Compare commits

...

566 Commits

Author SHA1 Message Date
Bagatur
46b3311190 RELEASE: 0.0.341 (#13926) 2023-11-27 09:51:12 -08:00
Nuno Campos
f6b05cacd0 Update root poetry lock with core (#13922)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-27 17:30:44 +00:00
umair mehmood
b3e08f9239 improvement: fix chat prompt loading from config (#13818)
Add loader for loading chat prompt from config file.

fixed: #13667

@efriis 
@baskaryan
2023-11-27 11:39:50 -05:00
Nuno Campos
8a3e0c9afa Add option to prefix config keys in configurable_alts (#13714) 2023-11-27 15:25:17 +00:00
Tomaz Bratanic
4ce5254442 Add Cypher template diagrams (#13913) 2023-11-27 10:18:51 -05:00
Taqi Jaffri
bfc12a4a76 DOCS: Simplified Docugami cookbook to remove code now available in docugami library (#13828)
The cookbook had some code to upload files, and wait for the processing
to finish.

This code is now moved to the `docugami` library so removing from the
cookbook to simplify.

Thanks @rlancemartin for suggesting this when working on evals.

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-27 00:07:24 -08:00
ggeutzzang
3749af79ae DOCS: fixed error in the docstring of RunnablePassthrough class (#13843)
This pull request addresses an issue found in the example code within
the docstring of `libs/core/langchain_core/runnables/passthrough.py`

The original code snippet caused a `NameError` due to the missing import
of `RunnableLambda`. The error was as follows:
```
     12     return "completion"
     13 
---> 14 chain = RunnableLambda(fake_llm) | {
     15     'original': RunnablePassthrough(), # Original LLM output
     16     'parsed': lambda text: text[::-1] # Parsing logic

NameError: name 'RunnableLambda' is not defined
```
To resolve this, I have modified the example code to include the
necessary import statement for `RunnableLambda`. Additionally, I have
adjusted the indentation in the code snippet to ensure consistency and
readability.

The modified code now successfully defines and utilizes
`RunnableLambda`, ensuring that users referencing the docstring will
have a functional and clear example to follow.

There are no related GitHub issues for this particular change.

Modified Code:
```python
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.runnables import RunnableLambda

runnable = RunnableParallel(
    origin=RunnablePassthrough(),
    modified=lambda x: x+1
)

runnable.invoke(1) # {'origin': 1, 'modified': 2}

def fake_llm(prompt: str) -> str: # Fake LLM for the example
    return "completion"

chain = RunnableLambda(fake_llm) | {
    'original': RunnablePassthrough(), # Original LLM output
    'parsed': lambda text: text[::-1] # Parsing logic
}

chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 00:06:55 -08:00
Dylan Williams
1983a39894 FEATURE: Add OneNote document loader (#13841)
- **Description:** Added OneNote document loader
  - **Issue:** #12125
  - **Dependencies:** msal

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-26 23:59:52 -08:00
Ikko Eltociear Ashimine
ff7d4d9c0b Update llamacpp.ipynb (#13840)
specifed -> specified
2023-11-26 23:47:19 -08:00
Tomaz Bratanic
1ad65f7a98 BUGFIX: Fix bugs with Cypher validation (#13849)
Fixes https://github.com/langchain-ai/langchain/issues/13803. Thanks to
@sakusaku-rich
2023-11-26 19:30:11 -08:00
Sᴜᴘᴇʀ Lᴇᴇ
e42e95cc11 docs: fix link to local_retrieval_qa (#13872)
\The original link in [this
section](https://python.langchain.com/docs/use_cases/question_answering/#:~:text=locally%2Drunning%20models-,here,-.):

https://python.langchain.com/docs/modules/use_cases/question_answering/local_retrieval_qa

After fix:

https://python.langchain.com/docs/use_cases/question_answering/local_retrieval_qa
2023-11-26 19:16:46 -08:00
Harrison Chase
6a35831128 BUGFIX: export more types (#13886)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-26 19:15:34 -08:00
Yusuf Khan
935f78c944 FEATURE: Add retriever for Outline (#13889)
- **Description:** Added a retriever for the Outline API to ask
questions on knowledge base
  - **Issue:** resolves #11814
  - **Dependencies:** None
  - **Tag maintainer:** @baskaryan
2023-11-26 18:56:12 -08:00
ggeutzzang
f2af82058f DOCS: Fix Sample Code for Compatibility with Pydantic 2.0 (#13890)
- **Description:** 
I encountered an issue while running the existing sample code on the
page https://python.langchain.com/docs/modules/agents/how_to/agent_iter
in an environment with Pydantic 2.0 installed. The following error was
triggered:

```python
ValidationError                           Traceback (most recent call last)
<ipython-input-12-2ffff2c87e76> in <cell line: 43>()
     41 
     42 tools = [
---> 43     Tool(
     44         name="GetPrime",
     45         func=get_prime,

2 frames
/usr/local/lib/python3.10/dist-packages/pydantic/v1/main.py in __init__(__pydantic_self__, **data)
    339         values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
    340         if validation_error:
--> 341             raise validation_error
    342         try:
    343             object_setattr(__pydantic_self__, '__dict__', values)

ValidationError: 1 validation error for Tool
args_schema
  subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)
```

I have made modifications to the example code to ensure it functions
correctly in environments with Pydantic 2.0.
2023-11-26 18:21:13 -08:00
Harrison Chase
968ba6961f add skeleton of thought (#13883) 2023-11-26 19:31:41 -05:00
Bagatur
0efa59cbb8 RELEASE: 0.0.339rc3 (#13852) 2023-11-25 10:37:30 -08:00
Bagatur
7222c42077 RELEASE: core 0.0.6 (#13853) 2023-11-25 10:21:14 -08:00
raelix
c172605ea6 IMPROVEMENT: Added title metadata to GoogleDriveLoader for optional File Loaders (#13832)
- **Description:** Simple change, I just added title metadata to
GoogleDriveLoader for optional File Loaders
  - **Dependencies:** no dependencies
  - **Tag maintainer:** @hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-24 18:53:55 -08:00
Stefano Lottini
19c68c7652 FEATURE: Astra DB, LLM cache classes (exact-match and semantic cache) (#13834)
This PR provides idiomatic implementations for the exact-match and the
semantic LLM caches using Astra DB as backend through the database's
HTTP JSON API. These caches require the `astrapy` library as dependency.

Comes with integration tests and example usage in the `llm_cache.ipynb`
in the docs.

@baskaryan this is the Astra DB counterpart for the Cassandra classes
you merged some time ago, tagging you for your familiarity with the
topic. Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-24 18:53:37 -08:00
Stefano Lottini
272df9dcae Astra DB, chat message history (#13836)
This PR adds a chat message history component that uses Astra DB for
persistence through the JSON API.
The `astrapy` package is required for this class to work.

I have added tests and a small notebook, and updated the relevant
references in the other docs pages.

(@rlancemartin this is the counterpart of the Cassandra equivalent class
you so helpfully reviewed back at the end of June)

Thank you!
2023-11-24 18:12:29 -08:00
Bagatur
58f7e109ac BUGFIX: Add import types and typevars from core (#13829) 2023-11-24 17:04:10 -08:00
Bagatur
751226e067 bump 0.0.339rc2 (#13787) 2023-11-23 12:50:09 -08:00
Bagatur
300ff01824 RELEASE: core 0.0.5 (#13786) 2023-11-23 12:23:50 -08:00
Bagatur
bcf83988ec Revert "INFRA: temp rm master condition (#13753)" (#13759) 2023-11-22 17:22:07 -08:00
Bagatur
df471b0c0b INFRA: temp rm master condition (#13753) 2023-11-22 16:59:50 -08:00
Bagatur
72c108b003 IMPROVEMENT: filter global warnings properly (#13754) 2023-11-22 16:26:37 -08:00
William FH
163bf165ed Add Batch Size kwarg to the llm start callback (#13483)
So you can more easily use the token counts directly from the API
endpoint for batch size of 1
2023-11-22 14:47:57 -08:00
Bagatur
23566cbea9 DOCS: core editable dep api refs (#13747) 2023-11-22 14:33:30 -08:00
Bagatur
0be515f720 RELEASE: 0.0.339rc1 (#13746) 2023-11-22 14:29:49 -08:00
Bagatur
2bc5bd67f7 RELEASE: core 0.0.4 (#13745) 2023-11-22 13:57:28 -08:00
Bagatur
b6b7654f7f INFRA: run LC ci after core changes (#13742) 2023-11-22 13:38:48 -08:00
Bagatur
3d28c1a9e0 DOCS: fix core api ref build (#13744) 2023-11-22 15:42:35 -05:00
Bagatur
32d087fcb8 REFACTOR: combine core documents files (#13733) 2023-11-22 10:10:26 -08:00
h3l
14d4fb98fc DOCS: Fix typo/line break in python code (#13708) 2023-11-22 09:10:07 -08:00
William FH
5b90fe5b1c Fix locking (#13725) 2023-11-22 07:37:25 -08:00
Bagatur
16af282429 BUGFIX: add prompt imports for backwards compat (#13702) 2023-11-21 23:04:20 -08:00
Erick Friis
78da34153e TEMPLATES Metadata (#13691)
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-11-22 01:41:12 -05:00
Bagatur
e327bb4ba4 IMPROVEMENT: Conditionally import core type hints (#13700) 2023-11-21 21:38:49 -08:00
dandanwei
d47ee1ae79 BUGFIX: redis vector store overwrites falsey metadata (#13652)
- **Description:** This commit fixed the problem that Redis vector store
will change the value of a metadata from 0 to empty when saving the
document, which should be an un-intended behavior.
  - **Issue:** N/A
  - **Dependencies:** N/A
2023-11-21 20:16:23 -08:00
Bagatur
a21e84faf7 BUGFIX: llm backwards compat imports (#13698) 2023-11-21 20:12:35 -08:00
Yujie Qian
ace9e64d62 IMPROVEMENT: VoyageEmbeddings embed_general_texts (#13620)
- **Description:** add method embed_general_texts in VoyageEmebddings to
support input_type
  - **Issue:** 
  - **Dependencies:** 
  - **Tag maintainer:** 
  - **Twitter handle:** @Voyage_AI_
2023-11-21 18:33:07 -08:00
tanujtiwari-at
5064890fcf BUGFIX: handle tool message type when converting to string (#13626)
**Description:** Currently, if we pass in a ToolMessage back to the
chain, it crashes with error

`Got unsupported message type: `

This fixes it. 

Tested locally

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-21 18:20:58 -08:00
Josep Pon Farreny
143049c90f Added partial_variables to BaseStringMessagePromptTemplate.from_template(...) (#13645)
**Description:** BaseStringMessagePromptTemplate.from_template was
passing the value of partial_variables into cls(...) via **kwargs,
rather than passing it to PromptTemplate.from_template. Which resulted
in those *partial_variables being* lost and becoming required
*input_variables*.

Co-authored-by: Josep Pon Farreny <josep.pon-farreny@siemens.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-21 17:48:38 -08:00
Erick Friis
c5ae9f832d INFRA: Lint for imports (#13632)
- Adds pydantic/import linting to core
- Adds a check for `langchain_experimental` imports to langchain
2023-11-21 17:42:56 -08:00
Erick Friis
131db4ba68 BUGFIX: anthropic models on bedrock (#13629)
Introduced in #13403
2023-11-21 17:40:29 -08:00
David Ruan
04bddbaba4 BUGFIX: Update bedrock.py to fix provider bug (#13646)
Provider check was incorrectly failing for anything other than "meta"
2023-11-21 17:28:38 -08:00
Guangya Liu
aec8715073 DOCS: remove openai api key from cookbook (#13633) 2023-11-21 17:25:06 -08:00
Guangya Liu
bb18b0266e DOCS: fixed import error for BashOutputParser (#13680) 2023-11-21 16:33:40 -08:00
Bagatur
dc53523837 IMPROVEMENT: bump core dep 0.0.3 (#13690) 2023-11-21 15:50:19 -08:00
Bagatur
a208abe6b7 add callback import test (#13689) 2023-11-21 15:28:49 -08:00
Bagatur
083afba697 BUG: Add core utils imports (#13688) 2023-11-21 15:25:47 -08:00
Bagatur
c61e30632e BUG: more core fixes (#13665)
Fix some circular deps:
- move PromptValue into top level module bc both PromptTemplates and
OutputParsers import
- move tracer context vars to `tracers.context` and import them in
functions in `callbacks.manager`
- add core import tests
2023-11-21 15:15:48 -08:00
William FH
59df16ab92 Update name (#13676) 2023-11-21 13:39:30 -08:00
Erick Friis
bfb980b968 CLI 0.0.19 (#13677) 2023-11-21 12:34:38 -08:00
Taqi Jaffri
d65c36d60a docugami cookbook (#13183)
Adds a cookbook for semi-structured RAG via Docugami. This follows the
same outline as the semi-structured RAG with Unstructured cookbook:
https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb

The main change is this cookbook uses Docugami instead of Unstructured
to find text and tables, and shows how XML markup in the output helps
with retrieval and generation.

We are \@docugami on twitter, I am \@tjaffri

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-21 12:02:20 -08:00
jakerachleff
249c796785 update langserve to v0.0.30 (#13673)
Upgrade langserve template version to 0.0.30 to include new improvements
2023-11-21 11:17:47 -08:00
jakerachleff
c6937a2eb4 fix templates dockerfile (#13672)
- **Description:** We need to update the Dockerfile for templates to
also copy your README.md. This is because poetry requires that a readme
exists if it is specified in the pyproject.toml
2023-11-21 11:09:55 -08:00
Bagatur
11614700a4 bump 0.0.339rc0 (#13664) 2023-11-21 08:41:59 -08:00
Bagatur
d32e511826 REFACTOR: Refactor langchain_core (#13627)
Changes:
- remove langchain_core/schema since no clear distinction b/n schema and
non-schema modules
- make every module that doesn't end in -y plural
- where easy have 1-2 classes per file
- no more than one level of nesting in directories
- only import from top level core modules in langchain
2023-11-21 08:35:29 -08:00
William FH
17c6551c18 Add error rate (#13568)
To the in-memory outputs. Separate it out from the outputs so it's
present in the dataframe.describe() results
2023-11-21 07:51:30 -08:00
Nuno Campos
8329f81072 Use pytest asyncio auto mode (#13643)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-21 15:00:13 +00:00
Lance Martin
611e1e0ca4 Add template for gpt-crawler (#13625)
Template for RAG using
[gpt-crawler](https://github.com/BuilderIO/gpt-crawler).

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-20 21:32:57 -08:00
Bagatur
99b4f46cbe REFACTOR: Add core as dep (#13623) 2023-11-20 14:38:10 -08:00
Harrison Chase
d82cbf5e76 Separate out langchain_core package (#13577)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-20 13:09:30 -08:00
Bagatur
4eec47b191 DOCS: update rag use case images (#13615) 2023-11-20 10:14:52 -08:00
Bagatur
e620347a83 RELEASE: bump 339 (#13613) 2023-11-20 09:56:43 -08:00
Ofer Mendelevitch
52e23e50b1 BUG: Fix search_kwargs in Vectara retriever (#13299)
- **Description:** fix a bug that prevented as_retriever() in Vectara to
use the desired input arguments
  - **Issue:** as_retriever did not pass the arguments properly
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** @ofermend
2023-11-20 09:44:43 -08:00
Holt Skinner
1c08dbfb33 IMPROVEMENT: Reduce post-processing time for DocAIParser (#13210)
- Remove `WrappedDocument` introduced in
https://github.com/langchain-ai/langchain/pull/11413
- https://github.com/googleapis/python-documentai-toolbox/issues/198 in
Document AI Toolbox to improve initialization time for `WrappedDocument`
object.

@lkuligin

@baskaryan

@hwchase17
2023-11-20 09:41:44 -08:00
Leonid Kuligin
f3fcdea574 fixed an UnboundLocalError when no documents are found (#12995)
Replace this entire comment with:
  - **Description:** fixed a bug
  - **Issue:** the issue # #12780
2023-11-20 09:41:14 -08:00
Stijn Tratsaert
b6f70d776b VertexAI LLM count_tokens method requires list of prompts (#13451)
I encountered this during summarization with VertexAI. I was receiving
an INVALID_ARGUMENT error, as it was trying to send a list of about
17000 single characters.

The [count_tokens
method](https://github.com/googleapis/python-aiplatform/blob/main/vertexai/language_models/_language_models.py#L658)
made available by Google takes in a list of prompts. It does not fail
for small texts, but it does for longer documents because the argument
list will be exceeding Googles allowed limit. Enforcing the list type
makes it work successfully.

This change will cast the input text to count to a list of that single
text so that the input format is always correct.

[Twitter](https://www.x.com/stijn_tratsaert)
2023-11-20 09:40:48 -08:00
Wang Wei
fe7b40cb2a feat: add ERNIE-Bot-4 Function Calling (#13320)
- **Description:** ERNIE-Bot-Chat-4 Large Language Model adds the
ability of `Function Calling` by passing parameters through the
`functions` parameter in the request. To simplify function calling for
ERNIE-Bot-Chat-4, the `create_ernie_fn_chain()` function has been added.
The definition and usage of the `create_ernie_fn_chain()` function is
similar to that of the `create_openai_fn_chain()` function.

Examples as the follows:

```
import json

from langchain.chains.ernie_functions import (
    create_ernie_fn_chain,
)
from langchain.chat_models import ErnieBotChat
from langchain.prompts import ChatPromptTemplate

def get_current_news(location: str) -> str:
    """Get the current news based on the location.'

    Args:
        location (str): The location to query.
    
    Returs:
        str: Current news based on the location.
    """

    news_info = {
        "location": location,
        "news": [
            "I have a Book.",
            "It's a nice day, today."
        ]
    }

    return json.dumps(news_info)

def get_current_weather(location: str, unit: str="celsius") -> str:
    """Get the current weather in a given location

    Args:
        location (str): location of the weather.
        unit (str): unit of the tempuature.
    
    Returns:
        str: weather in the given location.
    """

    weather_info = {
        "location": location,
        "temperature": "27",
        "unit": unit,
        "forecast": ["sunny", "windy"],
    }
    return json.dumps(weather_info)

llm = ErnieBotChat(model_name="ERNIE-Bot-4")
prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{query}"),
    ]
)

chain = create_ernie_fn_chain([get_current_weather, get_current_news], llm, prompt, verbose=True)
res = chain.run("北京今天的新闻是什么?")
print(res)
```

The running results of the above program are shown below:
```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 北京今天的新闻是什么?



> Finished chain.
{'name': 'get_current_news', 'thoughts': '用户想要知道北京今天的新闻。我可以使用get_current_news工具来获取这些信息。', 'arguments': {'location': '北京'}}
```
2023-11-19 22:36:12 -08:00
Adilkhan Sarsen
10418ab0c1 DeepLake Backwards compatibility fix (#13388)
- **Description:** during search with DeepLake some people are facing
backwards compatibility issues, this PR fixes it by making search
accessible for the older datasets

---------

Co-authored-by: adolkhan <adilkhan.sarsen@alumni.nu.edu.kz>
2023-11-19 21:46:01 -08:00
Tyler Hutcherson
190952fe76 IMPROVEMENT: Minor redis improvements (#13381)
- **Description:**
- Fixes a `key_prefix` bug where passing it in on
`Redis.from_existing(...)` did not work properly. Updates doc strings
accordingly.
- Updates Redis filter classes logic with best practices on typing,
string formatting, and handling "empty" filters.
- Fixes a bug that would prevent multiple tag filters from being applied
together in some scenarios.
- Added a whole new filter unit testing module. Also updated code
formatting for a number of modules that were failing the `make`
commands.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** @tchutch94
2023-11-19 19:15:45 -08:00
Sijun He
674bd90a47 DOCS: Fix typo in MongoDB memory docs (#13588)
- **Description:** Fix typo in MongoDB memory docs
  - **Tag maintainer:** @eyurtsev

<!-- Thank you for contributing to LangChain!

  - **Description:** Fix typo in MongoDB memory docs
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
  - **Tag maintainer:** @baskaryan
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-19 19:13:35 -08:00
Sergey Kozlov
df03267edf Fix tool arguments formatting in StructuredChatAgent (#10480)
In the `FORMAT_INSTRUCTIONS` template, 4 curly braces (escaping) are
used to get single curly brace after formatting:

```
"{{{ ... }}}}" -> format_instructions.format() ->  "{{ ... }}" -> template.format() -> "{ ... }".
```

Tool's `args_schema` string contains single braces `{ ... }`, and is
also transformed to `{{{{ ... }}}}` form. But this is not really correct
since there is only one `format()` call:

```
"{{{{ ... }}}}" -> template.format() -> "{{ ... }}".
```

As a result we get double curly braces in the prompt:
````
Respond to the human as helpfully and accurately as possible. You have access to the following tools:

foo: Test tool FOO, args: {{'tool_input': {{'type': 'string'}}}}    # <--- !!!
...
Provide only ONE action per $JSON_BLOB, as shown:

```
{
  "action": $TOOL_NAME,
  "action_input": $INPUT
}
```
````

This PR fixes curly braces escaping in the `args_schema` to have single
braces in the final prompt:
````
Respond to the human as helpfully and accurately as possible. You have access to the following tools:

foo: Test tool FOO, args: {'tool_input': {'type': 'string'}}    # <--- !!!
...
Provide only ONE action per $JSON_BLOB, as shown:

```
{
  "action": $TOOL_NAME,
  "action_input": $INPUT
}
```
````

---------

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2023-11-19 18:45:43 -08:00
Wouter Durnez
ef7802b325 Add llama2-13b-chat-v1 support to chat_models.BedrockChat (#13403)
Hi 👋 We are working with Llama2 on Bedrock, and would like to add it to
Langchain. We saw a [pull
request](https://github.com/langchain-ai/langchain/pull/13322) to add it
to the `llm.Bedrock` class, but since it concerns a chat model, we would
like to add it to `BedrockChat` as well.

- **Description:** Add support for Llama2 to `BedrockChat` in
`chat_models`
- **Issue:** the issue # it fixes (if applicable)
[#13316](https://github.com/langchain-ai/langchain/issues/13316)
  - **Dependencies:** any dependencies required for this change `None`
  - **Tag maintainer:** /
  - **Twitter handle:** `@SimonBockaert @WouterDurnez`

---------

Co-authored-by: wouter.durnez <wouter.durnez@showpad.com>
Co-authored-by: Simon Bockaert <simon.bockaert@showpad.com>
2023-11-19 18:44:58 -08:00
jwbeck97
a93616e972 FEAT: Add azure cognitive health tool (#13448)
- **Description:** This change adds an agent to the Azure Cognitive
Services toolkit for identifying healthcare entities
  - **Dependencies:** azure-ai-textanalytics (Optional)

---------

Co-authored-by: James Beck <James.Beck@sa.gov.au>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 18:44:01 -08:00
Massimiliano Pronesti
6bf9b2cb51 BUG: Limit Azure OpenAI embeddings chunk size (#13425)
Hi! 
This short PR aims at:
* Fixing `OpenAIEmbeddings`' check on `chunk_size` when used with Azure
OpenAI (thus with openai < 1.0). Azure OpenAI embeddings support at most
16 chunks per batch, I believe we are supposed to take the min between
the passed value/default value and 16, not the max - which, I suppose,
was introduced by accident while refactoring the previous version of
this check from this other PR of mine: #10707
* Porting this fix to the newest class (`AzureOpenAIEmbeddings`) for
openai >= 1.0

This fixes #13539 (closed but the issue persists).  

@baskaryan @hwchase17
2023-11-19 18:34:51 -08:00
Zeyang Lin
e53f59f01a DOCS: doc-string - langchain.vectorstores.dashvector.DashVector (#13502)
- **Description:** There are several mistakes in the sample code in the
doc-string of `DashVector` class, and this pull request aims to correct
them.
The correction code has been tested against latest version (at the time
of creation of this pull request) of: `langchain==0.0.336`
`dashvector==1.0.6` .
- **Issue:** No issue is created for this.
- **Dependencies:** No dependency is required for this change,
<!-- - **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below), -->
- **Twitter handle:** `zeyanglin`

<!-- Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
2023-11-19 18:24:05 -08:00
John Mai
16f7912e1b BUG: fix hunyuan appid type (#13496)
- **Description: fix hunyuan appid type
- **Issue:
https://github.com/langchain-ai/langchain/pull/12022#issuecomment-1815627855
2023-11-19 18:23:45 -08:00
Leonid Ganeline
43972be632 docs updating AzureML notebooks (#13492)
- Added/updated descriptions and links

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-19 18:07:12 -08:00
Nicolò Boschi
8362bd729b AstraDB: use includeSimilarity option instead of $similarity (#13512)
- **Description:** AstraDB is going to deprecate the `$similarity`
projection property in favor of the ´includeSimilarity´ option flag. I
moved all the queries to the new format.
- **Tag maintainer:** @hemidactylus 
- **Twitter handle:** nicoloboschi
2023-11-19 17:54:35 -08:00
shumpei
7100d586ef Introduce search_kwargs for Custom Parameters in BingSearchAPIWrapper (#13525)
Added a `search_kwargs` field to BingSearchAPIWrapper in
`bing_search.py,` enabling users to include extra keyword arguments in
Bing search queries. This update, like specifying language preferences,
adds more customization to searches. The `search_kwargs` seamlessly
merge with standard parameters in `_bing_search_results` method.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-19 17:51:02 -08:00
Nicolò Boschi
ad0c3b9479 Fix Astra integration tests (#13520)
- **Description:** Fix Astra integration tests that are failing. The
`delete` always return True as the deletion is successful if no errors
are thrown. I aligned the test to verify this behaviour
  - **Tag maintainer:** @hemidactylus 
  - **Twitter handle:** nicoloboschi

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:50:49 -08:00
umair mehmood
69d39e2173 fix: VLLMOpenAI -- create() got an unexpected keyword argument 'api_key' (#13517)
The issue was accuring because of `openai` update in Completions. its
not accepting `api_key` and 'api_base' args.

The fix is we check for the openai version and if ats v1 then remove
these keys from args before passing them to `Compilation.create(...)`
when sending from `VLLMOpenAI`

Fixed: #13507 

@eyu
@efriis 
@hwchase17

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-19 17:49:55 -08:00
Manuel Alemán Cueto
6bc08266e0 Fix for oracle schema parsing stated on the issue #7928 (#13545)
- **Description:** In this pull request, we address an issue related to
assigning a schema to the SQLDatabase class when utilizing an Oracle
database. The current implementation encounters a bug where, upon
attempting to execute a query, the alter session parse is not
appropriately defined for Oracle, leading to an error,
  - **Issue:** #7928,
  - **Dependencies:** No dependencies,
  - **Tag maintainer:** @baskaryan,

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:35:27 -08:00
Andrew Teeter
325bdac673 feat: load all namespaces (#13549)
- **Description:** This change allows for the `MWDumpLoader` to load all
namespaces including custom by default instead of only loading the
[default
namespaces](https://www.mediawiki.org/wiki/Help:Namespaces#Localisation).
  - **Tag maintainer:** @hwchase17
2023-11-19 17:35:17 -08:00
Taranjeet Singh
47451764a7 Add embedchain retriever (#13553)
**Description:**

This commit adds embedchain retriever along with tests and docs.
Embedchain is a RAG framework to create data pipelines.

**Twitter handle:**
- [Taranjeet's twitter](https://twitter.com/taranjeetio) and
[Embedchain's twitter](https://twitter.com/embedchain)

**Reviewer**
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:35:03 -08:00
rafly lesmana
420a17542d fix: Make YoutubeLoader support on demand language translation (#13583)
**Description:**
Enhance the functionality of YoutubeLoader to enable the translation of
available transcripts by refining the existing logic.

**Issue:**
Encountering a problem with YoutubeLoader (#13523) where the translation
feature is not functioning as expected.

Tag maintainers/contributors who might be interested:
@eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:34:48 -08:00
Leonid Ganeline
cc50e023d1 DOCS langchain decorators update (#13535)
added disclaimer

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-11-19 17:30:05 -08:00
Brace Sproul
02a13030c0 DOCS: updated langchain stack img to be svg (#13540) 2023-11-19 16:26:53 -08:00
Bagatur
78a1f4b264 bump 338, exp 42 (#13564) 2023-11-18 15:12:07 -08:00
Bagatur
790ed8be69 update multi index templates (#13569) 2023-11-18 14:42:22 -08:00
Harrison Chase
f4c0e3cc15 move streaming stdout (#13559) 2023-11-18 12:24:49 -05:00
Leonid Ganeline
43dad6cb91 BUG fixed openai_assistant namespace (#13543)
BUG: langchain.agents.openai_assistant has a reference as
`from langchain_experimental.openai_assistant.base import
OpenAIAssistantRunnable`
should be 
`from langchain.agents.openai_assistant.base import
OpenAIAssistantRunnable`

This prevents building of the API Reference docs
2023-11-17 17:15:33 -08:00
Bassem Yacoube
ff382b7b1b IMPROVEMENT Adds support for new OctoAI endpoints (#13521)
small fix to add support for new OctoAI LLM endpoints
2023-11-17 17:15:21 -08:00
Mark Silverberg
cda1b33270 Fix typo/line break in the middle of a word (#13314)
- **Description:** a simple typo/extra line break fix
  - **Dependencies:** none
2023-11-17 16:43:42 -08:00
William FH
cac849ae86 Use random seed (#13544)
For default eval llm
2023-11-17 16:33:31 -08:00
Martin Krasser
79ed66f870 EXPERIMENTAL Generic LLM wrapper to support chat model interface with configurable chat prompt format (#8295)
## Update 2023-09-08

This PR now supports further models in addition to Lllama-2 chat models.
See [this comment](#issuecomment-1668988543) for further details. The
title of this PR has been updated accordingly.

## Original PR description

This PR adds a generic `Llama2Chat` model, a wrapper for LLMs able to
serve Llama-2 chat models (like `LlamaCPP`,
`HuggingFaceTextGenInference`, ...). It implements `BaseChatModel`,
converts a list of chat messages into the [required Llama-2 chat prompt
format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) and
forwards the formatted prompt as `str` to the wrapped `LLM`. Usage
example:

```python
# uses a locally hosted Llama2 chat model
llm = HuggingFaceTextGenInference(
    inference_server_url="http://127.0.0.1:8080/",
    max_new_tokens=512,
    top_k=50,
    temperature=0.1,
    repetition_penalty=1.03,
)

# Wrap llm to support Llama2 chat prompt format.
# Resulting model is a chat model
model = Llama2Chat(llm=llm)

messages = [
    SystemMessage(content="You are a helpful assistant."),
    MessagesPlaceholder(variable_name="chat_history"),
    HumanMessagePromptTemplate.from_template("{text}"),
]

prompt = ChatPromptTemplate.from_messages(messages)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = LLMChain(llm=model, prompt=prompt, memory=memory)

# use chat model in a conversation
# ...
```

Also part of this PR are tests and a demo notebook.

- Tag maintainer: @hwchase17
- Twitter handle: `@mrt1nz`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-17 16:32:13 -08:00
William FH
c56faa6ef1 Add execution time (#13542)
And warn instead of raising an error, since the chain API is too
inconsistent.
2023-11-17 16:04:16 -08:00
pedro-inf-custodio
0fb5f857f9 IMPROVEMENT WebResearchRetriever error handling in urls with connection error (#13401)
- **Description:** Added a method `fetch_valid_documents` to
`WebResearchRetriever` class that will test the connection for every url
in `new_urls` and remove those that raise a `ConnectionError`.
- **Issue:** [Previous
PR](https://github.com/langchain-ai/langchain/pull/13353),
  - **Dependencies:** None,
  - **Tag maintainer:** @efriis 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
2023-11-17 14:02:26 -08:00
Piyush Jain
d2335d0114 IMPROVEMENT Neptune graph updates (#13491)
## Description
This PR adds an option to allow unsigned requests to the Neptune
database when using the `NeptuneGraph` class.

```python
graph = NeptuneGraph(
    host='<my-cluster>',
    port=8182,
    sign=False
)
```

Also, added is an option in the `NeptuneOpenCypherQAChain` to provide
additional domain instructions to the graph query generation prompt.
This will be injected in the prompt as-is, so you should include any
provider specific tags, for example `<instructions>` or `<INSTR>`.

