompt (#8038)
Proposal for a few shot chat message example selector

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-27 18:46:10 -07:00
Eugene Yurtsev
6dd18eee26 PromptTemplate update documentation and expand kwargs (#8234)
# PromptTemplate

* Update documentation to highlight the classmethod for instantiating a
prompt template.
* Expand kwargs in the classmethod to make parameters easier to discover
2023-07-27 18:11:39 -07:00
Karan V
a003a0baf6 fix(petals) allows to run models that aren't Bloom (Support for LLama and newer models) (#8356)
In this PR:

- Removed restricted model loading logic for Petals-Bloom
- Removed petals imports (DistributedBloomForCausalLM,
BloomTokenizerFast)
- Instead imported more generalized versions of loader
(AutoDistributedModelForCausalLM, AutoTokenizer)
- Updated the Petals example notebook to allow for a successful
installation of Petals in Apple Silicon Macs

- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 18:01:04 -07:00
lars.gersmann
e758e9e7f5 fix(openapi): openapi chain will work without/empty description/summa… (#8351)
Description: 

This PR will enable the Open API chain to work with valid Open API
specifications missing `description` and `summary` properties for path
and operation nodes in open api specs.

Since both `description` and `summary` property are declared optional we
cannot be sure they are defined. This PR resolves this problem by
providing an empty (`''`) description as fallback.

The previous behavior of the Open API chain was that the underlying LLM
(OpenAI) throw ed an exception since `None` is not of type string:

```
openai.error.InvalidRequestError: None is not of type 'string' - 'functions.0.description'
```

Using this PR the Open API chain will succeed also using Open API specs
lacking `description` and `summary` properties for path and operation
nodes.

Thanks for your amazing work !

Tag maintainer: @baskaryan

---------

Co-authored-by: Lars Gersmann <lars.gersmann@cm4all.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:58:43 -07:00
ljeagle
caa6caeb8a Upgrade the AwaDB from v0.3.7 to v0.3.9 and change the default embeddings (#8281)
1. Upgrade the AwaDB from v0.3.7 to v0.3.9
2. Change the default embedding to AwaEmbedding

---------

Co-authored-by: ljeagle <awadb.vincent@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-27 17:20:50 -07:00
Harrison Chase
25b8cc7e3d Harrison/update memory docs (#8384)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:18:19 -07:00
Holt Skinner
d7e6770de8 refactor: Code refactoring & simplification for Google Cloud Enterprise Search retriever (#8369)
Followup to https://github.com/langchain-ai/langchain/pull/7857

- Changes `_convert_search_response()` to use object attributes instead
of converting to dictionary
- Simplifies logic for readability
2023-07-27 17:13:49 -07:00
Taozhi Wang
594f195e54 Add embeddings for AwaEmbedding (#8353)
- Description: Adds AwaEmbeddings class for embeddings, which provides
users with a convenient way to do fine-tuning, as well as the potential
need for multimodality

  - Tag maintainer: @baskaryan

Create `Awa.ipynb`: an example notebook for AwaEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/awa.py`: The embedding class
Create `embeddings/test_awa.py`: The test file.

---------

Co-authored-by: taozhiwang <taozhiwa@gmail.com>
2023-07-27 17:08:00 -07:00
thehunmonkgroup
ba4e82bb47 fix missing _identifying_params() in _VertexAICommon (#8303)
Full set of params are missing from Vertex* LLMs when `dict()` method is
called.

```
>>> from langchain.chat_models.vertexai import ChatVertexAI
>>> from langchain.llms.vertexai import VertexAI
>>> chat_llm = ChatVertexAI()
l>>> llm = VertexAI()
>>> chat_llm.dict()
{'_type': 'vertexai'}
>>> llm.dict()
{'_type': 'vertexai'}
```

This PR just uses the same mechanism used elsewhere to expose the full
params.

Since `_identifying_params()` is on the `_VertexAICommon` class, it
should cover the chat and non-chat cases.
2023-07-27 16:59:10 -07:00
bheroder
dc3ca44e05 Add an example for azure ml managed feature store (#8324)
We are adding an example of how one can connect to azure ml managed
feature store and use such a prompt template in a llm chain. @baskaryan
2023-07-27 16:56:06 -07:00
Caitlin2694
b2e4b9dca4 Fix exception caused by restrictions in OWL (#8341)
Description: Fix exception caused by restrictions in OWL
Issue: #8331
Dependencies: none
Maintainer: @baskaryan
2023-07-27 16:51:32 -07:00
Harrison Chase
cddd8ae83d update release yml (#8364)
only do the step that tags and adds release notes if its langchain
2023-07-27 16:49:04 -07:00
Nikita Pokidyshev
f499e6ea6a Add FunctionMessage to _message_from_dict (#8374)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:45:27 -07:00
evelynmitchell
539574670c Update tot.ipynb (#8387)
Spelling error fix

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:44:41 -07:00
emarco177
2ab13ab743 added unit tests for mrkl output_parser.py (#8321)
- Description: added unit tests for mrkl output_parser.py, 
  - Tag maintainer: @hinthornw
  - Twitter handle: EdenEmarco177
2023-07-27 13:46:06 -07:00
Sachin Varghese
01217b2247 Update sql database agent example (#8354)
This PR fixes a minor documentation issue on the SQL database toolkit
example notebook.
2023-07-27 13:44:02 -07:00
Bagatur
55beab326c cleanup warnings (#8379) 2023-07-27 13:43:05 -07:00
William FH
41524304bf Update local script for docs build (#8377) 2023-07-27 13:13:59 -07:00
Harrison Chase
f5bf893035 rename to str output parser (#8373) 2023-07-27 12:57:34 -07:00
William FH
0e9e5b5202 Retry events on any run type (#8375) 2023-07-27 12:56:46 -07:00
Bagatur
68763bd25f mv popular and additional chains to use cases (#8242) 2023-07-27 12:55:13 -07:00
William FH
ff98fad2d9 Add Retry Events (#8053)
![image](https://github.com/hwchase17/langchain/assets/13333726/59a5c3b4-4367-47e6-9f58-5b6557576a8a)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 12:39:39 -07:00
William FH
94a693e2ee Link to use cases from tutorials (#8371) 2023-07-27 11:54:04 -07:00
Nuno Campos
0eca3e7d90 Add Runnable.bind method to attach kwargs to a Runnable that will be passed to all invoke/stream/batch calls when it is run (#8368)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 11:16:30 -07:00
Harrison Chase
cf608f876b update link 2023-07-27 09:47:57 -07:00
Nuno Campos
1bbadde77b Support using RunnableMap directly (#8317)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 17:24:29 +01:00
Bagatur
944321c6ab bump 245 (#8359) 2023-07-27 06:53:24 -07:00
Rubén Barragán
ef6332ead6 Support loading files from Dropbox (#8271)
## Description
This commit introduces the `DropboxLoader` class, a new document loader
that allows loading files from Dropbox into the application. The loader
relies on a Dropbox app, which requires creating an app on Dropbox,
obtaining the necessary scope permissions, and generating an access
token. Additionally, the dropbox Python package is required.

The `DropboxLoader` class is designed to be used as a document loader
for processing various file types, including text files, PDFs, and
Dropbox Paper files.

## Dependencies
`pip install dropbox` and `pip install unstructured` for PDF reading.

## Tag maintainer
@rlancemartin, @eyurtsev (from Data Loaders). I'd appreciate some
feedback here 🙏 .

## Social Networks
https://github.com/rubenbarragan
https://www.linkedin.com/in/rgbarragan/
https://twitter.com/RubenBarraganP

---------

Co-authored-by: Ruben Barragan <rbarragan@Rubens-MacBook-Air.local>
2023-07-27 06:36:08 -07:00
Pranay Chandekar
41bb3a6f9b fixed the bug #8343 (#8345)
- Issue: #8343

Signed-off-by: Pranay Chandekar <pranayc6@gmail.com>
2023-07-27 06:33:15 -07:00
Ikko Eltociear Ashimine
934ea80780 Fix typo in Etherscan.ipynb (#8340)
specifc  -> specific
2023-07-27 01:57:19 -07:00
Martin Krasser
93260a9922 Fix broken make targets format_diff and lint_diff (#8344)
Since the refactoring into sub-projects `libs/langchain` and
`libs/experimental`, the `make` targets `format_diff` and `lint_diff` do
not work anymore when running `make` from these subdirectories. Reason
is that

```
PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
```

generates paths from the project's root directory instead of the
corresponding subdirectories. This PR fixes this by adding a
`--relative` command line option.

- Tag maintainer: @baskaryan
2023-07-27 01:56:55 -07:00
Harrison Chase
ae78ef7fe6 bump experimental to 005 (#8339) 2023-07-26 21:46:28 -07:00
Vadim Gubergrits
e7e5cb9d08 Tree of Thought introducing a new ToTChain. (#5167)
# [WIP] Tree of Thought introducing a new ToTChain.

This PR adds a new chain called ToTChain that implements the ["Large
Language Model Guided
Tree-of-Though"](https://arxiv.org/pdf/2305.08291.pdf) paper.

There's a notebook example `docs/modules/chains/examples/tot.ipynb` that
shows how to use it.


Implements #4975


## Who can review?

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:

- @hwchase17
- @vowelparrot

---------

Co-authored-by: Vadim Gubergrits <vgubergrits@outbox.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-26 21:29:39 -07:00
William FH
412e29d436 Fix notebook that 'cannot convert' via nbdoc_build (#8333) 2023-07-26 18:54:23 -07:00
William FH
9eb7e6e27f Delete Old Evals Examples (#8252)
Still retain:
- Comparison Examples
- Data + QA walkthrough
- QA (but really minimize it)
2023-07-26 18:46:54 -07:00
Saurabh Misra
db9d5b213a Optimize the cosine_similarity_top_k function performance (#8151)
Optimizing important numerical code and making it run faster.

Performance went up by 1.48x (148%). Runtime went down from 138715us to
56020us

Optimization explanation:

The `cosine_similarity_top_k` function is where we made the most
significant optimizations.
Instead of sorting the entire score_array which needs considering all
elements, `np.argpartition` is utilized to find the top_k largest scores
indices, this operation has a time complexity of O(n), higher
performance than sorting. Remember, `np.argpartition` doesn't guarantee
the order of the values. So we need to use argsort() to get the indices
that would sort our top-k values after partitioning, which is much more
efficient because it only sorts the top-K elements, not the entire
array. Then to get the row and column indices of sorted top_k scores in
the original score array, we use `np.unravel_index`. This operation is
more efficient and cleaner than a list comprehension.

The code has been tested for correctness by running the following
snippet on both the original function and the optimized function and
averaged over 5 times.
```
def test_cosine_similarity_top_k_large_matrices():
    X = np.random.rand(1000, 1000)
    Y = np.random.rand(1000, 1000)
    top_k = 100
    score_threshold = 0.5
    gc.disable()
    counter = time.perf_counter_ns()
    return_value = cosine_similarity_top_k(X, Y, top_k, score_threshold)
    duration = time.perf_counter_ns() - counter
    gc.enable()
```

@hwaking @hwchase17 @jerwelborn 

Unit tests pass, I also generated more regression tests which all
passed.
2023-07-26 18:03:49 -07:00
Fabrizio Ruocco
ddc353a768 Azure Cognitive Search: Custom index and scoring profile support (#6843)
Description: Adding support for custom index and scoring profile support
in Azure Cognitive Search
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 17:58:01 -07:00
Leonid Ganeline
ed24de8467 removed namespace title (#8208)
This change compacts the left-side Navbar (ToC) of the [API
Reference](https://api.python.langchain.com/en/latest/api_reference.html).
Now almost each namespace item is split into two lines. For example
`langchain.chat_models: Chat Models`
We remove the `Chat Models` and leave one the `langchain.chat_models`. 
This effectively compacts the navbar and increases the main page's
usability. On my screen, it reduces # of lines in Toc from 28 t to 18,
which is huge.

Removing the namespace "title" (like `Chat Models`) does not remove any
information because the title is composed directly from the namespace.
API Reference users are developers. Usability for them is very
important. We see less text => we find faster.
2023-07-26 16:45:23 -07:00
Kacper Łukawski
c5988c1d4b Implement async support for Cohere (#8237)
This PR introduces async API support for Cohere, both LLM and
embeddings. It requires updating `cohere` package to `^4`.

Tagging @hwchase17, @baskaryan, @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:51:18 -07:00
Daniel Alexander Brenot
bf1357f584 Added async support to PlanAndExecute Chain (#8239)
- Description: Adds async support to the PlanAndExecute Chain

Maintainer responsibilities:
  - Async: @agola11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:16:07 -07:00
Bastin Florian
a3ac9b23eb feat(confluence): add markdown format option (#8246)
# Description:
**Add the possibility to keep text as Markdown in the ConfluenceLoader**
Add a bool variable that allows to keep the Markdown format of the
Confluence pages.
It is useful because it allows to use MarkdownHeaderTextSplitter as a
DataSplitter.
If this variable in set to True in the load() method, the pages are
extracted using the markdownify library.

