Compare commits

..

244 Commits

Author SHA1 Message Date
Bagatur
b2e756c0a8 langchain[patch]: Release 0.0.346 (#14307) 2023-12-05 11:38:52 -08:00
Bagatur
4a5a13aab3 core[patch]: Release 0.0.10 (#14303) 2023-12-05 10:20:57 -08:00
Eugene Yurtsev
7ad75edf8b Fix rag google cloud vertex ai template (#14300)
Fix template by exposing chain correctly
2023-12-05 09:38:04 -08:00
Eun Hye Kim
f758c8adc4 Fix #11737 issue (extra_tools option of create_pandas_dataframe_agent is not working) (#13203)
- **Description:** Fix #11737 issue (extra_tools option of
create_pandas_dataframe_agent is not working),
  - **Issue:** #11737 ,
  - **Dependencies:** no,
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17 I needed this
method at work, so I modified it myself and used it. There is a similar
issue(#11737) and PR(#13018) of @PyroGenesis, so I combined my code at
the original PR.
You may be busy, but it would be great help for me if you checked. Thank
you.
  - **Twitter handle:** @lunara_x 

If you need an .ipynb example about this, please tag me. 
I will share what I am working on after removing any work-related
content.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:54:08 -08:00
Sean Bearden
77a15fa988 Added ability to pass arguments to the Playwright browser (#13146)
- **Description:** Enhanced `create_sync_playwright_browser` and
`create_async_playwright_browser` functions to accept a list of
arguments. These arguments are now forwarded to
`browser.chromium.launch()` for customizable browser instantiation.
  - **Issue:** #13143
  - **Dependencies:** None
  - **Tag maintainer:** @eyurtsev,
  - **Twitter handle:** Dr_Bearden

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:48:09 -08:00
Joan Fontanals
dcccf8fa66 adapt Jina Embeddings to new Jina AI Embedding API (#13658)
- **Description:** Adapt JinaEmbeddings to run with the new Jina AI
Embedding platform
- **Twitter handle:** https://twitter.com/JinaAI_

---------

Co-authored-by: Joan Fontanals Martinez <joan.fontanals.martinez@jina.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:40:33 -08:00
Philippe PRADOS
e0c03d6c44 Pprados/lite google drive (#13175)
- Fix bug in the document
 - Add clarification on the use of langchain-google drive.
2023-12-04 20:31:21 -08:00
guillaumedelande
ea0afd07ca Update azuresearch.py following recent change from azure-search-documents library (#13472)
- **Description:** 

Reference library azure-search-documents has been adapted in version
11.4.0:

1. Notebook explaining Azure AI Search updated with most recent info
2. HnswVectorSearchAlgorithmConfiguration --> HnswAlgorithmConfiguration
3. PrioritizedFields(prioritized_content_fields) -->
SemanticPrioritizedFields(content_fields)
4. SemanticSettings --> SemanticSearch
5. VectorSearch(algorithm_configurations) -->
VectorSearch(configurations)

--> Changes now reflected on Langchain: default vector search config
from langchain is now compatible with officially released library from
Azure.

  - **Issue:**
Issue creating a new index (due to wrong class used for default vector
search configuration) if using latest version of azure-search-documents
with current langchain version
  - **Dependencies:** azure-search-documents>=11.4.0,
  - **Tag maintainer:** ,

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-04 20:29:20 -08:00
price-deshaw
5cb3393e20 update OpenAI function agents' llm validation (#13538)
- **Description:** This PR modifies the LLM validation in OpenAI
function agents to check whether the LLM supports OpenAI functions based
on a property (`supports_oia_functions`) instead of whether the LLM
passed to the agent `isinstance` of `ChatOpenAI`. This allows classes
that extend `BaseChatModel` to be passed to these agents as long as
they've been integrated with the OpenAI APIs and have this property set,
even if they don't extend `ChatOpenAI`.
  - **Issue:** N/A
  - **Dependencies:** none
2023-12-04 20:28:13 -08:00
Max Weng
74c7b799ef migrate openai audio api (#13557)
for issue https://github.com/langchain-ai/langchain/issues/13162
migrate openai audio api, as [openai v1.0.0 Migration
Guide](https://github.com/openai/openai-python/discussions/742)

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Double Max <max@ground-map.com>
2023-12-04 20:27:54 -08:00
Arnaud Gelas
abbba6c7d8 openapi/planner.py: Deal with json in markdown output cases (#13576)
- **Description:** In openapi/planner deal with json in markdown output
cases
- **Issue:** In some cases LLMs could return json in markdown which
can't be loaded.
  - **Dependencies:**
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:**

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:27:22 -08:00
Harrison Chase
8eab4d95c0 Harrison/delegate from template (#14266)
Co-authored-by: M.R. Sopacua <144725145+msopacua@users.noreply.github.com>
2023-12-04 20:18:15 -08:00
Erick Friis
956d55de2b docs[patch]: chat model page names (#14264) 2023-12-04 20:08:41 -08:00
Nolan
b49104c2c9 Add missing doc key to metadata field in AzureSearch Vectorstore (#13328)
- **Description:** Adds doc key to metadata field when adding document
to Azure Search.
  - **Issue:** -,
  - **Dependencies:** -,
  - **Tag maintainer:** @eyurtsev,
  - **Twitter handle:** @finnless

Right now the document key with the name FIELDS_ID is not included in
the FIELDS_METADATA field, and therefore is not included in the Document
returned from a query. This is really annoying if you want to be able to
modify that item in the vectorstore.

Other's thoughts on this are welcome.
2023-12-04 19:53:27 -08:00
Jon Watte
e042e5df35 fix: call _on_llm_error() (#13581)
Description: There's a copy-paste typo where on_llm_error() calls
_on_chain_error() instead of _on_llm_error().
Issue: #13580 
Dependencies: None
Tag maintainer: @hwchase17 
Twitter handle: @jwatte

"Run `make format`, `make lint` and `make test` to check this locally."
The test scripts don't work in a plain Ubuntu LTS 20.04 system.
It looks like the dev container pulling is stuck. Or maybe the internet
is just ornery today.

---------

Co-authored-by: jwatte <jwatte@observeinc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 19:44:50 -08:00
Hamza Ahmed
fcc8e5e839 Update geodataframe.py (#13573)
here it is validating shapely.geometry.point.Point: if not
isinstance(data_frame[page_content_column].iloc[0], gpd.GeoSeries):
raise ValueError(
f"Expected data_frame[{page_content_column}] to be a GeoSeries" you need
it to validate the geoSeries and not the shapely.geometry.point.Point

if not isinstance(data_frame[page_content_column], gpd.GeoSeries):
            raise ValueError(
f"Expected data_frame[{page_content_column}] to be a GeoSeries"

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-12-04 19:44:30 -08:00
Harrison Chase
2213fc9711 Harrison/bookend ai (#14258)
Co-authored-by: stvhu-bookend <142813359+stvhu-bookend@users.noreply.github.com>
2023-12-04 19:42:15 -08:00
cxumol
0d47d15a9f add(feat): Text Embeddings by Cloudflare Workers AI (#14220)
Add [Text Embeddings by Cloudflare Workers
AI](https://developers.cloudflare.com/workers-ai/models/text-embeddings/).
It's a new integration.
Trying to align it with its langchain-js version counterpart
[here](https://api.js.langchain.com/classes/embeddings_cloudflare_workersai.CloudflareWorkersAIEmbeddings.html).
- Dependencies: N/A
- Done `make format` `make lint` `make spell_check` `make
integration_tests` and all my changes was passed
2023-12-04 19:25:05 -08:00
Harrison Chase
c51001f01e fix comet tracer (#14259) 2023-12-04 19:03:19 -08:00
Erick Friis
4351b99d2b docs[patch]: search experiment (#14254)
- npm
- search config
- custom
2023-12-04 16:58:26 -08:00
Harrison Chase
4fb72ff76f fake consistent embeddings cleanup (#14256)
delete code that could never be reached
2023-12-04 16:55:30 -08:00
Michael Landis
e26906c1dc feat: implement max marginal relevance for momento vector index (#13619)
**Description**

Implements `max_marginal_relevance_search` and
`max_marginal_relevance_search_by_vector` for the Momento Vector Index
vectorstore.

Additionally bumps the `momento` dependency in the lock file and adds
logging to the implementation.

**Dependencies**

 updates `momento` dependency in lock file

**Tag maintainer**

@baskaryan 

**Twitter handle**

Please tag @momentohq for Momento Vector Index and @mloml for the
contribution 🙇

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-12-04 16:50:23 -08:00
deedy5
ee9abb6722 Bugfix duckduckgo_search news search (#13670)
- **Description:** 
Bugfix duckduckgo_search news search
  - **Issue:** 
https://github.com/langchain-ai/langchain/issues/13648
  - **Dependencies:** 
None
  - **Tag maintainer:** 
@baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 16:48:20 -08:00
Aliaksandr Kuzmik
676a077c4e Add CometTracer (#13661)
Hi! I'm Alex, Python SDK Team Lead from
[Comet](https://www.comet.com/site/).

This PR contains our new integration between langchain and Comet -
`CometTracer` class which uses new `comet_llm` python package for
submitting data to Comet.

No additional dependencies for the langchain package are required
directly, but if the user wants to use `CometTracer`, `comet-llm>=2.0.0`
should be installed. Otherwise an exception will be raised from
`CometTracer.__init__`.

A test for the feature is included.

There is also an already existing callback (and .ipynb file with
example) which ideally should be deprecated in favor of a new tracer. I
wasn't sure how exactly you'd prefer to do it. For example we could open
a separate PR for that.

I'm open to your ideas :)
2023-12-04 16:46:48 -08:00
Harrison Chase
921c4b5597 Harrison/searchapi (#14252)
Co-authored-by: SebastjanPrachovskij <86522260+SebastjanPrachovskij@users.noreply.github.com>
2023-12-04 16:34:15 -08:00
Ravidhu
224aa5151d Fix Sagemaker Endpoint documentation (#13660)
- **Description:** fixed the transform_input method in the example., 
  - **Issue:** example didn't work,
  - **Dependencies:** None,
  - **Tag maintainer:** @baskaryan,
  - **Twitter handle:** @Ravidhu87
2023-12-04 16:28:29 -08:00
Colin Ulin
9f9cb71d26 Embaas - added backoff retries for network requests (#13679)
Running a large number of requests to Embaas' servers (or any server)
can result in intermittent network failures (both from local and
external network/service issues). This PR implements exponential backoff
retries to help mitigate this issue.
2023-12-04 16:21:35 -08:00
Erick Friis
f26d88ca60 docs[patch]: fix columns (#14251) 2023-12-04 16:03:09 -08:00
Kastan Day
65faba91ad langchain[patch]: Adding new Github functions for reading pull requests (#9027)
The Github utilities are fantastic, so I'm adding support for deeper
interaction with pull requests. Agents should read "regular" comments
and review comments, and the content of PR files (with summarization or
`ctags` abbreviations).

Progress:
- [x] Add functions to read pull requests and the full content of
modified files.
- [x] Function to use Github's built in code / issues search.

Out of scope:
- Smarter summarization of file contents of large pull requests (`tree`
output, or ctags).
- Smarter functions to checkout PRs and edit the files incrementally
before bulk committing all changes.
- Docs example for creating two agents:
- One watches issues: For every new issue, open a PR with your best
attempt at fixing it.
- The other watches PRs: For every new PR && every new comment on a PR,
check the status and try to finish the job.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-04 15:53:36 -08:00
Hynek Kydlíček
aa8ae31e5b core[patch]: add response kwarg to on_llm_error
# Dependencies
None

# Twitter handle
@HKydlicek

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-04 15:04:48 -08:00
Leonid Ganeline
1750cc464d docs[patch]: moved vectorstore notebook file (#14181)
The `/docs/integrations/toolkits/vectorstore` page is not the
Integration page. The best place is in `/docs/modules/agents/how_to/`
- Moved the file
- Rerouted the page URL
2023-12-04 14:44:06 -08:00
Jacob Lee
a26c4a0930 Allow base_store to be used directly with MultiVectorRetriever (#14202)
Allow users to pass a generic `BaseStore[str, bytes]` to
MultiVectorRetriever, removing the need to use the `create_kv_docstore`
method. This encoding will now happen internally.

@rlancemartin @eyurtsev

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-12-04 14:43:32 -08:00
Vincent Brouwers
67662564f3 langchain[patch]: Fix config arg detection for wrapped lambdarunnable (#14230)
**Description:**
When a RunnableLambda only receives a synchronous callback, this
callback is wrapped into an async one since #13408. However, this
wrapping with `(*args, **kwargs)` causes the `accepts_config` check at
[/libs/core/langchain_core/runnables/config.py#L342](ee94ef55ee/libs/core/langchain_core/runnables/config.py (L342))
to fail, as this checks for the presence of a "config" argument in the
method signature.

Adding a `functools.wraps` around it, resolves it.
2023-12-04 14:18:30 -08:00
Jacob Lee
de86b84a70 Prefer byte store interface for Upstash BaseStore to match other Redis (#14201)
If we are not going to make the existing Docstore class also implement
`BaseStore[str, Document]`, IMO all base store implementations should
always be `[str, bytes]` so that they are more interchangeable.

CC @rlancemartin @eyurtsev
2023-12-04 14:17:33 -08:00
Harrison Chase
411aa9a41e Harrison/nasa tool (#14245)
Co-authored-by: Jacob Matias <88005863+matiasjacob25@users.noreply.github.com>
Co-authored-by: Karam Daid <karam.daid@mail.utoronto.ca>
Co-authored-by: Jumana <jumana.fanous@mail.utoronto.ca>
Co-authored-by: KaramDaid <38271127+KaramDaid@users.noreply.github.com>
Co-authored-by: Anna Chester <74325334+CodeMakesMeSmile@users.noreply.github.com>
Co-authored-by: Jumana <144748640+jfanous@users.noreply.github.com>
2023-12-04 13:43:11 -08:00
nceccarelli
5fea63327b Support Azure gov cloud in Azure Cognitive Search retriever (#13695)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** The existing version hardcoded search.windows.net in
the base url. This is not compatible with the gov cloud. I am allowing
the user to override the default for gov cloud support.,
  - **Issue:** N/A, did not write up in an issue,
  - **Dependencies:** None

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Nicholas Ceccarelli <nceccarelli2@moog.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 12:56:35 -08:00
ealt
e09b876863 Fixes error loading Obsidian templates (#13888)
- **Description:** Obsidian templates can include
[variables](https://help.obsidian.md/Plugins/Templates#Template+variables)
using double curly braces. `ObsidianLoader` uses PyYaml to parse the
frontmatter of documents. This parsing throws an error when encountering
variables' curly braces. This is avoided by temporarily substituting
safe strings before parsing.
  - **Issue:** #13887
  - **Tag maintainer:** @hwchase17
2023-12-04 12:55:37 -08:00
Erick Friis
f6d68d78f3 nbdoc -> quarto (#14156)
Switches to a more maintained solution for building ipynb -> md files
(`quarto`)

Also bumps us down to python3.8 because it's significantly faster in the
vercel build step. Uses default openssl version instead of upgrading as
well.
2023-12-04 12:50:56 -08:00
Nithish Raghunandanan
eecfa3f9e5 Add Couchbase document loader (#13979)
**Description:** 
Adds the document loader for [Couchbase](http://couchbase.com/), a
distributed NoSQL database.
**Dependencies:** 
Added the Couchbase SDK as an optional dependency.
**Twitter handle:** nithishr

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-04 12:28:12 -08:00
Bob Lin
805e9bfc24 Add doc for the development of core and experimental sections (#13966)
### **Description**

Hi, I just started learning the source code of `langchain` and hope to
contribute code. However, according to the instructions in the
[CONTRIBUTING.md](https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md)
document, I could not run the test command `make test` to run normally.
I found that many modules did not exist after [splitting
`langchain_core`](https://github.com/langchain-ai/langchain/discussions/13823),
so I updated the document.

### **Twitter handle** 

lin_bob57617
2023-12-04 12:27:57 -08:00
Muntaqa Mahmood
25f72944a0 Add: Steam API tool (#14008)
- **Description:** Our PR is an integration of a Steam API Tool that
makes recommendations on steam games based on user's Steam profile and
provides information on games based on user provided queries.
- **Issue:** the issue # our PR implements:
https://github.com/langchain-ai/langchain/issues/12120
- **Dependencies:** python-steam-api library, steamspypi library and
decouple library
  - **Tag maintainer:** @baskaryan, @hwchase17 
  - **Twitter handle:** N/A

Hello langchain Maintainers,

We are a team of 4 University of Toronto students contributing to
langchain as part of our course [CSCD01 (link to course
page)](https://cscd01.com/work/open-source-project). We hope our changes
help the community. We have run make format, make lint and make test
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.

Our PR integrates the python-steam-api, steamspypi and decouple
packages. We have added integration tests to test our python API
integration into langchain and an example notebook is also provided.

Our amazing team that contributed to this PR: @JohnY2002, @shenceyang,
@andrewqian2001 and @muntaqamahmood

Thank you in advance to all the maintainers for reviewing our PR!

---------

Co-authored-by: Shence <ysc1412799032@163.com>
Co-authored-by: JohnY2002 <johnyuan0526@gmail.com>
Co-authored-by: Andrew Qian <andrewqian2001@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: JohnY <94477598+JohnY2002@users.noreply.github.com>
2023-12-04 12:27:38 -08:00
Bob Lin
cd2028288e Add openai v2 adapter (#14063)
### Description

Starting from [openai version
1.0.0](17ac677995 (module-level-client)),
the camel case form of `openai.ChatCompletion` is no longer supported
and has been changed to lowercase `openai.chat.completions`. In
addition, the returned object only accepts attribute access instead of
index access:

```python
import openai

# optional; defaults to `os.environ['OPENAI_API_KEY']`
openai.api_key = '...'

# all client options can be configured just like the `OpenAI` instantiation counterpart
openai.base_url = "https://..."
openai.default_headers = {"x-foo": "true"}

completion = openai.chat.completions.create(
    model="gpt-4",
    messages=[
        {
            "role": "user",
            "content": "How do I output all files in a directory using Python?",
        },
    ],
)
print(completion.choices[0].message.content)
```

So I implemented a compatible adapter that supports both attribute
access and index access:

```python
In [1]: from langchain.adapters import openai as lc_openai
   ...: messages = [{"role": "user", "content": "hi"}]

In [2]: result = lc_openai.chat.completions.create(
   ...:     messages=messages, model="gpt-3.5-turbo", temperature=0
   ...: )

In [3]: result.choices[0].message
Out[3]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [4]: result["choices"][0]["message"]
Out[4]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [5]: result = await lc_openai.chat.completions.acreate(
   ...:     messages=messages, model="gpt-3.5-turbo", temperature=0
   ...: )

In [6]: result.choices[0].message
Out[6]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [7]: result["choices"][0]["message"]
Out[7]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [8]: for rs in lc_openai.chat.completions.create(
    ...:     messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
    ...: ):
    ...:     print(rs.choices[0].delta)
    ...:     print(rs["choices"][0]["delta"])
    ...:
{'role': 'assistant', 'content': ''}
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': 'Hello'}
{'content': '!'}
{'content': '!'}

In [20]: async for rs in await lc_openai.chat.completions.acreate(
    ...:     messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
    ...: ):
    ...:     print(rs.choices[0].delta)
    ...:     print(rs["choices"][0]["delta"])
    ...:
{'role': 'assistant', 'content': ''}
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': 'Hello'}
{'content': '!'}
{'content': '!'}
...
```

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-04 12:12:30 -08:00
billytrend-cohere
0f02081392 Add input_type override (#14068)
Add option to override input_type for cohere's v3 embeddings models

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-04 12:10:24 -08:00
Dmitrii Rashchenko
aaabc1574f Support of custom hugging face inference endpoints url (#14125)
- **Description:** to support not only publicly available Hugging Face
endpoints, but also protected ones (created with "Inference Endpoints"
Hugging Face feature), I have added ability to specify custom api_url.
But if not specified, default behaviour won't change
  - **Issue:** #9181,
  - **Dependencies:** no extra dependencies
2023-12-04 12:08:51 -08:00
Bob Lin
702a6d7044 Closed #14159 (#14165)
### Description

Fix: #14159

Use `from pydantic.v1 import BaseModel, Field` instead of `from pydantic
import BaseModel, Field`

### [lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-04 12:06:04 -08:00
Perry Lee
641e401ba8 Shorten wget commands (#14211)
- **Description:** The commands can be more efficient if the output name
is set to the destined filename instead of renaming in the second
command.
2023-12-04 12:03:47 -08:00
Harrison Chase
e32185193e Harrison/embass (#14242)
Co-authored-by: Julius Lipp <lipp.julius@gmail.com>
2023-12-04 11:58:52 -08:00
umair mehmood
8504ec56e4 fixed: ModuleNotFoundError: No module named 'clarifai.auth' (#14215)
Updated the clarifai imports 

fixed: #14175 

@efriis 
@baskaryan
2023-12-04 11:53:34 -08:00
Hieu Lam
ca8a022cd9 Fixed OpenAIFunctionsAgent not returning when receiving AgentFinish (#14236)
**Description:** The way the condition is checked in the
`return_stopped_response` function of `OpenAIAgent` may not be correct,
when the value returned is `AgentFinish` from the tools it does not work
properly.


Thanks for review, @baskaryan, @eyurtsev, @hwchase17.
2023-12-04 11:43:04 -08:00
Unai Garay Maestre
6826feea14 Adds llm_chain_kwargs to BaseRetrievalQA.from_llm (#14224)
- **Description:** Adds `llm_chain_kwargs` to `BaseRetrievalQA.from_llm`
so these can be passed to the LLM at runtime,
- **Issue:** https://github.com/langchain-ai/langchain/issues/14216,

---------

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
2023-12-04 11:34:01 -08:00
James Braza
6ce5dab38c Clarifying descriptions in GuardrailsOutputParser (#14228)
Upstreaming knowledge from
https://github.com/guardrails-ai/guardrails/discussions/473 to LangChain
2023-12-04 11:33:22 -08:00
geret1
50aee687c6 langchain[patch]: Cerebrium model_api_request deprecation (#12704)
- **Description:** As part of my conversation with Cerebrium team,
`model_api_request` will be no longer available in cerebrium lib so it
needs to be replaced.
  - **Issue:** #12705 12705,
  - **Dependencies:** Cerebrium team (agreed)
  - **Tag maintainer:** @eyurtsev 
  - **Twitter handle:** No official Twitter account sorry :D

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-04 09:26:32 -08:00
Harutaka Kawamura
ee94ef55ee docs[patch]: Update MLflow and Databricks docs (#14011)
Depends on #13699. Updates the existing mlflow and databricks examples.

---------

Co-authored-by: Ben Wilson <39283302+BenWilson2@users.noreply.github.com>
2023-12-03 16:07:09 -08:00
Leonid Ganeline
94bf733dae docs[patch]: AWS platform page update (#14160)
The `AWS` platform page has many missed integrations.
- added missed integration references to the `AWS` platform page
- added/updated descriptions and links in the referenced notebooks
- renamed two notebook files. They have file names != page Title, which
generate unordered ToC.
- reroute the URLs for renamed files
- fixed `amazon_textract` notebook: removed failed cell outputs
2023-12-03 15:42:52 -08:00
Leonid Ganeline
74d4154bcc docs[patch]: added Templates Hub menu item (#14148)
This link was missing in Docs.
Added it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-03 15:36:35 -08:00
William FH
246dc4f9cc langchain[patch]: Pass kwargs to chat fireworks (#14183)
Otherwise `.bind()` isn't really any good
2023-12-03 15:12:02 -08:00
Kaiboon Ee
e961c57fd2 langchain[patch]: Mask API key for Arcee LLM (#14193)
- **Description:** Mask API key for Arcee LLM and its associated unit
tests
  - **Issue:** https://github.com/langchain-ai/langchain/issues/12165
  - **Dependencies:** N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** `eekaiboon`

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-03 15:11:43 -08:00
Daniyar Supiyev
092f302c0f langchain[patch]: Asynchronous human-in-the-loop callback (#14195)
**Description:** Adding a possibility to use asynchronous callback
handler in human-in-the-loop validation tool. Very useful, for example,
if you want to implement a validation over Telegram bot.
**Issue:** -
**Dependencies:** -

---------

Co-authored-by: Daniyar_Supiyev <daniyar_supiyev@epam.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-03 14:57:07 -08:00
Leonid Ganeline
c660b0cf79 docs[patch]: moved semadb.mdx file (#14204)
SemaDB.mdx file was placed with additional sub-folder:
`https://python.langchain.com/docs/integrations/providers/providers/semadb`
- Moved file to the
`https://python.langchain.com/docs/integrations/providers/semadb`
- Added a redirect for the file URL
2023-12-03 14:36:47 -08:00
Mark Cusack
16c83f786c Adds the Yellowbrick Data Warehouse as a supported vector store (#13820)
- **Description** An integration to allow the Yellowbrick Data Warehouse
to function as a vector store

---------

Co-authored-by: markcusack <markcusack@markcusacksmac.lan>
Co-authored-by: markcusack <markcusack@Mark-Cusack-sMac.local>
2023-12-03 13:35:53 -08:00
Hendrik Hogertz
e6862e6e7d Fix Azure Openai function calling in streaming mode (#13768)
- **Description**: This PR addresses an issue with the OpenAI API
streaming response, where initially the key (arguments) is provided but
the value is None. Subsequently, it updates with {"arguments": "{\n"},
leading to a type inconsistency that causes an exception. The specific
error encountered is ValueError: additional_kwargs["arguments"] already
exists in this message, but with a different type. This change aims to
resolve this inconsistency and ensure smooth API interactions.
- **Issue**: None.
- **Dependencies**: None.
- **Tag maintainer**: @eyurtsev

This is an updated version of #13229 based on the refactored code.
Credit goes to @superken01.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 12:07:15 -08:00
Nicolò Boschi
e204657b3c AstraDB VectorStore: implement pre_delete_collection (#13780)
- **Description:** some vector stores have a flag for try deleting the
collection before creating it (such as ´vectorpg´). This is a useful
flag when prototyping indexing pipelines and also for integration tests.
Added the bool flag `pre_delete_collection ` to the constructor (default
False)
  - **Tag maintainer:** @hemidactylus 
  - **Twitter handle:** nicoloboschi

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 12:06:20 -08:00
Chelsea E. Manning
2780d2d4dd Extend OpenAIEmbeddings class to support non-tiktoken based embeddings (#13884)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** This extends `OpenAIEmbeddings` to add support for
non-`tiktoken` based embeddings, specifically for use with the new
`text-generation-webui` API (`--extensions openai`) which does not
support `tiktoken` encodings, but rather strings
  - **Issue:** Not found,
- **Dependencies:** HuggingFace `transformers.AutoTokenizer` is new
dependency for running the model without `tiktoken`
- **Tag maintainer:** @baskaryan based on last commit for
`langchain-core` refactor
  - **Twitter handle:** @xychelsea

Modified the tokenization process to be model-agnostic, allowing for
both OpenAI and non-OpenAI model tokenizations, by setting the new
default `bool` flag `tiktoken_enabled` to `False`. This requeires
HuggingFace’s AutoTokenizer and handling tokenization for models
requiring different preprocessing steps to generate a chunked string
request rather than a list of integers.

Updated the embeddings generation process to accommodate non-OpenAI
models. This includes converting tokenized text into embeddings using
OpenAI’s and Hugging Face’s model architectures.
 -->
2023-12-03 12:04:17 -08:00
Changgeng Zhao
9b59bde93d Update Hologres vector store: use hologres-vector (#13767)
Hi,
I made some code changes on the Hologres vector store to improve the
data insertion performance.
Also, this version of the code uses `hologres-vector` library. This
library is more convenient for us to update, and more efficient in
performance.
The code has passed the format/lint/spell check. I have run the unit
test for Hologres connecting to my own database.
Please check this PR again and tell me if anything needs to change.

Best,
Changgeng,
Developer @ Alibaba Cloud

Co-authored-by: Changgeng Zhao <zhaochanggeng.zcg@alibaba-inc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 11:50:45 -08:00
Nicolò Boschi
0de7cf898d Ensure AstraDB integration tests clean up the environment (#13774)
- **Description:** currently astra_db integration tests might leave
orphan collections
  - **Tag maintainer:** @hemidactylus 
  - **Twitter handle:** nicoloboschi
2023-12-03 11:14:42 -08:00
Harrison Chase
7bc4c12477 delete stray test (#14200)
was added to an old path

also im not sure this is even really a test file? which is why i didnt
move it
2023-12-03 11:06:57 -08:00
Leonid Ganeline
283c2994de docs: Hugging Face platform page (#13831)
`Hugging Face` is definitely a platform. It includes many integrations
for many modules (LLM, Embedding, DocumentLoader, Tool)
So, a doc page was added that defines Hugging Face as a platform.
2023-12-03 11:06:43 -08:00
Chad Norvell
8a0951d934 Fix Mathpix PDF loader integration (#13949)
- **Description:** Fixes the Mathpix PDF loader API integration.
Specifically, ensures that Mathpix auth headers are provided for every
request, and ensures that we recognize all errors that can occur during
a request. Also, the option to provide API keys as kwargs never actually
worked before, but now that's fixed too.
  - **Issue:** #11249
  - **Dependencies:** None
2023-12-03 10:36:49 -08:00
gzyJoy
32d4bb4590 Added Slacktoolkit (#14012)
- **Description:** 
This PR introduces the Slack toolkit to LangChain, which allows users to
read and write to Slack using the Slack API. Specifically, we've added
the following tools.
1. get_channel: Provides a summary of all the channels in a workspace.
2. get_message: Gets the message history of a channel.
3. send_message: Sends a message to a channel.
4. schedule_message: Sends a message to a channel at a specific time and
date.

- **Issue:** This pull request addresses [Add Slack Toolkit
#11747](https://github.com/langchain-ai/langchain/issues/11747)
  - **Dependencies:** package`slack_sdk`
Note: For this toolkit to function you will need to add a Slack app to
your workspace. Additional info can be found
[here](https://slack.com/help/articles/202035138-Add-apps-to-your-Slack-workspace).

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ArianneLavada <ariannelavada@gmail.com>
Co-authored-by: ArianneLavada <84357335+ArianneLavada@users.noreply.github.com>
Co-authored-by: ariannelavada@gmail.com <you@example.com>
2023-12-03 10:25:38 -08:00
Richie
99e5ee6a84 fix(vectorstores): incorrect import for mongodb atlas DriverInfo (#14060)
- **Description:** fix `import` issue for `mongodb atlas` vectore store
integration
  - **Issue:** none
  - **Dependencies:** none

while trying to follow official `langchain`'s [mongodb integration
guide](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas),
an import error will happen.

It's caused by incorrect import location:
- `from pymongo import DriverInfo` should be `from pymongo.driver_info
import DriverInfo`
- reference: [pymongo's DriverInfo
class](https://pymongo.readthedocs.io/en/stable/api/pymongo/driver_info.html#pymongo.driver_info.DriverInfo)

Thanks!
2023-12-03 10:22:13 -08:00
ggeutzzang
03d6b94c29 Fix: (issue #14066) DOC: Summarization output broken (#14078)
- **Description:** : As described in the issue below, 
https://python.langchain.com/docs/use_cases/summarization  
I've modified the Python code in the above notebook to perform well. 

I also modified the OpenAI LLM model to the latest version as shown
below.
`gpt-3.5-turbo-16k --> gpt-3.5-turbo-1106`
This is because it seems to be a bit more responsive.
  - **Issue:** : #14066
2023-12-03 10:13:57 -08:00
James Braza
3833882ab7 Removing extra StdOutCallbackHandler overridden methods (#14136)
Unnecessarily overridden methods:

- Give the idea the subclass is doing something special (when it isn't)
- Block CTRL-click to the actual method

This PR removes some unnecessarily overridden methods in
`StdOutCallbackHandler`

Supercedes https://github.com/langchain-ai/langchain/pull/12858
2023-12-03 09:38:49 -08:00
Bob Lin
ac449f186b Update docs to use new usage in openai>1.0.0 (#14163)
### Description

Use new
[APIs](https://github.com/openai/openai-python/blob/main/api.md#finetuning)

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-03 09:37:35 -08:00
James Braza
052e23be3e Added Python logging tracer (#14190)
This PR creates a logging handler and adds a simple unit test of it

Supercedes https://github.com/langchain-ai/langchain/pull/12862

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 09:36:30 -08:00
Bob Lin
1ea48a31da Update fallback cases (#14164)
### Description

The `RateLimitError` initialization method has changed after openai v1,
and the usage of `patch` needs to be changed.

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-03 08:56:07 -08:00
Bob Lin
62505043be Closed #14069 (#14166)
### Description

Fix #14069

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-03 08:55:25 -08:00
Yong woo Song
9938086df0 Fix Html2TextTransformer for shallow copy (#14197)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
Hi,
There is some unintended behavior in Html2TextTransformer.
The current code is **directly modifying the original documents that are
passed as arguments to the function.**
Therefore, not only the return of the function but also the input
variables are being modified simultaneously.
**To resolve this, I added unit test code as well.**

reference link: [Shallow vs Deep Copying of Python
Objects](https://realpython.com/copying-python-objects/)

Thanks! ☺️
2023-12-03 08:45:35 -08:00
h3l
818252b1f8 Fix: (issue #14127) Volc Engine MaaS import error (#14194)
- **Description:** fix Volc Engine MaaS import error
- **Issue:** [the issue # it fixes (if
applicable),](https://github.com/langchain-ai/langchain/issues/14127)
  - **Dependencies:** None
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:**

Co-authored-by: lvzhong <lvzhong@bytedance.com>
2023-12-03 08:43:23 -08:00
Leonid Ganeline
6ae0194dc7 docs: integrations/toolkits/office365 notebook update (#14188)
Added more descriptions and authentication details.
2023-12-03 08:43:00 -08:00
Bagatur
0bdb434383 langchain[patch]: Release langchain 0.0.345 (#14184) 2023-12-02 15:53:49 -08:00
Bagatur
15c04a5670 core[patch]: Release 0.0.9 (#14182) 2023-12-02 14:40:56 -08:00
James Braza
bdb6ae2ed3 core[patch]: BaseTracer helper method for Run lookup (#14139)
I observed the same run ID extraction logic is repeated many times in
`BaseTracer`.

This PR creates a helper method for DRY code.
2023-12-02 14:05:50 -08:00
Harutaka Kawamura
41ee3be95f langchain[patch]: Support passing parameters to llms.Databricks and llms.Mlflow (#14100)
Before, we need to use `params` to pass extra parameters:

```python
from langchain.llms import Databricks

Databricks(..., params={"temperature": 0.0})
```

Now, we can directly specify extra params:

```python
from langchain.llms import Databricks

Databricks(..., temperature=0.0)
```
2023-12-01 19:27:18 -08:00
Abdul
82102c99b3 langchain[patch]: Running SQLDatabaseChain adds prefix "SQLQuery:\n" (#14058)
- **Issue:** https://github.com/langchain-ai/langchain/issues/12077

---------

Co-authored-by: Abdul Kader Maliyakkal <maliyakk@amazon.com>
2023-12-01 19:26:16 -08:00
Samuel Kemp
fd781c89cc langchain[minor]: add azure ai data document loader (#13404)
This PR adds an "Azure AI data" document loader, which allows Azure AI
users to load their registered data assets as a document object in
langchain.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 19:25:55 -08:00
James Braza
24385a00de core[minor], langchain[patch], experimental[patch]: Added missing py.typed to langchain_core (#14143)
See PR title.

From what I can see, `poetry` will auto-include this. Please let me know
if I am missing something here.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 19:15:23 -08:00
quantum00549
f7c257553d langchain[patch]: fixed a bug that was causing the streaming transfer to not work… (#10827)
… properly

Fixed a bug that was causing the streaming transfer to not work
properly.
 - **Description: 
1、The on_llm_new_token method in the streaming callback can now be
called properly in streaming transfer mode.
2、In streaming transfer mode, LLM can now correctly output the complete
response instead of just the first token.
- **Tag maintainer: @wangxuqi 
- **Twitter handle: @kGX7XJjuYxzX9Km

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 18:57:50 -08:00
Eugene Yurtsev
6d0209e0aa Improve file system blob loader and generic loader (#14004)
* Add support for passing a specific file to the file system blob loader
* Allow specifying a class parameter for the parser for the generic
loader

```python

class AudioLoader(GenericLoader):
  @staticmethod
  def get_parser(**kwargs):
     return MyAudioParser(**kwargs):
```

The intent of the GenericLoader is to provide on-ramps from different
sources (e.g., web, s3, file system).

An alternative is to use pipelining syntax or creating a Pipeline

```
FileSystemBlobLoader(...) | MyAudioParser
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 21:23:40 -05:00
Erick Friis
700428593a fix broken api docs links (#14154) 2023-12-01 17:17:52 -08:00
Bagatur
340b42d8ee docs[minor]: lcel why page (#14089) 2023-12-01 16:13:31 -08:00
Lance Martin
cbe4753e1a Update Open CLIP embd (#14155)
Prior default model required a large amt of RAM and often crashed
Jupyter ntbk kernel.
2023-12-01 15:13:20 -08:00
Erick Friis
b01d9d27d9 docs[patch]: docs local build (#14152) 2023-12-01 14:03:36 -08:00
Alex Kira
0caef3cde7 Change RunnableMap to RunnableParallel for consistency (#14142)
- **Description:** Change instances of RunnableMap to RunnableParallel,
as that should be the one used going forward. This makes it consistent
across the codebase.
2023-12-01 13:36:40 -08:00
Erick Friis
96f6b90349 templates[patch]: relock templates (#14149) 2023-12-01 13:35:54 -08:00
Martin Jul
e3a7c96a8e docs[patch]: Fix minor typos (casing) in quickstart (#14138)
Fix casing of API and LangChain in the description text for the
LangServe example server.
2023-12-01 13:29:53 -08:00
Erick Friis
8cf4cb9e48 docs[patch]: Fix templates/index (#14146) 2023-12-01 13:09:36 -08:00
Amyh102
b6d26d3f9f infra[patch]: Add unit tests for Huggingface dataset loader (#14053)
- **Description:** Add unit tests for huggingface dataset loader and
sample huggingface dataset for future tests. Updates dependencies for
`datasets` module.
- Adds coverage for [previous pull
request](https://github.com/langchain-ai/langchain/pull/13864)
  - **Tag maintainer:** @hwchase17

---------

Co-authored-by: Amy Han <amyhan@Amys-Air.lan>
Co-authored-by: Amy Han <amyhan@Amys-MacBook-Air.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 12:42:31 -08:00
Alex Kira
6eb40db353 docs[patch]: Add getting started section to LCEL doc (#14045)
### Description:
Doc addition for LCEL introduction. Adds a more basic starter guide for
using LCEL.

---------

Co-authored-by: Alex Kira <akira@Alexs-MBP.local.tld>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 12:23:43 -08:00
Govinda Totla
62a3473ac0 docs[patch]: add text_splitter.py test (#14025)
Description: Add HTMLHeaderTextSplitter unit test
Dependencies: none
2023-12-01 11:57:50 -08:00
Bagatur
7d5341dbd3 docs[patch]: add contribs to readme (#14137) 2023-12-01 11:34:28 -08:00
axiangcoding
1b36ddf16c docs[patch]: add deprecated note for ErnieChatBot (#14061)
- **Description:** just a little change of ErnieChatBot class
description, sugguesting user to use more suitable class
  - **Issue:** none,
  - **Dependencies:** none,
  - **Tag maintainer:** @baskaryan ,
  - **Twitter handle:** none
2023-12-01 11:16:31 -08:00
Alex Kira
1757258b2a docs[patch]: Add mermaid JS theme dependency to docusaurus (#14051)
- **Description:** Add mermaid JS dependency and configs to
documentation. Allows inline doc diagrams in markdown.
  - **Dependencies:** NPM package @docusaurus/theme-mermaid
2023-12-01 11:06:29 -08:00
Devin Dahoon Kim
32da0a4d71 langchain[patch]: use async_embed_with_retry in _aget_len_safe_embeddings (#14110)
**Description**

`embed_with_retry` is for sync operations and not for async operations.
Use `async_embed_with_retry` for appropriate async operations.


I'm using `OpenAIEmbedding(http_client=httpx.AsyncClient())` with only
async operations.
However, I got an error when I use `embedding.aembed_documents` because
`embed_with_retry` uses sync OpenAI client with async http client.
2023-12-01 10:47:07 -08:00
lijie
371bcb7580 langchain[patch]: set maxsplit when parse python function docstring (#14121)
Description

when the desc of arg in python docstring contains ":", the
`_parse_python_function_docstring` will raise **ValueError: too many
values to unpack (expected 2)**.

A sample desc would be:
"""
Args: 
    error_arg: this is an arg with an additional ":" symbol
"""

So, set `maxsplit` parameter to fix it.
2023-12-01 10:46:53 -08:00
Harrison Chase
ae646701c4 Harrison/ibm (#14133)
Co-authored-by: Mateusz Szewczyk <139469471+MateuszOssGit@users.noreply.github.com>
2023-12-01 12:44:11 -05:00
Eugene Yurtsev
943aa01c14 Improve indexing performance for Postgres (remote database) for refresh for async API (#14132)
This PR speeds up the indexing api on the async path by batching the uid
updates in the sql record manager (which may be remote).
2023-12-01 12:10:07 -05:00
William FH
528fc76d6a Update Prompt Format Error (#14044)
The number of times I try to format a string (especially in lcel) is
embarrassingly high. Think this may be more actionable than the default
error message. Now I get nice helpful errors


```
KeyError: "Input to ChatPromptTemplate is missing variable 'input'.  Expected: ['input'] Received: ['dialogue']"
```
2023-12-01 09:06:35 -08:00
William FH
71c2e184b4 [Nits] Evaluation - Some Rendering Improvements (#14097)
- Improve rendering of aggregate results at the end
- flatten reference if present
2023-12-01 09:06:07 -08:00
Bob Lin
f15859bd86 docs[patch]: Update discord.ipynb (#14099)
### Description

Now if `example` in Message is False, it will not be displayed. Update
the output in this document.