```python
chain = NeptuneOpenCypherQAChain.from_llm(
    llm=llm,
    graph=graph,
    extra_instructions="""
    Follow these instructions to build the query:
    1. Countries contain airports, not the other way around
    2. Use the airport code for identifying airports
    """
)
```
2023-11-17 13:49:31 -08:00
William FH
5a28dc3210 Override Keys Option (#13537)
Should be able to override the global key if you want to evaluate
different outputs in a single run
2023-11-17 13:32:43 -08:00
Bagatur
e584b28c54 bump 337 (#13534) 2023-11-17 12:50:52 -08:00
Wietse Venema
e80b53ff4f TEMPLATE Add VertexAI Chuck Norris template (#13531)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-17 12:27:52 -08:00
Bagatur
2e2114d2d0 FEATURE: Runnable with message history (#13418)
Add RunnableWithMessageHistory class that can wrap certain runnables and manages chat history for them.
2023-11-17 12:00:01 -08:00
Bagatur
0fc3af8932 IMPROVEMENT: update assistants output and doc (#13480) 2023-11-17 11:58:54 -08:00
Bagatur
b4312aac5c TEMPLATES: Add multi-index templates (#13490)
One that routes and one that fuses

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-17 02:00:11 -08:00
Hugues Chocart
35e04f204b [LLMonitorCallbackHandler] Various improvements (#13151)
Small improvements for the llmonitor callback handler, like better
support for non-openai models.


---------

Co-authored-by: vincelwt <vince@lyser.io>
2023-11-16 23:39:36 -08:00
Noah Stapp
c1b041c188 Add Wrapping Library Metadata to MongoDB vector store (#13084)
**Description**
MongoDB drivers are used in various flavors and languages. Making sure
we exercise our due diligence in identifying the "origin" of the library
calls makes it best to understand how our Atlas servers get accessed.
2023-11-16 22:20:04 -08:00
Leonid Ganeline
21552628c8 DOCS updated data_connection index page (#13426)
- the `Index` section was missed. Created it.
- text simplification

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-16 18:16:50 -08:00
Guy Korland
7f8fd70ac4 Add optional arguments to FalkorDBGraph constructor (#13459)
**Description:** Add optional arguments to FalkorDBGraph constructor
**Tag maintainer:** baskaryan 
**Twitter handle:** @g_korland
2023-11-16 18:15:40 -08:00
Leonid Ganeline
e3a5cd7969 docs integrations/vectorstores/ cleanup (#13487)
- updated titles to consistent format
- added/updated descriptions and links
- format heading
2023-11-16 17:51:49 -08:00
Leonid Ganeline
1d2981114f DOCS updated async-faiss example (#13434)
The original notebook has the `faiss` title which is duplicated in
the`faiss.jpynb`. As a result, we have two `faiss` items in the
vectorstore ToC. And the first item breaks the searching order (it is
placed between `A...` items).
- I updated title to `Asynchronous Faiss`.
2023-11-16 17:41:26 -08:00
Erick Friis
9dfad613c2 IMPROVEMENT Allow openai v1 in all templates that require it (#13489)
- pyproject change
- lockfiles
2023-11-16 17:10:08 -08:00
chris stucchio
d7f014cd89 Bug: OpenAIFunctionsAgentOutputParser doesn't handle functions with no args (#13467)
**Description/Issue:** 
When OpenAI calls a function with no args, the args are `""` rather than
`"{}"`. Then `json.loads("")` blows up. This PR handles it correctly.

**Dependencies:** None
2023-11-16 16:47:05 -08:00
Yujie Qian
41a433fa33 IMPROVEMENT: add input_type to VoyageEmbeddings (#13488)
- **Description:** add input_type to VoyageEmbeddings
2023-11-16 16:35:36 -08:00
David Duong
ea6e017b85 Add serialisation arguments to Bedrock and ChatBedrock (#13465) 2023-11-17 01:33:24 +01:00
Erick Friis
427331d621 IMPROVEMENT Lock pydantic v1 in app template, cli 0.0.18 (#13485) 2023-11-16 15:22:11 -08:00
Erick Friis
75363f048f BUG Fix app_name in cli app new (#13482) 2023-11-16 14:19:35 -08:00
Leonid Ganeline
9ff8f69e75 DOCS updated memory Titles (#13435)
- Fixed titles for two notebooks. They were inconsistent with other
titles and clogged ToC.
- Added `Upstash` description and link
- Moved the authentication text up in the `Elasticsearch` nb, right
after package installation. It was on the end of the page which was a
wrong place.
2023-11-16 13:24:05 -08:00
ifduyue
324ab382ad Use List instead of list (#13443)
Unify List usages in libs/langchain/langchain/text_splitter.py, only one
place it's `list`, all other ocurrences are `List`
2023-11-16 13:15:58 -08:00
Stefano Lottini
b029d9f4e6 Astra DB: minor improvements to docstrings and demo notebook (#13449)
This PR brings a few minor improvements to the docs, namely class/method
docstrings and the demo notebook.

- A note on how to control concurrency levels to tune performance in
bulk inserts, both in the class docstring and the demo notebook;
- Slightly increased concurrency defaults after careful experimentation
(still on the conservative side even for clients running on
less-than-typical network/hardware specs)
- renamed the DB token variable to the standardized
`ASTRA_DB_APPLICATION_TOKEN` name (used elsewhere, e.g. in the Astra DB
docs)
- added a note and a reference (add_text docstring, demo notebook) on
allowed metadata field names.

Thank you!
2023-11-16 12:48:32 -08:00
Eugene Yurtsev
1e43fd6afe Add ahandle_event to _all_ (#13469)
Add ahandle_event for backwards compatibility as it is used by langserve
2023-11-16 12:46:20 -08:00
Leonid Ganeline
283ef1f66d DOCS fix for integratons/document_loaders sidebar (#13471)
The current `integrations/document_loaders/` sidebar has the
`example_data` item, which is a menu with a single item: "Notebook".
It is happening because the `integrations/document_loaders/` folder has
the `example_data/notebook.md` file that is used to autogenerate the
above menu item.
- removed an example_data/notebook.md file. Docusaurus doesn't have
simple ways to fix this problem (to exclude folders/files from an
autogenerated sidebar). Removing this file didn't break any existing
examples, so this fix is safe.
2023-11-16 12:02:30 -08:00
Leonid Ganeline
b1fcf5b481 DOCS: integrations/text_embeddings/ cleanup (#13476)
Updated several notebooks:
- fixed titles which are inconsistent or break the ToC sorting order.
- added missed soruce descriptions and links
- fixed formatting
2023-11-16 11:56:53 -08:00
Bagatur
6030ab9779 Update chain of note README.md (#13473) 2023-11-16 10:47:27 -08:00
Lance Martin
cf66a4737d Update multi-modal RAG cookbook (#13429)
Use example
[blog](https://cloudedjudgement.substack.com/p/clouded-judgement-111023)
w/ tables, charts as images.
2023-11-16 10:34:13 -08:00
Bagatur
10fddac4b5 Bagatur/chain of note template(#13470) 2023-11-16 10:34:04 -08:00
Leonid Ganeline
d5b1a21ae4 DOCS updated semadb example (#13431)
- the `SemaDB` notebook was placed in additional subfolder which breaks
the vectorstore ToC. I moved file up, removed this unnecessary
subfolder; updated the `vercel.json` with rerouting for the new URL
- Added SemaDB description and link
- improved text consistency
2023-11-16 09:57:22 -08:00
Leonid Ganeline
17c2007e0c DOCS updated Activeloop DeepMemory notebook (#13428)
- Fixed the title of the notebook. It created an ugly ToC element as
`Activeloop DeepLake's DeepMemory + LangChain + ragas or how to get +27%
on RAG recall.`
- Added Activeloop description
- improved consistency in text
- fixed ToC (it was using HTML tagas that break left-side in-page ToC).
Now in-page ToC works
2023-11-16 09:56:28 -08:00
Harrison Chase
f90249305a callback refactor (#13372)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-16 08:25:09 -08:00
Bagatur
9e6748e198 DOCS: rag nit (#13436) 2023-11-15 18:06:52 -08:00
Leonid Ganeline
8a52c1456b updated clickup example (#13424)
- Fixed headers (was more then 1 Titles)
- Removed security token value. It was OK to have it, because it is
temporary token, but the automatic security swippers raise warnings on
that.
- Added `ClickUp` service description and link.
2023-11-15 15:11:24 -08:00
Brace Sproul
79fa9a81f4 Fix a link in docs (#13423) 2023-11-15 15:02:26 -08:00
Nuno Campos
a632f61f3d IMPROVEMENT pirate-speak-configurable alternatives env vars (#13395)
…rnative LLMs until used

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-15 14:38:03 -08:00
Bagatur
f0bb839506 DOCS: langchain stack img update (#13421) 2023-11-15 14:10:02 -08:00
Bagatur
a9b2c943e6 bump 336, exp 44 (#13420) 2023-11-15 14:08:34 -08:00
Bagatur
1372296dc8 FIX: Infer runnable agent single or multi action (#13412) 2023-11-15 13:58:14 -08:00
Eugene Yurtsev
accadccf8e Use secretstr for api keys for javelin-ai-gateway (#13417)
- Make javelin_ai_gateway_api_key a SecretStr

---------

Co-authored-by: Hiroshi Tashiro <hiroshitash@gmail.com>
2023-11-15 16:12:05 -05:00
William FH
ba501b27a0 Fix Runnable Lambda Afunc Repr (#13413)
Otherwise, you get an error when using async functions.


h/t to Chris Ruppelt
2023-11-15 16:11:42 -05:00
Sumukh Sridhara
1726d5dcdd Merge pull request #13232
* PGVector needs to close its connection if its garbage collected
2023-11-15 15:34:37 -05:00
Nuno Campos
85a77d2c27 IMPROVEMENT Passthrough kwargs in runnable lambda (#13405)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-15 11:45:16 -08:00
Bagatur
76c317ed78 DOCS: update rag use case (#13319) 2023-11-15 10:54:15 -08:00
Bagatur
a0b39a4325 DOCS: install nit (#13380) 2023-11-15 10:27:00 -08:00
Clay Elmore
8823e3831f FEAT Bedrock cohere embedding support (#13366)
- **Description:** adding cohere embedding support to bedrock embedding
class
  - **Issue:** N/A
  - **Dependencies:** None
  - **Tag maintainer:** @3coins 
  - **Twitter handle:** celmore25

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-15 10:19:12 -08:00
Bagatur
9f543634e2 Agent window management how to (#13033) 2023-11-15 09:38:02 -08:00
Nuno Campos
d5aeff706a Make it easier to subclass RunnableEach (#13346)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-15 13:12:57 +00:00
Erick Friis
bed06a4f4a IMPROVEMENT research-assistant configurable report type (#13312)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-14 21:04:57 -08:00
竹内謙太
3b5e8bacfa FEAT Add some properties to NotionDBLoader (#13358)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

fix #13356

Add supports following properties for metadata to NotionDBLoader.

- `checkbox`
- `email`
- `number`
- `select`

There are no relevant tests for this code to be updated.
2023-11-14 20:31:12 -08:00
Leonid Ganeline
c9b9359647 FEAT docs integration cards site (#13379)
The `Integrations` site is hidden now.
I've added it into the `More` menu.
The name is `Integration Cards` otherwise, it is confused with the
`Integrations` menu.

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-11-14 19:49:17 -08:00
Erick Friis
0f25ea9671 api doc newlines (#13378)
cc @leo-gan 

Deploying at
https://api.python.langchain.com/en/erick-api-doc-newlines-/api_reference.html
(will take a bit)
2023-11-14 19:16:31 -08:00
Fielding Johnston
37eb44c591 BUG Add limit_to_domains to APIChain based tools (#13367)
- **Description:** Adds `limit_to_domains` param to the APIChain based
tools (open_meteo, TMDB, podcast_docs, and news_api)
- **Issue:** I didn't open an issue, but after upgrading to 0.0.328
using these tools would throw an error.
  - **Dependencies:** N/A
  - **Tag maintainer:** @baskaryan 
  
  
**Note**: I included the trailing / simply because the docs here did
fc886cc303/docs/docs/use_cases/apis.ipynb (L246)
, but I checked the code and it is using `urlparse`. SoI followed the
docs since it comes down to stylee.
2023-11-14 19:07:16 -08:00
Predrag Gruevski
91443cacdb Update templates/rag-self-query with newer dependencies without CVEs. (#13362)
The `langchain` repo was being flagged for using vulnerable
dependencies, some of which were in this template's lockfile. Updating
to newer versions should fix that.
2023-11-14 19:06:18 -08:00
Predrag Gruevski
ac7e88fbbe Update rag-timescale-conversation to dependencies without CVEs. (#13364)
Just `poetry lock` and moving `langchain` to the latest version, in case
folks copy this template.

This resolves some vulnerable dependency alerts GitHub code scanning was
flagging.
2023-11-14 19:05:12 -08:00
Leonid Ganeline
342ed5c77a Yi model from 01.ai , example (#13375)
Added an example with new soa `Yi` model to `HuggingFace-hub` notebook
2023-11-14 17:10:53 -08:00
Bagatur
38180ad25f bump openai support (#13262) 2023-11-14 16:50:23 -08:00
Erick Friis
9545f0666d fix cli release (#13373)
My thought is that the ==version would prevent pip from finding the
package on regular [pypi.org](http://pypi.org/), so it would look at
[test.pypi.org](http://test.pypi.org/) for that. Otherwise it'll pull
package from [pypi.org](http://pypi.org/) (e.g. sub deps)

Right now, the cli release is failing because it's going to
test.pypi.org by default, so it finds this incorrect FASTAPI package
instead of the real one: https://test.pypi.org/project/FASTAPI/
2023-11-14 15:08:35 -08:00
Erick Friis
7c3066f9ec more cli interactivity, bugfix (#13360) 2023-11-14 14:49:43 -08:00
Bagatur
3596be5210 DOCS: format notebooks (#13371) 2023-11-14 14:17:44 -08:00
Predrag Gruevski
d63d4994c0 Bump all libraries to the latest ruff version. (#13350)
This version of `ruff` is the one we'll be using to lint the docs and
cookbooks (#12677), so I'm making it used everywhere else too.
2023-11-14 16:00:21 -05:00
Predrag Gruevski
2ebd167dba Lint Python notebooks with ruff. (#12677)
The new ruff version fixed the blocking bugs, and I was able to fairly
easily us to a passing state: ruff fixed some issues on its own, I fixed
a handful by hand, and I added a list of narrowly-targeted exclusions
for files that are currently failing ruff rules that we probably should
look into eventually.

I went pretty lenient on the docs / cookbooks rules, allowing dead code
and such things. Perhaps in the future we may want to tighten the rules
further, but this is already a good set of checks that found real issues
and will prevent them going forward.
2023-11-14 15:58:22 -05:00
Massimiliano Pronesti
344cab0739 IMPROVEMENT: support Openai API v1 for Azure OpenAI completions (#13231)
Hi,
this PR adds support for OpenAI API v1 for Azure OpenAI completion API.
@baskaryan @hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-14 12:10:18 -08:00
dependabot[bot]
fc886cc303 Bump pyarrow from 13.0.0 to 14.0.1 in /libs/langchain (#13363)
Bumps [pyarrow](https://github.com/apache/arrow) from 13.0.0 to 14.0.1.
<details>
<summary>Commits</summary>
<ul>
<li><a
href="ba53748361"><code>ba53748</code></a>
MINOR: [Release] Update versions for 14.0.1</li>
<li><a
href="529f3768fa"><code>529f376</code></a>
MINOR: [Release] Update .deb/.rpm changelogs for 14.0.1</li>
<li><a
href="b84bbcac64"><code>b84bbca</code></a>
MINOR: [Release] Update CHANGELOG.md for 14.0.1</li>
<li><a
href="f141709763"><code>f141709</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38607">GH-38607</a>:
[Python] Disable PyExtensionType autoload (<a
href="https://redirect.github.com/apache/arrow/issues/38608">#38608</a>)</li>
<li><a
href="5a37e74198"><code>5a37e74</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38431">GH-38431</a>:
[Python][CI] Update fs.type_name checks for s3fs tests (<a
href="https://redirect.github.com/apache/arrow/issues/38455">#38455</a>)</li>
<li><a
href="2dcee3f82c"><code>2dcee3f</code></a>
MINOR: [Release] Update versions for 14.0.0</li>
<li><a
href="297428cbf2"><code>297428c</code></a>
MINOR: [Release] Update .deb/.rpm changelogs for 14.0.0</li>
<li><a
href="3e9734f883"><code>3e9734f</code></a>
MINOR: [Release] Update CHANGELOG.md for 14.0.0</li>
<li><a
href="9f90995c8c"><code>9f90995</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38332">GH-38332</a>:
[CI][Release] Resolve symlinks in RAT lint (<a
href="https://redirect.github.com/apache/arrow/issues/38337">#38337</a>)</li>
<li><a
href="bd61239a32"><code>bd61239</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/35531">GH-35531</a>:
[Python] C Data Interface PyCapsule Protocol (<a
href="https://redirect.github.com/apache/arrow/issues/37797">#37797</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/apache/arrow/compare/go/v13.0.0...go/v14.0.1">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=pyarrow&package-manager=pip&previous-version=13.0.0&new-version=14.0.1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/langchain-ai/langchain/network/alerts).

</details>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Predrag Gruevski <2348618+obi1kenobi@users.noreply.github.com>
2023-11-14 14:23:52 -05:00
Leonid Ganeline
f5bf3bdf14 added Cookbooks link (#13078)
It is a temporary solution before major documents refactoring.
Related to #13070 (not solving it)
2023-11-14 10:52:47 -08:00
Erick Friis
c0e6045c0b cli 0.0.17 (#13359) 2023-11-14 09:56:18 -08:00
Erick Friis
927824b7cb CLI interactivity (#13148)
Will implement more later
2023-11-14 09:53:29 -08:00
billytrend-cohere
2f6fe6ddf3 Fix latest message index (#13355)
There is a bug which caused the earliest message rather than the latest
message being sent
2023-11-14 09:23:25 -08:00
Manuel Soria
58f5a4d30a Pgvector template (#13267)
Including pvector template, adapting what is covered in the
[cookbook](https://github.com/langchain-ai/langchain/blob/master/cookbook/retrieval_in_sql.ipynb).

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-14 07:47:48 -08:00
Harrison Chase
be854225c7 add more reasonable arxiv retriever (#13327) 2023-11-13 20:54:14 -08:00
Harrison Chase
4b7a85887e arxiv retrieval agent improvement (#13329) 2023-11-13 20:54:03 -08:00
Krish Dholakia
5a920e14c0 fix litellm openai imports (#13307) 2023-11-13 17:55:10 -08:00
Bagatur
1c67db4c18 Move OAI assistants to langchain and add callbacks (#13236) 2023-11-13 17:42:07 -08:00
Bagatur
8006919e52 DOCS: cleanup docs directory (#13301) 2023-11-13 17:38:45 -08:00
Bagatur
c3f94f4c12 Update main readme (#13298) 2023-11-13 17:37:54 -08:00
Harrison Chase
5f60439221 add retrieval agent (#13317) 2023-11-13 17:22:39 -08:00
Harrison Chase
2ff30b50f2 FEATURE gpt researcher template (#13062)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 15:52:25 -08:00
Erick Friis
280ecfd8eb IMPROVEMENT redirect root to docs in langserve app template (#13303) 2023-11-13 15:51:41 -08:00
wemysschen
a591cdb67d add cookbook for RAG with baidu QIANFAN and elasticsearch (#13287)
**Description:** 
Add cookbook for RAG with baidu QIANFAN and elasticsearch.

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-13 14:45:24 -08:00
mertkayhan
9b4974871d IMPROVEMENT Increase flexibility of ElasticVectorSearch (#6863)
Hey @rlancemartin, @eyurtsev ,

I did some minimal changes to the `ElasticVectorSearch` client so that
it plays better with existing ES indices.

Main changes are as follows:

1. You can pass the dense vector field name into `_default_script_query`
2. You can pass a custom script query implementation and the respective
parameters to `similarity_search_with_score`
3. You can pass functions for building page content and metadata for the
resulting `Document`

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  4. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @dev2049
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @dev2049
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @vowelparrot
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-11-13 14:36:03 -08:00
Lance Martin
39852dffd2 Cookbook for multi-modal RAG eval (#13272) 2023-11-13 14:26:02 -08:00
Erick Friis
50a5c919f0 IMPROVEMENT self-query template (#13305)
- [ ]
https://github.com/langchain-ai/langchain/pull/12694#discussion_r1391334719
-> keep date
- [x]
https://github.com/langchain-ai/langchain/pull/12694#discussion_r1391336586
2023-11-13 14:03:15 -08:00
Yasin
b46f88d364 IMPROVEMENT add license file to subproject (#8403)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

hi!
This is pretty straight-forward: The sdist package does not contain the
license file (which is needed by e.g. conda) because the package is
built from the subdir and can't see the license.
I _copied_ the license but since I'm unfamiliar with the projects
direction, I'm not sure that's correct.
thanks!

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 11:48:21 -08:00
Rui Ramos
ff19a62afc Fix Pinecone cosine relevance score (#8920)
Fixes: #8207

Description:
Pinecone returns scores (not distances) with cosine similarity. The
values according to the docs are [-1, 1], although I could never
reproduce negative values.

This PR ensures that the score returned from Pinecone is preserved,
rather than inverted, so the most relevant documents can be filtered (eg
when using similarity thresholds)

I'll leave this as a draft PR as I couldn't run the tests (my pinecone
account might not be enough - some errors were being thrown around
namespaces) so hopefully someone who _can_ will pick this up.

Maintainers:
@rlancemartin, @eyurtsev

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 11:47:38 -08:00
Bagatur
2e42ed5de6 Self-query template (#12694)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 11:44:19 -08:00
Konstantin Spieß
1e43025bf5 Fix serialization issue in Matching Engine Vector Store (#13266)
- **Description:** Fixed a serialization issue in the add_texts method
of the Matching Engine Vector Store caused by a typo, leading to an
attempt to serialize the json module itself.
  - **Issue:** #12154 
  - **Dependencies:** ./.
  - **Tag maintainer:**
2023-11-13 11:04:11 -08:00
William FH
9169d77cf6 Update error message in evaluation runner (#13296) 2023-11-13 11:03:20 -08:00
Leonie
32c493e3df Refine Weaviate docs and add RAG example (#13057)
- **Description:** Refine Weaviate tutorial and add an example for
Retrieval-Augmented Generation (RAG)
  - **Issue:** (not applicable),
  - **Dependencies:** none
  - **Tag maintainer:** @baskaryan <!--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
  - **Twitter handle:** @helloiamleonie

Co-authored-by: Leonie <leonie@Leonies-MBP-2.fritz.box>
2023-11-13 10:59:19 -08:00
takatost
f22f273f93 FIX: 'from_texts' method in Weaviate with non-existent kwargs param (#11604)
Due to the possibility of external inputs including UUIDs, there may be
additional values in **kwargs, while Weaviate's `__init__` method does
not support passing extra **kwarg parameters.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 10:32:20 -08:00
Frank995
971d2b2e34 Add missing filter to max_marginal_relevance_search inner call to max_marginal_relevance_search_by_vector (#13260)
When calling max_marginal_relevance_search from PGVector the filter
param is not carried over to max_marginal_relevance_search_by_vector

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-13 10:31:34 -08:00
chevalmuscle
3ad78e48e2 Use endpoint_url if provided with boto3 session for dynamodb (#11622)
- **Description:** Uses `endpoint_url` if provided with a boto3 session.
When running dynamodb locally, credentials are required even if invalid.
With this change, it will be possible to pass a boto3 session with
credentials and specify an endpoint_url

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 10:31:16 -08:00
Erick Friis
18acc22f29 Ollama pass kwargs as options instead of top (#13280)
Noticed params are really in `options` instead while reviewing #12895
2023-11-13 10:28:47 -08:00
刘 方瑞
46af56dc4f Add MyScaleWithoutJSON which allows user to wrap columns into Document's Metadata (#13164)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
Replace this entire comment with:
- **Description:** Add MyScaleWithoutJSON which allows user to wrap
columns into Document's Metadata
  - **Tag maintainer:** @baskaryan
2023-11-13 10:10:36 -08:00
Michael Landis
2aa13f1e10 chore: bump momento dependency version and refactor search hit usage (#13111)
**Description**

Bumps the Momento dependency to the latest version and refactors the
usage of `SearchHit` in the Momento Vector Index (MVI) vector store
integration. This change is a one liner where we use the preferred
attribute `score` to read the query-document similarity instead of
`distance`. The latest versions of Momento clients will use this
attribute going forward.

**Dependencies**

Updated the Momento dependency to latest version.

**Tests**

💚 I re-ran the existing MVI integration tests
(`tests/integration_tests/vectorstores/test_momento_vector_index.py`)
and they pass.

**Review**
cc @baskaryan @eyurtsev
2023-11-13 09:12:21 -08:00
Junlin Zhou
4da2faba41 docs: align custom_tool document headers (#13252)
On the [Defining Custom
Tools](https://python.langchain.com/docs/modules/agents/tools/custom_tools)
page, there's a 'Subclassing the BaseTool class' paragraph under the
'Completely New Tools - String Input and Output' header. Also there's
another 'Subclassing the BaseTool' paragraph under no header, which I
think may belong to the 'Custom Structured Tools' header.

Another thing is, there's a 'Using the tool decorator' and a 'Using the
decorator' paragraph, I think should belong to 'Completely New Tools -
String Input and Output' and 'Custom Structured Tools' separately.

This PR moves those paragraphs to corresponding headers.
2023-11-13 09:03:56 -08:00
Ikko Eltociear Ashimine
700293cae9 Fix typo in timescalevector.ipynb (#13239)
enviornment -> environment
2023-11-13 09:03:07 -08:00
kYLe
cc55d2fcee Add OpenAI API v1 support for ChatAnyscale and fixed a bug with openai_api_key (#13237)
1. Add OpenAI API v1 support
2. Fixed a bug to call `get_secret_value` on a str value
(values["openai_api_key"])
2023-11-13 09:01:54 -08:00
juan-calvo-datatonic
545b76b0fd Add rag google vertex ai search template (#13294)
- **Description:** This is a template demonstrating how to utilize
Google Vertex AI Search in conjunction with ChatVertexAI()
2023-11-13 08:45:36 -08:00
Govind.S.B
9024593468 added system prompt and template fields to ollama (#13022)
**Description**
the ollama api now supports passing system prompt and template directly
instead of modifying the model file , but the ollama integration in
langchain did not have this change updated . The update just adds these
two parameters to it ( there are 2 more parameters that are pending to
be updated, I was not sure about their utility wrt to langchain )
Refer :
8713ac23a8

**Issue** : None Applicable

**Dependencies** : None Changed

**Twitter handle** : https://twitter.com/violetto96

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-13 08:45:11 -08:00
langchain-infra
f55f67055f Add dockerfile template (#13240) 2023-11-13 10:33:01 -05:00
Shaurya Rohatgi
f70aa82c84 Update README.md - Added notebook for extraction_openai_tools (#13205)
added Parallel Function Calling for Structured Data Extraction notebook

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-13 00:12:46 -08:00
Guillem Orellana Trullols
0f31cd8b49 Remove _get_kwarg_value function (#13184)
`_get_kwarg_value` function is useless, one can rely on python builtin
functionalities to do the exact same thing.

- **Description:** Removed `_get_kwarg_value`. Helps with code
readability.
  - **Issue:** the issue # it fixes (if applicable),
  - **Twitter handle:** @Guillem_96
2023-11-13 00:09:54 -08:00
SuperDa Fu
e1c020dfe1 dalle add model parameter (#13201)
- **Description:** dalle_image_generator adding a new model parameter,
  - **Issue:** N/A,
  - **Dependencies:** 
  - **Tag maintainer: @hwchase17
  - **Twitter handle:**

---------

Co-authored-by: dafu <xiangbingze@wenru.wang>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-11-13 00:09:20 -08:00
Mario Angst
96b56a4d4f Typo fix to quickstart.mdx (#13178)
- **Description:** I fixed a very small typo in the quickstart docs
(BaeMessage -> BaseMessage)
2023-11-13 00:02:18 -08:00
Dennis de Greef
64e11592bb Improve CSV reader which can't call .strip() on NoneType (#13079)
Improve CSV reader which can't call .strip() on NoneType if there are
less cells in the row compared to the header

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** 
I have a CSV file as followed

```
headerA,headerB,headerC
v1A,v1B,v1C,
v2A,v2B
v3A,v3B,v3C
```
In this case, row 2 is missing a value, which results in reading a None
type. The strip() method can not be called on None, hence raising. In
this PR I am making the change to only call strip if the value if not
None.

  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-12 23:51:39 -08:00
glad4enkonm
339973db47 Update ollama.py (#12895)
duplicate option removed
**Description:**  An issue fix, http stop option duplicate removed.
**Issue:** the issue #12892 fix
**Dependencies:** no
**Tag maintainer:** @eyurtsev

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-12 23:43:59 -08:00
刘 方瑞
e89e830c55 Free knowledge base pod information update (#12813)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

We updated MyScale free knowledge base, where you can try your RAG with
36 million paragraphs from wikipedia and 2 million paragraphs from
ArXiv.

The pod has two tables
```sql
CREATE TABLE default.ChatArXiv (
    `abstract` String, 
    `id` String, 
    `vector` Array(Float32), 
    `metadata` Object('JSON'), 
    `pubdate` DateTime,
    `title` String,
    `categories` Array(String),
    `authors` Array(String), 
    `comment` String,
    `primary_category` String,
    VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'), 
    CONSTRAINT vec_len CHECK length(vector) = 768) 
ENGINE = ReplacingMergeTree ORDER BY id;