  # Issue: 
[4407](https://github.com/langchain-ai/langchain/issues/4407)
  # Dependencies: 
Add the markdownify library
  # Tag maintainer:
 @rlancemartin, @eyurtsev
  # Twitter handle:
 FloBastinHeyI - https://twitter.com/FloBastinHeyI

---------

Co-authored-by: Florian Bastin <florian.bastin@octo.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 15:00:27 -07:00
Leonid Ganeline
ee6ff96e28 docstrings cleanup (#8311)
- added missed docstrings
 - changed docstrings into consistent format
  
@baskaryan
2023-07-26 14:13:10 -07:00
Bagatur
ceab0a7c1f update api ref style (#8318) 2023-07-26 14:12:44 -07:00
Rohit Gupta
e5dba8978a Avoid re-computation of embedding in weaviate similarity search (#8284)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 13:31:55 -07:00
William FH
01a9b06400 Add api cross ref linking (#8275)
Example of how it would show up in our python docs:


![image](https://github.com/langchain-ai/langchain/assets/13333726/0f0a88cc-ba4a-4778-bc47-118c66807f15)


Examples added to the reference docs:

https://api.python.langchain.com/en/wfh-api_crosslink/vectorstores/langchain.vectorstores.chroma.Chroma.html#langchain.vectorstores.chroma.Chroma


![image](https://github.com/langchain-ai/langchain/assets/13333726/dcd150de-cb56-4d42-b49a-a76a002a5a52)
2023-07-26 12:38:58 -07:00
Nuno Campos
a612800ef0 Runnable single protocol (#7800)
Objects implementing Runnable: BasePromptTemplate, LLM, ChatModel,
Chain, Retriever, OutputParser

- [x] Implement Runnable in base Retriever
- [x] Raise TypeError in operator methods for unsupported things 
- [x] Implement dict which calls values in parallel and outputs dict
with results
- [x] Merge in `+` for prompts
- [x] Confirm precedence order for operators, ideal would be `+` `|`,
https://docs.python.org/3/reference/expressions.html#operator-precedence
- [x] Add support for openai functions, ie. Chat Models must return
messages
- [x] Implement BaseMessageChunk return type for BaseChatModel, a
subclass of BaseMessage which implements __add__ to return
BaseMessageChunk, concatenating all str args
- [x] Update implementation of stream/astream for llm and chat models to
use new `_stream`, `_astream` optional methods, with default
implementation in base class `raise NotImplementedError` use
https://stackoverflow.com/a/59762827 to see if it is implemented in base
class
- [x] Delete the IteratorCallbackHandler (leave the async one because
people using)
- [x] Make BaseLLMOutputParser implement Runnable, accepting either str
or BaseMessage
---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-26 12:16:46 -07:00
Bharat
04a4d3e312 Fixes #8310 Fix maximum recursion depth exceeded error (#8313)
ElasticsearchVectorStore.as_retriever() method is returning 
`RecursionError: maximum recursion depth exceeded` 
because of incorrect field reference in
 `embeddings()` method

  - Description: Fix RecursionError because of a typo
  - Issue: the issue #8310 
  - Dependencies: None,
  - Tag maintainer: @eyurtsev
  - Twitter handle: bpatel
2023-07-26 12:15:37 -07:00
Caitlin2694
b9db3dd09b Fix "missing key op" RDFGraph OWL serialization (#8276)
Replace this comment with:
- Description: Fix "missing key op" error in RDFGraph OWL Serialization
  - Issue: #8263
  - Dependencies: None
  - Tag maintainer: @baskaryan
2023-07-26 12:14:56 -07:00
Eugene Yurtsev
862e9aed66 ChatPromptTemplate: Update doc-strings, update from_role_strings behavior (#8308)
* Update doc-strings in ChatPromptTemplate
* Update from_role_strings classmethod to use well known roles
2023-07-26 15:02:36 -04:00
1278 changed files with 58151 additions and 23246 deletions

View File

@@ -15,7 +15,11 @@ You may use the button above, or follow these steps to open this repo in a Codes
For more info, check out the [GitHub documentation](https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace).
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<yourusername>/<yourclonedreponame>
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
@@ -25,7 +29,7 @@ You can also follow these steps to open this repo in a container using the VS Co
2. Open a locally cloned copy of the code:
- Clone this repository to your local filesystem.
- Fork and Clone this repository to your local filesystem.
- Press <kbd>F1</kbd> and select the **Dev Containers: Open Folder in Container...** command.
- Select the cloned copy of this folder, wait for the container to start, and try things out!

View File

@@ -1,28 +1,20 @@
<!-- Thank you for contributing to LangChain!
Replace this comment with:
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
See contribution guidelines for more information on how to write/run tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use.
2. an example notebook showing its use. These live is docs/extras directory.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the same people again.
See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->

View File

@@ -37,6 +37,7 @@ jobs:
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
if: ${{ inputs.working-directory == 'libs/langchain' }}
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -20,3 +20,5 @@ jobs:
uses: actions/checkout@v3
- name: Codespell
uses: codespell-project/actions-codespell@v2
with:
skip: guide_imports.json

View File

@@ -1,5 +1,5 @@
---
name: libs/langchain-experimental CI
name: libs/experimental CI
on:
push:

View File

@@ -1,5 +1,5 @@
---
name: libs/langchain-experimental Release
name: libs/experimental Release
on:
pull_request:

42
.github/workflows/scheduled_test.yml vendored Normal file
View File

@@ -0,0 +1,42 @@
name: Scheduled tests
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.4.2"
jobs:
build:
defaults:
run:
working-directory: libs/langchain
runs-on: ubuntu-latest
environment: Scheduled testing
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: "1.4.2"
working-directory: libs/langchain
install-command: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration
- name: Run tests
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: |
make scheduled_tests
shell: bash

1
.gitignore vendored
View File

@@ -162,6 +162,7 @@ docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/api_reference.rst
docs/api_reference/experimental_api_reference.rst
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/

View File

@@ -43,6 +43,10 @@ Now:
`from langchain_experimental.sql import SQLDatabaseChain`
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out [`create_sql_query_chain`](https://github.com/langchain-ai/langchain/blob/master/docs/extras/use_cases/tabular/sql_query.ipynb)
`from langchain.chains import create_sql_query_chain`
## `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.

View File

@@ -43,7 +43,12 @@ spell_fix:
help:
@echo '----'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'clean - run docs_clean and api_docs_clean'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'api_docs_build - build the API Reference documentation'
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
@echo 'spell_check - run codespell on the project'
@echo 'spell_fix - run codespell on the project and fix the errors'

View File

@@ -12,16 +12,16 @@
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/hwchase17/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/hwchase17/langchain)
[![GitHub star chart](https://img.shields.io/github/stars/hwchase17/langchain?style=social)](https://star-history.com/#hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/hwchase17/langchain)](https://libraries.io/github/hwchase17/langchain)
[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/hwchase17/langchain)](https://github.com/hwchase17/langchain/issues)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
**Production Support:** As you move your LangChains into production, we'd love to offer more comprehensive support.
Please fill out [this form](https://6w1pwbss0py.typeform.com/to/rrbrdTH2) and we'll set up a dedicated support Slack channel.
**Production Support:** As you move your LangChains into production, we'd love to offer more hands-on support.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to share more about what you're building, and our team will get in touch.
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.

View File

@@ -13,5 +13,6 @@ cp -r {docs_skeleton,snippets} _dist
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
poetry run nbdoc_build
poetry run python generate_api_reference_links.py
yarn install
yarn start

View File

@@ -7,20 +7,67 @@
# -- Path setup --------------------------------------------------------------
import json
import os
import sys
from pathlib import Path
import toml
from docutils import nodes
from sphinx.util.docutils import SphinxDirective
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
import toml
_DIR = Path(__file__).parent.absolute()
sys.path.insert(0, os.path.abspath("."))
sys.path.insert(0, os.path.abspath("../../libs/langchain"))
sys.path.insert(0, os.path.abspath("../../libs/experimental"))
with open("../../libs/langchain/pyproject.toml") as f:
with (_DIR.parents[1] / "libs" / "langchain" / "pyproject.toml").open("r") as f:
data = toml.load(f)
with (_DIR / "guide_imports.json").open("r") as f:
imported_classes = json.load(f)
class ExampleLinksDirective(SphinxDirective):
"""Directive to generate a list of links to examples.
We have a script that extracts links to API reference docs
from our notebook examples. This directive uses that information
to backlink to the examples from the API reference docs."""
has_content = False
required_arguments = 1
def run(self):
"""Run the directive.
Called any time :example_links:`ClassName` is used
in the template *.rst files."""
class_or_func_name = self.arguments[0]
links = imported_classes.get(class_or_func_name, {})
list_node = nodes.bullet_list()
for doc_name, link in links.items():
item_node = nodes.list_item()
para_node = nodes.paragraph()
link_node = nodes.reference()
link_node["refuri"] = link
link_node.append(nodes.Text(doc_name))
para_node.append(link_node)
item_node.append(para_node)
list_node.append(item_node)
if list_node.children:
title_node = nodes.title()
title_node.append(nodes.Text(f"Examples using {class_or_func_name}"))
return [title_node, list_node]
return [list_node]
def setup(app):
app.add_directive("example_links", ExampleLinksDirective)
# -- Project information -----------------------------------------------------
@@ -53,6 +100,9 @@ extensions = [
]
source_suffix = [".rst"]
# some autodoc pydantic options are repeated in the actual template.
# potentially user error, but there may be bugs in the sphinx extension
# with options not being passed through correctly (from either the location in the code)
autodoc_pydantic_model_show_json = False
autodoc_pydantic_field_list_validators = False
autodoc_pydantic_config_members = False
@@ -65,13 +115,6 @@ autodoc_member_order = "groupwise"
autoclass_content = "both"
autodoc_typehints_format = "short"
autodoc_default_options = {
"members": True,
"show-inheritance": True,
"inherited-members": "BaseModel",
"undoc-members": True,
"special-members": "__call__",
}
# autodoc_typehints = "description"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["templates"]