```python
In [22]: m = HumanMessage(content="Text")

In [23]: m
Out[23]: HumanMessage(content='Text')

In [24]: m = HumanMessage(content="Text", example=True)

In [25]: m
Out[25]: HumanMessage(content='Text', example=True)
```

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-01 08:54:31 -08:00
Lance Martin
b07a5a9509 Template for Ollama + Multi-query retriever (#14092) 2023-12-01 08:53:17 -08:00
Bob Lin
75312c3694 docs[patch]: Update facebook.ipynb (#14102)
### Description

Openai version 1.0.0 and later no longer supports the usage of camel
case, So [the
APIs](https://github.com/openai/openai-python/blob/main/api.md#finetuning)
needs to be modified.

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-01 08:49:56 -08:00
Erick Friis
a3ae8e0a41 templates[patch]: opensearch readme update (#14103) 2023-12-01 08:48:00 -08:00
Ean Yang
ac1c8634a8 docs[patch] Update invalid guides link (#14106) 2023-12-01 08:47:38 -08:00
Mark Scannell
9b0e46dcf0 Improve indexing performance for Postgres (remote database) for refresh (#14126)
**Description:** By combining the document timestamp refresh within a
single call to update(), this enables batching of multiple documents in
a single SQL statement. This is important for non-local databases where
tens of milliseconds has a huge impact on performance when doing
document-by-document SQL statements.
**Issue:** #11935 
**Dependencies:** None
**Tag maintainer:** @eyurtsev
2023-12-01 11:36:02 -05:00
Erick Friis
b161f302ff docs[patch]: local docs build <5s (#14096) 2023-11-30 17:39:30 -08:00
Hubert Yuan
80ed588733 docs[patch]: Update metaphor_search.ipynb (#14093)
- **Description:** Touch up of the documentation page for Metaphor
Search Tool integration. Removes documentation for old built-in tool
wrapper.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-30 16:34:05 -08:00
Jacob Lee
3328507f11 langchain[patch], experimental[minor]: Adds OllamaFunctions wrapper (#13330)
CC @baskaryan @hwchase17 @jmorganca 

Having a bit of trouble importing `langchain_experimental` from a
notebook, will figure it out tomorrow

~Ah and also is blocked by #13226~

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-30 16:13:57 -08:00
Bagatur
4063bf144a langchain[patch]: release 0.0.344 (#14095) 2023-11-30 15:57:11 -08:00
Bagatur
efce352d6b core[patch]: release 0.0.8 (#14086) 2023-11-30 15:12:06 -08:00
Harutaka Kawamura
0d08a692a3 langchain[minor]: Migrate mlflow and databricks classes to deployments APIs. (#13699)
## Description

Related to https://github.com/mlflow/mlflow/pull/10420. MLflow AI
gateway will be deprecated and replaced by the `mlflow.deployments`
module. Happy to split this PR if it's too large.

```
pip install git+https://github.com/langchain-ai/langchain.git@refs/pull/13699/merge#subdirectory=libs/langchain
```

## Dependencies

Install mlflow from https://github.com/mlflow/mlflow/pull/10420:

```
pip install git+https://github.com/mlflow/mlflow.git@refs/pull/10420/merge
```

## Testing plan

The following code works fine on local and databricks:

<details><summary>Click</summary>
<p>

```python
"""
Setup
-----
mlflow deployments start-server --config-path examples/gateway/openai/config.yaml
databricks secrets create-scope <scope>
databricks secrets put-secret <scope> openai-api-key --string-value $OPENAI_API_KEY

Run
---
python /path/to/this/file.py secrets/<scope>/openai-api-key
"""
from langchain.chat_models import ChatMlflow, ChatDatabricks
from langchain.embeddings import MlflowEmbeddings, DatabricksEmbeddings
from langchain.llms import Databricks, Mlflow
from langchain.schema.messages import HumanMessage
from langchain.chains.loading import load_chain
from mlflow.deployments import get_deploy_client
import uuid
import sys
import tempfile
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

###############################
# MLflow
###############################
chat = ChatMlflow(
    target_uri="http://127.0.0.1:5000", endpoint="chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))

embeddings = MlflowEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])

llm = Mlflow(
    target_uri="http://127.0.0.1:5000",
    endpoint="completions",
    params={"temperature": 0.1},
)
print(llm("I am"))

llm_chain = LLMChain(
    llm=llm,
    prompt=PromptTemplate(
        input_variables=["adjective"],
        template="Tell me a {adjective} joke",
    ),
)
print(llm_chain.run(adjective="funny"))

# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
    print(tmpdir)
    path = f"{tmpdir}/llm.yaml"
    llm_chain.save(path)
    loaded_chain = load_chain(path)
    print(loaded_chain("funny"))

###############################
# Databricks
###############################
secret = sys.argv[1]
client = get_deploy_client("databricks")

# External - chat
name = f"chat-{uuid.uuid4()}"
client.create_endpoint(
    name=name,
    config={
        "served_entities": [
            {
                "name": "test",
                "external_model": {
                    "name": "gpt-4",
                    "provider": "openai",
                    "task": "llm/v1/chat",
                    "openai_config": {
                        "openai_api_key": "{{" + secret + "}}",
                    },
                },
            }
        ],
    },
)
try:
    chat = ChatDatabricks(
        target_uri="databricks", endpoint=name, params={"temperature": 0.1}
    )
    print(chat([HumanMessage(content="hello")]))
finally:
    client.delete_endpoint(endpoint=name)

# External - embeddings
name = f"embeddings-{uuid.uuid4()}"
client.create_endpoint(
    name=name,
    config={
        "served_entities": [
            {
                "name": "test",
                "external_model": {
                    "name": "text-embedding-ada-002",
                    "provider": "openai",
                    "task": "llm/v1/embeddings",
                    "openai_config": {
                        "openai_api_key": "{{" + secret + "}}",
                    },
                },
            }
        ],
    },
)
try:
    embeddings = DatabricksEmbeddings(target_uri="databricks", endpoint=name)
    print(embeddings.embed_query("hello")[:3])
    print(embeddings.embed_documents(["hello", "world"])[0][:3])
finally:
    client.delete_endpoint(endpoint=name)

# External - completions
name = f"completions-{uuid.uuid4()}"
client.create_endpoint(
    name=name,
    config={
        "served_entities": [
            {
                "name": "test",
                "external_model": {
                    "name": "gpt-3.5-turbo-instruct",
                    "provider": "openai",
                    "task": "llm/v1/completions",
                    "openai_config": {
                        "openai_api_key": "{{" + secret + "}}",
                    },
                },
            }
        ],
    },
)
try:
    llm = Databricks(
        endpoint_name=name,
        model_kwargs={"temperature": 0.1},
    )
    print(llm("I am"))
finally:
    client.delete_endpoint(endpoint=name)


# Foundation model - chat
chat = ChatDatabricks(
    endpoint="databricks-llama-2-70b-chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))

# Foundation model - embeddings
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
print(embeddings.embed_query("hello")[:3])

# Foundation model - completions
llm = Databricks(
    endpoint_name="databricks-mpt-7b-instruct", model_kwargs={"temperature": 0.1}
)
print(llm("hello"))
llm_chain = LLMChain(
    llm=llm,
    prompt=PromptTemplate(
        input_variables=["adjective"],
        template="Tell me a {adjective} joke",
    ),
)
print(llm_chain.run(adjective="funny"))

# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
    print(tmpdir)
    path = f"{tmpdir}/llm.yaml"
    llm_chain.save(path)
    loaded_chain = load_chain(path)
    print(loaded_chain("funny"))

```

Output:

```
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
sorry, but I cannot continue the sentence as it is incomplete. Can you please provide more information or context?
Sure, here's a classic one for you:

Why don't scientists trust atoms?

Because they make up everything!
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmpx_4no6ad
{'adjective': 'funny', 'text': "Sure, here's a classic one for you:\n\nWhy don't scientists trust atoms?\n\nBecause they make up everything!"}
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
 a 23 year old female and I am currently studying for my master's degree
content="\nHello! It's nice to meet you. Is there something I can help you with or would you like to chat for a bit?"
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]

hello back
 Well, I don't really know many jokes, but I do know this funny story...
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmp7_ds72ex
{'adjective': 'funny', 'text': " Well, I don't really know many jokes, but I do know this funny story..."}
```

</p>
</details>

The existing workflow doesn't break:

<details><summary>click</summary>
<p>

```python
import uuid

import mlflow
from mlflow.models import ModelSignature
from mlflow.types.schema import ColSpec, Schema


class MyModel(mlflow.pyfunc.PythonModel):
    def predict(self, context, model_input):
        return str(uuid.uuid4())


with mlflow.start_run():
    mlflow.pyfunc.log_model(
        "model",
        python_model=MyModel(),
        pip_requirements=["mlflow==2.8.1", "cloudpickle<3"],
        signature=ModelSignature(
            inputs=Schema(
                [
                    ColSpec("string", "prompt"),
                    ColSpec("string", "stop"),
                ]
            ),
            outputs=Schema(
                [
                    ColSpec(name=None, type="string"),
                ]
            ),
        ),
        registered_model_name=f"lang-{uuid.uuid4()}",
    )

# Manually create a serving endpoint with the registered model and run
from langchain.llms import Databricks

llm = Databricks(endpoint_name="<name>")
llm("hello")  # 9d0b2491-3d13-487c-bc02-1287f06ecae7
```

</p>
</details> 

## Follow-up tasks

(This PR is too large. I'll file a separate one for follow-up tasks.)

- Update `docs/docs/integrations/providers/mlflow_ai_gateway.mdx` and
`docs/docs/integrations/providers/databricks.md`.

---------

Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-30 15:06:58 -08:00
Tyler Hutcherson
dc31714ec5 templates[patch]: Rag redis template dependency update (#13614)
- **Description:** Update RAG Redis template readme and dependencies.
2023-11-30 12:22:13 -08:00
Jeremy Naccache
a14cf87576 core[patch]: Add **kwargs to Langchain's dumps() to allow passing of json.dumps() … (#10628)
…parameters.

In Langchain's `dumps()` function, I've added a `**kwargs` parameter.
This allows users to pass additional parameters to the underlying
`json.dumps()` function, providing greater flexibility and control over
JSON serialization.

Many parameters available in `json.dumps()` can be useful or even
necessary in specific situations. For example, when using an Agent with
return_intermediate_steps set to true, the output is a list of
AgentAction objects. These objects can't be serialized without using
Langchain's `dumps()` function.

The issue arises when using the Agent with a language other than
English, which may contain non-ASCII characters like 'é'. The default
behavior of `json.dumps()` sets ensure_ascii to true, converting
`{"name": "José"}` into `{"name": "Jos\u00e9"}`. This can make the
output hard to read, especially in the case of intermediate steps in
agent logs.

By allowing users to pass additional parameters to `json.dumps()` via
Langchain's dumps(), we can solve this problem. For instance, users can
set `ensure_ascii=False` to maintain the original characters.

This update also enables users to pass other useful `json.dumps()`
parameters like `sort_keys`, providing even more flexibility.

The implementation takes into account edge cases where a user might pass
a "default" parameter, which is already defined by `dumps()`, or an
"indent" parameter, which is also predefined if `pretty=True` is set.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-30 08:52:24 -08:00
Erick Friis
8078caf764 templates[patch]: rag-google-cloud-sdp readme (#14043) 2023-11-30 08:17:51 -08:00
Yong woo Song
f4d520ccb5 Fix .env file path in integration_test README.md (#14028)
<!-- Thank you for contributing to LangChain!



Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

### Description
Hello, 

The [integration_test
README](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests)
was indicating incorrect paths for the `.env.example` and `.env` files.

`tests/.env.example` ->`tests/integration_tests/.env.example`

While it’s a minor error, it could **potentially lead to confusion** for
the document’s readers, so I’ve made the necessary corrections.

Thank you! ☺️

### Related Issue
- https://github.com/langchain-ai/langchain/pull/2806
2023-11-29 22:14:28 -05:00
Rohan Dey
41a4c06a94 Added support for a Pandas DataFrame OutputParser (#13257)
**Description:**

Added support for a Pandas DataFrame OutputParser with format
instructions, along with unit tests and a demo notebook. Namely, we've
added the ability to request data from a DataFrame, have the LLM parse
the request, and then use that request to retrieve a well-formatted
response.

Within LangChain, it seamlessly integrates with language models like
OpenAI's `text-davinci-003`, facilitating streamlined interaction using
the format instructions (just like the other output parsers).

This parser structures its requests as
`<operation/column/row>[<optional_array_params>]`. The instructions
detail permissible operations, valid columns, and array formats,
ensuring clarity and adherence to the required format.

For example:

- When the LLM receives the input: "Retrieve the mean of `num_legs` from
rows 1 to 3."
- The provided format instructions guide the LLM to structure the
request as: "mean:num_legs[1..3]".

The parser processes this formatted request, leveraging the LLM's
understanding to extract the mean of `num_legs` from rows 1 to 3 within
the Pandas DataFrame.

This integration allows users to communicate requests naturally, with
the LLM transforming these instructions into structured commands
understood by the `PandasDataFrameOutputParser`. The format instructions
act as a bridge between natural language queries and precise DataFrame
operations, optimizing communication and data retrieval.

**Issue:**

- https://github.com/langchain-ai/langchain/issues/11532

**Dependencies:**

No additional dependencies :)

**Tag maintainer:**

@baskaryan 

**Twitter handle:**

No need. :)

---------

Co-authored-by: Wasee Alam <waseealam@protonmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 22:08:50 -05:00
Masanori Taniguchi
235bdb9fa7 Support Vald secure connection (#13269)
**Description:** 
When using Vald, only insecure grpc connection was supported, so secure
connection is now supported.
In addition, grpc metadata can be added to Vald requests to enable
authentication with a token.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-29 22:07:29 -05:00
Nico Puhlmann
54355b651a Update index.mdx (#13285)
grammar correction

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 22:06:33 -05:00
sudranga
d1d693b2a7 Fix issue where response_if_no_docs_found is not implemented on async… (#13297)
Response_if_no_docs_found is not implemented in
ConversationalRetrievalChain for async code paths. Implemented it and
added test cases

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 22:06:13 -05:00
AthulVincent
67c55cb5b0 Implemented MongoDB Atlas Self-Query Retriever (#13321)
# Description 
This PR implements Self-Query Retriever for MongoDB Atlas vector store.

I've implemented the comparators and operators that are supported by
MongoDB Atlas vector store according to the section titled "Atlas Vector
Search Pre-Filter" from
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/.

Namely:
```
allowed_comparators = [
      Comparator.EQ,
      Comparator.NE,
      Comparator.GT,
      Comparator.GTE,
      Comparator.LT,
      Comparator.LTE,
      Comparator.IN,
      Comparator.NIN,
  ]

"""Subset of allowed logical operators."""
allowed_operators = [
    Operator.AND,
    Operator.OR
]
```
Translations from comparators/operators to MongoDB Atlas filter
operators(you can find the syntax in the "Atlas Vector Search
Pre-Filter" section from the previous link) are done using the following
dictionary:
```
map_dict = {
            Operator.AND: "$and",
            Operator.OR: "$or",
            Comparator.EQ: "$eq",
            Comparator.NE: "$ne",
            Comparator.GTE: "$gte",
            Comparator.LTE: "$lte",
            Comparator.LT: "$lt",
            Comparator.GT: "$gt",
            Comparator.IN: "$in",
            Comparator.NIN: "$nin",
        }
```

In visit_structured_query() the filters are passed as "pre_filter" and
not "filter" as in the MongoDB link above since langchain's
implementation of MongoDB atlas vector
store(libs\langchain\langchain\vectorstores\mongodb_atlas.py) in
_similarity_search_with_score() sets the "filter" key to have the value
of the "pre_filter" argument.
```
params["filter"] = pre_filter
```
Test cases and documentation have also been added.

# Issue
#11616 

# Dependencies
No new dependencies have been added.

# Documentation
I have created the notebook mongodb_atlas_self_query.ipynb outlining the
steps to get the self-query mechanism working.

I worked closely with [@Farhan-Faisal](https://github.com/Farhan-Faisal)
on this PR.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 22:05:06 -05:00
Josef Zoller
c2e3963da4 Merriam-Webster Dictionary Tool (#12044)
# Description

We implemented a simple tool for accessing the Merriam-Webster
Collegiate Dictionary API
(https://dictionaryapi.com/products/api-collegiate-dictionary).

Here's a simple usage example:

```py
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType

llm = OpenAI()
tools = load_tools(["serpapi", "merriam-webster"], llm=llm) # Serp API gives our agent access to Google
agent = initialize_agent(
  tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("What is the english word for the german word Himbeere? Define that word.")
```

Sample output:

```
> Entering new AgentExecutor chain...
 I need to find the english word for Himbeere and then get the definition of that word.
Action: Search
Action Input: "English word for Himbeere"
Observation: {'type': 'translation_result'}
Thought: Now I have the english word, I can look up the definition.
Action: MerriamWebster
Action Input: raspberry
Observation: Definitions of 'raspberry':

1. rasp-ber-ry, noun: any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries
2. rasp-ber-ry, noun: a perennial plant (genus Rubus) of the rose family that bears raspberries
3. rasp-ber-ry, noun: a sound of contempt made by protruding the tongue between the lips and expelling air forcibly to produce a vibration; broadly : an expression of disapproval or contempt
4. black raspberry, noun: a raspberry (Rubus occidentalis) of eastern North America that has a purplish-black fruit and is the source of several cultivated varieties —called also blackcap

Thought: I now know the final answer.
Final Answer: Raspberry is an english word for Himbeere and it is defined as any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries.

> Finished chain.
```

# Issue

This closes #12039.

# Dependencies

We added no extra dependencies.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Lara <63805048+larkgz@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 20:28:29 -05:00
Mohammad Mohtashim
f3dd4a10cf DROP BOX Loader Documentation Update (#14047)
- **Description:** Update the document for drop box loader + made the
messages more verbose when loading pdf file since people were getting
confused
  - **Issue:** #13952
  - **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17,

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-29 17:25:35 -08:00
Cheng (William) Huang
a00db4b28f Add multi-input Reddit search tool (#13893)
- **Description:** Added a tool called RedditSearchRun and an
accompanying API wrapper, which searches Reddit for posts with support
for time filtering, post sorting, query string and subreddit filtering.
  - **Issue:** #13891 
  - **Dependencies:** `praw` module is used to search Reddit
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed
  - **Twitter handle:** None.

  Hello,

This is our first PR and we hope that our changes will be helpful to the
community. We have run `make format`, `make lint` and `make test`
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.

Our PR integrates the `praw` package which is already used by
RedditPostsLoader in LangChain. Nonetheless, we have added integration
tests and edited unit tests to test our changes. An example notebook is
also provided. These changes were put together by me, @Anika2000,
@CharlesXu123, and @Jeremy-Cheng-stack

Thank you in advance to the maintainers for their time.

---------

Co-authored-by: What-Is-A-Username <49571870+What-Is-A-Username@users.noreply.github.com>
Co-authored-by: Anika2000 <anika.sultana@mail.utoronto.ca>
Co-authored-by: Jeremy Cheng <81793294+Jeremy-Cheng-stack@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 20:16:40 -05:00
Jawad Arshad
00a6e8962c langchain[minor]: Add serpapi tools (#13934)
- **Description:** Added some of the more endpoints supported by serpapi
that are not suported on langchain at the moment, like google trends,
google finance, google jobs, and google lens
- **Issue:** [Add support for many of the querying endpoints with
serpapi #11811](https://github.com/langchain-ai/langchain/issues/11811)

---------

Co-authored-by: zushenglu <58179949+zushenglu@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Ian Xu <ian.xu@mail.utoronto.ca>
Co-authored-by: zushenglu <zushenglu1809@gmail.com>
Co-authored-by: KevinT928 <96837880+KevinT928@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 14:02:57 -08:00
h3l
dbaeb163aa langchain[minor]: add volcengine endpoint as LLM (#13942)
- **Description:** Volc Engine MaaS serves as an enterprise-grade,
large-model service platform designed for developers. You can visit its
homepage at https://www.volcengine.com/docs/82379/1099455 for details.
This change will facilitate developers to integrate quickly with the
platform.
  - **Issue:** None
  - **Dependencies:** volcengine
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** @he1v3tica

---------

Co-authored-by: lvzhong <lvzhong@bytedance.com>
2023-11-29 13:16:42 -08:00
Mohammad Ahmad
1600ebe6c7 langchain[patch]: Mask API key for ForeFrontAI LLM (#14013)
- **Description:** Mask API key for ForeFrontAI LLM and associated unit
tests
  - **Issue:** https://github.com/langchain-ai/langchain/issues/12165
  - **Dependencies:** N/A
  - **Tag maintainer:** @eyurtsev 
  - **Twitter handle:** `__mmahmad__`

I made the API key non-optional since linting required adding validation
for None, but the key is required per documentation:
https://python.langchain.com/docs/integrations/llms/forefrontai
2023-11-29 13:12:19 -08:00
yoch
a0e859df51 langchain[patch]: fix cohere reranker init #12899 (#14029)
- **Description:** use post field validation for `CohereRerank`
  - **Issue:** #12899 and #13058
  - **Dependencies:** 
  - **Tag maintainer:** @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 12:57:06 -08:00
123-fake-st
9bd6e9df36 update pdf document loaders' metadata source to url for online pdf (#13274)
- **Description:** Update 5 pdf document loaders in
`langchain.document_loaders.pdf`, to store a url in the metadata
(instead of a temporary, local file path) if the user provides a web
path to a pdf: `PyPDFium2Loader`, `PDFMinerLoader`,
`PDFMinerPDFasHTMLLoader`, `PyMuPDFLoader`, and `PDFPlumberLoader` were
updated.
- The updates follow the approach used to update `PyPDFLoader` for the
same behavior in #12092
- The `PyMuPDFLoader` changes required additional work in updating
`langchain.document_loaders.parsers.pdf.PyMuPDFParser` to be able to
process either an `io.BufferedReader` (from local pdf) or `io.BytesIO`
(from online pdf)
- The `PDFMinerPDFasHTMLLoader` change used a simpler approach since the
metadata is assigned by the loader and not the parser
  - **Issue:** Fixes #7034
  - **Dependencies:** None


```python
# PyPDFium2Loader example:
# old behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': '/var/folders/7z/d5dt407n673drh1f5cm8spj40000gn/T/tmpm5oqa92f/tmp.pdf', 'page': 0}

# new behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': 'https://arxiv.org/pdf/1706.03762.pdf', 'page': 0}
```
2023-11-29 15:07:46 -05:00
Toshish Jawale
6f64cb5078 Remove deprecated param and flexibility for prompt (#13310)
- **Description:** Updated to remove deprecated parameter penalty_alpha,
and use string variation of prompt rather than json object for better
flexibility. - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** @symbldotai

---------

Co-authored-by: toshishjawale <toshish@symbl.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 14:48:25 -05:00
Tomaz Bratanic
3eb391561b langchain[minor]: Reduce the number of tokens required to describe a Cypher/Neo4j schema (#13851)
Instead of using JSON-like syntax to describe node and relationship
properties we changed to a shorter and more concise schema description

Old:

```
        Node properties are the following:
        [{'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Movie'}, {'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Actor'}]
        Relationship properties are the following:
        []
        The relationships are the following:
        ['(:Actor)-[:ACTED_IN]->(:Movie)']
```

New:

```
Node properties are the following:
Movie {name: STRING},Actor {name: STRING}
Relationship properties are the following:

The relationships are the following:
(:Actor)-[:ACTED_IN]->(:Movie)
```
2023-11-29 11:13:12 -08:00
Sauhaard
7ec4dbeb80 langchain[minor]: Add StackExchange API integration (#14002)
Implements
[#12115](https://github.com/langchain-ai/langchain/issues/12115)

Who can review?
@baskaryan , @eyurtsev , @hwchase17 

Integrated Stack Exchange API into Langchain, enabling access to diverse
communities within the platform. This addition enhances Langchain's
capabilities by allowing users to query Stack Exchange for specialized
information and engage in discussions. The integration provides seamless
interaction with Stack Exchange content, offering content from varied
knowledge repositories.

A notebook example and test cases were included to demonstrate the
functionality and reliability of this integration.

- Add StackExchange as a tool.
- Add unit test for the StackExchange wrapper and tool.
- Add documentation for the StackExchange wrapper and tool.

If you have time, could you please review the code and provide any
feedback as necessary! My team is welcome to any suggestions.

---------

Co-authored-by: Yuval Kamani <yuvalkamani@gmail.com>
Co-authored-by: Aryan Thakur <aryanthakur@Aryans-MacBook-Pro.local>
Co-authored-by: Manas1818 <79381912+manas1818@users.noreply.github.com>
Co-authored-by: aryan-thakur <61063777+aryan-thakur@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 10:32:07 -08:00
Bagatur
d4405bc94e langchain[patch]: Release 0.0.343 (#14037) 2023-11-29 10:31:03 -08:00
Erick Friis
3c29b0ded5 templates[patch]: template pyproject updates (#14035) 2023-11-29 10:21:18 -08:00
Yves Zumbühl
9c0ad0cebb langchain[patch]: Improve HyDe with custom prompts and ability to supply the run_manager (#14016)
- **Description:** The class allows to only select between a few
predefined prompts from the paper. That is not ideal, since other use
cases might need a custom prompt. The changes made allow for this. To be
able to monitor those, I also added functionality to supply a custom
run_manager.
  - **Issue:** no issue, but a new feature,
  - **Dependencies:** none,
  - **Tag maintainer:** @hwchase17,
  - **Twitter handle:** @yvesloy

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 09:40:53 -08:00
Anton Romanov
4964278ce4 docs[patch]: Update typo in map.ipynb (#14030)
fix the typo in docs, using "with" instead of "when"
2023-11-29 09:14:29 -08:00
Chad Norvell
1c4bfb8c5f langchain[patch]: Mathpix PDF loader supports arbitrary extra params (#13950)
- **Description:** Support providing whatever extra parameters you want
to the Mathpix PDF loader API request.
  - **Issue:** #12773
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 02:12:32 -08:00
Unai Garay Maestre
9e2ae866c4 langchain[patch]: Adds progress bar to GooglePalmEmbeddings (#13812)
- **Description:** Adds a tqdm progress bar to GooglePalmEmbeddings when
embedding a list.
  - **Issue:** #13637
  - **Dependencies:** TQDM as a main dependency (instead of extra)


Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>

---------

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 01:58:53 -08:00
Richie
1cd9d5f332 docs[patch]: fix typo langchain version for mongodb integration (#14006)
- **Description:** update minimal supported langchain version for
[mongodb atlast integration
webpage](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
- **Issue:** none
- **Dependencies:** none

-----

Just fixing a typo. 
In [mongodb atlas vectorstore integration
page](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas),
`langchain` support for `$vectorSearch MQL stage` should be `0.0.305`
rather than `0.0.35`
2023-11-28 21:20:30 -08:00
David Norman
a578076aea Mask api key for Together LLM (#13981)
- **Description:** Add unit tests and mask api key for Together LLM
- **Issue:** the issue
https://github.com/langchain-ai/langchain/issues/12165 ,
  - **Dependencies:** N/A
  - **Tag maintainer:** ?,
  - **Twitter handle:** N/A

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-28 22:57:40 -05:00
Pavel Zwerschke
5f5c701f2c docs: Install langsmith from conda-forge (#13335)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

langsmith is available on conda-forge as well and also a dependency of
the package so it gets installed either way by conda
306ed13308/recipe/meta.yaml (L43)
2023-11-28 22:44:02 -05:00
Piotr Ząbek
d0b818b634 DOCS: added missing imports (#13736) (#13737)
- **Description:** Fixed missing imports in docs 
- **Issue:**
[#13736](https://github.com/langchain-ai/langchain/issues/13736)
- **Dependencies:** N/A
2023-11-28 22:42:43 -05:00
Johnny
6463d2d0bd small fix matching engine AttributeError - object has no attribute (#13763)
This PR is fixing an attributeError: object endpoint has no attribute
"_public_match_client" when using gcp matching engine with private VPC
network.

@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-28 22:42:29 -05:00
Amyh102
750485eaa8 Add object parsing functionality (#13864)
* **Description:** Parses huggingface dataset Sequence objects into
strings for Document loading.
* **Issue:** Fixes #10674 
* **Tag maintainter:** @baskaryan @eyurtsev

---------

Co-authored-by: Amy Han <amyhan@Amys-Air.lan>
Co-authored-by: Amy Han <amyhan@Amys-MacBook-Air.local>
2023-11-28 22:33:16 -05:00
ggeutzzang
981f78f920 Fix: (issue #13825) Getting an error with DallEAPIWrapper (#13874)
- **Description:** As of OpenAI's Python package 1.0, the existing
DallEAPIWrapper does not work correctly, so the example in the LangChain
Documentation link below does not work either.

https://python.langchain.com/docs/integrations/tools/dalle_image_generator
Also, since OpenAI only supports DALL-E version 2 or version 3, I
modified the DallEAPIWrapper to support it.

  - **Issue:** #13825 

  - **Twitter handle:** ggeutzzang
2023-11-28 22:31:25 -05:00
Kunal
74045bf5c0 max length attribute for spacy splitter for large docs (#13875)
For large size documents spacy splitter doesn't work it throws an error
as shown in below screenshot.
Reason its default max_length is 1000000 and there is no option to
increase it. So i added it in this PR.


![image](https://github.com/langchain-ai/langchain/assets/73680423/613625c3-0e21-4834-9aad-2a73cf56eecc)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-28 22:30:26 -05:00
Yusuf Khan
0bc7c1b5b4 Add Outline provider doc (#13938)
- **Description:** Added a provider doc to `docs/integrations/providers`
for the new Outline integration in #13889
  - **Tag maintainer:** @baskaryan
2023-11-28 22:29:30 -05:00
colton
643d28847d [docs] fix reduce prompt in summarization example (#13726)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Small fix to _summarization_ example, `reduce_template` should use
`{docs}` variable.

Bug likely introduced as following code suggests using
`hub.pull("rlm/map-prompt")` instead of defined prompt.
2023-11-28 22:22:42 -05:00
Wang Wei
fe9341a29c feat: Add ERNIE-Bot-8K model support for ErnieBotChat. (#13716)
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/6lp69is2a, add ERNIE-Bot-8K
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-8K, you should have the
model's access authority.
2023-11-28 22:22:23 -05:00
Leonid Ganeline
5c28bb63dd docs microsoft page updates (#14000)
The Excel, PowerPoint and SharePoint document loaders were missed in the
`Microsoft` platform page.
- added these references
2023-11-28 22:20:21 -05:00
Leonid Ganeline
15b32cfcd4 docs OpenAI platform page update (#14001)
Missed the OpenAI adapter reference in the OpenAI platform page
- Added this reference
2023-11-28 22:08:21 -05:00
Burak Ömür
0e462b72ef Update openai/create_llm_result function to consider kwargs (#13815)
Replace this entire comment with:
- **Description:** updates `create_llm_result` function within
`openai.py` to consider latest `params`,
  - **Issue:** #8928
  - **Dependencies:** -,
  - **Tag maintainer:** -
  - **Twitter handle:** [burkomr](https://twitter.com/burkomr)

<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17. -->

---------

Co-authored-by: Burak Ömür <burakomur@retorio.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-28 22:02:38 -05:00
chyroc
f97ab84c6b Merge pull request #13907
* feat: mask api_key for jina
2023-11-28 21:24:50 -05:00
nhywieza
9b86fb3fcb secretStr for baichuan chat model api key (#13946)
Merge pull request #13946
* secretStr for baichuan chat model api key
2023-11-28 21:20:23 -05:00
卢靖轩
aff1dba252 Merge pull request #13945
* feat: mask api key for nlpcloud
2023-11-28 21:16:36 -05:00
Leonid Kuligin
85bb3a418c Switched VertexAI models from preview (#13657)
Replace this entire comment with:
- **Description:** VertexAI models are now GA, moved away from using
preview ones from the SDK
  - **Issue:** #13606

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-28 20:38:04 -05:00
WaseemH
a47f1da884 docs[patch]: RAG Cookbook example fix (#13914)
### Description:
Hey 👋🏽  this is a small docs example fix. Hoping it helps future developers  who are working with Langchain.

### Problem:
Take a look at the original example code. You were not able to get the `dialogue_turn[0]` while it was a tuple.

Original code:
```python
def _format_chat_history(chat_history: List[Tuple]) -> str:
    buffer = ""
    for dialogue_turn in chat_history:
        human = "Human: " + dialogue_turn[0]
        ai = "Assistant: " + dialogue_turn[1]
        buffer += "\n" + "\n".join([human, ai])
    return buffer
```
In the original code you were getting this error:
```bash
    human = "Human: " + dialogue_turn[0].content
                        ~~~~~~~~~~~~~^^^
TypeError: 'HumanMessage' object is not subscriptable
```
### Solution:
The fix is to just for loop over the chat history and look to see if its a human or ai message and add it to the buffer.
2023-11-28 17:37:03 -08:00
Erick Friis
5eca1bd93f Library Licenses (#13300)
Same change as #8403 but in other libs

also updates (c) LangChain Inc. instead of @hwchase17
2023-11-28 17:34:27 -08:00
Bagatur
14799b139a infra[patch]: add base deps and fix docs lint (#13998) 2023-11-28 17:27:37 -08:00
Théo LEBRUN
926d4cfda7 Set default region from boto3 session for Bedrock (#13694)
- **Description:** Set default region from boto3 session for Bedrock 
- **Issue:** #13683
2023-11-28 20:26:54 -05:00
Snow
1a33e5b500 Repair Wikipedia document loader load_max_docs and improve test coverage. (#13769)
**Description:** 

Repair Wikipedia document loader `load_max_docs` and improve test
coverage.

**Issue:** 

The Wikipedia document loader was not respecting the `load_max_docs`
paramater (not reported) and would always return a maximum of 10
documents. This is because the API wrapper (in `utilities/wikipedia.py`)
wasn't passing `top_k_results` to the underlying [Wikipedia
library](https://wikipedia.readthedocs.io/en/latest/code.html#module-wikipedia).
By default this library returns 10 results.

The default number of results for the document loader has been reduced
from 100 to 25. This is because loading 100 results takes a very long
time and is an inconvenient default. It should possibly be 10.

In addition, the documentation for the loader reported that there was a
hard limit (300) on the number of documents returned. In actuality 300
is the maximum Wikipedia query character length set by the API wrapper.

Tests have been added for the document loader (previously missing) and
to test the correct numbers of documents are being returned by each
class, both by default, and when overridden. Also repaired is the
`assert_docs` test which has been updated to correctly test for the
default metadata (which includes `source` in recent releases).

**Dependencies:** 
nil

**Tag maintainer:**
@leo-gan

**Twitter handle:**
@queenvictoria
2023-11-28 20:26:40 -05:00
Bob Lin
04c4878306 Remove python_repl from _BASE_TOOLS (#13962)
### **Description:**

Previously `python_repl` was a built-in tool, but now it has been moved
to `langchain_experimental`.

When I use `load_tools` I get an error:

```python
In [1]: from langchain.agents import load_tools

In [2]: load_tools(["python_repl"])
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
Cell In[2], line 1
----> 1 load_tools(["python_repl"])

File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:530, in load_tools(tool_names, llm, callbacks, **kwargs)
    528     tool_names.extend(requests_method_tools)
    529 elif name in _BASE_TOOLS:
--> 530     tools.append(_BASE_TOOLS[name]())
    531 elif name in _LLM_TOOLS:
    532     if llm is None:

File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:84, in _get_python_repl()
     83 def _get_python_repl() -> BaseTool:
---> 84     raise ImportError(
     85         "This tool has been moved to langchain experiment. "
     86         "This tool has access to a python REPL. "
     87         "For best practices make sure to sandbox this tool. "
     88         "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md "
     89         "To keep using this code as is, install langchain experimental and "
     90         "update relevant imports replacing 'langchain' with 'langchain_experimental'"
     91     )

ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental'
```

In this case, it will be very confusing. I think it is no longer a
built-in tool now, so it can be removed from `_BASE_TOOLS`

### **Issue:** 

https://github.com/langchain-ai/langchain/issues/13858,
https://github.com/langchain-ai/langchain/issues/13859,
https://github.com/langchain-ai/langchain/issues/13856
### **Twitter handle:** 

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-11-28 20:13:54 -05:00
Leonid Ganeline
52eee458bb renamed google_vertex_ai_vector_search notebook (#13484)
The `integrations/vectorstores/matchingengine.ipynb` example has the
"Google Vertex AI Vector Search" title. This place this Title in the
wrong order in the ToC (it is sorted by the file name).
- Renamed `integrations/vectorstores/matchingengine.ipynb` into
`integrations/vectorstores/google_vertex_ai_vector_search.ipynb`.
- Updated a correspondent comment in docstring
- Rerouted old URL to a new URL

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-28 16:58:29 -08:00
Leonid Ganeline
f5326cfb4e docs[patch]: link to LangSmith docs (#13740)
It happens that there is no link to the LangSmith Docs from the LangChain Docs.
Added this link
2023-11-28 16:44:45 -08:00
Leonid Ganeline
bf5787f58b experimental[patch]: fixed namespace bug (#13585)
It was :
`from langchain.schema.prompts import BasePromptTemplate`
but because of the breaking change in the ns, it is now
`from langchain.schema.prompt_template import BasePromptTemplate`

This bug prevents building the API Reference for the langchain_experimental
2023-11-28 16:40:27 -08:00
Leonid Ganeline
1ab8a14742 docs[patch]: top menu (#13748)
Addressed this issue with the top menu: It allocates too much space. If the screen is small, then the top menu items are split into two lines and look unreadable.
Another issue is with several top menu items: "Chat our docs" and "Also by LangChain". They are compound of several words which also hurts readability. The top menu items should be 1-word size.
Updates:
- "Chat our docs" -> "Chat" (the meaning is clean after clicking/opening the item)
- "Also by LangChain" -> "🦜🔗"
- "🦜🔗" moved before "Chat" item. This new item is partially copied from the first left item, the "🦜🔗 LangChain". This design (with two 🦜🔗 elements, visually splits the top menu into two parts. The first item in each part holds the 🦜🔗 symbols and, when we click the second 🦜🔗 item, it opens the drop-down menu. So, we've got two visually similar parts, which visually split the top menu on the right side: the LangChain Docs (and Doc-related items) and the lift side: other LangChain.ai (company) products/docs.
2023-11-28 16:35:38 -08:00
Bob Lin
41b3968d39 docs[patch]: Update CONTRIBUTING.md doc (#13965)
- **Description:** The new demo notebook should be placed in
[docs/docs/modules](https://github.com/langchain-ai/langchain/tree/master/docs/docs/modules)
  - **Twitter handle:**  lin_bob57617

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-28 16:32:25 -08:00
Taqi Jaffri
144710ad9a langchain[minor]: Updated DocugamiLoader, includes breaking changes (#13265)
There are the following main changes in this PR:

1. Rewrite of the DocugamiLoader to not do any XML parsing of the DGML
format internally, and instead use the `dgml-utils` library we are
separately working on. This is a very lightweight dependency.
2. Added MMR search type as an option to multi-vector retriever, similar
to other retrievers. MMR is especially useful when using Docugami for
RAG since we deal with large sets of documents within which a few might
be duplicates and straight similarity based search doesn't give great
results in many cases.

We are @docugami on twitter, and I am @tjaffri

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-28 15:56:22 -08:00
Bagatur
a20e8f8bb0 experimental[patch]: release 0.0.43 (#13570) 2023-11-28 15:38:09 -08:00
juan-calvo-datatonic
6137894008 templates[minor]: Add rag google sensitive data protection template (#13921)
This is a template demonstrating how to utilize Google Sensitive Data
Protection in conjunction with ChatVertexAI(). Tagging you @efriis as
you reviewed my last template. :) Thanks!

Proof of successful execution: 

![image](https://github.com/langchain-ai/langchain/assets/82172964/e4d678aa-85c8-482b-b09d-81fe7e912dd4)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-28 15:15:58 -08:00
Erick Friis
8b9dc5e6d3 langchain[patch]: contributing test guide update (#13993) 2023-11-28 14:38:11 -08:00
Bagatur
95a472a85f docs[patch]: install local core (#13990) 2023-11-28 14:36:22 -08:00
Bagatur
d8fe987ef5 langchain[patch]: release 0.0.342 (#13992) 2023-11-28 14:34:57 -08:00
Bagatur
61ec71064a docs[patch]: update stack diagram (#13902) 2023-11-28 14:19:13 -08:00
david qiu
9fb6805be4 langchain[minor]: Add retriever for Knowledge Bases for Amazon Bedrock (#13980)
- **Description:** Adds a retriever implementation for [Knowledge Bases
for Amazon Bedrock](https://aws.amazon.com/bedrock/knowledge-bases/), a
new service announced at AWS re:Invent, shortly before this PR was
opened. This depends on the `bedrock-agent-runtime` service, which will
be included in a future version of `boto3` and of `botocore`. We will
open a follow-up PR documenting the minimum required versions of `boto3`
and `botocore` after that information is available.
  - **Issue:** N/A
  - **Dependencies:** `boto3>=1.33.2, botocore>=1.33.2`
  - **Tag maintainer:** @baskaryan
  - **Twitter handles:** `@pjain7` `@dead_letter_q`

This PR includes a documentation notebook under
`docs/docs/integrations/retrievers`, which I (@dlqqq) have verified
independently.

EDIT: `bedrock-agent-runtime` service is now included in
`boto3>=1.33.2`:
5cf793f493

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-28 14:10:23 -08:00
Bagatur
1aed2d1f08 core[patch]: release 0.0.7 (#13989) 2023-11-28 14:05:01 -08:00
David Duong
eb67f07e32 Track RunnableAssign as a separate run trace (#13972)
Addressing incorrect order being sent to callbacks / tracers, due to the
nature of threading

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-28 22:02:31 +00:00
Nuno Campos
0f255bb6c4 In Runnable.stream_log build up final_output from adding output chunks (#12781)
Add arg to omit streamed_output list, in cases where final_output is
enough this saves bandwidth

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-28 21:50:41 +00:00
Nuno Campos
970fe23feb Fixes for opengpts release (#13960) 2023-11-28 21:49:43 +00:00
David Duong
947daaf833 Exclude Bedrock client and credentials_profile_name fields from serialisation (#13603) 2023-11-28 16:34:46 -05:00
Bagatur
48fbc5513d infra[patch], langchain[patch]: fix test deps and upper bound langchain dep on core(#13984) 2023-11-28 13:26:15 -08:00
Stefano Lottini
1fd724293b Astra DB vector store, move constructor docstring to class docstring (#13784)
This PR rearranges the docstring for the `AstraDB` vector store class so
as to have all useful information in the _class_ docstring for ease of
reading.

(incidentally, due to an oversight, the docstring that was in the
constructor ended up buried below some lines of code, thereby
disappearing altogether from accessibility. Apologies.)
2023-11-28 16:25:44 -05:00
Johannes Foulds
fc40bd4cdb AnthropicFunctions function_call compatibility (#13901)
- **Description:** Updates to `AnthropicFunctions` to be compatible with
the OpenAI `function_call` functionality.
- **Issue:** The functionality to indicate `auto`, `none` and a forced
function_call was not completely implemented in the existing code.
  - **Dependencies:** None
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed.
  - **Twitter handle:** None

I have specifically tested this functionality via AWS Bedrock with the
Claude-2 and Claude-Instant models.
2023-11-28 16:22:55 -05:00
Varun
14cc907d35 Update the stable docs link (#13798)
- **Description:** Point to the stable version of documentation, 
  - **Twitter handle:** varunzxzx
2023-11-28 21:11:16 +00:00
mengjincn
05ea4fd37d fix merge None value and non None value error (#13703)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-28 15:49:56 -05:00
Amélie
d2cad53ec0 Fix broken link on Meilisearch vector-store documentation (#13604)
- **Description:** dead link replacement 
  - **Issue:** no open issue

**Note:**
Hi langchain team,
Sorry to open a PR for this concern but we realized that one of the
links present in the documentation booklet was broken 😄
2023-11-28 15:49:32 -05:00
Ali Orozgani
32d794f5a3 iMessage loader: implement message content extraction from attributed… (#13634)
- **Description:** We are adding functionality to extract message
content from the `attributedBody` field of the database, in case the
content is not in the `text` field.
  - **Issue:** Closes #13326 and #10680 
  - **Dependencies:** None.
  - **Tag maintainer:** @eyurtsev, @hwchase17

---------

Co-authored-by: onotate <johnp.pham@mail.utoronto.ca>
2023-11-28 15:45:43 -05:00
William FH
e5256bcb69 [Evals] Add Project Tags (#13982)
Add them to project extra
2023-11-28 11:38:59 -08:00
Rihards Gravis
9e017ff6ba docs[patch]: Reduce largest static image file size (#13508)
- **Description:** Reduce image asset file size used in documentation by
running them via lossless image optimization
([tinypng](https://www.npmjs.com/package/tinypng-cli) was used in this
case). Images wider than 1916px (the maximum width of an image displayed
in documentation) where downsized.
- **Issue:** No issue is created for this, but the large image file
assets caused slow documentation load times
  - **Dependencies:** No dependencies affected
2023-11-28 13:00:53 -05:00
Nuno Campos
e0bcc98436 infra[patch]: Use langchain core in-tree as a dev dependency (#13957)
Using the published version means master is broken for contributors
whenever we make changes in one lib that depend on the other.
2023-11-28 09:23:43 -08:00
unifyh
2703a1b061 Fix MarkdownHeaderTextSplitter not recognizing tilde-fenced code blocks (#13511)
- **Description:** Previously `MarkdownHeaderTextSplitter` did not
consider tilde-fenced code blocks
(https://spec.commonmark.org/0.30/#fenced-code-blocks). This PR fixes
that.
   ````md
   # Bug caused by previous implementation:
   ~~~py
   foo()
   # This is a comment that would be considered header
   bar()
   ~~~
   ````
 - **Tag maintainer:** @baskaryan
2023-11-28 11:52:38 -05:00
Leonid Ganeline
7929b26017 office365 toolkit bug fixes (#13618)
Several bug fixes:
- emails: instead of `bcc` the `cc` is used.
- errors in the truncation descriptions
- no truncation of the `message_search`
Several updates:
- generalized UTC format 
- truncation limit can be changed now in _call()
2023-11-28 11:49:24 -05:00
William FH
60309341bd Eval Error Key (#13974) 2023-11-28 08:38:30 -08:00
Erick Friis
f9bef600f1 RELEASE: core 0.0.7 (#13973) 2023-11-28 10:28:28 -05:00
Nicolas Bondoux
e17edc4d0b RunnableLambda: create afunc instance from func when not provided (#13408)
Fixes #13407.

This workaround consists in letting the RunnableLambda create its
self.afunc from its self.func when self.afunc is not provided; the
change has no dependency.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
2023-11-28 11:18:26 +00:00
Nuno Campos
391f200eaa Implement stream() and astream() for agents (#12783)
```
---- chunk 1
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]}
---- chunk 2
{'messages': [FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search')],
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”")]}
---- chunk 3
{'actions': [AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]}
---- chunk 4
{'messages': [FunctionMessage(content='25 years', name='Search')],
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years')]}
---- chunk 5
{'actions': [AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})]}
---- chunk 6
{'messages': [FunctionMessage(content='Answer: 3.991298452658078', name='Calculator')],
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
---- chunk 7
{'messages': [AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
 'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
           'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
           'power is approximately 3.99.'}
---- final
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]),
             AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]),
             AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}}),
              FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search'),
              AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}}),
              FunctionMessage(content='25 years', name='Search'),
              AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}}),
              FunctionMessage(content='Answer: 3.991298452658078', name='Calculator'),
              AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
 'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
           'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
           'power is approximately 3.99.',
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”"),
           AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years'),
           AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
```
2023-11-28 08:11:37 +00:00
Michael Feil
686162670e langchain[minor]: Adding infinity embedding integration. (#13928)
This adds integation to https://github.com/michaelfeil/infinity. Users
requested it in https://github.com/michaelfeil/infinity/issues/36
@saatvikshah

Follows my implementation of gradient.ai.

Feedback 1: Well done - I love your CI / repo / poetry setup - I adapted
a lot in https://github.com/michaelfeil/infinity.
Feedback 2: Not so good: The openai integration contains to much reverse
engineering - in general projects such as michaelfeil/infinity and
huggingface/text-embeddings-inference are compatible to the `pip install
openai` package.

Reverse engineering like this one is really hindering the use for me:

8e88ba16a8/libs/langchain/langchain/embeddings/openai.py (L347)

8e88ba16a8/libs/langchain/langchain/embeddings/openai.py (L351)
- it is about preventing 3rd party providers to use the same url + uses
interfaces of openai, that are not publically documented.
2023-11-27 16:43:47 -08:00
Bagatur
10a6e7cbb6 langchain[patch], core[patch]: Make common utils public (#13932)
- rename `langchain_core.chat_models.base._generate_from_stream` -> `generate_from_stream`
- rename `langchain_core.chat_models.base._agenerate_from_stream` -> `agenerate_from_stream`
- export `langchain_core.utils.utils.build_extra_kwargs` from `langchain_core.utils`
2023-11-27 15:34:46 -08:00
Oleksandr Yaremchuk
c0277d06e8 experimental[patch] Update prompt injection model (#13930)
- **Description:** Existing model used for Prompt Injection is quite
outdated but we fine-tuned and open-source a new model based on the same
model deberta-v3-base from Microsoft -
[laiyer/deberta-v3-base-prompt-injection](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection).
It supports more up-to-date injections and less prone to
false-positives.
  - **Dependencies:** No
  - **Tag maintainer:** -
  - **Twitter handle:** @alex_yaremchuk

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 17:56:53 -05:00
Bob Lin
e6ebde9688 experimental[patch]: Add experimental.agent imports (#13839)
- **Description:** The experimental package needs to be compatible with
the usage of importing agents

For example, if i use `from langchain.agents import
create_pandas_dataframe_agent`, running the program will prompt the
following information:

```
Traceback (most recent call last):
   File "/Users/dongwm/test/main.py", line 1, in <module>
     from langchain.agents import create_pandas_dataframe_agent
   File "/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 87, in __getattr__
     raise ImportError(
ImportError: create_pandas_dataframe_agent has been moved to langchain experimental. See https://github.com/langchain-ai/langchain/discussions/11680 for more information.
Please update your import statement from: `langchain.agents.create_pandas_dataframe_agent` to `langchain_experimental.agents.create_pandas_dataframe_agent`.
```

But when I changed to `from langchain_experimental.agents import
create_pandas_dataframe_agent`, it was actually wrong:

```python
Traceback (most recent call last):
  File "/Users/dongwm/test/main.py", line 2, in <module>
    from langchain_experimental.agents import create_pandas_dataframe_agent
ImportError: cannot import name 'create_pandas_dataframe_agent' from 'langchain_experimental.agents' (/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain_experimental/agents/__init__.py)
```

I should use `from langchain_experimental.agents.agent_toolkits import
create_pandas_dataframe_agent`. In order to solve the problem and make
it compatible, I added additional import code to the
langchain_experimental package. Now it can be like this Used `from
langchain_experimental.agents import create_pandas_dataframe_agent`

  - **Twitter handle:** [lin_bob57617](https://twitter.com/lin_bob57617)
2023-11-27 14:03:47 -08:00
Tyler Titsworth
afcfa2a5e7 langchain[patch]: Add progress bar option to OllamaEmbeddings (#13882)
- **Description:** Adds a tqdm progress bar to OllamaEmbeddings when
embedding a list.
- **Issue:** Related to #13637, but extended to Ollama.
- **Dependencies:** `tqdm` made a necessary dependency.

Thanks to @ugm2 for helping identify a common problem. Embeddings take a
very long time to finish on local machines, and require a progress bar
to help identify if one should even attempt the workload.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 13:56:13 -08:00
Kalyan
ec53d983a1 TEMPLATES Add rag-opensearch template (#13501)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Adding rag-opensearch template.

---------

Signed-off-by: kalyanr <kalyan.ben10@live.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-27 16:21:39 -05:00
Leonid Ganeline
e47b9c5285 DOCS: move adapters to integrations (#13862)
Current docs for adapters are in the `Guides/Adapters which is not a
good place.
- moved Adapters into `Integratons/Components/Adapters/
- simplified the OpenAI adapter notebook
- rerouted the old OpenAI adapter page URL to a new one.
2023-11-27 13:05:43 -08:00
jeremyb-data
cd77fba562 Improvement: Weaviate multitenant adddocs (#13827)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** Added a line to pass the tenant parameter to
add_data_object
  - **Issue:** An extra line added from the fix for #9956
  - **Dependencies:** n/a
  - **Tag maintainer:** @baskaryan 

Tested locally, works as expected with the line change.

---------

Co-authored-by: Simon Dai <simon6752@gmail.com>
2023-11-27 12:59:57 -08:00
jiangying
3e30cd8261 NIT: comment typo (#13817) 2023-11-27 12:59:12 -08:00
Manuel Riezebosch
92b07ecaf3 DOCS: fix link to question answering (#13806)
first link in
[overview](https://python.langchain.com/docs/use_cases/question_answering/code_understanding#overview)
2023-11-27 12:56:15 -08:00
Assaf Toledo
ba62ff89cc BUGFIX: Support for elastic indices that don't return 'metadata' in '_source' (#13903)
Description: Some Elastic indexes do not return a 'metadata' field in
'_source'. However, prior to this PR, the code assumed there always is a
'metadata' field. This PR adds support for cases where the field is
missing by adding it manually.

Issue: #13869
2023-11-27 12:52:57 -08:00
Enric Soler Rastrollo
c156d0281a BUGFIX: Use embedding key in azure_cosmos_db index creation (#13919)
Description: Implement embedding key parametrisation
Issue: https://github.com/langchain-ai/langchain/issues/13918
Dependencies: None
Tag maintainer: @hwchase17 @izzymsft
Twitter handle:@MaddogoS
2023-11-27 12:51:08 -08:00
Bagatur
ac67422a3d IMPROVEMENT: import Document from core (#13905) 2023-11-27 12:48:43 -08:00
chyroc
886bc2d50a IMPROVEMENT: fix qianfan validate_environment typo (#13908) 2023-11-27 11:17:27 -08:00
Chengzu Ou
4b8e053fe8 FEATURE: Add Databricks Vector Search as a new vector store (#13621)
**Description:**
This PR adds Databricks Vector Search as a new vector store in
LangChain.

- [x] Add `DatabricksVectorSearch` in `langchain/vectorstores/`
- [x] Unit tests
- [x] Add
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)
as a new optional dependency

We ran the following checks:
- `make format` passed  
- `make lint` failed but the failures were caused by other files
    + Files touched by this PR passed the linter  
- `make test` passed  
- `make coverage` failed but the failures were caused by other files.
Tests added by or related to this PR all passed
+ langchain/vectorstores/databricks_vector_search.py test coverage 94% 
- `make spell_check` passed  

The example notebook and updates to the [provider's documentation
page](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/providers/databricks.md)
will be added later in a separate PR.

**Dependencies:**
Optional dependency:
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 11:07:26 -08:00
Leonid Kuligin
25387db432 BUFIX: add support for various OSS images from Vertex Model Garden (#13917)
- **Description:** add support for various OSS images from Model
Garden
  - **Issue:** #13370
2023-11-27 10:31:53 -08:00
Eugene Yurtsev
e186637921 Document Runnable Binding (#13927)
Document runnable binding
2023-11-27 13:21:27 -05:00
Bagatur
46b3311190 RELEASE: 0.0.341 (#13926) 2023-11-27 09:51:12 -08:00
Nuno Campos
f6b05cacd0 Update root poetry lock with core (#13922)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-27 17:30:44 +00:00
umair mehmood
b3e08f9239 improvement: fix chat prompt loading from config (#13818)
Add loader for loading chat prompt from config file.

fixed: #13667

@efriis 
@baskaryan
2023-11-27 11:39:50 -05:00
Nuno Campos
8a3e0c9afa Add option to prefix config keys in configurable_alts (#13714) 2023-11-27 15:25:17 +00:00
Tomaz Bratanic
4ce5254442 Add Cypher template diagrams (#13913) 2023-11-27 10:18:51 -05:00
Taqi Jaffri
bfc12a4a76 DOCS: Simplified Docugami cookbook to remove code now available in docugami library (#13828)
The cookbook had some code to upload files, and wait for the processing
to finish.

This code is now moved to the `docugami` library so removing from the
cookbook to simplify.

Thanks @rlancemartin for suggesting this when working on evals.

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-27 00:07:24 -08:00
ggeutzzang
3749af79ae DOCS: fixed error in the docstring of RunnablePassthrough class (#13843)
This pull request addresses an issue found in the example code within
the docstring of `libs/core/langchain_core/runnables/passthrough.py`

The original code snippet caused a `NameError` due to the missing import
of `RunnableLambda`. The error was as follows:
```
     12     return "completion"
     13 
---> 14 chain = RunnableLambda(fake_llm) | {
     15     'original': RunnablePassthrough(), # Original LLM output
     16     'parsed': lambda text: text[::-1] # Parsing logic

NameError: name 'RunnableLambda' is not defined
```
To resolve this, I have modified the example code to include the
necessary import statement for `RunnableLambda`. Additionally, I have
adjusted the indentation in the code snippet to ensure consistency and
readability.

The modified code now successfully defines and utilizes
`RunnableLambda`, ensuring that users referencing the docstring will
have a functional and clear example to follow.

There are no related GitHub issues for this particular change.

Modified Code:
```python
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.runnables import RunnableLambda

runnable = RunnableParallel(
    origin=RunnablePassthrough(),
    modified=lambda x: x+1
)

runnable.invoke(1) # {'origin': 1, 'modified': 2}

def fake_llm(prompt: str) -> str: # Fake LLM for the example
    return "completion"

chain = RunnableLambda(fake_llm) | {
    'original': RunnablePassthrough(), # Original LLM output
    'parsed': lambda text: text[::-1] # Parsing logic
}

chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 00:06:55 -08:00
Dylan Williams
1983a39894 FEATURE: Add OneNote document loader (#13841)
- **Description:** Added OneNote document loader
  - **Issue:** #12125
  - **Dependencies:** msal

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-26 23:59:52 -08:00
Ikko Eltociear Ashimine
ff7d4d9c0b Update llamacpp.ipynb (#13840)
specifed -> specified
2023-11-26 23:47:19 -08:00
Tomaz Bratanic
1ad65f7a98 BUGFIX: Fix bugs with Cypher validation (#13849)
Fixes https://github.com/langchain-ai/langchain/issues/13803. Thanks to
@sakusaku-rich
2023-11-26 19:30:11 -08:00
Sᴜᴘᴇʀ Lᴇᴇ
e42e95cc11 docs: fix link to local_retrieval_qa (#13872)
\The original link in [this
section](https://python.langchain.com/docs/use_cases/question_answering/#:~:text=locally%2Drunning%20models-,here,-.):

https://python.langchain.com/docs/modules/use_cases/question_answering/local_retrieval_qa

After fix:

https://python.langchain.com/docs/use_cases/question_answering/local_retrieval_qa
2023-11-26 19:16:46 -08:00
Harrison Chase
6a35831128 BUGFIX: export more types (#13886)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-26 19:15:34 -08:00
Yusuf Khan
935f78c944 FEATURE: Add retriever for Outline (#13889)
- **Description:** Added a retriever for the Outline API to ask
questions on knowledge base
  - **Issue:** resolves #11814
  - **Dependencies:** None
  - **Tag maintainer:** @baskaryan
2023-11-26 18:56:12 -08:00
ggeutzzang
f2af82058f DOCS: Fix Sample Code for Compatibility with Pydantic 2.0 (#13890)
- **Description:** 
I encountered an issue while running the existing sample code on the
page https://python.langchain.com/docs/modules/agents/how_to/agent_iter
in an environment with Pydantic 2.0 installed. The following error was
triggered:

```python
ValidationError                           Traceback (most recent call last)
<ipython-input-12-2ffff2c87e76> in <cell line: 43>()
     41 
     42 tools = [
---> 43     Tool(
     44         name="GetPrime",
     45         func=get_prime,

2 frames
/usr/local/lib/python3.10/dist-packages/pydantic/v1/main.py in __init__(__pydantic_self__, **data)
    339         values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
    340         if validation_error:
--> 341             raise validation_error
    342         try:
    343             object_setattr(__pydantic_self__, '__dict__', values)

ValidationError: 1 validation error for Tool
args_schema
  subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)
```

I have made modifications to the example code to ensure it functions
correctly in environments with Pydantic 2.0.
2023-11-26 18:21:13 -08:00
Harrison Chase
968ba6961f add skeleton of thought (#13883) 2023-11-26 19:31:41 -05:00
Bagatur
0efa59cbb8 RELEASE: 0.0.339rc3 (#13852) 2023-11-25 10:37:30 -08:00
Bagatur
7222c42077 RELEASE: core 0.0.6 (#13853) 2023-11-25 10:21:14 -08:00
raelix
c172605ea6 IMPROVEMENT: Added title metadata to GoogleDriveLoader for optional File Loaders (#13832)
- **Description:** Simple change, I just added title metadata to
GoogleDriveLoader for optional File Loaders
  - **Dependencies:** no dependencies
  - **Tag maintainer:** @hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-24 18:53:55 -08:00
Stefano Lottini
19c68c7652 FEATURE: Astra DB, LLM cache classes (exact-match and semantic cache) (#13834)
This PR provides idiomatic implementations for the exact-match and the
semantic LLM caches using Astra DB as backend through the database's
HTTP JSON API. These caches require the `astrapy` library as dependency.

Comes with integration tests and example usage in the `llm_cache.ipynb`
in the docs.

@baskaryan this is the Astra DB counterpart for the Cassandra classes
you merged some time ago, tagging you for your familiarity with the
topic. Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-24 18:53:37 -08:00
Stefano Lottini
272df9dcae Astra DB, chat message history (#13836)
This PR adds a chat message history component that uses Astra DB for
persistence through the JSON API.
The `astrapy` package is required for this class to work.

I have added tests and a small notebook, and updated the relevant
references in the other docs pages.

(@rlancemartin this is the counterpart of the Cassandra equivalent class
you so helpfully reviewed back at the end of June)

Thank you!
2023-11-24 18:12:29 -08:00
Bagatur
58f7e109ac BUGFIX: Add import types and typevars from core (#13829) 2023-11-24 17:04:10 -08:00
Bagatur
751226e067 bump 0.0.339rc2 (#13787) 2023-11-23 12:50:09 -08:00
Bagatur
300ff01824 RELEASE: core 0.0.5 (#13786) 2023-11-23 12:23:50 -08:00
924 changed files with 74065 additions and 50769 deletions

View File

@@ -23,7 +23,7 @@ It's essential that we maintain great documentation and testing. If you:
- Update any affected example notebooks and documentation. These live in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/modules`.
- Add a demo notebook in `docs/docs/`.
- Add unit and integration tests.
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
@@ -72,9 +72,10 @@ tell Poetry to use the virtualenv python environment (`poetry config virtualenvs
### Core vs. Experimental
This repository contains two separate projects:
This repository contains three separate projects:
- `langchain`: core langchain code, abstractions, and use cases.
- `langchain.experimental`: see the [Experimental README](https://github.com/langchain-ai/langchain/tree/master/libs/experimental/README.md) for more information.
- `langchain_core`: contain interfaces for key abstractions as well as logic for combining them in chains (LCEL).
- `langchain_experimental`: see the [Experimental README](https://github.com/langchain-ai/langchain/tree/master/libs/experimental/README.md) for more information.
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
@@ -128,6 +129,24 @@ make docker_tests
There are also [integration tests and code-coverage](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests/README.md) available.
### Only develop langchain_core or langchain_experimental
If you are only developing `langchain_core` or `langchain_experimental`, you can simply install the dependencies for the respective projects and run tests:
```bash
cd libs/core
poetry install --with test
make test
```
Or:
```bash
cd libs/experimental
poetry install --with test
make test
```
### Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
@@ -214,6 +233,10 @@ ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
You only need to add a new dependency if a **unit test** relies on the package.
If your package is only required for **integration tests**, then you can skip these
steps and leave all pyproject.toml and poetry.lock files alone.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.

View File

@@ -7,10 +7,6 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -44,14 +40,6 @@ jobs:
shell: bash
run: poetry install --with=test_integration
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Check integration tests compile
shell: bash
run: poetry run pytest -m compile tests/integration_tests

View File

@@ -11,10 +11,6 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -72,7 +68,7 @@ jobs:
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with dev,lint,test,typing
poetry install --with lint,typing
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
@@ -82,14 +78,6 @@ jobs:
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
env:

View File

@@ -11,10 +11,6 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -56,14 +52,6 @@ jobs:
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash

View File

@@ -11,10 +11,6 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
langchain-core-location:
required: false
type: string
description: "Relative path to the langchain core library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -46,7 +42,7 @@ jobs:
- name: Install dependencies
shell: bash
run: poetry install
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
@@ -56,14 +52,6 @@ jobs:
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install langchain core editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-core-location }}
env:
LANGCHAIN_CORE_LOCATION: ${{ inputs.langchain-core-location }}
run: |
poetry run pip install -e "$LANGCHAIN_CORE_LOCATION"
- name: Run core tests
shell: bash
run: |

View File

@@ -3,19 +3,19 @@ name: libs/langchain CI
on:
push:
branches: [ master ]
branches: [master]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/*'
- 'libs/langchain/**'
- 'libs/core/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
- ".github/actions/poetry_setup/action.yml"
- ".github/tools/**"
- ".github/workflows/_lint.yml"
- ".github/workflows/_test.yml"
- ".github/workflows/_pydantic_compatibility.yml"
- ".github/workflows/langchain_ci.yml"
- "libs/*"
- "libs/langchain/**"
- "libs/core/**"
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
@@ -33,77 +33,29 @@ env:
jobs:
lint:
uses:
./.github/workflows/_lint.yml
uses: ./.github/workflows/_lint.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
uses: ./.github/workflows/_test.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
compile-integration-tests:
uses:
./.github/workflows/_compile_integration_test.yml
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
uses: ./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/langchain
langchain-core-location: ../core
secrets: inherit
# It's possible that langchain works fine with the latest *published* langchain-core,
# but is broken with the langchain-core on `master`.
#
# We want to catch situations like that *before* releasing a new langchain-core, hence this test.
test-with-latest-langchain-core:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: test with unpublished langchain-core - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ env.WORKDIR }}
cache-key: unpublished-langchain-core
- name: Install dependencies
shell: bash
run: |
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
poetry install
echo "Editably installing langchain-core outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../core
- name: Run tests
run: make test
extended-tests:
runs-on: ubuntu-latest
defaults:

View File

@@ -3,19 +3,19 @@ name: libs/experimental CI
on:
push:
branches: [ master ]
branches: [master]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_experimental_ci.yml'
- 'libs/*'
- 'libs/experimental/**'
- 'libs/langchain/**'
- 'libs/core/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
- ".github/actions/poetry_setup/action.yml"
- ".github/tools/**"
- ".github/workflows/_lint.yml"
- ".github/workflows/_test.yml"
- ".github/workflows/langchain_experimental_ci.yml"
- "libs/*"
- "libs/experimental/**"
- "libs/langchain/**"
- "libs/core/**"
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
@@ -33,26 +33,19 @@ env:
jobs:
lint:
uses:
./.github/workflows/_lint.yml
uses: ./.github/workflows/_lint.yml
with:
working-directory: libs/experimental
langchain-location: ../langchain
langchain-core-location: ../core
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
uses: ./.github/workflows/_test.yml
with:
working-directory: libs/experimental
langchain-location: ../langchain
langchain-core-location: ../core
secrets: inherit
compile-integration-tests:
uses:
./.github/workflows/_compile_integration_test.yml
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/experimental
secrets: inherit

12
LICENSE
View File

@@ -1,6 +1,6 @@
The MIT License
MIT License
Copyright (c) Harrison Chase
Copyright (c) LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
@@ -9,13 +9,13 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -44,6 +44,7 @@ spell_fix:
lint:
poetry run ruff docs templates cookbook
poetry run ruff format docs templates cookbook --diff
poetry run ruff --select I docs templates cookbook
format format_diff:
poetry run ruff format docs templates cookbook

View File

@@ -30,7 +30,7 @@ pip install langchain
With conda:
```bash
pip install langsmith && conda install langchain -c conda-forge
conda install langchain -c conda-forge
```
## 🤔 What is LangChain?
@@ -104,3 +104,7 @@ Please see [here](https://python.langchain.com) for full documentation, which in
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
## 🌟 Contributors
[![langchain contributors](https://contrib.rocks/image?repo=langchain-ai/langchain&max=2000)](https://github.com/langchain-ai/langchain/graphs/contributors)