CREATE TABLE wiki.Wikipedia (
    `id` String, 
    `title` String, 
    `text` String,
    `url` String,
    `wiki_id` UInt64,
    `views` Float32,
    `paragraph_id` UInt64,
    `langs` UInt32, 
    `emb` Array(Float32), 
    VECTOR INDEX emb_idx emb TYPE MSTG('metric_type=Cosine'), 
    CONSTRAINT emb_len CHECK length(emb) = 768) 
ENGINE = ReplacingMergeTree ORDER BY id;
```

You can connect those two tables using credentials below (just the same
to the old one)
URL: `msc-4a9e710a.us-east-1.aws.staging.myscale.cloud`
Port: `443`
Username: `chatdata`
Password: `myscale_rocks`

It's FREE and you can also use it with 
ChatData: https://github.com/myscale/ChatData
Retrieval-QA-Benchmark:
https://github.com/myscale/Retrieval-QA-Benchmark
... and also LangChain!

Request for review @baskaryan
2023-11-12 23:22:42 -08:00
Luis Valencia
c40973814d Update README.md (#8570)
- Description: updated readme.
  - Tag maintainer: @baskaryan
  - Twitter handle: @Levalencia

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-11-12 22:07:49 -08:00
Isak Nyberg
8f81703d76 Add new models to openai callback (#13244)
**Description:** Adding the new models to the openai callback function,
info taken from [model
announcement](https://platform.openai.com/docs/models) and
[pricing](https://openai.com/pricing)

A short description for a short PR :)
2023-11-12 12:01:19 -08:00
Bagatur
ea6dd3a550 bump 335 (#13261) 2023-11-12 11:30:25 -08:00
William FH
a837b03e55 Update langsmith version 0.63 (#13208) 2023-11-12 11:29:25 -08:00
Harrison Chase
7f1d26160d update tools (#13243) 2023-11-12 10:22:54 -08:00
Nuno Campos
8d6faf5665 Make it easier to subclass runnable binding with custom init args (#13189) 2023-11-11 09:01:17 +00:00
Peter Vandenabeele
7f1964b264 Fix BeautifulSoupTransformer: no more duplicates and correct order of tags + tests (#12596) 2023-11-11 08:56:37 +00:00
Bagatur
937d7c41f3 update stack diagram (#13213) 2023-11-10 16:50:20 -08:00
Erick Friis
9c7afa8adb Upgrade cohere embedding model to v3 (#13219)
Just updates API docs, doesn't change default param from 2.0 (could be
breaking change)
2023-11-10 16:25:58 -08:00
Matvey Arye
180657ca7a Add template for conversational rag with timescale vector (#13041)
**Description:** This is like the rag-conversation template in many
ways. What's different is:
- support for a timescale vector store.
- support for time-based filters.
- support for metadata filters.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-10 16:12:32 -08:00
Andrew Zhou
1a1a1a883f fleet_context docs update (#13221)
- **Description:** Changed the fleet_context documentation to use
`context.download_embeddings()` from the latest release from our
package. More details here:
https://github.com/fleet-ai/context/tree/main#api
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** @andrewthezhou
2023-11-10 14:53:57 -08:00
Erick Friis
8fdf15c023 Fix Document Loader Unit Test - Docusaurus (#13228) 2023-11-10 14:52:01 -08:00
Lee
72ad448daa feat: Docusaurus Loader (#9138)
Added a Docusaurus Loader

Issue: #6353

I had to implement this for working with the Ionic documentation, and
wanted to open this up as a draft to get some guidance on building this
out further. I wasn't sure if having it be a light extension of the
SitemapLoader was in the spirit of a proper feature for the library --
but I'm grateful for the opportunities Langchain has given me and I'd
love to build this out properly for the sake of the community.

Any feedback welcome!
2023-11-10 14:21:55 -08:00
VAS
8fa960641a Update Documentation: Corrected Typos and Improved Clarity (#11725)
Docs updates

---------

Co-authored-by: Advaya <126754021+bluevayes@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-10 14:14:44 -08:00
Leonid Ganeline
e165daa0ae new course on DeepLearning.ai (#12755)
Added a new course on
[DeepLearning.ai](https://learn.deeplearning.ai/functions-tools-agents-langchain)
Added the LangChain `Wikipedia` link. Probably, it can be placed in the
"More" menu.
2023-11-10 13:55:27 -08:00
Erick Friis
93ae589f1b Add mongo parent template to index (#13222) 2023-11-10 11:56:44 -08:00
Tomaz Bratanic
0dc4ab0be1 Neo4j chat message history (#13008) 2023-11-10 11:53:34 -08:00
Bagatur
bf8cf7e042 Bagatur/langserve blurb (#13217) 2023-11-10 14:05:43 -05:00
fyasla
d266b3ea4a issue #12165 mask API key in chat_models/azureml_endpoint module (#12836)
- **Description:** `AzureMLChatOnlineEndpoint` object from
langchain/chat_models/azureml_endpoint.py safe to print
without having any secrets included in raw format in the string
representation.
  - **Issue:** #12165,
  - **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Faysal Bougamale <faysal.bougamale@horiba.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-10 14:05:19 -05:00
Anush
52f34de9b7 feat: FastEmbed embedding provider (#13109)
## Description:
This PR intends to add
[Qdrant/FastEmbed](https://qdrant.github.io/fastembed/) as a local
embeddings provider, associated tests and documentation.

**Documentation preview:**
https://langchain-git-fork-anush008-master-langchain.vercel.app/docs/integrations/text_embedding/fastembed

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-10 13:51:52 -05:00
Eugene Yurtsev
b0e8cbe0b3 Add RunnableSequence documentation (#13094)
Add RunnableSequence documentation
2023-11-10 13:44:43 -05:00
Eugene Yurtsev
869df62736 Document RunnableWithFallbacks (#13088)
Add documentation to RunnableWithFallbacks
2023-11-10 13:16:21 -05:00
Eugene Yurtsev
8313c218da Add more runnable documentation (#13083)
- Adding documentation to the runnable.
- Documentation is not organized in the best way for the runnable; i.e.,
in
terms of LCEL vs. other standard methods, will follow up with more
edits.
2023-11-10 13:14:57 -05:00
Erick Friis
a26105de8e vectara rag mq (#13214)
Description: another Vectara template for MultiQuery RAG flow
Twitter handle: @ofermend

Fixes to #13106

---------

Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-11-10 10:08:45 -08:00
Bagatur
24386e0860 bump 334, exp 40 (#13211) 2023-11-10 09:43:29 -08:00
Lance Martin
d2e50b3108 Add Chroma multimodal cookbook (#12952)
Pending:
* https://github.com/chroma-core/chroma/pull/1294
* https://github.com/chroma-core/chroma/pull/1293

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-10 09:43:10 -08:00
The1Bill
55912868da Update toolkit.py to remove single quotes around table names (#12445)
**Description:** Removing the single quote wrapper around the table
names in the SQL agent toolkit.py file as it misleads the LLM into
querying against tables with single quotes around their names.
**Issue:** #7457 
**Dependencies:** None
**Tag maintainer:** @hwchase17 
**Twitter handle:** None
2023-11-10 06:39:15 -08:00
Nuno Campos
362a446999 Changes to root listener (#12174)
- Implement config_specs to include session_id
- Remove Runnable method and update notebook
- Add more details to notebook, eg. show input schema and config schema
before and after adding message history

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-10 09:53:48 +00:00
Nuno Campos
b2b94424db Update return type for Runnable.__or__ (#12880)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-10 09:52:38 +00:00
Bagatur
dd7959f4ac template readme's in docs (#13152) 2023-11-09 23:36:21 -08:00
Bagatur
86b93b5810 Add serve to quickstart (#13174) 2023-11-09 23:10:26 -08:00
Bagatur
fbf7047468 Bagatur/update agent docs (#13167) 2023-11-09 21:14:30 -08:00
Harrison Chase
0a2b1c7471 improve duck duck go tool (#13165) 2023-11-09 20:49:39 -08:00
Bagatur
850336bcf1 Update model i/o docs (#13160) 2023-11-09 20:35:55 -08:00
Jacob Lee
cf271784fa Add basic critique revise template (#12688)
@baskaryan @hwchase17

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-09 17:33:29 -08:00
Cweili
ee3ceb0fb8 Document: Fix "Biadu" typo (#12985)
Fix document "Baidu Cloud ElasticSearch VectorSearch" `Biadu` typo.
2023-11-09 17:32:38 -08:00
Chenyu Zhao
defd4b4f11 Clean up Fireworks provider documentation (#13157) 2023-11-09 16:35:05 -08:00
Bagatur
d9e493e96c fix module sidebar (#13158) 2023-11-09 16:31:45 -08:00
wemysschen
e76ff63125 fix baiducloud_vector_search document typo (#12976)
**Issue:**
fix baiducloud_vector_search document typo

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-09 16:27:04 -08:00
Holt Skinner
fceae456b9 fix: Updates to formatting in Google Drive Retriever docs (#13015)
- Minor updates to formatting to make easier to read
2023-11-09 16:15:55 -08:00
Bagatur
c63eb9d797 LCEL nits (#13155) 2023-11-09 16:09:33 -08:00
Shinya Maeda
28cc60b347 Fix langchain.llms OpenAI completion doesn't work due to v1 client update (#13099)
This commit fixes the issue that langchain.llms OpenAI completion
stopped working since the V1 openai client update.

Replace this entire comment with:
- **Description:** This PR fixes the issue [AttributeError: module
'openai' has no attribute
'Completion'](https://github.com/langchain-ai/langchain/issues/12967)
similar to
8e0cb2eb84
and https://github.com/langchain-ai/langchain/pull/12969,
  - **Issue:** https://github.com/langchain-ai/langchain/issues/12967,
  - **Dependencies:** `openai` v1.x.x client,
  - **Tag maintainer:** @baskaryan,
  - **Twitter handle:** @dosuken123 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-09 15:12:19 -08:00
Bagatur
555ce600ef Bagatur/docs serve context (#13150) 2023-11-09 15:05:18 -08:00
Bagatur
ff43cd6701 OpenAI remove httpx typing (#13154)
Addresses #13124
2023-11-09 14:32:09 -08:00
Erick Friis
8ad3b255dc Pirate Speak Configurable Template (#13153) 2023-11-09 22:13:45 +00:00
Bagatur
eb51150557 update oai tool agent doc (#13147) 2023-11-09 12:37:30 -08:00
Bagatur
b298f550fe update modules sidebar (#13141) 2023-11-09 11:57:09 -08:00
Bagatur
84e65533e9 Docs: combine LCEL index and why (#13142) 2023-11-09 11:16:45 -08:00
Bagatur
1311450646 fix langsmith links (#13144) 2023-11-09 11:12:50 -08:00
Bagatur
8b2a82b5ce Bagatur/docs smith context (#13139) 2023-11-09 10:22:49 -08:00
Erick Friis
58da6e0d47 Multimodal rag traces (#13140) 2023-11-09 09:54:00 -08:00
Bagatur
150d58304d update oai cookbooks (#13135) 2023-11-09 08:04:51 -08:00
Bagatur
f04cc4b7e1 bump 333 (#13131) 2023-11-09 07:33:15 -08:00
billytrend-cohere
b346d4a455 Add message to documents (#12552)
This adds the response message as a document to the rag retriever so
users can choose to use this. Also drops document limit.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-09 07:30:48 -08:00
Harrison Chase
5f38770161 Support oai tool call (#13110)
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-09 07:29:29 -08:00
Stefano Lottini
c52725bdc5 (Astra DB/Cassandra) Minor clarification about dependencies in the demo notebook (#13118)
This PR helps developers trying the Astra DB / Cassandra vector store
quickstart notebook by making it clear what other dependencies are
required.
2023-11-09 09:19:15 -05:00
Holt Skinner
0fc8fd12bd feat: Vertex AI Search - Add Snippet Retrieval for Non-Advanced Website Data Stores (#13020)
https://cloud.google.com/generative-ai-app-builder/docs/snippets#snippets

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-08 21:52:50 -05:00
Erick Friis
3dbaaf59b2 Tool Retrieval Template (#13104)
Adds a template like
https://python.langchain.com/docs/modules/agents/how_to/custom_agent_with_tool_retrieval

Uses OpenAI functions, LCEL, and FAISS
2023-11-08 18:33:31 -08:00
Jacob Lee
76283e9625 Adds embeddings filter option to return scores in state (#12489)
CC @baskaryan @assafelovic
2023-11-08 17:50:06 -08:00
jakerachleff
18601bd4c8 Get project from langchain sdk (#13100)
## Description
We need to centralize the API we use to get the project name for our
tracers. This PR makes it so we always get this from a shared function
in the langsmith sdk.

## Dependencies
Upgraded langsmith from 0.52 to 0.62 to include the new API
`get_tracer_project`
2023-11-08 17:10:12 -08:00
Bagatur
72e12f6bcf update more azure docs (#13093) 2023-11-08 14:11:16 -08:00
Bagatur
1703f132c6 update azure embedding docs (#13091) 2023-11-08 13:39:31 -08:00
Bagatur
9fdfac22c2 bump 332 (#13089) 2023-11-08 13:23:16 -08:00
Bagatur
1f85ec34d5 bump 331rc3 exp 39 (#13086) 2023-11-08 13:00:13 -08:00
Anton Troynikov
9f077270c8 Don't pass EF to chroma (#13085)
- **Description:** 

Recently Chroma rolled out a breaking change on the way we handle
embedding functions, in order to support multi-modal collections.

This broke the way LangChain's `Chroma` objects get created, because we
were passing the EF down into the Chroma collection:
https://docs.trychroma.com/migration#migration-to-0416---november-7-2023

However, internally, we are never actually using embeddings on the
chroma collection - LangChain's `Chroma` object calls it instead. Thus
we just don't pass an `embedding_function` to Chroma itself, which fixes
the issue.
2023-11-08 12:55:35 -08:00
Erick Friis
f15f8e01cf Azure OpenAI Embeddings (#13039)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-08 12:37:17 -08:00
David Peterson
37561d8986 Add Proper Import Error (#13042)
- **Description:** The issue was not listing the proper import error for
amazon textract loader.
- **Issue:** Time wasted trying to figure out what to install...
(langchain docs don't list the dependency either)
  - **Dependencies:** N/A
  - **Tag maintainer:** @sbusso 
  - **Twitter handle:** @h9ste

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-08 10:29:08 -08:00
Eugene Yurtsev
06c503f672 Add RunnableRetry Documentation (#13074) 2023-11-08 18:20:18 +00:00
Bagatur
55aeff6777 oai assistant multiple actions (#13068) 2023-11-08 08:25:37 -08:00
Erick Friis
a9b70baef9 cli updates, 0.0.16 (#13034)
- confirm flags, serve detection
- 0.0.16
- always gen code
- pip bool
2023-11-08 07:47:30 -08:00
Bagatur
1f27104626 Fleet context (#13038)
cc @adrwz
2023-11-07 18:57:09 -08:00
Bagatur
d26fd6f0d1 redirect langsmith walkthrough (#13040) 2023-11-07 18:24:13 -08:00
Erick Friis
6f45532620 Upgrade docs postcss (#13031) 2023-11-07 15:50:25 -08:00
Erick Friis
54ad3cc2b8 template versions again (#13030)
- scipy was locked due to py version
- same guardrails-output-parser
- rag-redis
2023-11-07 15:15:18 -08:00
Erick Friis
506f81563f Update Deps in Experimental (#13029) 2023-11-07 15:15:09 -08:00
Erick Friis
db4b97d590 Relock Templates (#13028) 2023-11-07 15:01:49 -08:00
Stefano Lottini
4f4b020582 Add "Astra DB" vector store integration (#12966)
# Astra DB Vector store integration

- **Description:** This PR adds a `VectorStore` implementation for
DataStax Astra DB using its HTTP API
  - **Issue:** (no related issue)
- **Dependencies:** A new required dependency is `astrapy` (`>=0.5.3`)
which was added to pyptoject.toml, optional, as per guidelines
- **Tag maintainer:** I recently mentioned to @baskaryan this
integration was coming
  - **Twitter handle:** `@rsprrs` if you want to mention me

This PR introduces the `AstraDB` vector store class, extensive
integration test coverage, a reworking of the documentation which
conflates Cassandra and Astra DB on a single "provider" page and a new,
completely reworked vector-store example notebook (common to the
Cassandra store, since parts of the flow is shared by the two APIs). I
also took care in ensuring docs (and redirects therein) are behaving
correctly.

All style, linting, typechecks and tests pass as far as the `AstraDB`
integration is concerned.

I could build the documentation and check it all right (but ran into
trouble with the `api_docs_build` makefile target which I could not
verify: `Error: Unable to import module
'plan_and_execute.agent_executor' with error: No module named
'langchain_experimental'` was the first of many similar errors)

Thank you for a review!
Stefano

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-07 14:45:33 -08:00
Tomaz Bratanic
13bd83bd61 Add neo4j vector memory template (#12993) 2023-11-07 13:00:49 -08:00
Bagatur
5ac2fc5bb2 update stack diagram (#13021) 2023-11-07 12:59:24 -08:00
Yang, Bo
600caff03c Add Memorize tool (#11722)
- **Description:** Add `Memorize` tool
  - **Tag maintainer:** @hwchase17

This PR added a new tool `Memorize` so that an agent can use it to
fine-tune itself. This tool requires `TrainableLLM` introduced in #11721

DEMO:
6a9003d5db

![image](https://github.com/langchain-ai/langchain/assets/601530/d6f0cb45-54df-4dcf-b143-f8aefb1e76e3)
2023-11-07 12:42:10 -08:00
Bagatur
cf481c9418 bump exp 38 (#13016) 2023-11-07 11:49:23 -08:00
Bagatur
57e19989f6 Bagatur/oai assistant (#13010) 2023-11-07 11:44:53 -08:00
Erick Friis
74134dd7e1 cli pyproject updating (#12945)
`langchain app add` and `langchain app remove` will now keep the
dependencies list updated.

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-07 11:06:08 -08:00
Tomaz Bratanic
d9abcf1aae Neo4j conversation cypher template (#12927)
Adding custom graph memory to Cypher chain

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-07 11:05:28 -08:00
Lance Martin
2287a311cf Multi modal RAG + QA Cookbooks (#12946)
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Vinzenz Klass <76391770+VinzenzKlass@users.noreply.github.com>
Co-authored-by: Praveen Venkateswaran <praveenv@uci.edu>
Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
Co-authored-by: Kacper Łukawski <kacperlukawski@users.noreply.github.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-07 09:10:24 -08:00
Bagatur
6175dc30aa bump 331rc2 (#13006) 2023-11-07 08:52:17 -08:00
Jasan
ff87f4b4f9 Fix for rag-supabase readme (#12869)
- **Description:** Correct naming for package in README
- **Issue:** README wasn't aligned with pyproject.toml, resulting in not
being able to install the rag-supabase package.
  - **Tag maintainer:** @gregnr
2023-11-06 19:38:22 -08:00
Harrison Chase
99ffeb239f add ingest for mongo (#12897) 2023-11-06 19:28:22 -08:00
Ofer Mendelevitch
ce21308f29 Vectara RAG template (#12975)
- **Description:** RAG template using Vectara
  - **Twitter handle:** @ofermend
2023-11-06 19:24:00 -08:00
Erick Friis
0c81cd923e oai v1 embeddings (#12969)
Initial PR to get OpenAIEmbeddings working with the new sdk

fyi @rlancemartin 

Fixes #12943

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-06 18:52:33 -08:00
Bagatur
fdbb45d79e bump 331rc1 (#12965) 2023-11-06 15:36:43 -08:00
Bagatur
3bb8030a6e fix max_tokens (#12964) 2023-11-06 15:36:05 -08:00
Bagatur
a9002a82b8 bump 331rc0 (#12963) 2023-11-06 15:19:33 -08:00
Harrison Chase
c27400efeb Support multimodal messages (#11320)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-06 15:14:18 -08:00
Bagatur
388f248391 add oai v1 cookbook (#12961) 2023-11-06 14:28:32 -08:00
Bagatur
4f7dff9d66 Record system fingerprint chat openai (#12960) 2023-11-06 14:25:53 -08:00
Bagatur
8e0cb2eb84 ChatOpenAI and AzureChatOpenAI openai>=1 compatible (#12948) 2023-11-06 13:24:18 -08:00
Kacper Łukawski
52d0055a91 Add support of Cohere Embed v3 (#12940)
Cohere released the new embedding API (Embed v3:
https://txt.cohere.com/introducing-embed-v3/) that treats document and
query embeddings differently. This PR updated the `CohereEmbeddings` to
use them appropriately. It also works with the old models.
2023-11-06 15:06:58 -05:00
Praveen Venkateswaran
8e0dcb37d2 Add SecretStr for Symbl.ai Nebula API (#12896)
Description: This PR masks API key secrets for the Nebula model from
Symbl.ai
Issue: #12165 
Maintainer: @eyurtsev

---------

Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
2023-11-06 14:13:59 -05:00
Vinzenz Klass
59d0bd2150 feat: acquire advisory lock before creating extension in pgvector (#12935)
- **Description:** Acquire advisory lock before attempting to create
extension on postgres server, preventing errors in concurrent
executions.
  - **Issue:** #12933
  - **Dependencies:** None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-06 14:00:39 -05:00
Eugene Yurtsev
b376854b26 Fix for anyscale chat model api key (#12938)
* ChatAnyscale was missing coercion to SecretStr for anyscale api key
* The model inherits from ChatOpenAI so it should not force the openai
api key to be secret str until openai model has the same changes

https://github.com/langchain-ai/langchain/issues/12841
2023-11-06 13:28:02 -05:00
Bagatur
58889149c2 fix guides link (#12941) 2023-11-06 08:13:02 -08:00
matthieudelaro
52503a367f Remove useless line of code from sql.ipynb (#12906)
This PR remove a single line of code from a notebook of the
documentation. This line used to define a variable, which is never used
in the code.
For further context, for reviewers, here is the online documentation:
https://python.langchain.com/docs/use_cases/qa_structured/sql#case-3-sql-agents
2023-11-06 07:59:12 -08:00
hmasdev
622bf12c2e fix regex pattern of structured output parser (#12929)
- **Description:** fix the regex pattern of
[StructuredChatOutputParser](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/agents/structured_chat/output_parser.py#L18)
and add unit tests for the code change.
- **Issue:** #12158 #12922
- **Dependencies:** None
- **Tag maintainer:** 
- **Twitter handle:** @hmdev3
- **NOTE:** This PR conflicts #7495 . After #7495 is merged, I am going
to update PR.
2023-11-06 07:53:14 -08:00
wemysschen
8c02f4fbd8 add baidu cloud vectorsearch document (#12928)
**Description:** 
Add BaiduCloud VectorSearch document with implement of BESVectorSearch
in langchain vectorstores

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-06 07:52:50 -08:00
wemysschen
8d7144e6a6 fix baiducloud directory loader import file loader (#12924)
**Issue:** 
fix baiducloud BOS directory loader imports its file loader

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-06 07:52:31 -08:00
Alex Howard
5bb2ea51a5 docs: clean up vestigial markdown (#12907)
- **Description:** Remove text "LangChain currently does not support"
which appears to be vestigial leftovers from a previous change.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @baskaryan, @eyurtsev
  - **Twitter handle:** thezanke
2023-11-06 07:51:56 -08:00
Praveen Venkateswaran
1eb7d3a862 docs: update hf pipeline docs (#12908)
- **Description:** Noticed that the Hugging Face Pipeline documentation
was a bit out of date.
Updated with information about passing in a pipeline directly
(consistent with docstring) and a recent contribution of mine on adding
support for multi-gpu specifications with Accelerate in
21eeba075c
2023-11-06 07:51:31 -08:00
Christoffer Bo Petersen
37da6e546b Fix typo in e2b_data_analysis.ipynb (#12930)
Just a small typo fix
2023-11-06 07:37:30 -08:00
Kacper Łukawski
621419f71e Fix normalizing the cosine distance in Qdrant (#12934)
Qdrant was incorrectly calculating the cosine similarity and returning
`0.0` for the best match, instead of `1.0`. Internally Qdrant returns a
cosine score from `-1.0` (worst match) to `1.0` (best match), and the
current formula reflects it.
2023-11-06 07:36:59 -08:00
Hech
8fe6bcc662 Fix return metadata when searching for DingoDB (#12937) 2023-11-06 07:35:36 -08:00
Jakub Novák
ada3d2cbd1 Add possibility to pass on_artifacts for a specific conversation (#12687)
Possibility to pass on_artifacts to a conversation. It can be then
achieved by adding this way:

```python
result = agent.run(
    input=message.text,
    metadata={
        "on_artifact": CALLBACK_FUNCTION
    },
)
```
2023-11-06 07:29:47 -08:00
Bagatur
0378662e1d fix langsmith link (#12939) 2023-11-06 07:17:05 -08:00
Harrison Chase
1a92d2245d Harrison/docs smith serve (#12898)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-06 07:07:25 -08:00
Bagatur
53f453f01a bump 331 (#12932) 2023-11-06 05:58:12 -08:00
Priyadutt
a4d9e986fb Update csv.ipynb description (#12878)
The line removed is not required as there are no other alternative
solutions above than that.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-06 03:32:04 -08:00
Erick Friis
5000c7308e cli template gitignores (#12914)
- ap gitignore
- package
2023-11-05 22:34:45 -08:00
Harrison Chase
aba407f774 use keys not items (#12918) 2023-11-05 22:08:29 -08:00
Harrison Chase
60d025b83b mongo parent document retrieval (#12887) 2023-11-04 10:16:02 -07:00
Michael Hunger
e43b4079c8 template: use dashes instead of underscores for neo4j-cypher package and path in readme (#12827)
Minimal readme template update

underscores didn't work, dashes do
2023-11-03 15:54:48 -07:00
wemysschen
e14aa37d59 fix bes vector store search (#12828)
**Issue:** 
fix search body in baidu cloud vectorsearch

---------

Co-authored-by: wemysschen <root@icoding-cwx.bcc-szzj.baidu.com>
2023-11-03 15:39:19 -07:00
standby24x7
f04e4df7f9 coockbook: Fix typo in wikibase_agent.ipynb (#12839)
This patch fixes a spelling typo in message
within wikibase_agent.ipynb.

Signed-off-by: Masanari Iida <standby24x7@gmail.com>

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2023-11-03 14:57:37 -07:00
Kacper Łukawski
66c41c0dbf Add template for self-query-qdrant (#12795)
This PR adds a self-querying template using Qdrant as a vector store.
The template uses an artificial dataset and was implemented in a way
that simplifies passing different components and choosing LLM and
embedding providers.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-03 13:37:29 -07:00
Daniel Chalef
f41f4c5e37 zep/rag conversation zep template (#12762)
LangServe template for a RAG Conversation App using Zep.

 @baskaryan, @eyurtsev

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-03 13:34:44 -07:00
Lance Martin
ea1ab391d4 Open Clip multimodal embeddings (#12754) 2023-11-03 13:33:36 -07:00
Bagatur
ebee616822 bump 330 (#12853) 2023-11-03 13:26:41 -07:00
Tomaz Bratanic
0dbdb8498a Neo4j Advanced RAG template (#12794)
Todo:

- [x] Docs
2023-11-03 13:22:55 -07:00
Harrison Chase
83cee2cec4 Template Readmes and Standardization (#12819)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-03 13:15:29 -07:00
Erick Friis
6c237716c4 Update readmes with new cli install (#12847)
Old command still works. Just simplifying.

Merge after releasing CLI 0.0.15
2023-11-03 12:10:32 -07:00
Erick Friis
7db49d3842 Confirm sys.path includes current dir for app serve (#12851)
- Make sure sys.path is set properly for langchain app serve
- bump
2023-11-03 11:37:20 -07:00
Erick Friis
1bc35f61cb CLI 0.0.14, Uvicorn update and no more [serve] (#12845)
Calls uvicorn directly from cli:
Reload works if you define app by import string instead of object.
(was doing subprocess in order to get reloading)

Version bump to 0.0.14

Remove the need for [serve] for simplicity.

Readmes are updated in #12847 to avoid cluttering this PR
2023-11-03 11:05:52 -07:00
Brace Sproul
76bcac5bb3 Remove admin prefix/suffix from docs for anthropic (#12849) 2023-11-03 10:54:16 -07:00
Harrison Chase
523e5803bb update mongo template (#12838) 2023-11-03 10:31:53 -07:00
William FH
18005c6384 Disable trace_on_chain_group auto-tracing (#12807)
Previously we treated trace_on_chain_group as a command to always start
tracing. This is unintuitive (makes the function do 2 things), and makes
it harder to toggle tracing
2023-11-03 10:05:09 -07:00
Erick Friis
0da75b9ebd Autopopulate module name in cli init (#12814) 2023-11-02 23:45:38 -07:00
William FH
98aff29fbd Add Dataset Page to printout (#12816) 2023-11-02 20:36:56 -07:00
Joseph Martinez
f573a4d0b3 Update quickstart.mdx (#12386)
**Description**
Removed confusing sentence. 
Not clear what "both" was referring to. The two required components
mentioned previously? The two methods listed below?

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-02 18:38:21 -07:00
Leonid Ganeline
e112b2f2e6 updated integrations/providers/google (#12226)
Added missed integrations. Updated formats.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-02 18:35:31 -07:00
Manuel Rech
2e2b9c76d9 Keep also original query - multi_query.py (#12696)
When you use a MultiQuery it might be useful to use the original query
as well as the newly generated ones to maximise the changes to retriever
the correct document. I haven't created an issue, it seems a very small
and easy thing.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-02 18:15:02 -07:00
Michael Landis
4fe9bf70b6 feat: add a rag template for momento vector index (#12757)
# Description
Add a RAG template showcasing Momento Vector Index as a vector store.
Includes a project directory and README.

# **Twitter handle** 

Tag the company @momentohq for a mention and @mlonml for the
contribution.
2023-11-02 17:59:15 -07:00
刘 方瑞
26c4ec1eaf myscale notebook url change (#12810)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-02 17:56:26 -07:00
Lance Martin
2683c2fc53 Update template index (#12809) 2023-11-02 17:51:40 -07:00
apeng-singlestore
5c0e9ac578 Add template for rag-singlestoredb (#12805)
This change adds a new template for simple RAG using the SingleStoreDB
vectorstore.

Twitter: @alexjpeng

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-02 17:51:00 -07:00
Bagatur
658a3a8607 FEAT: Merge TileDB vecstore (#12811) 2023-11-02 17:40:32 -07:00
Akio Nishimura
c04647bb4e Correct number of elements in config list in batch() and abatch() of BaseLLM (#12713)
- **Description:** Correct number of elements in config list in
`batch()` and `abatch()` of `BaseLLM` in case `max_concurrency` is not
None.
- **Issue:** #12643
- **Twitter handle:** @akionux

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-02 17:28:48 -07:00
James Braza
88b506b321 Adds missing urllib.parse for IDE warning of PubMedAPIWrapper (#12808)
Resolves an IDE (PyCharm 2023.2.3 PE) warning around
`urllib.parse.quote`, also enabling CTRL-click
2023-11-02 17:27:25 -07:00
Bagatur
a2bb0dd445 TileDB update import unit tests 2023-11-02 17:24:22 -07:00
Nikos Papailiou
2fdaa1e5fd Add TileDB vectorstore implementation (#12624)
- **Description:** Add [TileDB](https://tiledb.com) vectorstore
implementation. TileDB offers ANN search capabilities using the
[TileDB-Vector-Search](https://github.com/TileDB-Inc/TileDB-Vector-Search)
module. It provides serverless execution of ANN queries and storage of
vector indexes both on local disk and cloud object stores (i.e. AWS S3).
More details in:
- [Why TileDB as a Vector
Database](https://tiledb.com/blog/why-tiledb-as-a-vector-database)
- [TileDB 101: Vector
Search](https://tiledb.com/blog/tiledb-101-vector-search)
- **Twitter handle:** @tiledb
2023-11-02 17:21:03 -07:00
盐粒 Yanli
1b233798a0 feat: Supprt pgvecto.rs as a VectorStore (#12718)
Supprt [pgvecto.rs](https://github.com/tensorchord/pgvecto.rs) as a new
VectorStore type.

This introduces a new dependency
[pgvecto_rs](https://pypi.org/project/pgvecto_rs/) and upgrade
SQLAlchemy to ^2.

Relate to https://github.com/tensorchord/pgvecto.rs/issues/11

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-02 17:16:04 -07:00
Daniel Chalef
0cbdba6a9b zep: VectorStore: Use Native MMR (#12690)
- refactor to use Zep's native MMR; update example
- 
@baskaryan @eyurtsev
2023-11-02 16:45:42 -07:00
Daniel Chalef
cc3d3920e3 Zep: Summary Search and Example (#12686)
Zep now has the ability to search over chat history summaries. This PR
adds support for doing so. More here: https://blog.getzep.com/zep-v0-17/

@baskaryan @eyurtsev
2023-11-02 16:31:11 -07:00
Bagatur
526313002c add import tests to all modules (#12806) 2023-11-02 15:32:55 -07:00
Harrison Chase
6609a6033f fix vectorstore imports (#12804)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-02 15:32:31 -07:00
Nuno Campos
f66a9d2adf Automatically add configurable key to config_schema if config_specs i… (#12798)
…s present

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-02 21:46:15 +00:00
Praveen Venkateswaran
21eeba075c enable the device_map parameter in huggingface pipeline (#12731)
### Enabling `device_map` in HuggingFacePipeline 

For multi-gpu settings with large models, the
[accelerate](https://huggingface.co/docs/accelerate/usage_guides/big_modeling#using--accelerate)
library provides the `device_map` parameter to automatically distribute
the model across GPUs / disk.

The [Transformers
pipeline](3520e37e86/src/transformers/pipelines/__init__.py (L543))
enables users to specify `device` (or) `device_map`, and handles cases
(with warnings) when both are specified.

However, Langchain's HuggingFacePipeline only supports specifying
`device` when calling transformers which limits large models and
multi-gpu use-cases.
Additionally, the [default
value](8bd3ce59cd/libs/langchain/langchain/llms/huggingface_pipeline.py (L72))
of `device` is initialized to `-1` , which is incompatible with the
transformers pipeline when `device_map` is specified.

This PR addresses the addition of `device_map` as a parameter , and
solves the incompatibility of `device = -1` when `device_map` is also
specified.
An additional test has been added for this feature. 

Additionally, some existing tests no longer work since 
1. `max_new_tokens` has to be specified under `pipeline_kwargs` and not
`model_kwargs`
2. The GPT2 tokenizer raises a `ValueError: Pipeline with tokenizer
without pad_token cannot do batching`, since the `tokenizer.pad_token`
is `None` ([related
issue](https://github.com/huggingface/transformers/issues/19853) on the
transformers repo).

This PR handles fixing these tests as well.

Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
2023-11-02 14:29:06 -07:00
Mark Bell
3276aa3e17 __getattr__ should rase AttributeError not ImportError on missing attributes (#12801)
[The python
spec](https://docs.python.org/3/reference/datamodel.html#object.__getattr__)
requires that `__getattr__` throw `AttributeError` for missing
attributes but there are several places throwing `ImportError` in the
current code base. This causes a specific problem with `hasattr` since
it calls `__getattr__` then looks only for `AttributeError` exceptions.
At present, calling `hasattr` on any of these modules will raise an
unexpected exception that most code will not handle as `hasattr`
throwing exceptions is not expected.

In our case this is triggered by an exception tracker (Airbrake) that
attempts to collect the version of all installed modules with code that
looks like: `if hasattr(mod, "__version__"):`. With `HEAD` this is
causing our exception tracker to fail on all exceptions.

I only changed instances of unknown attributes raising `ImportError` and
left instances of known attributes raising `ImportError`. It feels a
little weird but doesn't seem to break anything.
2023-11-02 17:08:54 -04:00
Daniel Chalef
d966e4d13a zep: Update Zep docs and messaging (#12764)
Update Zep documentation with messaging, more details.

 @baskaryan, @eyurtsev
2023-11-02 13:39:17 -07:00
Illia
71d1a48b66 Use data from all Google search results in SerpApi.com wrapper (#12770)
- **Description:** Use all Google search results data in SerpApi.com
wrapper instead of the first one only
  - **Tag maintainer:** @hwchase17 

_P.S. `libs/langchain/tests/integration_tests/utilities/test_serpapi.py`
are not executed during the `make test`._
2023-11-02 13:31:27 -07:00
ba230t
9214d8e6ed Fixed a typo in templates/docs/CONTRIBUTING.md (delimeters =>delimiters) (#12774)
- **Description:** Just fixed a minor typo in
templates/docs/CONTRIBUTING.md.
  - **Issue:** No linked issues.

Very small contribution!
2023-11-02 13:31:04 -07:00
Armin Stepanjan
185ddc573e Fix broken links to use cases (#12777)
This PR replaces broken links to end to end usecases
([/docs/use_cases](https://python.langchain.com/docs/use_cases)) with a
non-broken version
([/docs/use_cases/qa_structured/sql](https://python.langchain.com/docs/use_cases/qa_structured/sql)),
consistently with the "Use cases" navigation button at the top of the
page.

---------

Co-authored-by: Matvey Arye <mat@timescale.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-02 13:20:54 -07:00
니콜라스
25ee10ed4f Docs: 'memory' -> 'history' typo. (#12779)
The 'MessagesPlaceholder' expects 'history' but 'RunnablePassthrough' is
assigning 'memory'.
2023-11-02 13:09:39 -07:00
yudai yamamoto
1f7e811156 Fixed broken link in Quickstart page (#12516)
- **Description:** 
Corrected a specific link within the documentation.
  
  - **Issue:**
  #12490 

  - **Dependencies:**
  - **Tag maintainer:**
  - **Twitter handle:**

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-02 13:00:53 -07:00
Ikko Eltociear Ashimine
9b02f7d59c Update llamacpp.ipynb (#12791)
HuggingFace -> Hugging Face
2023-11-02 12:52:12 -07:00
Tomaz Bratanic
2a9f40ed28 Add input types to cypher templates (#12800) 2023-11-02 12:46:02 -07:00
Nuno Campos
c4fdf78d03 Fix AddableDict raising exception when used with non-addable values (#12785)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-02 18:56:29 +00:00
Erick Friis
49e283a0cd CLI 0.0.13, Configurable Template Demo (#12796) 2023-11-02 11:42:57 -07:00
Nuno Campos
d1c6ad7769 Fix on_llm_new_token(chunk=) for some chat models (#12784)
It was passing in message instead of generation

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-02 16:33:44 +00:00
Erick Friis
070823f294 CLI 0.0.12 (#12787) 2023-11-02 08:29:27 -07:00
Bagatur
979501c0ca bump 329 (#12778) 2023-11-02 06:02:43 -07:00
Matvey Arye
9369d6aca0 Fixes to the docs for timescale vector template (#12756) 2023-11-01 18:48:23 -07:00
Lance Martin
33810126bd Update chat prompt structure in LLaMA SQL cookbook (#12364)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-01 16:37:03 -07:00
ElliotKetchup
58b90f30b0 Update llama.cpp integration (#11864)
<!-- 
- **Description:** removed redondant link, replaced it with Meta's LLaMA
repo, add resources for models' hardware requirements,
  - **Issue:** None,
  - **Dependencies:** None,
  - **Tag maintainer:** None,
  - **Twitter handle:** @ElliotAlladaye
 -->
2023-11-01 16:32:02 -07:00
Manuel Soria
a228f340f1 Semantic search within postgreSQL using pgvector (#12365)
Cookbook showing how to incoporate RAG search within a postgreSQL
database using pgvector.

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-01 16:21:34 -07:00
Erick Friis
da821320d3 Fixes 'Nonetype' not iterable for ObsidianLoader (#12751)
Implements #12726 from @Di3mex
2023-11-01 16:07:09 -07:00
Juan Bustos
67b6f4dc71 Update google_vertex_ai_palm.ipynb (#12715)
Fixed a typo

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** Fixed a typo on the code
  - **Issue:** the issue # it fixes (if applicable),


Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-01 16:05:44 -07:00
Eugene Yurtsev
b1caae62fd APIChain add restrictions to domains (CVE-2023-32786) (#12747)
* Restrict the chain to specific domains by default
* This is a breaking change, but it will fail loudly upon object
instantiation -- so there should be no silent errors for users
* Resolves CVE-2023-32786
2023-11-01 18:50:34 -04:00
Erick Friis
4421ba46d7 Demo Server, Fix Timescale (#12746)
- improve demo server
- missing deps
2023-11-01 15:29:34 -07:00
Eugene Yurtsev
0e1aedb9f4 Use jinja2 sandboxing by default (#12733)
* This is an opt-in feature, so users should be aware of risks if using
jinja2.
* Regardless we'll add sandboxing by default to jinja2 templates -- this
  sandboxing is a best effort basis.
* Best strategy is still to make sure that jinja2 templates are only
loaded from trusted sources.
2023-11-01 14:54:01 -07:00
Erick Friis
ab5309f6f2 template updates (#12736)
- langchain license
- add timescale vector dep to that template
2023-11-01 13:53:26 -07:00
Lance Martin
6406c53089 Update template index w/ Timescale (#12729) 2023-11-01 12:04:54 -07:00
Erick Friis
14340ee7cd use http.client instead of urllib3 (#12660)
dep problems with requests

cloudflare debugging not worth it with urllib
2023-11-01 11:15:05 -07:00
Bagatur
eee5181b7a bump 328, exp 37 (#12722) 2023-11-01 10:27:39 -07:00
Erick Friis
3405dbbc64 dash not underscore (#12716)
template names are auto-populating with the wrong convention (with
underscores)
2023-11-01 09:48:37 -07:00
123-fake-st
8bd3ce59cd PyPDFLoader use url in metadata source if file is a web path (#12092)
**Description:** Update `langchain.document_loaders.pdf.PyPDFLoader` to
store url in metadata (instead of a temporary file path) if user
provides a web path to a pdf

- **Issue:** Related to #7034; the reporter on that issue submitted a PR
updating `PyMuPDFParser` for this behavior, but it has unresolved merge
issues as of 20 Oct 2023 #7077
- In addition to `PyPDFLoader` and `PyMuPDFParser`, these other classes
in `langchain.document_loaders.pdf` exhibit similar behavior and could
benefit from an update: `PyPDFium2Loader`, `PDFMinerLoader`,
`PDFMinerPDFasHTMLLoader`, `PDFPlumberLoader` (I'm happy to contribute
to some/all of that, including assisting with `PyMuPDFParser`, if my
work is agreeable)
- The root cause is that the underlying pdf parser classes, e.g.
`langchain.document_loaders.parsers.pdf.PyPDFParser`, never receive
information about the url; the parsers receive a
`langchain.document_loaders.blob_loaders.blob`, which contains the pdf
contents and local file path, but not the url
- This update passes the web path directly to the parser since it's
minimally invasive and doesn't require further changes to maintain
existing behavior for local files... bigger picture, I'd consider
extending `blob` so that extra information like this can be
communicated, but that has much bigger implications on the codebase
which I think warrants maintainer input

  - **Dependencies:** None

```python
# old behavior
>>> from langchain.document_loaders import PyPDFLoader
>>> loader = PyPDFLoader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': '/var/folders/w2/zx77z1cs01s1thx5dhshkd58h3jtrv/T/tmpfgrorsi5/tmp.pdf', 'page': 0}