View File

@@ -1,83 +1,263 @@
"""Script for auto-generating api_reference.rst"""
import glob
import re
"""Script for auto-generating api_reference.rst."""
import importlib
import inspect
import typing
from pathlib import Path
from typing import TypedDict, Sequence, List, Dict, Literal, Union
from enum import Enum
from pydantic import BaseModel
ROOT_DIR = Path(__file__).parents[2].absolute()
HERE = Path(__file__).parent
PKG_DIR = ROOT_DIR / "libs" / "langchain" / "langchain"
WRITE_FILE = Path(__file__).parent / "api_reference.rst"
EXP_DIR = ROOT_DIR / "libs" / "experimental" / "langchain_experimental"
WRITE_FILE = HERE / "api_reference.rst"
EXP_WRITE_FILE = HERE / "experimental_api_reference.rst"
def load_members() -> dict:
members: dict = {}
for py in glob.glob(str(PKG_DIR) + "/**/*.py", recursive=True):
module = py[len(str(PKG_DIR)) + 1 :].replace(".py", "").replace("/", ".")
top_level = module.split(".")[0]
if top_level not in members:
members[top_level] = {"classes": [], "functions": []}
with open(py, "r") as f:
for line in f.readlines():
cls = re.findall(r"^class ([^_].*)\(", line)
members[top_level]["classes"].extend([module + "." + c for c in cls])
func = re.findall(r"^def ([^_].*)\(", line)
afunc = re.findall(r"^async def ([^_].*)\(", line)
func_strings = [module + "." + f for f in func + afunc]
members[top_level]["functions"].extend(func_strings)
return members
ClassKind = Literal["TypedDict", "Regular", "Pydantic", "enum"]
def construct_doc(members: dict) -> str:
full_doc = """\
.. _api_reference:
class ClassInfo(TypedDict):
"""Information about a class."""
=============
API Reference
=============
name: str
"""The name of the class."""
qualified_name: str
"""The fully qualified name of the class."""
kind: ClassKind
"""The kind of the class."""
is_public: bool
"""Whether the class is public or not."""
class FunctionInfo(TypedDict):
"""Information about a function."""
name: str
"""The name of the function."""
qualified_name: str
"""The fully qualified name of the function."""
is_public: bool
"""Whether the function is public or not."""
class ModuleMembers(TypedDict):
"""A dictionary of module members."""
classes_: Sequence[ClassInfo]
functions: Sequence[FunctionInfo]
def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
"""Load all members of a module.
Args:
module_path: Path to the module.
namespace: the namespace of the module.
Returns:
list: A list of loaded module objects.
"""
classes_: List[ClassInfo] = []
functions: List[FunctionInfo] = []
module = importlib.import_module(module_path)
for name, type_ in inspect.getmembers(module):
if not hasattr(type_, "__module__"):
continue
if type_.__module__ != module_path:
continue
if inspect.isclass(type_):
if type(type_) == typing._TypedDictMeta: # type: ignore
kind: ClassKind = "TypedDict"
elif issubclass(type_, Enum):
kind = "enum"
elif issubclass(type_, BaseModel):
kind = "Pydantic"
else:
kind = "Regular"
classes_.append(
ClassInfo(
name=name,
qualified_name=f"{namespace}.{name}",
kind=kind,
is_public=not name.startswith("_"),
)
)
elif inspect.isfunction(type_):
functions.append(
FunctionInfo(
name=name,
qualified_name=f"{namespace}.{name}",
is_public=not name.startswith("_"),
)
)
else:
continue
return ModuleMembers(
classes_=classes_,
functions=functions,
)
def _merge_module_members(
module_members: Sequence[ModuleMembers],
) -> ModuleMembers:
"""Merge module members."""
classes_: List[ClassInfo] = []
functions: List[FunctionInfo] = []
for module in module_members:
classes_.extend(module["classes_"])
functions.extend(module["functions"])
return ModuleMembers(
classes_=classes_,
functions=functions,
)
def _load_package_modules(
package_directory: Union[str, Path]
) -> Dict[str, ModuleMembers]:
"""Recursively load modules of a package based on the file system.
Traversal based on the file system makes it easy to determine which
of the modules/packages are part of the package vs. 3rd party or built-in.
Parameters:
package_directory: Path to the package directory.
Returns:
list: A list of loaded module objects.
"""
package_path = (
Path(package_directory)
if isinstance(package_directory, str)
else package_directory
)
modules_by_namespace = {}
package_name = package_path.name
for file_path in package_path.rglob("*.py"):
if file_path.name.startswith("_"):
continue
relative_module_name = file_path.relative_to(package_path)
if relative_module_name.name.startswith("_"):
continue
# Get the full namespace of the module
namespace = str(relative_module_name).replace(".py", "").replace("/", ".")
# Keep only the top level namespace
top_namespace = namespace.split(".")[0]
try:
module_members = _load_module_members(
f"{package_name}.{namespace}", namespace
)
# Merge module members if the namespace already exists
if top_namespace in modules_by_namespace:
existing_module_members = modules_by_namespace[top_namespace]
_module_members = _merge_module_members(
[existing_module_members, module_members]
)
else:
_module_members = module_members
modules_by_namespace[top_namespace] = _module_members
except ImportError as e:
print(f"Error: Unable to import module '{namespace}' with error: {e}")
return modules_by_namespace
def _construct_doc(pkg: str, members_by_namespace: Dict[str, ModuleMembers]) -> str:
"""Construct the contents of the reference.rst file for the given package.
Args:
pkg: The package name
members_by_namespace: The members of the package, dict organized by top level
module contains a list of classes and functions
inside of the top level namespace.
Returns:
The contents of the reference.rst file.
"""
full_doc = f"""\
=======================
``{pkg}`` API Reference
=======================
"""
for module, _members in sorted(members.items(), key=lambda kv: kv[0]):
classes = _members["classes"]
namespaces = sorted(members_by_namespace)
for module in namespaces:
_members = members_by_namespace[module]
classes = _members["classes_"]
functions = _members["functions"]
if not (classes or functions):
continue
module_title = module.replace("_", " ").title()
if module_title == "Llms":
module_title = "LLMs"
section = f":mod:`langchain.{module}`: {module_title}"
section = f":mod:`{pkg}.{module}`"
underline = "=" * (len(section) + 1)
full_doc += f"""\
{section}
{'=' * (len(section) + 1)}
{underline}
.. automodule:: langchain.{module}
.. automodule:: {pkg}.{module}
:no-members:
:no-inherited-members:
"""
if classes:
cstring = "\n ".join(sorted(classes))
full_doc += f"""\
Classes
--------------
.. currentmodule:: langchain
.. currentmodule:: {pkg}
.. autosummary::
:toctree: {module}
:template: class.rst
{cstring}
"""
for class_ in classes:
if not class_["is_public"]:
continue
if class_["kind"] == "TypedDict":
template = "typeddict.rst"
elif class_["kind"] == "enum":
template = "enum.rst"
elif class_["kind"] == "Pydantic":
template = "pydantic.rst"
else:
template = "class.rst"
full_doc += f"""\
:template: {template}
{class_["qualified_name"]}
"""
if functions:
fstring = "\n ".join(sorted(functions))
_functions = [f["qualified_name"] for f in functions if f["is_public"]]
fstring = "\n ".join(sorted(_functions))
full_doc += f"""\
Functions
--------------
.. currentmodule:: langchain
.. currentmodule:: {pkg}
.. autosummary::
:toctree: {module}
:template: function.rst
{fstring}
@@ -86,10 +266,17 @@ Functions
def main() -> None:
members = load_members()
full_doc = construct_doc(members)
"""Generate the reference.rst file for each package."""
lc_members = _load_package_modules(PKG_DIR)
lc_doc = ".. _api_reference:\n\n" + _construct_doc("langchain", lc_members)
with open(WRITE_FILE, "w") as f:
f.write(full_doc)
f.write(lc_doc)
exp_members = _load_package_modules(EXP_DIR)
exp_doc = ".. _experimental_api_reference:\n\n" + _construct_doc(
"langchain_experimental", exp_members
)
with open(EXP_WRITE_FILE, "w") as f:
f.write(exp_doc)
if __name__ == "__main__":

File diff suppressed because one or more lines are too long

View File

@@ -1,9 +0,0 @@
Evaluation
=======================
LangChain has a number of convenient evaluation chains you can use off the shelf to grade your models' oupputs.
.. automodule:: langchain.evaluation
:members:
:undoc-members:
:inherited-members:

View File

@@ -1,4 +1,5 @@
-e libs/langchain
-e libs/experimental
autodoc_pydantic==1.8.0
myst_parser
nbsphinx==0.8.9
@@ -10,4 +11,4 @@ sphinx-panels
toml
myst_nb
sphinx_copybutton
pydata-sphinx-theme==0.13.1
pydata-sphinx-theme==0.13.1

View File

@@ -5,17 +5,6 @@
.. autoclass:: {{ objname }}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
{% block attributes %}
{% if attributes %}
.. rubric:: {{ _('Attributes') }}
@@ -26,3 +15,22 @@
{%- endfor %}
{% endif %}
{% endblock %}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% for item in methods %}
.. automethod:: {{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,14 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% for item in attributes %}
.. autoattribute:: {{ item }}
{% endfor %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,8 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autofunction:: {{ objname }}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,22 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autopydantic_model:: {{ objname }}
:model-show-json: False
:model-show-config-summary: False
:model-show-validator-members: False
:model-show-field-summary: False
:field-signature-prefix: param
:members:
:undoc-members:
:inherited-members:
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
{% block attributes %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,14 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% for item in attributes %}
.. autoattribute:: {{ item }}
{% endfor %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -19,7 +19,7 @@
{% block htmltitle %}
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
{% endblock %}
<link rel="canonical" href="http://scikit-learn.org/stable/{{pagename}}.html" />
<link rel="canonical" href="https://api.python.langchain.com/en/latest/{{pagename}}.html" />
{% if favicon_url %}
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>

View File

@@ -6,17 +6,6 @@
{%- set top_container_cls = "sk-landing-container" %}
{%- endif %}
{% if theme_link_to_live_contributing_page|tobool %}
{# Link to development page for live builds #}
{%- set development_link = "https://scikit-learn.org/dev/developers/index.html" %}
{# Open on a new development page in new window/tab for live builds #}
{%- set development_attrs = 'target="_blank" rel="noopener noreferrer"' %}
{%- else %}
{%- set development_link = pathto('developers/index') %}
{%- set development_attrs = '' %}
{%- endif %}
<nav id="navbar" class="{{ nav_bar_class }} navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid {{ top_container_cls }} px-0">
{%- if logo_url %}
@@ -45,6 +34,9 @@
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('api_reference') }}">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('experimental_api_reference') }}">Experimental</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://python.langchain.com/">Python Docs</a>
</li>

View File

@@ -745,6 +745,11 @@ span.descname {
background-color: transparent;
padding: 0;
font-family: monospace;
font-size: 1.2rem;
}
em.property {
font-weight: normal;
}
span.descclassname {

View File

@@ -0,0 +1,54 @@
# Community Navigator
Hi! Thanks for being here. Were lucky to have a community of so many passionate developers building with LangChainwe have so much to teach and learn from each other. Community members contribute code, host meetups, write blog posts, amplify each others work, become each other's customers and collaborators, and so much more.
Whether youre new to LangChain, looking to go deeper, or just want to get more exposure to the world of building with LLMs, this page can point you in the right direction.
- **🦜 Contribute to LangChain**
- **🌍 Meetups, Events, and Hackathons**
- **📣 Help Us Amplify Your Work**
- **💬 Stay in the loop**
# 🦜 Contribute to LangChain
LangChain is the product of over 5,000+ contributions by 1,500+ contributors, and there is ******still****** so much to do together. Here are some ways to get involved:
- **[Open a pull request](https://github.com/langchain-ai/langchain/issues):** wed appreciate all forms of contributionsnew features, infrastructure improvements, better documentation, bug fixes, etc. If you have an improvement or an idea, wed love to work on it with you.
- **[Read our contributor guidelines:](https://github.com/langchain-ai/langchain/blob/bbd22b9b761389a5e40fc45b0570e1830aabb707/.github/CONTRIBUTING.md)** We ask contributors to follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow, run a few local checks for formatting, linting, and testing before submitting, and follow certain documentation and testing conventions.
- **First time contributor?** [Try one of these PRs with the “good first issue” tag](https://github.com/langchain-ai/langchain/contribute).
- **Become an expert:** our experts help the community by answering product questions in Discord. If thats a role youd like to play, wed be so grateful! (And we have some special experts-only goodies/perks we can tell you more about). Send us an email to introduce yourself at hello@langchain.dev and well take it from there!
- **Integrate with LangChain:** if your product integrates with LangChainor aspires towe want to help make sure the experience is as smooth as possible for you and end users. Send us an email at hello@langchain.dev and tell us what youre working on.
- **Become an Integration Maintainer:** Partner with our team to ensure your integration stays up-to-date and talk directly with users (and answer their inquiries) in our Discord. Introduce yourself at hello@langchain.dev if youd like to explore this role.
# 🌍 Meetups, Events, and Hackathons
One of our favorite things about working in AI is how much enthusiasm there is for building together. We want to help make that as easy and impactful for you as possible!
- **Find a meetup, hackathon, or webinar:** you can find the one for you on on our [global events calendar](https://mirror-feeling-d80.notion.site/0bc81da76a184297b86ca8fc782ee9a3?v=0d80342540df465396546976a50cfb3f).
- **Submit an event to our calendar:** email us at events@langchain.dev with a link to your event page! We can also help you spread the word with our local communities.
- **Host a meetup:** If you want to bring a group of builders together, we want to help! We can publicize your event on our event calendar/Twitter, share with our local communities in Discord, send swag, or potentially hook you up with a sponsor. Email us at events@langchain.dev to tell us about your event!
- **Become a meetup sponsor:** we often hear from groups of builders that want to get together, but are blocked or limited on some dimension (space to host, budget for snacks, prizes to distribute, etc.). If youd like to help, send us an email to events@langchain.dev we can share more about how it works!
- **Speak at an event:** meetup hosts are always looking for great speakers, presenters, and panelists. If youd like to do that at an event, send us an email to hello@langchain.dev with more information about yourself, what you want to talk about, and what city youre based in and well try to match you with an upcoming event!
- **Tell us about your LLM community:** If you host or participate in a community that would welcome support from LangChain and/or our team, send us an email at hello@langchain.dev and let us know how we can help.
# 📣 Help Us Amplify Your Work
If youre working on something youre proud of, and think the LangChain community would benefit from knowing about it, we want to help you show it off.
- **Post about your work and mention us:** we love hanging out on Twitter to see what people in the space are talking about and working on. If you tag [@langchainai](https://twitter.com/LangChainAI), well almost certainly see it and can show you some love.
- **Publish something on our blog:** if youre writing about your experience building with LangChain, wed love to post (or crosspost) it on our blog! E-mail hello@langchain.dev with a draft of your post! Or even an idea for something you want to write about.
- **Get your product onto our [integrations hub](https://integrations.langchain.com/):** Many developers take advantage of our seamless integrations with other products, and come to our integrations hub to find out who those are. If you want to get your product up there, tell us about it (and how it works with LangChain) at hello@langchain.dev.
# ☀️ Stay in the loop
Heres where our team hangs out, talks shop, spotlights cool work, and shares what were up to. Wed love to see you there too.
- **[Twitter](https://twitter.com/LangChainAI):** we post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can snow you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with with >30k developers who are building with LangChain
- **[GitHub](https://github.com/langchain-ai/langchain):** open pull requests, contribute to a discussion, and/or contribute
- **[Subscribe to our bi-weekly Release Notes](https://6w1pwbss0py.typeform.com/to/KjZB1auB):** a twice/month email roundup of the coolest things going on in our orbit
- **Slack:** if youre building an application in production at your company, wed love to get into a Slack channel together. Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) and well get in touch about setting one up.