View File

@@ -34,12 +34,12 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 16,
"id": "5740fc70-c513-4ff4-9d72-cfc098f85fef",
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain docugami==0.0.4 dgml-utils==0.2.0 pydantic langchainhub chromadb --upgrade --quiet"
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet"
]
},
{
@@ -76,98 +76,7 @@
},
{
"cell_type": "code",
"execution_count": 45,
"id": "fc0767d4-9155-4591-855c-ef2e14e0e10f",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import tempfile\n",
"from pathlib import Path\n",
"from pprint import pprint\n",
"from time import sleep\n",
"from typing import Dict, List\n",
"\n",
"import requests\n",
"from docugami import Docugami\n",
"from docugami.types import Document as DocugamiDocument\n",
"\n",
"api_key = os.environ.get(\"DOCUGAMI_API_KEY\")\n",
"if not api_key:\n",
" raise Exception(\"Please set Docugami API key environment variable\")\n",
"\n",
"client = Docugami()\n",
"\n",
"\n",
"def upload_files(local_paths: List[str], docset_name: str) -> List[DocugamiDocument]:\n",
" docset_list_response = client.docsets.list(name=docset_name)\n",
" if docset_list_response and docset_list_response.docsets:\n",
" # Docset already exists with this name\n",
" docset_id = docset_list_response.docsets[0]\n",
" else:\n",
" dg_docset = client.docsets.create(name=docset_name)\n",
" docset_id = dg_docset.id\n",
"\n",
" document_list_response = client.documents.list(limit=int(1e5))\n",
" dg_docs: List[DocugamiDocument] = []\n",
" if document_list_response and document_list_response.documents:\n",
" new_names = [Path(f).name for f in local_paths]\n",
"\n",
" dg_docs = [\n",
" d\n",
" for d in document_list_response.documents\n",
" if Path(d.name).name in new_names\n",
" ]\n",
" existing_names = [Path(d.name).name for d in dg_docs]\n",
"\n",
" # Upload any files not previously uploaded\n",
" for f in local_paths:\n",
" if Path(f).name not in existing_names:\n",
" dg_docs.append(\n",
" client.documents.contents.upload(\n",
" file=Path(f).absolute(),\n",
" docset_id=docset_id,\n",
" )\n",
" )\n",
" return dg_docs\n",
"\n",
"\n",
"def wait_for_xml(dg_docs: List[DocugamiDocument]) -> dict[str, str]:\n",
" dgml_paths: dict[str, str] = {}\n",
" while len(dgml_paths) < len(dg_docs):\n",
" for doc in dg_docs:\n",
" doc = client.documents.retrieve(doc.id) # update with latest\n",
" current_status = doc.status\n",
" if current_status == \"Error\":\n",
" raise Exception(\n",
" \"Document could not be processed, please confirm it is not a zero length, corrupt or password protected file\"\n",
" )\n",
" elif current_status == \"Ready\":\n",
" dgml_url = doc.docset.url + f\"/documents/{doc.id}/dgml\"\n",
" headers = {\"Authorization\": f\"Bearer {api_key}\"}\n",
" dgml_response = requests.get(dgml_url, headers=headers)\n",
" if not dgml_response.ok:\n",
" raise Exception(\n",
" f\"Could not download DGML artifact {dgml_url}: {dgml_response.status_code}\"\n",
" )\n",
" dgml_contents = dgml_response.text\n",
" with tempfile.NamedTemporaryFile(delete=False, mode=\"w\") as temp_file:\n",
" temp_file.write(dgml_contents)\n",
" temp_file_path = temp_file.name\n",
" dgml_paths[doc.name] = temp_file_path\n",
"\n",
" print(f\"{len(dgml_paths)} docs done processing out of {len(dg_docs)}...\")\n",
"\n",
" if len(dgml_paths) == len(dg_docs):\n",
" # done\n",
" return dgml_paths\n",
" else:\n",
" sleep(30) # try again in a bit"
]
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 3,
"id": "ce0b2b21-7623-46e7-ae2c-3a9f67e8b9b9",
"metadata": {},
"outputs": [
@@ -175,18 +84,22 @@
"name": "stdout",
"output_type": "stream",
"text": [
"6 docs done processing out of 6...\n",
"{'Report_CEN23LA277_192541.pdf': '/var/folders/0h/6cchx4k528bdj8cfcsdm0dqr0000gn/T/tmpel3o0rpg',\n",
" 'Report_CEN23LA338_192753.pdf': '/var/folders/0h/6cchx4k528bdj8cfcsdm0dqr0000gn/T/tmpgugb9ut1',\n",
" 'Report_CEN23LA363_192876.pdf': '/var/folders/0h/6cchx4k528bdj8cfcsdm0dqr0000gn/T/tmp3_gf2sky',\n",
" 'Report_CEN23LA394_192995.pdf': '/var/folders/0h/6cchx4k528bdj8cfcsdm0dqr0000gn/T/tmpwmfgoxkl',\n",
" 'Report_ERA23LA114_106615.pdf': '/var/folders/0h/6cchx4k528bdj8cfcsdm0dqr0000gn/T/tmptibrz2yu',\n",
" 'Report_WPR23LA254_192532.pdf': '/var/folders/0h/6cchx4k528bdj8cfcsdm0dqr0000gn/T/tmpvazrbbsi'}\n"
"{'Report_CEN23LA277_192541.pdf': '/tmp/tmpa0c77x46',\n",
" 'Report_CEN23LA338_192753.pdf': '/tmp/tmpaftfld2w',\n",
" 'Report_CEN23LA363_192876.pdf': '/tmp/tmpn7gp6be2',\n",
" 'Report_CEN23LA394_192995.pdf': '/tmp/tmp9udymprf',\n",
" 'Report_ERA23LA114_106615.pdf': '/tmp/tmpxdjbh4r_',\n",
" 'Report_WPR23LA254_192532.pdf': '/tmp/tmpz6h75a0h'}\n"
]
}
],
"source": [
"#### START DOCSET INFO (please change)\n",
"from pprint import pprint\n",
"\n",
"from docugami import Docugami\n",
"from docugami.lib.upload import upload_to_named_docset, wait_for_dgml\n",
"\n",
"#### START DOCSET INFO (please change this values as needed)\n",
"DOCSET_NAME = \"NTSB Aviation Incident Reports\"\n",
"FILE_PATHS = [\n",
" \"/Users/tjaffri/ntsb/Report_CEN23LA277_192541.pdf\",\n",
@@ -197,13 +110,15 @@
" \"/Users/tjaffri/ntsb/Report_WPR23LA254_192532.pdf\",\n",
"]\n",
"\n",
"assert (\n",
" len(FILE_PATHS) > 5\n",
") # Please specify ~6 (or more!) similar files to process together as a document set\n",
"# Note: Please specify ~6 (or more!) similar files to process together as a document set\n",
"# This is currently a requirement for Docugami to automatically detect motifs\n",
"# across the document set to generate a semantic XML Knowledge Graph.\n",
"assert len(FILE_PATHS) > 5, \"Please provide at least 6 files\"\n",
"#### END DOCSET INFO\n",
"\n",
"dg_docs = upload_files(FILE_PATHS, DOCSET_NAME)\n",
"dgml_paths = wait_for_xml(dg_docs)\n",
"dg_client = Docugami()\n",
"dg_docs = upload_to_named_docset(dg_client, FILE_PATHS, DOCSET_NAME)\n",
"dgml_paths = wait_for_dgml(dg_client, dg_docs)\n",
"\n",
"pprint(dgml_paths)"
]
@@ -228,7 +143,7 @@
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 4,
"id": "05fcdd57-090f-44bf-a1fb-2c3609c80e34",
"metadata": {},
"outputs": [
@@ -237,13 +152,13 @@
"output_type": "stream",
"text": [
"found 30 chunks, here are the first few\n",
"Aviation Investigation Final Report\n",
"<table><tbody><tr><td>Location: </td> <td><Location><TownName>Elbert</TownName>, <USState>Colorado </USState></Location></td> <td>Accident Number: </td> <td><AccidentNumber>CEN23LA277 </AccidentNumber></td></tr> <tr><td><LocationDateTime>Date &amp; Time: </LocationDateTime></td> <td><DateTime><EventDate>June 26, 2023</EventDate>, <EventTime>11:00 Local </EventTime></DateTime></td> <td><DateTimeAccidentNumber>Registration: </DateTimeAccidentNumber></td> <td><Registration>N23161 </Registration></td></tr> <tr><td><LocationAircraft>Aircraft: </LocationAircraft></td> <td><Aircraft>Piper <AircraftType>J3C-50 </AircraftType></Aircraft></td> <td><AircraftAccidentNumber>Aircraft Damage: </AircraftAccidentNumber></td> <td><AircraftDamage>Substantial </AircraftDamage></td></tr> <tr><td><LocationDefiningEvent>Defining Event: </LocationDefiningEvent></td> <td><DefiningEvent>Nose over/nose down </DefiningEvent></td> <td><DefiningEventAccidentNumber>Injuries: </DefiningEventAccidentNumber></td> <td><Injuries><Minor>1 </Minor>Minor </Injuries></td></tr> <tr><td><LocationFlightConductedUnder>Flight Conducted Under: </LocationFlightConductedUnder></td> <td><Part91-cell>Part <RegulationPart>91</RegulationPart>: General aviation - Personal </Part91-cell></td><td/><td><FlightConductedUnderCEN23LA277/></td></tr></tbody></table>\n",
"<AviationInvestigationFinalReport-section>Aviation </AviationInvestigationFinalReport-section>Investigation Final Report\n",
"<table><tbody><tr><td>Location: </td> <td><Location><TownName>Elbert</TownName>, <USState>Colorado </USState></Location></td> <td>Accident Number: </td> <td><AccidentNumber>CEN23LA277 </AccidentNumber></td></tr> <tr><td><LocationDateTime>Date &amp; Time: </LocationDateTime></td> <td><DateTime><EventDate>June 26, 2023</EventDate>, <EventTime>11:00 Local </EventTime></DateTime></td> <td><DateTimeAccidentNumber>Registration: </DateTimeAccidentNumber></td> <td><Registration>N23161 </Registration></td></tr> <tr><td><LocationAircraft>Aircraft: </LocationAircraft></td> <td><AircraftType>Piper <AircraftType>J3C-50 </AircraftType></AircraftType></td> <td><AircraftAccidentNumber>Aircraft Damage: </AircraftAccidentNumber></td> <td><AircraftDamage>Substantial </AircraftDamage></td></tr> <tr><td><LocationDefiningEvent>Defining Event: </LocationDefiningEvent></td> <td><DefiningEvent>Nose over/nose down </DefiningEvent></td> <td><DefiningEventAccidentNumber>Injuries: </DefiningEventAccidentNumber></td> <td><Injuries><Minor>1 </Minor>Minor </Injuries></td></tr> <tr><td><LocationFlightConductedUnder>Flight Conducted Under: </LocationFlightConductedUnder></td> <td><FlightConductedUnder><Part91-cell>Part <RegulationPart>91</RegulationPart>: General aviation - Personal </Part91-cell></FlightConductedUnder></td><td/><td><FlightConductedUnderCEN23LA277/></td></tr></tbody></table>\n",
"Analysis\n",
"<TakeoffAccident> The pilot reported that, as the tail lifted during takeoff, the airplane veered left. He attempted to correct with full right rudder and full brakes. However, the airplane subsequently nosed over resulting in substantial damage to the fuselage, lift struts, rudder, and vertical stabilizer. </TakeoffAccident>\n",
"<TakeoffAccident> <Analysis>The pilot reported that, as the tail lifted during takeoff, the airplane veered left. He attempted to correct with full right rudder and full brakes. However, the airplane subsequently nosed over resulting in substantial damage to the fuselage, lift struts, rudder, and vertical stabilizer. </Analysis></TakeoffAccident>\n",
"<AircraftCondition> The pilot reported that there were no preaccident mechanical malfunctions or anomalies with the airplane that would have precluded normal operation. </AircraftCondition>\n",
"<WindConditions> At about the time of the accident, wind was from <WindDirection>180</WindDirection>° at <WindConditions>5 </WindConditions>knots. The pilot decided to depart on runway <Runway>35 </Runway>due to the prevailing airport traffic. He stated that departing with “more favorable wind conditions” may have prevented the accident. </WindConditions>\n",
"Probable Cause and Findings\n",
"<ProbableCauseAndFindings-section>Probable Cause and Findings </ProbableCauseAndFindings-section>\n",
"<ProbableCause> The <ProbableCause>National Transportation Safety Board </ProbableCause>determines the probable cause(s) of this accident to be: </ProbableCause>\n",
"<AccidentCause> The pilot's loss of directional control during takeoff and subsequent excessive use of brakes which resulted in a nose-over. Contributing to the accident was his decision to takeoff downwind. </AccidentCause>\n",
"Page 1 of <PageNumber>5 </PageNumber>\n"
@@ -251,6 +166,8 @@
}
],
"source": [
"from pathlib import Path\n",
"\n",
"from dgml_utils.segmentation import get_chunks_str\n",
"\n",
"# Here we just read the first file, you can do the same for others\n",
@@ -283,7 +200,7 @@
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": 5,
"id": "8a4b49e0-de78-4790-a930-ad7cf324697a",
"metadata": {},
"outputs": [
@@ -343,7 +260,7 @@
},
{
"cell_type": "code",
"execution_count": 109,
"execution_count": 6,
"id": "7b697d30-1e94-47f0-87e8-f81d4b180da2",
"metadata": {},
"outputs": [
@@ -353,12 +270,14 @@
"39"
]
},
"execution_count": 109,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import requests\n",
"\n",
"# Download XML from known URL\n",
"dgml = requests.get(\n",
" \"https://raw.githubusercontent.com/docugami/dgml-utils/main/python/tests/test_data/article/Jane%20Doe.xml\"\n",
@@ -369,7 +288,7 @@
},
{
"cell_type": "code",
"execution_count": 98,
"execution_count": 7,
"id": "14714576-6e1d-499b-bcc8-39140bb2fd78",
"metadata": {},
"outputs": [
@@ -379,7 +298,7 @@
"{'h1': 9, 'div': 12, 'p': 3, 'lim h1': 9, 'lim': 1, 'table': 1, 'h1 div': 4}"
]
},
"execution_count": 98,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -400,7 +319,7 @@
},
{
"cell_type": "code",
"execution_count": 99,
"execution_count": 8,
"id": "5462f29e-fd59-4e0e-9493-ea3b560e523e",
"metadata": {},
"outputs": [
@@ -433,7 +352,7 @@
},
{
"cell_type": "code",
"execution_count": 100,
"execution_count": 9,
"id": "2b4ece00-2e43-4254-adc9-66dbb79139a6",
"metadata": {},
"outputs": [
@@ -471,7 +390,7 @@
},
{
"cell_type": "code",
"execution_count": 101,
"execution_count": 10,
"id": "08350119-aa22-4ec1-8f65-b1316a0d4123",
"metadata": {},
"outputs": [
@@ -499,7 +418,7 @@
},
{
"cell_type": "code",
"execution_count": 112,
"execution_count": 11,
"id": "bcac8294-c54a-4b6e-af9d-3911a69620b2",
"metadata": {},
"outputs": [
@@ -546,7 +465,7 @@
},
{
"cell_type": "code",
"execution_count": 113,
"execution_count": 12,
"id": "8e275736-3408-4d7a-990e-4362c88e81f8",
"metadata": {},
"outputs": [],
@@ -577,7 +496,7 @@
},
{
"cell_type": "code",
"execution_count": 114,
"execution_count": 13,
"id": "1b12536a-1303-41ad-9948-4eb5a5f32614",
"metadata": {},
"outputs": [],
@@ -594,7 +513,7 @@
},
{
"cell_type": "code",
"execution_count": 115,
"execution_count": 14,
"id": "8d8b567c-b442-4bf0-b639-04bd89effc62",
"metadata": {},
"outputs": [],
@@ -619,7 +538,7 @@
},
{
"cell_type": "code",
"execution_count": 116,
"execution_count": 17,
"id": "346c3a02-8fea-4f75-a69e-fc9542b99dbc",
"metadata": {},
"outputs": [],
@@ -681,7 +600,7 @@
},
{
"cell_type": "code",
"execution_count": 117,
"execution_count": 18,
"id": "f2489de4-51e3-48b4-bbcd-ed9171deadf3",
"metadata": {},
"outputs": [],
@@ -725,10 +644,17 @@
},
{
"cell_type": "code",
"execution_count": 120,
"execution_count": 19,
"id": "636e992f-823b-496b-a082-8b4fcd479de5",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Number of requested results 4 is greater than number of elements in index 1, updating n_results = 1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
@@ -770,7 +696,7 @@
},
{
"cell_type": "code",
"execution_count": 121,
"execution_count": 20,
"id": "0e4a2f43-dd48-4ae3-8e27-7e87d169965f",
"metadata": {},
"outputs": [
@@ -780,7 +706,7 @@
"669"
]
},
"execution_count": 121,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
@@ -795,7 +721,7 @@
},
{
"cell_type": "code",
"execution_count": 124,
"execution_count": 21,
"id": "56b78fb3-603d-4343-ae72-be54a3c5dd72",
"metadata": {},
"outputs": [
@@ -820,7 +746,7 @@
},
{
"cell_type": "code",
"execution_count": 125,
"execution_count": 22,
"id": "d3cc5ba9-8553-4eda-a5d1-b799751186af",
"metadata": {},
"outputs": [],
@@ -832,7 +758,7 @@
},
{
"cell_type": "code",
"execution_count": 126,
"execution_count": 23,
"id": "d7c73faf-74cb-400d-8059-b69e2493de38",
"metadata": {},
"outputs": [],
@@ -844,7 +770,7 @@
},
{
"cell_type": "code",
"execution_count": 127,
"execution_count": 24,
"id": "4c553722-be42-42ce-83b8-76a17f323f1c",
"metadata": {},
"outputs": [],
@@ -854,7 +780,7 @@
},
{
"cell_type": "code",
"execution_count": 128,
"execution_count": 25,
"id": "65dce40b-f1c3-494a-949e-69a9c9544ddb",
"metadata": {},
"outputs": [
@@ -864,7 +790,7 @@
"'The number of training tokens for LLaMA2 is 2.0T for all parameter sizes.'"
]
},
"execution_count": 128,
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -959,14 +885,37 @@
" </tr>\n",
" </tbody>\n",
"</table>\n",
"``"
"```"
]
},
{
"cell_type": "markdown",
"id": "0879349e-7298-4f2c-b246-f1142e97a8e5",
"id": "867f8e11-384c-4aa1-8b3e-c59fb8d5fd7d",
"metadata": {},
"source": []
"source": [
"Finally, you can ask other questions that rely on more subtle parsing of the table, e.g.:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d38f1459-7d2b-40df-8dcd-e747f85eb144",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The learning rate for LLaMA2 was 3.0 × 104 for the 7B and 13B models, and 1.5 × 104 for the 34B and 70B models.'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llama2_chain.invoke(\"What was the learning rate for LLaMA2?\")"
]
}
],
"metadata": {

View File

@@ -9,13 +9,15 @@ SCRIPT_DIR="$(cd "$(dirname "$0")"; pwd)"
cd "${SCRIPT_DIR}"
mkdir -p ../_dist
cp -r . ../_dist
rsync -ruv --exclude node_modules . ../_dist
cd ../_dist
poetry run python scripts/model_feat_table.py
poetry run nbdoc_build --srcdir docs
cp ../cookbook/README.md src/pages/cookbook.mdx
cp ../.github/CONTRIBUTING.md docs/contributing.md
mkdir -p docs/templates
cp ../templates/docs/INDEX.md docs/templates/index.md
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
poetry run python scripts/generate_api_reference_links.py
yarn install
yarn start
yarn
quarto preview docs

View File

@@ -1,5 +1,5 @@
---
sidebar_position: 2
sidebar_position: 3
---
# Cookbook

View File

@@ -146,7 +146,7 @@
"source": [
"### Branching and Merging\n",
"\n",
"You may want the output of one component to be processed by 2 or more other components. [RunnableMaps](https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableMap.html) let you split or fork the chain so multiple components can process the input in parallel. Later, other components can join or merge the results to synthesize a final response. This type of chain creates a computation graph that looks like the following:\n",
"You may want the output of one component to be processed by 2 or more other components. [RunnableParallels](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableParallel.html#langchain_core.runnables.base.RunnableParallel) let you split or fork the chain so multiple components can process the input in parallel. Later, other components can join or merge the results to synthesize a final response. This type of chain creates a computation graph that looks like the following:\n",
"\n",
"```text\n",
" Input\n",

View File

@@ -317,7 +317,7 @@
"source": [
"## Simplifying input\n",
"\n",
"To make invocation even simpler, we can add a `RunnableMap` to take care of creating the prompt input dict for us:"
"To make invocation even simpler, we can add a `RunnableParallel` to take care of creating the prompt input dict for us:"
]
},
{
@@ -327,9 +327,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema.runnable import RunnableMap, RunnablePassthrough\n",
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n",
"\n",
"map_ = RunnableMap(foo=RunnablePassthrough())\n",
"map_ = RunnableParallel(foo=RunnablePassthrough())\n",
"chain = (\n",
" map_\n",
" | prompt\n",

View File

@@ -171,7 +171,7 @@
"outputs": [],
"source": [
"from langchain.schema import format_document\n",
"from langchain.schema.runnable import RunnableMap"
"from langchain.schema.runnable import RunnableParallel"
]
},
{
@@ -234,7 +234,13 @@
"from typing import List, Tuple\n",
"\n",
"\n",
"def _format_chat_history(chat_history: List[Tuple]) -> str:\n",
"def _format_chat_history(chat_history: List[Tuple[str, str]]) -> str:\n",
" # chat history is of format:\n",
" # [\n",
" # (human_message_str, ai_message_str),\n",
" # ...\n",
" # ]\n",
" # see below for an example of how it's invoked\n",
" buffer = \"\"\n",
" for dialogue_turn in chat_history:\n",
" human = \"Human: \" + dialogue_turn[0]\n",
@@ -250,7 +256,7 @@
"metadata": {},
"outputs": [],
"source": [
"_inputs = RunnableMap(\n",
"_inputs = RunnableParallel(\n",
" standalone_question=RunnablePassthrough.assign(\n",
" chat_history=lambda x: _format_chat_history(x[\"chat_history\"])\n",
" )\n",

View File

@@ -0,0 +1,493 @@
{
"cells": [
{
"cell_type": "raw",
"id": "366a0e68-fd67-4fe5-a292-5c33733339ea",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: Get started\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "befa7fd1",
"metadata": {},
"source": [
"LCEL makes it easy to build complex chains from basic components, and supports out of the box functionality such as streaming, parallelism, and logging."
]
},
{
"cell_type": "markdown",
"id": "9a9acd2e",
"metadata": {},
"source": [
"## Basic example: prompt + model + output parser\n",
"\n",
"The most basic and common use case is chaining a prompt template and a model together. To see how this works, let's create a chain that takes a topic and generates a joke:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "466b65b3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why did the ice cream go to therapy?\\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
"model = ChatOpenAI()\n",
"output_parser = StrOutputParser()\n",
"\n",
"chain = prompt | model | output_parser\n",
"\n",
"chain.invoke({\"topic\": \"ice cream\"})"
]
},
{
"cell_type": "markdown",
"id": "81c502c5-85ee-4f36-aaf4-d6e350b7792f",
"metadata": {},
"source": [
"Notice this line of this code, where we piece together then different components into a single chain using LCEL:\n",
"\n",
"```\n",
"chain = prompt | model | output_parser\n",
"```\n",
"\n",
"The `|` symbol is similar to a [unix pipe operator](https://en.wikipedia.org/wiki/Pipeline_(Unix)), which chains together the different components feeds the output from one component as input into the next component. \n",
"\n",
"In this chain the user input is passed to the prompt template, then the prompt template output is passed to the model, then the model output is passed to the output parser. Let's take a look at each component individually to really understand what's going on. "
]
},
{
"cell_type": "markdown",
"id": "aa1b77fa",
"metadata": {},
"source": [
"### 1. Prompt\n",
"\n",
"`prompt` is a `BasePromptTemplate`, which means it takes in a dictionary of template variables and produces a `PromptValue`. A `PromptValue` is a wrapper around a completed prompt that can be passed to either an `LLM` (which takes a string as input) or `ChatModel` (which takes a sequence of messages as input). It can work with either language model type because it defines logic both for producing `BaseMessage`s and for producing a string."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b8656990",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_value = prompt.invoke({\"topic\": \"ice cream\"})\n",
"prompt_value"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e6034488",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='tell me a short joke about ice cream')]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_value.to_messages()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "60565463",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Human: tell me a short joke about ice cream'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_value.to_string()"
]
},
{
"cell_type": "markdown",
"id": "577f0f76",
"metadata": {},
"source": [
"### 2. Model\n",
"\n",
"The `PromptValue` is then passed to `model`. In this case our `model` is a `ChatModel`, meaning it will output a `BaseMessage`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "33cf5f72",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Why did the ice cream go to therapy? \\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\")"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message = model.invoke(prompt_value)\n",
"message"
]
},
{
"cell_type": "markdown",
"id": "327e7db8",
"metadata": {},
"source": [
"If our `model` was an `LLM`, it would output a string."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8feb05da",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nRobot: Why did the ice cream go to therapy? Because it had a rocky road.'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm.invoke(prompt_value)"
]
},
{
"cell_type": "markdown",
"id": "91847478",
"metadata": {},
"source": [
"### 3. Output parser\n",
"\n",
"And lastly we pass our `model` output to the `output_parser`, which is a `BaseOutputParser` meaning it takes either a string or a \n",
"`BaseMessage` as input. The `StrOutputParser` specifically simple converts any input into a string."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "533e59a8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why did the ice cream go to therapy? \\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output_parser.invoke(message)"
]
},
{
"cell_type": "markdown",
"id": "9851e842",
"metadata": {},
"source": [
"### 4. Entire Pipeline\n",
"\n",
"To follow the steps along:\n",
"\n",
"1. We pass in user input on the desired topic as `{\"topic\": \"ice cream\"}`\n",
"2. The `prompt` component takes the user input, which is then used to construct a PromptValue after using the `topic` to construct the prompt. \n",
"3. The `model` component takes the generated prompt, and passes into the OpenAI LLM model for evaluation. The generated output from the model is a `ChatMessage` object. \n",
"4. Finally, the `output_parser` component takes in a `ChatMessage`, and transforms this into a Python string, which is returned from the invoke method. \n"
]
},
{
"cell_type": "markdown",
"id": "c4873109",
"metadata": {},
"source": [
"```mermaid\n",
"graph LR\n",
" A(Input: topic=ice cream) --> |Dict| B(PromptTemplate)\n",
" B -->|PromptValue| C(ChatModel) \n",
" C -->|ChatMessage| D(StrOutputParser)\n",
" D --> |String| F(Result)\n",
"```\n"
]
},
{
"cell_type": "markdown",
"id": "fe63534d",
"metadata": {},
"source": [
":::info\n",
"\n",
"Note that if youre curious about the output of any components, you can always test out a smaller version of the chain such as `prompt` or `prompt | model` to see the intermediate results:\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11089b6f-23f8-474f-97ec-8cae8d0ca6d4",
"metadata": {},
"outputs": [],
"source": [
"input = {\"topic\": \"ice cream\"}\n",
"\n",
"prompt.invoke(input)\n",
"# > ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])\n",
"\n",
"(prompt | model).invoke(input)\n",
"# > AIMessage(content=\"Why did the ice cream go to therapy?\\nBecause it had too many toppings and couldn't cone-trol itself!\")"
]
},
{
"cell_type": "markdown",
"id": "cc7d3b9d-e400-4c9b-9188-f29dac73e6bb",
"metadata": {},
"source": [
"## RAG Search Example\n",
"\n",
"For our next example, we want to run a retrieval-augmented generation chain to add some context when responding to questions. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "662426e8-4316-41dc-8312-9b58edc7e0c9",
"metadata": {},
"outputs": [],
"source": [
"# Requires:\n",
"# pip install langchain docarray\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n",
"from langchain.vectorstores import DocArrayInMemorySearch\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_texts(\n",
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
" embedding=OpenAIEmbeddings(),\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"model = ChatOpenAI()\n",
"output_parser = StrOutputParser()\n",
"\n",
"setup_and_retrieval = RunnableParallel(\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
")\n",
"chain = setup_and_retrieval | prompt | model | output_parser\n",
"\n",
"chain.invoke(\"where did harrison work?\")"
]
},
{
"cell_type": "markdown",
"id": "f0999140-6001-423b-970b-adf1dfdb4dec",
"metadata": {},
"source": [
"In this case, the composed chain is: "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b88e9bb-f04a-4a56-87ec-19a0e6350763",
"metadata": {},
"outputs": [],
"source": [
"chain = setup_and_retrieval | prompt | model | output_parser"
]
},
{
"cell_type": "markdown",
"id": "6e929e15-40a5-4569-8969-384f636cab87",
"metadata": {},
"source": [
"To explain this, we first can see that the prompt template above takes in `context` and `question` as values to be substituted in the prompt. Before building the prompt template, we want to retrieve relevant documents to the search and include them as part of the context. \n",
"\n",
"As a preliminary step, weve setup the retriever using an in memory store, which can retrieve documents based on a query. This is a runnable component as well that can be chained together with other components, but you can also try to run it separately:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7319ef6-613b-4638-ad7d-4a2183702c1d",
"metadata": {},
"outputs": [],
"source": [
"retriever.invoke(\"where did harrison work?\")"
]
},
{
"cell_type": "markdown",
"id": "e6833844-f1c4-444c-a3d2-31b3c6b31d46",
"metadata": {},
"source": [
"We then use the `RunnableParallel` to prepare the expected inputs into the prompt by using the entries for the retrieved documents as well as the original user question, using the retriever for document search, and RunnablePassthrough to pass the users question:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcbca26b-d6b9-4c24-806c-1ec8fdaab4ed",
"metadata": {},
"outputs": [],
"source": [
"setup_and_retrieval = RunnableParallel(\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
")"
]
},
{
"cell_type": "markdown",
"id": "68c721c1-048b-4a64-9d78-df54fe465992",
"metadata": {},
"source": [
"To review, the complete chain is:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1d5115a7-7b8e-458b-b936-26cc87ee81c4",
"metadata": {},
"outputs": [],
"source": [
"setup_and_retrieval = RunnableParallel(\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
")\n",
"chain = setup_and_retrieval | prompt | model | output_parser"
]
},
{
"cell_type": "markdown",
"id": "5c6f5f74-b387-48a0-bedd-1fae202cd10a",
"metadata": {},
"source": [
"With the flow being:\n",
"\n",
"1. The first steps create a `RunnableParallel` object with two entries. The first entry, `context` will include the document results fetched by the retriever. The second entry, `question` will contain the users original question. To pass on the question, we use `RunnablePassthrough` to copy this entry. \n",
"2. Feed the dictionary from the step above to the `prompt` component. It then takes the user input which is `question` as well as the retrieved document which is `context` to construct a prompt and output a PromptValue. \n",
"3. The `model` component takes the generated prompt, and passes into the OpenAI LLM model for evaluation. The generated output from the model is a `ChatMessage` object. \n",
"4. Finally, the `output_parser` component takes in a `ChatMessage`, and transforms this into a Python string, which is returned from the invoke method.\n",
"\n",
"```mermaid\n",
"graph LR\n",
" A(Question) --> B(RunnableParallel)\n",
" B -->|Question| C(Retriever)\n",
" B -->|Question| D(RunnablePassThrough)\n",
" C -->|context=retrieved docs| E(PromptTemplate)\n",
" D -->|question=Question| E\n",
" E -->|PromptValue| F(ChatModel) \n",
" F -->|ChatMessage| G(StrOutputParser)\n",
" G --> |String| H(Result)\n",
"```\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "8c2438df-164e-4bbe-b5f4-461695e45b0f",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"We recommend reading our [Why use LCEL](/docs/expression_language/why) section next to see a side-by-side comparison of the code needed to produce common functionality with and without LCEL."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -26,7 +26,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "d3e893bf",
"metadata": {},
"outputs": [],
@@ -44,19 +44,24 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "dfdd8bf5",
"metadata": {},
"outputs": [],
"source": [
"from unittest.mock import patch\n",
"\n",
"from openai.error import RateLimitError"
"import httpx\n",
"from openai import RateLimitError\n",
"\n",
"request = httpx.Request(\"GET\", \"/\")\n",
"response = httpx.Response(200, request=request)\n",
"error = RateLimitError(\"rate limit\", response=response, body=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"id": "e6fdffc1",
"metadata": {},
"outputs": [],
@@ -69,7 +74,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 4,
"id": "584461ab",
"metadata": {},
"outputs": [
@@ -83,7 +88,7 @@
],
"source": [
"# Let's use just the OpenAI LLm first, to show that we run into an error\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
@@ -106,7 +111,7 @@
],
"source": [
"# Now let's try with fallbacks to Anthropic\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
@@ -148,7 +153,7 @@
" ]\n",
")\n",
"chain = prompt | llm\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except:\n",
@@ -286,7 +291,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -82,7 +82,7 @@
"source": [
"## Accepting a Runnable Config\n",
"\n",
"Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.RunnableConfig.html?highlight=runnableconfig#langchain.schema.runnable.config.RunnableConfig), which they can use to pass callbacks, tags, and other configuration information to nested runs."
"Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig), which they can use to pass callbacks, tags, and other configuration information to nested runs."
]
},
{

View File

@@ -1,5 +1,5 @@
---
sidebar_position: 1
sidebar_position: 2
---
# How to

View File

@@ -104,7 +104,7 @@
"source": [
"Here the input to prompt is expected to be a map with keys \"context\" and \"question\". The user input is just the question. So we need to get the context using our retriever and passthrough the user input under the \"question\" key.\n",
"\n",
"Note that when composing a RunnableMap when another Runnable we don't even need to wrap our dictionary in the RunnableMap class — the type conversion is handled for us."
"Note that when composing a RunnableParallel with another Runnable we don't even need to wrap our dictionary in the RunnableParallel class — the type conversion is handled for us."
]
},
{
@@ -114,7 +114,7 @@
"source": [
"## Parallelism\n",
"\n",
"RunnableMaps are also useful for running independent processes in parallel, since each Runnable in the map is executed in parallel. For example, we can see our earlier `joke_chain`, `poem_chain` and `map_chain` all have about the same runtime, even though `map_chain` executes both of the other two."
"RunnableParallel are also useful for running independent processes in parallel, since each Runnable in the map is executed in parallel. For example, we can see our earlier `joke_chain`, `poem_chain` and `map_chain` all have about the same runtime, even though `map_chain` executes both of the other two."
]
},
{

View File

@@ -290,9 +290,9 @@
],
"source": [
"from langchain.schema.messages import HumanMessage\n",
"from langchain.schema.runnable import RunnableMap\n",
"from langchain.schema.runnable import RunnableParallel\n",
"\n",
"chain = RunnableMap({\"output_message\": ChatAnthropic(model=\"claude-2\")})\n",
"chain = RunnableParallel({\"output_message\": ChatAnthropic(model=\"claude-2\")})\n",
"chain_with_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: RedisChatMessageHistory(session_id, url=REDIS_URL),\n",

View File

@@ -20,7 +20,7 @@ Whenever your LCEL chains have steps that can be executed in parallel (eg if you
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
**Access intermediate results**
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
**Input and output schemas**
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
@@ -30,4 +30,4 @@ As your chains get more and more complex, it becomes increasingly important to u
With LCEL, **all** steps are automatically logged to [LangSmith](/docs/langsmith/) for maximum observability and debuggability.
**Seamless LangServe deployment integration**
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"sidebar_position: 1\n",
"title: Interface\n",
"---"
]
@@ -16,7 +16,7 @@
"id": "9a9acd2e",
"metadata": {},
"source": [
"To make it as easy as possible to create custom chains, we've implemented a [\"Runnable\"](https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.Runnable.html#langchain.schema.runnable.base.Runnable) protocol. The `Runnable` protocol is implemented for most components. \n",
"To make it as easy as possible to create custom chains, we've implemented a [\"Runnable\"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. The `Runnable` protocol is implemented for most components. \n",
"This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way. \n",
"The standard interface includes:\n",
"\n",

File diff suppressed because it is too large Load Diff

View File

@@ -79,7 +79,7 @@ Walkthroughs and techniques for common end-to-end use cases, like:
### [Integrations](/docs/integrations/providers/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/providers/).
### [Guides](/docs/guides/adapters/openai)
### [Guides](/docs/guides/guides/debugging)
Best practices for developing with LangChain.
### [API reference](https://api.python.langchain.com)

View File

@@ -344,7 +344,7 @@ category_chain = chat_prompt | ChatOpenAI() | CommaSeparatedListOutputParser()
app = FastAPI(
title="LangChain Server",
version="1.0",
description="A simple api server using Langchain's Runnable interfaces",
description="A simple API server using LangChain's Runnable interfaces",
)
# 3. Adding chain route

View File

@@ -12,7 +12,7 @@ Platforms with tracing capabilities like [LangSmith](/docs/langsmith/) and [Wand
For anyone building production-grade LLM applications, we highly recommend using a platform like this.
![LangSmith run](/img/run_details.png)
![LangSmith run](../../static/img/run_details.png)
## `set_debug` and `set_verbose`

View File

@@ -28,7 +28,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 1,
"id": "d3e893bf",
"metadata": {},
"outputs": [],
@@ -46,19 +46,24 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 2,
"id": "dfdd8bf5",
"metadata": {},
"outputs": [],
"source": [
"from unittest.mock import patch\n",
"\n",
"from openai.error import RateLimitError"
"import httpx\n",
"from openai import RateLimitError\n",
"\n",
"request = httpx.Request(\"GET\", \"/\")\n",
"response = httpx.Response(200, request=request)\n",
"error = RateLimitError(\"rate limit\", response=response, body=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 3,
"id": "e6fdffc1",
"metadata": {},
"outputs": [],
@@ -71,7 +76,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 4,
"id": "584461ab",
"metadata": {},
"outputs": [
@@ -85,7 +90,7 @@
],
"source": [
"# Let's use just the OpenAI LLm first, to show that we run into an error\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
@@ -108,7 +113,7 @@
],
"source": [
"# Now let's try with fallbacks to Anthropic\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except:\n",
@@ -150,7 +155,7 @@
" ]\n",
")\n",
"chain = prompt | llm\n",
"with patch(\"openai.ChatCompletion.create\", side_effect=RateLimitError()):\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except:\n",
@@ -431,7 +436,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -32,7 +32,7 @@
"1. `Base model`: What is the base-model and how was it trained?\n",
"2. `Fine-tuning approach`: Was the base-model fine-tuned and, if so, what [set of instructions](https://cameronrwolfe.substack.com/p/beyond-llama-the-power-of-open-llms#%C2%A7alpaca-an-instruction-following-llama-model) was used?\n",
"\n",
"![Image description](/img/OSS_LLM_overview.png)\n",
"![Image description](../../static/img/OSS_LLM_overview.png)\n",
"\n",
"The relative performance of these models can be assessed using several leaderboards, including:\n",
"\n",
@@ -55,7 +55,7 @@
"\n",
"In particular, see [this excellent post](https://finbarr.ca/how-is-llama-cpp-possible/) on the importance of quantization.\n",
"\n",
"![Image description](/img/llama-memory-weights.png)\n",
"![Image description](../../static/img/llama-memory-weights.png)\n",
"\n",
"With less precision, we radically decrease the memory needed to store the LLM in memory.\n",
"\n",
@@ -63,7 +63,7 @@
"\n",
"A Mac M2 Max is 5-6x faster than a M1 for inference due to the larger GPU memory bandwidth.\n",
"\n",
"![Image description](/img/llama_t_put.png)\n",
"![Image description](../../static/img/llama_t_put.png)\n",
"\n",
"## Quickstart\n",
"\n",

View File

@@ -60,7 +60,7 @@
"\n",
" Firstly, the wallet contains my credit card with number 4111 1111 1111 1111, which is registered under my name and linked to my bank account, PL61109010140000071219812874.\n",
"\n",
" Additionally, the wallet had a driver's license - DL No: 999000680 issued to my name. It also houses my Social Security Number, 602-76-4532. \n",
" Additionally, the wallet had a driver's license - DL No: 999000680 issued to my name. It also houses my Social Security Number, 602-76-4532.\n",
"\n",
" What's more, I had my polish identity card there, with the number ABC123456.\n",
"\n",
@@ -68,7 +68,7 @@
"\n",
" In case any information arises regarding my wallet, please reach out to me on my phone number, 999-888-7777, or through my personal email, johndoe@example.com.\n",
"\n",
" Please consider this information to be highly confidential and respect my privacy. \n",
" Please consider this information to be highly confidential and respect my privacy.\n",
"\n",
" The bank has been informed about the stolen credit card and necessary actions have been taken from their end. They will be reachable at their official email, support@bankname.com.\n",
" My representative there is Victoria Cherry (her business phone: 987-654-3210).\n",
@@ -667,7 +667,11 @@
"from langchain.chat_models.openai import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnableLambda, RunnableMap, RunnablePassthrough\n",
"from langchain.schema.runnable import (\n",
" RunnableLambda,\n",
" RunnableParallel,\n",
" RunnablePassthrough,\n",
")\n",
"\n",
"# 6. Create anonymizer chain\n",
"template = \"\"\"Answer the question based only on the following context:\n",
@@ -680,7 +684,7 @@
"model = ChatOpenAI(temperature=0.3)\n",
"\n",
"\n",
"_inputs = RunnableMap(\n",
"_inputs = RunnableParallel(\n",
" question=RunnablePassthrough(),\n",
" # It is important to remember about question anonymization\n",
" anonymized_question=RunnableLambda(anonymizer.anonymize),\n",
@@ -882,7 +886,7 @@
"\n",
"\n",
"chain_with_deanonymization = (\n",
" RunnableMap({\"question\": RunnablePassthrough()})\n",
" RunnableParallel({\"question\": RunnablePassthrough()})\n",
" | {\n",
" \"context\": itemgetter(\"question\")\n",
" | retriever\n",

View File

@@ -7,7 +7,9 @@
"source": [
"# Amazon Comprehend Moderation Chain\n",
"\n",
"This notebook shows how to use [Amazon Comprehend](https://aws.amazon.com/comprehend/) to detect and handle `Personally Identifiable Information` (`PII`) and toxicity.\n",
">[Amazon Comprehend](https://aws.amazon.com/comprehend/) is a natural-language processing (NLP) service that uses machine learning to uncover valuable insights and connections in text.\n",
"\n",
"This notebook shows how to use `Amazon Comprehend` to detect and handle `Personally Identifiable Information` (`PII`) and toxicity.\n",
"\n",
"## Setting up"
]
@@ -1417,7 +1419,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -8,7 +8,7 @@
"# Hugging Face prompt injection identification\n",
"\n",
"This notebook shows how to prevent prompt injection attacks using the text classification model from `HuggingFace`.\n",
"It exploits the *deberta* model trained to identify prompt injections: https://huggingface.co/deepset/deberta-v3-base-injection"
"By default it uses a *deberta* model trained to identify prompt injections. In this walkthrough we'll use https://huggingface.co/laiyer/deberta-v3-base-prompt-injection."
]
},
{
@@ -21,19 +21,37 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "aea25588-3c3f-4506-9094-221b3a0d519b",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58ab3557623a495d8cc3c3e32a61938f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"'hugging_face_injection_identifier'"
"Downloading config.json: 0%| | 0.00/994 [00:00<?, ?B/s]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3bf062f02d304ab5a485a2a228b4cf41",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading model.safetensors: 0%| | 0.00/738M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
@@ -41,7 +59,10 @@
" HuggingFaceInjectionIdentifier,\n",
")\n",
"\n",
"injection_identifier = HuggingFaceInjectionIdentifier()\n",
"# Using https://huggingface.co/laiyer/deberta-v3-base-prompt-injection\n",
"injection_identifier = HuggingFaceInjectionIdentifier(\n",
" model=\"laiyer/deberta-v3-base-prompt-injection\"\n",
")\n",
"injection_identifier.name"
]
},
@@ -299,9 +320,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv",
"language": "python",
"name": "python3"
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
@@ -313,7 +334,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -5,7 +5,9 @@
"id": "700a516b",
"metadata": {},
"source": [
"# OpenAI Adapter\n",
"# OpenAI Adapter(Old)\n",
"\n",
"**Please ensure OpenAI library is less than 1.0.0; otherwise, refer to the newer doc [OpenAI Adapter](./openai.ipynb).**\n",
"\n",
"A lot of people get started with OpenAI but want to explore other models. LangChain's integrations with many model providers make this easy to do so. While LangChain has it's own message and model APIs, we've also made it as easy as possible to explore other models by exposing an adapter to adapt LangChain models to the OpenAI api.\n",
"\n",
@@ -49,18 +51,6 @@
"Original OpenAI call"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e1d27dfa",
"metadata": {},
"outputs": [],
"source": [
"result = openai.ChatCompletion.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 15,
@@ -79,6 +69,9 @@
}
],
"source": [
"result = openai.ChatCompletion.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")\n",
"result[\"choices\"][0][\"message\"].to_dict_recursive()"
]
},
@@ -90,18 +83,6 @@
"LangChain OpenAI wrapper call"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "87c2d515",
"metadata": {},
"outputs": [],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
@@ -120,6 +101,9 @@
}
],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")\n",
"lc_result[\"choices\"][0][\"message\"]"
]
},
@@ -131,18 +115,6 @@
"Swapping out model providers"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "7a2c011c",
"metadata": {},
"outputs": [],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, model=\"claude-2\", temperature=0, provider=\"ChatAnthropic\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
@@ -161,6 +133,9 @@
}
],
"source": [
"lc_result = lc_openai.ChatCompletion.create(\n",
" messages=messages, model=\"claude-2\", temperature=0, provider=\"ChatAnthropic\"\n",
")\n",
"lc_result[\"choices\"][0][\"message\"]"
]
},
@@ -302,7 +277,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,318 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "700a516b",
"metadata": {},
"source": [
"# OpenAI Adapter\n",
"\n",
"**Please ensure OpenAI library is version 1.0.0 or higher; otherwise, refer to the older doc [OpenAI Adapter(Old)](./openai-old.ipynb).**\n",
"\n",
"A lot of people get started with OpenAI but want to explore other models. LangChain's integrations with many model providers make this easy to do so. While LangChain has it's own message and model APIs, we've also made it as easy as possible to explore other models by exposing an adapter to adapt LangChain models to the OpenAI api.\n",
"\n",
"At the moment this only deals with output and does not return other information (token counts, stop reasons, etc)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6017f26a",
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"from langchain.adapters import openai as lc_openai"
]
},
{
"cell_type": "markdown",
"id": "b522ceda",
"metadata": {},
"source": [
"## chat.completions.create"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1d22eb61",
"metadata": {},
"outputs": [],
"source": [
"messages = [{\"role\": \"user\", \"content\": \"hi\"}]"
]
},
{
"cell_type": "markdown",
"id": "d550d3ad",
"metadata": {},
"source": [
"Original OpenAI call"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "012d81ae",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'content': 'Hello! How can I assist you today?',\n",
" 'role': 'assistant',\n",
" 'function_call': None,\n",
" 'tool_calls': None}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result = openai.chat.completions.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")\n",
"result.choices[0].message.model_dump()"
]
},
{
"cell_type": "markdown",
"id": "db5b5500",
"metadata": {},
"source": [
"LangChain OpenAI wrapper call"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c67a5ac8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'role': 'assistant', 'content': 'Hello! How can I help you today?'}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lc_result = lc_openai.chat.completions.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0\n",
")\n",
"\n",
"lc_result.choices[0].message # Attribute access"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "37a6e461-8608-47f6-ac45-12ad753c062a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'role': 'assistant', 'content': 'Hello! How can I help you today?'}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lc_result[\"choices\"][0][\"message\"] # Also compatible with index access"
]
},
{
"cell_type": "markdown",
"id": "034ba845",
"metadata": {},
"source": [
"Swapping out model providers"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f7c94827",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'role': 'assistant', 'content': 'Hello! How can I assist you today?'}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lc_result = lc_openai.chat.completions.create(\n",
" messages=messages, model=\"claude-2\", temperature=0, provider=\"ChatAnthropic\"\n",
")\n",
"lc_result.choices[0].message"
]
},
{
"cell_type": "markdown",
"id": "cb3f181d",
"metadata": {},
"source": [
"## chat.completions.stream"
]
},
{
"cell_type": "markdown",
"id": "f7b8cd18",
"metadata": {},
"source": [
"Original OpenAI call"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fd8cb1ea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'content': '', 'function_call': None, 'role': 'assistant', 'tool_calls': None}\n",
"{'content': 'Hello', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': '!', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': ' How', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': ' can', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': ' I', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': ' assist', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': ' you', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': ' today', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': '?', 'function_call': None, 'role': None, 'tool_calls': None}\n",
"{'content': None, 'function_call': None, 'role': None, 'tool_calls': None}\n"
]
}
],
"source": [
"for c in openai.chat.completions.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0, stream=True\n",
"):\n",
" print(c.choices[0].delta.model_dump())"
]
},
{
"cell_type": "markdown",
"id": "0b2a076b",
"metadata": {},
"source": [
"LangChain OpenAI wrapper call"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9521218c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'role': 'assistant', 'content': ''}\n",
"{'content': 'Hello'}\n",
"{'content': '!'}\n",
"{'content': ' How'}\n",
"{'content': ' can'}\n",
"{'content': ' I'}\n",
"{'content': ' assist'}\n",
"{'content': ' you'}\n",
"{'content': ' today'}\n",
"{'content': '?'}\n",
"{}\n"
]
}
],
"source": [
"for c in lc_openai.chat.completions.create(\n",
" messages=messages, model=\"gpt-3.5-turbo\", temperature=0, stream=True\n",
"):\n",
" print(c.choices[0].delta)"
]
},
{
"cell_type": "markdown",
"id": "0fc39750",
"metadata": {},
"source": [
"Swapping out model providers"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "68f0214e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'role': 'assistant', 'content': ''}\n",
"{'content': 'Hello'}\n",
"{'content': '!'}\n",
"{'content': ' How'}\n",
"{'content': ' can'}\n",
"{'content': ' I'}\n",
"{'content': ' assist'}\n",
"{'content': ' you'}\n",
"{'content': ' today'}\n",
"{'content': '?'}\n",
"{}\n"
]
}
],
"source": [
"for c in lc_openai.chat.completions.create(\n",
" messages=messages,\n",
" model=\"claude-2\",\n",
" temperature=0,\n",
" stream=True,\n",
" provider=\"ChatAnthropic\",\n",
"):\n",
" print(c[\"choices\"][0][\"delta\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "a016701c",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Anthropic\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Anthropic\n",
"# ChatAnthropic\n",
"\n",
"This notebook covers how to get started with Anthropic chat models."
]