# new behavior
>>> from langchain.document_loaders import PyPDFLoader
>>> loader = PyPDFLoader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': 'https://arxiv.org/pdf/1706.03762.pdf', 'page': 0}
```
2023-11-01 11:27:00 -04:00
Dave Kwon
b1954aab13 feat: Add page metadata on PDFMinerLoader (#12277)
- **Description:** #12273 's suggestion PR
Like other PDFLoader, loading pdf per each page and giving page
metadata.
  - **Issue:** #12273 
  - **Twitter handle:** @blue0_0hope

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-01 11:25:37 -04:00
Duda Nogueira
7148f3e1fe Weaviate - Fix schema existence check (#12711)
This will allow you create the schema beforehand. The check was failing
and preventing importing into existing classes.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-01 08:22:15 -07:00
Sayandip
8dbbcf0b6c Adding a template for Solo Performance Prompting Agent (#12627)
**Description:** This template creates an agent that transforms a single
LLM into a cognitive synergist by engaging in multi-turn
self-collaboration with multiple personas.
**Tag maintainer:** @hwchase17

---------

Co-authored-by: Sayandip Sarkar <sayandip.sarkar@skypointcloud.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-01 08:10:07 -07:00
Aidos Kanapyanov
ae63c186af Mask API key for Anyscale LLM (#12406)
Description: Add masking of API Key for Anyscale LLM when printed.
Issue: #12165 
Dependencies: None
Tag maintainer: @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-01 10:22:26 -04:00
Predrag Gruevski
5ae51a8a85 Fix typo highlighted by ruff autoformatter. (#12691)
H/t @MichaReiser for spotting it:
https://github.com/langchain-ai/langchain/pull/12585/files#r1378253045
2023-10-31 22:16:06 -04:00
Predrag Gruevski
724b92231d Remove black caching config from CI lint workflow. (#12594)
To merge after #12585 is merged.
2023-10-31 21:39:05 -04:00
Predrag Gruevski
0ea837404a Only publish to test PyPI from the _test_release.yml workflow. (#12668)
PyPI trusted publishing wants to know which workflow is expected to do
the publish. We always want to publish from the same workflow, so we're
making `_test_release.yml` the only workflow that publishes to Test
PyPI.
2023-10-31 21:36:38 -04:00
Predrag Gruevski
321cd44f13 Use separate jobs for building and publishing test releases. (#12671)
This follows the principle of least privilege. Our `poetry build` step
doesn't need, and shouldn't get, access to our GitHub OIDC capability.

This is the same structure as I used in the already-merged PR for
refactoring the regular PyPI release workflow: #12578.
2023-10-31 21:36:26 -04:00
Erick Friis
44c8b159b9 properly increment version in cli (#12685)
Went from 0.0.9 -> 0.0.11 without releasing. Back to 10, then release.
2023-10-31 17:27:43 -07:00
Erick Friis
b825dddf95 fix elastic rag template in playground (#12682)
- a few instructions in the readme (load_documents -> ingest.py)
- added docker run command for local elastic
- adds input type definition to render playground properly
2023-10-31 17:18:35 -07:00
Lance Martin
f0eba1ac63 Add RAG input types (#12684)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-31 17:13:44 -07:00
Erick Friis
392cfbee24 link to templates (#12680) 2023-10-31 16:19:22 -07:00
Leonid Ganeline
ddcec005bc fix for YahooFinanceNewsTool (#12665)
Added YahooFinanceNewsTool to the __init__.py 
It was missed here.
2023-10-31 14:58:09 -07:00
Predrag Gruevski
09711ad5a1 Both lint and format templates with ruff v0.1.3. (#12676)
- Both lint and format code in `templates`.
- Upgrade to ruff v0.1.3.
2023-10-31 14:52:00 -07:00
Predrag Gruevski
01a3c9b94e Use an in-project virtualenv in the CLI package. (#12678)
Keeping it in sync with how our other packages are configured.
2023-10-31 14:51:24 -07:00
Predrag Gruevski
f7f35a9102 Use black to lint notebooks and docs for now. (#12679)
Due to #12677 having lots of errors for the time being.
2023-10-31 14:51:05 -07:00
Jacob Lee
bd668fcea1 Adds version CLI command (#12619)
Will be automatically bumped with `poetry version patch`.

@efriis @hwchase17

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-31 14:50:04 -07:00
Frank
bf5805bb32 Add quip loader (#12259)
- **Description:** implement [quip](https://quip.com) loader
  - **Issue:** https://github.com/langchain-ai/langchain/issues/10352
  - **Dependencies:** No
  -  pass make format, make lint, make test

---------

Co-authored-by: Hao Fan <h_fan@apple.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-31 14:11:24 -07:00
Roman Vasilyev
c9a6940d58 PGVector fix (#12592)
latest release broken, this fixes it

---------

Co-authored-by: Roman Vasilyev <rvasilyev@mozilla.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-31 17:01:15 -04:00
Lance Martin
9e17d1a225 Update Vertex template (#12644)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-31 14:00:22 -07:00
Predrag Gruevski
aa3f4a9bc8 Remove the CLI package's pydantic compatibility tests. (#12675)
They aren't necessary, since the CLI package doesn't have a direct
dependency on pydantic.
2023-10-31 16:57:38 -04:00
Predrag Gruevski
e8b99364b3 Use ruff for both linting and formatting in langchain-cli. (#12672)
Prior to this PR, `ruff` was used only for linting and not for
formatting, despite the names of the commands. This PR makes it be used
for both linting code and autoformatting it.
2023-10-31 13:52:25 -07:00
Harrison Chase
9a10b2b047 fix plate chain (#12673) 2023-10-31 13:45:09 -07:00
Margaret Qian
acfc485808 Update MosaicML Embedding Input Key (#12657)
This input key was missed in the last update PR:
https://github.com/langchain-ai/langchain/pull/7391

The input/output formats are intended to be like this:

```
{"inputs": [<prompt>]} 

{"outputs": [<output_text>]}
```
2023-10-31 14:43:30 -04:00
Erika Cardenas
d26ac5f999 Update README for Hybrid Search Weaviate (#12661)
- **Description:** Updated the README for Hybrid Search Weaviate
2023-10-31 11:02:34 -07:00
Predrag Gruevski
c871cc5055 Remove print() statements which seemed leftover from debugging. (#12648)
Added in #12159 presumably during debugging. Right now they cause a bit of visual noise.
2023-10-31 13:45:48 -04:00
Erick Friis
2a7e0a27cb update lc version (#12655)
also updated py version in `csv-agent` and `rag-codellama-fireworks`
because they have stricter python requirements
2023-10-31 10:19:15 -07:00
Predrag Gruevski
360cff81a3 Overwrite existing distributions when uploading to test PyPI. (#12658) 2023-10-31 10:02:50 -07:00
Lance Martin
da94c750c5 Add RAG template for Timescale Vector (#12651)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Matvey Arye <mat@timescale.com>
2023-10-31 09:56:29 -07:00
Noam Gat
14e8c74736 LM Format Enforcer Integration + Sample Notebook (#12625)
## Description

This PR adds support for
[lm-format-enforcer](https://github.com/noamgat/lm-format-enforcer) to
LangChain.

![image](https://raw.githubusercontent.com/noamgat/lm-format-enforcer/main/docs/Intro.webp)

The library is similar to jsonformer / RELLM which are supported in
Langchain, but has several advantages such as
- Batching and Beam search support
- More complete JSON Schema support
- LLM has control over whitespace, improving quality
- Better runtime performance due to only calling the LLM's generate()
function once per generate() call.

The integration is loosely based on the jsonformer integration in terms
of project structure.

## Dependencies

No compile-time dependency was added, but if `lm-format-enforcer` is not
installed, a runtime error will occur if it is trying to be used.

## Tests

Due to the integration modifying the internal parameters of the
underlying huggingface transformer LLM, it is not possible to test
without building a real LM, which requires internet access. So, similar
to the jsonformer and RELLM integrations, the testing is via the
notebook.

## Twitter Handle

[@noamgat](https://twitter.com/noamgat)


Looking forward to hearing feedback!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-31 09:49:01 -07:00
Stefano Lottini
a4e4b5a86f Relax python version and remove need for explicit setup step (#12637)
This PR addresses what seems like a unnecessary Python version
restriction in the pyroject.toml specs within both Cassandra (/Astra DB)
templates. With "^3.11" I got some version incompatibilities with the
latest "langchain add [...]" commands, so these are now relaxed in line
with the other templates I could inspect.

Incidentally, in the "entomology" template, the need for an explicit
"setup" step for the user to carry on has been removed, replaced by a
check-and-execute-if-necessary instruction on app startup.

Thank you for your attention!
2023-10-31 09:42:27 -07:00
Predrag Gruevski
5308b836c7 Upgrade to actions/checkout@v4 in the docs lint job. (#12581) 2023-10-31 12:41:18 -04:00
Predrag Gruevski
94f018f1ba Support release-testing packages with dashes in their names. (#12654) 2023-10-31 12:40:34 -04:00
Erick Friis
912ace18e9 fix template py verisons (#12650) 2023-10-31 09:20:29 -07:00
Brian McBrayer
b74468f399 Fix small typo on Founcational -> Router notebook (#12634)
- **Description:** Fix small typo on Founcational -> Router notebook
2023-10-31 09:16:29 -07:00
Predrag Gruevski
72fa5a463d Show ruff output inline in GitHub PRs. (#12647) 2023-10-31 12:16:01 -04:00
William FH
17c2e3b87e Rename Template (#12649)
To chatbot feedback. Update import
2023-10-31 09:15:30 -07:00
Erick Friis
7f6e751a3d template updates (#12646) 2023-10-31 09:13:58 -07:00
Leonid Kuligin
a53cac4508 added template to use Vertex Vector Search for q&a (#12622)
added template to use Vertex Vector Search for q&a
2023-10-31 08:49:24 -07:00
Lance Martin
944cb552bb Minor updates to READMEs (#12642) 2023-10-31 08:34:46 -07:00
William FH
88f0f1e73b Conversational Feedback (#12590)
Context in the README.

Show how score chat responses based on a followup from the user and then
log that as feedback in LangSmith
2023-10-31 08:34:17 -07:00
Predrag Gruevski
f94e24dfd7 Install and use ruff format instead of black for code formatting. (#12585)
Best to review one commit at a time, since two of the commits are 100%
autogenerated changes from running `ruff format`:
- Install and use `ruff format` instead of black for code formatting.
- Output of `ruff format .` in the `langchain` package.
- Use `ruff format` in experimental package.
- Format changes in experimental package by `ruff format`.
- Manual formatting fixes to make `ruff .` pass.
2023-10-31 10:53:12 -04:00
William FH
bfd719f9d8 bind_functions convenience method (#12518)
I always take 20-30 seconds to re-discover where the
`convert_to_openai_function` wrapper lives in our codebase. Chat
langchain [has no
clue](https://smith.langchain.com/public/3989d687-18c7-4108-958e-96e88803da86/r)
what to do either. There's the older `create_openai_fn_chain` , but we
haven't been recommending it in LCEL. The example we show in the
[cookbook](https://python.langchain.com/docs/expression_language/how_to/binding#attaching-openai-functions)
is really verbose.


General function calling should be as simple as possible to do, so this
seems a bit more ergonomic to me (feel free to disagree). Another option
would be to directly coerce directly in the class's init (or when
calling invoke), if provided. I'm not 100% set against that. That
approach may be too easy but not simple. This PR feels like a decent
compromise between simple and easy.

```
from enum import Enum
from typing import Optional

from pydantic import BaseModel, Field


class Category(str, Enum):
    """The category of the issue."""

    bug = "bug"
    nit = "nit"
    improvement = "improvement"
    other = "other"


class IssueClassification(BaseModel):
    """Classify an issue."""

    category: Category
    other_description: Optional[str] = Field(
        description="If classified as 'other', the suggested other category"
    )
    

from langchain.chat_models import ChatOpenAI

llm = ChatOpenAI().bind_functions([IssueClassification])
llm.invoke("This PR adds a convenience wrapper to the bind argument")

# AIMessage(content='', additional_kwargs={'function_call': {'name': 'IssueClassification', 'arguments': '{\n  "category": "improvement"\n}'}})
```
2023-10-31 07:15:37 -07:00
Nuno Campos
3143324984 Improve Runnable type inference for input_schemas (#12630)
- Prefer lambda type annotations over inferred dict schema
- For sequences that start with RunnableAssign infer seq input type as
"input type of 2nd item in sequence - output type of runnable assign"
2023-10-31 13:22:54 +00:00
Nuno Campos
2f563cee20 Add Runnable.with_listeners() (#12549)
- This binds start/end/error listeners to a runnable, which will be
called with the Run object
2023-10-31 11:04:51 +00:00
Bagatur
bcc62d63be bump 327 (#12623) 2023-10-31 02:18:08 -07:00
Erick Friis
a1fae1fddd Readme rewrite (#12615)
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-31 00:06:02 -07:00
Ankur Singh
00766c9f31 Improves the description of the installation command (#12354)
- **Description:**

 Before: 
`
To install modules needed for the common LLM providers, run:
`

After:
`
To install modules needed for the common LLM providers, run the
following command. Please bear in mind that this command is exclusively
compatible with the `bash` shell:
`


> This is required for the user so that the user will know if this
command is compatible with `zsh` or not.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 18:56:48 -07:00
Yujie Qian
1dbb77d7db VoyageEmbeddings (#12608)
- **Description:** Integrate VoyageEmbeddings into LangChain, with tests
and docs
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** N/A
  - **Twitter handle:** @Voyage_AI_

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 18:37:43 -07:00
chocolate4
92bf40a921 Add a new vector store hippo for langchain #11763 (#12412)
#11763

---------

Co-authored-by: TranswarpHippo <hippo.0.assistant@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 18:35:23 -07:00
Karthik Raja A
342d6c7ab6 Multi on client toolkit (#12392)
Replace this entire comment with:
-Add MultiOn close function and update key value and add async
functionality
- solved the key value TabId not found.. (updated to use latest key
value)
  
@hwchase17
2023-10-30 18:34:56 -07:00
Prabin Nepal
b109cb031b SecretStr for fireworks api (#12475)
- **Description:** This pull request removes secrets present in raw
format,
- **Issue:** Fireworks api key was exposed when printing out the
langchain object
[#12165](https://github.com/langchain-ai/langchain/issues/12165)
 - **Maintainer:** @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 18:17:53 -07:00
Harrison Chase
f35a65124a improve agent templates (#12528)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-30 18:15:13 -07:00
Harrison Chase
75bb28afd8 Harrison/pii chatbot (#12523)
the pii detection in the template is pretty basic, will need to be
customized per use case

the chain it "protects" can be swapped out for any chain
2023-10-30 18:13:12 -07:00
Harrison Chase
a32c236c64 bump cli to 009 (#12611) 2023-10-30 18:12:08 -07:00
Erika Cardenas
b97b9eda21 Hybrid Search Weaviate Template (#12606)
- **Description:** This template covers hybrid search in Weaviate
  - **Dependencies:** No
  - **Twitter handle:** @ecardenas300

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-30 18:10:48 -07:00
Martin Schade
0c7f1d8b21 Textract linearizer (#12446)
**Description:** Textract PDF Loader generating linearized output,
meaning it will replicate the structure of the source document as close
as possible based on the features passed into the call (e. g. LAYOUT,
FORMS, TABLES). With LAYOUT reading order for multi-column documents or
identification of lists and figures is supported and with TABLES it will
generate the table structure as well. FORMS will indicate "key: value"
with columms.
  - **Issue:** the issue fixes #12068 
- **Dependencies:** amazon-textract-textractor is added, which provides
the linearization
  - **Tag maintainer:** @3coins 

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 18:02:10 -07:00
Harrison Chase
a7d5e0ce8a add guardrails profanity (#12609) 2023-10-30 17:01:23 -07:00
Erick Friis
e933212a3d run poetry build in working dir (#12610)
Was failing because was trying to build from root:
https://github.com/langchain-ai/langchain/actions/runs/6700033981/job/18205251365
2023-10-30 16:58:34 -07:00
Erick Friis
f39246bd7e cli should pull instead of delete+clone (#12607)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-30 16:44:09 -07:00
Harrison Chase
8b5e879171 add a template for the package readme (#12499)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-30 16:39:39 -07:00
Bagatur
9bedda50f2 Bagatur/lakefs loader2 (#12524)
Co-authored-by: Jonathan Rosenberg <96974219+Jonathan-Rosenberg@users.noreply.github.com>
2023-10-30 16:30:27 -07:00
Brian McBrayer
3243dcc83e Fix very small typo (#12603)
- **Description:** this is the world's smallest typo change of a typo I
saw while reading the docs
2023-10-30 16:30:18 -07:00
Ackermann Yuriy
99b69fe607 Fixed missing optional tags. Added default key value for Ollama (#12599)
Added missing Optional typings. Added default values for Ollama optional
keys.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 16:30:10 -07:00
Lance Martin
f6f3ca12e7 Codebase RAG fireworks (#12597) 2023-10-30 16:21:56 -07:00
Harrison Chase
481bf6fae6 hosting note (#12589) 2023-10-30 15:31:31 -07:00
David Duong
b5c17ff188 Force List[Tuple[str,str]] to chat history widget (#12530)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 15:19:32 -07:00
David Duong
d39b4b61b6 Batch apply poetry lock --no-update for all templates (#12531)
Ran the following bash script for all templates

```bash
#!/bin/bash

set -e
current_dir="$(pwd)"
for directory in */; do
    if [ -d "$directory" ]; then
        (cd "$directory" && poetry lock --no-update)
    fi
done

cd "$current_dir"
```

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 15:18:53 -07:00
Kenzie Mihardja
e914283cf9 add docs to min_chunk_size (#12537)
Minor addition to documentation to elaborate on min_chunk_size.

Co-authored-by: Kenzie Mihardja <kenzie@docugami.com>
2023-10-30 15:13:52 -07:00
Bagatur
016813d189 factor out to_secret (#12593) 2023-10-30 15:10:25 -07:00
hsuyuming
630ae24b28 implement get_num_tokens to use google's count_tokens function (#10565)
can get the correct token count instead of using gpt-2 model

**Description:** 
Implement get_num_tokens within VertexLLM to use google's count_tokens
function.
(https://cloud.google.com/vertex-ai/docs/generative-ai/get-token-count).
So we don't need to download gpt-2 model from huggingface, also when we
do the mapreduce chain we can get correct token count.

**Tag maintainer:** 
@lkuligin 
**Twitter handle:** 
My twitter: @abehsu1992626

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 15:10:05 -07:00
Pham Vu Thai Minh
33e77a1007 Async support for FAISS (#11333)
Following this tutoral about using OpenAI Embeddings with FAISS

https://python.langchain.com/docs/integrations/vectorstores/faiss

```python
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader
from langchain.document_loaders import TextLoader

loader = TextLoader("../../../extras/modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()
```

This works fine

```python
db = FAISS.from_documents(docs, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
```

But the async version is not

```python
db = await FAISS.afrom_documents(docs, embeddings)  # NotImplementedError
query = "What did the president say about Ketanji Brown Jackson"

docs = await db.asimilarity_search(query) # this will use await asyncio.get_event_loop().run_in_executor under the hood and will not call OpenAIEmbeddings.aembed_query but call OpenAIEmbeddings.embed_query
```

So this PR add async/await supports for FAISS

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-30 15:08:53 -07:00
Lance Martin
26f0ca222d RAG template for MongoDB Atlas Vector Search (#12526) 2023-10-30 14:31:34 -07:00
Jeff Zhuo
13b89815a3 Issue: fix the issue #11648 init minimax llm (#12554)
e https://github.com/langchain-ai/langchain/issues/11648 Minimax
llm failed to initialize

The idea of this fix is
https://github.com/langchain-ai/langchain/issues/10917#issuecomment-1765606725

do not use  underscore in python model class

---------

Co-authored-by: zhuojianming@cmcm.com <zhuojianming@cmcm.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 14:30:17 -07:00
Florian Valeye
bfb27324cb [Matching Engine] Update the Matching Engine to include the distance and filters (#12555)
Hello 👋,

This Pull Request adds more capability to the
[MatchingEngine](https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html)
vectorstore of GCP. It includes the
`similarity_search_by_vector_with_relevance_scores` function and also
[filters](https://cloud.google.com/vertex-ai/docs/vector-search/filtering)
to `filter` the namespaces when retrieving the results.

- **Description:** Add
[filter](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.MatchingEngineIndexEndpoint#google_cloud_aiplatform_MatchingEngineIndexEndpoint_find_neighbors)
in `similarity_search` and add
`similarity_search_by_vector_with_relevance_scores` method
  - **Dependencies:** None
  - **Tag maintainer:** Unknown

Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 14:12:59 -07:00
Predrag Gruevski
3c5c384f1a Test-publish to test PyPI and separate jobs to limit permissions. (#12578)
Before making a new `langchain` release, we want to test that everything
works as expected. This PR lets us publish `langchain` to test PyPI,
then install it from there and run checks to ensure everything works
normally before publishing it "for real".

It also takes the opportunity to refactor the build process, splitting
up the build, release-creation, and PyPI upload steps into separate jobs
that do not share their elevated permissions with each other.
2023-10-30 17:10:14 -04:00
Harrison Chase
1d51363e49 change project template (#12493) 2023-10-30 14:06:30 -07:00
Holt Skinner
e53b9ccd70 feat: Add Google Cloud Text-to-Speech Tool (#12572)
- Add Tool for [Google Cloud
Text-to-Speech](https://cloud.google.com/text-to-speech)
- Follows similar structure to [Eleven Labs
Text2Speech](https://python.langchain.com/docs/integrations/tools/eleven_labs_tts)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 14:05:39 -07:00
Bagatur
1f2c672d4a add routing by embedding doc (#12580) 2023-10-30 13:03:16 -07:00
William FH
199630ff93 Replace You with DDG in xml agent (#12504)
You requires an email to get an API key which IMO is too much friction.
Duckduck go is free and easy to install.
2023-10-30 12:51:00 -07:00
Adilkhan Sarsen
6e702b9c36 Deep memory support in LangChain (#12268)
- Description: adding support to Activeloop's DeepMemory feature that
boosts recall up to 25%. Added Jupyter notebook showcasing the feature
and also made index params explicit.
- Twitter handle: will really appreciate if we could announce this on
twitter.

---------

Co-authored-by: adolkhan <adilkhan.sarsen@alumni.nu.edu.kz>
2023-10-30 12:16:14 -07:00
Lance Martin
c57945e0a8 Formatting on ntbks (#12576) 2023-10-30 11:32:31 -07:00
Lance Martin
08103e6d48 Minor template cleaning (#12573) 2023-10-30 11:27:44 -07:00
billytrend-cohere
b1e3843931 Add client_name="langchain" to Cohere usage (#11328)
Hey, we're looking to invest more in adding cohere integrations to
langchain so would love to get more of an idea for how it's used.
Hopefully this pr is acceptable. This week I'm also going to be looking
into adding our new [retrieval augmented generation
product](https://txt.cohere.com/chat-with-rag/) to langchain.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-30 11:20:55 -07:00
Bagatur
37aec1e050 bump 326 (#12569) 2023-10-30 10:11:17 -07:00
Eugene Yurtsev
1b1a2d5740 Image Caption accepts bytes for images (#12561)
Accept bytes for images in image caption

---------

Co-authored-by: webcoderz <19884161+webcoderz@users.noreply.github.com>
2023-10-30 12:29:54 -04:00
Nuno Campos
7897483819 Allow astream_log to be used inside atrace_as_chain_group (#12558)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-30 15:55:16 +00:00
Tomaz Bratanic
8e88ba16a8 Update neo4j template readmes (#12540) 2023-10-30 07:57:53 -07:00
Bagatur
b2138508cb google translate nb formatting (#12534) 2023-10-29 21:27:04 -07:00
Holt Skinner
e05bb938de Merge pull request #12433
* feat: Add Google Cloud Translation document transformer

* Merge branch 'langchain-ai:master' into google-translate

* Add documentation for Google Translate Document Transformer

* Fix line length error

* Merge branch 'master' into google-translate

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Addressed code review comments

* Merge branch 'master' into google-translate

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Removed extra variable

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Merge branch 'master' into google-translate

* Merge branch 'google-translate' of https://github.com/holtskinner/lan…

* Removed extra import
2023-10-29 21:22:36 -04:00
Samad Koita
d1fdcd4fcb Masking of API Key for GooseAI LLM (#12496)
Description: Add masking of API Key for GooseAI LLM when printed.
Issue: https://github.com/langchain-ai/langchain/issues/12165
Dependencies: None
Tag maintainer: @eyurtsev

---------

Co-authored-by: Samad Koita <>
2023-10-29 21:21:33 -04:00
Andrew Zhou
64c4a698a8 More comprehensive readthedocs document loader (#12382)
## **Description:**
When building our own readthedocs.io scraper, we noticed a couple
interesting things:

1. Text lines with a lot of nested <span> tags would give unclean text
with a bunch of newlines. For example, for [Langchain's
documentation](https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html#langchain.document_loaders.readthedocs.ReadTheDocsLoader),
a single line is represented in a complicated nested HTML structure, and
the naive `soup.get_text()` call currently being made will create a
newline for each nested HTML element. Therefore, the document loader
would give a messy, newline-separated blob of text. This would be true
in a lot of cases.

<img width="945" alt="Screenshot 2023-10-26 at 6 15 39 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/eca85d1f-d2bf-4487-a18a-e1e732fadf19">
<img width="1031" alt="Screenshot 2023-10-26 at 6 16 00 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/035938a0-9892-4f6a-83cd-0d7b409b00a3">

Additionally, content from iframes, code from scripts, css from styles,
etc. will be gotten if it's a subclass of the selector (which happens
more often than you'd think). For example, [this
page](https://pydeck.gl/gallery/contour_layer.html#) will scrape 1.5
million characters of content that looks like this:

<img width="1372" alt="Screenshot 2023-10-26 at 6 32 55 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/dbd89e39-9478-4a18-9e84-f0eb91954eac">

Therefore, I wrote a recursive _get_clean_text(soup) class function that
1. skips all irrelevant elements, and 2. only adds newlines when
necessary.

2. Index pages (like [this
one](https://api.python.langchain.com/en/latest/api_reference.html))
would be loaded, chunked, and eventually embedded. This is really bad
not just because the user will be embedding irrelevant information - but
because index pages are very likely to show up in retrieved content,
making retrieval less effective (in our tests). Therefore, I added a
bool parameter `exclude_index_pages` defaulted to False (which is the
current behavior — although I'd petition to default this to True) that
will skip all pages where links take up 50%+ of the page. Through manual
testing, this seems to be the best threshold.



## Other Information:
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Tag maintainer:** n/a
  - **Twitter handle:** @andrewthezhou

---------

Co-authored-by: Andrew Zhou <andrew@heykona.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-29 16:26:53 -07:00
Peter Vandenabeele
3468c038ba Add unit tests for document_transformers/beautiful_soup_transformer.py (#12520)
- **Description:**
* Add unit tests for document_transformers/beautiful_soup_transformer.py
* Basic functionality is tested (extract tags, remove tags, drop lines)
    * add a FIXME comment about the order of tags that is not preserved
      (and a passing test, but with the expected tags now out-of-order)
  - **Issue:** None
  - **Dependencies:** None
  - **Tag maintainer:** @rlancemartin 
  - **Twitter handle:** `peter_v`

Please make sure your PR is passing linting and testing before
submitting.

=> OK: I ran `make format`, `make test` (passing after install of
beautifulsoup4) and `make lint`.
2023-10-29 16:24:47 -07:00
Bagatur
d31d705407 update contributing (#12532) 2023-10-29 16:22:18 -07:00
Bagatur
0b4b9e61fc Bagatur/fix doc ci (#12529) 2023-10-29 16:15:18 -07:00
Bagatur
2424fff3f1 notebook fmt (#12498) 2023-10-29 15:50:09 -07:00
Harrison Chase
56cc5b847c Harrison/add descriptions (#12522) 2023-10-29 15:11:37 -07:00
Anirudh Gautam
b257e6a4e8 Mask API key for AI21 LLM (#12418)
- **Description:** Added masking of the API Key for AI21 LLM when
printed and improved the docstring for AI21 LLM.
- Updated the AI21 LLM to utilize SecretStr from pydantic to securely
manage API key.
- Made improvements in the docstring of AI21 LLM. It now mentions that
the API key can also be passed as a named parameter to the constructor.
    - Added unit tests.
  - **Issue:** #12165 
  - **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Anirudh Gautam <anirudh@Anirudhs-Mac-mini.local>
2023-10-29 14:53:41 -07:00
Nico Baier
35d726dc15 docs(prompt_templates): fix typo in prompt template (#12497)
- **Description:** Fixes a small typo in the [Prompt template
document](https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/)
  - **Dependencies:** none
2023-10-29 14:52:37 -07:00
silvhua
9dead1034c _dalle_image_url returns list of urls if n>1 (#11800)
- **Description:** Updated the `_dalle_image_url` method to return a
list of URLs if self.n>1,
  - **Issue:** #10691,
  - **Dependencies:** unsure,
  - **Tag maintainer:** @eyurtsev,
  - **Twitter handle:** @silvhua
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-29 14:23:23 -07:00
Bagatur
1815ea2fdb OpenAI runnable constructor (#12455) 2023-10-29 13:40:30 -07:00
William FH
a830b809f3 Patch forward ref bug (#12508)
Currently this gives a bug:
```
from langchain.schema.runnable import RunnableLambda

bound = RunnableLambda(lambda x: x).with_config({"callbacks": []})