View File

@@ -3,6 +3,22 @@ sidebar_position: 3
---
# Comparison Evaluators
Comparison evaluators in LangChain help measure two different chain or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
These evaluators inherit from the `PairwiseStringEvaluator` class, providing a comparison interface for two strings - typically, the outputs from two different prompts or models, or two versions of the same model. In essence, a comparison evaluator performs an evaluation on a pair of strings and returns a dictionary containing the evaluation score and other relevant details.
To create a custom comparison evaluator, inherit from the `PairwiseStringEvaluator` class and overwrite the `_evaluate_string_pairs` method. If you require asynchronous evaluation, also overwrite the `_aevaluate_string_pairs` method.
Here's a summary of the key methods and properties of a comparison evaluator:
- `evaluate_string_pairs`: Evaluate the output string pairs. This function should be overwritten when creating custom evaluators.
- `aevaluate_string_pairs`: Asynchronously evaluate the output string pairs. This function should be overwritten for asynchronous evaluation.
- `requires_input`: This property indicates whether this evaluator requires an input string.
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
Detailed information about creating custom evaluators and the available built-in comparison evaluators are provided in the following sections.
import DocCardList from "@theme/DocCardList";
<DocCardList />
<DocCardList />

View File

@@ -6,23 +6,26 @@ import DocCardList from "@theme/DocCardList";
# Evaluation
Language models can be unpredictable. This makes it challenging to ship reliable applications to production, where repeatable, useful outcomes across diverse inputs are a minimum requirement. Tests help demonstrate each component in an LLM application can produce the required or expected functionality. These tests also safeguard against regressions while you improve interconnected pieces of an integrated system. However, measuring the quality of generated text can be challenging. It can be hard to agree on the right set of metrics for your application, and it can be difficult to translate those into better performance. Furthermore, it's common to lack sufficient evaluation data to adequately test the range of inputs and expected outputs for each component when you're just getting started. The LangChain community is building open source tools and guides to help address these challenges.
Building applications with language models involves many moving parts. One of the most critical components is ensuring that the outcomes produced by your models are reliable and useful across a broad array of inputs, and that they work well with your application's other software components. Ensuring reliability usually boils down to some combination of application design, testing & evaluation, and runtime checks.
LangChain exposes different types of evaluators for common types of evaluation. Each type has off-the-shelf implementations you can use to get started, as well as an
extensible API so you can create your own or contribute improvements for everyone to use. The following sections have example notebooks for you to get started.
The guides in this section review the APIs and functionality LangChain provides to help you better evaluate your applications. Evaluation and testing are both critical when thinking about deploying LLM applications, since production environments require repeatable and useful outcomes.
- [String Evaluators](/docs/guides/evaluation/string/): Evaluate the predicted string for a given input, usually against a reference string
- [Trajectory Evaluators](/docs/guides/evaluation/trajectory/): Evaluate the whole trajectory of agent actions
- [Comparison Evaluators](/docs/guides/evaluation/comparison/): Compare predictions from two runs on a common input
LangChain offers various types of evaluators to help you measure performance and integrity on diverse data, and we hope to encourage the community to create and share other useful evaluators so everyone can improve. These docs will introduce the evaluator types, how to use them, and provide some examples of their use in real-world scenarios.
Each evaluator type in LangChain comes with ready-to-use implementations and an extensible API that allows for customization according to your unique requirements. Here are some of the types of evaluators we offer:
This section also provides some additional examples of how you could use these evaluators for different scenarios or apply to different chain implementations in the LangChain library. Some examples include:
- [String Evaluators](/docs/guides/evaluation/string/): These evaluators assess the predicted string for a given input, usually comparing it against a reference string.
- [Trajectory Evaluators](/docs/guides/evaluation/trajectory/): These are used to evaluate the entire trajectory of agent actions.
- [Comparison Evaluators](/docs/guides/evaluation/comparison/): These evaluators are designed to compare predictions from two runs on a common input.
- [Preference Scoring Chain Outputs](/docs/guides/evaluation/examples/comparisons): An example using a comparison evaluator on different models or prompts to select statistically significant differences in aggregate preference scores
These evaluators can be used across various scenarios and can be applied to different chain and LLM implementations in the LangChain library.
We also are working to share guides and cookbooks that demonstrate how to use these evaluators in real-world scenarios, such as:
- [Chain Comparisons](/docs/guides/evaluation/examples/comparisons): This example uses a comparison evaluator to predict the preferred output. It reviews ways to measure confidence intervals to select statistically significant differences in aggregate preference scores across different models or prompts.
## Reference Docs
For detailed information of the available evaluators, including how to instantiate, configure, and customize them. Check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
<DocCardList />

View File

@@ -3,6 +3,25 @@ sidebar_position: 2
---
# String Evaluators
A string evaluator is a component within LangChain designed to assess the performance of a language model by comparing its generated outputs (predictions) to a reference string or an input. This comparison is a crucial step in the evaluation of language models, providing a measure of the accuracy or quality of the generated text.
In practice, string evaluators are typically used to evaluate a predicted string against a given input, such as a question or a prompt. Often, a reference label or context string is provided to define what a correct or ideal response would look like. These evaluators can be customized to tailor the evaluation process to fit your application's specific requirements.
To create a custom string evaluator, inherit from the `StringEvaluator` class and implement the `_evaluate_strings` method. If you require asynchronous support, also implement the `_aevaluate_strings` method.
Here's a summary of the key attributes and methods associated with a string evaluator:
- `evaluation_name`: Specifies the name of the evaluation.
- `requires_input`: Boolean attribute that indicates whether the evaluator requires an input string. If True, the evaluator will raise an error when the input isn't provided. If False, a warning will be logged if an input _is_ provided, indicating that it will not be considered in the evaluation.
- `requires_reference`: Boolean attribute specifying whether the evaluator requires a reference label. If True, the evaluator will raise an error when the reference isn't provided. If False, a warning will be logged if a reference _is_ provided, indicating that it will not be considered in the evaluation.
String evaluators also implement the following methods:
- `aevaluate_strings`: Asynchronously evaluates the output of the Chain or Language Model, with support for optional input and label.
- `evaluate_strings`: Synchronously evaluates the output of the Chain or Language Model, with support for optional input and label.
The following sections provide detailed information on available string evaluator implementations as well as how to create a custom string evaluator.
import DocCardList from "@theme/DocCardList";
<DocCardList />
<DocCardList />

View File

@@ -3,6 +3,26 @@ sidebar_position: 4
---
# Trajectory Evaluators
Trajectory Evaluators in LangChain provide a more holistic approach to evaluating an agent. These evaluators assess the full sequence of actions taken by an agent and their corresponding responses, which we refer to as the "trajectory". This allows you to better measure an agent's effectiveness and capabilities.
A Trajectory Evaluator implements the `AgentTrajectoryEvaluator` interface, which requires two main methods:
- `evaluate_agent_trajectory`: This method synchronously evaluates an agent's trajectory.
- `aevaluate_agent_trajectory`: This asynchronous counterpart allows evaluations to be run in parallel for efficiency.
Both methods accept three main parameters:
- `input`: The initial input given to the agent.
- `prediction`: The final predicted response from the agent.
- `agent_trajectory`: The intermediate steps taken by the agent, given as a list of tuples.
These methods return a dictionary. It is recommended that custom implementations return a `score` (a float indicating the effectiveness of the agent) and `reasoning` (a string explaining the reasoning behind the score).
You can capture an agent's trajectory by initializing the agent with the `return_intermediate_steps=True` parameter. This lets you collect all intermediate steps without relying on special callbacks.
For a deeper dive into the implementation and use of Trajectory Evaluators, refer to the sections below.
import DocCardList from "@theme/DocCardList";
<DocCardList />
<DocCardList />

View File

@@ -0,0 +1,9 @@
# LangChain Expression Language
import DocCardList from "@theme/DocCardList";
LangChain Expression Language is a declarative way to easily compose chains together.
Any chain constructed this way will automatically have full sync, async, and streaming support.
See guides below for how to interact with chains constructed this way as well as cookbook examples.
<DocCardList />

View File

@@ -5,8 +5,8 @@ import DocCardList from "@theme/DocCardList";
LangSmith helps you trace and evaluate your language model applications and intelligent agents to help you
move from prototype to production.
Check out the [interactive walkthrough](walkthrough) below to get started.
Check out the [interactive walkthrough](/docs/guides/langsmith/walkthrough) below to get started.
For more information, please refer to the [LangSmith documentation](https://docs.smith.langchain.com/)
<DocCardList />
<DocCardList />

View File

@@ -0,0 +1,6 @@
# Preventing harmful outputs
One of the key concerns with using LLMs is that they may generate harmful or unethical text. This is an area of active research in the field. Here we present some built-in chains inspired by this research, which are intended to make the outputs of LLMs safer.
- [Moderation chain](/docs/use_cases/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/use_cases/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.

View File

@@ -12,7 +12,7 @@ Here are the agents available in LangChain.
### [Zero-shot ReAct](/docs/modules/agents/agent_types/react.html)
This agent uses the [ReAct](https://arxiv.org/pdf/2205.00445.pdf) framework to determine which tool to use
This agent uses the [ReAct](https://arxiv.org/pdf/2210.03629) framework to determine which tool to use
based solely on the tool's description. Any number of tools can be provided.
This agent requires that a description is provided for each tool.
@@ -28,7 +28,7 @@ navigating around a browser.
### [OpenAI Functions](/docs/modules/agents/agent_types/openai_functions_agent.html)
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been explicitly fine-tuned to detect when a
function should to be called and respond with the inputs that should be passed to the function.
function should be called and respond with the inputs that should be passed to the function.
The OpenAI Functions Agent is designed to work with these models.
### [Conversational](/docs/modules/agents/agent_types/chat_conversation_agent.html)

View File

@@ -1,6 +1,6 @@
# OpenAI functions
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should to be called and respond with the inputs that should be passed to the function.
Certain OpenAI models (like gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to detect when a function should be called and respond with the inputs that should be passed to the function.
In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call those functions.
The goal of the OpenAI Function APIs is to more reliably return valid and useful function calls than a generic text completion or chat API.

View File

@@ -1,8 +0,0 @@
---
sidebar_position: 4
---
# Additional
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,7 +0,0 @@
# Dynamically selecting from multiple prompts
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects the prompt to use for a given input. Specifically we show how to use the `MultiPromptChain` to create a question-answering chain that selects the prompt which is most relevant for a given question, and then answers the question using that prompt.
import Example from "@snippets/modules/chains/additional/multi_prompt_router.mdx"
<Example/>

View File

@@ -1,6 +1,6 @@
# Sequential
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! Instead, edit the notebook w/the location & name as this file. -->
The next step after calling a language model is make a series of calls to a language model. This is particularly useful when you want to take the output from one call and use it as the input to another.

View File

@@ -1,9 +0,0 @@
---
sidebar_position: 0
---
# API chains
APIChain enables using LLMs to interact with APIs to retrieve relevant information. Construct the chain by providing a question relevant to the provided API documentation.
import Example from "@snippets/modules/chains/popular/api.mdx"
<Example/>

View File

@@ -1,8 +0,0 @@
---
sidebar_position: 3
---
# Popular
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -1,8 +0,0 @@
# Summarization
A summarization chain can be used to summarize multiple documents. One way is to input multiple smaller documents, after they have been divided into chunks, and operate over them with a MapReduceDocumentsChain. You can also choose instead for the chain that does summarization to be a StuffDocumentsChain, or a RefineDocumentsChain.
import Example from "@snippets/modules/chains/popular/summarize.mdx"
<Example/>

View File

@@ -18,5 +18,3 @@ Let chains choose which tools to use given high-level directives
Persist application state between runs of a chain
#### [Callbacks](/docs/modules/callbacks/)
Log and stream intermediate steps of any chain
#### [Evaluation](/docs/modules/evaluation/)
Evaluate the performance of a chain.

View File

@@ -0,0 +1,17 @@
---
sidebar_position: 1
---
# Chat Messages
:::info
Head to [Integrations](/docs/integrations/memory/) for documentation on built-in memory integrations with 3rd-party databases and tools.
:::
One of the core utility classes underpinning most (if not all) memory modules is the `ChatMessageHistory` class.
This is a super lightweight wrapper which exposes convenience methods for saving Human messages, AI messages, and then fetching them all.
You may want to use this class directly if you are managing memory outside of a chain.
import GetStarted from "@snippets/modules/memory/chat_messages/get_started.mdx"
<GetStarted/>