View File

@@ -1,12 +1,22 @@
{
"cells": [
{
"cell_type": "raw",
"id": "31895fc4",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Anyscale\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "642fd21c-600a-47a1-be96-6e1438b421a9",
"metadata": {},
"source": [
"# Anyscale\n",
"# ChatAnyscale\n",
"\n",
"This notebook demonstrates the use of `langchain.chat_models.ChatAnyscale` for [Anyscale Endpoints](https://endpoints.anyscale.com/).\n",
"\n",
@@ -33,7 +43,7 @@
"metadata": {},
"outputs": [
{
"name": "stdin",
"name": "stdout",
"output_type": "stream",
"text": [
" ········\n"

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "641f8cb0",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Azure OpenAI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "38f26d7a",
"metadata": {},
"source": [
"# Azure OpenAI\n",
"# AzureChatOpenAI\n",
"\n",
">[Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/ai-services/openai/overview) provides REST API access to OpenAI's powerful language models including the GPT-4, GPT-3.5-Turbo, and Embeddings model series. These models can be easily adapted to your specific task including but not limited to content generation, summarization, semantic search, and natural language to code translation. Users can access the service through REST APIs, Python SDK, or a web-based interface in the Azure OpenAI Studio.\n",
"\n",

View File

@@ -1,10 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Azure ML Endpoint\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure ML Endpoint\n",
"# AzureMLChatOnlineEndpoint\n",
"\n",
">[Azure Machine Learning](https://azure.microsoft.com/en-us/products/machine-learning/) is a platform used to build, train, and deploy machine learning models. Users can explore the types of models to deploy in the Model Catalog, which provides Azure Foundation Models and OpenAI Models. `Azure Foundation Models` include various open-source models and popular Hugging Face models. Users can also import models of their liking into AzureML.\n",
">\n",

View File

@@ -1,10 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Baichuan Chat\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Baichuan Chat\n",
"# ChatBaichuan\n",
"\n",
"Baichuan chat models API by Baichuan Intelligent Technology. For more information, see [https://platform.baichuan-ai.com/docs/api](https://platform.baichuan-ai.com/docs/api)"
]
@@ -63,7 +72,9 @@
"outputs": [
{
"data": {
"text/plain": "AIMessage(content='首先我们需要确定闰年的二月有多少天。闰年的二月有29天。\\n\\n然后我们可以计算你的月薪\\n\\n日薪 = 月薪 / (当月天数)\\n\\n所以你的月薪 = 日薪 * 当月天数\\n\\n将数值代入公式\\n\\n月薪 = 8元/天 * 29天 = 232元\\n\\n因此你在闰年的二月的月薪是232元。')"
"text/plain": [
"AIMessage(content='首先我们需要确定闰年的二月有多少天。闰年的二月有29天。\\n\\n然后我们可以计算你的月薪\\n\\n日薪 = 月薪 / (当月天数)\\n\\n所以你的月薪 = 日薪 * 当月天数\\n\\n将数值代入公式\\n\\n月薪 = 8元/天 * 29天 = 232元\\n\\n因此你在闰年的二月的月薪是232元。')"
]
},
"execution_count": 3,
"metadata": {},
@@ -76,16 +87,23 @@
},
{
"cell_type": "markdown",
"source": [
"## For ChatBaichuan with Streaming"
],
"metadata": {
"collapsed": false
}
},
"source": [
"## For ChatBaichuan with Streaming"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-17T15:14:25.870044Z",
"start_time": "2023-10-17T15:14:25.863381Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"chat = ChatBaichuan(\n",
@@ -93,22 +111,24 @@
" baichuan_secret_key=\"YOUR_SECRET_KEY\",\n",
" streaming=True,\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-17T15:14:25.870044Z",
"start_time": "2023-10-17T15:14:25.863381Z"
}
}
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-17T15:14:27.153546Z",
"start_time": "2023-10-17T15:14:25.868470Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": "AIMessageChunk(content='首先我们需要确定闰年的二月有多少天。闰年的二月有29天。\\n\\n然后我们可以计算你的月薪\\n\\n日薪 = 月薪 / (当月天数)\\n\\n所以你的月薪 = 日薪 * 当月天数\\n\\n将数值代入公式\\n\\n月薪 = 8元/天 * 29天 = 232元\\n\\n因此你在闰年的二月的月薪是232元。')"
"text/plain": [
"AIMessageChunk(content='首先我们需要确定闰年的二月有多少天。闰年的二月有29天。\\n\\n然后我们可以计算你的月薪\\n\\n日薪 = 月薪 / (当月天数)\\n\\n所以你的月薪 = 日薪 * 当月天数\\n\\n将数值代入公式\\n\\n月薪 = 8元/天 * 29天 = 232元\\n\\n因此你在闰年的二月的月薪是232元。')"
]
},
"execution_count": 6,
"metadata": {},
@@ -117,14 +137,7 @@
],
"source": [
"chat([HumanMessage(content=\"我日薪8块钱请问在闰年的二月我月薪多少\")])"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-17T15:14:27.153546Z",
"start_time": "2023-10-17T15:14:25.868470Z"
}
}
]
}
],
"metadata": {

View File

@@ -1,11 +1,20 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Baidu Qianfan\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Baidu Qianfan\n",
"# QianfanChatEndpoint\n",
"\n",
"Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open-source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n",
"\n",

View File

@@ -1,13 +1,31 @@
{
"cells": [
{
"cell_type": "raw",
"id": "fbc66410",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Bedrock Chat\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Bedrock Chat\n",
"# BedrockChat\n",
"\n",
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
"> generative AI capabilities into your applications using the AWS services you are already familiar with.\n"
]
},
{
@@ -131,7 +149,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "53fbf15f",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Cohere\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# Cohere\n",
"# ChatCohere\n",
"\n",
"This notebook covers how to get started with Cohere chat models."
]

View File

@@ -1,13 +1,34 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Ernie Bot Chat\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ERNIE-Bot Chat\n",
"# ErnieBotChat\n",
"\n",
"[ERNIE-Bot](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/jlil56u11) is a large language model developed by Baidu, covering a huge amount of Chinese data.\n",
"This notebook covers how to get started with ErnieBot chat models."
"This notebook covers how to get started with ErnieBot chat models.\n",
"\n",
"**Note:** We recommend users using this class to switch to [Baidu Qianfan](./baidu_qianfan_endpoint). they are 3 why we recommend users to use `QianfanChatEndpoint`:\n",
"1. `QianfanChatEndpoint` support more LLM in the Qianfan platform.\n",
"2. `QianfanChatEndpoint` support streaming mode.\n",
"3. `QianfanChatEndpoint` support function calling usgage.\n",
"\n",
"Some tips for migration:\n",
"- change `ernie_client_id` to `qianfan_ak`, also change `ernie_client_secret` to `qianfan_sk`.\n",
"- install `qianfan` package. \n",
" ```\n",
" pip install qianfan\n",
" ```"
]
},
{

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "5e45f35c",
"metadata": {},
"source": [
"---\n",
"sidebar_label: EverlyAI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "642fd21c-600a-47a1-be96-6e1438b421a9",
"metadata": {},
"source": [
"# EverlyAI\n",
"# ChatEverlyAI\n",
"\n",
">[EverlyAI](https://everlyai.xyz) allows you to run your ML models at scale in the cloud. It also provides API access to [several LLM models](https://everlyai.xyz).\n",
"\n",

View File

@@ -1,12 +1,22 @@
{
"cells": [
{
"cell_type": "raw",
"id": "529aeba9",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Fireworks\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "642fd21c-600a-47a1-be96-6e1438b421a9",
"metadata": {},
"source": [
"# Fireworks\n",
"# ChatFireworks\n",
"\n",
">[Fireworks](https://app.fireworks.ai/) accelerates product development on generative AI by creating an innovative AI experiment and production platform. \n",
"\n",

View File

@@ -1,11 +1,20 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Google Cloud Vertex AI\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Google Cloud Vertex AI \n",
"# ChatVertexAI\n",
"\n",
"Note: This is separate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
"\n",

View File

@@ -1,10 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Tencent Hunyuan\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tencent Hunyuan\n",
"# ChatHunyuan\n",
"\n",
"Hunyuan chat model API by Tencent. For more information, see [https://cloud.tencent.com/document/product/1729](https://cloud.tencent.com/document/product/1729)"
]
@@ -54,7 +63,9 @@
"outputs": [
{
"data": {
"text/plain": "AIMessage(content=\"J'aime programmer.\")"
"text/plain": [
"AIMessage(content=\"J'aime programmer.\")"
]
},
"execution_count": 3,
"metadata": {},
@@ -73,16 +84,23 @@
},
{
"cell_type": "markdown",
"source": [
"## For ChatHunyuan with Streaming"
],
"metadata": {
"collapsed": false
}
},
"source": [
"## For ChatHunyuan with Streaming"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-19T10:20:41.507720Z",
"start_time": "2023-10-19T10:20:41.496456Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"chat = ChatHunyuan(\n",
@@ -91,22 +109,24 @@
" hunyuan_secret_key=\"YOUR_SECRET_KEY\",\n",
" streaming=True,\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-19T10:20:41.507720Z",
"start_time": "2023-10-19T10:20:41.496456Z"
}
}
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-19T10:20:46.275673Z",
"start_time": "2023-10-19T10:20:44.241097Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": "AIMessageChunk(content=\"J'aime programmer.\")"
"text/plain": [
"AIMessageChunk(content=\"J'aime programmer.\")"
]
},
"execution_count": 3,
"metadata": {},
@@ -121,26 +141,19 @@
" )\n",
" ]\n",
")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-19T10:20:46.275673Z",
"start_time": "2023-10-19T10:20:44.241097Z"
}
}
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-10-19T10:19:56.233477Z"
}
}
},
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -1,10 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Konko\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Konko\n",
"# ChatKonko\n",
"\n",
">[Konko](https://www.konko.ai/) API is a fully managed Web API designed to help application developers:\n",
"\n",

View File

@@ -1,12 +1,22 @@
{
"cells": [
{
"cell_type": "raw",
"id": "59148044",
"metadata": {},
"source": [
"---\n",
"sidebar_label: LiteLLM\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# 🚅 LiteLLM\n",
"# ChatLiteLLM\n",
"\n",
"[LiteLLM](https://github.com/BerriAI/litellm) is a library that simplifies calling Anthropic, Azure, Huggingface, Replicate, etc. \n",
"\n",

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "7320f16b",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Llama 2 Chat\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "90a1faf2",
"metadata": {},
"source": [
"# Llama-2 Chat\n",
"# Llama2Chat\n",
"\n",
"This notebook shows how to augment Llama-2 `LLM`s with the `Llama2Chat` wrapper to support the [Llama-2 chat prompt format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2). Several `LLM` implementations in LangChain can be used as interface to Llama-2 chat models. These include [HuggingFaceTextGenInference](https://python.langchain.com/docs/integrations/llms/huggingface_textgen_inference), [LlamaCpp](https://python.langchain.com/docs/use_cases/question_answering/how_to/local_retrieval_qa), [GPT4All](https://python.langchain.com/docs/integrations/llms/gpt4all), ..., to mention a few examples. \n",
"\n",
@@ -721,7 +731,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "71b5cfca",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Llama API\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "90a1faf2",
"metadata": {},
"source": [
"# Llama API\n",
"# ChatLlamaAPI\n",
"\n",
"This notebook shows how to use LangChain with [LlamaAPI](https://llama-api.com/) - a hosted version of Llama2 that adds in support for function calling."
]

View File

@@ -1,11 +1,20 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: MiniMax\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# MiniMax\n",
"# MiniMaxChat\n",
"\n",
"[Minimax](https://api.minimax.chat) is a Chinese startup that provides LLM service for companies and individuals.\n",
"\n",

View File

@@ -1,10 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Ollama\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ollama\n",
"# ChatOllama\n",
"\n",
"[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as LLaMA2, locally.\n",
"\n",
@@ -119,6 +128,159 @@
"chat_model(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Extraction\n",
" \n",
"Update your version of Ollama and supply the [`format`](https://github.com/jmorganca/ollama/blob/main/docs/api.md#json-mode) flag.\n",
"\n",
"We can enforce the model to produce JSON.\n",
"\n",
"**Note:** You can also try out the experimental [OllamaFunctions](https://python.langchain.com/docs/integrations/chat/ollama_functions) wrapper for convenience."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain.chat_models import ChatOllama\n",
"\n",
"chat_model = ChatOllama(\n",
" model=\"llama2\",\n",
" format=\"json\",\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Sure! Here's a JSON response with the colors of the sky at different times of the day:\n",
" Begriffe und Abkürzungen:\n",
"\n",
"* `time`: The time of day (in 24-hour format)\n",
"* `sky_color`: The color of the sky at that time (as a hex code)\n",
"\n",
"Here are the colors of the sky at different times of the day:\n",
"```json\n",
"[\n",
" {\n",
" \"time\": \"6am\",\n",
" \"sky_color\": \"#0080c0\"\n",
" },\n",
" {\n",
" \"time\": \"9am\",\n",
" \"sky_color\": \"#3498db\"\n",
" },\n",
" {\n",
" \"time\": \"12pm\",\n",
" \"sky_color\": \"#ef7c00\"\n",
" },\n",
" {\n",
" \"time\": \"3pm\",\n",
" \"sky_color\": \"#9564b6\"\n",
" },\n",
" {\n",
" \"time\": \"6pm\",\n",
" \"sky_color\": \"#e78ac3\"\n",
" },\n",
" {\n",
" \"time\": \"9pm\",\n",
" \"sky_color\": \"#5f006a\"\n",
" }\n",
"]\n",
"```\n",
"In this response, the `time` property is a string in 24-hour format, representing the time of day. The `sky_color` property is a hex code representing the color of the sky at that time. For example, at 6am, the sky is blue (#0080c0), while at 9pm, it's dark blue (#5f006a)."
]
}
],
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"What color is the sky at different times of the day? Respond using JSON\"\n",
" )\n",
"]\n",
"\n",
"chat_model_response = chat_model(messages)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Sure! Based on the JSON schema you provided, here's the information we can gather about a person named John who is 35 years old and loves pizza:\n",
"\n",
"**Name:** John\n",
"\n",
"**Age:** 35 (integer)\n",
"\n",
"**Favorite food:** Pizza (string)\n",
"\n",
"So, the JSON object for John would look like this:\n",
"```json\n",
"{\n",
" \"name\": \"John\",\n",
" \"age\": 35,\n",
" \"fav_food\": \"pizza\"\n",
"}\n",
"```\n",
"Note that we cannot provide additional information about John beyond what is specified in the schema. For example, we do not have any information about his gender, occupation, or address, as those fields are not included in the schema."
]
}
],
"source": [
"import json\n",
"\n",
"from langchain.schema import HumanMessage\n",
"\n",
"json_schema = {\n",
" \"title\": \"Person\",\n",
" \"description\": \"Identifying information about a person.\",\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"name\": {\"title\": \"Name\", \"description\": \"The person's name\", \"type\": \"string\"},\n",
" \"age\": {\"title\": \"Age\", \"description\": \"The person's age\", \"type\": \"integer\"},\n",
" \"fav_food\": {\n",
" \"title\": \"Fav Food\",\n",
" \"description\": \"The person's favorite food\",\n",
" \"type\": \"string\",\n",
" },\n",
" },\n",
" \"required\": [\"name\", \"age\"],\n",
"}\n",
"\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"Please tell me about a person using the following JSON schema:\"\n",
" ),\n",
" HumanMessage(content=json.dumps(json_schema, indent=2)),\n",
" HumanMessage(\n",
" content=\"Now, considering the schema, tell me about a person named John who is 35 years old and loves pizza.\"\n",
" ),\n",
"]\n",
"\n",
"chat_model_response = chat_model(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -375,5 +537,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -0,0 +1,180 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Ollama Functions\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OllamaFunctions\n",
"\n",
"This notebook shows how to use an experimental wrapper around Ollama that gives it the same API as OpenAI Functions.\n",
"\n",
"Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use Mistral.\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
"\n",
"## Setup\n",
"\n",
"Follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance.\n",
"\n",
"## Usage\n",
"\n",
"You can initialize OllamaFunctions in a similar way to how you'd initialize a standard ChatOllama instance:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.llms.ollama_functions import OllamaFunctions\n",
"\n",
"model = OllamaFunctions(model=\"mistral\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can then bind functions defined with JSON Schema parameters and a `function_call` parameter to force the model to call the given function:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"model = model.bind(\n",
" functions=[\n",
" {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, \" \"e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\n",
" \"type\": \"string\",\n",
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
" },\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" }\n",
" ],\n",
" function_call={\"name\": \"get_current_weather\"},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calling a function with this model then results in JSON output matching the provided schema:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\"location\": \"Boston, MA\", \"unit\": \"celsius\"}'}})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"model.invoke(\"what is the weather in Boston?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using for extraction\n",
"\n",
"One useful thing you can do with function calling here is extracting properties from a given input in a structured format:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Alex', 'height': 5, 'hair_color': 'blonde'},\n",
" {'name': 'Claudia', 'height': 6, 'hair_color': 'brunette'}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import create_extraction_chain\n",
"\n",
"# Schema\n",
"schema = {\n",
" \"properties\": {\n",
" \"name\": {\"type\": \"string\"},\n",
" \"height\": {\"type\": \"integer\"},\n",
" \"hair_color\": {\"type\": \"string\"},\n",
" },\n",
" \"required\": [\"name\", \"height\"],\n",
"}\n",
"\n",
"# Input\n",
"input = \"\"\"Alex is 5 feet tall. Claudia is 1 feet taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.\"\"\"\n",
"\n",
"# Run chain\n",
"llm = OllamaFunctions(model=\"mistral\", temperature=0)\n",
"chain = create_extraction_chain(schema, llm)\n",
"chain.run(input)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: OpenAI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# OpenAI\n",
"# ChatOpenAI\n",
"\n",
"This notebook covers how to get started with OpenAI chat models."
]

View File

@@ -1,10 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: AliCloud PAI EAS\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AliCloud PAI EAS\n",
"# PaiEasChatEndpoint\n",
"Machine Learning Platform for AI of Alibaba Cloud is a machine learning or deep learning engineering platform intended for enterprises and developers. It provides easy-to-use, cost-effective, high-performance, and easy-to-scale plug-ins that can be applied to various industry scenarios. With over 140 built-in optimization algorithms, Machine Learning Platform for AI provides whole-process AI engineering capabilities including data labeling (PAI-iTAG), model building (PAI-Designer and PAI-DSW), model training (PAI-DLC), compilation optimization, and inference deployment (PAI-EAS). PAI-EAS supports different types of hardware resources, including CPUs and GPUs, and features high throughput and low latency. It allows you to deploy large-scale complex models with a few clicks and perform elastic scale-ins and scale-outs in real time. It also provides a comprehensive O&M and monitoring system."
]
},

View File

@@ -1,12 +1,22 @@
{
"cells": [
{
"cell_type": "raw",
"id": "ce3672d3",
"metadata": {},
"source": [
"---\n",
"sidebar_label: PromptLayer ChatOpenAI\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "959300d4",
"metadata": {},
"source": [
"# PromptLayer ChatOpenAI\n",
"# PromptLayerChatOpenAI\n",
"\n",
"This example showcases how to connect to [PromptLayer](https://www.promptlayer.com) to start recording your ChatOpenAI requests."
]

View File

@@ -1,5 +1,14 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Tongyi Qwen\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
@@ -9,7 +18,7 @@
}
},
"source": [
"# Tongyi Qwen\n",
"# ChatTongyi\n",
"Tongyi Qwen is a large language model developed by Alibaba's Damo Academy. It is capable of understanding user intent through natural language understanding and semantic analysis, based on user input in natural language. It provides services and assistance to users in different domains and tasks. By providing clear and detailed instructions, you can obtain results that better align with your expectations.\n",
"In this notebook, we will introduce how to use langchain with [Tongyi](https://www.aliyun.com/product/dashscope) mainly in `Chat` corresponding\n",
" to the package `langchain/chat_models` in langchain"
@@ -41,7 +50,7 @@
},
"outputs": [
{
"name": "stdin",
"name": "stdout",
"output_type": "stream",
"text": [
" ········\n"

View File

@@ -1,5 +1,15 @@
{
"cells": [
{
"cell_type": "raw",
"id": "eb65deaa",
"metadata": {},
"source": [
"---\n",
"sidebar_label: vLLM Chat\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "eb7e5679-aa06-47e4-a1a3-b6b70e604017",

View File

@@ -0,0 +1,191 @@
{
"cells": [
{
"cell_type": "raw",
"id": "66107bdd",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Volc Enging Maas\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "404758628c7b20f6",
"metadata": {
"collapsed": false
},
"source": [
"# VolcEngineMaasChat\n",
"\n",
"This notebook provides you with a guide on how to get started with volc engine maas chat models."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2cd2ebd9d023c4d3",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Install the package\n",
"!pip install volcengine"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "51e7f967cb78f5b7",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:43:37.131292Z",
"start_time": "2023-11-27T10:43:37.127250Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"from langchain.chat_models import VolcEngineMaasChat\n",
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "139667d44689f9e0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:43:49.911867Z",
"start_time": "2023-11-27T10:43:49.908329Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"chat = VolcEngineMaasChat(volc_engine_maas_ak=\"your ak\", volc_engine_maas_sk=\"your sk\")"
]
},
{
"cell_type": "markdown",
"id": "e84ebc4feedcc739",
"metadata": {
"collapsed": false
},
"source": [
"or you can set access_key and secret_key in your environment variables\n",
"```bash\n",
"export VOLC_ACCESSKEY=YOUR_AK\n",
"export VOLC_SECRETKEY=YOUR_SK\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "35da18414ad17aa0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:43:53.101852Z",
"start_time": "2023-11-27T10:43:51.741041Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='好的,这是一个笑话:\\n\\n为什么鸟儿不会玩电脑游戏\\n\\n因为它们没有翅膀')"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat([HumanMessage(content=\"给我讲个笑话\")])"
]
},
{
"cell_type": "markdown",
"id": "a55e5a9ed80ec49e",
"metadata": {
"collapsed": false
},
"source": [
"# volc engine maas chat with stream"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "b4e4049980ac68ef",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:43:55.120405Z",
"start_time": "2023-11-27T10:43:55.114707Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"chat = VolcEngineMaasChat(\n",
" volc_engine_maas_ak=\"your ak\",\n",
" volc_engine_maas_sk=\"your sk\",\n",
" streaming=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "fe709a4ffb5c811d",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:43:58.775294Z",
"start_time": "2023-11-27T10:43:56.799401Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='好的,这是一个笑话:\\n\\n三岁的女儿说她会造句了妈妈让她用“年轻”造句女儿说“妈妈减肥一年轻了好几斤”。')"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat([HumanMessage(content=\"给我讲个笑话\")])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,11 +1,21 @@
{
"cells": [
{
"cell_type": "raw",
"id": "b4154fbe",
"metadata": {},
"source": [
"---\n",
"sidebar_label: YandexGPT\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "af63c9db-e4bd-4d3b-a4d7-7927f5541734",
"metadata": {},
"source": [
"# YandexGPT\n",
"# ChatYandexGPT\n",
"\n",
"This notebook goes over how to use Langchain with [YandexGPT](https://cloud.yandex.com/en/services/yandexgpt) chat model.\n",
"\n",