# ConfigError: field "callbacks" not yet prepared so type is still a ForwardRef, you might need to call RunnableConfig.update_forward_refs().
```

Rather than deal with cyclic imports and extra load time, etc., I think
it makes sense to just have a separate Callbacks definition here that is
a relaxed typehint.
2023-10-29 00:53:01 -07:00
William FH
36204c2baf Evaluation Callback Multi Response (#12505)
1. Allow run evaluators to return {"results": [list of evaluation
results]} in the evaluator callback.
2. Allows run evaluators to pick the target run ID to provide feedback
to

(1) means you could do something like a function call that populates a
full rubric in one go (not sure how reliable that is in general though)
rather than splitting off into separate LLM calls - cheaper and less
code to write
(2) means you can provide feedback to runs on subsequent calls.
Immediate use case is if you wanted to add an evaluator to a chat bot
and assign to assign to previous conversation turns


have a corresponding one in the SDK
2023-10-28 23:18:29 -07:00
Harrison Chase
9e0ae56287 various templates improvements (#12500) 2023-10-28 22:13:22 -07:00
Harrison Chase
d85d4d7822 add cookbook for selectins llms based on context length (#12486) 2023-10-28 21:50:14 -07:00
Harrison Chase
0660c06cf1 add gha for cli (#12492) 2023-10-28 21:49:28 -07:00
0xC9
79cf01366e Update tool.py (#12472)
In the GoogleSerperResults class, the name field is defined as
'google_serrper_results_json'. This looks like a typo, and perhaps
should be 'google_serper_results_json'.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-28 21:49:01 -07:00
Harrison Chase
61f5ea4b5e Sphinxbio nls/add plate chain template (#12502)
Co-authored-by: Nicholas Larus-Stone <7347808+nlarusstone@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-28 21:48:17 -07:00
Harrison Chase
221134d239 Harrison/quick start (#12491)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-28 16:26:52 -07:00
Bagatur
e130680d74 Bagatur/self query doc update (#12461) 2023-10-28 14:37:14 -07:00
Piyush Jain
689853902e Added a rag template for Kendra (#12470)
## Description
Adds a rag template for Amazon Kendra with Bedrock.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-28 08:58:28 -07:00
Harrison Chase
eb903e211c bump to 36 (#12487) 2023-10-28 08:51:23 -07:00
Tyler Hutcherson
4209457bdc Redis langserve template (#12443)
Add Redis langserve template! Eventually will add semantic caching to
this too. But I was struggling to get that to work for some reason with
the LCEL implementation here.

- **Description:** Introduces the Redis LangServe template. A simple RAG
based app built on top of Redis that allows you to chat with company's
public financial data (Edgar 10k filings)
  - **Issue:** None
- **Dependencies:** The template contains the poetry project
requirements to run this template
  - **Tag maintainer:** @baskaryan @Spartee 
  - **Twitter handle:** @tchutch94

**Note**: this requires the commit here that deletes the
`_aget_relevant_documents()` method from the Redis retriever class that
wasn't implemented. That was breaking the langserve app.

---------

Co-authored-by: Sam Partee <sam.partee@redis.com>
2023-10-28 08:31:12 -07:00
Erick Friis
9adaa78c65 cli improvements (#12465)
Features
- add multiple repos by their branch/repo
- generate `pip install` commands and `add_route()` code
![Screenshot 2023-10-27 at 4 49 52
PM](https://github.com/langchain-ai/langchain/assets/9557659/3aec4cbb-3f67-4f04-8370-5b54ea983b2a)

Optimizations:
- group installs by repo/branch to avoid duplicate cloning
2023-10-28 08:25:31 -07:00
Piyush Jain
5545de0466 Updated the Bedrock rag template (#12462)
Updates the bedrock rag template.
- Removes pinecone and replaces with FAISS as the vector store
- Fixes the environment variables, setting defaults
- Adds a `main.py` test file quick sanity testing
- Updates README.md with correct instructions
2023-10-27 17:02:28 -07:00
Lance Martin
5c2243ee91 Update llama.cpp and Ollama templates (#12466) 2023-10-27 16:54:54 -07:00
Lance Martin
f10c17c6a4 Update SQL templates (#12464) 2023-10-27 16:34:37 -07:00
Lance Martin
a476147189 Add Weaviate RAG template (#12460) 2023-10-27 15:19:34 -07:00
Adam Law
df4960a6d8 add reranking to azuresearch (#12454)
-**Description** Adds returning the reranking score when using semantic
search
-**Issue:* #12317

---------

Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-27 14:14:09 -07:00
dependabot[bot]
389459af8f Bump @babel/traverse from 7.22.8 to 7.23.2 in /docs (#12453)
Bumps
[@babel/traverse](https://github.com/babel/babel/tree/HEAD/packages/babel-traverse)
from 7.22.8 to 7.23.2.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/babel/babel/releases"><code>@​babel/traverse</code>'s
releases</a>.</em></p>
<blockquote>
<h2>v7.23.2 (2023-10-11)</h2>
<p><strong>NOTE</strong>: This release also re-publishes
<code>@babel/core</code>, even if it does not appear in the linked
release commit.</p>
<p>Thanks <a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a> for
your first PR!</p>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16033">#16033</a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16022">#16022</a>
Rewrite <code>.tsx</code> extension when using
<code>rewriteImportExtensions</code> (<a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16017">#16017</a>
Fix: fallback to typeof when toString is applied to incompatible object
(<a href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16025">#16025</a>
Avoid override mistake in namespace imports (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h4>Committers: 5</h4>
<ul>
<li>Babel Bot (<a
href="https://github.com/babel-bot"><code>@​babel-bot</code></a>)</li>
<li>Huáng Jùnliàng (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
<li>James Diefenderfer (<a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a>)</li>
<li>Nicolò Ribaudo (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
<li><a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a></li>
</ul>
<h2>v7.23.1 (2023-09-25)</h2>
<p>Re-publishing <code>@babel/helpers</code> due to a publishing error
in 7.23.0.</p>
<h2>v7.23.0 (2023-09-25)</h2>
<p>Thanks <a
href="https://github.com/lorenzoferre"><code>@​lorenzoferre</code></a>
and <a
href="https://github.com/RajShukla1"><code>@​RajShukla1</code></a> for
your first PRs!</p>
<h4>🚀 New Feature</h4>
<ul>
<li><code>babel-plugin-proposal-import-wasm-source</code>,
<code>babel-plugin-syntax-import-source</code>,
<code>babel-plugin-transform-dynamic-import</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15870">#15870</a>
Support transforming <code>import source</code> for wasm (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-module-transforms</code>,
<code>babel-helpers</code>,
<code>babel-plugin-proposal-import-defer</code>,
<code>babel-plugin-syntax-import-defer</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15878">#15878</a>
Implement <code>import defer</code> proposal transform support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>, <code>babel-parser</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15845">#15845</a>
Implement <code>import defer</code> parsing support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
<li><a
href="https://redirect.github.com/babel/babel/pull/15829">#15829</a> Add
parsing support for the &quot;source phase imports&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>,
<code>babel-helper-module-transforms</code>, <code>babel-parser</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-systemjs</code>,
<code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15682">#15682</a> Add
<code>createImportExpressions</code> parser option (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15671">#15671</a>
Pass through nonce to the transformed script element (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-function-name</code>,
<code>babel-helper-member-expression-to-functions</code>,
<code>babel-helpers</code>, <code>babel-parser</code>,
<code>babel-plugin-proposal-destructuring-private</code>,
<code>babel-plugin-proposal-optional-chaining-assign</code>,
<code>babel-plugin-syntax-optional-chaining-assign</code>,
<code>babel-plugin-transform-destructuring</code>,
<code>babel-plugin-transform-optional-chaining</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15751">#15751</a> Add
support for optional chain in assignments (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-proposal-decorators</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15895">#15895</a>
Implement the &quot;decorator metadata&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15893">#15893</a> Add
<code>t.buildUndefinedNode</code> (<a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/babel/babel/blob/main/CHANGELOG.md"><code>@​babel/traverse</code>'s
changelog</a>.</em></p>
<blockquote>
<h2>v7.23.2 (2023-10-11)</h2>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16033">#16033</a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16022">#16022</a>
Rewrite <code>.tsx</code> extension when using
<code>rewriteImportExtensions</code> (<a
href="https://github.com/jimmydief"><code>@​jimmydief</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16017">#16017</a>
Fix: fallback to typeof when toString is applied to incompatible object
(<a href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16025">#16025</a>
Avoid override mistake in namespace imports (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h2>v7.23.0 (2023-09-25)</h2>
<h4>🚀 New Feature</h4>
<ul>
<li><code>babel-plugin-proposal-import-wasm-source</code>,
<code>babel-plugin-syntax-import-source</code>,
<code>babel-plugin-transform-dynamic-import</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15870">#15870</a>
Support transforming <code>import source</code> for wasm (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-module-transforms</code>,
<code>babel-helpers</code>,
<code>babel-plugin-proposal-import-defer</code>,
<code>babel-plugin-syntax-import-defer</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15878">#15878</a>
Implement <code>import defer</code> proposal transform support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>, <code>babel-parser</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15845">#15845</a>
Implement <code>import defer</code> parsing support (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
<li><a
href="https://redirect.github.com/babel/babel/pull/15829">#15829</a> Add
parsing support for the &quot;source phase imports&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>,
<code>babel-helper-module-transforms</code>, <code>babel-parser</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-systemjs</code>,
<code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15682">#15682</a> Add
<code>createImportExpressions</code> parser option (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15671">#15671</a>
Pass through nonce to the transformed script element (<a
href="https://github.com/JLHwung"><code>@​JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-function-name</code>,
<code>babel-helper-member-expression-to-functions</code>,
<code>babel-helpers</code>, <code>babel-parser</code>,
<code>babel-plugin-proposal-destructuring-private</code>,
<code>babel-plugin-proposal-optional-chaining-assign</code>,
<code>babel-plugin-syntax-optional-chaining-assign</code>,
<code>babel-plugin-transform-destructuring</code>,
<code>babel-plugin-transform-optional-chaining</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15751">#15751</a> Add
support for optional chain in assignments (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-proposal-decorators</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15895">#15895</a>
Implement the &quot;decorator metadata&quot; proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15893">#15893</a> Add
<code>t.buildUndefinedNode</code> (<a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15913">#15913</a> Add
<code>rewriteImportExtensions</code> option to TS preset (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-parser</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15896">#15896</a>
Allow TS tuples to have both labeled and unlabeled elements (<a
href="https://github.com/yukukotani"><code>@​yukukotani</code></a>)</li>
</ul>
</li>
</ul>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-plugin-transform-block-scoping</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15962">#15962</a>
fix: <code>transform-block-scoping</code> captures the variables of the
method in the loop (<a
href="https://github.com/liuxingbaoyu"><code>@​liuxingbaoyu</code></a>)</li>
</ul>
</li>
</ul>
<h4>💅 Polish</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15797">#15797</a>
Expand evaluation of global built-ins in <code>@babel/traverse</code>
(<a
href="https://github.com/lorenzoferre"><code>@​lorenzoferre</code></a>)</li>
</ul>
</li>
<li><code>babel-plugin-proposal-explicit-resource-management</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15985">#15985</a>
Improve source maps for blocks with <code>using</code> declarations (<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h4>🔬 Output optimization</h4>
<ul>
<li><code>babel-core</code>,
<code>babel-helper-module-transforms</code>,
<code>babel-plugin-transform-async-to-generator</code>,
<code>babel-plugin-transform-classes</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-function-name</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-umd</code>,
<code>babel-plugin-transform-parameters</code>,
<code>babel-plugin-transform-react-constant-elements</code>,
<code>babel-plugin-transform-react-inline-elements</code>,
<code>babel-plugin-transform-runtime</code>,
<code>babel-plugin-transform-typescript</code>,
<code>babel-preset-env</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15984">#15984</a>
Inline <code>exports.XXX =</code> update in simple variable declarations
(<a
href="https://github.com/nicolo-ribaudo"><code>@​nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h2>v7.22.20 (2023-09-16)</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="b4b9942a6c"><code>b4b9942</code></a>
v7.23.2</li>
<li><a
href="b13376b346"><code>b13376b</code></a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/16033">#16033</a>)</li>
<li><a
href="ca58ec15cb"><code>ca58ec1</code></a>
v7.23.0</li>
<li><a
href="0f333dafcf"><code>0f333da</code></a>
Add <code>createImportExpressions</code> parser option (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15682">#15682</a>)</li>
<li><a
href="3744545649"><code>3744545</code></a>
Fix linting</li>
<li><a
href="c7e6806e21"><code>c7e6806</code></a>
Add <code>t.buildUndefinedNode</code> (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15893">#15893</a>)</li>
<li><a
href="38ee8b4dd6"><code>38ee8b4</code></a>
Expand evaluation of global built-ins in <code>@babel/traverse</code>
(<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15797">#15797</a>)</li>
<li><a
href="9f3dfd9021"><code>9f3dfd9</code></a>
v7.22.20</li>
<li><a
href="3ed28b29c1"><code>3ed28b2</code></a>
Fully support <code>||</code> and <code>&amp;&amp;</code> in
<code>pluginToggleBooleanFlag</code> (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15961">#15961</a>)</li>
<li><a
href="77b0d73599"><code>77b0d73</code></a>
v7.22.19</li>
<li>Additional commits viewable in <a
href="https://github.com/babel/babel/commits/v7.23.2/packages/babel-traverse">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@babel/traverse&package-manager=npm_and_yarn&previous-version=7.22.8&new-version=7.23.2)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/langchain-ai/langchain/network/alerts).

</details>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-27 14:13:58 -07:00
Eugene Yurtsev
60d009f75a Add security note to API chain (#12452)
Add security note
2023-10-27 17:09:42 -04:00
Matvey Arye
11505f95d3 Improve handling of empty queries for timescale vector (#12393)
**Description:** Improve handling of empty queries in timescale-vector.
For timescale-vector it is more efficient to get a None embedding when
the embedding has no semantic meaning. It allows timescale-vector to
perform more optimizations. Thus, when the query is empty, use a None
embedding.

 Also pass down constructor arguments to the timescale vector client.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-27 13:55:16 -07:00
Erick Friis
38cee5fae0 cli updates 2 (#12447)
- extras group
- readme
- another readme

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-27 13:37:03 -07:00
Lance Martin
3afa68e30e Update AWS Bedrock README.md (#12451) 2023-10-27 13:21:54 -07:00
Lance Martin
5c564e62e1 AWS Bedrock RAG template (#12450) 2023-10-27 13:15:54 -07:00
William FH
5d40e36c75 Trace if run tree set (#12444)
This code path is hit in the following case:
- Start in langchain code and manually provide a tracer
- Handoff to the traceable
- Hand back to langchain code.

Which happens for evaluating `@traceable` functions unfortunately
2023-10-27 12:29:18 -07:00
Bagatur
c2a0a6b6df make doc utils public (#12394) 2023-10-27 12:08:08 -07:00
Henter
d6888a90d0 Fix the missing temperature parameter for Baichuan-AI chat_model (#12420)
**Description:** the missing `temperature` parameter for Baichuan-AI
chat_model

Baichuan-AI api doc: https://platform.baichuan-ai.com/docs/api
2023-10-27 12:07:21 -07:00
Erick Friis
6908634428 cli updates oct27 (#12436) 2023-10-27 12:06:46 -07:00
Uxywannasleep
3fd9f2752f Fix Typo in clickhouse.ipynb file (#12429) 2023-10-27 11:55:15 -07:00
HwangJohn
d38c8369b3 added rrf argument in ApproxRetrievalStrategy class __init__() (#11987)
- **Description: To handle the hybrid search with RRF(Reciprocal Rank
Fusion) in the Elasticsearch, rrf argument was added for adjusting
'rank_constant' and 'window_size' to combine multiple result sets with
different relevance indicators into a single result set. (ref:
https://www.elastic.co/kr/blog/whats-new-elastic-enterprise-search-8-9-0),
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** No dependencies changed,
  - **Tag maintainer:** @baskaryan,

Nice to meet you,
I'm a newbie for contributions and it's my first PR.

I only changed the langchain/vectorstores/elasticsearch.py file.
I did make format&lint 
I got this message,
```shell
make lint_diff  
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run black langchain/vectorstores/elasticsearch.py --check
All done!  🍰 
1 file would be left unchanged.
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run mypy langchain/vectorstores/elasticsearch.py
langchain/__init__.py: error: Source file found twice under different module names: "mvp.nlp.langchain.libs.langchain.langchain" and "langchain"
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint_diff] Error 2
```

Thank you

---------

Co-authored-by: 황중원 <jwhwang@amorepacific.com>
2023-10-27 11:53:19 -07:00
Roman Vasilyev
2c58dca5f0 optional reusable connection (#12051)
My postgres out of connections after continuous PGVector usage, and the
reason because it constantly creates new connections, so adding a
reusable pre established connection seems like solves an issue

---------

Co-authored-by: Roman Vasilyev <rvasilyev@mozilla.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-27 11:52:42 -07:00
Ennio Pastore
48fde2004f Update long_context_reorder.py (#12422)
The function comment was confusing and inaccurate
2023-10-27 11:52:28 -07:00
Bagatur
a8c68d4ffa Type LLMChain.llm as runnable (#12385) 2023-10-27 11:52:01 -07:00
Prakul
224ec0cfd3 Mongo db $vector search doc update (#12404)
**Description:** 
Updates the documentation for MongoDB Atlas Vector Search
2023-10-27 11:50:29 -07:00
Bagatur
d12b88557a Bagatur/bump 325 (#12440) 2023-10-27 11:49:09 -07:00
Eugene Yurtsev
cadfce295f Deprecate PythonRepl tools and Pandas/Xorbits/Spark DataFrame/Python/CSV agents (#12427)
See discussion here:
https://github.com/langchain-ai/langchain/discussions/11680

The code is available for usage from langchain_experimental. The reason
for the deprecation is that the agents are relying on a Python REPL. The
code can only be run safely with appropriate sandboxing.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-27 14:16:42 -04:00
Lance Martin
68e12d34a9 Add invoke example to LLaMA2 function template notebook (#12437) 2023-10-27 10:58:24 -07:00
Harrison Chase
0ca539eb85 Clean up deprecated agents and update __init__ in experimental (#12231)
Update init paths in experimental
2023-10-27 13:52:50 -04:00
Lance Martin
05bbf943f2 LLaMA2 with JSON schema support template (#12435) 2023-10-27 10:34:00 -07:00
Holt Skinner
134f085824 feat: Add Google Speech to Text API Document Loader (#12298)
- Add Document Loader for Google Speech to Text
  - Similar Structure to [Assembly AI Document Loader][1]

[1]:
https://python.langchain.com/docs/integrations/document_loaders/assemblyai
2023-10-27 09:34:26 -07:00
David Duong
52c194ec3a Fix templates typos (#12428) 2023-10-27 09:32:57 -07:00
Massimiliano Pronesti
c8195769f2 fix(openai-callback): completion count logic (#12383)
The changes introduced in #12267 and #12190 broke the cost computation
of the `completion` tokens for fine-tuned models because of the early
return. This PR aims at fixing this.
@baskaryan.
2023-10-27 09:08:54 -07:00
Stefan Langenbach
b22da81af8 Mask API key for Aleph Alpha LLM (#12377)
- **Description:** Add masking of API Key for Aleph Alpha LLM when
printed.
- **Issue**: #12165
- **Dependencies:** None
- **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-27 11:32:43 -04:00
Lance Martin
d6acb3ed7e Clean-up template READMEs (#12403)
Normalize, and update notebooks.
2023-10-26 22:23:03 -07:00
William FH
4254028c52 Str Evaluator Mapper (#12401) 2023-10-26 21:38:47 -07:00
William FH
fcad1d2965 Add space (#12395) 2023-10-26 20:32:23 -07:00
William FH
922d7910ef Wfh/json schema evaluation (#12389)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-10-26 20:32:05 -07:00
Erick Friis
afcc12d99e Templates CI (#12313)
Adds a `langchain-location` param to lint, so we can properly locate it.

Regular langchain and experimental lint steps are passing, so default
value seems to be working.
2023-10-26 20:29:36 -07:00
Christian Kasim Loan
a35445c65f johnsnowlabs embeddings support (#11271)
- **Description:** Introducing the
[JohnSnowLabsEmbeddings](https://www.johnsnowlabs.com/)
  - **Dependencies:** johnsnowlabs
  - **Tag maintainer:** @C-K-Loan
- **Twitter handle:** https://twitter.com/JohnSnowLabs
https://twitter.com/ChristianKasimL

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-26 20:22:50 -07:00
SteveLiao
c08b622b2d Add HTML Title and Page Language into metadata for AsyncHtmlLoader (#11326)
**Description:** 
Revise `libs/langchain/langchain/document_loaders/async_html.py` to
store the HTML Title and Page Language in the `metadata` of
`AsyncHtmlLoader`.
2023-10-26 20:22:31 -07:00
Erick Friis
4b16601d33 Format Templates (#12396) 2023-10-26 19:44:30 -07:00
Shorthills AI
25c98dbba9 Fixed some grammatical and Exception types issues (#12015)
Fixed some grammatical issues and Exception types.

@baskaryan , @eyurtsev

---------

Co-authored-by: Sanskar Tanwar <142409040+SanskarTanwarShorthillsAI@users.noreply.github.com>
Co-authored-by: UpneetShorthillsAI <144228282+UpneetShorthillsAI@users.noreply.github.com>
Co-authored-by: HarshGuptaShorthillsAI <144897987+HarshGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: AdityaKalraShorthillsAI <143726711+AdityaKalraShorthillsAI@users.noreply.github.com>
Co-authored-by: SakshiShorthillsAI <144228183+SakshiShorthillsAI@users.noreply.github.com>
2023-10-26 21:12:38 -04:00
William FH
923696b664 Wfh/json edit dist (#12361)
Compare predicted json to reference. First canonicalize (sort keys, rm
whitespace separators), then return normalized string edit distance.

Not a silver bullet but maybe an easy way to capture structure
differences in a less flakey way

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-10-26 18:10:28 -07:00
Harrison Chase
56ee56736b add template for hyde (#12390) 2023-10-26 17:38:35 -07:00
Erick Friis
4db8d82c55 CLI CI 2 (#12387)
Will run all CI because of _test change, but future PRs against CLI will
only trigger the new CLI one

Has a bunch of file changes related to formatting/linting.

No mypy yet - coming soon
2023-10-26 17:01:31 -07:00
Tyler Hutcherson
231d553824 Update broken redis tests (#12371)
Update broken redis tests -- tiny PR :) 
- **Description:** Fixes Redis tests on master (look like it was broken
by https://github.com/langchain-ai/langchain/pull/11257)
  - **Issue:** None,
  - **Dependencies:** No
  - **Tag maintainer:** @baskaryan @Spartee 
  - **Twitter handle:** N/A

Co-authored-by: Sam Partee <sam.partee@redis.com>
2023-10-26 16:13:14 -07:00
Lance Martin
b8af5b0a8e Minor updates to ReRank template (#12388) 2023-10-26 16:05:17 -07:00
Bagatur
7cadf00570 better lint triggering (#12376) 2023-10-26 15:31:20 -07:00
Erick Friis
03e79e62c2 cli fix (#12380) 2023-10-26 15:29:49 -07:00
Lance Martin
237026c060 Cohere re-rank template (#12378) 2023-10-26 15:29:10 -07:00
Bagatur
76230d2c08 fireworks scheduled integration tests (#12373) 2023-10-26 14:24:42 -07:00
Josh Phillips
01c5cd365b Fix SupbaseVectoreStore write operation timeout (#12318)
**Description**
This small change will make chunk_size a configurable parameter for
loading documents into a Supabase database.

**Issue**
https://github.com/langchain-ai/langchain/issues/11422

**Dependencies**
No chanages

**Twitter**
@ j1philli

**Reminder**
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Greg Richardson <greg.nmr@gmail.com>
2023-10-26 14:19:17 -07:00
Bagatur
b10cefb160 lint fix: rm init (#12374) 2023-10-26 14:16:25 -07:00
William FH
f65067b1da Mention other function calling/grammar support (#12369)
In our extraction doc
2023-10-26 13:59:28 -07:00
Chris Lucas
e88fdbba29 Fix langsmith walkthrough doc dataset (#12027) 2023-10-26 13:57:15 -07:00
Jacob Lee
7e5e5e87d8 Adds linter in templates (#12321)
Did not actually run/fix errors yet @efriis
2023-10-26 13:55:07 -07:00
Harrison Chase
b43996e553 Harrison/improve cli (#12368) 2023-10-26 13:53:59 -07:00
Harrison Chase
9ce38726a2 fix some stuff (#12292)
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-26 13:30:36 -07:00
Cynthia Yang
6ce276e099 Support Fireworks batching (#8) (#12052)
Description

* Add _generate and _agenerate to support Fireworks batching.
* Add stop words test cases
* Opt out retry mechanism

Issue - Not applicable
Dependencies - None
Tag maintainer - @baskaryan
2023-10-26 16:01:08 -04:00
Bagatur
3fbb2f3e52 update chains how to (#12362) 2023-10-26 12:21:03 -07:00
Tyler Hutcherson
2f0c9d8269 Fix redis vectorfield schema defaults (#12223)
- **Description:** refactors the redis vector field schema to properly
handle default values, includes a new unit test suite.
  - **Issue:** N/A
  - **Dependencies:** nothing new.
  - **Tag maintainer:** @baskaryan @Spartee 
  - **Twitter handle:** this is a tiny fix/improvement :) 

This issue was causing some clients/cuatomers issues when building a
vector index on Redis on smaller db instances (due to fault default
values in index configuration). It would raise an error like:

```redis.exceptions.ResponseError: Vector index initial capacity 20000 exceeded server limit (852 with the given parameters)```

This PR will address this moving forward.
2023-10-26 12:17:58 -07:00
Jakub Novák
9544d64ad8 E2B tool - Improve description wuth uploaded files info (#12355) 2023-10-26 11:44:24 -07:00
Bagatur
dad16af711 langserve doc (#12357) 2023-10-26 11:40:57 -07:00
Lance Martin
0af6e64ad9 Update multi query template README, ntbk (#12356) 2023-10-26 11:24:44 -07:00
2748 changed files with 222935 additions and 64078 deletions

View File

@@ -17,13 +17,16 @@ For more info, check out the [GitHub documentation](https://docs.github.com/en/f
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
Note: If you click the link above you will open the main repo (langchain-ai/langchain) and not your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
```
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<yourusername>/<yourclonedreponame>
```
Then you will have a local cloned repo where you can contribute and then create pull requests.
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
Alternatively you can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).

View File

@@ -134,14 +134,21 @@ Run these locally before submitting a PR; the CI system will check also.
#### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [ruff](https://docs.astral.sh/ruff/rules/).
Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules/).
To run formatting for this project:
To run formatting for docs, cookbook and templates:
```bash
make format
```
To run formatting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
@@ -152,14 +159,21 @@ This is especially useful when you have made changes to a subset of the project
#### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [ruff](https://docs.astral.sh/ruff/rules/), and [mypy](http://mypy-lang.org/).
Linting for this project is done via a combination of [ruff](https://docs.astral.sh/ruff/rules/) and [mypy](http://mypy-lang.org/).
To run linting for this project:
To run linting for docs, cookbook and templates:
```bash
make lint
```
To run linting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
@@ -288,8 +302,8 @@ make api_docs_linkcheck
### Verify Documentation changes
After pushing documentation changes to the repository, you can preview and verify that the changes are
what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page.
After pushing documentation changes to the repository, you can preview and verify that the changes are
what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page.
This will take you to a preview of the documentation changes.
This preview is created by [Vercel](https://vercel.com/docs/getting-started-with-vercel).

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -40,6 +44,14 @@ jobs:
shell: bash
run: poetry install --with=test_integration
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Check integration tests compile
shell: bash
run: poetry run pytest -m compile tests/integration_tests

View File

@@ -7,20 +7,25 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
# This env var allows us to get inline annotations when ruff has complaints.
RUFF_OUTPUT_FORMAT: github
jobs:
build:
runs-on: ubuntu-latest
env:
# This number is set "by eye": we want it to be big enough
# so that it's bigger than the number of commits in any reasonable PR,
# and also as small as possible since increasing the number makes
# the initial `git fetch` slower.
FETCH_DEPTH: 50
strategy:
matrix:
# Only lint on the min and max supported Python versions.
@@ -35,51 +40,6 @@ jobs:
- "3.11"
steps:
- uses: actions/checkout@v4
with:
# Fetch the last FETCH_DEPTH commits, so the mtime-changing script
# can accurately set the mtimes of files modified in the last FETCH_DEPTH commits.
fetch-depth: ${{ env.FETCH_DEPTH }}
- name: Restore workdir file mtimes to last-edited commit date
id: restore-mtimes
# This is needed to make black caching work.
# Black's cache uses file (mtime, size) to check whether a lookup is a cache hit.
# Without this command, files in the repo would have the current time as the modified time,
# since the previous action step just created them.
# This command resets the mtime to the last time the files were modified in git instead,
# which is a high-quality and stable representation of the last modification date.
run: |
# Important considerations:
# - These commands run at base of the repo, since we never `cd` to the `WORKDIR`.
# - We only want to alter mtimes for Python files, since that's all black checks.
# - We don't need to alter mtimes for directories, since black doesn't look at those.
# - We also only alter mtimes inside the `WORKDIR` since that's all we'll lint.
# - This should run before `poetry install`, because poetry's venv also contains
# Python files, and we don't want to alter their mtimes since they aren't linted.
# Ensure we fail on non-zero exits and on undefined variables.
# Also print executed commands, for easier debugging.
set -eux
# Restore the mtimes of Python files in the workdir based on git history.
.github/tools/git-restore-mtime --no-directories "$WORKDIR/**/*.py"
# Since CI only does a partial fetch (to `FETCH_DEPTH`) for efficiency,
# the local git repo doesn't have full history. There are probably files
# that were last modified in a commit *older than* the oldest fetched commit.
# After `git-restore-mtime`, such files have a mtime set to the oldest fetched commit.
#
# As new commits get added, that timestamp will keep moving forward.
# If left unchanged, this will make `black` think that the files were edited
# more recently than its cache suggests. Instead, we can set their mtime
# to a fixed date in the far past that won't change and won't cause cache misses in black.
#
# For all workdir Python files modified in or before the oldest few fetched commits,
# make their mtime be 2000-01-01 00:00:00.
OLDEST_COMMIT="$(git log --reverse '--pretty=format:%H' | head -1)"
OLDEST_COMMIT_TIME="$(git show -s '--format=%ai' "$OLDEST_COMMIT")"
find "$WORKDIR" -name '*.py' -type f -not -newermt "$OLDEST_COMMIT_TIME" -exec touch -c -m -t '200001010000' '{}' '+'
echo "oldest-commit=$OLDEST_COMMIT" >> "$GITHUB_OUTPUT"
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
@@ -116,22 +76,19 @@ jobs:
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.working-directory != 'libs/langchain' }}
run: |
pip install -e ../langchain
- name: Restore black cache
uses: actions/cache@v3
if: ${{ inputs.langchain-location }}
env:
CACHE_BASE: black-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
${{ env.WORKDIR }}/.black_cache
key: ${{ env.CACHE_BASE }}-${{ steps.restore-mtimes.outputs.oldest-commit }}
restore-keys:
# If we can't find an exact match for our cache key, accept any with this prefix.
${{ env.CACHE_BASE }}-
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
@@ -144,7 +101,5 @@ jobs:
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
env:
BLACK_CACHE_DIR: .black_cache
run: |
make lint

View File

@@ -7,6 +7,14 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -40,6 +48,22 @@ jobs:
shell: bash
run: poetry install
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash

View File

@@ -9,13 +9,120 @@ on:
description: "From which folder this pipeline executes"
env:
PYTHON_VERSION: "3.10"
POETRY_VERSION: "1.6.1"
jobs:
if_release:
# Disallow publishing from branches that aren't `master`.
build:
if: github.ref == 'refs/heads/master'
runs-on: ubuntu-latest
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v3
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Check Version
id: check-version
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
test-pypi-publish:
needs:
- build
uses:
./.github/workflows/_test_release.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
pre-release-checks:
needs:
- build
- test-pypi-publish
runs-on: ubuntu-latest
steps:
# We explicitly *don't* set up caching here. This ensures our tests are
# maximally sensitive to catching breakage.
#
# For example, here's a way that caching can cause a falsely-passing test:
# - Make the langchain package manifest no longer list a dependency package
# as a requirement. This means it won't be installed by `pip install`,
# and attempting to use it would cause a crash.
# - That dependency used to be required, so it may have been cached.
# When restoring the venv packages from cache, that dependency gets included.
# - Tests pass, because the dependency is present even though it wasn't specified.
# - The package is published, and it breaks on the missing dependency when
# used in the real world.
- uses: actions/setup-python@v4
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: Test published package
shell: bash
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
# Here we use:
# - The default regular PyPI index as the *primary* index, meaning
# that it takes priority (https://pypi.org/simple)
# - The test PyPI index as an extra index, so that any dependencies that
# are not found on test PyPI can be resolved and installed anyway.
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
# package because VERSION will not have been uploaded to regular PyPI yet.
#
# TODO: add more in-depth pre-publish tests after testing that importing works
run: |
pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION"
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
publish:
needs:
- build
- test-pypi-publish
- pre-release-checks
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
@@ -24,28 +131,65 @@ jobs:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
# This permission is needed by `ncipollo/release-action` to create the GitHub release.
contents: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: "3.10"
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- uses: actions/download-artifact@v3
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
mark-release:
needs:
- build
- test-pypi-publish
- pre-release-checks
- publish
runs-on: ubuntu-latest
permissions:
# This permission is needed by `ncipollo/release-action` to
# create the GitHub release.
contents: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v3
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Create Release
uses: ncipollo/release-action@v1
if: ${{ inputs.working-directory == 'libs/langchain' }}
@@ -54,11 +198,5 @@ jobs:
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: true
tag: v${{ steps.check-version.outputs.version }}
tag: v${{ needs.build.outputs.version }}
commit: master
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true

View File

@@ -7,6 +7,14 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -40,17 +48,26 @@ jobs:
shell: bash
run: poetry install
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Run core tests
shell: bash
run: make test
- name: Install integration dependencies
shell: bash
run: poetry install --with=test_integration
- name: Check integration tests compile
shell: bash
run: poetry run pytest -m compile tests/integration_tests
run: |
make test
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -10,9 +10,60 @@ on:
env:
POETRY_VERSION: "1.6.1"
PYTHON_VERSION: "3.10"
jobs:
publish_to_test_pypi:
build:
if: github.ref == 'refs/heads/master'
runs-on: ubuntu-latest
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v3
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: Check Version
id: check-version
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
publish:
needs:
- build
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
@@ -21,30 +72,24 @@ jobs:
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
- uses: actions/download-artifact@v3
with:
python-version: "3.10"
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Publish package to TestPyPI
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true

View File

@@ -1,11 +1,17 @@
---
name: Documentation Lint
name: Docs, templates, cookbook lint
on:
push:
branches: [master]
branches: [ master ]
pull_request:
branches: [master]
paths:
- 'docs/**'
- 'templates/**'
- 'cookbook/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/doc_lint.yml'
workflow_dispatch:
jobs:
check:
@@ -13,10 +19,17 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v2
uses: actions/checkout@v4
- name: Run import check
run: |
# We should not encourage imports directly from main init file
# Expect for hub
git grep 'from langchain import' docs/{docs,snippets} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: "."
secrets: inherit

View File

@@ -3,6 +3,8 @@ import toml
pyproject_toml = toml.load("pyproject.toml")
# Extract the ignore words list (adjust the key as per your TOML structure)
ignore_words_list = pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
ignore_words_list = (
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
)
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
print(f"::set-output name=ignore_words_list::{ignore_words_list}")

View File

@@ -12,7 +12,9 @@ on:
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/*'
- 'libs/langchain/**'
- 'libs/core/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
@@ -35,6 +37,7 @@ jobs:
./.github/workflows/_lint.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
test:
@@ -42,6 +45,7 @@ jobs:
./.github/workflows/_test.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
compile-integration-tests:
@@ -49,6 +53,7 @@ jobs:
./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
pydantic-compatibility:
@@ -56,8 +61,49 @@ jobs:
./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
# It's possible that langchain works fine with the latest *published* langchain-core,
# but is broken with the langchain-core on `master`.
#
# We want to catch situations like that *before* releasing a new langchain-core, hence this test.
test-with-latest-langchain-core:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: test with unpublished langchain-core - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ env.WORKDIR }}
cache-key: unpublished-langchain-core
- name: Install dependencies
shell: bash
run: |
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
poetry install
echo "Editably installing langchain-core outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../core
- name: Run tests
run: make test
extended-tests:
runs-on: ubuntu-latest
defaults:
@@ -88,6 +134,11 @@ jobs:
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Install langchain core editable
shell: bash
run: |
poetry run pip install -e ../core
- name: Run extended tests
run: make extended_tests

47
.github/workflows/langchain_cli_ci.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
---
name: libs/cli CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_cli_ci.yml'
- 'libs/cli/**'
- 'libs/*'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "libs/cli"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/cli
langchain-location: ../langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: libs/cli Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/cli
secrets: inherit

52
.github/workflows/langchain_core_ci.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
---
name: libs/langchain core CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_core_ci.yml'
- 'libs/core/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "libs/core"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/core
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/core
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -11,8 +11,10 @@ on:
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_experimental_ci.yml'
- 'libs/langchain/**'
- 'libs/*'
- 'libs/experimental/**'
- 'libs/langchain/**'
- 'libs/core/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
@@ -35,6 +37,8 @@ jobs:
./.github/workflows/_lint.yml
with:
working-directory: libs/experimental
langchain-location: ../langchain
langchain-core-location: ../core
secrets: inherit
test:
@@ -42,6 +46,8 @@ jobs:
./.github/workflows/_test.yml
with:
working-directory: libs/experimental
langchain-location: ../langchain
langchain-core-location: ../core
secrets: inherit
compile-integration-tests:
@@ -87,6 +93,7 @@ jobs:
echo "Editably installing langchain outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../langchain
poetry run pip install -e ../core
- name: Run tests
run: make test

View File

@@ -55,6 +55,10 @@ jobs:
poetry install --with=test_integration
poetry run pip install google-cloud-aiplatform
poetry run pip install "boto3>=1.28.57"
if [[ ${{ matrix.python-version }} != "3.8" ]]
then
poetry run pip install fireworks-ai
fi
- name: Run tests
shell: bash
@@ -64,7 +68,8 @@ jobs:
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
run: |
make scheduled_tests

37
.github/workflows/templates_ci.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
---
name: templates CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/templates_ci.yml'
- 'templates/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "templates"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: templates
langchain-location: ../libs/langchain
secrets: inherit

1
.gitignore vendored
View File

@@ -178,3 +178,4 @@ docs/docs/build
docs/docs/node_modules
docs/docs/yarn.lock
_dist
docs/docs/templates

View File

@@ -1,9 +1,18 @@
# Migrating to `langchain_experimental`
# Migrating
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
### Migrating to `langchain_experimental`
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
This guide covers how to migrate.
## Installation
### Installation
Previously:
@@ -13,7 +22,7 @@ Now (only if you want to access things in experimental):
`pip install -U langchain langchain_experimental`
## Things in `langchain.experimental`
### Things in `langchain.experimental`
Previously:
@@ -23,7 +32,7 @@ Now:
`from langchain_experimental import ...`
## PALChain
### PALChain
Previously:
@@ -33,7 +42,7 @@ Now:
`from langchain_experimental.pal_chain import PALChain`
## SQLDatabaseChain
### SQLDatabaseChain
Previously:
@@ -47,7 +56,7 @@ Alternatively, if you are just interested in using the query generation part of
`from langchain.chains import create_sql_query_chain`
## `load_prompt` for Python files
### `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.
If you want to load json/yaml files, no change is needed.