View File

@@ -1,34 +1,62 @@
---
sidebar_position: 3
---
# Memory
🚧 _Docs under construction_ 🚧
Most LLM applications have a conversational interface. An essential component of a conversation is being able to refer to information introduced earlier in the conversation.
At bare minimum, a conversational system should be able to access some window of past messages directly.
A more complex system will need to have a world model that it is constantly updating, which allows it to do things like maintain information about entities and their relationships.
:::info
Head to [Integrations](/docs/integrations/memory/) for documentation on built-in memory integrations with 3rd-party tools.
:::
We call this ability to store information about past interactions "memory".
LangChain provides a lot of utilities for adding memory to a system.
These utilities can be used by themselves or incorporated seamlessly into a chain.
By default, Chains and Agents are stateless,
meaning that they treat each incoming query independently (like the underlying LLMs and chat models themselves).
In some applications, like chatbots, it is essential
to remember previous interactions, both in the short and long-term.
The **Memory** class does exactly that.
A memory system needs to support two basic actions: reading and writing.
Recall that every chain defines some core execution logic that expects certain inputs.
Some of these inputs come directly from the user, but some of these inputs can come from memory.
A chain will interact with its memory system twice in a given run.
1. AFTER receiving the initial user inputs but BEFORE executing the core logic, a chain will READ from its memory system and augment the user inputs.
2. AFTER executing the core logic but BEFORE returning the answer, a chain will WRITE the inputs and outputs of the current run to memory, so that they can be referred to in future runs.
LangChain provides memory components in two forms.
First, LangChain provides helper utilities for managing and manipulating previous chat messages.
These are designed to be modular and useful regardless of how they are used.
Secondly, LangChain provides easy ways to incorporate these utilities into chains.
![memory-diagram](/img/memory_diagram.png)
## Building memory into a system
The two core design decisions in any memory system are:
- How state is stored
- How state is queried
### Storing: List of chat messages
Underlying any memory is a history of all chat interactions.
Even if these are not all used directly, they need to be stored in some form.
One of the key parts of the LangChain memory module is a series of integrations for storing these chat messages,
from in-memory lists to persistent databases.
- [Chat message storage](/docs/modules/memory/chat_messages/): How to work with Chat Messages, and the various integrations offered
### Querying: Data structures and algorithms on top of chat messages
Keeping a list of chat messages is fairly straight-forward.
What is less straight-forward are the data structures and algorithms built on top of chat messages that serve a view of those messages that is most useful.
A very simply memory system might just return the most recent messages each run. A slightly more complex memory system might return a succinct summary of the past K messages.
An even more sophisticated system might extract entities from stored messages and only return information about entities referenced in the current run.
Each application can have different requirements for how memory is queried. The memory module should make it easy to both get started with simple memory systems and write your own custom systems if needed.
- [Memory types](/docs/modules/memory/types/): The various data structures and algorithms that make up the memory types LangChain supports
## Get started
Memory involves keeping a concept of state around throughout a user's interactions with an language model. A user's interactions with a language model are captured in the concept of ChatMessages, so this boils down to ingesting, capturing, transforming and extracting knowledge from a sequence of chat messages. There are many different ways to do this, each of which exists as its own memory type.
In general, for each type of memory there are two ways to understanding using memory. These are the standalone functions which extract information from a sequence of messages, and then there is the way you can use this type of memory in a chain.
Memory can return multiple pieces of information (for example, the most recent N messages and a summary of all previous messages). The returned information can either be a string or a list of messages.
Let's take a look at what Memory actually looks like in LangChain.
Here we'll cover the basics of interacting with an arbitrary memory class.
import GetStarted from "@snippets/modules/memory/get_started.mdx"
<GetStarted/>
## Next steps
And that's it for getting started!
Please see the other sections for walkthroughs of more advanced topics,
like custom memory, multiple memories, and more.

View File

@@ -4,6 +4,6 @@ This notebook shows how to use `ConversationBufferMemory`. This memory allows fo
We can first extract it as a string.
import Example from "@snippets/modules/memory/how_to/buffer.mdx"
import Example from "@snippets/modules/memory/types/buffer.mdx"
<Example/>

View File

@@ -4,6 +4,6 @@
Let's first explore the basic functionality of this type of memory.
import Example from "@snippets/modules/memory/how_to/buffer_window.mdx"
import Example from "@snippets/modules/memory/types/buffer_window.mdx"
<Example/>

View File

@@ -4,6 +4,6 @@ Entity Memory remembers given facts about specific entities in a conversation. I
Let's first walk through using this functionality.
import Example from "@snippets/modules/memory/how_to/entity_summary_memory.mdx"
import Example from "@snippets/modules/memory/types/entity_summary_memory.mdx"
<Example/>

View File

@@ -0,0 +1,8 @@
---
sidebar_position: 2
---
# Memory Types
There are many different types of memory.
Each have their own parameters, their own return types, and are useful in different scenarios.
Please see their individual page for more detail on each one.

View File

@@ -4,6 +4,6 @@ Conversation summary memory summarizes the conversation as it happens and stores
Let's first explore the basic functionality of this type of memory.
import Example from "@snippets/modules/memory/how_to/summary.mdx"
import Example from "@snippets/modules/memory/types/summary.mdx"
<Example/>

View File

@@ -6,6 +6,6 @@ This differs from most of the other Memory classes in that it doesn't explicitly
In this case, the "docs" are previous conversation snippets. This can be useful to refer to relevant pieces of information that the AI was told earlier in the conversation.
import Example from "@snippets/modules/memory/how_to/vectorstore_retriever_memory.mdx"
import Example from "@snippets/modules/memory/types/vectorstore_retriever_memory.mdx"
<Example/>

View File

@@ -3,10 +3,12 @@ sidebar_position: 0
---
# Prompts
The new way of programming models is through prompts.
A **prompt** refers to the input to the model.
This input is often constructed from multiple components.
LangChain provides several classes and functions to make constructing and working with prompts easy.
A prompt for a language model is a set of instructions or input provided by a user to
guide the model's response, helping it understand the context and generate relevant
and coherent language-based output, such as answering questions, completing sentences,
or engaging in a conversation.
- [Prompt templates](/docs/modules/model_io/prompts/prompt_templates/): Parametrize model inputs
LangChain provides several classes and functions to help construct and work with prompts.
- [Prompt templates](/docs/modules/model_io/prompts/prompt_templates/): Parametrized model inputs
- [Example selectors](/docs/modules/model_io/prompts/example_selectors/): Dynamically select examples to include in prompts

View File

@@ -4,18 +4,15 @@ sidebar_position: 0
# Prompt templates
Language models take text as input - that text is commonly referred to as a prompt.
Typically this is not simply a hardcoded string but rather a combination of a template, some examples, and user input.
LangChain provides several classes and functions to make constructing and working with prompts easy.
Prompt templates are pre-defined recipes for generating prompts for language models.
## What is a prompt template?
A template may include instructions, few shot examples, and specific context and
questions appropriate for a given task.
A prompt template refers to a reproducible way to generate a prompt. It contains a text string ("the template"), that can take in a set of parameters from the end user and generates a prompt.
LangChain provides tooling to create and work with prompt templates.
A prompt template can contain:
- instructions to the language model,
- a set of few shot examples to help the language model generate a better response,
- a question to the language model.
LangChain strives to create model agnostic templates to make it easy to reuse
existing templates across different language models.
import GetStarted from "@snippets/modules/model_io/prompts/prompt_templates/get_started.mdx"

View File

@@ -0,0 +1 @@
label: 'How to'

View File

@@ -2,7 +2,7 @@
sidebar_position: 2
---
# Conversational Retrieval QA
# Store and reference chat history
The ConversationalRetrievalQA chain builds on RetrievalQAChain to provide a chat history component.
It first combines the chat history (either explicitly passed in or retrieved from the provided memory) and the question into a standalone question, then looks up relevant documents from the retriever, and finally passes those documents and the question to a question answering chain to return a response.

View File

@@ -1,4 +1,4 @@
# Dynamically selecting from multiple retrievers
# Dynamically select from multiple retrievers
This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects which Retrieval system to use. Specifically we show how to use the `MultiRetrievalQAChain` to create a question-answering chain that selects the retrieval QA chain which is most relevant for a given question, and then answers the question using it.

View File

@@ -1,4 +1,4 @@
# Document QA
# QA over in-memory documents
Here we walk through how to use LangChain for question answering over a list of documents. Under the hood we'll be using our [Document chains](/docs/modules/chains/document/).

View File

@@ -1,7 +1,7 @@
---
sidebar_position: 1
---
# Retrieval QA
# QA using a Retriever
This example showcases question answering over an index.

View File

@@ -0,0 +1,9 @@
---
sidebar_position: 3
---
# Web Scraping
Web scraping has historically been a challenging endeavor due to the ever-changing nature of website structures, making it tedious for developers to maintain their scraping scripts. Traditional methods often rely on specific HTML tags and patterns which, when altered, can disrupt data extraction processes.
Enter the LLM-based method for parsing HTML: By leveraging the capabilities of LLMs, and especially OpenAI Functions in LangChain's extraction chain, developers can instruct the model to extract only the desired data in a specified format. This method not only streamlines the extraction process but also significantly reduces the time spent on manual debugging and script modifications. Its adaptability means that even if websites undergo significant design changes, the extraction remains consistent and robust. This level of resilience translates to reduced maintenance efforts, cost savings, and ensures a higher quality of extracted data. Compared to its predecessors, LLM-based approach wins out the web scraping domain by transforming a historically cumbersome task into a more automated and efficient process.

View File

@@ -128,6 +128,10 @@ const config = {
hideable: true,
},
},
colorMode: {
disableSwitch: false,
respectPrefersColorScheme: true,
},
prism: {
theme: {
...baseLightCodeBlockTheme,

View File

@@ -0,0 +1,183 @@
import importlib
import inspect
import json
import logging
import os
import re
from pathlib import Path
import argparse
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Base URL for all class documentation
_BASE_URL = "https://api.python.langchain.com/en/latest/"
# Regular expression to match Python code blocks
code_block_re = re.compile(r"^(```python\n)(.*?)(```\n)", re.DOTALL | re.MULTILINE)
# Regular expression to match langchain import lines
_IMPORT_RE = re.compile(
r"from\s+(langchain\.\w+(\.\w+)*?)\s+import\s+"
r"((?:\w+(?:,\s*)?)*" # Match zero or more words separated by a comma+optional ws
r"(?:\s*\(.*?\))?)", # Match optional parentheses block
re.DOTALL, # Match newlines as well
)
_CURRENT_PATH = Path(__file__).parent.absolute()
# Directory where generated markdown files are stored
_DOCS_DIR = _CURRENT_PATH / "docs"
_JSON_PATH = _CURRENT_PATH.parent / "api_reference" / "guide_imports.json"
def find_files(path):
"""Find all MDX files in the given path"""
# Check if is file first
if os.path.isfile(path):
yield path
return
for root, _, files in os.walk(path):
for file in files:
if file.endswith(".mdx") or file.endswith(".md"):
yield os.path.join(root, file)
def get_full_module_name(module_path, class_name):
"""Get full module name using inspect"""
module = importlib.import_module(module_path)
class_ = getattr(module, class_name)
return inspect.getmodule(class_).__name__
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--docs_dir",
type=str,
default=_DOCS_DIR,
help="Directory where generated markdown files are stored",
)
return parser.parse_args()
def main():
"""Main function"""
args = get_args()
global_imports = {}
for file in find_files(args.docs_dir):
print(f"Adding links for imports in {file}")
file_imports = replace_imports(file)
if file_imports:
# Use relative file path as key
relative_path = (
os.path.relpath(file, _DOCS_DIR).replace(".mdx", "").replace(".md", "")
)
doc_url = f"https://python.langchain.com/docs/{relative_path}"
for import_info in file_imports:
doc_title = import_info["title"]
class_name = import_info["imported"]
if class_name not in global_imports:
global_imports[class_name] = {}
global_imports[class_name][doc_title] = doc_url
# Write the global imports information to a JSON file
_JSON_PATH.parent.mkdir(parents=True, exist_ok=True)
with _JSON_PATH.open("w") as f:
json.dump(global_imports, f)
def _get_doc_title(data: str, file_name: str) -> str:
try:
return re.findall(r"^#\s+(.*)", data, re.MULTILINE)[0]
except IndexError:
pass
# Parse the rst-style titles
try:
return re.findall(r"^(.*)\n=+\n", data, re.MULTILINE)[0]
except IndexError:
return file_name
def replace_imports(file):
"""Replace imports in each Python code block with links to their
documentation and append the import info in a comment"""
all_imports = []
with open(file, "r") as f:
data = f.read()
file_name = os.path.basename(file)
_DOC_TITLE = _get_doc_title(data, file_name)
def replacer(match):
# Extract the code block content
code = match.group(2)
# Replace if any import comment exists
# TODO: Use our own custom <code> component rather than this
# injection method
existing_comment_re = re.compile(r"^<!--IMPORTS:.*?-->\n", re.MULTILINE)
code = existing_comment_re.sub("", code)
# Process imports in the code block
imports = []
for import_match in _IMPORT_RE.finditer(code):
module = import_match.group(1)
imports_str = (
import_match.group(3).replace("(\n", "").replace("\n)", "")
) # Handle newlines within parentheses
# remove any newline and spaces, then split by comma
imported_classes = [
imp.strip()
for imp in re.split(r",\s*", imports_str.replace("\n", ""))
if imp.strip()
]
for class_name in imported_classes:
try:
module_path = get_full_module_name(module, class_name)
except AttributeError as e:
logger.warning(f"Could not find module for {class_name}, {e}")
continue
except ImportError as e:
logger.warning(f"Failed to load for class {class_name}, {e}")
continue
url = (
_BASE_URL
+ module_path.split(".")[1]
+ "/"
+ module_path
+ "."
+ class_name
+ ".html"
)
# Add the import information to our list
imports.append(
{
"imported": class_name,
"source": module,
"docs": url,
"title": _DOC_TITLE,
}
)
if imports:
all_imports.extend(imports)
# Create a unique comment containing the import information
import_comment = f"<!--IMPORTS:{json.dumps(imports)}-->"
# Inject the import comment at the start of the code block
return match.group(1) + import_comment + "\n" + code + match.group(3)
else:
# If there are no imports, return the original match
return match.group(0)
# Use re.sub to replace each Python code block
data = code_block_re.sub(replacer, data)
with open(file, "w") as f:
f.write(data)
return all_imports
if __name__ == "__main__":
main()