View File

@@ -30,7 +30,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting discord_chats.txt\n"
"Writing discord_chats.txt\n"
]
}
],
@@ -240,14 +240,14 @@
{
"data": {
"text/plain": [
"[{'messages': [AIMessage(content='Love music! Do you like jazz?', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': '08/15/2023 11:10 AM\\n'}]}, example=False),\n",
" HumanMessage(content='Yes! Jazz is fantastic. Ever heard this one?\\nWebsite\\nListen to classic jazz track...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': '08/15/2023 9:27 PM\\n'}]}, example=False),\n",
" AIMessage(content='Indeed! Great choice. 🎷', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Yesterday at 5:03 AM\\n'}]}, example=False),\n",
" HumanMessage(content='Thanks! How about some virtual sightseeing?\\nWebsite\\nVirtual tour of famous landmarks...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Yesterday at 5:23 AM\\n'}]}, example=False),\n",
" AIMessage(content=\"Sounds fun! Let's explore.\", additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 2:38 PM\\n'}]}, example=False),\n",
" HumanMessage(content='Enjoy the tour! See you around.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 2:56 PM\\n'}]}, example=False),\n",
" AIMessage(content='Thank you! Goodbye! 👋', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 3:00 PM\\n'}]}, example=False),\n",
" HumanMessage(content='Farewell! Happy exploring.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 3:02 PM\\n'}]}, example=False)]}]"
"[{'messages': [AIMessage(content='Love music! Do you like jazz?', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': '08/15/2023 11:10 AM\\n'}]}),\n",
" HumanMessage(content='Yes! Jazz is fantastic. Ever heard this one?\\nWebsite\\nListen to classic jazz track...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': '08/15/2023 9:27 PM\\n'}]}),\n",
" AIMessage(content='Indeed! Great choice. 🎷', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Yesterday at 5:03 AM\\n'}]}),\n",
" HumanMessage(content='Thanks! How about some virtual sightseeing?\\nWebsite\\nVirtual tour of famous landmarks...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Yesterday at 5:23 AM\\n'}]}),\n",
" AIMessage(content=\"Sounds fun! Let's explore.\", additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 2:38 PM\\n'}]}),\n",
" HumanMessage(content='Enjoy the tour! See you around.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 2:56 PM\\n'}]}),\n",
" AIMessage(content='Thank you! Goodbye! 👋', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 3:00 PM\\n'}]}),\n",
" HumanMessage(content='Farewell! Happy exploring.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 3:02 PM\\n'}]})]}]"
]
},
"execution_count": 5,
@@ -279,7 +279,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Thank you! Have a wonderful day! 🌟"
"Thank you! Have a great day!"
]
}
],
@@ -317,7 +317,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -32,7 +32,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "647f2158-a42e-4634-b283-b8492caf542a",
"metadata": {},
"outputs": [
@@ -91,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "a0869bc6",
"metadata": {},
"outputs": [],
@@ -114,7 +114,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 4,
"id": "f61ee277",
"metadata": {},
"outputs": [],
@@ -126,19 +126,19 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 5,
"id": "ec466ad7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hi Hermione! How's your summer going so far?\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?\", additional_kwargs={'sender': 'Hermione Granger'}, example=False),\n",
" HumanMessage(content=\"I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
"[HumanMessage(content=\"Hi Hermione! How's your summer going so far?\", additional_kwargs={'sender': 'Harry Potter'}),\n",
" HumanMessage(content=\"Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?\", additional_kwargs={'sender': 'Hermione Granger'}),\n",
" HumanMessage(content=\"I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!\", additional_kwargs={'sender': 'Harry Potter'})]"
]
},
"execution_count": 9,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -150,7 +150,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 6,
"id": "8a3ee473",
"metadata": {},
"outputs": [],
@@ -162,7 +162,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"id": "9f41e122",
"metadata": {},
"outputs": [
@@ -172,7 +172,7 @@
"9"
]
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -196,7 +196,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 8,
"id": "5a78030d-b757-4bbe-8a6c-841056f46df7",
"metadata": {},
"outputs": [],
@@ -209,7 +209,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 9,
"id": "ff35b028-78bf-4c5b-9ec6-939fe67de7f7",
"metadata": {},
"outputs": [],
@@ -220,19 +220,19 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 10,
"id": "4b11906e-a496-4d01-9f0d-1938c14147bf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"What is it, Potter? I'm quite busy at the moment.\", additional_kwargs={'sender': 'Severus Snape'}, example=False),\n",
" AIMessage(content=\"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
"[AIMessage(content=\"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\", additional_kwargs={'sender': 'Harry Potter'}),\n",
" HumanMessage(content=\"What is it, Potter? I'm quite busy at the moment.\", additional_kwargs={'sender': 'Severus Snape'}),\n",
" AIMessage(content=\"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\", additional_kwargs={'sender': 'Harry Potter'})]"
]
},
"execution_count": 19,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -253,7 +253,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 11,
"id": "21372331",
"metadata": {},
"outputs": [],
@@ -263,7 +263,7 @@
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 12,
"id": "92c5ae7a",
"metadata": {},
"outputs": [
@@ -282,7 +282,7 @@
},
{
"cell_type": "code",
"execution_count": 33,
"execution_count": 13,
"id": "dfcbd181",
"metadata": {
"scrolled": true
@@ -299,7 +299,7 @@
" 'content': \"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\"}]"
]
},
"execution_count": 33,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -321,7 +321,7 @@
},
{
"cell_type": "code",
"execution_count": 42,
"execution_count": 14,
"id": "13cd290a-b1e9-4686-bb5e-d99de8b8612b",
"metadata": {},
"outputs": [
@@ -331,7 +331,7 @@
"100"
]
},
"execution_count": 42,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -364,7 +364,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": 15,
"id": "95ce3f63-3c80-44b2-9060-534ad74e16fa",
"metadata": {},
"outputs": [],
@@ -374,7 +374,7 @@
},
{
"cell_type": "code",
"execution_count": 58,
"execution_count": 16,
"id": "ab9e28eb",
"metadata": {},
"outputs": [
@@ -382,7 +382,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"File file-zCyNBeg4snpbBL7VkvsuhCz8 ready afer 30.55 seconds.\n"
"File file-ULumAXLEFw3vB6bb9uy6DNVC ready after 0.00 seconds.\n"
]
}
],
@@ -399,16 +399,16 @@
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode(\"utf-8\"))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(file=my_file, purpose=\"fine-tune\")\n",
"training_file = openai.files.create(file=my_file, purpose=\"fine-tune\")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",
"status = openai.File.retrieve(training_file.id).status\n",
"status = openai.files.retrieve(training_file.id).status\n",
"start_time = time.time()\n",
"while status != \"processed\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.File.retrieve(training_file.id).status\n",
" status = openai.files.retrieve(training_file.id).status\n",
"print(f\"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.\")"
]
},
@@ -422,12 +422,12 @@
},
{
"cell_type": "code",
"execution_count": 59,
"execution_count": 17,
"id": "3f451425",
"metadata": {},
"outputs": [],
"source": [
"job = openai.FineTuningJob.create(\n",
"job = openai.fine_tuning.jobs.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")"
@@ -443,7 +443,7 @@
},
{
"cell_type": "code",
"execution_count": 60,
"execution_count": 18,
"id": "bac1637a-c087-4523-ade1-c47f9bf4c6f4",
"metadata": {},
"outputs": [
@@ -451,23 +451,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 908.87s\r"
"Status=[running]... 874.29s. 56.93s\r"
]
}
],
"source": [
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"status = openai.fine_tuning.jobs.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" job = openai.FineTuningJob.retrieve(job.id)\n",
" job = openai.fine_tuning.jobs.retrieve(job.id)\n",
" status = job.status"
]
},
{
"cell_type": "code",
"execution_count": 66,
"execution_count": 19,
"id": "535895e1-bc69-40e5-82ed-e24ed2baeeee",
"metadata": {},
"outputs": [
@@ -475,7 +475,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"ft:gpt-3.5-turbo-0613:personal::7rDwkaOq\n"
"ft:gpt-3.5-turbo-0613:personal::8QnAzWMr\n"
]
}
],
@@ -495,7 +495,7 @@
},
{
"cell_type": "code",
"execution_count": 67,
"execution_count": 20,
"id": "3925d60d",
"metadata": {},
"outputs": [],
@@ -510,7 +510,7 @@
},
{
"cell_type": "code",
"execution_count": 69,
"execution_count": 21,
"id": "7190cf2e-ab34-4ceb-bdad-45f24f069c29",
"metadata": {},
"outputs": [],
@@ -529,7 +529,7 @@
},
{
"cell_type": "code",
"execution_count": 72,
"execution_count": 22,
"id": "f02057e9-f914-40b1-9c9d-9432ff594b98",
"metadata": {},
"outputs": [
@@ -537,7 +537,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The usual - Potions, Transfiguration, Defense Against the Dark Arts. What about you?"
"I'm taking Charms, Defense Against the Dark Arts, Herbology, Potions, Transfiguration, and Ancient Runes. How about you?"
]
}
],
@@ -545,14 +545,6 @@
"for tok in chain.stream({\"input\": \"What classes are you taking?\"}):\n",
" print(tok, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35331503-3cc6-4d64-955e-64afe6b5fef3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -571,7 +563,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -243,16 +243,16 @@
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode(\"utf-8\"))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(file=my_file, purpose=\"fine-tune\")\n",
"training_file = openai.files.create(file=my_file, purpose=\"fine-tune\")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",
"status = openai.File.retrieve(training_file.id).status\n",
"status = openai.files.retrieve(training_file.id).status\n",
"start_time = time.time()\n",
"while status != \"processed\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.File.retrieve(training_file.id).status\n",
" status = openai.files.retrieve(training_file.id).status\n",
"print(f\"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.\")"
]
},
@@ -271,7 +271,7 @@
"metadata": {},
"outputs": [],
"source": [
"job = openai.FineTuningJob.create(\n",
"job = openai.fine_tuning.jobs.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")"
@@ -300,12 +300,12 @@
}
],
"source": [
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"status = openai.fine_tuning.jobs.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" job = openai.FineTuningJob.retrieve(job.id)\n",
" job = openai.fine_tuning.jobs.retrieve(job.id)\n",
" status = job.status"
]
},
@@ -416,7 +416,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -123,7 +123,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 6,
"id": "817bc077-c18a-473b-94a4-a7d810d583a8",
"metadata": {},
"outputs": [],
@@ -145,7 +145,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 7,
"id": "9e5ac127-b094-4584-9159-5a6d3d7315c7",
"metadata": {},
"outputs": [],
@@ -166,7 +166,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"id": "11d19e28-be49-4801-8065-1a58d13cd192",
"metadata": {},
"outputs": [
@@ -174,7 +174,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 302.42s. 143.85s\r"
"Status=[running]... 429.55s. 46.34s\r"
]
}
],
@@ -190,20 +190,20 @@
" my_file.write((json.dumps({\"messages\": dialog}) + \"\\n\").encode(\"utf-8\"))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(file=my_file, purpose=\"fine-tune\")\n",
"training_file = openai.files.create(file=my_file, purpose=\"fine-tune\")\n",
"\n",
"job = openai.FineTuningJob.create(\n",
"job = openai.fine_tuning.jobs.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")\n",
"\n",
"# Wait for the fine-tuning to complete (this may take some time)\n",
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"status = openai.fine_tuning.jobs.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.FineTuningJob.retrieve(job.id).status\n",
" status = openai.fine_tuning.jobs.retrieve(job.id).status\n",
"\n",
"# Now your model is fine-tuned!"
]
@@ -220,16 +220,18 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"id": "3f472ca4-fa9b-485d-bd37-8ce3c59c44db",
"metadata": {},
"outputs": [],
"source": [
"# Get the fine-tuned model ID\n",
"job = openai.FineTuningJob.retrieve(job.id)\n",
"job = openai.fine_tuning.jobs.retrieve(job.id)\n",
"model_id = job.fine_tuned_model\n",
"\n",
"# Use the fine-tuned model in LangChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model=model_id,\n",
" temperature=1,\n",
@@ -238,10 +240,21 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 11,
"id": "7d3b5845-6385-42d1-9f7d-5ea798dc2cd9",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='[{\"s\": \"There were three ravens\", \"object\": \"tree\", \"relation\": \"sat on\"}, {\"s\": \"three ravens\", \"object\": \"a tree\", \"relation\": \"sat on\"}]')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.invoke(\"There were three ravens sat on a tree.\")"
]
@@ -271,7 +284,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -35,7 +35,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "473adce5-c863-49e6-85c3-049e0ec2222e",
"metadata": {},
"outputs": [],
@@ -65,7 +65,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "9a36d27f-2f3b-4148-b94a-9436fe8b00e0",
"metadata": {},
"outputs": [],
@@ -105,7 +105,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "89bcc676-27e8-40dc-a4d6-92cf28e0db58",
"metadata": {},
"outputs": [
@@ -144,7 +144,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "cd44ff01-22cf-431a-8bf4-29a758d1fcff",
"metadata": {},
"outputs": [],
@@ -169,18 +169,10 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"id": "62da7d8f-5cfc-45a6-946e-2bcda2b0ba1f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised ServiceUnavailableError: The server is overloaded or not ready yet..\n"
]
}
],
"outputs": [],
"source": [
"math_questions = [\n",
" \"What's 45/9?\",\n",
@@ -219,7 +211,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"id": "d6037992-050d-4ada-a061-860c124f0bf1",
"metadata": {},
"outputs": [],
@@ -231,7 +223,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 7,
"id": "0444919a-6f5a-4726-9916-4603b1420d0e",
"metadata": {},
"outputs": [],
@@ -266,7 +258,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 8,
"id": "817bc077-c18a-473b-94a4-a7d810d583a8",
"metadata": {},
"outputs": [],
@@ -288,7 +280,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 9,
"id": "9e5ac127-b094-4584-9159-5a6d3d7315c7",
"metadata": {},
"outputs": [],
@@ -309,7 +301,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 10,
"id": "11d19e28-be49-4801-8065-1a58d13cd192",
"metadata": {},
"outputs": [
@@ -317,7 +309,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 346.26s. 31.70s\r"
"Status=[running]... 349.84s. 17.72s\r"
]
}
],
@@ -333,20 +325,20 @@
" my_file.write((json.dumps({\"messages\": dialog}) + \"\\n\").encode(\"utf-8\"))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(file=my_file, purpose=\"fine-tune\")\n",
"training_file = openai.files.create(file=my_file, purpose=\"fine-tune\")\n",
"\n",
"job = openai.FineTuningJob.create(\n",
"job = openai.fine_tuning.jobs.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")\n",
"\n",
"# Wait for the fine-tuning to complete (this may take some time)\n",
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"status = openai.fine_tuning.jobs.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.FineTuningJob.retrieve(job.id).status\n",
" status = openai.fine_tuning.jobs.retrieve(job.id).status\n",
"\n",
"# Now your model is fine-tuned!"
]
@@ -363,16 +355,18 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 11,
"id": "7f45b281-1dfa-43cb-bd28-99fa7e9f45d1",
"metadata": {},
"outputs": [],
"source": [
"# Get the fine-tuned model ID\n",
"job = openai.FineTuningJob.retrieve(job.id)\n",
"job = openai.fine_tuning.jobs.retrieve(job.id)\n",
"model_id = job.fine_tuned_model\n",
"\n",
"# Use the fine-tuned model in LangChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model=model_id,\n",
" temperature=1,\n",
@@ -381,17 +375,17 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 12,
"id": "7d3b5845-6385-42d1-9f7d-5ea798dc2cd9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='{\\n \"num1\": 56,\\n \"num2\": 7,\\n \"operation\": \"/\"\\n}')"
"AIMessage(content='Let me calculate that for you.')"
]
},
"execution_count": 18,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -425,7 +419,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,884 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "1f3cebbe-079a-4bfe-b1a1-07bdac882ce2",
"metadata": {},
"source": [
"# Amazon Textract \n",
"\n",
">[Amazon Textract](https://docs.aws.amazon.com/managedservices/latest/userguide/textract.html) is a machine learning (ML) service that automatically extracts text, handwriting, and data from scanned documents.\n",
">\n",
">It goes beyond simple optical character recognition (OCR) to identify, understand, and extract data from forms and tables. Today, many companies manually extract data from scanned documents such as PDFs, images, tables, and forms, or through simple OCR software that requires manual configuration (which often must be updated when the form changes). To overcome these manual and expensive processes, `Textract` uses ML to read and process any type of document, accurately extracting text, handwriting, tables, and other data with no manual effort. \n",
"\n",
"This sample demonstrates the use of `Amazon Textract` in combination with LangChain as a DocumentLoader.\n",
"\n",
"`Textract` supports`PDF`, `TIF`F, `PNG` and `JPEG` format.\n",
"\n",
"`Textract` supports these [document sizes, languages and characters](https://docs.aws.amazon.com/textract/latest/dg/limits-document.html)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a1aa66d4-85f2-42ad-a8d3-de7cea8d6c35",
"metadata": {},
"outputs": [],
"source": [
"#!pip install boto3 openai tiktoken python-dotenv"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e4305a0d-37da-41f9-a52c-7d166d7dbabf",
"metadata": {},
"outputs": [],
"source": [
"#!pip install \"amazon-textract-caller>=0.2.0\""
]
},
{
"cell_type": "markdown",
"id": "400b25c6-befa-4730-a201-39ff112c8858",
"metadata": {},
"source": [
"## Sample 1\n",
"\n",
"The first example uses a local file, which internally will be send to Amazon Textract sync API [DetectDocumentText](https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html). \n",
"\n",
"Local files or URL endpoints like HTTP:// are limited to one page documents for Textract.\n",
"Multi-page documents have to reside on S3. This sample file is a jpeg."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1becee92-e82f-42d4-9b4e-b23d77cbe88d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import AmazonTextractPDFLoader\n",
"\n",
"loader = AmazonTextractPDFLoader(\"example_data/alejandro_rosalez_sample-small.jpeg\")\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "d566dc56-c9a9-44ec-84fb-a81928f90d40",
"metadata": {},
"source": [
"Output from the file"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1272ce8c-d298-4059-ac0a-780bf5f82302",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No ', metadata={'source': 'example_data/alejandro_rosalez_sample-small.jpeg', 'page': 1})]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents"
]
},
{
"cell_type": "markdown",
"id": "4cf7f19c-3635-453a-9c76-4baf98b8d7f4",
"metadata": {},
"source": [
"## Sample 2\n",
"The next sample loads a file from an HTTPS endpoint. \n",
"It has to be single page, as Amazon Textract requires all multi-page documents to be stored on S3."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "10374bfb-b325-451f-8bd0-c686710ab68c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import AmazonTextractPDFLoader\n",
"\n",
"loader = AmazonTextractPDFLoader(\n",
" \"https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg\"\n",
")\n",
"documents = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "16a2b6a3-7514-4c2c-a427-6847169af473",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No ', metadata={'source': 'example_data/alejandro_rosalez_sample-small.jpeg', 'page': 1})]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents"
]
},
{
"cell_type": "markdown",
"id": "3a9cd8ec-e663-4dc7-9db1-d2f575253141",
"metadata": {},
"source": [
"## Sample 3\n",
"\n",
"Processing a multi-page document requires the document to be on S3. The sample document resides in a bucket in us-east-2 and Textract needs to be called in that same region to be successful, so we set the region_name on the client and pass that in to the loader to ensure Textract is called from us-east-2. You could also to have your notebook running in us-east-2, setting the AWS_DEFAULT_REGION set to us-east-2 or when running in a different environment, pass in a boto3 Textract client with that region name like in the cell below."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8185e3e6-9599-4a47-8969-d6dcef3e6404",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import boto3\n",
"\n",
"textract_client = boto3.client(\"textract\", region_name=\"us-east-2\")\n",
"\n",
"file_path = \"s3://amazon-textract-public-content/langchain/layout-parser-paper.pdf\"\n",
"loader = AmazonTextractPDFLoader(file_path, client=textract_client)\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "b8901eec-070d-4fd6-9d65-52211d332441",
"metadata": {},
"source": [
"Now getting the number of pages to validate the response (printing out the full response would be quite long...). We expect 16 pages."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b23c01c8-cf69-4fe2-8141-4621edb7d79c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"16"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(documents)"
]
},
{
"cell_type": "markdown",
"id": "b3e41b4d-b159-4274-89be-80d8159134ef",
"metadata": {},
"source": [
"## Using the AmazonTextractPDFLoader in an LangChain chain (e. g. OpenAI)\n",
"\n",
"The AmazonTextractPDFLoader can be used in a chain the same way the other loaders are used.\n",
"Textract itself does have a [Query feature](https://docs.aws.amazon.com/textract/latest/dg/API_Query.html), which offers similar functionality to the QA chain in this sample, which is worth checking out as well."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "53c47b24-cc06-4256-9e5b-a82fc80bc55d",
"metadata": {},
"outputs": [],
"source": [
"# You can store your OPENAI_API_KEY in a .env file as well\n",
"# import os\n",
"# from dotenv import load_dotenv\n",
"\n",
"# load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a9ae004c-246c-4c7f-8458-191cd7424a9b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Or set the OpenAI key in the environment directly\n",
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"your-OpenAI-API-key\""
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d52b089c-10ca-45fb-8669-8a1c5fee10d5",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"' The authors are Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin Charles Germain Lee, Jacob Carlson, Weining Li, Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M., Zettlemoyer, L., Lukasz Garncarek, Powalski, R., Stanislawek, T., Topolski, B., Halama, P., Gralinski, F., Graves, A., Fernández, S., Gomez, F., Schmidhuber, J., Harley, A.W., Ufkes, A., Derpanis, K.G., He, K., Gkioxari, G., Dollár, P., Girshick, R., He, K., Zhang, X., Ren, S., Sun, J., Kay, A., Lamiroy, B., Lopresti, D., Mears, J., Jakeway, E., Ferriter, M., Adams, C., Yarasavage, N., Thomas, D., Zwaard, K., Li, M., Cui, L., Huang,'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains.question_answering import load_qa_chain\n",
"from langchain.llms import OpenAI\n",
"\n",
"chain = load_qa_chain(llm=OpenAI(), chain_type=\"map_reduce\")\n",
"query = [\"Who are the autors?\"]\n",
"\n",
"chain.run(input_documents=documents, question=query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a09d18b-ab7b-468e-ae66-f92abf666b9b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"availableInstances": [
{
"_defaultOrder": 0,
"_isFastLaunch": true,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 4,
"name": "ml.t3.medium",
"vcpuNum": 2
},
{
"_defaultOrder": 1,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.t3.large",
"vcpuNum": 2
},
{
"_defaultOrder": 2,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.t3.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 3,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.t3.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 4,
"_isFastLaunch": true,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.m5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 5,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.m5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 6,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.m5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 7,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.m5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 8,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.m5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 9,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.m5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 10,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.m5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 11,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.m5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 12,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.m5d.large",
"vcpuNum": 2
},
{
"_defaultOrder": 13,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.m5d.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 14,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.m5d.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 15,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.m5d.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 16,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.m5d.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 17,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.m5d.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 18,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.m5d.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 19,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.m5d.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 20,
"_isFastLaunch": false,
"category": "General purpose",
"gpuNum": 0,
"hideHardwareSpecs": true,
"memoryGiB": 0,
"name": "ml.geospatial.interactive",
"supportedImageNames": [
"sagemaker-geospatial-v1-0"
],
"vcpuNum": 0
},
{
"_defaultOrder": 21,
"_isFastLaunch": true,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 4,
"name": "ml.c5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 22,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 8,
"name": "ml.c5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 23,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.c5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 24,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.c5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 25,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 72,
"name": "ml.c5.9xlarge",
"vcpuNum": 36
},
{
"_defaultOrder": 26,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 96,
"name": "ml.c5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 27,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 144,
"name": "ml.c5.18xlarge",
"vcpuNum": 72
},
{
"_defaultOrder": 28,
"_isFastLaunch": false,
"category": "Compute optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.c5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 29,
"_isFastLaunch": true,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.g4dn.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 30,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.g4dn.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 31,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.g4dn.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 32,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.g4dn.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 33,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.g4dn.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 34,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.g4dn.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 35,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 61,
"name": "ml.p3.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 36,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 244,
"name": "ml.p3.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 37,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 488,
"name": "ml.p3.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 38,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.p3dn.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 39,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.r5.large",
"vcpuNum": 2
},
{
"_defaultOrder": 40,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.r5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 41,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.r5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 42,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.r5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 43,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.r5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 44,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.r5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 45,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 512,
"name": "ml.r5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 46,
"_isFastLaunch": false,
"category": "Memory Optimized",
"gpuNum": 0,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.r5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 47,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 16,
"name": "ml.g5.xlarge",
"vcpuNum": 4
},
{
"_defaultOrder": 48,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 32,
"name": "ml.g5.2xlarge",
"vcpuNum": 8
},
{
"_defaultOrder": 49,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 64,
"name": "ml.g5.4xlarge",
"vcpuNum": 16
},
{
"_defaultOrder": 50,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 128,
"name": "ml.g5.8xlarge",
"vcpuNum": 32
},
{
"_defaultOrder": 51,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 1,
"hideHardwareSpecs": false,
"memoryGiB": 256,
"name": "ml.g5.16xlarge",
"vcpuNum": 64
},
{
"_defaultOrder": 52,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 192,
"name": "ml.g5.12xlarge",
"vcpuNum": 48
},
{
"_defaultOrder": 53,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 4,
"hideHardwareSpecs": false,
"memoryGiB": 384,
"name": "ml.g5.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 54,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 768,
"name": "ml.g5.48xlarge",
"vcpuNum": 192
},
{
"_defaultOrder": 55,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 1152,
"name": "ml.p4d.24xlarge",
"vcpuNum": 96
},
{
"_defaultOrder": 56,
"_isFastLaunch": false,
"category": "Accelerated computing",
"gpuNum": 8,
"hideHardwareSpecs": false,
"memoryGiB": 1152,
"name": "ml.p4de.24xlarge",
"vcpuNum": 96
}
],
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,174 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a634365e",
"metadata": {},
"source": [
"# Azure AI Data\n",
"\n",
">[Azure AI Studio](https://ai.azure.com/) provides the capability to upload data assets to cloud storage and register existing data assets from the following sources:\n",
"\n",
"- Microsoft OneLake\n",
"- Azure Blob Storage\n",
"- Azure Data Lake gen 2\n",
"\n",
"The benefit of this approach over `AzureBlobStorageContainerLoader` and `AzureBlobStorageFileLoader` is that authentication is handled seamlessly to cloud storage. You can use either *identity-based* data access control to the data or *credential-based* (e.g. SAS token, account key). In the case of credential-based data access you do not need to specify secrets in your code or set up key vaults - the system handles that for you.\n",
"\n",
"This notebook covers how to load document objects from a data asset in AI Studio."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "49815096",
"metadata": {},
"outputs": [],
"source": [
"#!pip install azureml-fsspec, azure-ai-generative"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2f0cd6a5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from azure.ai.resources.client import AIClient\n",
"from azure.identity import DefaultAzureCredential\n",
"from langchain.document_loaders import AzureAIDataLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08d40b11-e87a-426e-a6b0-89f24e47ce2c",
"metadata": {},
"outputs": [],
"source": [
"# Create a connection to your project\n",
"client = AIClient(\n",
" credential=DefaultAzureCredential(),\n",
" subscription_id=\"<subscription_id>\",\n",
" resource_group_name=\"<resource_group_name>\",\n",
" project_name=\"<project_name>\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "321cc7f1",
"metadata": {},
"outputs": [],
"source": [
"# get the latest version of your data asset\n",
"data_asset = client.data.get(name=\"<data_asset_name>\", label=\"latest\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25d91cea-c5f2-4a53-ac19-442810451ec6",
"metadata": {},
"outputs": [],
"source": [
"# load the data asset\n",
"loader = AzureAIDataLoader(url=data_asset.path)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2b11d155",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader.load()"
]
},
{
"cell_type": "markdown",
"id": "0690c40a",
"metadata": {},
"source": [
"## Specifying a glob pattern\n",
"You can also specify a glob pattern for more finegrained control over what files to load. In the example below, only files with a `pdf` extension will be loaded."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "72d44781",
"metadata": {},
"outputs": [],
"source": [
"loader = AzureAIDataLoader(url=data_asset.path, glob=\"*.pdf\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2d3c32db",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "885dc280",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -21,8 +21,8 @@
},
"outputs": [],
"source": [
"# You need the lxml package to use the DocugamiLoader (run pip install directly without \"poetry run\" if you are not using poetry)\n",
"!poetry run pip install lxml --quiet"
"# You need the dgml-utils package to use the DocugamiLoader (run pip install directly without \"poetry run\" if you are not using poetry)\n",
"!poetry run pip install dgml-utils==0.3.0 --upgrade --quiet"
]
},
{
@@ -43,8 +43,8 @@
"Appropriate chunking of your documents is critical for retrieval from documents. Many chunking techniques exist, including simple ones that rely on whitespace and recursive chunk splitting based on character length. Docugami offers a different approach:\n",
"\n",
"1. **Intelligent Chunking:** Docugami breaks down every document into a hierarchical semantic XML tree of chunks of varying sizes, from single words or numerical values to entire sections. These chunks follow the semantic contours of the document, providing a more meaningful representation than arbitrary length or simple whitespace-based chunking.\n",
"2. **Structured Representation:** In addition, the XML tree indicates the structural contours of every document, using attributes denoting headings, paragraphs, lists, tables, and other common elements, and does that consistently across all supported document formats, such as scanned PDFs or DOCX files. It appropriately handles long-form document characteristics like page headers/footers or multi-column flows for clean text extraction.\n",
"3. **Semantic Annotations:** Chunks are annotated with semantic tags that are coherent across the document set, facilitating consistent hierarchical queries across multiple documents, even if they are written and formatted differently. For example, in set of lease agreements, you can easily identify key provisions like the Landlord, Tenant, or Renewal Date, as well as more complex information such as the wording of any sub-lease provision or whether a specific jurisdiction has an exception section within a Termination Clause.\n",
"2. **Semantic Annotations:** Chunks are annotated with semantic tags that are coherent across the document set, facilitating consistent hierarchical queries across multiple documents, even if they are written and formatted differently. For example, in set of lease agreements, you can easily identify key provisions like the Landlord, Tenant, or Renewal Date, as well as more complex information such as the wording of any sub-lease provision or whether a specific jurisdiction has an exception section within a Termination Clause.\n",
"3. **Structured Representation:** In addition, the XML tree indicates the structural contours of every document, using attributes denoting headings, paragraphs, lists, tables, and other common elements, and does that consistently across all supported document formats, such as scanned PDFs or DOCX files. It appropriately handles long-form document characteristics like page headers/footers or multi-column flows for clean text extraction.\n",
"4. **Additional Metadata:** Chunks are also annotated with additional metadata, if a user has been using Docugami. This additional metadata can be used for high-accuracy Document QA without context window restrictions. See detailed code walk-through below.\n"
]
},
@@ -65,52 +65,42 @@
"source": [
"## Load Documents\n",
"\n",
"If the DOCUGAMI_API_KEY environment variable is set, there is no need to pass it in to the loader explicitly otherwise you can pass it in as the `access_token` parameter.\n",
"\n",
"The DocugamiLoader has a default minimum chunk size of 32. Chunks smaller than that are appended to subsequent chunks. Set min_chunk_size to 0 to get all structural chunks regardless of size."
"If the DOCUGAMI_API_KEY environment variable is set, there is no need to pass it in to the loader explicitly otherwise you can pass it in as the `access_token` parameter."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"DOCUGAMI_API_KEY = os.environ.get(\"DOCUGAMI_API_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='MUTUAL NON-DISCLOSURE AGREEMENT This Mutual Non-Disclosure Agreement (this “ Agreement ”) is entered into and made effective as of April 4 , 2018 between Docugami Inc. , a Delaware corporation , whose address is 150 Lake Street South , Suite 221 , Kirkland , Washington 98033 , and Caleb Divine , an individual, whose address is 1201 Rt 300 , Newburgh NY 12550 .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:ThisMutualNon-disclosureAgreement', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'ThisMutualNon-disclosureAgreement'}),\n",
" Document(page_content='The above named parties desire to engage in discussions regarding a potential agreement or other transaction between the parties (the “Purpose”). In connection with such discussions, it may be necessary for the parties to disclose to each other certain confidential information or materials to enable them to evaluate whether to enter into such agreement or transaction.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Discussions', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'Discussions'}),\n",
" Document(page_content='In consideration of the foregoing, the parties agree as follows:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Consideration', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'Consideration'}),\n",
" Document(page_content='1. Confidential Information . For purposes of this Agreement , “ Confidential Information ” means any information or materials disclosed by one party to the other party that: (i) if disclosed in writing or in the form of tangible materials, is marked “confidential” or “proprietary” at the time of such disclosure; (ii) if disclosed orally or by visual presentation, is identified as “confidential” or “proprietary” at the time of such disclosure, and is summarized in a writing sent by the disclosing party to the receiving party within thirty ( 30 ) days after any such disclosure; or (iii) due to its nature or the circumstances of its disclosure, a person exercising reasonable business judgment would understand to be confidential or proprietary.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Purposes/docset:ConfidentialInformation-section/docset:ConfidentialInformation[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ConfidentialInformation'}),\n",
" Document(page_content=\"2. Obligations and Restrictions . Each party agrees: (i) to maintain the other party's Confidential Information in strict confidence; (ii) not to disclose such Confidential Information to any third party; and (iii) not to use such Confidential Information for any purpose except for the Purpose. Each party may disclose the other partys Confidential Information to its employees and consultants who have a bona fide need to know such Confidential Information for the Purpose, but solely to the extent necessary to pursue the Purpose and for no other purpose; provided, that each such employee and consultant first executes a written agreement (or is otherwise already bound by a written agreement) that contains use and nondisclosure restrictions at least as protective of the other partys Confidential Information as those set forth in this Agreement .\", metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Obligations/docset:ObligationsAndRestrictions-section/docset:ObligationsAndRestrictions', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ObligationsAndRestrictions'}),\n",
" Document(page_content='3. Exceptions. The obligations and restrictions in Section 2 will not apply to any information or materials that:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Exceptions/docset:Exceptions-section/docset:Exceptions[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Exceptions'}),\n",
" Document(page_content='(i) were, at the date of disclosure, or have subsequently become, generally known or available to the public through no act or failure to act by the receiving party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:TheDate/docset:TheDate', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheDate'}),\n",
" Document(page_content='(ii) were rightfully known by the receiving party prior to receiving such information or materials from the disclosing party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:SuchInformation/docset:TheReceivingParty', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheReceivingParty'}),\n",
" Document(page_content='(iii) are rightfully acquired by the receiving party from a third party who has the right to disclose such information or materials without breach of any confidentiality obligation to the disclosing party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:TheReceivingParty/docset:TheReceivingParty', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheReceivingParty'}),\n",
" Document(page_content='4. Compelled Disclosure . Nothing in this Agreement will be deemed to restrict a party from disclosing the other partys Confidential Information to the extent required by any order, subpoena, law, statute or regulation; provided, that the party required to make such a disclosure uses reasonable efforts to give the other party reasonable advance notice of such required disclosure in order to enable the other party to prevent or limit such disclosure.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Disclosure/docset:CompelledDisclosure-section/docset:CompelledDisclosure', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'CompelledDisclosure'}),\n",
" Document(page_content='5. Return of Confidential Information . Upon the completion or abandonment of the Purpose, and in any event upon the disclosing partys request, the receiving party will promptly return to the disclosing party all tangible items and embodiments containing or consisting of the disclosing partys Confidential Information and all copies thereof (including electronic copies), and any notes, analyses, compilations, studies, interpretations, memoranda or other documents (regardless of the form thereof) prepared by or on behalf of the receiving party that contain or are based upon the disclosing partys Confidential Information .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheCompletion/docset:ReturnofConfidentialInformation-section/docset:ReturnofConfidentialInformation', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ReturnofConfidentialInformation'}),\n",
" Document(page_content='6. No Obligations . Each party retains the right to determine whether to disclose any Confidential Information to the other party.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:NoObligations/docset:NoObligations-section/docset:NoObligations[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'NoObligations'}),\n",
" Document(page_content='7. No Warranty. ALL CONFIDENTIAL INFORMATION IS PROVIDED BY THE DISCLOSING PARTY “AS IS ”.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:NoWarranty/docset:NoWarranty-section/docset:NoWarranty[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'NoWarranty'}),\n",
" Document(page_content='8. Term. This Agreement will remain in effect for a period of seven ( 7 ) years from the date of last disclosure of Confidential Information by either party, at which time it will terminate.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:ThisAgreement/docset:Term-section/docset:Term', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Term'}),\n",
" Document(page_content='9. Equitable Relief . Each party acknowledges that the unauthorized use or disclosure of the disclosing partys Confidential Information may cause the disclosing party to incur irreparable harm and significant damages, the degree of which may be difficult to ascertain. Accordingly, each party agrees that the disclosing party will have the right to seek immediate equitable relief to enjoin any unauthorized use or disclosure of its Confidential Information , in addition to any other rights and remedies that it may have at law or otherwise.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:EquitableRelief/docset:EquitableRelief-section/docset:EquitableRelief[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'EquitableRelief'}),\n",
" Document(page_content='10. Non-compete. To the maximum extent permitted by applicable law, during the Term of this Agreement and for a period of one ( 1 ) year thereafter, Caleb Divine may not market software products or do business that directly or indirectly competes with Docugami software products .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheMaximumExtent/docset:Non-compete-section/docset:Non-compete', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Non-compete'}),\n",
" Document(page_content='11. Miscellaneous. This Agreement will be governed and construed in accordance with the laws of the State of Washington , excluding its body of law controlling conflict of laws. This Agreement is the complete and exclusive understanding and agreement between the parties regarding the subject matter of this Agreement and supersedes all prior agreements, understandings and communications, oral or written, between the parties regarding the subject matter of this Agreement . If any provision of this Agreement is held invalid or unenforceable by a court of competent jurisdiction, that provision of this Agreement will be enforced to the maximum extent permissible and the other provisions of this Agreement will remain in full force and effect. Neither party may assign this Agreement , in whole or in part, by operation of law or otherwise, without the other partys prior written consent, and any attempted assignment without such consent will be void. This Agreement may be executed in counterparts, each of which will be deemed an original, but all of which together will constitute one and the same instrument.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Accordance/docset:Miscellaneous-section/docset:Miscellaneous', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Miscellaneous'}),\n",
" Document(page_content='[SIGNATURE PAGE FOLLOWS] IN WITNESS WHEREOF, the parties hereto have executed this Mutual Non-Disclosure Agreement by their duly authorized officers or representatives as of the date first set forth above.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:Witness/docset:TheParties/docset:TheParties', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheParties'}),\n",
" Document(page_content='DOCUGAMI INC . : \\n\\n Caleb Divine : \\n\\n Signature: Signature: Name: \\n\\n Jean Paoli Name: Title: \\n\\n CEO Title:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:Witness/docset:TheParties/docset:DocugamiInc/docset:DocugamiInc/xhtml:table', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': '', 'tag': 'table'})]"
"120"
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DOCUGAMI_API_KEY = os.environ.get(\"DOCUGAMI_API_KEY\")\n",
"docset_id = \"26xpy3aes7xp\"\n",
"document_ids = [\"d7jqdzcj50sj\", \"cgd1eacfkchw\"]\n",
"\n",
"# To load all docs in the given docset ID, just don't provide document_ids\n",
"loader = DocugamiLoader(docset_id=\"ecxqpipcoe2p\", document_ids=[\"43rj0ds7s0ur\"])\n",
"docs = loader.load()\n",
"docs"
"loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids)\n",
"chunks = loader.load()\n",
"len(chunks)"
]
},
{
@@ -122,7 +112,39 @@
"1. **id and source:** ID and Name of the file (PDF, DOC or DOCX) the chunk is sourced from within Docugami.\n",
"2. **xpath:** XPath inside the XML representation of the document, for the chunk. Useful for source citations directly to the actual chunk inside the document XML.\n",
"3. **structure:** Structural attributes of the chunk, e.g. h1, h2, div, table, td, etc. Useful to filter out certain kinds of chunks if needed by the caller.\n",
"4. **tag:** Semantic tag for the chunk, using various generative and extractive techniques. More details here: https://github.com/docugami/DFM-benchmarks"
"4. **tag:** Semantic tag for the chunk, using various generative and extractive techniques. More details here: https://github.com/docugami/DFM-benchmarks\n",
"\n",
"You can control chunking behavior by setting the following properties on the `DocugamiLoader` instance:\n",
"\n",
"1. You can set min and max chunk size, which the system tries to adhere to with minimal truncation. You can set `loader.min_text_length` and `loader.max_text_length` to control these.\n",
"2. By default, only the text for chunks is returned. However, Docugami's XML knowledge graph has additional rich information including semantic tags for entities inside the chunk. Set `loader.include_xml_tags = True` if you want the additional xml metadata on the returned chunks.\n",
"3. In addition, you can set `loader.parent_hierarchy_levels` if you want Docugami to return parent chunks in the chunks it returns. The child chunks point to the parent chunks via the `loader.parent_id_key` value. This is useful e.g. with the [MultiVector Retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector) for [small-to-big](https://www.youtube.com/watch?v=ihSiRrOUwmg) retrieval. See detailed example later in this notebook."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='MASTER SERVICES AGREEMENT\\n <ThisServicesAgreement> This Services Agreement (the “Agreement”) sets forth terms under which <Company>MagicSoft, Inc. </Company>a <Org><USState>Washington </USState>Corporation </Org>(“Company”) located at <CompanyAddress><CompanyStreetAddress><Company>600 </Company><Company>4th Ave</Company></CompanyStreetAddress>, <Company>Seattle</Company>, <Client>WA </Client><ProvideServices>98104 </ProvideServices></CompanyAddress>shall provide services to <Client>Daltech, Inc.</Client>, a <Company><USState>Washington </USState>Corporation </Company>(the “Client”) located at <ClientAddress><ClientStreetAddress><Client>701 </Client><Client>1st St</Client></ClientStreetAddress>, <Client>Kirkland</Client>, <State>WA </State><Client>98033</Client></ClientAddress>. This Agreement is effective as of <EffectiveDate>February 15, 2021 </EffectiveDate>(“Effective Date”). </ThisServicesAgreement>' metadata={'xpath': '/dg:chunk/docset:MASTERSERVICESAGREEMENT-section/dg:chunk', 'id': 'c28554d0af5114e2b102e6fc4dcbbde5', 'name': 'Master Services Agreement - Daltech.docx', 'source': 'Master Services Agreement - Daltech.docx', 'structure': 'h1 p', 'tag': 'chunk ThisServicesAgreement', 'Liability': '', 'Workers Compensation Insurance': '$1,000,000', 'Limit': '$1,000,000', 'Commercial General Liability Insurance': '$2,000,000', 'Technology Professional Liability Errors Omissions Policy': '$5,000,000', 'Excess Liability Umbrella Coverage': '$9,000,000', 'Client': 'Daltech, Inc.', 'Services Agreement Date': 'INITIAL STATEMENT OF WORK (SOW) The purpose of this SOW is to describe the Software and Services that Company will initially provide to Daltech, Inc. the “Client”) under the terms and conditions of the Services Agreement entered into between the parties on June 15, 2021', 'Completion of the Services by Company Date': 'February 15, 2022', 'Charge': 'one hundred percent (100%)', 'Company': 'MagicSoft, Inc.', 'Effective Date': 'February 15, 2021', 'Start Date': '03/15/2021', 'Scheduled Onsite Visits Are Cancelled': 'ten (10) working days', 'Limit on Liability': '', 'Liability Cap': '', 'Business Automobile Liability': 'Business Automobile Liability covering all vehicles that Company owns, hires or leases with a limit of no less than $1,000,000 (combined single limit for bodily injury and property damage) for each accident.', 'Contractual Liability Coverage': 'Commercial General Liability insurance including Contractual Liability Coverage , with coverage for products liability, completed operations, property damage and bodily injury, including death , with an aggregate limit of no less than $2,000,000 . This policy shall name Client as an additional insured with respect to the provision of services provided under this Agreement. This policy shall include a waiver of subrogation against Client.', 'Technology Professional Liability Errors Omissions': 'Technology Professional Liability Errors & Omissions policy (which includes Cyber Risk coverage and Computer Security and Privacy Liability coverage) with a limit of no less than $5,000,000 per occurrence and in the aggregate.'}\n",
"page_content='A. STANDARD SOFTWARE AND SERVICES AGREEMENT\\n 1. Deliverables.\\n Company shall provide Client with software, technical support, product management, development, and <_testRef>testing </_testRef>services (“Services”) to the Client as described on one or more Statements of Work signed by Company and Client that reference this Agreement (“SOW” or “Statement of Work”). Company shall perform Services in a prompt manner and have the final product or service (“Deliverable”) ready for Client no later than the due date specified in the applicable SOW (“Completion Date”). This due date is subject to change in accordance with the Change Order process defined in the applicable SOW. Client shall assist Company by promptly providing all information requests known or available and relevant to the Services in a timely manner.' metadata={'xpath': '/dg:chunk/docset:MASTERSERVICESAGREEMENT-section/docset:MASTERSERVICESAGREEMENT/dg:chunk[1]/docset:Standard/dg:chunk[1]/dg:chunk[1]', 'id': 'de60160d328df10fa2637637c803d2d4', 'name': 'Master Services Agreement - Daltech.docx', 'source': 'Master Services Agreement - Daltech.docx', 'structure': 'lim h1 lim h1 div', 'tag': 'chunk', 'Liability': '', 'Workers Compensation Insurance': '$1,000,000', 'Limit': '$1,000,000', 'Commercial General Liability Insurance': '$2,000,000', 'Technology Professional Liability Errors Omissions Policy': '$5,000,000', 'Excess Liability Umbrella Coverage': '$9,000,000', 'Client': 'Daltech, Inc.', 'Services Agreement Date': 'INITIAL STATEMENT OF WORK (SOW) The purpose of this SOW is to describe the Software and Services that Company will initially provide to Daltech, Inc. the “Client”) under the terms and conditions of the Services Agreement entered into between the parties on June 15, 2021', 'Completion of the Services by Company Date': 'February 15, 2022', 'Charge': 'one hundred percent (100%)', 'Company': 'MagicSoft, Inc.', 'Effective Date': 'February 15, 2021', 'Start Date': '03/15/2021', 'Scheduled Onsite Visits Are Cancelled': 'ten (10) working days', 'Limit on Liability': '', 'Liability Cap': '', 'Business Automobile Liability': 'Business Automobile Liability covering all vehicles that Company owns, hires or leases with a limit of no less than $1,000,000 (combined single limit for bodily injury and property damage) for each accident.', 'Contractual Liability Coverage': 'Commercial General Liability insurance including Contractual Liability Coverage , with coverage for products liability, completed operations, property damage and bodily injury, including death , with an aggregate limit of no less than $2,000,000 . This policy shall name Client as an additional insured with respect to the provision of services provided under this Agreement. This policy shall include a waiver of subrogation against Client.', 'Technology Professional Liability Errors Omissions': 'Technology Professional Liability Errors & Omissions policy (which includes Cyber Risk coverage and Computer Security and Privacy Liability coverage) with a limit of no less than $5,000,000 per occurrence and in the aggregate.'}\n",