View File

@@ -37,6 +37,18 @@ spell_check:
spell_fix:
poetry run codespell --toml pyproject.toml -w
######################
# LINTING AND FORMATTING
######################
lint:
poetry run ruff docs templates cookbook
poetry run ruff format docs templates cookbook --diff
format format_diff:
poetry run ruff format docs templates cookbook
poetry run ruff --select I --fix docs templates cookbook
######################
# HELP
######################

View File

@@ -15,71 +15,72 @@
[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain)
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/issues)
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
Read how to migrate your code [here](MIGRATE.md).
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team.
## Quick Install
`pip install langchain`
or
`pip install langsmith && conda install langchain -c conda-forge`
With pip:
```bash
pip install langchain
```
## 🤔 What is this?
With conda:
```bash
pip install langsmith && conda install langchain -c conda-forge
```
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
## 🤔 What is LangChain?
This library aims to assist in the development of those types of applications. Common examples of these applications include:
**LangChain** is a framework for developing applications powered by language models. It enables applications that:
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
**❓ Question Answering over specific documents**
This framework consists of several parts.
- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
**This repo contains the `langchain` ([here](libs/langchain)), `langchain-experimental` ([here](libs/experimental)), and `langchain-cli` ([here](libs/cli)) Python packages, as well as [LangChain Templates](templates).**
![LangChain Stack](docs/static/img/langchain_stack.png)
## 🧱 What can you build with LangChain?
**❓ Retrieval augmented generation**
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
- End-to-end Example: [Question Answering over Notion Database](https://github.com/hwchase17/notion-qa)
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
**💬 Chatbots**
**💬 Analyzing structured data**
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots/)
- End-to-end Example: [Chat-LangChain](https://github.com/langchain-ai/chat-langchain)
- [Documentation](https://python.langchain.com/docs/use_cases/qa_structured/sql)
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain/tree/master/templates/sql-llama2)
**🤖 Agents**
**🤖 Chatbots**
- [Documentation](https://python.langchain.com/docs/modules/agents/)
- End-to-end Example: [GPT+WolframAlpha](https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain)
- [Documentation](https://python.langchain.com/docs/use_cases/chatbots)
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
## 📖 Documentation
And much more! Head to the [Use cases](https://python.langchain.com/docs/use_cases/) section of the docs for more.
Please see [here](https://python.langchain.com) for full documentation on:
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
- Getting started (installation, setting up the environment, simple examples)
- How-To examples (demos, integrations, helper functions)
- Reference (full API docs)
- Resources (high-level explanation of core concepts)
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
## 🚀 What can this help with?
Components fall into the following **modules**:
There are six main areas that LangChain is designed to help with.
These are, in increasing order of complexity:
**📃 LLMs and Prompts:**
**📃 Model I/O:**
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
**🔗 Chains:**
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
**📚 Data Augmented Generation:**
**📚 Retrieval:**
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
@@ -87,15 +88,16 @@ Data Augmented Generation involves specific types of chains that first interact
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
**🧠 Memory:**
## 📖 Documentation
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
Please see [here](https://python.langchain.com) for full documentation, which includes:
**🧐 Evaluation:**
- [Getting started](https://python.langchain.com/docs/get_started/introduction): installation, setting up the environment, simple examples
- Overview of the [interfaces](https://python.langchain.com/docs/expression_language/), [modules](https://python.langchain.com/docs/modules/) and [integrations](https://python.langchain.com/docs/integrations/providers)
- [Use case](https://python.langchain.com/docs/use_cases/qa_structured/sql) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/adapters/openai)
- [LangSmith](https://python.langchain.com/docs/langsmith/), [LangServe](https://python.langchain.com/docs/langserve), and [LangChain Template](https://python.langchain.com/docs/templates/) overviews
- [Reference](https://api.python.langchain.com): full API docs
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is by using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
## 💁 Contributing

View File

@@ -47,7 +47,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 1,
"id": "6a75a5c6-34ee-4ab9-a664-d9b432d812ee",
"metadata": {},
"outputs": [
@@ -60,28 +60,26 @@
}
],
"source": [
"# Local \n",
"# Local\n",
"from langchain.chat_models import ChatOllama\n",
"\n",
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
"\n",
"# API\n",
"from getpass import getpass\n",
"from langchain.llms import Replicate\n",
"\n",
"# REPLICATE_API_TOKEN = getpass()\n",
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
"replicate_id = \"meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d\"\n",
"llama2_chat_replicate = Replicate(\n",
" model=replicate_id,\n",
" input={\"temperature\": 0.01, \n",
" \"max_length\": 500, \n",
" \"top_p\": 1}\n",
" model=replicate_id, input={\"temperature\": 0.01, \"max_length\": 500, \"top_p\": 1}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 2,
"id": "ce96f7ea-b3d5-44e1-9fa5-a79e04a9e1fb",
"metadata": {},
"outputs": [],
@@ -104,17 +102,20 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 3,
"id": "025bdd82-3bb1-4948-bc7c-c3ccd94fd05c",
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabase\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info= 0)\n",
"\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
"\n",
"\n",
"def get_schema(_):\n",
" return db.get_table_info()\n",
"\n",
"\n",
"def run_query(query):\n",
" return db.run(query)"
]
@@ -131,7 +132,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 4,
"id": "5a4933ea-d9c0-4b0a-8177-ba4490c6532b",
"metadata": {},
"outputs": [
@@ -141,7 +142,7 @@
"' SELECT \"Team\" FROM nba_roster WHERE \"NAME\" = \\'Klay Thompson\\';'"
]
},
"execution_count": 14,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -149,26 +150,29 @@
"source": [
"# Prompt\n",
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"# Chain to query\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
" )\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"sql_response.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
@@ -209,18 +213,23 @@
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt_response = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\",\n",
" ),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response) \n",
" RunnablePassthrough.assign(query=sql_response)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | prompt_response\n",
" | llm\n",
")\n",
"\n",
@@ -250,8 +259,8 @@
},
{
"cell_type": "code",
"execution_count": 19,
"id": "1985aa1c-eb8f-4fb1-a54f-c8aa10744687",
"execution_count": 7,
"id": "022868f2-128e-42f5-8d90-d3bb2f11d994",
"metadata": {},
"outputs": [
{
@@ -260,7 +269,7 @@
"' SELECT \"Team\" FROM nba_roster WHERE \"NAME\" = \\'Klay Thompson\\';'"
]
},
"execution_count": 19,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -269,61 +278,44 @@
"# Prompt\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question, convert it to a SQL query. No pre-amble.\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", template)\n",
"])\n",
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", template),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"memory = ConversationBufferMemory(return_messages=True)\n",
"\n",
"# Chain to query with memory \n",
"# Chain to query with memory\n",
"from langchain.schema.runnable import RunnableLambda\n",
"\n",
"sql_chain = (\n",
" RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" history=RunnableLambda(lambda x: memory.load_memory_variables(x)[\"history\"])\n",
" )| prompt\n",
" schema=get_schema,\n",
" history=RunnableLambda(lambda x: memory.load_memory_variables(x)[\"history\"]),\n",
" )\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"\n",
"def save(input_output):\n",
" output = {\"output\": input_output.pop(\"output\")}\n",
" memory.save_context(input_output, output)\n",
" return output['output']\n",
" \n",
" return output[\"output\"]\n",
"\n",
"\n",
"sql_response_memory = RunnablePassthrough.assign(output=sql_chain) | save\n",
"sql_response_memory.invoke({\"question\": \"What team is Klay Thompson on?\"})"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "0b45818a-1498-441d-b82d-23c29428c2bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' SELECT \"SALARY\" FROM nba_roster WHERE \"NAME\" = \\'Klay Thompson\\';'"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sql_response_memory.invoke({\"question\": \"What is his salary?\"})"
]
},
{
"cell_type": "code",
"execution_count": 21,
@@ -349,18 +341,23 @@
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\"),\n",
" (\"human\", template)\n",
"])\n",
"prompt_response = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"Given an input question and SQL response, convert it to a natural langugae answer. No pre-amble.\",\n",
" ),\n",
" (\"human\", template),\n",
" ]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response_memory) \n",
" RunnablePassthrough.assign(query=sql_response_memory)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response \n",
" | prompt_response\n",
" | llm\n",
")\n",
"\n",

File diff suppressed because one or more lines are too long

View File

@@ -8,6 +8,7 @@ Notebook | Description
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
[analyze_document.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/analyze_document.ipynb) | Analyze a single long document.
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
[baby_agi.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi.ipynb) | Implement babyagi, an ai agent that can generate and execute tasks based on a given objective, with the flexibility to swap out specific vectorstores/model providers.
@@ -20,6 +21,7 @@ Notebook | Description
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools
[forward_looking_retrieval_augm...](https://github.com/langchain-ai/langchain/tree/master/cookbook/forward_looking_retrieval_augmented_generation.ipynb) | Implement the forward-looking active retrieval augmented generation (flare) method, which generates answers to questions, identifies uncertain tokens, generates hypothetical questions based on these tokens, and retrieves relevant documents to continue generating the answer.
[generative_agents_interactive_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb) | Implement a generative agent that simulates human behavior, based on a research paper, using a time-weighted memory object backed by a langchain retriever.
[gymnasium_agent_simulation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/gymnasium_agent_simulation.ipynb) | Create a simple agent-environment interaction loop in simulated environments like text-based games with gymnasium.
@@ -38,10 +40,13 @@ Notebook | Description
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[openai_v1_cookbook.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_v1_cookbook.ipynb) | Explore new functionality released alongside the V1 release of the OpenAI Python library.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
[smart_llm.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/smart_llm.ipynb) | Implement a smartllmchain, a self-critique chain that generates multiple output proposals, critiques them to find the best one, and then improves upon it to produce a final output.

View File

@@ -60,7 +60,7 @@
"metadata": {},
"outputs": [],
"source": [
"! brew install tesseract \n",
"! brew install tesseract\n",
"! brew install poppler"
]
},
@@ -102,27 +102,29 @@
"metadata": {},
"outputs": [],
"source": [
"from lxml import html\n",
"from typing import Any\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import Any, Optional\n",
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Get elements\n",
"raw_pdf_elements = partition_pdf(filename=path+\"LLaMA2.pdf\",\n",
" # Unstructured first finds embedded image blocks\n",
" extract_images_in_pdf=False,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document \n",
" infer_table_structure=True, \n",
" # Post processing to aggregate text once we have the title \n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars \n",
" max_characters=4000, \n",
" new_after_n_chars=3800, \n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path)"
"raw_pdf_elements = partition_pdf(\n",
" filename=path + \"LLaMA2.pdf\",\n",
" # Unstructured first finds embedded image blocks\n",
" extract_images_in_pdf=False,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document\n",
" infer_table_structure=True,\n",
" # Post processing to aggregate text once we have the title\n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars\n",
" max_characters=4000,\n",
" new_after_n_chars=3800,\n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path,\n",
")"
]
},
{
@@ -190,6 +192,7 @@
" type: str\n",
" text: Any\n",
"\n",
"\n",
"# Categorize by type\n",
"categorized_elements = []\n",
"for element in raw_pdf_elements:\n",
@@ -259,14 +262,14 @@
"metadata": {},
"outputs": [],
"source": [
"# Prompt \n",
"prompt_text=\"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text) \n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
"# Summary chain \n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x:x} | prompt | model | StrOutputParser()"
"# Summary chain\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()"
]
},
{
@@ -314,17 +317,15 @@
"outputs": [],
"source": [
"import uuid\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.schema.document import Document\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
" collection_name=\"summaries\",\n",
" embedding_function=OpenAIEmbeddings()\n",
")\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore()\n",
@@ -332,20 +333,26 @@
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore, \n",
" docstore=store, \n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" id_key=id_key,\n",
")\n",
"\n",
"# Add texts\n",
"doc_ids = [str(uuid.uuid4()) for _ in texts]\n",
"summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]\n",
"summary_texts = [\n",
" Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
" for i, s in enumerate(text_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_texts)\n",
"retriever.docstore.mset(list(zip(doc_ids, texts)))\n",
"\n",
"# Add tables\n",
"table_ids = [str(uuid.uuid4()) for _ in tables]\n",
"summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]\n",
"summary_tables = [\n",
" Document(page_content=s, metadata={id_key: table_ids[i]})\n",
" for i, s in enumerate(table_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_tables)\n",
"retriever.docstore.mset(list(zip(table_ids, tables)))"
]
@@ -367,7 +374,6 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"# Prompt template\n",
@@ -378,13 +384,13 @@
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"\n",
"# RAG pipeline\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]

View File

@@ -92,28 +92,30 @@
"metadata": {},
"outputs": [],
"source": [
"from lxml import html\n",
"from typing import Any\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import Any, Optional\n",
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Get elements\n",
"raw_pdf_elements = partition_pdf(filename=path+\"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document \n",
" infer_table_structure=True, \n",
" # Post processing to aggregate text once we have the title \n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars \n",
" # Hard max on chunks\n",
" max_characters=4000, \n",
" new_after_n_chars=3800, \n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path)"
"raw_pdf_elements = partition_pdf(\n",
" filename=path + \"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document\n",
" infer_table_structure=True,\n",
" # Post processing to aggregate text once we have the title\n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars\n",
" # Hard max on chunks\n",
" max_characters=4000,\n",
" new_after_n_chars=3800,\n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path,\n",
")"
]
},
{
@@ -170,6 +172,7 @@
" type: str\n",
" text: Any\n",
"\n",
"\n",
"# Categorize by type\n",
"categorized_elements = []\n",
"for element in raw_pdf_elements:\n",
@@ -220,14 +223,14 @@
"metadata": {},
"outputs": [],
"source": [
"# Prompt \n",
"prompt_text=\"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\\n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text) \n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
"# Summary chain \n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x:x} | prompt | model | StrOutputParser()"
"# Summary chain\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()"
]
},
{
@@ -310,7 +313,7 @@
" # Execute the command and save the output to the defined output file\n",
" /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p \"Describe the image in detail. Be specific about graphs, such as bar plots.\" --image \"$img\" > \"$output_file\"\n",
"\n",
"done"
"done\n"
]
},
{
@@ -334,7 +337,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os, glob\n",
"import glob\n",
"import os\n",
"\n",
"# Get all .txt file summaries\n",
"file_paths = glob.glob(os.path.expanduser(os.path.join(path, \"*.txt\")))\n",
@@ -342,11 +346,11 @@
"# Read each file and store its content in a list\n",
"img_summaries = []\n",
"for file_path in file_paths:\n",
" with open(file_path, 'r') as file:\n",
" with open(file_path, \"r\") as file:\n",
" img_summaries.append(file.read())\n",
"\n",
"# Remove any logging prior to summary\n",
"logging_header=\"clip_model_load: total allocated memory: 201.27 MB\\n\\n\"\n",
"logging_header = \"clip_model_load: total allocated memory: 201.27 MB\\n\\n\"\n",
"cleaned_img_summary = [s.split(logging_header, 1)[1].strip() for s in img_summaries]"
]
},
@@ -368,17 +372,15 @@
"outputs": [],
"source": [
"import uuid\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.schema.document import Document\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
" collection_name=\"summaries\",\n",
" embedding_function=OpenAIEmbeddings()\n",
")\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore()\n",
@@ -386,20 +388,26 @@
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore, \n",
" docstore=store, \n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" id_key=id_key,\n",
")\n",
"\n",
"# Add texts\n",
"doc_ids = [str(uuid.uuid4()) for _ in texts]\n",
"summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]\n",
"summary_texts = [\n",
" Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
" for i, s in enumerate(text_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_texts)\n",
"retriever.docstore.mset(list(zip(doc_ids, texts)))\n",
"\n",
"# Add tables\n",
"table_ids = [str(uuid.uuid4()) for _ in tables]\n",
"summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]\n",
"summary_tables = [\n",
" Document(page_content=s, metadata={id_key: table_ids[i]})\n",
" for i, s in enumerate(table_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_tables)\n",
"retriever.docstore.mset(list(zip(table_ids, tables)))"
]
@@ -423,9 +431,12 @@
"source": [
"# Add image summaries\n",
"img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]\n",
"summary_img = [Document(page_content=s,metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary)]\n",
"summary_img = [\n",
" Document(page_content=s, metadata={id_key: img_ids[i]})\n",
" for i, s in enumerate(cleaned_img_summary)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_img)\n",
"retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary))) "
"retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary)))"
]
},
{
@@ -449,10 +460,19 @@
"source": [
"# Add images\n",
"img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]\n",
"summary_img = [Document(page_content=s,metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary)]\n",
"summary_img = [\n",
" Document(page_content=s, metadata={id_key: img_ids[i]})\n",
" for i, s in enumerate(cleaned_img_summary)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_img)\n",
"### Fetch images\n",
"retriever.docstore.mset(list(zip(img_ids, ### image ### ))) "
"retriever.docstore.mset(\n",
" list(\n",
" zip(\n",
" img_ids,\n",
" )\n",
" )\n",
")"
]
},
{
@@ -542,7 +562,9 @@
],
"source": [
"# We can retrieve this table\n",
"retriever.get_relevant_documents(\"What are results for LLaMA across across domains / subjects?\")[1]"
"retriever.get_relevant_documents(\n",
" \"What are results for LLaMA across across domains / subjects?\"\n",
")[1]"
]
},
{
@@ -592,7 +614,9 @@
}
],
"source": [
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[1]"
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
" 1\n",
"]"
]
},
{
@@ -622,7 +646,6 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"# Prompt template\n",
@@ -633,15 +656,15 @@
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# Option 1: LLM\n",
"model = ChatOpenAI(temperature=0,model=\"gpt-4\")\n",
"model = ChatOpenAI(temperature=0, model=\"gpt-4\")\n",
"# Option 2: Multi-modal LLM\n",
"# model = GPT4-V or LLaVA\n",
"\n",
"# RAG pipeline\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
@@ -664,7 +687,9 @@
}
],
"source": [
"chain.invoke(\"What is the performance of LLaVa across across multiple image domains / subjects?\")"
"chain.invoke(\n",
" \"What is the performance of LLaVa across across multiple image domains / subjects?\"\n",
")"
]
},
{
@@ -713,7 +738,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -82,32 +82,33 @@
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from lxml import html\n",
"from typing import Any\n",
"\n",
"from pydantic import BaseModel\n",
"from typing import Any, Optional\n",
"from unstructured.partition.pdf import partition_pdf\n",
"\n",
"# Path to save images\n",
"path = \"/Users/rlm/Desktop/Papers/LLaVA/\"\n",
"\n",
"# Get elements\n",
"raw_pdf_elements = partition_pdf(filename=path+\"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document \n",
" infer_table_structure=True, \n",
" # Post processing to aggregate text once we have the title \n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars \n",
" # Hard max on chunks\n",
" max_characters=4000, \n",
" new_after_n_chars=3800, \n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path)"
"raw_pdf_elements = partition_pdf(\n",
" filename=path + \"LLaVA.pdf\",\n",
" # Using pdf format to find embedded image blocks\n",
" extract_images_in_pdf=True,\n",
" # Use layout model (YOLOX) to get bounding boxes (for tables) and find titles\n",
" # Titles are any sub-section of the document\n",
" infer_table_structure=True,\n",
" # Post processing to aggregate text once we have the title\n",
" chunking_strategy=\"by_title\",\n",
" # Chunking params to aggregate text blocks\n",
" # Attempt to create a new chunk 3800 chars\n",
" # Attempt to keep chunks > 2000 chars\n",
" # Hard max on chunks\n",
" max_characters=4000,\n",
" new_after_n_chars=3800,\n",
" combine_text_under_n_chars=2000,\n",
" image_output_dir_path=path,\n",
")"
]
},
{
@@ -165,6 +166,7 @@
" type: str\n",
" text: Any\n",
"\n",
"\n",
"# Categorize by type\n",
"categorized_elements = []\n",
"for element in raw_pdf_elements:\n",
@@ -219,14 +221,14 @@
"metadata": {},
"outputs": [],
"source": [
"# Prompt \n",
"prompt_text=\"\"\"You are an assistant tasked with summarizing tables and text. \\ \n",
"# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text. \\\n",
"Give a concise summary of the table or text. Table or text chunk: {element} \"\"\"\n",
"prompt = ChatPromptTemplate.from_template(prompt_text) \n",
"prompt = ChatPromptTemplate.from_template(prompt_text)\n",
"\n",
"# Summary chain \n",
"# Summary chain\n",
"model = ChatOllama(model=\"llama2:13b-chat\")\n",
"summarize_chain = {\"element\": lambda x:x} | prompt | model | StrOutputParser()"
"summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()"
]
},
{
@@ -309,7 +311,7 @@
" # Execute the command and save the output to the defined output file\n",
" /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p \"Describe the image in detail. Be specific about graphs, such as bar plots.\" --image \"$img\" > \"$output_file\"\n",
"\n",
"done"
"done\n"
]
},
{
@@ -319,7 +321,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os, glob\n",
"import glob\n",
"import os\n",
"\n",
"# Get all .txt files in the directory\n",
"file_paths = glob.glob(os.path.expanduser(os.path.join(path, \"*.txt\")))\n",
@@ -327,11 +330,14 @@
"# Read each file and store its content in a list\n",
"img_summaries = []\n",
"for file_path in file_paths:\n",
" with open(file_path, 'r') as file:\n",
" with open(file_path, \"r\") as file:\n",
" img_summaries.append(file.read())\n",
"\n",
"# Clean up residual logging\n",
"cleaned_img_summary = [s.split(\"clip_model_load: total allocated memory: 201.27 MB\\n\\n\", 1)[1].strip() for s in img_summaries]"
"cleaned_img_summary = [\n",
" s.split(\"clip_model_load: total allocated memory: 201.27 MB\\n\\n\", 1)[1].strip()\n",
" for s in img_summaries\n",
"]"
]
},
{
@@ -369,26 +375,26 @@
],
"source": [
"import uuid\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.schema.document import Document\n",
"\n",
"from langchain.embeddings import GPT4AllEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n",
" collection_name=\"summaries\",\n",
" embedding_function=GPT4AllEmbeddings()\n",
" collection_name=\"summaries\", embedding_function=GPT4AllEmbeddings()\n",
")\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore() # <- Can we extend this to images \n",
"store = InMemoryStore() # <- Can we extend this to images\n",
"id_key = \"doc_id\"\n",
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore, \n",
" docstore=store, \n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" id_key=id_key,\n",
")"
]
@@ -412,21 +418,32 @@
"source": [
"# Add texts\n",
"doc_ids = [str(uuid.uuid4()) for _ in texts]\n",
"summary_texts = [Document(page_content=s,metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries)]\n",
"summary_texts = [\n",
" Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
" for i, s in enumerate(text_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_texts)\n",
"retriever.docstore.mset(list(zip(doc_ids, texts)))\n",
"\n",
"# Add tables\n",
"table_ids = [str(uuid.uuid4()) for _ in tables]\n",
"summary_tables = [Document(page_content=s,metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries)]\n",
"summary_tables = [\n",
" Document(page_content=s, metadata={id_key: table_ids[i]})\n",
" for i, s in enumerate(table_summaries)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_tables)\n",
"retriever.docstore.mset(list(zip(table_ids, tables)))\n",
"\n",
"# Add images\n",
"img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]\n",
"summary_img = [Document(page_content=s,metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary)]\n",
"summary_img = [\n",
" Document(page_content=s, metadata={id_key: img_ids[i]})\n",
" for i, s in enumerate(cleaned_img_summary)\n",
"]\n",
"retriever.vectorstore.add_documents(summary_img)\n",
"retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary))) # Store the image summary as the raw document"
"retriever.docstore.mset(\n",
" list(zip(img_ids, cleaned_img_summary))\n",
") # Store the image summary as the raw document"
]
},
{
@@ -484,7 +501,9 @@
}
],
"source": [
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[0]"
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
" 0\n",
"]"
]
},
{
@@ -513,7 +532,6 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"# Prompt template\n",
@@ -530,9 +548,9 @@
"\n",
"# RAG pipeline\n",
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
@@ -555,7 +573,9 @@
}
],
"source": [
"chain.invoke(\"What is the performance of LLaVa across across multiple image domains / subjects?\")"
"chain.invoke(\n",
" \"What is the performance of LLaVa across across multiple image domains / subjects?\"\n",
")"
]
},
{
@@ -584,7 +604,9 @@
}
],
"source": [
"chain.invoke(\"Explain any images / figures in the paper with playful and creative examples.\")"
"chain.invoke(\n",
" \"Explain any images / figures in the paper with playful and creative examples.\"\n",
")"
]
},
{

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,105 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f69d4a4c-137d-47e9-bea1-786afce9c1c0",
"metadata": {},
"source": [
"# Analyze a single long document\n",
"\n",
"The AnalyzeDocumentChain takes in a single document, splits it up, and then runs it through a CombineDocumentsChain."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2a0707ce-6d2d-471b-bc33-64da32a7b3f0",
"metadata": {},
"outputs": [],
"source": [
"with open(\"../docs/docs/modules/state_of_the_union.txt\") as f:\n",
" state_of_the_union = f.read()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ca14d161-2d5b-4a6c-a296-77d8ce4b28cd",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import AnalyzeDocumentChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9f97406c-85a9-45fb-99ce-9138c0ba3731",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.question_answering import load_qa_chain\n",
"\n",
"qa_chain = load_qa_chain(llm, chain_type=\"map_reduce\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0871a753-f5bb-4b4f-a394-f87f2691f659",
"metadata": {},
"outputs": [],
"source": [
"qa_document_chain = AnalyzeDocumentChain(combine_docs_chain=qa_chain)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e6f86428-3c2c-46a0-a57c-e22826fdbf91",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The President said, \"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\"'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qa_document_chain.run(\n",
" input_document=state_of_the_union,\n",
" question=\"what did the president say about justice breyer?\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -27,10 +27,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SerpAPIWrapper\n",
"from langchain.agents import Tool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.utilities import SerpAPIWrapper\n",
"\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
@@ -61,9 +61,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings"
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS"
]
},
{
@@ -100,8 +100,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain.chat_models import ChatOpenAI"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT"
]
},
{

View File

@@ -34,16 +34,15 @@
"outputs": [],
"source": [
"# General\n",
"import os\n",
"import pandas as pd\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain.docstore.document import Document\n",
"import asyncio\n",
"import nest_asyncio\n",
"import os\n",
"\n",
"import nest_asyncio\n",
"import pandas as pd\n",
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore.document import Document\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"\n",
"# Needed synce jupyter runs an async eventloop\n",
"nest_asyncio.apply()"
@@ -92,6 +91,7 @@
"import os\n",
"from contextlib import contextmanager\n",
"from typing import Optional\n",
"\n",
"from langchain.agents import tool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
@@ -223,14 +223,13 @@
},
"outputs": [],
"source": [
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"from pydantic import Field\n",
"from langchain.chains.qa_with_sources.loading import (\n",
" load_qa_with_sources_chain,\n",
" BaseCombineDocumentsChain,\n",
" load_qa_with_sources_chain,\n",
")\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.tools import BaseTool, DuckDuckGoSearchRun\n",
"from pydantic import Field\n",
"\n",
"\n",
"def _get_text_splitter():\n",
@@ -311,10 +310,9 @@
"source": [
"# Memory\n",
"import faiss\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.tools.human.tool import HumanInputRun\n",
"from langchain.vectorstores import FAISS\n",
"\n",
"embeddings_model = OpenAIEmbeddings()\n",
"embedding_size = 1536\n",

View File

@@ -29,16 +29,10 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional, Any\n",
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\nfrom langchain.llms import OpenAI\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.schema.vectorstore import VectorStore\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains.base import Chain\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
@@ -59,8 +53,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore"
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -25,16 +25,12 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional, Any\n",
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\nfrom langchain.llms import OpenAI\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.schema.vectorstore import VectorStore\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains.base import Chain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
@@ -66,8 +62,8 @@
"source": [
"%pip install faiss-cpu > /dev/null\n",
"%pip install google-search-results > /dev/null\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.docstore import InMemoryDocstore"
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.vectorstores import FAISS"
]
},
{
@@ -110,8 +106,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import ZeroShotAgent, Tool, AgentExecutor\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SerpAPIWrapper\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",

View File

@@ -35,16 +35,17 @@
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" SystemMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -47,10 +47,9 @@
"outputs": [],
"source": [
"from IPython.display import SVG\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.cpal.base import CPALChain\n",
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0, max_tokens=512)\n",
"cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)\n",

View File

@@ -177,7 +177,7 @@
" try:\n",
" loader = TextLoader(os.path.join(dirpath, file), encoding=\"utf-8\")\n",
" docs.extend(loader.load_and_split())\n",
" except Exception as e:\n",
" except Exception:\n",
" pass\n",
"print(f\"{len(docs)}\")"
]
@@ -648,7 +648,7 @@
{
"data": {
"text/plain": [
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', deployment='text-embedding-ada-002', openai_api_version='', openai_api_base='', openai_api_type='', openai_proxy='', embedding_ctx_length=8191, openai_api_key='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', openai_organization='', allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6, request_timeout=None, headers=None, tiktoken_model_name=None, show_progress_bar=False, model_kwargs={})"
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', deployment='text-embedding-ada-002', openai_api_version='', openai_api_base='', openai_api_type='', openai_proxy='', embedding_ctx_length=8191, openai_api_key='', openai_organization='', allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6, request_timeout=None, headers=None, tiktoken_model_name=None, show_progress_bar=False, model_kwargs={})"
]
},
"execution_count": 13,
@@ -717,7 +717,6 @@
"source": [
"from langchain.vectorstores import DeepLake\n",
"\n",
"\n",
"username = \"<USERNAME_OR_ORG>\"\n",
"\n",
"\n",
@@ -834,10 +833,12 @@
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",
") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},

View File

@@ -32,19 +32,20 @@
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Union\n",
"\n",
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.tools.plugin import AIPlugin\n",
"import re"
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.tools.plugin import AIPlugin"
]
},
{
@@ -113,9 +114,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document"
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -56,20 +56,21 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
")\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SerpAPIWrapper\nfrom langchain.chains import LLMChain\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.tools.plugin import AIPlugin\n",
"import re\n",
"import plugnplai"
"from typing import Union\n",
"\n",
"import plugnplai\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.tools.plugin import AIPlugin"
]
},
{
@@ -137,9 +138,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document"
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
]
},
{

View File

@@ -48,18 +48,17 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"from langchain.document_loaders import PyPDFLoader, TextLoader\n",
"import os\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.text_splitter import (\n",
" RecursiveCharacterTextSplitter,\n",
" CharacterTextSplitter,\n",
" RecursiveCharacterTextSplitter,\n",
")\n",
"from langchain.vectorstores import DeepLake\n",
"from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",

File diff suppressed because one or more lines are too long

View File

@@ -38,9 +38,8 @@
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain"
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
"from langchain.chat_models import ChatOpenAI"
]
},
{
@@ -112,7 +111,6 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.elasticsearch_database.prompts import DEFAULT_DSL_TEMPLATE\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",

View File

@@ -0,0 +1,214 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2def22ea",
"metadata": {},
"source": [
"# Extraction with OpenAI Tools\n",
"\n",
"Performing extraction has never been easier! OpenAI's tool calling ability is the perfect thing to use as it allows for extracting multiple different elements from text that are different types. \n",
"\n",
"Models after 1106 use tools and support \"parallel function calling\" which makes this super easy."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5c628496",
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Optional\n",
"\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.pydantic_v1 import BaseModel"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "afe9657b",
"metadata": {},
"outputs": [],
"source": [
"# Make sure to use a recent model that supports tools\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bc0ca3b6",
"metadata": {},
"outputs": [],
"source": [
"# Pydantic is an easy way to define a schema\n",
"class Person(BaseModel):\n",
" \"\"\"Information about people to extract.\"\"\"\n",
"\n",
" name: str\n",
" age: Optional[int] = None"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2036af68",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain_pydantic(Person, model)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1748ad21",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Person(name='jane', age=2), Person(name='bob', age=3)]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"jane is 2 and bob is 3\"})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c8262ce5",
"metadata": {},
"outputs": [],
"source": [
"# Let's define another element\n",
"class Class(BaseModel):\n",
" \"\"\"Information about classes to extract.\"\"\"\n",
"\n",
" teacher: str\n",
" students: List[str]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4973c104",
"metadata": {},
"outputs": [],
"source": [
"chain = create_extraction_chain_pydantic([Person, Class], model)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e976a15e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Person(name='jane', age=2),\n",
" Person(name='bob', age=3),\n",
" Class(teacher='Mrs Sampson', students=['jane', 'bob'])]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"jane is 2 and bob is 3 and they are in Mrs Sampson's class\"})"
]
},
{
"cell_type": "markdown",
"id": "6575a7d6",
"metadata": {},
"source": [
"## Under the hood\n",
"\n",
"Under the hood, this is a simple chain:"
]
},
{
"cell_type": "markdown",
"id": "b8ba83e5",
"metadata": {},
"source": [
"```python\n",
"from typing import Union, List, Type, Optional\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain.schema.runnable import Runnable\n",
"from langchain.pydantic_v1 import BaseModel\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.messages import SystemMessage\n",
"from langchain.schema.language_model import BaseLanguageModel\n",
"\n",
"_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n",
"in the following passage together with their properties.\n",
"\n",
"If a property is not present and is not required in the function parameters, do not include it in the output.\"\"\" # noqa: E501\n",
"\n",
"\n",
"def create_extraction_chain_pydantic(\n",
" pydantic_schemas: Union[List[Type[BaseModel]], Type[BaseModel]],\n",
" llm: BaseLanguageModel,\n",
" system_message: str = _EXTRACTION_TEMPLATE,\n",
") -> Runnable:\n",
" if not isinstance(pydantic_schemas, list):\n",
" pydantic_schemas = [pydantic_schemas]\n",
" prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", system_message),\n",
" (\"user\", \"{input}\")\n",
" ])\n",
" tools = [convert_pydantic_to_openai_tool(p) for p in pydantic_schemas]\n",
" model = llm.bind(tools=tools)\n",
" chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas)\n",
" return chain\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2eac6b68",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -30,9 +30,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -56,7 +56,8 @@
"source": [
"import os\n",
"\n",
"os.environ[\"SERPER_API_KEY\"] = \"\"os.environ[\"OPENAI_API_KEY\"] = \"\""
"os.environ[\"SERPER_API_KEY\"] = \"\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\""
]
},
{
@@ -66,21 +67,16 @@
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Any, List\n",
"\n",
"import numpy as np\n",
"\n",
"from langchain.schema import BaseRetriever\n",
"from langchain.callbacks.manager import (\n",
" AsyncCallbackManagerForRetrieverRun,\n",
" CallbackManagerForRetrieverRun,\n",
")\n",
"from langchain.utilities import GoogleSerperAPIWrapper\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.schema import Document\n",
"from typing import Any, List"
"from langchain.schema import BaseRetriever, Document\n",
"from langchain.utilities import GoogleSerperAPIWrapper"
]
},
{

View File

@@ -46,14 +46,13 @@
"source": [
"from datetime import datetime, timedelta\n",
"from typing import List\n",
"from termcolor import colored\n",
"\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
"from langchain.vectorstores import FAISS"
"from langchain.vectorstores import FAISS\n",
"from termcolor import colored"
]
},
{
@@ -153,6 +152,7 @@
"outputs": [],
"source": [
"import math\n",
"\n",
"import faiss\n",
"\n",
"\n",

View File

@@ -27,18 +27,12 @@
"metadata": {},
"outputs": [],
"source": [
"import gymnasium as gym\n",
"import inspect\n",
"import tenacity\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")\n",
"from langchain.output_parsers import RegexParser"
")"
]
},
{
@@ -131,7 +125,7 @@
" ):\n",
" with attempt:\n",
" action = self._act()\n",
" except tenacity.RetryError as e:\n",
" except tenacity.RetryError:\n",
" action = self.random_action()\n",
" return action"
]

View File

@@ -77,6 +77,7 @@
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
"\n",
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
]
},

View File

@@ -55,9 +55,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -28,9 +28,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import load_tools\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -20,9 +20,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.chains import LLMChain, HypotheticalDocumentEmbedder\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate"
]
},