View File

@@ -12,7 +12,7 @@
"@docusaurus/preset-classic": "2.4.0",
"@docusaurus/remark-plugin-npm2yarn": "^2.4.0",
"@mdx-js/react": "^1.6.22",
"@mendable/search": "^0.0.125",
"@mendable/search": "^0.0.150",
"clsx": "^1.2.1",
"json-loader": "^0.5.7",
"process": "^0.11.10",
@@ -3212,10 +3212,11 @@
}
},
"node_modules/@mendable/search": {
"version": "0.0.125",
"resolved": "https://registry.npmjs.org/@mendable/search/-/search-0.0.125.tgz",
"integrity": "sha512-Mb1J3zDhOyBZV9cXqJocSOBNYGpe8+LQDqd9n9laPWxosSJcSTUewqtlIbMerrYsScBsxskoSiWgRsc7xF5z0Q==",
"version": "0.0.150",
"resolved": "https://registry.npmjs.org/@mendable/search/-/search-0.0.150.tgz",
"integrity": "sha512-Eb5SeAWlMxzEim/8eJ/Ysn01Pyh39xlPBzRBw/5OyOBhti0HVLXk4wd1Fq2TKgJC2ppQIvhEKO98PUcj9dNDFw==",
"dependencies": {
"html-react-parser": "^4.2.0",
"posthog-js": "^1.45.1"
},
"peerDependencies": {
@@ -8332,6 +8333,33 @@
"safe-buffer": "~5.1.0"
}
},
"node_modules/html-dom-parser": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/html-dom-parser/-/html-dom-parser-4.0.0.tgz",
"integrity": "sha512-TUa3wIwi80f5NF8CVWzkopBVqVAtlawUzJoLwVLHns0XSJGynss4jiY0mTWpiDOsuyw+afP+ujjMgRh9CoZcXw==",
"dependencies": {
"domhandler": "5.0.3",
"htmlparser2": "9.0.0"
}
},
"node_modules/html-dom-parser/node_modules/htmlparser2": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/htmlparser2/-/htmlparser2-9.0.0.tgz",
"integrity": "sha512-uxbSI98wmFT/G4P2zXx4OVx04qWUmyFPrD2/CNepa2Zo3GPNaCaaxElDgwUrwYWkK1nr9fft0Ya8dws8coDLLQ==",
"funding": [
"https://github.com/fb55/htmlparser2?sponsor=1",
{
"type": "github",
"url": "https://github.com/sponsors/fb55"
}
],
"dependencies": {
"domelementtype": "^2.3.0",
"domhandler": "^5.0.3",
"domutils": "^3.1.0",
"entities": "^4.5.0"
}
},
"node_modules/html-entities": {
"version": "2.4.0",
"resolved": "https://registry.npmjs.org/html-entities/-/html-entities-2.4.0.tgz",
@@ -8375,6 +8403,20 @@
"node": ">= 12"
}
},
"node_modules/html-react-parser": {
"version": "4.2.0",
"resolved": "https://registry.npmjs.org/html-react-parser/-/html-react-parser-4.2.0.tgz",
"integrity": "sha512-gzU55AS+FI6qD7XaKe5BLuLFM2Xw0/LodfMWZlxV9uOHe7LCD5Lukx/EgYuBI3c0kLu0XlgFXnSzO0qUUn3Vrg==",
"dependencies": {
"domhandler": "5.0.3",
"html-dom-parser": "4.0.0",
"react-property": "2.0.0",
"style-to-js": "1.1.3"
},
"peerDependencies": {
"react": "0.14 || 15 || 16 || 17 || 18"
}
},
"node_modules/html-tags": {
"version": "3.3.1",
"resolved": "https://registry.npmjs.org/html-tags/-/html-tags-3.3.1.tgz",
@@ -11762,6 +11804,11 @@
"webpack": ">=4.41.1 || 5.x"
}
},
"node_modules/react-property": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/react-property/-/react-property-2.0.0.tgz",
"integrity": "sha512-kzmNjIgU32mO4mmH5+iUyrqlpFQhF8K2k7eZ4fdLSOPFrD1XgEuSBv9LDEgxRXTMBqMd8ppT0x6TIzqE5pdGdw=="
},
"node_modules/react-router": {
"version": "5.3.4",
"resolved": "https://registry.npmjs.org/react-router/-/react-router-5.3.4.tgz",
@@ -13127,6 +13174,22 @@
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/style-to-js": {
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/style-to-js/-/style-to-js-1.1.3.tgz",
"integrity": "sha512-zKI5gN/zb7LS/Vm0eUwjmjrXWw8IMtyA8aPBJZdYiQTXj4+wQ3IucOLIOnF7zCHxvW8UhIGh/uZh/t9zEHXNTQ==",
"dependencies": {
"style-to-object": "0.4.1"
}
},
"node_modules/style-to-js/node_modules/style-to-object": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/style-to-object/-/style-to-object-0.4.1.tgz",
"integrity": "sha512-HFpbb5gr2ypci7Qw+IOhnP2zOU7e77b+rzM+wTzXzfi1PrtBCX0E7Pk4wL4iTLnhzZ+JgEGAhX81ebTg/aYjQw==",
"dependencies": {
"inline-style-parser": "0.1.1"
}
},
"node_modules/style-to-object": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/style-to-object/-/style-to-object-0.3.0.tgz",

View File

@@ -23,7 +23,7 @@
"@docusaurus/preset-classic": "2.4.0",
"@docusaurus/remark-plugin-npm2yarn": "^2.4.0",
"@mdx-js/react": "^1.6.22",
"@mendable/search": "^0.0.125",
"@mendable/search": "^0.0.150",
"clsx": "^1.2.1",
"json-loader": "^0.5.7",
"process": "^0.11.10",

View File

@@ -75,6 +75,7 @@ module.exports = {
slug: "additional_resources",
},
},
'community'
],
integrations: [
{

View File

@@ -21,7 +21,7 @@ function Imports({ imports }) {
</h4>
<ul style={{ paddingBottom: "1rem" }}>
{imports.map(({ imported, source, docs }) => (
<li>
<li key={imported}>
<a href={docs}>
<span>{imported}</span>
</a>{" "}
@@ -34,14 +34,25 @@ function Imports({ imports }) {
}
export default function CodeBlockWrapper({ children, ...props }) {
// Initialize imports as an empty array
let imports = [];
// Check if children is a string
if (typeof children === "string") {
return <CodeBlock {...props}>{children}</CodeBlock>;
// Search for an IMPORTS comment in the code
const match = /<!--IMPORTS:(.*?)-->\n/.exec(children);
if (match) {
imports = JSON.parse(match[1]);
children = children.replace(match[0], "");
}
} else if (children.imports) {
imports = children.imports;
}
return (
<>
<CodeBlock {...props}>{children.content}</CodeBlock>
<Imports imports={children.imports} />
<CodeBlock {...props}>{children}</CodeBlock>
{imports.length > 0 && <Imports imports={imports} />}
</>
);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 405 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 471 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 520 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 307 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 193 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 211 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 196 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 174 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 172 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 716 KiB

View File

@@ -556,6 +556,14 @@
"source": "/docs/integrations/llamacpp",
"destination": "/docs/integrations/providers/llamacpp"
},
{
"source": "/en/latest/integrations/log10.html",
"destination": "/docs/integrations/providers/log10"
},
{
"source": "/docs/integrations/log10",
"destination": "/docs/integrations/providers/log10"
},
{
"source": "/en/latest/integrations/mediawikidump.html",
"destination": "/docs/integrations/providers/mediawikidump"
@@ -1610,59 +1618,59 @@
},
{
"source": "/en/latest/modules/chains/examples/flare.html",
"destination": "/docs/modules/chains/additional/flare"
"destination": "/docs/use_cases/question_answering/how_to/flare"
},
{
"source": "/en/latest/modules/chains/examples/graph_cypher_qa.html",
"destination": "/docs/modules/chains/additional/graph_cypher_qa"
"destination": "/docs/use_cases/graph/graph_cypher_qa"
},
{
"source": "/en/latest/modules/chains/examples/graph_nebula_qa.html",
"destination": "/docs/modules/chains/additional/graph_nebula_qa"
"destination": "/docs/use_cases/graph/graph_nebula_qa"
},
{
"source": "/en/latest/modules/chains/index_examples/graph_qa.html",
"destination": "/docs/modules/chains/additional/graph_qa"
"destination": "/docs/use_cases/graph/graph_qa"
},
{
"source": "/en/latest/modules/chains/index_examples/hyde.html",
"destination": "/docs/modules/chains/additional/hyde"
"destination": "/docs/use_cases/question_answering/how_to/hyde"
},
{
"source": "/en/latest/modules/chains/examples/llm_bash.html",
"destination": "/docs/modules/chains/additional/llm_bash"
"destination": "/docs/use_cases/code_writing/llm_bash"
},
{
"source": "/en/latest/modules/chains/examples/llm_checker.html",
"destination": "/docs/modules/chains/additional/llm_checker"
"destination": "/docs/use_cases/self_check/llm_checker"
},
{
"source": "/en/latest/modules/chains/examples/llm_math.html",
"destination": "/docs/modules/chains/additional/llm_math"
"destination": "/docs/use_cases/code_writing/llm_math"
},
{
"source": "/en/latest/modules/chains/examples/llm_requests.html",
"destination": "/docs/modules/chains/additional/llm_requests"
"destination": "/docs/use_cases/apis/llm_requests"
},
{
"source": "/en/latest/modules/chains/examples/llm_summarization_checker.html",
"destination": "/docs/modules/chains/additional/llm_summarization_checker"
"destination": "/docs/use_cases/self_check/llm_summarization_checker"
},
{
"source": "/en/latest/modules/chains/examples/openapi.html",
"destination": "/docs/modules/chains/additional/openapi"
"destination": "/docs/use_cases/apis/openapi"
},
{
"source": "/en/latest/modules/chains/examples/pal.html",
"destination": "/docs/modules/chains/additional/pal"
"destination": "/docs/use_cases/code_writing/pal"
},
{
"source": "/en/latest/modules/chains/examples/tagging.html",
"destination": "/docs/modules/chains/additional/tagging"
"destination": "/docs/use_cases/tagging"
},
{
"source": "/en/latest/modules/chains/index_examples/vector_db_text_generation.html",
"destination": "/docs/modules/chains/additional/vector_db_text_generation"
"destination": "/docs/use_cases/question_answering/how_to/vector_db_text_generation"
},
{
"source": "/en/latest/modules/chains/generic/router.html",
@@ -3448,6 +3456,10 @@
"source": "/docs/modules/model_io/models/llms/integrations/writer",
"destination": "/docs/integrations/llms/writer"
},
{
"source": "/en/latest/modules/prompts.html",
"destination": "/docs/modules/model_io/prompts"
},
{
"source": "/en/latest/modules/prompts/output_parsers.html",
"destination": "/docs/modules/model_io/output_parsers/"
@@ -3472,6 +3484,10 @@
"source": "/en/latest/modules/prompts/output_parsers/examples/retry.html",
"destination": "/docs/modules/model_io/output_parsers/retry"
},
{
"source": "/en/latest/modules/prompts/example_selectors.html",
"destination": "/docs/modules/model_io/prompts/example_selectors"
},
{
"source": "/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/custom_example_selector"
@@ -3484,6 +3500,10 @@
"source": "/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html",
"destination": "/docs/modules/model_io/prompts/example_selectors/ngram_overlap"
},
{
"source": "/en/latest/modules/prompts/prompt_templates.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates"
},
{
"source": "/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html",
"destination": "/docs/modules/model_io/prompts/prompt_templates/connecting_to_a_feature_store"
@@ -3736,6 +3756,10 @@
"source": "/docs/modules/evaluation/:path*(/?)",
"destination": "/docs/guides/evaluation/:path*"
},
{
"source": "/en/latest/modules/indexes.html",
"destination": "/docs/modules/data_connection"
},
{
"source": "/en/latest/modules/indexes/:path*",
"destination": "/docs/modules/data_connection/:path*"
@@ -3771,6 +3795,174 @@
{
"source": "/en/latest/:path*",
"destination": "/docs/:path*"
},
{
"source": "/docs/modules/chains/additional/constitutional_chain",
"destination": "/docs/guides/safety/constitutional_chain"
},
{
"source": "/docs/modules/chains/additional/moderation",
"destination": "/docs/guides/safety/moderation"
},
{
"source": "/docs/modules/chains/popular/api",
"destination": "/docs/use_cases/apis/api"
},
{
"source": "/docs/modules/chains/additional/analyze_document",
"destination": "/docs/use_cases/question_answering/how_to/analyze_document"
},
{
"source": "/docs/modules/chains/popular/chat_vector_db",
"destination": "/docs/use_cases/question_answering/how_to/chat_vector_db"
},
{
"source": "/docs/modules/chains/additional/multi_retrieval_qa_router",
"destination": "/docs/use_cases/question_answering/how_to/multi_retrieval_qa_router"
},
{
"source": "/docs/modules/chains/additional/question_answering",
"destination": "/docs/use_cases/question_answering/how_to/question_answering"
},
{
"source": "/docs/modules/chains/popular/vector_db_qa",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_qa"
},
{
"source": "/docs/modules/chains/popular/summarize",
"destination": "/docs/use_cases/summarization/summarize"
},
{
"source": "/docs/modules/chains/popular/sqlite",
"destination": "/docs/use_cases/tabular/sqlite"
},
{
"source": "/docs/modules/chains/popular/openai_functions",
"destination": "/docs/modules/chains/how_to/openai_functions"
},
{
"source": "/docs/modules/chains/additional/llm_requests",
"destination": "/docs/use_cases/apis/llm_requests"
},
{
"source": "/docs/modules/chains/additional/openai_openapi",
"destination": "/docs/use_cases/apis/openai_openapi"
},
{
"source": "/docs/modules/chains/additional/openapi",
"destination": "/docs/use_cases/apis/openapi"
},
{
"source": "/docs/modules/chains/additional/openapi_openai",
"destination": "/docs/use_cases/apis/openapi_openai"
},
{
"source": "/docs/modules/chains/additional/cpal",
"destination": "/docs/use_cases/code_writing/cpal"
},
{
"source": "/docs/modules/chains/additional/llm_bash",
"destination": "/docs/use_cases/code_writing/llm_bash"
},
{
"source": "/docs/modules/chains/additional/llm_math",
"destination": "/docs/use_cases/code_writing/llm_math"
},
{
"source": "/docs/modules/chains/additional/llm_symbolic_math",
"destination": "/docs/use_cases/code_writing/llm_symbolic_math"
},
{
"source": "/docs/modules/chains/additional/pal",
"destination": "/docs/use_cases/code_writing/pal"
},
{
"source": "/docs/modules/chains/additional/graph_arangodb_qa",
"destination": "/docs/use_cases/graph/graph_arangodb_qa"
},
{
"source": "/docs/modules/chains/additional/graph_cypher_qa",
"destination": "/docs/use_cases/graph/graph_cypher_qa"
},
{
"source": "/docs/modules/chains/additional/graph_hugegraph_qa",
"destination": "/docs/use_cases/graph/graph_hugegraph_qa"
},
{
"source": "/docs/modules/chains/additional/graph_kuzu_qa",
"destination": "/docs/use_cases/graph/graph_kuzu_qa"
},
{
"source": "/docs/modules/chains/additional/graph_nebula_qa",
"destination": "/docs/use_cases/graph/graph_nebula_qa"
},
{
"source": "/docs/modules/chains/additional/graph_qa",
"destination": "/docs/use_cases/graph/graph_qa"
},
{
"source": "/docs/modules/chains/additional/graph_sparql_qa",
"destination": "/docs/use_cases/graph/graph_sparql_qa"
},
{
"source": "/docs/modules/chains/additional/neptune_cypher_qa",
"destination": "/docs/use_cases/graph/neptune_cypher_qa"
},
{
"source": "/docs/modules/chains/additional/tot",
"destination": "/docs/use_cases/graph/tot"
},
{
"source": "/docs/use_cases/question_answering//document-context-aware-QA",
"destination": "/docs/use_cases/question_answering/how_to/document-context-aware-QA"
},
{
"source": "/docs/modules/chains/additional/flare",
"destination": "/docs/use_cases/question_answering/how_to/flare"
},
{
"source": "/docs/modules/chains/additional/hyde",
"destination": "/docs/use_cases/question_answering/how_to/hyde"
},
{
"source": "/docs/use_cases/question_answering//local_retrieval_qa",
"destination": "/docs/use_cases/question_answering/how_to/local_retrieval_qa"
},
{
"source": "/docs/modules/chains/additional/qa_citations",
"destination": "/docs/use_cases/question_answering/how_to/qa_citations"
},
{
"source": "/docs/modules/chains/additional/vector_db_text_generation",
"destination": "/docs/use_cases/question_answering/how_to/vector_db_text_generation"
},
{
"source": "/docs/modules/chains/additional/openai_functions_retrieval_qa",
"destination": "/docs/use_cases/question_answering/integrations/openai_functions_retrieval_qa"
},
{
"source": "/docs/use_cases/question_answering//semantic-search-over-chat",
"destination": "/docs/use_cases/question_answering/integrations/semantic-search-over-chat"
},
{
"source": "/docs/modules/chains/additional/llm_checker",
"destination": "/docs/use_cases/self_check/llm_checker"
},
{
"source": "/docs/modules/chains/additional/llm_summarization_checker",
"destination": "/docs/use_cases/self_check/llm_summarization_checker"
},
{
"source": "/docs/modules/chains/additional/elasticsearch_database",
"destination": "/docs/use_cases/tabular/elasticsearch_database"
},
{
"source": "/docs/modules/chains/additional/tagging",
"destination": "/docs/use_cases/tagging"
},
{
"source": "docs/integrations/providers/agent_with_wandb_tracing",
"destination": "docs/integrations/providers/wandb_tracing"
}
]
}