"page_content='2. Onsite Services.\\n 2.1 Onsite visits will be charged on a <Frequency>daily </Frequency>basis (minimum <OnsiteVisits>8 hours</OnsiteVisits>).' metadata={'xpath': '/dg:chunk/docset:MASTERSERVICESAGREEMENT-section/docset:MASTERSERVICESAGREEMENT/dg:chunk[1]/docset:Standard/dg:chunk[3]/dg:chunk[1]', 'id': 'db18315b437ac2de6b555d2d8ef8f893', 'name': 'Master Services Agreement - Daltech.docx', 'source': 'Master Services Agreement - Daltech.docx', 'structure': 'lim h1 lim p', 'tag': 'chunk', 'Liability': '', 'Workers Compensation Insurance': '$1,000,000', 'Limit': '$1,000,000', 'Commercial General Liability Insurance': '$2,000,000', 'Technology Professional Liability Errors Omissions Policy': '$5,000,000', 'Excess Liability Umbrella Coverage': '$9,000,000', 'Client': 'Daltech, Inc.', 'Services Agreement Date': 'INITIAL STATEMENT OF WORK (SOW) The purpose of this SOW is to describe the Software and Services that Company will initially provide to Daltech, Inc. the “Client”) under the terms and conditions of the Services Agreement entered into between the parties on June 15, 2021', 'Completion of the Services by Company Date': 'February 15, 2022', 'Charge': 'one hundred percent (100%)', 'Company': 'MagicSoft, Inc.', 'Effective Date': 'February 15, 2021', 'Start Date': '03/15/2021', 'Scheduled Onsite Visits Are Cancelled': 'ten (10) working days', 'Limit on Liability': '', 'Liability Cap': '', 'Business Automobile Liability': 'Business Automobile Liability covering all vehicles that Company owns, hires or leases with a limit of no less than $1,000,000 (combined single limit for bodily injury and property damage) for each accident.', 'Contractual Liability Coverage': 'Commercial General Liability insurance including Contractual Liability Coverage , with coverage for products liability, completed operations, property damage and bodily injury, including death , with an aggregate limit of no less than $2,000,000 . This policy shall name Client as an additional insured with respect to the provision of services provided under this Agreement. This policy shall include a waiver of subrogation against Client.', 'Technology Professional Liability Errors Omissions': 'Technology Professional Liability Errors & Omissions policy (which includes Cyber Risk coverage and Computer Security and Privacy Liability coverage) with a limit of no less than $5,000,000 per occurrence and in the aggregate.'}\n",
"page_content='2.2 <Expenses>Time and expenses will be charged based on actuals unless otherwise described in an Order Form or accompanying SOW. </Expenses>' metadata={'xpath': '/dg:chunk/docset:MASTERSERVICESAGREEMENT-section/docset:MASTERSERVICESAGREEMENT/dg:chunk[1]/docset:Standard/dg:chunk[3]/dg:chunk[2]/docset:ADailyBasis/dg:chunk[2]/dg:chunk', 'id': '506220fa472d5c48c8ee3db78c1122c1', 'name': 'Master Services Agreement - Daltech.docx', 'source': 'Master Services Agreement - Daltech.docx', 'structure': 'lim p', 'tag': 'chunk Expenses', 'Liability': '', 'Workers Compensation Insurance': '$1,000,000', 'Limit': '$1,000,000', 'Commercial General Liability Insurance': '$2,000,000', 'Technology Professional Liability Errors Omissions Policy': '$5,000,000', 'Excess Liability Umbrella Coverage': '$9,000,000', 'Client': 'Daltech, Inc.', 'Services Agreement Date': 'INITIAL STATEMENT OF WORK (SOW) The purpose of this SOW is to describe the Software and Services that Company will initially provide to Daltech, Inc. the “Client”) under the terms and conditions of the Services Agreement entered into between the parties on June 15, 2021', 'Completion of the Services by Company Date': 'February 15, 2022', 'Charge': 'one hundred percent (100%)', 'Company': 'MagicSoft, Inc.', 'Effective Date': 'February 15, 2021', 'Start Date': '03/15/2021', 'Scheduled Onsite Visits Are Cancelled': 'ten (10) working days', 'Limit on Liability': '', 'Liability Cap': '', 'Business Automobile Liability': 'Business Automobile Liability covering all vehicles that Company owns, hires or leases with a limit of no less than $1,000,000 (combined single limit for bodily injury and property damage) for each accident.', 'Contractual Liability Coverage': 'Commercial General Liability insurance including Contractual Liability Coverage , with coverage for products liability, completed operations, property damage and bodily injury, including death , with an aggregate limit of no less than $2,000,000 . This policy shall name Client as an additional insured with respect to the provision of services provided under this Agreement. This policy shall include a waiver of subrogation against Client.', 'Technology Professional Liability Errors Omissions': 'Technology Professional Liability Errors & Omissions policy (which includes Cyber Risk coverage and Computer Security and Privacy Liability coverage) with a limit of no less than $5,000,000 per occurrence and in the aggregate.'}\n",
"page_content='2.3 <RegularWorkingHours>All work will be executed during regular working hours <RegularWorkingHours>Monday</RegularWorkingHours>-<Weekday>Friday </Weekday><RegularWorkingHours><RegularWorkingHours>0800</RegularWorkingHours>-<Number>1900</Number></RegularWorkingHours>. For work outside of these hours on weekdays, Company will charge <Charge>one hundred percent (100%) </Charge>of the regular hourly rate and <Charge>two hundred percent (200%) </Charge>for Saturdays, Sundays and public holidays applicable to Company. </RegularWorkingHours>' metadata={'xpath': '/dg:chunk/docset:MASTERSERVICESAGREEMENT-section/docset:MASTERSERVICESAGREEMENT/dg:chunk[1]/docset:Standard/dg:chunk[3]/dg:chunk[2]/docset:ADailyBasis/dg:chunk[3]/dg:chunk', 'id': 'dac7a3ded61b5c4f3e59771243ea46c1', 'name': 'Master Services Agreement - Daltech.docx', 'source': 'Master Services Agreement - Daltech.docx', 'structure': 'lim p', 'tag': 'chunk RegularWorkingHours', 'Liability': '', 'Workers Compensation Insurance': '$1,000,000', 'Limit': '$1,000,000', 'Commercial General Liability Insurance': '$2,000,000', 'Technology Professional Liability Errors Omissions Policy': '$5,000,000', 'Excess Liability Umbrella Coverage': '$9,000,000', 'Client': 'Daltech, Inc.', 'Services Agreement Date': 'INITIAL STATEMENT OF WORK (SOW) The purpose of this SOW is to describe the Software and Services that Company will initially provide to Daltech, Inc. the “Client”) under the terms and conditions of the Services Agreement entered into between the parties on June 15, 2021', 'Completion of the Services by Company Date': 'February 15, 2022', 'Charge': 'one hundred percent (100%)', 'Company': 'MagicSoft, Inc.', 'Effective Date': 'February 15, 2021', 'Start Date': '03/15/2021', 'Scheduled Onsite Visits Are Cancelled': 'ten (10) working days', 'Limit on Liability': '', 'Liability Cap': '', 'Business Automobile Liability': 'Business Automobile Liability covering all vehicles that Company owns, hires or leases with a limit of no less than $1,000,000 (combined single limit for bodily injury and property damage) for each accident.', 'Contractual Liability Coverage': 'Commercial General Liability insurance including Contractual Liability Coverage , with coverage for products liability, completed operations, property damage and bodily injury, including death , with an aggregate limit of no less than $2,000,000 . This policy shall name Client as an additional insured with respect to the provision of services provided under this Agreement. This policy shall include a waiver of subrogation against Client.', 'Technology Professional Liability Errors Omissions': 'Technology Professional Liability Errors & Omissions policy (which includes Cyber Risk coverage and Computer Security and Privacy Liability coverage) with a limit of no less than $5,000,000 per occurrence and in the aggregate.'}\n"
]
}
],
"source": [
"loader.min_text_length = 64\n",
"loader.include_xml_tags = True\n",
"chunks = loader.load()\n",
"\n",
"for chunk in chunks[:5]:\n",
" print(chunk)"
]
},
{
@@ -136,27 +158,41 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"!poetry run pip -q install openai tiktoken chromadb"
"!poetry run pip install --upgrade openai tiktoken chromadb hnswlib --quiet"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4674\n"
]
}
],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.vectorstores import Chroma\n",
"\n",
"# For this example, we already have a processed docset for a set of lease documents\n",
"loader = DocugamiLoader(docset_id=\"wh2kned25uqm\")\n",
"documents = loader.load()"
"loader = DocugamiLoader(docset_id=\"zo954yqy53wp\")\n",
"chunks = loader.load()\n",
"\n",
"# strip semantic metadata intentionally, to test how things work without semantic metadata\n",
"for chunk in chunks:\n",
" stripped_metadata = chunk.metadata.copy()\n",
" for key in chunk.metadata:\n",
" if key not in [\"name\", \"xpath\", \"id\", \"structure\"]:\n",
" # remove semantic metadata\n",
" del stripped_metadata[key]\n",
" chunk.metadata = stripped_metadata\n",
"\n",
"print(len(chunks))"
]
},
{
@@ -170,12 +206,17 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.vectorstores.chroma import Chroma\n",
"\n",
"embedding = OpenAIEmbeddings()\n",
"vectordb = Chroma.from_documents(documents=documents, embedding=embedding)\n",
"vectordb = Chroma.from_documents(documents=chunks, embedding=embedding)\n",
"retriever = vectordb.as_retriever()\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(), chain_type=\"stuff\", retriever=retriever, return_source_documents=True\n",
@@ -184,21 +225,21 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'query': 'What can tenants do with signage on their properties?',\n",
" 'result': \" Tenants can place or attach signs (digital or otherwise) to their premises with written permission from the landlord. The signs must conform to all applicable laws, ordinances, etc. governing the same. Tenants can also have their name listed in the building's directory at the landlord's cost.\",\n",
" 'source_documents': [Document(page_content='ARTICLE VI SIGNAGE 6.01 Signage . Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord , which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenant s erecting or removing such signs shall be repaired promptly by the Tenant at the Tenant s expense . Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises.', metadata={'Landlord': 'BUBBA CENTER PARTNERSHIP', 'Lease Date': 'April 24 \\n\\n ,', 'Lease Parties': 'This OFFICE LEASE AGREEMENT (this \"Lease\") is made and entered into by and between BUBBA CENTER PARTNERSHIP (\" Landlord \"), and Truetone Lane LLC , a Delaware limited liability company (\" Tenant \").', 'Tenant': 'Truetone Lane LLC', 'id': 'v1bvgaozfkak', 'source': 'TruTone Lane 2.docx', 'structure': 'div', 'tag': '_601Signage', 'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:Article/docset:ARTICLEVISIGNAGE-section/docset:_601Signage-section/docset:_601Signage'}),\n",
" Document(page_content='Signage. Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord , which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenant s erecting or removing such signs shall be repaired promptly by the Tenant at the Tenant s expense . Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises. \\n\\n ARTICLE VII UTILITIES 7.01', metadata={'Landlord': 'GLORY ROAD LLC', 'Lease Date': 'April 30 , 2020', 'Lease Parties': 'This OFFICE LEASE AGREEMENT (this \"Lease\") is made and entered into by and between GLORY ROAD LLC (\" Landlord \"), and Truetone Lane LLC , a Delaware limited liability company (\" Tenant \").', 'Tenant': 'Truetone Lane LLC', 'id': 'g2fvhekmltza', 'source': 'TruTone Lane 6.pdf', 'structure': 'lim', 'tag': 'chunk', 'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:Article/docset:ArticleIiiUse/docset:ARTICLEIIIUSEANDCAREOFPREMISES-section/docset:ARTICLEIIIUSEANDCAREOFPREMISES/docset:AnyTime/docset:Addition/dg:chunk'}),\n",
" Document(page_content='Landlord , its agents, servants, employees, licensees, invitees, and contractors during the last year of the term of this Lease at any and all times during regular business hours, after 24 hour notice to tenant, to pass and repass on and through the Premises, or such portion thereof as may be necessary, in order that they or any of them may gain access to the Premises for the purpose of showing the Premises to potential new tenants or real estate brokers. In addition, Landlord shall be entitled to place a \"FOR RENT \" or \"FOR LEASE\" sign (not exceeding 8.5 ” x 11 ”) in the front window of the Premises during the last six months of the term of this Lease .', metadata={'Landlord': 'BIRCH STREET , LLC', 'Lease Date': 'October 15 , 2021', 'Lease Parties': 'The provisions of this rider are hereby incorporated into and made a part of the Lease dated as of October 15 , 2021 between BIRCH STREET , LLC , having an address at c/o Birch Palace , 6 Grace Avenue Suite 200 , Great Neck , New York 11021 (\" Landlord \"), and Trutone Lane LLC , having an address at 4 Pearl Street , New York , New York 10012 (\" Tenant \") of Premises known as the ground floor space and lower level space, as per floor plan annexed hereto and made a part hereof as Exhibit A (“Premises”) at 4 Pearl Street , New York , New York 10012 in the City of New York , Borough of Manhattan , to which this rider is annexed. If there is any conflict between the provisions of this rider and the remainder of this Lease , the provisions of this rider shall govern.', 'Tenant': 'Trutone Lane LLC', 'id': 'omvs4mysdk6b', 'source': 'TruTone Lane 1.docx', 'structure': 'p', 'tag': 'Landlord', 'xpath': '/docset:Rider/docset:RIDERTOLEASE-section/docset:RIDERTOLEASE/docset:FixedRent/docset:TermYearPeriod/docset:Lease/docset:_42FLandlordSAccess-section/docset:_42FLandlordSAccess/docset:LandlordsRights/docset:Landlord'}),\n",
" Document(page_content=\"24. SIGNS . No signage shall be placed by Tenant on any portion of the Project . However, Tenant shall be permitted to place a sign bearing its name in a location approved by Landlord near the entrance to the Premises (at Tenant's cost ) and will be furnished a single listing of its name in the Building's directory (at Landlord 's cost ), all in accordance with the criteria adopted from time to time by Landlord for the Project . Any changes or additional listings in the directory shall be furnished (subject to availability of space) for the then Building Standard charge .\", metadata={'Landlord': 'Perry & Blair LLC', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'dsyfhh4vpeyf', 'source': 'Shorebucks LLC_CO.pdf', 'structure': 'div', 'tag': 'SIGNS', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:ThisLease-section/docset:ThisLease/docset:Guaranty-section/docset:Guaranty[2]/docset:TheTransfer/docset:TheTerms/docset:Indemnification/docset:INDEMNIFICATION-section/docset:INDEMNIFICATION/docset:Waiver/docset:Waiver/docset:Signs/docset:SIGNS-section/docset:SIGNS'})]}"
" 'result': ' Tenants can place or attach signage (digital or otherwise) to their property after receiving written permission from the landlord, which permission shall not be unreasonably withheld. The signage must conform to all applicable laws, ordinances, etc. governing the same, and tenants must remove all such signs by the termination of the lease.',\n",
" 'source_documents': [Document(page_content='6.01 Signage. Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord, which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenants erecting or removing such signs shall be repaired promptly by the Tenant at the Tenants expense. Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises. ARTICLE VII UTILITIES', metadata={'id': '1c290eea05915ba0f24c4a1ffc05d6f3', 'name': 'Sample Commercial Leases/TruTone Lane 6.pdf', 'structure': 'lim h1', 'xpath': '/dg:chunk/dg:chunk/dg:chunk[2]/dg:chunk[1]/docset:TheApprovedUse/dg:chunk[12]/dg:chunk[1]'}),\n",
" Document(page_content='6.01 Signage. Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord, which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenants erecting or removing such signs shall be repaired promptly by the Tenant at the Tenants expense. Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises. ARTICLE VII UTILITIES', metadata={'id': '1c290eea05915ba0f24c4a1ffc05d6f3', 'name': 'Sample Commercial Leases/TruTone Lane 2.pdf', 'structure': 'lim h1', 'xpath': '/dg:chunk/dg:chunk/dg:chunk[2]/dg:chunk[1]/docset:TheApprovedUse/dg:chunk[12]/dg:chunk[1]'}),\n",
" Document(page_content='Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord, which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenants erecting or removing such signs shall be repaired promptly by the Tenant at the Tenants expense. Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises.', metadata={'id': '58d268162ecc36d8633b7bc364afcb8c', 'name': 'Sample Commercial Leases/TruTone Lane 2.docx', 'structure': 'div', 'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/dg:chunk/docset:ARTICLEVISIGNAGE-section/docset:ARTICLEVISIGNAGE/docset:_601Signage'}),\n",
" Document(page_content='8. SIGNS:\\n Tenant shall not install signs upon the Premises without Landlords prior written approval, which approval shall not be unreasonably withheld or delayed, and any such signage shall be subject to any applicable governmental laws, ordinances, regulations, and other requirements. Tenant shall remove all such signs by the terminations of this Lease. Such installations and removals shall be made in such a manner as to avoid injury or defacement of the Building and other improvements, and Tenant shall repair any injury or defacement, including without limitation discoloration caused by such installations and/or removal.', metadata={'id': '6b7d88f0c979c65d5db088fc177fa81f', 'name': 'Lease Agreements/Bioplex, Inc.pdf', 'structure': 'lim h1 div', 'xpath': '/dg:chunk/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/docset:TheObligation/dg:chunk[8]/dg:chunk'})]}"
]
},
"execution_count": 7,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -212,7 +253,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Docugami to Add Metadata to Chunks for High Accuracy Document QA\n",
"## Using Docugami Knowledge Graph for High Accuracy Document QA\n",
"\n",
"One issue with large documents is that the correct answer to your question may depend on chunks that are far apart in the document. Typical chunking techniques, even with overlap, will struggle with providing the LLM sufficent context to answer such questions. With upcoming very large context LLMs, it may be possible to stuff a lot of tokens, perhaps even entire documents, inside the context but this will still hit limits at some point with very long documents, or a lot of documents.\n",
"\n",
@@ -221,16 +262,16 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' 9,753 square feet.'"
"\" I don't know.\""
]
},
"execution_count": 8,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -240,28 +281,21 @@
"chain_response[\"result\"] # correct answer should be 13,500 sq ft"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At first glance the answer may seem reasonable, but if you review the source chunks carefully for this answer, you will see that the chunking of the document did not end up putting the Landlord name and the rentable area in the same context, since they are far apart in the document. The retriever therefore ends up finding unrelated chunks from other documents not even related to the **DHA Group** landlord. That landlord happens to be mentioned on the first page of the file **Shorebucks LLC_NJ.pdf** file, and while one of the source chunks used by the chain is indeed from that doc that contains the correct answer (**13,500**), other source chunks from different docs are included, and the answer is therefore incorrect."
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='1.1 Landlord . DHA Group , a Delaware limited liability company authorized to transact business in New Jersey .', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'DhaGroup', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:DhaGroup/docset:Landlord-section/docset:DhaGroup'}),\n",
" Document(page_content='WITNESSES: LANDLORD: DHA Group , a Delaware limited liability company', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'DhaGroup', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Guaranty-section/docset:Guaranty[2]/docset:SIGNATURESONNEXTPAGE-section/docset:INWITNESSWHEREOF-section/docset:INWITNESSWHEREOF/docset:Behalf/docset:Witnesses/xhtml:table/xhtml:tbody/xhtml:tr[3]/xhtml:td[2]/docset:DhaGroup'}),\n",
" Document(page_content=\"1.16 Landlord 's Notice Address . DHA Group , Suite 1010 , 111 Bauer Dr , Oakland , New Jersey , 07436 , with a copy to the Building Management Office at the Project , Attention: On - Site Property Manager .\", metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'LandlordsNoticeAddress', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:NoticeAddress[2]/docset:LandlordsNoticeAddress-section/docset:LandlordsNoticeAddress[2]'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises. 9,753 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'Landlord': 'Perry & Blair LLC', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'dsyfhh4vpeyf', 'source': 'Shorebucks LLC_CO.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:PerryBlair/docset:PerryBlair/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'})]"
"[Document(page_content='1.6 Rentable Area of the Premises.', metadata={'id': '5b39a1ae84d51682328dca1467be211f', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'lim h1', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:CatalystGroup/dg:chunk[6]/dg:chunk'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises.', metadata={'id': '5b39a1ae84d51682328dca1467be211f', 'name': 'Sample Commercial Leases/Shorebucks LLC_AZ.pdf', 'structure': 'lim h1', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:MenloGroup/dg:chunk[6]/dg:chunk'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises.', metadata={'id': '5b39a1ae84d51682328dca1467be211f', 'name': 'Sample Commercial Leases/Shorebucks LLC_FL.pdf', 'structure': 'lim h1', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:Florida-section/docset:Florida/docset:Shorebucks/dg:chunk[5]/dg:chunk'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises.', metadata={'id': '5b39a1ae84d51682328dca1467be211f', 'name': 'Sample Commercial Leases/Shorebucks LLC_TX.pdf', 'structure': 'lim h1', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:LandmarkLlc/dg:chunk[6]/dg:chunk'})]"
]
},
"execution_count": 13,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -270,43 +304,42 @@
"chain_response[\"source_documents\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At first glance the answer may seem reasonable, but it is incorrect. If you review the source chunks carefully for this answer, you will see that the chunking of the document did not end up putting the Landlord name and the rentable area in the same context, and produced irrelevant chunks therefore the answer is incorrect (should be **13,500 sq ft**)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Docugami can help here. Chunks are annotated with additional metadata created using different techniques if a user has been [using Docugami](https://help.docugami.com/home/reports). More technical approaches will be added later.\n",
"\n",
"Specifically, let's look at the additional metadata that is returned on the documents returned by docugami, in the form of some simple key/value pairs on all the text chunks:"
"Specifically, let's ask Docugami to return XML tags on its output, as well as additional metadata:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:LeaseParties',\n",
" 'id': 'v1bvgaozfkak',\n",
" 'source': 'TruTone Lane 2.docx',\n",
" 'structure': 'p',\n",
" 'tag': 'LeaseParties',\n",
" 'Lease Date': 'April 24 \\n\\n ,',\n",
" 'Landlord': 'BUBBA CENTER PARTNERSHIP',\n",
" 'Tenant': 'Truetone Lane LLC',\n",
" 'Lease Parties': 'This OFFICE LEASE AGREEMENT (this \"Lease\") is made and entered into by and between BUBBA CENTER PARTNERSHIP (\" Landlord \"), and Truetone Lane LLC , a Delaware limited liability company (\" Tenant \").'}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"{'xpath': '/docset:OFFICELEASE-section/dg:chunk', 'id': '47297e277e556f3ce8b570047304560b', 'name': 'Sample Commercial Leases/Shorebucks LLC_AZ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_AZ.pdf', 'structure': 'h1 h1 p', 'tag': 'chunk Lease', 'Lease Date': 'March 29th , 2019', 'Landlord': 'Menlo Group', 'Tenant': 'Shorebucks LLC', 'Premises Address': '1564 E Broadway Rd , Tempe , Arizona 85282', 'Term of Lease': '96 full calendar months', 'Square Feet': '16,159'}\n"
]
}
],
"source": [
"loader = DocugamiLoader(docset_id=\"wh2kned25uqm\")\n",
"documents = loader.load()\n",
"documents[0].metadata"
"loader = DocugamiLoader(docset_id=\"zo954yqy53wp\")\n",
"loader.include_xml_tags = (\n",
" True # for additional semantics from the Docugami knowledge graph\n",
")\n",
"chunks = loader.load()\n",
"print(chunks[0].metadata)"
]
},
{
@@ -318,12 +351,22 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"!poetry run pip install --upgrade lark --quiet"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.query_constructor.schema import AttributeInfo\n",
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
"from langchain.vectorstores.chroma import Chroma\n",
"\n",
"EXCLUDE_KEYS = [\"id\", \"xpath\", \"structure\"]\n",
"metadata_field_info = [\n",
@@ -332,19 +375,23 @@
" description=f\"The {key} for this chunk\",\n",
" type=\"string\",\n",
" )\n",
" for key in documents[0].metadata\n",
" for key in chunks[0].metadata\n",
" if key.lower() not in EXCLUDE_KEYS\n",
"]\n",
"\n",
"\n",
"document_content_description = \"Contents of this chunk\"\n",
"llm = OpenAI(temperature=0)\n",
"vectordb = Chroma.from_documents(documents=documents, embedding=embedding)\n",
"\n",
"vectordb = Chroma.from_documents(documents=chunks, embedding=embedding)\n",
"retriever = SelfQueryRetriever.from_llm(\n",
" llm, vectordb, document_content_description, metadata_field_info, verbose=True\n",
")\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" llm=OpenAI(), chain_type=\"stuff\", retriever=retriever, return_source_documents=True\n",
" llm=OpenAI(),\n",
" chain_type=\"stuff\",\n",
" retriever=retriever,\n",
" return_source_documents=True,\n",
" verbose=True,\n",
")"
]
},
@@ -357,36 +404,32 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/root/Source/github/docugami.langchain/libs/langchain/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='rentable area' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='Landlord', value='DHA Group') limit=None\n"
"\n",
"\n",
"\u001b[1m> Entering new RetrievalQA chain...\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'query': 'What is rentable area for the property owned by DHA Group?',\n",
" 'result': ' The rentable area for the property owned by DHA Group is 13,500 square feet.',\n",
" 'source_documents': [Document(page_content='1.6 Rentable Area of the Premises. 13,500 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises. 13,500 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'}),\n",
" Document(page_content='1.11 Percentage Rent . (a) 55 % of Gross Revenue to Landlord until Landlord receives Percentage Rent in an amount equal to the Annual Market Rent Hurdle (as escalated); and', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'GrossRevenue', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent-section/docset:PercentageRent[2]/docset:PercentageRent/docset:GrossRevenue[1]/docset:GrossRevenue'}),\n",
" Document(page_content='1.11 Percentage Rent . (a) 55 % of Gross Revenue to Landlord until Landlord receives Percentage Rent in an amount equal to the Annual Market Rent Hurdle (as escalated); and', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'GrossRevenue', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent-section/docset:PercentageRent[2]/docset:PercentageRent/docset:GrossRevenue[1]/docset:GrossRevenue'})]}"
" 'result': ' The rentable area of the property owned by DHA Group is 13,500 square feet.',\n",
" 'source_documents': [Document(page_content='1.6 Rentable Area of the Premises.', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Premises Address': '111 Bauer Dr , Oakland , New Jersey , 07436', 'Square Feet': '13,500', 'Tenant': 'Shorebucks LLC', 'Term of Lease': '84 full calendar months', 'id': '5b39a1ae84d51682328dca1467be211f', 'name': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'structure': 'lim h1', 'tag': 'chunk', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/dg:chunk[6]/dg:chunk'}),\n",
" Document(page_content='<RentableAreaofthePremises><SquareFeet>13,500 </SquareFeet>square feet. This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party. </RentableAreaofthePremises>', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Premises Address': '111 Bauer Dr , Oakland , New Jersey , 07436', 'Square Feet': '13,500', 'Tenant': 'Shorebucks LLC', 'Term of Lease': '84 full calendar months', 'id': '4c06903d087f5a83e486ee42cd702d31', 'name': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/dg:chunk[6]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'}),\n",
" Document(page_content='<TheTermAnnualMarketRent>shall mean (i) for the initial Lease Year (“Year 1”) <Money>$2,239,748.00 </Money>per year (i.e., the product of the Rentable Area of the Premises multiplied by <Money>$82.00</Money>) (the “Year 1 Market Rent Hurdle”); (ii) for the Lease Year thereafter, <Percent>one hundred three percent (103%) </Percent>of the Year 1 Market Rent Hurdle, and (iii) for each Lease Year thereafter until the termination or expiration of this Lease, the Annual Market Rent Threshold shall be <AnnualMarketRentThreshold>one hundred three percent (103%) </AnnualMarketRentThreshold>of the Annual Market Rent Threshold for the immediately prior Lease Year. </TheTermAnnualMarketRent>', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Premises Address': '111 Bauer Dr , Oakland , New Jersey , 07436', 'Square Feet': '13,500', 'Tenant': 'Shorebucks LLC', 'Term of Lease': '84 full calendar months', 'id': '6b90beeadace5d4d12b25706fb48e631', 'name': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'TheTermAnnualMarketRent', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCredit-section/docset:GrossRentCredit/dg:chunk/dg:chunk/dg:chunk/dg:chunk[2]/docset:PercentageRent/dg:chunk[2]/dg:chunk[2]/docset:TenantSRevenue/dg:chunk[2]/docset:TenantSRevenue/dg:chunk[3]/docset:TheTermAnnualMarketRent-section/docset:TheTermAnnualMarketRent'}),\n",
" Document(page_content='1.11 Percentage Rent.\\n (a) <GrossRevenue><Percent>55% </Percent>of Gross Revenue to Landlord until Landlord receives Percentage Rent in an amount equal to the Annual Market Rent Hurdle (as escalated); and </GrossRevenue>', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Premises Address': '111 Bauer Dr , Oakland , New Jersey , 07436', 'Square Feet': '13,500', 'Tenant': 'Shorebucks LLC', 'Term of Lease': '84 full calendar months', 'id': 'c8bb9cbedf65a578d9db3f25f519dd3d', 'name': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'structure': 'lim h1 lim p', 'tag': 'chunk GrossRevenue', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCredit-section/docset:GrossRentCredit/dg:chunk/dg:chunk/dg:chunk/docset:PercentageRent/dg:chunk[1]/dg:chunk[1]'})]}"
]
},
"execution_count": 12,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -403,6 +446,198 @@
"source": [
"This time the answer is correct, since the self-querying retriever created a filter on the landlord attribute of the metadata, correctly filtering to document that specifically is about the DHA Group landlord. The resulting source chunks are all relevant to this landlord, and this improves answer accuracy even though the landlord is not directly mentioned in the specific chunk that contains the correct answer."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Advanced Topic: Small-to-Big Retrieval with Document Knowledge Graph Hierarchy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Documents are inherently semi-structured and the DocugamiLoader is able to navigate the semantic and structural contours of the document to provide parent chunk references on the chunks it returns. This is useful e.g. with the [MultiVector Retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector) for [small-to-big](https://www.youtube.com/watch?v=ihSiRrOUwmg) retrieval.\n",
"\n",
"To get parent chunk references, you can set `loader.parent_hierarchy_levels` to a non-zero value."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"from typing import Dict, List\n",
"\n",
"from langchain.document_loaders import DocugamiLoader\n",
"from langchain.schema.document import Document\n",
"\n",
"loader = DocugamiLoader(docset_id=\"zo954yqy53wp\")\n",
"loader.include_xml_tags = (\n",
" True # for additional semantics from the Docugami knowledge graph\n",
")\n",
"loader.parent_hierarchy_levels = 3 # for expanded context\n",
"loader.max_text_length = (\n",
" 1024 * 8\n",
") # 8K chars are roughly 2K tokens (ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them)\n",
"loader.include_project_metadata_in_doc_metadata = (\n",
" False # Not filtering on vector metadata, so remove to lighten the vectors\n",
")\n",
"chunks: List[Document] = loader.load()\n",
"\n",
"# build separate maps of parent and child chunks\n",
"parents_by_id: Dict[str, Document] = {}\n",
"children_by_id: Dict[str, Document] = {}\n",
"for chunk in chunks:\n",
" chunk_id = chunk.metadata.get(\"id\")\n",
" parent_chunk_id = chunk.metadata.get(loader.parent_id_key)\n",
" if not parent_chunk_id:\n",
" # parent chunk\n",
" parents_by_id[chunk_id] = chunk\n",
" else:\n",
" # child chunk\n",
" children_by_id[chunk_id] = chunk"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PARENT CHUNK 7df09fbfc65bb8377054808aac2d16fd: page_content='OFFICE LEASE\\n THIS OFFICE LEASE\\n <Lease>(the \"Lease\") is made and entered into as of <LeaseDate>March 29th, 2019</LeaseDate>, by and between Landlord and Tenant. \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease. </Lease>\\nW I T N E S S E T H\\n <TheTerms> Subject to and on the terms and conditions of this Lease, Landlord leases to Tenant and Tenant hires from Landlord the Premises. </TheTerms>\\n1. BASIC LEASE INFORMATION AND DEFINED TERMS.\\nThe key business terms of this Lease and the defined terms used in this Lease are as follows:' metadata={'xpath': '/docset:OFFICELEASE-section/dg:chunk', 'id': '7df09fbfc65bb8377054808aac2d16fd', 'name': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'structure': 'h1 h1 p h1 p lim h1 p', 'tag': 'chunk Lease chunk TheTerms'}\n",
"CHUNK 47297e277e556f3ce8b570047304560b: page_content='OFFICE LEASE\\n THIS OFFICE LEASE\\n <Lease>(the \"Lease\") is made and entered into as of <LeaseDate>March 29th, 2019</LeaseDate>, by and between Landlord and Tenant. \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease. </Lease>' metadata={'xpath': '/docset:OFFICELEASE-section/dg:chunk', 'id': '47297e277e556f3ce8b570047304560b', 'name': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_NJ.pdf', 'structure': 'h1 h1 p', 'tag': 'chunk Lease', 'doc_id': '7df09fbfc65bb8377054808aac2d16fd'}\n",
"PARENT CHUNK bb84925da3bed22c30ea1bdc173ff54f: page_content='OFFICE LEASE\\n THIS OFFICE LEASE\\n <Lease>(the \"Lease\") is made and entered into as of <LeaseDate>January 8th, 2018</LeaseDate>, by and between Landlord and Tenant. \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease. </Lease>\\nW I T N E S S E T H\\n <TheTerms> Subject to and on the terms and conditions of this Lease, Landlord leases to Tenant and Tenant hires from Landlord the Premises. </TheTerms>\\n1. BASIC LEASE INFORMATION AND DEFINED TERMS.\\nThe key business terms of this Lease and the defined terms used in this Lease are as follows:\\n1.1 Landlord.\\n <Landlord>Catalyst Group LLC </Landlord>' metadata={'xpath': '/docset:OFFICELEASE-section/dg:chunk', 'id': 'bb84925da3bed22c30ea1bdc173ff54f', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'h1 h1 p h1 p lim h1 p lim h1 div', 'tag': 'chunk Lease chunk TheTerms chunk Landlord'}\n",
"CHUNK 2f1746cbd546d1d61a9250c50de7a7fa: page_content='W I T N E S S E T H\\n <TheTerms> Subject to and on the terms and conditions of this Lease, Landlord leases to Tenant and Tenant hires from Landlord the Premises. </TheTerms>' metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/dg:chunk', 'id': '2f1746cbd546d1d61a9250c50de7a7fa', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'h1 p', 'tag': 'chunk TheTerms', 'doc_id': 'bb84925da3bed22c30ea1bdc173ff54f'}\n",
"PARENT CHUNK 0b0d765b6e504a6ba54fa76b203e62ec: page_content='OFFICE LEASE\\n THIS OFFICE LEASE\\n <Lease>(the \"Lease\") is made and entered into as of <LeaseDate>January 8th, 2018</LeaseDate>, by and between Landlord and Tenant. \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease. </Lease>\\nW I T N E S S E T H\\n <TheTerms> Subject to and on the terms and conditions of this Lease, Landlord leases to Tenant and Tenant hires from Landlord the Premises. </TheTerms>\\n1. BASIC LEASE INFORMATION AND DEFINED TERMS.\\nThe key business terms of this Lease and the defined terms used in this Lease are as follows:\\n1.1 Landlord.\\n <Landlord>Catalyst Group LLC </Landlord>\\n1.2 Tenant.\\n <Tenant>Shorebucks LLC </Tenant>' metadata={'xpath': '/docset:OFFICELEASE-section/dg:chunk', 'id': '0b0d765b6e504a6ba54fa76b203e62ec', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'h1 h1 p h1 p lim h1 p lim h1 div lim h1 div', 'tag': 'chunk Lease chunk TheTerms chunk Landlord chunk Tenant'}\n",
"CHUNK b362dfe776ec5a7a66451a8c7c220b59: page_content='1. BASIC LEASE INFORMATION AND DEFINED TERMS.' metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/dg:chunk', 'id': 'b362dfe776ec5a7a66451a8c7c220b59', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'lim h1', 'tag': 'chunk', 'doc_id': '0b0d765b6e504a6ba54fa76b203e62ec'}\n",
"PARENT CHUNK c942010baaf76aa4d4657769492f6edb: page_content='OFFICE LEASE\\n THIS OFFICE LEASE\\n <Lease>(the \"Lease\") is made and entered into as of <LeaseDate>January 8th, 2018</LeaseDate>, by and between Landlord and Tenant. \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease. </Lease>\\nW I T N E S S E T H\\n <TheTerms> Subject to and on the terms and conditions of this Lease, Landlord leases to Tenant and Tenant hires from Landlord the Premises. </TheTerms>\\n1. BASIC LEASE INFORMATION AND DEFINED TERMS.\\nThe key business terms of this Lease and the defined terms used in this Lease are as follows:\\n1.1 Landlord.\\n <Landlord>Catalyst Group LLC </Landlord>\\n1.2 Tenant.\\n <Tenant>Shorebucks LLC </Tenant>\\n1.3 Building.\\n <Building>The building containing the Premises located at <PremisesAddress><PremisesStreetAddress><MainStreet>600 </MainStreet><StreetName>Main Street</StreetName></PremisesStreetAddress>, <City>Bellevue</City>, <State>WA</State>, <Premises>98004</Premises></PremisesAddress>. The Building is located within the Project. </Building>' metadata={'xpath': '/docset:OFFICELEASE-section/dg:chunk', 'id': 'c942010baaf76aa4d4657769492f6edb', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'h1 h1 p h1 p lim h1 p lim h1 div lim h1 div lim h1 div', 'tag': 'chunk Lease chunk TheTerms chunk Landlord chunk Tenant chunk Building'}\n",
"CHUNK a95971d693b7aa0f6640df1fbd18c2ba: page_content='The key business terms of this Lease and the defined terms used in this Lease are as follows:' metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/dg:chunk', 'id': 'a95971d693b7aa0f6640df1fbd18c2ba', 'name': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'source': 'Sample Commercial Leases/Shorebucks LLC_WA.pdf', 'structure': 'p', 'tag': 'chunk', 'doc_id': 'c942010baaf76aa4d4657769492f6edb'}\n",
"PARENT CHUNK f34b649cde7fc4ae156849a56d690495: page_content='W I T N E S S E T H\\n <TheTerms> Subject to and on the terms and conditions of this Lease, Landlord leases to Tenant and Tenant hires from Landlord the Premises. </TheTerms>\\n1. BASIC LEASE INFORMATION AND DEFINED TERMS.\\n<BASICLEASEINFORMATIONANDDEFINEDTERMS>The key business terms of this Lease and the defined terms used in this Lease are as follows: </BASICLEASEINFORMATIONANDDEFINEDTERMS>\\n1.1 Landlord.\\n <Landlord><Landlord>Menlo Group</Landlord>, a <USState>Delaware </USState>limited liability company authorized to transact business in <USState>Arizona</USState>. </Landlord>\\n1.2 Tenant.\\n <Tenant>Shorebucks LLC </Tenant>\\n1.3 Building.\\n <Building>The building containing the Premises located at <PremisesAddress><PremisesStreetAddress><Premises>1564 </Premises><Premises>E Broadway Rd</Premises></PremisesStreetAddress>, <City>Tempe</City>, <USState>Arizona </USState><Premises>85282</Premises></PremisesAddress>. The Building is located within the Project. </Building>\\n1.4 Project.\\n <Project>The parcel of land and the buildings and improvements located on such land known as Shorebucks Office <ShorebucksOfficeAddress><ShorebucksOfficeStreetAddress><ShorebucksOffice>6 </ShorebucksOffice><ShorebucksOffice6>located at <Number>1564 </Number>E Broadway Rd</ShorebucksOffice6></ShorebucksOfficeStreetAddress>, <City>Tempe</City>, <USState>Arizona </USState><Number>85282</Number></ShorebucksOfficeAddress>. The Project is legally described in EXHIBIT \"A\" to this Lease. </Project>' metadata={'xpath': '/dg:chunk/docset:WITNESSETH-section/dg:chunk', 'id': 'f34b649cde7fc4ae156849a56d690495', 'name': 'Sample Commercial Leases/Shorebucks LLC_AZ.docx', 'source': 'Sample Commercial Leases/Shorebucks LLC_AZ.docx', 'structure': 'h1 p lim h1 div lim h1 div lim h1 div lim h1 div lim h1 div', 'tag': 'chunk TheTerms BASICLEASEINFORMATIONANDDEFINEDTERMS chunk Landlord chunk Tenant chunk Building chunk Project'}\n",
"CHUNK 21b4d9517f7ccdc0e3a028ce5043a2a0: page_content='1.1 Landlord.\\n <Landlord><Landlord>Menlo Group</Landlord>, a <USState>Delaware </USState>limited liability company authorized to transact business in <USState>Arizona</USState>. </Landlord>' metadata={'xpath': '/dg:chunk/docset:WITNESSETH-section/docset:WITNESSETH/dg:chunk[1]/dg:chunk[1]/dg:chunk/dg:chunk[2]/dg:chunk', 'id': '21b4d9517f7ccdc0e3a028ce5043a2a0', 'name': 'Sample Commercial Leases/Shorebucks LLC_AZ.docx', 'source': 'Sample Commercial Leases/Shorebucks LLC_AZ.docx', 'structure': 'lim h1 div', 'tag': 'chunk Landlord', 'doc_id': 'f34b649cde7fc4ae156849a56d690495'}\n"
]
}
],
"source": [
"# Explore some of the parent chunk relationships\n",
"for id, chunk in list(children_by_id.items())[:5]:\n",
" parent_chunk_id = chunk.metadata.get(loader.parent_id_key)\n",
" if parent_chunk_id:\n",
" # child chunks have the parent chunk id set\n",
" print(f\"PARENT CHUNK {parent_chunk_id}: {parents_by_id[parent_chunk_id]}\")\n",
" print(f\"CHUNK {id}: {chunk}\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever, SearchType\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores.chroma import Chroma\n",
"\n",
"# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"big2small\", embedding_function=OpenAIEmbeddings())\n",
"\n",
"# The storage layer for the parent documents\n",
"store = InMemoryStore()\n",
"\n",
"# The retriever (empty to start)\n",
"retriever = MultiVectorRetriever(\n",
" vectorstore=vectorstore,\n",
" docstore=store,\n",
" search_type=SearchType.mmr, # use max marginal relevance search\n",
" search_kwargs={\"k\": 2},\n",
")\n",
"\n",
"# Add child chunks to vector store\n",
"retriever.vectorstore.add_documents(list(children_by_id.values()))\n",
"\n",
"# Add parent chunks to docstore\n",
"retriever.docstore.mset(parents_by_id.items())"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"24. SIGNS.\n",
" <SIGNS>No signage shall be placed by Tenant on any portion of the Project. However, Tenant shall be permitted to place a sign bearing its name in a location approved by Landlord near the entrance to the Premises (at Tenant's cost) and will be furnished a single listing of its name in the Building's directory (at Landlord's cost), all in accordance with the criteria adopted <Frequency>from time to time </Frequency>by Landlord for the Project. Any changes or additional listings in the directory shall be furnished (subject to availability of space) for the then Building Standard charge. </SIGNS>\n",
"43090337ed2409e0da24ee07e2adbe94\n",
"<TheExterior> Tenant agrees that all signs, awnings, protective gates, security devices and other installations visible from the exterior of the Premises shall be subject to Landlord's prior written approval, shall be subject to the prior approval of the <Org>Landmarks </Org><Landmarks>Preservation Commission </Landmarks>of the City of <USState>New <Org>York</Org></USState>, if required, and shall not interfere with or block either of the adjacent stores, provided, however, that Landlord shall not unreasonably withhold consent for signs that Tenant desires to install. Tenant agrees that any permitted signs, awnings, protective gates, security devices, and other installations shall be installed at Tenants sole cost and expense professionally prepared and dignified and subject to Landlord's prior written approval, which shall not be unreasonably withheld, delayed or conditioned, and subject to such reasonable rules and restrictions as Landlord <Frequency>from time to time </Frequency>may impose. Tenant shall submit to Landlord drawings of the proposed signs and other installations, showing the size, color, illumination and general appearance thereof, together with a statement of the manner in which the same are to be affixed to the Premises. Tenant shall not commence the installation of the proposed signs and other installations unless and until Landlord shall have approved the same in writing. . Tenant shall not install any neon sign. The aforesaid signs shall be used solely for the purpose of identifying Tenant's business. No changes shall be made in the signs and other installations without first obtaining Landlord's prior written consent thereto, which consent shall not be unreasonably withheld, delayed or conditioned. Tenant shall, at its own cost and expense, obtain and exhibit to Landlord such permits or certificates of approval as Tenant may be required to obtain from any and all City, State and other authorities having jurisdiction covering the erection, installation, maintenance or use of said signs or other installations, and Tenant shall maintain the said signs and other installations together with any appurtenances thereto in good order and condition and to the satisfaction of the Landlord and in accordance with any and all orders, regulations, requirements and rules of any public authorities having jurisdiction thereover. Landlord consents to Tenants Initial Signage described in annexed Exhibit D. </TheExterior>\n",
"54ddfc3e47f41af7e747b2bc439ea96b\n"
]
}
],
"source": [
"# Query vector store directly, should return chunks\n",
"found_chunks = vectorstore.similarity_search(\n",
" \"what signs does Birch Street allow on their property?\", k=2\n",
")\n",
"\n",
"for chunk in found_chunks:\n",
" print(chunk.page_content)\n",
" print(chunk.metadata[loader.parent_id_key])"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"21. SERVICES AND UTILITIES.\n",
" <SERVICESANDUTILITIES>Landlord shall have no obligation to provide any utilities or services to the Premises other than passenger elevator service to the Premises. Tenant shall be solely responsible for and shall promptly pay all charges for water, electricity, or any other utility used or consumed in the Premises, including all costs associated with separately metering for the Premises. Tenant shall be responsible for repairs and maintenance to exit lighting, emergency lighting, and fire extinguishers for the Premises. Tenant is responsible for interior janitorial, pest control, and waste removal services. Landlord may at any time change the electrical utility provider for the Building. Tenants use of electrical, HVAC, or other services furnished by Landlord shall not exceed, either in voltage, rated capacity, use, or overall load, that which Landlord deems to be standard for the Building. In no event shall Landlord be liable for damages resulting from the failure to furnish any service, and any interruption or failure shall in no manner entitle Tenant to any remedies including abatement of Rent. If at any time during the Lease Term the Project has any type of card access system for the Parking Areas or the Building, Tenant shall purchase access cards for all occupants of the Premises from Landlord at a Building Standard charge and shall comply with Building Standard terms relating to access to the Parking Areas and the Building. </SERVICESANDUTILITIES>\n",
"22. SECURITY DEPOSIT.\n",
" <SECURITYDEPOSIT>The Security Deposit shall be held by Landlord as security for Tenant's full and faithful performance of this Lease including the payment of Rent. Tenant grants Landlord a security interest in the Security Deposit. The Security Deposit may be commingled with other funds of Landlord and Landlord shall have no liability for payment of any interest on the Security Deposit. Landlord may apply the Security Deposit to the extent required to cure any default by Tenant. If Landlord so applies the Security Deposit, Tenant shall deliver to Landlord the amount necessary to replenish the Security Deposit to its original sum within <Deliver>five days </Deliver>after notice from Landlord. The Security Deposit shall not be deemed an advance payment of Rent or a measure of damages for any default by Tenant, nor shall it be a defense to any action that Landlord may bring against Tenant. </SECURITYDEPOSIT>\n",
"23. GOVERNMENTAL REGULATIONS.\n",
" <GOVERNMENTALREGULATIONS>Tenant, at Tenant's sole cost and expense, shall promptly comply (and shall cause all subtenants and licensees to comply) with all laws, codes, and ordinances of governmental authorities, including the Americans with Disabilities Act of <AmericanswithDisabilitiesActDate>1990 </AmericanswithDisabilitiesActDate>as amended (the \"ADA\"), and all recorded covenants and restrictions affecting the Project, pertaining to Tenant, its conduct of business, and its use and occupancy of the Premises, including the performance of any work to the Common Areas required because of Tenant's specific use (as opposed to general office use) of the Premises or Alterations to the Premises made by Tenant. </GOVERNMENTALREGULATIONS>\n",
"24. SIGNS.\n",
" <SIGNS>No signage shall be placed by Tenant on any portion of the Project. However, Tenant shall be permitted to place a sign bearing its name in a location approved by Landlord near the entrance to the Premises (at Tenant's cost) and will be furnished a single listing of its name in the Building's directory (at Landlord's cost), all in accordance with the criteria adopted <Frequency>from time to time </Frequency>by Landlord for the Project. Any changes or additional listings in the directory shall be furnished (subject to availability of space) for the then Building Standard charge. </SIGNS>\n",
"25. BROKER.\n",
" <BROKER>Landlord and Tenant each represent and warrant that they have neither consulted nor negotiated with any broker or finder regarding the Premises, except the Landlord's Broker and Tenant's Broker. Tenant shall indemnify, defend, and hold Landlord harmless from and against any claims for commissions from any real estate broker other than Landlord's Broker and Tenant's Broker with whom Tenant has dealt in connection with this Lease. Landlord shall indemnify, defend, and hold Tenant harmless from and against payment of any leasing commission due Landlord's Broker and Tenant's Broker in connection with this Lease and any claims for commissions from any real estate broker other than Landlord's Broker and Tenant's Broker with whom Landlord has dealt in connection with this Lease. The terms of this article shall survive the expiration or earlier termination of this Lease. </BROKER>\n",
"26. END OF TERM.\n",
" <ENDOFTERM>Tenant shall surrender the Premises to Landlord at the expiration or sooner termination of this Lease or Tenant's right of possession in good order and condition, broom-clean, except for reasonable wear and tear. All Alterations made by Landlord or Tenant to the Premises shall become Landlord's property on the expiration or sooner termination of the Lease Term. On the expiration or sooner termination of the Lease Term, Tenant, at its expense, shall remove from the Premises all of Tenant's personal property, all computer and telecommunications wiring, and all Alterations that Landlord designates by notice to Tenant. Tenant shall also repair any damage to the Premises caused by the removal. Any items of Tenant's property that shall remain in the Premises after the expiration or sooner termination of the Lease Term, may, at the option of Landlord and without notice, be deemed to have been abandoned, and in that case, those items may be retained by Landlord as its property to be disposed of by Landlord, without accountability or notice to Tenant or any other party, in the manner Landlord shall determine, at Tenant's expense. </ENDOFTERM>\n",
"27. ATTORNEYS' FEES.\n",
" <ATTORNEYSFEES>Except as otherwise provided in this Lease, the prevailing party in any litigation or other dispute resolution proceeding, including arbitration, arising out of or in any manner based on or relating to this Lease, including tort actions and actions for injunctive, declaratory, and provisional relief, shall be entitled to recover from the losing party actual attorneys' fees and costs, including fees for litigating the entitlement to or amount of fees or costs owed under this provision, and fees in connection with bankruptcy, appellate, or collection proceedings. No person or entity other than Landlord or Tenant has any right to recover fees under this paragraph. In addition, if Landlord becomes a party to any suit or proceeding affecting the Premises or involving this Lease or Tenant's interest under this Lease, other than a suit between Landlord and Tenant, or if Landlord engages counsel to collect any of the amounts owed under this Lease, or to enforce performance of any of the agreements, conditions, covenants, provisions, or stipulations of this Lease, without commencing litigation, then the costs, expenses, and reasonable attorneys' fees and disbursements incurred by Landlord shall be paid to Landlord by Tenant. </ATTORNEYSFEES>\n",
"43090337ed2409e0da24ee07e2adbe94\n",
"<TenantsSoleCost> Tenant, at Tenant's sole cost and expense, shall be responsible for the removal and disposal of all of garbage, waste, and refuse from the Premises on a <Frequency>daily </Frequency>basis. Tenant shall cause all garbage, waste and refuse to be stored within the Premises until <Stored>thirty (30) minutes </Stored>before closing, except that Tenant shall be permitted, to the extent permitted by law, to place garbage outside the Premises after the time specified in the immediately preceding sentence for pick up prior to <PickUp>6:00 A.M. </PickUp>next following. Garbage shall be placed at the edge of the sidewalk in front of the Premises at the location furthest from he main entrance to the Building or such other location in front of the Building as may be specified by Landlord. </TenantsSoleCost>\n",
"<ItsSoleCost> Tenant, at its sole cost and expense, agrees to use all reasonable diligence in accordance with the best prevailing methods for the prevention and extermination of vermin, rats, and mice, mold, fungus, allergens, <Bacterium>bacteria </Bacterium>and all other similar conditions in the Premises. Tenant, at Tenant's expense, shall cause the Premises to be exterminated <Exterminated>from time to time </Exterminated>to the reasonable satisfaction of Landlord and shall employ licensed exterminating companies. Landlord shall not be responsible for any cleaning, waste removal, janitorial, or similar services for the Premises, and Tenant sha ll not be entitled to seek any abatement, setoff or credit from the Landlord in the event any conditions described in this Article are found to exist in the Premises. </ItsSoleCost>\n",
"42B. Sidewalk Use and Maintenance\n",
"<TheSidewalk> Tenant shall, at its sole cost and expense, keep the sidewalk in front of the Premises 18 inches into the street from the curb clean free of garbage, waste, refuse, excess water, snow, and ice and Tenant shall pay, as additional rent, any fine, cost, or expense caused by Tenant's failure to do so. In the event Tenant operates a sidewalk café, Tenant shall, at its sole cost and expense, maintain, repair, and replace as necessary, the sidewalk in front of the Premises and the metal trapdoor leading to the basement of the Premises, if any. Tenant shall post warning signs and cones on all sides of any side door when in use and attach a safety bar across any such door at all times when open. </TheSidewalk>\n",
"<Display> In no event shall Tenant use, or permit to be used, the space adjacent to or any other space outside of the Premises, for display, sale or any other similar undertaking; except [1] in the event of a legal and licensed “street fair” type program or [<Number>2</Number>] if the local zoning, Community Board [if applicable] and other municipal laws, rules and regulations, allow for sidewalk café use and, if such I s the case, said operation shall be in strict accordance with all of the aforesaid requirements and conditions. . In no event shall Tenant use, or permit to be used, any advertising medium and/or loud speaker and/or sound amplifier and/or radio or television broadcast which may be heard outside of the Premises or which does not comply with the reasonable rules and regulations of Landlord which then will be in effect. </Display>\n",
"42C. Store Front Maintenance\n",
" <TheBulkheadAndSecurityGate> Tenant agrees to wash the storefront, including the bulkhead and security gate, from the top to the ground, monthly or more often as Landlord reasonably requests and make all repairs and replacements as and when deemed necessary by Landlord, to all windows and plate and ot her glass in or about the Premises and the security gate, if any. In case of any default by Tenant in maintaining the storefront as herein provided, Landlord may do so at its own expense and bill the cost thereof to Tenant as additional rent. </TheBulkheadAndSecurityGate>\n",
"42D. Music, Noise, and Vibration\n",
"4474c92ae7ccec9184ed2fef9f072734\n"
]
}
],
"source": [
"# Query retriever, should return parents (using MMR since that was set as search_type above)\n",
"retrieved_parent_docs = retriever.get_relevant_documents(\n",
" \"what signs does Birch Street allow on their property?\"\n",
")\n",
"for chunk in retrieved_parent_docs:\n",
" print(chunk.page_content)\n",
" print(chunk.metadata[\"id\"])"
]
}
],
"metadata": {