View File

@@ -50,6 +50,7 @@
"# pick and configure the LLM of your choice\n",
"\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"text-davinci-003\")"
]
},
@@ -85,8 +86,8 @@
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate(\n",
" input_variables=[\"meal\", \"text_to_personalize\", \"user\", \"preference\"], \n",
" template=PROMPT_TEMPLATE\n",
" input_variables=[\"meal\", \"text_to_personalize\", \"user\", \"preference\"],\n",
" template=PROMPT_TEMPLATE,\n",
")"
]
},
@@ -105,7 +106,7 @@
"source": [
"import langchain_experimental.rl_chain as rl_chain\n",
"\n",
"chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)\n"
"chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)"
]
},
{
@@ -122,10 +123,10 @@
"outputs": [],
"source": [
"response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs \\\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs \\\n",
" believe you will love it!\",\n",
")"
]
@@ -193,10 +194,10 @@
"for _ in range(5):\n",
" try:\n",
" response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" except Exception as e:\n",
" print(e)\n",
@@ -223,12 +224,16 @@
"metadata": {},
"outputs": [],
"source": [
"scoring_criteria_template = \"Given {preference} rank how good or bad this selection is {meal}\"\n",
"scoring_criteria_template = (\n",
" \"Given {preference} rank how good or bad this selection is {meal}\"\n",
")\n",
"\n",
"chain = rl_chain.PickBest.from_llm(\n",
" llm=llm,\n",
" prompt=PROMPT,\n",
" selection_scorer=rl_chain.AutoSelectionScorer(llm=llm, scoring_criteria_template_str=scoring_criteria_template),\n",
" selection_scorer=rl_chain.AutoSelectionScorer(\n",
" llm=llm, scoring_criteria_template_str=scoring_criteria_template\n",
" ),\n",
")"
]
},
@@ -255,14 +260,16 @@
],
"source": [
"response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
")\n",
"print(response[\"response\"])\n",
"selection_metadata = response[\"selection_metadata\"]\n",
"print(f\"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}\")"
"print(\n",
" f\"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}\"\n",
")"
]
},
{
@@ -280,8 +287,8 @@
"source": [
"class CustomSelectionScorer(rl_chain.SelectionScorer):\n",
" def score_response(\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent) -> float:\n",
"\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent\n",
" ) -> float:\n",
" print(event.based_on)\n",
" print(event.to_select_from)\n",
"\n",
@@ -336,10 +343,10 @@
],
"source": [
"response = chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
")"
]
},
@@ -370,9 +377,10 @@
" return 1.0\n",
" else:\n",
" return 0.0\n",
" def score_response(\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent) -> float:\n",
"\n",
" def score_response(\n",
" self, inputs, llm_response: str, event: rl_chain.PickBestEvent\n",
" ) -> float:\n",
" selected_meal = event.to_select_from[\"meal\"][event.selected.index]\n",
"\n",
" if \"Tom\" in event.based_on[\"user\"]:\n",
@@ -394,7 +402,7 @@
" prompt=PROMPT,\n",
" selection_scorer=CustomSelectionScorer(),\n",
" metrics_step=5,\n",
" metrics_window_size=5, # rolling window average\n",
" metrics_window_size=5, # rolling window average\n",
")\n",
"\n",
"random_chain = rl_chain.PickBest.from_llm(\n",
@@ -402,8 +410,8 @@
" prompt=PROMPT,\n",
" selection_scorer=CustomSelectionScorer(),\n",
" metrics_step=5,\n",
" metrics_window_size=5, # rolling window average\n",
" policy=rl_chain.PickBestRandomPolicy # set the random policy instead of default\n",
" metrics_window_size=5, # rolling window average\n",
" policy=rl_chain.PickBestRandomPolicy, # set the random policy instead of default\n",
")"
]
},
@@ -416,29 +424,29 @@
"for _ in range(20):\n",
" try:\n",
" chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" random_chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" \n",
"\n",
" chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Anna\"),\n",
" preference = rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Anna\"),\n",
" preference=rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" random_chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Anna\"),\n",
" preference = rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Anna\"),\n",
" preference=rl_chain.BasedOn([\"Loves meat\", \"especially beef\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" )\n",
" except Exception as e:\n",
" print(e)"
@@ -477,12 +485,17 @@
],
"source": [
"from matplotlib import pyplot as plt\n",
"chain.metrics.to_pandas()['score'].plot(label=\"default learning policy\")\n",
"random_chain.metrics.to_pandas()['score'].plot(label=\"random selection policy\")\n",
"\n",
"chain.metrics.to_pandas()[\"score\"].plot(label=\"default learning policy\")\n",
"random_chain.metrics.to_pandas()[\"score\"].plot(label=\"random selection policy\")\n",
"plt.legend()\n",
"\n",
"print(f\"The final average score for the default policy, calculated over a rolling window, is: {chain.metrics.to_pandas()['score'].iloc[-1]}\")\n",
"print(f\"The final average score for the random policy, calculated over a rolling window, is: {random_chain.metrics.to_pandas()['score'].iloc[-1]}\")"
"print(\n",
" f\"The final average score for the default policy, calculated over a rolling window, is: {chain.metrics.to_pandas()['score'].iloc[-1]}\"\n",
")\n",
"print(\n",
" f\"The final average score for the random policy, calculated over a rolling window, is: {random_chain.metrics.to_pandas()['score'].iloc[-1]}\"\n",
")"
]
},
{
@@ -777,8 +790,8 @@
}
],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.globals import set_debug\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"set_debug(True)\n",
"\n",
@@ -803,10 +816,10 @@
")\n",
"\n",
"chain.run(\n",
" meal = rl_chain.ToSelectFrom(meals),\n",
" user = rl_chain.BasedOn(\"Tom\"),\n",
" preference = rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize = \"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
" meal=rl_chain.ToSelectFrom(meals),\n",
" user=rl_chain.BasedOn(\"Tom\"),\n",
" preference=rl_chain.BasedOn([\"Vegetarian\", \"regular dairy is ok\"]),\n",
" text_to_personalize=\"This is the weeks specialty dish, our master chefs believe you will love it!\",\n",
")"
]
}

View File

@@ -43,8 +43,8 @@
}
],
"source": [
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"\n",
@@ -70,7 +70,7 @@
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.chains.llm_bash.prompt import BashOutputParser\n",
"from langchain_experimental.llm_bash.prompt import BashOutputParser\n",
"\n",
"_PROMPT_TEMPLATE = \"\"\"If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put \"#!/bin/bash\" in your answer. Make sure to reason step by step, using this format:\n",
"Question: \"copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'\"\n",
@@ -185,7 +185,6 @@
"source": [
"from langchain_experimental.llm_bash.bash import BashProcess\n",
"\n",
"\n",
"persistent_process = BashProcess(persistent=True)\n",
"bash_chain = LLMBashChain.from_llm(llm, bash_process=persistent_process, verbose=True)\n",
"\n",

View File

@@ -45,7 +45,8 @@
}
],
"source": [
"from langchain.llms import OpenAI\nfrom langchain.chains import LLMMathChain\n",
"from langchain.chains import LLMMathChain\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",

View File

@@ -56,8 +56,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\nfrom langchain.chains import LLMChain\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.memory import ConversationBufferWindowMemory"
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"from langchain.prompts import PromptTemplate"
]
},
{
@@ -152,13 +154,13 @@
" for j in range(max_iters):\n",
" print(f\"(Step {j+1}/{max_iters})\")\n",
" print(f\"Assistant: {output}\")\n",
" print(f\"Human: \")\n",
" print(\"Human: \")\n",
" human_input = input()\n",
" if any(phrase in human_input.lower() for phrase in key_phrases):\n",
" break\n",
" output = chain.predict(human_input=human_input)\n",
" if success_phrase in human_input.lower():\n",
" print(f\"You succeeded! Thanks for playing!\")\n",
" print(\"You succeeded! Thanks for playing!\")\n",
" return\n",
" meta_chain = initialize_meta_chain()\n",
" meta_output = meta_chain.predict(chat_history=get_chat_history(chain.memory))\n",
@@ -166,7 +168,7 @@
" instructions = get_new_instructions(meta_output)\n",
" print(f\"New Instructions: {instructions}\")\n",
" print(\"\\n\" + \"#\" * 80 + \"\\n\")\n",
" print(f\"You failed! Thanks for playing!\")"
" print(\"You failed! Thanks for playing!\")"
]
},
{

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -29,9 +29,10 @@
"metadata": {},
"outputs": [],
"source": [
"from steamship import Block, Steamship\n",
"import re\n",
"from IPython.display import Image"
"\n",
"from IPython.display import Image\n",
"from steamship import Block, Steamship"
]
},
{
@@ -41,9 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent\n",
"from langchain.llms import OpenAI\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType\n",
"from langchain.tools import SteamshipImageGenerationTool"
]
},

View File

@@ -26,13 +26,12 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Callable\n",
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -27,26 +27,20 @@
"metadata": {},
"outputs": [],
"source": [
"from collections import OrderedDict\n",
"import functools\n",
"import random\n",
"import re\n",
"import tenacity\n",
"from typing import List, Dict, Callable\n",
"from collections import OrderedDict\n",
"from typing import Callable, List\n",
"\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" PromptTemplate,\n",
")\n",
"from langchain.chains import LLMChain\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import (\n",
" PromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -24,17 +24,15 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"import re\n",
"from typing import Callable, List\n",
"\n",
"import tenacity\n",
"from typing import List, Dict, Callable\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},

View File

@@ -27,19 +27,17 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"from os import environ\n",
"import getpass\n",
"from typing import Dict, Any\n",
"from langchain.llms import OpenAI\nfrom langchain.utilities import SQLDatabase\nfrom langchain.chains import LLMChain\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from sqlalchemy import create_engine, Column, MetaData\n",
"from os import environ\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.utilities import SQLDatabase\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from sqlalchemy import MetaData, create_engine\n",
"\n",
"\n",
"from sqlalchemy import create_engine\n",
"\n",
"MYSCALE_HOST = \"msc-1decbcc9.us-east-1.aws.staging.myscale.cloud\"\n",
"MYSCALE_HOST = \"msc-4a9e710a.us-east-1.aws.staging.myscale.cloud\"\n",
"MYSCALE_PORT = 443\n",
"MYSCALE_USER = \"chatdata\"\n",
"MYSCALE_PASSWORD = \"myscale_rocks\"\n",
@@ -76,10 +74,8 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"from langchain.llms import OpenAI\n",
"from langchain.callbacks import StdOutCallbackHandler\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities.sql_database import SQLDatabase\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
@@ -120,14 +116,16 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
"\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from langchain_experimental.retrievers.vector_sql_database \\\n",
" import VectorSQLDatabaseChainRetriever\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_experimental.retrievers.vector_sql_database import (\n",
" VectorSQLDatabaseChainRetriever,\n",
")\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLRetrieveAllOutputParser\n",
"from langchain_experimental.sql.vector_sql import (\n",
" VectorSQLDatabaseChain,\n",
" VectorSQLRetrieveAllOutputParser,\n",
")\n",
"\n",
"output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings(\n",
" output_parser.model\n",
@@ -144,7 +142,9 @@
")\n",
"\n",
"# You need all those keys to get docs\n",
"retriever = VectorSQLDatabaseChainRetriever(sql_db_chain=chain, page_content_key=\"abstract\")\n",
"retriever = VectorSQLDatabaseChainRetriever(\n",
" sql_db_chain=chain, page_content_key=\"abstract\"\n",
")\n",
"\n",
"document_with_metadata_prompt = PromptTemplate(\n",
" input_variables=[\"page_content\", \"id\", \"title\", \"authors\", \"pubdate\", \"categories\"],\n",
@@ -162,8 +162,10 @@
" },\n",
" return_source_documents=True,\n",
")\n",
"ans = chain(\"Please give me 10 papers to ask what is PageRank?\",\n",
" callbacks=[StdOutCallbackHandler()])\n",
"ans = chain(\n",
" \"Please give me 10 papers to ask what is PageRank?\",\n",
" callbacks=[StdOutCallbackHandler()],\n",
")\n",
"print(ans[\"answer\"])"
]
},

View File

@@ -50,10 +50,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import create_qa_with_sources_chain\n",
"from langchain.chains.combine_documents.stuff import StuffDocumentsChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import create_qa_with_sources_chain"
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate"
]
},
{
@@ -230,9 +230,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chains import ConversationalRetrievalChain, LLMChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import LLMChain\n",
"\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)\n",
"_template = \"\"\"Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\\\n",
@@ -357,12 +356,10 @@
"source": [
"from typing import List\n",
"\n",
"from pydantic import BaseModel, Field\n",
"\n",
"from langchain.chains.openai_functions import create_qa_with_structure_chain\n",
"\n",
"from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate\n",
"from langchain.schema import SystemMessage, HumanMessage"
"from langchain.schema import HumanMessage, SystemMessage\n",
"from pydantic import BaseModel, Field"
]
},
{

View File

@@ -0,0 +1,506 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f970f757-ec76-4bf0-90cd-a2fb68b945e3",
"metadata": {},
"source": [
"# Exploring OpenAI V1 functionality\n",
"\n",
"On 11.06.23 OpenAI released a number of new features, and along with it bumped their Python SDK to 1.0.0. This notebook shows off the new features and how to use them with LangChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee897729-263a-4073-898f-bb4cf01ed829",
"metadata": {},
"outputs": [],
"source": [
"# need openai>=1.1.0, langchain>=0.0.335, langchain-experimental>=0.0.39\n",
"!pip install -U openai langchain langchain-experimental"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c3e067ce-7a43-47a7-bc89-41f1de4cf136",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import HumanMessage, SystemMessage"
]
},
{
"cell_type": "markdown",
"id": "fa7e7e95-90a1-4f73-98fe-10c4b4e0951b",
"metadata": {},
"source": [
"## [Vision](https://platform.openai.com/docs/guides/vision)\n",
"\n",
"OpenAI released multi-modal models, which can take a sequence of text and images as input."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1c8c3965-d3c9-4186-b5f3-5e67855ef916",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The image appears to be a diagram representing the architecture or components of a software system or framework related to language processing, possibly named LangChain or associated with a project or product called LangChain, based on the prominent appearance of that term. The diagram is organized into several layers or aspects, each containing various elements or modules:\\n\\n1. **Protocol**: This may be the foundational layer, which includes \"LCEL\" and terms like parallelization, fallbacks, tracing, batching, streaming, async, and composition. These seem related to communication and execution protocols for the system.\\n\\n2. **Integrations Components**: This layer includes \"Model I/O\" with elements such as the model, output parser, prompt, and example selector. It also has a \"Retrieval\" section with a document loader, retriever, embedding model, vector store, and text splitter. Lastly, there\\'s an \"Agent Tooling\" section. These components likely deal with the interaction with external data, models, and tools.\\n\\n3. **Application**: The application layer features \"LangChain\" with chains, agents, agent executors, and common application logic. This suggests that the system uses a modular approach with chains and agents to process language tasks.\\n\\n4. **Deployment**: This contains \"Lang')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=256)\n",
"chat.invoke(\n",
" [\n",
" HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"What is this image showing\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/img/langchain_stack.png\",\n",
" \"detail\": \"auto\",\n",
" },\n",
" },\n",
" ]\n",
" )\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "210f8248-fcf3-4052-a4a3-0684e08f8785",
"metadata": {},
"source": [
"## [OpenAI assistants](https://platform.openai.com/docs/assistants/overview)\n",
"\n",
"> The Assistants API allows you to build AI assistants within your own applications. An Assistant has instructions and can leverage models, tools, and knowledge to respond to user queries. The Assistants API currently supports three types of tools: Code Interpreter, Retrieval, and Function calling\n",
"\n",
"\n",
"You can interact with OpenAI Assistants using OpenAI tools or custom tools. When using exclusively OpenAI tools, you can just invoke the assistant directly and get final answers. When using custom tools, you can run the assistant and tool execution loop using the built-in AgentExecutor or easily write your own executor.\n",
"\n",
"Below we show the different ways to interact with Assistants. As a simple example, let's build a math tutor that can write and run code."
]
},
{
"cell_type": "markdown",
"id": "318da28d-4cec-42ab-ae3e-76d95bb34fa5",
"metadata": {},
"source": [
"### Using only OpenAI tools"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a9064bbe-d9f7-4a29-a7b3-73933b3197e7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents.openai_assistant import OpenAIAssistantRunnable"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7a20a008-49ac-46d2-aa26-b270118af5ea",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ThreadMessage(id='msg_g9OJv0rpPgnc3mHmocFv7OVd', assistant_id='asst_hTwZeNMMphxzSOqJ01uBMsJI', content=[MessageContentText(text=Text(annotations=[], value='The result of \\\\(10 - 4^{2.7}\\\\) is approximately \\\\(-32.224\\\\).'), type='text')], created_at=1699460600, file_ids=[], metadata={}, object='thread.message', role='assistant', run_id='run_nBIT7SiAwtUfSCTrQNSPLOfe', thread_id='thread_14n4GgXwxgNL0s30WJW5F6p0')]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interpreter_assistant = OpenAIAssistantRunnable.create_assistant(\n",
" name=\"langchain assistant\",\n",
" instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
" tools=[{\"type\": \"code_interpreter\"}],\n",
" model=\"gpt-4-1106-preview\",\n",
")\n",
"output = interpreter_assistant.invoke({\"content\": \"What's 10 - 4 raised to the 2.7\"})\n",
"output"
]
},
{
"cell_type": "markdown",
"id": "a8ddd181-ac63-4ab6-a40d-a236120379c1",
"metadata": {},
"source": [
"### As a LangChain agent with arbitrary tools\n",
"\n",
"Now let's recreate this functionality using our own tools. For this example we'll use the [E2B sandbox runtime tool](https://e2b.dev/docs?ref=landing-page-get-started)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee4cc355-f2d6-4c51-bcf7-f502868357d3",
"metadata": {},
"outputs": [],
"source": [
"!pip install e2b duckduckgo-search"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "48681ac7-b267-48d4-972c-8a7df8393a21",
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools import DuckDuckGoSearchRun, E2BDataAnalysisTool\n",
"\n",
"tools = [E2BDataAnalysisTool(api_key=\"...\"), DuckDuckGoSearchRun()]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1c01dd79-dd3e-4509-a2e2-009a7f99f16a",
"metadata": {},
"outputs": [],
"source": [
"agent = OpenAIAssistantRunnable.create_assistant(\n",
" name=\"langchain assistant e2b tool\",\n",
" instructions=\"You are a personal math tutor. Write and run code to answer math questions. You can also search the internet.\",\n",
" tools=tools,\n",
" model=\"gpt-4-1106-preview\",\n",
" as_agent=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1ac71d8b-4b4b-4f98-b826-6b3c57a34166",
"metadata": {},
"source": [
"#### Using AgentExecutor"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1f137f94-801f-4766-9ff5-2de9df5e8079",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'content': \"What's the weather in SF today divided by 2.7\",\n",
" 'output': \"The weather in San Francisco today is reported to have temperatures as high as 66 °F. To get the temperature divided by 2.7, we will calculate that:\\n\\n66 °F / 2.7 = 24.44 °F\\n\\nSo, when the high temperature of 66 °F is divided by 2.7, the result is approximately 24.44 °F. Please note that this doesn't have a meteorological meaning; it's purely a mathematical operation based on the given temperature.\"}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.agents import AgentExecutor\n",
"\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools)\n",
"agent_executor.invoke({\"content\": \"What's the weather in SF today divided by 2.7\"})"
]
},
{
"cell_type": "markdown",
"id": "2d0a0b1d-c1b3-4b50-9dce-1189b51a6206",
"metadata": {},
"source": [
"#### Custom execution"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c0475fa7-b6c1-4331-b8e2-55407466c724",
"metadata": {},
"outputs": [],
"source": [
"agent = OpenAIAssistantRunnable.create_assistant(\n",
" name=\"langchain assistant e2b tool\",\n",
" instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
" tools=tools,\n",
" model=\"gpt-4-1106-preview\",\n",
" as_agent=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b76cb669-6aba-4827-868f-00aa960026f2",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.agent import AgentFinish\n",
"\n",
"\n",
"def execute_agent(agent, tools, input):\n",
" tool_map = {tool.name: tool for tool in tools}\n",
" response = agent.invoke(input)\n",
" while not isinstance(response, AgentFinish):\n",
" tool_outputs = []\n",
" for action in response:\n",
" tool_output = tool_map[action.tool].invoke(action.tool_input)\n",
" print(action.tool, action.tool_input, tool_output, end=\"\\n\\n\")\n",
" tool_outputs.append(\n",
" {\"output\": tool_output, \"tool_call_id\": action.tool_call_id}\n",
" )\n",
" response = agent.invoke(\n",
" {\n",
" \"tool_outputs\": tool_outputs,\n",
" \"run_id\": action.run_id,\n",
" \"thread_id\": action.thread_id,\n",
" }\n",
" )\n",
"\n",
" return response"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7946116a-b82f-492e-835e-ca958a8949a5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"e2b_data_analysis {'python_code': 'print(10 - 4 ** 2.7)'} {\"stdout\": \"-32.22425314473263\", \"stderr\": \"\", \"artifacts\": []}\n",
"\n",
"\\( 10 - 4^{2.7} \\) is approximately \\(-32.22425314473263\\).\n"
]
}
],
"source": [
"response = execute_agent(agent, tools, {\"content\": \"What's 10 - 4 raised to the 2.7\"})\n",
"print(response.return_values[\"output\"])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f2744a56-9f4f-4899-827a-fa55821c318c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"e2b_data_analysis {'python_code': 'result = 10 - 4 ** 2.7\\nprint(result + 17.241)'} {\"stdout\": \"-14.983253144732629\", \"stderr\": \"\", \"artifacts\": []}\n",
"\n",
"When you add \\( 17.241 \\) to \\( 10 - 4^{2.7} \\), the result is approximately \\( -14.98325314473263 \\).\n"
]
}
],
"source": [
"next_response = execute_agent(\n",
" agent, tools, {\"content\": \"now add 17.241\", \"thread_id\": response.thread_id}\n",
")\n",
"print(next_response.return_values[\"output\"])"
]
},
{
"cell_type": "markdown",
"id": "71c34763-d1e7-4b9a-a9d7-3e4cc0dfc2c4",
"metadata": {},
"source": [
"## [JSON mode](https://platform.openai.com/docs/guides/text-generation/json-mode)\n",
"\n",
"Constrain the model to only generate valid JSON. Note that you must include a system message with instructions to use JSON for this mode to work.\n",
"\n",
"Only works with certain models. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db6072c4-f3f3-415d-872b-71ea9f3c02bb",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
" response_format={\"type\": \"json_object\"}\n",
")\n",
"\n",
"output = chat.invoke(\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
" ),\n",
" ]\n",
")\n",
"print(output.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08e00ccf-b991-4249-846b-9500a0ccbfa0",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"json.loads(output.content)"
]
},
{
"cell_type": "markdown",
"id": "aa9a94d9-4319-4ab7-a979-c475ce6b5f50",
"metadata": {},
"source": [
"## [System fingerprint](https://platform.openai.com/docs/guides/text-generation/reproducible-outputs)\n",
"\n",
"OpenAI sometimes changes model configurations in a way that impacts outputs. Whenever this happens, the system_fingerprint associated with a generation will change."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1281883c-bf8f-4665-89cd-4f33ccde69ab",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")\n",
"output = chat.generate(\n",
" [\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
" ),\n",
" HumanMessage(\n",
" content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
" ),\n",
" ]\n",
" ]\n",
")\n",
"print(output.llm_output)"
]
},
{
"cell_type": "markdown",
"id": "aa6565be-985d-4127-848e-c3bca9d7b434",
"metadata": {},
"source": [
"## Breaking changes to Azure classes\n",
"\n",
"OpenAI V1 rewrote their clients and separated Azure and OpenAI clients. This has led to some changes in LangChain interfaces when using OpenAI V1.\n",
"\n",
"BREAKING CHANGES:\n",
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
"```python\n",
"from langchain.embeddings import AzureOpenAIEmbeddings\n",
"```\n",
"\n",
"\n",
"RECOMMENDED CHANGES:\n",
"- When using `AzureChatOpenAI` or `AzureOpenAI`, if passing in an Azure endpoint (eg https://example-resource.azure.openai.com/) this should be specified via the `azure_endpoint` parameter or the `AZURE_OPENAI_ENDPOINT`. We're maintaining backwards compatibility for now with specifying this via `openai_api_base`/`base_url` or env var `OPENAI_API_BASE` but this shouldn't be relied upon.\n",
"- When using Azure chat or embedding models, pass in API keys either via `openai_api_key` parameter or `AZURE_OPENAI_API_KEY` parameter. We're maintaining backwards compatibility for now with specifying this via `OPENAI_API_KEY` but this shouldn't be relied upon."
]
},
{
"cell_type": "markdown",
"id": "49944887-3972-497e-8da2-6d32d44345a9",
"metadata": {},
"source": [
"## Tools\n",
"\n",
"Use tools for parallel function calling."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "916292d8-0f89-40a6-af1c-5a1122327de8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[GetCurrentWeather(location='New York, NY', unit='fahrenheit'),\n",
" GetCurrentWeather(location='Los Angeles, CA', unit='fahrenheit'),\n",
" GetCurrentWeather(location='San Francisco, CA', unit='fahrenheit')]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Literal\n",
"\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel, Field\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"\n",
"\n",
"class GetCurrentWeather(BaseModel):\n",
" \"\"\"Get the current weather in a location.\"\"\"\n",
"\n",
" location: str = Field(description=\"The city and state, e.g. San Francisco, CA\")\n",
" unit: Literal[\"celsius\", \"fahrenheit\"] = Field(\n",
" default=\"fahrenheit\", description=\"The temperature unit, default to fahrenheit\"\n",
" )\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", \"You are a helpful assistant\"), (\"user\", \"{input}\")]\n",
")\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
" tools=[convert_pydantic_to_openai_tool(GetCurrentWeather)]\n",
")\n",
"chain = prompt | model | PydanticToolsParser(tools=[GetCurrentWeather])\n",
"\n",
"chain.invoke({\"input\": \"what's the weather in NYC, LA, and SF\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -45,14 +45,14 @@
"source": [
"import collections\n",
"import inspect\n",
"import tenacity\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")\n",
"from langchain.output_parsers import RegexParser"
")"
]
},
{
@@ -146,7 +146,7 @@
" ):\n",
" with attempt:\n",
" action = self._act()\n",
" except tenacity.RetryError as e:\n",
" except tenacity.RetryError:\n",
" action = self.random_action()\n",
" return action"
]

View File

@@ -34,7 +34,11 @@
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_experimental.plan_and_execute import PlanAndExecute, load_agent_executor, load_chat_planner"
"from langchain_experimental.plan_and_execute import (\n",
" PlanAndExecute,\n",
" load_agent_executor,\n",
" load_chat_planner,\n",
")"
]
},
{
@@ -56,16 +60,16 @@
"llm = OpenAI(temperature=0)\n",
"llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True)\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\"\n",
" ),\n",
" Tool(\n",
" name=\"Calculator\",\n",
" func=llm_math_chain.run,\n",
" description=\"useful for when you need to answer questions about math\"\n",
" ),\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" description=\"useful for when you need to answer questions about current events\",\n",
" ),\n",
" Tool(\n",
" name=\"Calculator\",\n",
" func=llm_math_chain.run,\n",
" description=\"useful for when you need to answer questions about math\",\n",
" ),\n",
"]"
]
},
@@ -216,7 +220,9 @@
}
],
"source": [
"agent.run(\"Who is the current prime minister of the UK? What is their current age raised to the 0.43 power?\")"
"agent.run(\n",
" \"Who is the current prime minister of the UK? What is their current age raised to the 0.43 power?\"\n",
")"
]
},
{

View File

@@ -55,6 +55,7 @@
"source": [
"# Setup API keys for Kay and OpenAI\n",
"from getpass import getpass\n",
"\n",
"KAY_API_KEY = getpass()\n",
"OPENAI_API_KEY = getpass()"
]
@@ -67,6 +68,7 @@
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"KAY_API_KEY\"] = KAY_API_KEY\n",
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
]
@@ -83,7 +85,9 @@
"from langchain.retrievers import KayAiRetriever\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6)\n",
"retriever = KayAiRetriever.create(\n",
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
")\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},
@@ -116,7 +120,7 @@
"# More sample questions in the Playground on https://kay.ai\n",
"questions = [\n",
" \"How is the healthcare industry adopting generative AI tools?\",\n",
" #\"What are some recent challenges faced by the renewable energy sector?\",\n",
" # \"What are some recent challenges faced by the renewable energy sector?\",\n",
"]\n",
"chat_history = []\n",
"\n",

View File

@@ -17,8 +17,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.pal_chain import PALChain\n",
"from langchain.llms import OpenAI"
"from langchain.llms import OpenAI\n",
"from langchain_experimental.pal_chain import PALChain"
]
},
{

View File

@@ -0,0 +1,181 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAG based on Qianfan and BES"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook is an implementation of Retrieval augmented generation (RAG) using Baidu Qianfan Platform combined with Baidu ElasricSearch, where the original data is located on BOS.\n",
"## Baidu Qianfan\n",
"Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open-source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n",
"\n",
"## Baidu ElasticSearch\n",
"[Baidu Cloud VectorSearch](https://cloud.baidu.com/doc/BES/index.html?from=productToDoc) is a fully managed, enterprise-level distributed search and analysis service which is 100% compatible to open source. Baidu Cloud VectorSearch provides low-cost, high-performance, and reliable retrieval and analysis platform level product services for structured/unstructured data. As a vector database , it supports multiple index types and similarity distance methods. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation and Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install qianfan\n",
"#!pip install bce-python-sdk\n",
"#!pip install elasticsearch == 7.11.0"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from baidubce.auth.bce_credentials import BceCredentials\n",
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
"from langchain.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader\n",
"from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n",
"from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.vectorstores import BESVectorStore"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Document loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"bos_host = \"your bos eddpoint\"\n",
"access_key_id = \"your bos access ak\"\n",
"secret_access_key = \"your bos access sk\"\n",
"\n",
"# create BceClientConfiguration\n",
"config = BceClientConfiguration(\n",
" credentials=BceCredentials(access_key_id, secret_access_key), endpoint=bos_host\n",
")\n",
"\n",
"loader = BaiduBOSDirectoryLoader(conf=config, bucket=\"llm-test\", prefix=\"llm/\")\n",
"documents = loader.load()\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0)\n",
"split_docs = text_splitter.split_documents(documents)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Embedding and VectorStore"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = HuggingFaceEmbeddings(model_name=\"shibing624/text2vec-base-chinese\")\n",
"embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name)\n",
"\n",
"db = BESVectorStore.from_documents(\n",
" documents=split_docs,\n",
" embedding=embeddings,\n",
" bes_url=\"your bes url\",\n",
" index_name=\"test-index\",\n",
" vector_query_field=\"vector\",\n",
")\n",
"\n",
"db.client.indices.refresh(index=\"test-index\")\n",
"retriever = db.as_retriever()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## QA Retriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = QianfanLLMEndpoint(\n",
" model=\"ERNIE-Bot\",\n",
" qianfan_ak=\"your qianfan ak\",\n",
" qianfan_sk=\"your qianfan sk\",\n",
" streaming=True,\n",
")\n",
"qa = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"refine\", retriever=retriever, return_source_documents=True\n",
")\n",
"\n",
"query = \"什么是张量?\"\n",
"print(qa.run(query))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"> 张量Tensor是一个数学概念用于表示多维数据。它是一个可以表示多个数值的数组可以是标量、向量、矩阵等。在深度学习和人工智能领域中张量常用于表示神经网络的输入、输出和权重等。"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.9.17"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -30,10 +30,10 @@
"outputs": [],
"source": [
"import pinecone\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Pinecone\n",
"\n",
"pinecone.init(api_key=\"...\",environment=\"...\")"
"pinecone.init(api_key=\"...\", environment=\"...\")"
]
},
{
@@ -53,7 +53,7 @@
" \"doc7\": \"Climate change: The science and models.\",\n",
" \"doc8\": \"Global warming: A subset of climate change.\",\n",
" \"doc9\": \"How climate change affects daily weather.\",\n",
" \"doc10\": \"The history of climate change activism.\"\n",
" \"doc10\": \"The history of climate change activism.\",\n",
"}"
]
},
@@ -64,7 +64,9 @@
"metadata": {},
"outputs": [],
"source": [
"vectorstore = Pinecone.from_texts(list(all_documents.values()), OpenAIEmbeddings(), index_name='rag-fusion')"
"vectorstore = Pinecone.from_texts(\n",
" list(all_documents.values()), OpenAIEmbeddings(), index_name=\"rag-fusion\"\n",
")"
]
},
{
@@ -85,7 +87,6 @@
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser"
]
},
@@ -98,7 +99,7 @@
"source": [
"from langchain import hub\n",
"\n",
"prompt = hub.pull('langchain-ai/rag-fusion-query-generation')"
"prompt = hub.pull(\"langchain-ai/rag-fusion-query-generation\")"
]
},
{
@@ -122,7 +123,9 @@
"metadata": {},
"outputs": [],
"source": [
"generate_queries = prompt | ChatOpenAI(temperature=0) | StrOutputParser() | (lambda x: x.split(\"\\n\"))"
"generate_queries = (\n",
" prompt | ChatOpenAI(temperature=0) | StrOutputParser() | (lambda x: x.split(\"\\n\"))\n",
")"
]
},
{
@@ -171,6 +174,8 @@
"outputs": [],
"source": [
"from langchain.load import dumps, loads\n",
"\n",
"\n",
"def reciprocal_rank_fusion(results: list[list], k=60):\n",
" fused_scores = {}\n",
" for docs in results:\n",
@@ -181,9 +186,12 @@
" fused_scores[doc_str] = 0\n",
" previous_score = fused_scores[doc_str]\n",
" fused_scores[doc_str] += 1 / (rank + k)\n",
" \n",
" reranked_results = [(loads(doc), score) for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)]\n",
" return reranked_results "
"\n",
" reranked_results = [\n",
" (loads(doc), score)\n",
" for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)\n",
" ]\n",
" return reranked_results"
]
},
{