View File

@@ -1,10 +1,53 @@
#!/bin/bash
version_compare() {
local v1=(${1//./ })
local v2=(${2//./ })
for i in {0..2}; do
if (( ${v1[i]} < ${v2[i]} )); then
return 1
fi
done
return 0
}
openssl_version=$(openssl version | awk '{print $2}')
required_openssl_version="1.1.1"
python_version=$(python3 --version 2>&1 | awk '{print $2}')
required_python_version="3.10"
echo "OpenSSL Version"
echo $openssl_version
echo "Python Version"
echo $python_version
# If openssl version is less than 1.1.1 AND python version is less than 3.10
if ! version_compare $openssl_version $required_openssl_version && ! version_compare $python_version $required_python_version; then
### See: https://github.com/urllib3/urllib3/issues/2168
# Requests lib breaks for old SSL versions,
# which are defaults on Amazon Linux 2 (which Vercel uses for builds)
yum -y update
yum remove openssl-devel -y
yum install gcc bzip2-devel libffi-devel zlib-devel wget tar -y
yum install openssl11 -y
yum install openssl11-devel -y
wget https://www.python.org/ftp/python/3.11.4/Python-3.11.4.tgz
tar xzf Python-3.11.4.tgz
cd Python-3.11.4
./configure
make altinstall
echo "Python Version"
python3.11 --version
cd ..
fi
cd ..
python3 --version
python3 -m venv .venv
python3.11 -m venv .venv
source .venv/bin/activate
python3 -m pip install -r vercel_requirements.txt
python3.11 -m pip install --upgrade pip
python3.11 -m pip install -r vercel_requirements.txt
cp -r extras/* docs_skeleton/docs
cd docs_skeleton
nbdoc_build
python3.11 generate_api_reference_links.py

View File

@@ -1,5 +1,6 @@
# Tutorials
Below are links to video tutorials and courses on LangChain. For written guides on common use cases for LangChain, check out the [use cases guides](/docs/use_cases).
⛓ icon marks a new addition [last update 2023-07-05]

View File

@@ -0,0 +1,323 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "700a516b",
"metadata": {},
"source": [
"# OpenAI Adapter\n",
"\n",
"A lot of people get started with OpenAI but want to explore other models. LangChain's integrations with many model providers make this easy to do so. While LangChain has it's own message and model APIs, we've also made it as easy as possible to explore other models by exposing an adapter to adapt LangChain models to the OpenAI api.\n",
"\n",
"At the moment this only deals with output and does not return other information (token counts, stop reasons, etc)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6017f26a",
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"from langchain.adapters import openai as lc_openai"
]
},
{
"cell_type": "markdown",
"id": "b522ceda",
"metadata": {},
"source": [
"## ChatCompletion.create"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "1d22eb61",
"metadata": {},
"outputs": [],
"source": [
"messages = [{\"role\": \"user\", \"content\": \"hi\"}]"
]
},
{
"cell_type": "markdown",
"id": "d550d3ad",
"metadata": {},
"source": [
"Original OpenAI call"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e1d27dfa",
"metadata": {},
"outputs": [],
"source": [
"result = openai.ChatCompletion.create(\n",
" messages=messages, \n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "012d81ae",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'role': 'assistant', 'content': 'Hello! How can I assist you today?'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result[\"choices\"][0]['message'].to_dict_recursive()"
]
},
{
"cell_type": "markdown",
"id": "db5b5500",
"metadata": {},
"source": [
"LangChain OpenAI wrapper call"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "87c2d515",
"metadata": {},
"outputs": [],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, \n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "c67a5ac8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'role': 'assistant', 'content': 'Hello! How can I assist you today?'}"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lc_result[\"choices\"][0]['message']"
]
},
{
"cell_type": "markdown",
"id": "034ba845",
"metadata": {},
"source": [
"Swapping out model providers"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "7a2c011c",
"metadata": {},
"outputs": [],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, \n",
" model=\"claude-2\", \n",
" temperature=0, \n",
" provider=\"ChatAnthropic\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "f7c94827",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'role': 'assistant', 'content': ' Hello!'}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lc_result[\"choices\"][0]['message']"
]
},
{
"cell_type": "markdown",
"id": "cb3f181d",
"metadata": {},
"source": [
"## ChatCompletion.stream"
]
},
{
"cell_type": "markdown",
"id": "f7b8cd18",
"metadata": {},
"source": [
"Original OpenAI call"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "fd8cb1ea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'role': 'assistant', 'content': ''}\n",
"{'content': 'Hello'}\n",
"{'content': '!'}\n",
"{'content': ' How'}\n",
"{'content': ' can'}\n",
"{'content': ' I'}\n",
"{'content': ' assist'}\n",
"{'content': ' you'}\n",
"{'content': ' today'}\n",
"{'content': '?'}\n",
"{}\n"
]
}
],
"source": [
"for c in openai.ChatCompletion.create(\n",
" messages = messages,\n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0,\n",
" stream=True\n",
"):\n",
" print(c[\"choices\"][0]['delta'].to_dict_recursive())"
]
},
{
"cell_type": "markdown",
"id": "0b2a076b",
"metadata": {},
"source": [
"LangChain OpenAI wrapper call"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "9521218c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'role': 'assistant', 'content': ''}\n",
"{'content': 'Hello'}\n",
"{'content': '!'}\n",
"{'content': ' How'}\n",
"{'content': ' can'}\n",
"{'content': ' I'}\n",
"{'content': ' assist'}\n",
"{'content': ' you'}\n",
"{'content': ' today'}\n",
"{'content': '?'}\n",
"{}\n"
]
}
],
"source": [
"for c in lc_openai.ChatCompletion.create(\n",
" messages = messages,\n",
" model=\"gpt-3.5-turbo\", \n",
" temperature=0,\n",
" stream=True\n",
"):\n",
" print(c[\"choices\"][0]['delta'])"
]
},
{
"cell_type": "markdown",
"id": "0fc39750",
"metadata": {},
"source": [
"Swapping out model providers"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "68f0214e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'role': 'assistant', 'content': ' Hello'}\n",
"{'content': '!'}\n",
"{}\n"
]
}
],
"source": [
"for c in lc_openai.ChatCompletion.create(\n",
" messages = messages,\n",
" model=\"claude-2\", \n",
" temperature=0,\n",
" stream=True,\n",
" provider=\"ChatAnthropic\",\n",
"):\n",
" print(c[\"choices\"][0]['delta'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -4,7 +4,7 @@ If you're building with LLMs, at some point something will break, and you'll nee
Here's a few different tools and functionalities to aid in debugging.
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! Instead, edit the notebook w/the location & name as this file. -->
## Tracing