View File

@@ -0,0 +1,689 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Incoporating semantic similarity in tabular databases\n",
"\n",
"In this notebook we will cover how to run semantic search over a specific table column within a single SQL query, combining tabular query with RAG.\n",
"\n",
"\n",
"### Overall workflow\n",
"\n",
"1. Generating embeddings for a specific column\n",
"2. Storing the embeddings in a new column (if column has low cardinality, it's better to use another table containing unique values and their embeddings)\n",
"3. Querying using standard SQL queries with [PGVector](https://github.com/pgvector/pgvector) extension which allows using L2 distance (`<->`), Cosine distance (`<=>` or cosine similarity using `1 - <=>`) and Inner product (`<#>`)\n",
"4. Running standard SQL query\n",
"\n",
"### Requirements\n",
"\n",
"We will need a PostgreSQL database with [pgvector](https://github.com/pgvector/pgvector) extension enabled. For this example, we will use a `Chinook` database using a local PostgreSQL server."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = os.environ.get(\"OPENAI_API_KEY\") or getpass.getpass(\n",
" \"OpenAI API Key:\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.sql_database import SQLDatabase\n",
"\n",
"CONNECTION_STRING = \"postgresql+psycopg2://postgres:test@localhost:5432/vectordb\" # Replace with your own\n",
"db = SQLDatabase.from_uri(CONNECTION_STRING)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Embedding the song titles"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"For this example, we will run queries based on semantic meaning of song titles. In order to do this, let's start by adding a new column in the table for storing the embeddings:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# db.run('ALTER TABLE \"Track\" ADD COLUMN \"embeddings\" vector;')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's generate the embedding for each *track title* and store it as a new column in our \"Track\" table"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"\n",
"embeddings_model = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3503"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tracks = db.run('SELECT \"Name\" FROM \"Track\"')\n",
"song_titles = [s[0] for s in eval(tracks)]\n",
"title_embeddings = embeddings_model.embed_documents(song_titles)\n",
"len(title_embeddings)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's insert the embeddings in the into the new column from our table"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from tqdm import tqdm\n",
"\n",
"for i in tqdm(range(len(title_embeddings))):\n",
" title = titles[i].replace(\"'\", \"''\")\n",
" embedding = title_embeddings[i]\n",
" sql_command = (\n",
" f'UPDATE \"Track\" SET \"embeddings\" = ARRAY{embedding} WHERE \"Name\" ='\n",
" + f\"'{title}'\"\n",
" )\n",
" db.run(sql_command)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We can test the semantic search running the following query:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'[(\"Tomorrow\\'s Dream\",), (\\'Remember Tomorrow\\',), (\\'Remember Tomorrow\\',), (\\'The Best Is Yet To Come\\',), (\"Thinking \\'Bout Tomorrow\",)]'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"embeded_title = embeddings_model.embed_query(\"hope about the future\")\n",
"query = (\n",
" 'SELECT \"Track\".\"Name\" FROM \"Track\" WHERE \"Track\".\"embeddings\" IS NOT NULL ORDER BY \"embeddings\" <-> '\n",
" + f\"'{embeded_title}' LIMIT 5\"\n",
")\n",
"db.run(query)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Creating the SQL Chain"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's start by defining useful functions to get info from database and running the query:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def get_schema(_):\n",
" return db.get_table_info()\n",
"\n",
"\n",
"def run_query(query):\n",
" return db.run(query)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's build the **prompt** we will use. This prompt is an extension from [text-to-postgres-sql](https://smith.langchain.com/hub/jacob/text-to-postgres-sql?organizationId=f9b614b8-5c3a-4e7c-afbc-6d7ad4fd8892) prompt"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"You are a Postgres expert. Given an input question, first create a syntactically correct Postgres query to run, then look at the results of the query and return the answer to the input question.\n",
"Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per Postgres. You can order the results to return the most informative data in the database.\n",
"Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (\") to denote them as delimited identifiers.\n",
"Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n",
"Pay attention to use date('now') function to get the current date, if the question involves \"today\".\n",
"\n",
"You can use an extra extension which allows you to run semantic similarity using <-> operator on tables containing columns named \"embeddings\".\n",
"<-> operator can ONLY be used on embeddings columns.\n",
"The embeddings value for a given row typically represents the semantic meaning of that row.\n",
"The vector represents an embedding representation of the question, given below. \n",
"Do NOT fill in the vector values directly, but rather specify a `[search_word]` placeholder, which should contain the word that would be embedded for filtering.\n",
"For example, if the user asks for songs about 'the feeling of loneliness' the query could be:\n",
"'SELECT \"[whatever_table_name]\".\"SongName\" FROM \"[whatever_table_name]\" ORDER BY \"embeddings\" <-> '[loneliness]' LIMIT 5'\n",
"\n",
"Use the following format:\n",
"\n",
"Question: <Question here>\n",
"SQLQuery: <SQL Query to run>\n",
"SQLResult: <Result of the SQLQuery>\n",
"Answer: <Final answer here>\n",
"\n",
"Only use the following tables:\n",
"\n",
"{schema}\n",
"\"\"\"\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", template), (\"human\", \"{question}\")]\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"And we can create the chain using **[LangChain Expression Language](https://python.langchain.com/docs/expression_language/)**:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n",
") # We reconnect to db so the new columns are loaded as well.\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
"\n",
"sql_query_chain = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'SQLQuery: SELECT \"Track\".\"Name\" FROM \"Track\" JOIN \"Genre\" ON \"Track\".\"GenreId\" = \"Genre\".\"GenreId\" WHERE \"Genre\".\"Name\" = \\'Rock\\' ORDER BY \"Track\".\"embeddings\" <-> \\'[dispair]\\' LIMIT 5'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sql_query_chain.invoke(\n",
" {\n",
" \"question\": \"Which are the 5 rock songs with titles about deep feeling of dispair?\"\n",
" }\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This chain simply generates the query. Now we will create the full chain that also handles the execution and the final result for the user:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"\n",
"from langchain.schema.runnable import RunnableLambda\n",
"\n",
"\n",
"def replace_brackets(match):\n",
" words_inside_brackets = match.group(1).split(\", \")\n",
" embedded_words = [\n",
" str(embeddings_model.embed_query(word)) for word in words_inside_brackets\n",
" ]\n",
" return \"', '\".join(embedded_words)\n",
"\n",
"\n",
"def get_query(query):\n",
" sql_query = re.sub(r\"\\[([\\w\\s,]+)\\]\", replace_brackets, query)\n",
" return sql_query\n",
"\n",
"\n",
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"system\", template), (\"human\", \"{question}\")]\n",
")\n",
"\n",
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_query_chain)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=RunnableLambda(lambda x: db.run(get_query(x[\"query\"]))),\n",
" )\n",
" | prompt\n",
" | llm\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using the Chain"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 1: Filtering a column based on semantic meaning"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's say we want to retrieve songs that express `deep feeling of dispair`, but filtering based on genre:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"The 5 rock songs with titles that convey a deep feeling of despair are 'Sea Of Sorrow', 'Surrender', 'Indifference', 'Hard Luck Woman', and 'Desire'.\")"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke(\n",
" {\n",
" \"question\": \"Which are the 5 rock songs with titles about deep feeling of dispair?\"\n",
" }\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"What is substantially different in implementing this method is that we have combined:\n",
"- Semantic search (songs that have titles with some semantic meaning)\n",
"- Traditional tabular querying (running JOIN statements to filter track based on genre)\n",
"\n",
"This is something we _could_ potentially achieve using metadata filtering, but it's more complex to do so (we would need to use a vector database containing the embeddings, and use metadata filtering based on genre).\n",
"\n",
"However, for other use cases metadata filtering **wouldn't be enough**."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 2: Combining filters"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"The three albums which have the most amount of songs in the top 150 saddest songs are 'International Superhits' with 5 songs, 'Ten' with 4 songs, and 'Album Of The Year' with 3 songs.\")"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke(\n",
" {\n",
" \"question\": \"I want to know the 3 albums which have the most amount of songs in the top 150 saddest songs\"\n",
" }\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"So we have result for 3 albums with most amount of songs in top 150 saddest ones. This **wouldn't** be possible using only standard metadata filtering. Without this _hybdrid query_, we would need some postprocessing to get the result.\n",
"\n",
"Another similar exmaple:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"The 6 albums with the shortest titles that contain songs which are in the 20 saddest song list are 'Ten', 'Core', 'Big Ones', 'One By One', 'Black Album', and 'Miles Ahead'.\")"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke(\n",
" {\n",
" \"question\": \"I need the 6 albums with shortest title, as long as they contain songs which are in the 20 saddest song list.\"\n",
" }\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see what the query looks like to double check:"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WITH \"SadSongs\" AS (\n",
" SELECT \"TrackId\" FROM \"Track\" \n",
" ORDER BY \"embeddings\" <-> '[sad]' LIMIT 20\n",
"),\n",
"\"SadAlbums\" AS (\n",
" SELECT DISTINCT \"AlbumId\" FROM \"Track\" \n",
" WHERE \"TrackId\" IN (SELECT \"TrackId\" FROM \"SadSongs\")\n",
")\n",
"SELECT \"Album\".\"Title\" FROM \"Album\" \n",
"WHERE \"AlbumId\" IN (SELECT \"AlbumId\" FROM \"SadAlbums\") \n",
"ORDER BY \"title_len\" ASC \n",
"LIMIT 6\n"
]
}
],
"source": [
"print(\n",
" sql_query_chain.invoke(\n",
" {\n",
" \"question\": \"I need the 6 albums with shortest title, as long as they contain songs which are in the 20 saddest song list.\"\n",
" }\n",
" )\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 3: Combining two separate semantic searches\n",
"\n",
"One interesting aspect of this approach which is **substantially different from using standar RAG** is that we can even **combine** two semantic search filters:\n",
"- _Get 5 saddest songs..._\n",
"- _**...obtained from albums with \"lovely\" titles**_\n",
"\n",
"This could generalize to **any kind of combined RAG** (paragraphs discussing _X_ topic belonging from books about _Y_, replies to a tweet about _ABC_ topic that express _XYZ_ feeling)\n",
"\n",
"We will combine semantic search on songs and album titles, so we need to do the same for `Album` table:\n",
"1. Generate the embeddings\n",
"2. Add them to the table as a new column (which we need to add in the table)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"# db.run('ALTER TABLE \"Album\" ADD COLUMN \"embeddings\" vector;')"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 347/347 [00:01<00:00, 179.64it/s]\n"
]
}
],
"source": [
"albums = db.run('SELECT \"Title\" FROM \"Album\"')\n",
"album_titles = [title[0] for title in eval(albums)]\n",
"album_title_embeddings = embeddings_model.embed_documents(album_titles)\n",
"for i in tqdm(range(len(album_title_embeddings))):\n",
" album_title = album_titles[i].replace(\"'\", \"''\")\n",
" album_embedding = album_title_embeddings[i]\n",
" sql_command = (\n",
" f'UPDATE \"Album\" SET \"embeddings\" = ARRAY{album_embedding} WHERE \"Title\" ='\n",
" + f\"'{album_title}'\"\n",
" )\n",
" db.run(sql_command)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"\"[('Realize',), ('Morning Dance',), ('Into The Light',), ('New Adventures In Hi-Fi',), ('Miles Ahead',)]\""
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"embeded_title = embeddings_model.embed_query(\"hope about the future\")\n",
"query = (\n",
" 'SELECT \"Album\".\"Title\" FROM \"Album\" WHERE \"Album\".\"embeddings\" IS NOT NULL ORDER BY \"embeddings\" <-> '\n",
" + f\"'{embeded_title}' LIMIT 5\"\n",
")\n",
"db.run(query)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can combine both filters:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n",
") # We reconnect to dbso the new columns are loaded as well."
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The songs about breakouts obtained from the top 5 albums about love are \\'Royal Orleans\\', \"Nobody\\'s Fault But Mine\", \\'Achilles Last Stand\\', \\'For Your Life\\', and \\'Hots On For Nowhere\\'.')"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke(\n",
" {\n",
" \"question\": \"I want to know songs about breakouts obtained from top 5 albums about love\"\n",
" }\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This is something **different** that **couldn't be achieved** using standard metadata filtering over a vectordb."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -31,12 +31,10 @@
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough, RunnableLambda\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper"
]
},
@@ -74,9 +72,9 @@
"outputs": [],
"source": [
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
@@ -245,6 +243,7 @@
"source": [
"# Parser to remove the `**`\n",
"\n",
"\n",
"def _parse(text):\n",
" return text.strip(\"**\")"
]
@@ -290,9 +289,10 @@
"rewrite_retrieve_read_chain = (\n",
" {\n",
" \"context\": {\"x\": RunnablePassthrough()} | rewriter | retriever,\n",
" \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | model \n",
" \"question\": RunnablePassthrough(),\n",
" }\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]

View File

@@ -42,22 +42,22 @@
"OPENAI_API_KEY = \"sk-xx\"\n",
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY\n",
"\n",
"from typing import Dict, List, Any, Union, Callable\n",
"from pydantic import BaseModel, Field\n",
"from langchain.chains import LLMChain\nfrom langchain.prompts import PromptTemplate\n",
"from langchain.llms import BaseLLM\n",
"from langchain.chains.base import Chain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import Tool, LLMSingleActionAgent, AgentExecutor\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.vectorstores import Chroma\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from typing import Any, Callable, Dict, List, Union\n",
"\n",
"from langchain.agents import AgentExecutor, LLMSingleActionAgent, Tool\n",
"from langchain.agents.agent import AgentOutputParser\n",
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
"from langchain.schema import AgentAction, AgentFinish"
"from langchain.chains import LLMChain, RetrievalQA\n",
"from langchain.chains.base import Chain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM, OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from pydantic import BaseModel, Field"
]
},
{

View File

@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e93283d1",
"metadata": {},
"source": [
"# Selecting LLMs based on Context Length\n",
"\n",
"Different LLMs have different context lengths. As a very immediate an practical example, OpenAI has two versions of GPT-3.5-Turbo: one with 4k context, another with 16k context. This notebook shows how to route between them based on input."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "cc453450",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.prompt import PromptValue"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1cec6a10",
"metadata": {},
"outputs": [],
"source": [
"short_context_model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
"long_context_model = ChatOpenAI(model=\"gpt-3.5-turbo-16k\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "772da153",
"metadata": {},
"outputs": [],
"source": [
"def get_context_length(prompt: PromptValue):\n",
" messages = prompt.to_messages()\n",
" tokens = short_context_model.get_num_tokens_from_messages(messages)\n",
" return tokens"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "db771e20",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate.from_template(\"Summarize this passage: {context}\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "af057e2f",
"metadata": {},
"outputs": [],
"source": [
"def choose_model(prompt: PromptValue):\n",
" context_len = get_context_length(prompt)\n",
" if context_len < 30:\n",
" print(\"short model\")\n",
" return short_context_model\n",
" else:\n",
" print(\"long model\")\n",
" return long_context_model"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "84f3e07d",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | choose_model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d8b14f8f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"short model\n"
]
},
{
"data": {
"text/plain": [
"'The passage mentions that a frog visited a pond.'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"context\": \"a frog went to a pond\"})"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "70ebd3dd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"long model\n"
]
},
{
"data": {
"text/plain": [
"'The passage describes a frog that moved from one pond to another and perched on a log.'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\n",
" {\"context\": \"a frog went to a pond and sat on a log and went to a different pond\"}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7e29fef",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -7,9 +7,33 @@
"source": [
"# Building hotel room search with self-querying retrieval\n",
"\n",
"In this example we'll walk through how to build and iterate on a hotel room search service that leverages an LLM to generate structured filter queries that can then be passed to a vector store.\n",
"\n",
"For an introduction to self-querying retrieval [check out the docs](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query)."
]
},
{
"cell_type": "markdown",
"id": "d621de99-d993-4f4b-b94a-d02b2c7ad4e0",
"metadata": {},
"source": [
"## Imports and data prep\n",
"\n",
"In this example we use `ChatOpenAI` for the model and `ElasticsearchStore` for the vector store, but these can be swapped out with an LLM/ChatModel and [any VectorStore that support self-querying](https://python.langchain.com/docs/integrations/retrievers/self_query/).\n",
"\n",
"Download data from: https://www.kaggle.com/datasets/keshavramaiah/hotel-recommendation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ecd1fbb-bdba-420b-bcc7-5ea8a232ab11",
"metadata": {},
"outputs": [],
"source": [
"!pip install langchain lark openai elasticsearch pandas"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -27,8 +51,14 @@
"metadata": {},
"outputs": [],
"source": [
"details = pd.read_csv(\"~/Downloads/archive/Hotel_details.csv\").drop_duplicates(subset=\"hotelid\").set_index(\"hotelid\")\n",
"attributes = pd.read_csv(\"~/Downloads/archive/Hotel_Room_attributes.csv\", index_col=\"id\")\n",
"details = (\n",
" pd.read_csv(\"~/Downloads/archive/Hotel_details.csv\")\n",
" .drop_duplicates(subset=\"hotelid\")\n",
" .set_index(\"hotelid\")\n",
")\n",
"attributes = pd.read_csv(\n",
" \"~/Downloads/archive/Hotel_Room_attributes.csv\", index_col=\"id\"\n",
")\n",
"price = pd.read_csv(\"~/Downloads/archive/hotels_RoomPrice.csv\", index_col=\"id\")"
]
},
@@ -184,9 +214,20 @@
}
],
"source": [
"latest_price = price.drop_duplicates(subset=\"refid\", keep=\"last\")[[\"hotelcode\", \"roomtype\", \"onsiterate\", \"roomamenities\", \"maxoccupancy\", \"mealinclusiontype\"]]\n",
"latest_price = price.drop_duplicates(subset=\"refid\", keep=\"last\")[\n",
" [\n",
" \"hotelcode\",\n",
" \"roomtype\",\n",
" \"onsiterate\",\n",
" \"roomamenities\",\n",
" \"maxoccupancy\",\n",
" \"mealinclusiontype\",\n",
" ]\n",
"]\n",
"latest_price[\"ratedescription\"] = attributes.loc[latest_price.index][\"ratedescription\"]\n",
"latest_price = latest_price.join(details[[\"hotelname\", \"city\", \"country\", \"starrating\"]], on=\"hotelcode\")\n",
"latest_price = latest_price.join(\n",
" details[[\"hotelname\", \"city\", \"country\", \"starrating\"]], on=\"hotelcode\"\n",
")\n",
"latest_price = latest_price.rename({\"ratedescription\": \"roomdescription\"}, axis=1)\n",
"latest_price[\"mealsincluded\"] = ~latest_price[\"mealinclusiontype\"].isnull()\n",
"latest_price.pop(\"hotelcode\")\n",
@@ -220,7 +261,7 @@
"res = model.predict(\n",
" \"Below is a table with information about hotel rooms. \"\n",
" \"Return a JSON list with an entry for each column. Each entry should have \"\n",
" \"{\\\"name\\\": \\\"column name\\\", \\\"description\\\": \\\"column description\\\", \\\"type\\\": \\\"column data type\\\"}\"\n",
" '{\"name\": \"column name\", \"description\": \"column description\", \"type\": \"column data type\"}'\n",
" f\"\\n\\n{latest_price.head()}\\n\\nJSON:\\n\"\n",
")"
]
@@ -314,9 +355,15 @@
"metadata": {},
"outputs": [],
"source": [
"attribute_info[-2]['description'] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
"attribute_info[3]['description'] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
"attribute_info[-3]['description'] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
"attribute_info[-2][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
"attribute_info[3][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
"attribute_info[-3][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
]
},
{
@@ -384,7 +431,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.query_constructor.base import get_query_constructor_prompt, load_query_constructor_runnable"
"from langchain.chains.query_constructor.base import (\n",
" get_query_constructor_prompt,\n",
" load_query_constructor_runnable,\n",
")"
]
},
{
@@ -568,7 +618,9 @@
"metadata": {},
"outputs": [],
"source": [
"chain = load_query_constructor_runnable(ChatOpenAI(model='gpt-3.5-turbo', temperature=0), doc_contents, attribute_info)"
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0), doc_contents, attribute_info\n",
")"
]
},
{
@@ -610,7 +662,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
" }\n",
")"
]
},
{
@@ -632,10 +688,12 @@
"metadata": {},
"outputs": [],
"source": [
"attribute_info[-3]['description'] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
"attribute_info[-3][\n",
" \"description\"\n",
"] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" attribute_info,\n",
")"
]
@@ -680,10 +738,12 @@
"source": [
"content_attr = [\"roomtype\", \"roomamenities\", \"roomdescription\", \"hotelname\"]\n",
"doc_contents = \"A detailed description of a hotel room, including information about the room type and room amenities.\"\n",
"filter_attribute_info = tuple(ai for ai in attribute_info if ai[\"name\"] not in content_attr)\n",
"filter_attribute_info = tuple(\n",
" ai for ai in attribute_info if ai[\"name\"] not in content_attr\n",
")\n",
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" filter_attribute_info,\n",
")"
]
@@ -706,7 +766,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
" }\n",
")"
]
},
{
@@ -836,14 +900,22 @@
"examples = [\n",
" (\n",
" \"I want a hotel in the Balkans with a king sized bed and a hot tub. Budget is $300 a night\",\n",
" {\"query\": \"king-sized bed, hot tub\", \"filter\": 'and(in(\"country\", [\"Bulgaria\", \"Greece\", \"Croatia\", \"Serbia\"]), lte(\"onsiterate\", 300))'}\n",
" {\n",
" \"query\": \"king-sized bed, hot tub\",\n",
" \"filter\": 'and(in(\"country\", [\"Bulgaria\", \"Greece\", \"Croatia\", \"Serbia\"]), lte(\"onsiterate\", 300))',\n",
" },\n",
" ),\n",
" (\n",
" \"A room with breakfast included for 3 people, at a Hilton\",\n",
" {\"query\": \"Hilton\", \"filter\": 'and(eq(\"mealsincluded\", true), gte(\"maxoccupancy\", 3))'}\n",
" {\n",
" \"query\": \"Hilton\",\n",
" \"filter\": 'and(eq(\"mealsincluded\", true), gte(\"maxoccupancy\", 3))',\n",
" },\n",
" ),\n",
"]\n",
"prompt = get_query_constructor_prompt(doc_contents, filter_attribute_info, examples=examples)\n",
"prompt = get_query_constructor_prompt(\n",
" doc_contents, filter_attribute_info, examples=examples\n",
")\n",
"print(prompt.format(query=\"{query}\"))"
]
},
@@ -855,10 +927,10 @@
"outputs": [],
"source": [
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" filter_attribute_info,\n",
" examples=examples\n",
" examples=examples,\n",
")"
]
},
@@ -880,7 +952,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"Find a 2-person room in Vienna or London, preferably with meals included and AC\"\n",
" }\n",
")"
]
},
{
@@ -932,7 +1008,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
" }\n",
")"
]
},
{
@@ -953,11 +1033,11 @@
"outputs": [],
"source": [
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model='gpt-3.5-turbo', temperature=0), \n",
" doc_contents, \n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
" filter_attribute_info,\n",
" examples=examples,\n",
" fix_invalid=True\n",
" fix_invalid=True,\n",
")"
]
},
@@ -979,7 +1059,11 @@
}
],
"source": [
"chain.invoke({\"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"})"
"chain.invoke(\n",
" {\n",
" \"query\": \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
" }\n",
")"
]
},
{
@@ -1000,7 +1084,6 @@
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain.vectorstores import ElasticsearchStore\n",
"\n",
"embeddings = OpenAIEmbeddings()"
@@ -1032,8 +1115,8 @@
"# docs.append(doc)\n",
"# vecstore = ElasticsearchStore.from_documents(\n",
"# docs,\n",
"# embeddings, \n",
"# es_url=\"http://localhost:9200\", \n",
"# embeddings,\n",
"# es_url=\"http://localhost:9200\",\n",
"# index_name=\"hotel_rooms\",\n",
"# # strategy=ElasticsearchStore.ApproxRetrievalStrategy(\n",
"# # hybrid=True,\n",
@@ -1049,9 +1132,9 @@
"outputs": [],
"source": [
"vecstore = ElasticsearchStore(\n",
" \"hotel_rooms\", \n",
" embedding=embeddings, \n",
" es_url=\"http://localhost:9200\", \n",
" \"hotel_rooms\",\n",
" embedding=embeddings,\n",
" es_url=\"http://localhost:9200\",\n",
" # strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True) # seems to not be available in community version\n",
")"
]
@@ -1065,7 +1148,9 @@
"source": [
"from langchain.retrievers import SelfQueryRetriever\n",
"\n",
"retriever = SelfQueryRetriever(query_constructor=chain, vectorstore=vecstore, verbose=True)"
"retriever = SelfQueryRetriever(\n",
" query_constructor=chain, vectorstore=vecstore, verbose=True\n",
")"
]
},
{
@@ -1142,7 +1227,9 @@
}
],
"source": [
"results = retriever.get_relevant_documents(\"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\")\n",
"results = retriever.get_relevant_documents(\n",
" \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
")\n",
"for res in results:\n",
" print(res.page_content)\n",
" print(\"\\n\" + \"-\" * 20 + \"\\n\")"

View File

@@ -51,8 +51,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_experimental.smart_llm import SmartLLMChain"
]
},

View File

@@ -40,11 +40,11 @@
"examples = [\n",
" {\n",
" \"input\": \"Could the members of The Police perform lawful arrests?\",\n",
" \"output\": \"what can the members of The Police do?\"\n",
" \"output\": \"what can the members of The Police do?\",\n",
" },\n",
" {\n",
" \"input\": \"Jan Sindels was born in what country?\", \n",
" \"output\": \"what is Jan Sindels personal history?\"\n",
" \"input\": \"Jan Sindels was born in what country?\",\n",
" \"output\": \"what is Jan Sindels personal history?\",\n",
" },\n",
"]\n",
"# We now transform these to example messages\n",
@@ -67,13 +67,18 @@
"metadata": {},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"\"\"You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:\"\"\"),\n",
" # Few shot examples\n",
" few_shot_prompt,\n",
" # New question\n",
" (\"user\", \"{question}\"),\n",
"])"
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"\"\"You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:\"\"\",\n",
" ),\n",
" # Few shot examples\n",
" few_shot_prompt,\n",
" # New question\n",
" (\"user\", \"{question}\"),\n",
" ]\n",
")"
]
},
{
@@ -126,9 +131,9 @@
"source": [
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"\n",
"\n",
"search = DuckDuckGoSearchAPIWrapper(max_results=4)\n",
"\n",
"\n",
"def retriever(query):\n",
" return search.run(query)"
]
@@ -211,14 +216,19 @@
"metadata": {},
"outputs": [],
"source": [
"chain = {\n",
" # Retrieve context using the normal question\n",
" \"normal_context\": RunnableLambda(lambda x: x['question']) | retriever,\n",
" # Retrieve context using the step-back question\n",
" \"step_back_context\": question_gen | retriever,\n",
" # Pass on the question\n",
" \"question\": lambda x: x[\"question\"]\n",
"} | response_prompt | ChatOpenAI(temperature=0) | StrOutputParser()"
"chain = (\n",
" {\n",
" # Retrieve context using the normal question\n",
" \"normal_context\": RunnableLambda(lambda x: x[\"question\"]) | retriever,\n",
" # Retrieve context using the step-back question\n",
" \"step_back_context\": question_gen | retriever,\n",
" # Pass on the question\n",
" \"question\": lambda x: x[\"question\"],\n",
" }\n",
" | response_prompt\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser()\n",
")"
]
},
{
@@ -273,12 +283,17 @@
"metadata": {},
"outputs": [],
"source": [
"chain = {\n",
" # Retrieve context using the normal question (only the first 3 results)\n",
" \"normal_context\": RunnableLambda(lambda x: x['question']) | retriever,\n",
" # Pass on the question\n",
" \"question\": lambda x: x[\"question\"]\n",
"} | response_prompt | ChatOpenAI(temperature=0) | StrOutputParser()"
"chain = (\n",
" {\n",
" # Retrieve context using the normal question (only the first 3 results)\n",
" \"normal_context\": RunnableLambda(lambda x: x[\"question\"]) | retriever,\n",
" # Pass on the question\n",
" \"question\": lambda x: x[\"question\"],\n",
" }\n",
" | response_prompt\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser()\n",
")"
]
},
{

View File

@@ -51,7 +51,7 @@
}
],
"source": [
"sudoku_puzzle = \"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\"\n",
"sudoku_puzzle = \"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\"\n",
"sudoku_solution = \"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\"\n",
"problem_description = f\"\"\"\n",
"{sudoku_puzzle}\n",
@@ -64,7 +64,7 @@
"- Keep the known digits from previous valid thoughts in place.\n",
"- Each thought can be a partial or the final solution.\n",
"\"\"\".strip()\n",
"print(problem_description)\n"
"print(problem_description)"
]
},
{
@@ -84,13 +84,17 @@
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Tuple\n",
"\n",
"from langchain_experimental.tot.checker import ToTChecker\n",
"from langchain_experimental.tot.thought import ThoughtValidity\n",
"import re\n",
"\n",
"\n",
"class MyChecker(ToTChecker):\n",
" def evaluate(self, problem_description: str, thoughts: Tuple[str, ...] = ()) -> ThoughtValidity:\n",
" def evaluate(\n",
" self, problem_description: str, thoughts: Tuple[str, ...] = ()\n",
" ) -> ThoughtValidity:\n",
" last_thought = thoughts[-1]\n",
" clean_solution = last_thought.replace(\" \", \"\").replace('\"', \"\")\n",
" regex_solution = clean_solution.replace(\"*\", \".\").replace(\"|\", \"\\\\|\")\n",
@@ -116,10 +120,22 @@
"outputs": [],
"source": [
"checker = MyChecker()\n",
"assert checker.evaluate(\"\", (\"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\",)) == ThoughtValidity.VALID_INTERMEDIATE\n",
"assert checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\",)) == ThoughtValidity.VALID_FINAL\n",
"assert checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1\",)) == ThoughtValidity.VALID_INTERMEDIATE\n",
"assert checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1\",)) == ThoughtValidity.INVALID"
"assert (\n",
" checker.evaluate(\"\", (\"3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1\",))\n",
" == ThoughtValidity.VALID_INTERMEDIATE\n",
")\n",
"assert (\n",
" checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1\",))\n",
" == ThoughtValidity.VALID_FINAL\n",
")\n",
"assert (\n",
" checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1\",))\n",
" == ThoughtValidity.VALID_INTERMEDIATE\n",
")\n",
"assert (\n",
" checker.evaluate(\"\", (\"3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1\",))\n",
" == ThoughtValidity.INVALID\n",
")"
]
},
{
@@ -203,7 +219,9 @@
"source": [
"from langchain_experimental.tot.base import ToTChain\n",
"\n",
"tot_chain = ToTChain(llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False)\n",
"tot_chain = ToTChain(\n",
" llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False\n",
")\n",
"tot_chain.run(problem_description=problem_description)"
]
},

View File

@@ -34,8 +34,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import os\n",
"\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import DeepLake\n",
@@ -109,6 +109,7 @@
"outputs": [],
"source": [
"import os\n",
"\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"root_dir = \"./the-algorithm\"\n",
@@ -118,7 +119,7 @@
" try:\n",
" loader = TextLoader(os.path.join(dirpath, file), encoding=\"utf-8\")\n",
" docs.extend(loader.load_and_split())\n",
" except Exception as e:\n",
" except Exception:\n",
" pass"
]
},
@@ -3807,8 +3808,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"

View File

@@ -22,17 +22,14 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Callable\n",
"from langchain.chains import ConversationChain\n",
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage,\n",
")"
]
},
@@ -49,10 +46,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain.agents import initialize_agent\n",
"from langchain.agents import AgentType\n",
"from langchain.agents import load_tools"
"from langchain.agents import AgentType, initialize_agent, load_tools"
]
},
{

View File

@@ -22,7 +22,8 @@
"metadata": {},
"outputs": [],
"source": [
"from typing import List, Dict, Callable\n",
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" HumanMessage,\n",

View File

@@ -35,7 +35,7 @@
"tags": []
},
"source": [
"### API keys and other secrats\n",
"### API keys and other secrets\n",
"\n",
"We use an `.ini` file, like this: \n",
"```\n",
@@ -192,10 +192,10 @@
" return current\n",
"\n",
"\n",
"import requests\n",
"\n",
"from typing import Optional\n",
"\n",
"import requests\n",
"\n",
"\n",
"def vocab_lookup(\n",
" search: str,\n",
@@ -319,9 +319,10 @@
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"from typing import List, Dict, Any\n",
"import json\n",
"from typing import Any, Dict, List\n",
"\n",
"import requests\n",
"\n",
"\n",
"def run_sparql(\n",
@@ -389,17 +390,18 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
")\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.llms import OpenAI\nfrom langchain.chains import LLMChain\n",
"import re\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"import re"
"\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
" Tool,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish"
]
},
{

View File

@@ -15,6 +15,7 @@ poetry run python scripts/model_feat_table.py
poetry run nbdoc_build --srcdir docs
cp ../cookbook/README.md src/pages/cookbook.mdx
cp ../.github/CONTRIBUTING.md docs/contributing.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
poetry run python scripts/generate_api_reference_links.py
yarn install
yarn start

View File

@@ -15,3 +15,11 @@ pre {
#my-component-root *, #headlessui-portal-root * {
z-index: 10000;
}
table.longtable code {
white-space: normal;
}
table.longtable td {
max-width: 600px;
}

View File

@@ -2,9 +2,9 @@
import importlib
import inspect
import typing
from pathlib import Path
from typing import TypedDict, Sequence, List, Dict, Literal, Union, Optional
from enum import Enum
from pathlib import Path
from typing import Dict, List, Literal, Optional, Sequence, TypedDict, Union
from pydantic import BaseModel
@@ -13,8 +13,10 @@ HERE = Path(__file__).parent
PKG_DIR = ROOT_DIR / "libs" / "langchain" / "langchain"
EXP_DIR = ROOT_DIR / "libs" / "experimental" / "langchain_experimental"
CORE_DIR = ROOT_DIR / "libs" / "core" / "langchain_core"
WRITE_FILE = HERE / "api_reference.rst"
EXP_WRITE_FILE = HERE / "experimental_api_reference.rst"
CORE_WRITE_FILE = HERE / "core_api_reference.rst"
ClassKind = Literal["TypedDict", "Regular", "Pydantic", "enum"]
@@ -292,6 +294,17 @@ def _document_langchain_experimental() -> None:
def _document_langchain_core() -> None:
"""Document the langchain_core package."""
# Generate core_api_reference.rst
core_members = _load_package_modules(CORE_DIR)
core_doc = ".. _core_api_reference:\n\n" + _construct_doc(
"langchain_core", core_members
)
with open(CORE_WRITE_FILE, "w") as f:
f.write(core_doc)
def _document_langchain() -> None:
"""Document the main langchain package."""
# load top level module members
lc_members = _load_package_modules(PKG_DIR)
@@ -306,7 +319,6 @@ def _document_langchain_core() -> None:
"agents.output_parsers": agents["output_parsers"],
"agents.format_scratchpad": agents["format_scratchpad"],
"tools.render": tools["render"],
"schema.runnable": schema["runnable"],
}
)
@@ -318,8 +330,9 @@ def _document_langchain_core() -> None:
def main() -> None:
"""Generate the reference.rst file for each package."""
_document_langchain_core()
_document_langchain()
_document_langchain_experimental()
_document_langchain_core()
if __name__ == "__main__":

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,6 @@
-e libs/langchain
-e libs/experimental
-e libs/core
pydantic<2
autodoc_pydantic==1.8.0
myst_parser

View File

@@ -34,6 +34,9 @@
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('api_reference') }}">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('core_api_reference') }}">Core</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="{{ pathto('experimental_api_reference') }}">Experimental</a>
</li>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 559 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -1,21 +0,0 @@
pre {
white-space: break-spaces;
}
@media (min-width: 1200px) {
.container,
.container-lg,
.container-md,
.container-sm,
.container-xl {
max-width: 2560px !important;
}
}
#my-component-root *, #headlessui-portal-root * {
z-index: 10000;
}
.content-container p {
margin: revert;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 KiB

Some files were not shown because too many files have changed in this diff Show More