View File

@@ -43,7 +43,7 @@
{
"data": {
"text/plain": [
"{'reasoning': 'Response A is incorrect as it states there are three dogs in the park, which contradicts the reference answer of four. Response B, on the other hand, is accurate as it matches the reference answer. Although Response B is not as detailed or elaborate as Response A, it is more important that the response is accurate. \\n\\nFinal Decision: [[B]]\\n',\n",
"{'reasoning': 'Both responses are relevant to the question asked, as they both provide a numerical answer to the question about the number of dogs in the park. However, Response A is incorrect according to the reference answer, which states that there are four dogs. Response B, on the other hand, is correct as it matches the reference answer. Neither response demonstrates depth of thought, as they both simply provide a numerical answer without any additional information or context. \\n\\nBased on these criteria, Response B is the better response.\\n',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
@@ -62,6 +62,27 @@
")"
]
},
{
"cell_type": "markdown",
"id": "7491d2e6-4e77-4b17-be6b-7da966785c1d",
"metadata": {},
"source": [
"## Methods\n",
"\n",
"\n",
"The pairwise string evaluator can be called using [evaluate_string_pairs](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.evaluate_string_pairs) (or async [aevaluate_string_pairs](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.aevaluate_string_pairs)) methods, which accept:\n",
"\n",
"- prediction (str) The predicted response of the first model, chain, or prompt.\n",
"- prediction_b (str) The predicted response of the second model, chain, or prompt.\n",
"- input (str) The input question, prompt, or other text.\n",
"- reference (str) (Only for the labeled_pairwise_string variant) The reference response.\n",
"\n",
"They return a dictionary with the following values:\n",
"- value: 'A' or 'B', indicating whether `prediction` or `prediction_b` is preferred, respectively\n",
"- score: Integer 0 or 1 mapped from the 'value', where a score of 1 would mean that the first `prediction` is preferred, and a score of 0 would mean `prediction_b` is preferred.\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "ed353b93-be71-4479-b9c0-8c97814c2e58",
@@ -99,7 +120,7 @@
{
"data": {
"text/plain": [
"{'reasoning': \"Response A is accurate but lacks depth and detail. It simply states that addition is a mathematical operation without explaining what it does or how it works. \\n\\nResponse B, on the other hand, provides a more detailed explanation. It not only identifies addition as a mathematical operation, but also explains that it involves adding two numbers to create a third number, the 'sum'. This response is more helpful and informative, providing a clearer understanding of what addition is.\\n\\nTherefore, the better response is B.\\n\",\n",
"{'reasoning': 'Both responses are correct and relevant to the question. However, Response B is more helpful and insightful as it provides a more detailed explanation of what addition is. Response A is correct but lacks depth as it does not explain what the operation of addition entails. \\n\\nFinal Decision: [[B]]',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
@@ -117,6 +138,74 @@
")"
]
},
{
"cell_type": "markdown",
"id": "4a09b21d-9851-47e8-93d3-90044b2945b0",
"metadata": {
"tags": []
},
"source": [
"## Defining the Criteria\n",
"\n",
"By default, the LLM is instructed to select the 'preferred' response based on helpfulness, relevance, correctness, and depth of thought. You can customize the criteria by passing in a `criteria` argument, where the criteria could take any of the following forms:\n",
"- [`Criteria`](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.Criteria.html#langchain.evaluation.criteria.eval_chain.Criteria) enum or its string value - to use one of the default criteria and their descriptions\n",
"- [Constitutional principal](https://api.python.langchain.com/en/latest/chains/langchain.chains.constitutional_ai.models.ConstitutionalPrinciple.html#langchain.chains.constitutional_ai.models.ConstitutionalPrinciple) - use one any of the constitutional principles defined in langchain\n",
"- Dictionary: a list of custom criteria, where the key is the name of the criteria, and the value is the description.\n",
"- A list of criteria or constitutional principles - to combine multiple criteria in one.\n",
"\n",
"Below is an example for determining preferred writing responses based on a custom style."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8539e7d9-f7b0-4d32-9c45-593a7915c093",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"custom_criteria = {\n",
" \"simplicity\": \"Is the language straightforward and unpretentious?\",\n",
" \"clarity\": \"Are the sentences clear and easy to understand?\",\n",
" \"precision\": \"Is the writing precise, with no unnecessary words or details?\",\n",
" \"truthfulness\": \"Does the writing feel honest and sincere?\",\n",
" \"subtext\": \"Does the writing suggest deeper meanings or themes?\",\n",
"}\n",
"evaluator = load_evaluator(\"pairwise_string\", criteria=custom_criteria)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fec7bde8-fbdc-4730-8366-9d90d033c181",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Response A is simple, clear, and precise. It uses straightforward language to convey a deep and sincere message about families. The metaphor of joy and sorrow as music is effective and easy to understand.\\n\\nResponse B, on the other hand, is more complex and less clear. The language is more pretentious, with words like \"domicile,\" \"resounds,\" \"abode,\" \"dissonant,\" and \"elegy.\" While it conveys a similar message to Response A, it does so in a more convoluted way. The precision is also lacking due to the use of unnecessary words and details.\\n\\nBoth responses suggest deeper meanings or themes about the shared joy and unique sorrow in families. However, Response A does so in a more effective and accessible way.\\n\\nTherefore, the better response is [[A]].',\n",
" 'value': 'A',\n",
" 'score': 1}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"Every cheerful household shares a similar rhythm of joy; but sorrow, in each household, plays a unique, haunting melody.\",\n",
" prediction_b=\"Where one finds a symphony of joy, every domicile of happiness resounds in harmonious,\"\n",
" \" identical notes; yet, every abode of despair conducts a dissonant orchestra, each\"\n",
" \" playing an elegy of grief that is peculiar and profound to its own existence.\",\n",
" input=\"Write some prose about families.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a25b60b2-627c-408a-be4b-a2e5cbc10726",
@@ -129,7 +218,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"id": "de84a958-1330-482b-b950-68bcf23f9e35",
"metadata": {},
"outputs": [],
@@ -143,7 +232,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 8,
"id": "e162153f-d50a-4a7c-a033-019dabbc954c",
"metadata": {
"tags": []
@@ -152,12 +241,12 @@
{
"data": {
"text/plain": [
"{'reasoning': 'Here is my assessment:\\n\\nResponse B is better because it directly answers the question by stating the number \"4\", which matches the ground truth reference answer. Response A provides an incorrect number of dogs, stating there are three dogs when the reference says there are four. \\n\\nResponse B is more helpful, relevant, accurate and provides the right level of detail by simply stating the number that was asked for. Response A provides an inaccurate number, so is less helpful and accurate.\\n\\nIn summary, Response B better followed the instructions and answered the question correctly per the reference answer.\\n\\n[[B]]',\n",
"{'reasoning': 'Here is my assessment:\\n\\nResponse B is more helpful, insightful, and accurate than Response A. Response B simply states \"4\", which directly answers the question by providing the exact number of dogs mentioned in the reference answer. In contrast, Response A states \"there are three dogs\", which is incorrect according to the reference answer. \\n\\nIn terms of helpfulness, Response B gives the precise number while Response A provides an inaccurate guess. For relevance, both refer to dogs in the park from the question. However, Response B is more correct and factual based on the reference answer. Response A shows some attempt at reasoning but is ultimately incorrect. Response B requires less depth of thought to simply state the factual number.\\n\\nIn summary, Response B is superior in terms of helpfulness, relevance, correctness, and depth. My final decision is: [[B]]\\n',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
},
"execution_count": 6,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -185,7 +274,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 9,
"id": "fb817efa-3a4d-439d-af8c-773b89d97ec9",
"metadata": {
"tags": []
@@ -195,7 +284,9 @@
"from langchain.prompts import PromptTemplate\n",
"\n",
"prompt_template = PromptTemplate.from_template(\n",
" \"\"\"Given the input context, which is most similar to the reference label: A or B?\n",
" \"\"\"Given the input context, which do you prefer: A or B?\n",
"Evaluate based on the following criteria:\n",
"{criteria}\n",
"Reason step by step and finally, respond with either [[A]] or [[B]] on its own line.\n",
"\n",
"DATA\n",
@@ -216,7 +307,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 10,
"id": "d40aa4f0-cfd5-4cb4-83c8-8d2300a04c2f",
"metadata": {
"tags": []
@@ -226,7 +317,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"input_variables=['input', 'prediction', 'prediction_b', 'reference'] output_parser=None partial_variables={} template='Given the input context, which is most similar to the reference label: A or B?\\nReason step by step and finally, respond with either [[A]] or [[B]] on its own line.\\n\\nDATA\\n----\\ninput: {input}\\nreference: {reference}\\nA: {prediction}\\nB: {prediction_b}\\n---\\nReasoning:\\n\\n' template_format='f-string' validate_template=True\n"
"input_variables=['prediction', 'reference', 'prediction_b', 'input'] output_parser=None partial_variables={'criteria': 'helpfulness: Is the submission helpful, insightful, and appropriate?\\nrelevance: Is the submission referring to a real quote from the text?\\ncorrectness: Is the submission correct, accurate, and factual?\\ndepth: Does the submission demonstrate depth of thought?'} template='Given the input context, which do you prefer: A or B?\\nEvaluate based on the following criteria:\\n{criteria}\\nReason step by step and finally, respond with either [[A]] or [[B]] on its own line.\\n\\nDATA\\n----\\ninput: {input}\\nreference: {reference}\\nA: {prediction}\\nB: {prediction_b}\\n---\\nReasoning:\\n\\n' template_format='f-string' validate_template=True\n"
]
}
],
@@ -237,7 +328,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 11,
"id": "9467bb42-7a31-4071-8f66-9ed2c6f06dcd",
"metadata": {
"tags": []
@@ -246,12 +337,12 @@
{
"data": {
"text/plain": [
"{'reasoning': 'Option A is more similar to the reference label because it mentions the same dog\\'s name, \"fido\". Option B mentions a different name, \"spot\". Therefore, A is more similar to the reference label. \\n',\n",
"{'reasoning': 'Helpfulness: Both A and B are helpful as they provide a direct answer to the question.\\nRelevance: A is relevant as it refers to the correct name of the dog from the text. B is not relevant as it provides a different name.\\nCorrectness: A is correct as it accurately states the name of the dog. B is incorrect as it provides a different name.\\nDepth: Both A and B demonstrate a similar level of depth as they both provide a straightforward answer to the question.\\n\\nGiven these evaluations, the preferred response is:\\n',\n",
" 'value': 'A',\n",
" 'score': 1}"
]
},
"execution_count": 9,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}

View File

@@ -1,511 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# Agent VectorDB Question Answering Benchmarking\n",
"\n",
"Here we go over how to benchmark performance on a question answering task using an agent to route between multiple vectordatabases.\n",
"\n",
"It is highly recommended that you do any evaluation/benchmarking with tracing enabled. See [here](https://python.langchain.com/guides/tracing/) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Loading the data\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5b2d5e98",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset json (/Users/qt/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-vectordb-qa-sota-pg-d3ae24016b514f92/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)\n",
"100%|██████████| 1/1 [00:00<00:00, 414.42it/s]\n"
]
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"agent-vectordb-qa-sota-pg\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "61375342",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the purpose of the NATO Alliance?',\n",
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
" 'steps': [{'tool': 'State of Union QA System', 'tool_input': None},\n",
" {'tool': None, 'tool_input': 'What is the purpose of the NATO Alliance?'}]}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "02500304",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What is the purpose of YC?',\n",
" 'answer': 'The purpose of YC is to cause startups to be founded that would not otherwise have existed.',\n",
" 'steps': [{'tool': 'Paul Graham QA System', 'tool_input': None},\n",
" {'tool': None, 'tool_input': 'What is the purpose of YC?'}]}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[-1]"
]
},
{
"cell_type": "markdown",
"id": "4ab6a716",
"metadata": {},
"source": [
"## Setting up a chain\n",
"Now we need to create some pipelines for doing question answering. Step one in that is creating indexes over the data in question."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c18680b5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7f0de2b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ef84ff99",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"source": [
"vectorstore_sota = (\n",
" VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\": \"sota\"})\n",
" .from_loaders([loader])\n",
" .vectorstore\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a question answering chain."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "573719a0",
"metadata": {},
"outputs": [],
"source": [
"chain_sota = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(temperature=0),\n",
" chain_type=\"stuff\",\n",
" retriever=vectorstore_sota.as_retriever(),\n",
" input_key=\"question\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e48b03d8",
"metadata": {},
"source": [
"Now we do the same for the Paul Graham data."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "c2dbb014",
"metadata": {},
"outputs": [],
"source": [
"loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "98d16f08",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"source": [
"vectorstore_pg = (\n",
" VectorstoreIndexCreator(vectorstore_kwargs={\"collection_name\": \"paul_graham\"})\n",
" .from_loaders([loader])\n",
" .vectorstore\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ec0aab02",
"metadata": {},
"outputs": [],
"source": [
"chain_pg = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(temperature=0),\n",
" chain_type=\"stuff\",\n",
" retriever=vectorstore_pg.as_retriever(),\n",
" input_key=\"question\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "76b5f8fb",
"metadata": {},
"source": [
"We can now set up an agent to route between them."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ade1aafa",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
"\n",
"tools = [\n",
" Tool(\n",
" name=\"State of Union QA System\",\n",
" func=chain_sota.run,\n",
" description=\"useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.\",\n",
" ),\n",
" Tool(\n",
" name=\"Paul Graham System\",\n",
" func=chain_pg.run,\n",
" description=\"useful for when you need to answer questions about Paul Graham. Input should be a fully formed question.\",\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "104853f8",
"metadata": {},
"outputs": [],
"source": [
"agent = initialize_agent(\n",
" tools,\n",
" OpenAI(temperature=0),\n",
" agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
" max_iterations=4,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7f036641",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "4664e79f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(dataset[0][\"question\"])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "799f6c17",
"metadata": {},
"outputs": [],
"source": [
"predictions = []\n",
"predicted_dataset = []\n",
"error_dataset = []\n",
"for data in dataset:\n",
" new_data = {\"input\": data[\"question\"], \"answer\": data[\"answer\"]}\n",
" try:\n",
" predictions.append(agent(new_data))\n",
" predicted_dataset.append(new_data)\n",
" except Exception:\n",
" error_dataset.append(new_data)"
]
},
{
"cell_type": "markdown",
"id": "49d969fb",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "1d583f03",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What is the purpose of the NATO Alliance?',\n",
" 'answer': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.',\n",
" 'output': 'The purpose of the NATO Alliance is to secure peace and stability in Europe after World War 2.'}"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions[0]"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"Next, we can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" predicted_dataset, predictions, question_key=\"input\", prediction_key=\"output\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction[\"grade\"] = graded_outputs[i][\"text\"]"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 28, ' INCORRECT': 5})"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"Counter([pred[\"grade\"] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What are the four common sense steps that the author suggests to move forward safely?',\n",
" 'answer': 'The four common sense steps suggested by the author to move forward safely are: stay protected with vaccines and treatments, prepare for new variants, end the shutdown of schools and businesses, and stay vigilant.',\n",
" 'output': 'The four common sense steps suggested in the most recent State of the Union address are: cutting the cost of prescription drugs, providing a pathway to citizenship for Dreamers, revising laws so businesses have the workers they need and families dont wait decades to reunite, and protecting access to health care and preserving a womans right to choose.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More