View File

@@ -15,7 +15,7 @@
"1. Create a Dropbox app.\n",
"2. Give the app these scope permissions: `files.metadata.read` and `files.content.read`.\n",
"3. Generate access token: https://www.dropbox.com/developers/apps/create.\n",
"4. `pip install dropbox` (requires `pip install unstructured` for PDF filetype).\n",
"4. `pip install dropbox` (requires `pip install \"unstructured[pdf]\"` for PDF filetype).\n",
"\n",
"## Instructions\n",
"\n",

View File

@@ -1,167 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# Embaas\n",
"[embaas](https://embaas.io) is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a [variety of pre-trained models](https://embaas.io/docs/models/embeddings).\n",
"\n",
"### Prerequisites\n",
"Create a free embaas account at [https://embaas.io/register](https://embaas.io/register) and generate an [API key](https://embaas.io/dashboard/api-keys)\n",
"\n",
"### Document Text Extraction API\n",
"The document text extraction API allows you to extract the text from a given document. The API supports a variety of document formats, including PDF, mp3, mp4 and more. For a full list of supported formats, check out the API docs (link below)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Set API key\n",
"embaas_api_key = \"YOUR_API_KEY\"\n",
"# or set environment variable\n",
"os.environ[\"EMBAAS_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"#### Using a blob (bytes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from langchain.document_loaders.blob_loaders import Blob\n",
"from langchain.document_loaders.embaas import EmbaasBlobLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"blob_loader = EmbaasBlobLoader()\n",
"blob = Blob.from_path(\"example.pdf\")\n",
"documents = blob_loader.load(blob)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-12T22:19:48.380467Z",
"start_time": "2023-06-12T22:19:48.366886Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"# You can also directly create embeddings with your preferred embeddings model\n",
"blob_loader = EmbaasBlobLoader(params={\"model\": \"e5-large-v2\", \"should_embed\": True})\n",
"blob = Blob.from_path(\"example.pdf\")\n",
"documents = blob_loader.load(blob)\n",
"\n",
"print(documents[0][\"metadata\"][\"embedding\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"#### Using a file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from langchain.document_loaders.embaas import EmbaasLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"file_loader = EmbaasLoader(file_path=\"example.pdf\")\n",
"documents = file_loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-12T22:24:31.894665Z",
"start_time": "2023-06-12T22:24:31.880857Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"# Disable automatic text splitting\n",
"file_loader = EmbaasLoader(file_path=\"example.mp3\", params={\"should_chunk\": False})\n",
"documents = file_loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"For more detailed information about the embaas document text extraction API, please refer to [the official embaas API documentation](https://embaas.io/api-reference)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -217,7 +217,7 @@
"It's compatible with the ̀`langchain.document_loaders.GoogleDriveLoader` and can be used\n",
"in its place.\n",
"\n",
"To be compatible with containers, the authentication uses an environment variable ̀GOOGLE_ACCOUNT_FILE` to credential file (for user or service)."
"To be compatible with containers, the authentication uses an environment variable `̀GOOGLE_ACCOUNT_FILE` to credential file (for user or service)."
]
},
{
@@ -331,6 +331,7 @@
"Some pre-formated request are proposed (use `{query}`, `{folder_id}` and/or `{mime_type}`):\n",
"\n",
"You can customize the criteria to select the files. A set of predefined filter are proposed:\n",
"\n",
"| template | description |\n",
"| -------------------------------------- | --------------------------------------------------------------------- |\n",
"| gdrive-all-in-folder | Return all compatible files from a `folder_id` |\n",
@@ -401,6 +402,14 @@
"id": "375bb465-8f69-407b-94bd-ffa3718ef500",
"metadata": {},
"source": [
"The conversion can manage in Markdown format:\n",
"- bullet\n",
"- link\n",
"- table\n",
"- titles\n",
"\n",
"Set the attribut `return_link` to `True` to export links.\n",
"\n",
"#### Modes for GSlide and GSheet\n",
"The parameter mode accepts different values:\n",
"\n",
@@ -408,12 +417,6 @@
"- \"snippets\": return the description of each file (set in metadata of Google Drive files).\n",
"\n",
"\n",
"The conversion can manage in Markdown format:\n",
"- bullet\n",
"- link\n",
"- table\n",
"- titles\n",
"\n",
"The parameter `gslide_mode` accepts different values:\n",
"\n",
"- \"single\" : one document with &lt;PAGE BREAK&gt;\n",
@@ -503,14 +506,6 @@
" print(\"---\")\n",
" print(doc.page_content.strip()[:60] + \"...\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "51efa73a-4e2d-4f9c-abaf-6c9bde2ff69d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -0,0 +1,118 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "6125a85e",
"metadata": {},
"source": [
"# Microsoft OneNote\n",
"\n",
"This notebook covers how to load documents from `OneNote`.\n",
"\n",
"## Prerequisites\n",
"1. Register an application with the [Microsoft identity platform](https://learn.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app) instructions.\n",
"2. When registration finishes, the Azure portal displays the app registration's Overview pane. You see the Application (client) ID. Also called the `client ID`, this value uniquely identifies your application in the Microsoft identity platform.\n",
"3. During the steps you will be following at **item 1**, you can set the redirect URI as `http://localhost:8000/callback`\n",
"4. During the steps you will be following at **item 1**, generate a new password (`client_secret`) under Application Secrets section.\n",
"5. Follow the instructions at this [document](https://learn.microsoft.com/en-us/azure/active-directory/develop/quickstart-configure-app-expose-web-apis#add-a-scope) to add the following `SCOPES` (`Notes.Read`) to your application.\n",
"6. You need to install the msal and bs4 packages using the commands `pip install msal` and `pip install beautifulsoup4`.\n",
"7. At the end of the steps you must have the following values: \n",
"- `CLIENT_ID`\n",
"- `CLIENT_SECRET`\n",
"\n",
"## 🧑 Instructions for ingesting your documents from OneNote\n",
"\n",
"### 🔑 Authentication\n",
"\n",
"By default, the `OneNoteLoader` expects that the values of `CLIENT_ID` and `CLIENT_SECRET` must be stored as environment variables named `MS_GRAPH_CLIENT_ID` and `MS_GRAPH_CLIENT_SECRET` respectively. You could pass those environment variables through a `.env` file at the root of your application or using the following command in your script.\n",
"\n",
"```python\n",
"os.environ['MS_GRAPH_CLIENT_ID'] = \"YOUR CLIENT ID\"\n",
"os.environ['MS_GRAPH_CLIENT_SECRET'] = \"YOUR CLIENT SECRET\"\n",
"```\n",
"\n",
"This loader uses an authentication called [*on behalf of a user*](https://learn.microsoft.com/en-us/graph/auth-v2-user?context=graph%2Fapi%2F1.0&view=graph-rest-1.0). It is a 2 step authentication with user consent. When you instantiate the loader, it will call will print a url that the user must visit to give consent to the app on the required permissions. The user must then visit this url and give consent to the application. Then the user must copy the resulting page url and paste it back on the console. The method will then return True if the login attempt was successful.\n",
"\n",
"\n",
"```python\n",
"from langchain.document_loaders.onenote import OneNoteLoader\n",
"\n",
"loader = OneNoteLoader(notebook_name=\"NOTEBOOK NAME\", section_name=\"SECTION NAME\", page_title=\"PAGE TITLE\")\n",
"```\n",
"\n",
"Once the authentication has been done, the loader will store a token (`onenote_graph_token.txt`) at `~/.credentials/` folder. This token could be used later to authenticate without the copy/paste steps explained earlier. To use this token for authentication, you need to change the `auth_with_token` parameter to True in the instantiation of the loader.\n",
"\n",
"```python\n",
"from langchain.document_loaders.onenote import OneNoteLoader\n",
"\n",
"loader = OneNoteLoader(notebook_name=\"NOTEBOOK NAME\", section_name=\"SECTION NAME\", page_title=\"PAGE TITLE\", auth_with_token=True)\n",
"```\n",
"\n",
"Alternatively, you can also pass the token directly to the loader. This is useful when you want to authenticate with a token that was generated by another application. For instance, you can use the [Microsoft Graph Explorer](https://developer.microsoft.com/en-us/graph/graph-explorer) to generate a token and then pass it to the loader.\n",
"\n",
"```python\n",
"from langchain.document_loaders.onenote import OneNoteLoader\n",
"\n",
"loader = OneNoteLoader(notebook_name=\"NOTEBOOK NAME\", section_name=\"SECTION NAME\", page_title=\"PAGE TITLE\", access_token=\"TOKEN\")\n",
"```\n",
"\n",
"### 🗂️ Documents loader\n",
"\n",
"#### 📑 Loading pages from a OneNote Notebook\n",
"\n",
"`OneNoteLoader` can load pages from OneNote notebooks stored in OneDrive. You can specify any combination of `notebook_name`, `section_name`, `page_title` to filter for pages under a specific notebook, under a specific section, or with a specific title respectively. For instance, you want to load all pages that are stored under a section called `Recipes` within any of your notebooks OneDrive.\n",
"\n",
"\n",
"```python\n",
"from langchain.document_loaders.onenote import OneNoteLoader\n",
"\n",
"loader = OneNoteLoader(section_name=\"Recipes\", auth_with_token=True)\n",
"documents = loader.load()\n",
"```\n",
"\n",
"#### 📑 Loading pages from a list of Page IDs\n",
"\n",
"Another possibility is to provide a list of `object_ids` for each page you want to load. For that, you will need to query the [Microsoft Graph API](https://developer.microsoft.com/en-us/graph/graph-explorer) to find all the documents ID that you are interested in. This [link](https://learn.microsoft.com/en-us/graph/onenote-get-content#page-collection) provides a list of endpoints that will be helpful to retrieve the documents ID.\n",
"\n",
"For instance, to retrieve information about all pages that are stored in your notebooks, you need make a request to: `https://graph.microsoft.com/v1.0/me/onenote/pages`. Once you have the list of IDs that you are interested in, then you can instantiate the loader with the following parameters.\n",
"\n",
"\n",
"```python\n",
"from langchain.document_loaders.onenote import OneNoteLoader\n",
"\n",
"loader = OneNoteLoader(object_ids=[\"ID_1\", \"ID_2\"], auth_with_token=True)\n",
"documents = loader.load()\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb36fe41",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -11,9 +11,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"[Amazon API Gateway](https://aws.amazon.com/api-gateway/) is a fully managed service that makes it easy for developers to create, publish, maintain, monitor, and secure APIs at any scale. APIs act as the \"front door\" for applications to access data, business logic, or functionality from your backend services. Using API Gateway, you can create RESTful APIs and WebSocket APIs that enable real-time two-way communication applications. API Gateway supports containerized and serverless workloads, as well as web applications.\n",
">[Amazon API Gateway](https://aws.amazon.com/api-gateway/) is a fully managed service that makes it easy for developers to create, publish, maintain, monitor, and secure APIs at any >scale. APIs act as the \"front door\" for applications to access data, business logic, or functionality from your backend services. Using `API Gateway`, you can create RESTful APIs and >WebSocket APIs that enable real-time two-way communication applications. API Gateway supports containerized and serverless workloads, as well as web applications.\n",
"\n",
"API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, CORS support, authorization and access control, throttling, monitoring, and API version management. API Gateway has no minimum fees or startup costs. You pay for the API calls you receive and the amount of data transferred out and, with the API Gateway tiered pricing model, you can reduce your cost as your API usage scales."
">`API Gateway` handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, CORS support, authorization >and access control, throttling, monitoring, and API version management. `API Gateway` has no minimum fees or startup costs. You pay for the API calls you receive and the amount of data >transferred out and, with the `API Gateway` tiered pricing model, you can reduce your cost as your API usage scales."
]
},
{

View File

@@ -11,7 +11,15 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
">[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of \n",
"> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`, \n",
"> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to \n",
"> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`, \n",
"> you can easily experiment with and evaluate top FMs for your use case, privately customize them with \n",
"> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build \n",
"> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is \n",
"> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy \n",
"> generative AI capabilities into your applications using the AWS services you are already familiar with.\n"
]
},
{
@@ -116,7 +124,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -20,27 +20,121 @@
"This example notebook shows how to wrap Databricks endpoints as LLMs in LangChain.\n",
"It supports two endpoint types:\n",
"* Serving endpoint, recommended for production and development,\n",
"* Cluster driver proxy app, recommended for iteractive development."
"* Cluster driver proxy app, recommended for interactive development."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation\n",
"\n",
"`mlflow >= 2.9 ` is required to run the code in this notebook. If it's not installed, please install it using this command:\n",
"\n",
"```\n",
"pip install mlflow>=2.9\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wrapping a serving endpoint: External model\n",
"\n",
"Prerequisite:\n",
"\n",
"- Register an OpenAI API key as a secret:\n",
"\n",
" ```bash\n",
" databricks secrets create-scope <scope>\n",
" databricks secrets put-secret <scope> openai-api-key --string-value $OPENAI_API_KEY\n",
" ```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following code creates a new serving endpoint with OpenAI's GPT-4 model for chat and generates a response using the endpoint."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "bf07455f-aac9-4873-a8e7-7952af0f8c82",
"showTitle": false,
"title": ""
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content='Hello! How can I assist you today?'\n"
]
}
},
"outputs": [],
],
"source": [
"from langchain.llms import Databricks"
"from langchain.chat_models import ChatDatabricks\n",
"from langchain.schema.messages import HumanMessage\n",
"from mlflow.deployments import get_deploy_client\n",
"\n",
"client = get_deploy_client(\"databricks\")\n",
"\n",
"secret = \"secrets/<scope>/openai-api-key\" # replace `<scope>` with your scope\n",
"name = \"my-chat\" # rename this if my-chat already exists\n",
"client.create_endpoint(\n",
" name=name,\n",
" config={\n",
" \"served_entities\": [\n",
" {\n",
" \"name\": \"my-chat\",\n",
" \"external_model\": {\n",
" \"name\": \"gpt-4\",\n",
" \"provider\": \"openai\",\n",
" \"task\": \"llm/v1/chat\",\n",
" \"openai_config\": {\n",
" \"openai_api_key\": \"{{\" + secret + \"}}\",\n",
" },\n",
" },\n",
" }\n",
" ],\n",
" },\n",
")\n",
"\n",
"chat = ChatDatabricks(\n",
" target_uri=\"databricks\",\n",
" endpoint=name,\n",
" temperature=0.1,\n",
")\n",
"chat([HumanMessage(content=\"hello\")])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wrapping a serving endpoint: Foundation model\n",
"\n",
"The following code uses the `databricks-bge-large-en` serving endpoint (no endpoint creation is required) to generate embeddings from input text."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.051055908203125, 0.007221221923828125, 0.003879547119140625]\n"
]
}
],
"source": [
"from langchain.embeddings import DatabricksEmbeddings\n",
"\n",
"embeddings = DatabricksEmbeddings(endpoint=\"databricks-bge-large-en\")\n",
"embeddings.embed_query(\"hello\")[:3]"
]
},
{
@@ -56,7 +150,7 @@
}
},
"source": [
"## Wrapping a serving endpoint\n",
"## Wrapping a serving endpoint: Custom model\n",
"\n",
"Prerequisites:\n",
"* An LLM was registered and deployed to [a Databricks serving endpoint](https://docs.databricks.com/machine-learning/model-serving/index.html).\n",
@@ -97,6 +191,8 @@
}
],
"source": [
"from langchain.llms import Databricks\n",
"\n",
"# If running a Databricks notebook attached to an interactive cluster in \"single user\"\n",
"# or \"no isolation shared\" mode, you only need to specify the endpoint name to create\n",
"# a `Databricks` instance to query a serving endpoint in the same workspace.\n",
@@ -524,7 +620,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
"version": "3.9.18"
},
"orig_nbformat": 4
},

View File

@@ -550,7 +550,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"In the first example, supply the path to the specifed `json.gbnf` file in order to produce JSON:"
"In the first example, supply the path to the specified `json.gbnf` file in order to produce JSON:"
]
},
{

View File

@@ -912,7 +912,7 @@
"source": [
"## `Cassandra` caches\n",
"\n",
"You can use Cassandra / Astra DB for caching LLM responses, choosing from the exact-match `CassandraCache` or the (vector-similarity-based) `CassandraSemanticCache`.\n",
"You can use Cassandra / Astra DB through CQL for caching LLM responses, choosing from the exact-match `CassandraCache` or the (vector-similarity-based) `CassandraSemanticCache`.\n",
"\n",
"Let's see both in action in the following cells."
]
@@ -924,7 +924,7 @@
"source": [
"#### Connect to the DB\n",
"\n",
"First you need to establish a `Session` to the DB and to specify a _keyspace_ for the cache table(s). The following gets you started with an Astra DB instance (see e.g. [here](https://cassio.org/start_here/#vector-database) for more backends and connection options)."
"First you need to establish a `Session` to the DB and to specify a _keyspace_ for the cache table(s). The following gets you connected to Astra DB through CQL (see e.g. [here](https://cassio.org/start_here/#vector-database) for more backends and connection options)."
]
},
{
@@ -1132,6 +1132,214 @@
"print(llm(\"How come we always see one face of the moon?\"))"
]
},
{
"cell_type": "markdown",
"id": "8712f8fc-bb89-4164-beb9-c672778bbd91",
"metadata": {},
"source": [
"## `Astra DB` Caches"
]
},
{
"cell_type": "markdown",
"id": "173041d9-e4af-4f68-8461-d302bfc7e1bd",
"metadata": {},
"source": [
"You can easily use [Astra DB](https://docs.datastax.com/en/astra/home/astra.html) as an LLM cache, with either the \"exact\" or the \"semantic-based\" cache.\n",
"\n",
"Make sure you have a running database (it must be a Vector-enabled database to use the Semantic cache) and get the required credentials on your Astra dashboard:\n",
"\n",
"- the API Endpoint looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`\n",
"- the Token looks like `AstraCS:6gBhNmsk135....`"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "feb510b6-99a3-4228-8e11-563051f8178e",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"ASTRA_DB_API_ENDPOINT = https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com\n",
"ASTRA_DB_APPLICATION_TOKEN = ········\n"
]
}
],
"source": [
"import getpass\n",
"\n",
"ASTRA_DB_API_ENDPOINT = input(\"ASTRA_DB_API_ENDPOINT = \")\n",
"ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
]
},
{
"cell_type": "markdown",
"id": "ee6d587f-4b7c-43f4-9e90-5129c842a143",
"metadata": {},
"source": [
"### Astra DB exact LLM cache\n",
"\n",
"This will avoid invoking the LLM when the supplied prompt is _exactly_ the same as one encountered already:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ad63c146-ee41-4896-90ee-29fcc39f0ed5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.cache import AstraDBCache\n",
"from langchain.globals import set_llm_cache\n",
"\n",
"set_llm_cache(\n",
" AstraDBCache(\n",
" api_endpoint=ASTRA_DB_API_ENDPOINT,\n",
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "83e0fb02-e8eb-4483-9eb1-55b5e14c4487",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"There is no definitive answer to this question as it depends on the interpretation of the terms \"true fakery\" and \"fake truth\". However, one possible interpretation is that a true fakery is a counterfeit or imitation that is intended to deceive, whereas a fake truth is a false statement that is presented as if it were true.\n",
"CPU times: user 70.8 ms, sys: 4.13 ms, total: 74.9 ms\n",
"Wall time: 2.06 s\n"
]
}
],
"source": [
"%%time\n",
"\n",
"print(llm(\"Is a true fakery the same as a fake truth?\"))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4d20d498-fe28-4e26-8531-2b31c52ee687",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"There is no definitive answer to this question as it depends on the interpretation of the terms \"true fakery\" and \"fake truth\". However, one possible interpretation is that a true fakery is a counterfeit or imitation that is intended to deceive, whereas a fake truth is a false statement that is presented as if it were true.\n",
"CPU times: user 15.1 ms, sys: 3.7 ms, total: 18.8 ms\n",
"Wall time: 531 ms\n"
]
}
],
"source": [
"%%time\n",
"\n",
"print(llm(\"Is a true fakery the same as a fake truth?\"))"
]
},
{
"cell_type": "markdown",
"id": "524b94fa-6162-4880-884d-d008749d14e2",
"metadata": {},
"source": [
"### Astra DB Semantic cache\n",
"\n",
"This cache will do a semantic similarity search and return a hit if it finds a cached entry that is similar enough, For this, you need to provide an `Embeddings` instance of your choice."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "dc329c55-1cc4-4b74-94f9-61f8990fb214",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"\n",
"embedding = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "83952a90-ab14-4e59-87c0-d2bdc1d43e43",
"metadata": {},
"outputs": [],
"source": [
"from langchain.cache import AstraDBSemanticCache\n",
"\n",
"set_llm_cache(\n",
" AstraDBSemanticCache(\n",
" api_endpoint=ASTRA_DB_API_ENDPOINT,\n",
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
" embedding=embedding,\n",
" collection_name=\"demo_semantic_cache\",\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d74b249a-94d5-42d0-af74-f7565a994dea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"There is no definitive answer to this question since it presupposes a great deal about the nature of truth itself, which is a matter of considerable philosophical debate. It is possible, however, to construct scenarios in which something could be considered true despite being false, such as if someone sincerely believes something to be true even though it is not.\n",
"CPU times: user 65.6 ms, sys: 15.3 ms, total: 80.9 ms\n",
"Wall time: 2.72 s\n"
]
}
],
"source": [
"%%time\n",
"\n",
"print(llm(\"Are there truths that are false?\"))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "11973d73-d2f4-46bd-b229-1c589df9b788",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"There is no definitive answer to this question since it presupposes a great deal about the nature of truth itself, which is a matter of considerable philosophical debate. It is possible, however, to construct scenarios in which something could be considered true despite being false, such as if someone sincerely believes something to be true even though it is not.\n",
"CPU times: user 29.3 ms, sys: 6.21 ms, total: 35.5 ms\n",
"Wall time: 1.03 s\n"
]
}
],
"source": [
"%%time\n",
"\n",
"print(llm(\"Is is possible that something false can be also true?\"))"
]
},
{
"cell_type": "markdown",
"id": "0c69d84d",

View File

@@ -141,7 +141,7 @@
" accepts = \"application/json\"\n",
"\n",
" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:\n",
" input_str = json.dumps({prompt: prompt, **model_kwargs})\n",
" input_str = json.dumps({\"inputs\": prompt, \"parameters\": model_kwargs})\n",
" return input_str.encode(\"utf-8\")\n",
"\n",
" def transform_output(self, output: bytes) -> str:\n",
@@ -197,7 +197,7 @@
" accepts = \"application/json\"\n",
"\n",
" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:\n",
" input_str = json.dumps({prompt: prompt, **model_kwargs})\n",
" input_str = json.dumps({\"inputs\": prompt, \"parameters\": model_kwargs})\n",
" return input_str.encode(\"utf-8\")\n",
"\n",
" def transform_output(self, output: bytes) -> str:\n",

View File

@@ -0,0 +1,124 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "404758628c7b20f6",
"metadata": {
"collapsed": false
},
"source": [
"# Volc Engine Maas\n",
"\n",
"This notebook provides you with a guide on how to get started with Volc Engine's MaaS llm models."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "946db204b33c2ef7",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Install the package\n",
"!pip install volcengine"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "51e7f967cb78f5b7",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:40:26.897649Z",
"start_time": "2023-11-27T10:40:26.552589Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"from langchain.llms import VolcEngineMaasLLM\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "139667d44689f9e0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:40:27.938517Z",
"start_time": "2023-11-27T10:40:27.861324Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"llm = VolcEngineMaasLLM(volc_engine_maas_ak=\"your ak\", volc_engine_maas_sk=\"your sk\")"
]
},
{
"cell_type": "markdown",
"id": "e84ebc4feedcc739",
"metadata": {
"collapsed": false
},
"source": [
"or you can set access_key and secret_key in your environment variables\n",
"```bash\n",
"export VOLC_ACCESSKEY=YOUR_AK\n",
"export VOLC_SECRETKEY=YOUR_SK\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "35da18414ad17aa0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-27T10:41:35.528526Z",
"start_time": "2023-11-27T10:41:32.562238Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": "'好的,下面是一个笑话:\\n\\n大学暑假我配了隐形眼镜回家给爷爷说我现在配了隐形眼镜。\\n爷爷让我给他看看于是我用小镊子夹了一片给爷爷看。\\n爷爷看完便准备出门边走还边说“真高级啊还真是隐形眼镜”\\n等爷爷出去后我才发现我刚没夹起来'"
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain = PromptTemplate.from_template(\"给我讲个笑话\") | llm | StrOutputParser()\n",
"chain.invoke({})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,297 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "70996d8a",
"metadata": {},
"source": [
"# WatsonxLLM\n",
"\n",
"[WatsonxLLM](https://ibm.github.io/watson-machine-learning-sdk/fm_extensions.html) is wrapper for IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) foundation models.\n",
"This example shows how to communicate with watsonx.ai models using LangChain."
]
},
{
"cell_type": "markdown",
"id": "ea35b2b7",
"metadata": {},
"source": [
"Install the package [`ibm_watson_machine_learning`](https://ibm.github.io/watson-machine-learning-sdk/install.html)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f1fff4e",
"metadata": {},
"outputs": [],
"source": [
"%pip install ibm_watson_machine_learning"
]
},
{
"cell_type": "markdown",
"id": "f406e092",
"metadata": {},
"source": [
"This cell defines the WML credentials required to work with watsonx Foundation Model inferencing.\n",
"\n",
"**Action:** Provide the IBM Cloud user API key. For details, see\n",
"[documentation](https://cloud.ibm.com/docs/account?topic=account-userapikey&interface=ui)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "11d572a1",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"watsonx_api_key = getpass()\n",
"os.environ[\"WATSONX_APIKEY\"] = watsonx_api_key"
]
},
{
"cell_type": "markdown",
"id": "e36acbef",
"metadata": {},
"source": [
"## Load the model\n",
"You might need to adjust model `parameters` for different models or tasks, to do so please refer to [documentation](https://ibm.github.io/watson-machine-learning-sdk/model.html#metanames.GenTextParamsMetaNames)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "407cd500",
"metadata": {},
"outputs": [],
"source": [
"from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams\n",
"\n",
"parameters = {\n",
" GenParams.DECODING_METHOD: \"sample\",\n",
" GenParams.MAX_NEW_TOKENS: 100,\n",
" GenParams.MIN_NEW_TOKENS: 1,\n",
" GenParams.TEMPERATURE: 0.5,\n",
" GenParams.TOP_K: 50,\n",
" GenParams.TOP_P: 1,\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "2b586538",
"metadata": {},
"source": [
"Initialize the `WatsonxLLM` class with previous set params."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "359898de",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import WatsonxLLM\n",
"\n",
"watsonx_llm = WatsonxLLM(\n",
" model_id=\"google/flan-ul2\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"***\",\n",
" params=parameters,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2202f4e0",
"metadata": {},
"source": [
"Alternatively you can use Cloud Pak for Data credentials. For details, see [documentation](https://ibm.github.io/watson-machine-learning-sdk/setup_cpd.html).\n",
"```\n",
"watsonx_llm = WatsonxLLM(\n",
" model_id='google/flan-ul2',\n",
" url=\"***\",\n",
" username=\"***\",\n",
" password=\"***\",\n",
" instance_id=\"openshift\",\n",
" version=\"4.8\",\n",
" project_id='***',\n",
" params=parameters\n",
")\n",
"``` "
]
},
{
"cell_type": "markdown",
"id": "c25ecbd1",
"metadata": {},
"source": [
"## Create Chain\n",
"Create `PromptTemplate` objects which will be responsible for creating a random question."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c7d80c05",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"template = \"Generate a random question about {topic}: Question: \"\n",
"prompt = PromptTemplate.from_template(template)"
]
},
{
"cell_type": "markdown",
"id": "79056d8e",
"metadata": {},
"source": [
"Provide a topic and run the `LLMChain`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dc076c56",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'How many breeds of dog are there?'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import LLMChain\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=watsonx_llm)\n",
"llm_chain.run(\"dog\")"
]
},
{
"cell_type": "markdown",
"id": "f571001d",
"metadata": {},
"source": [
"## Calling the Model Directly\n",
"To obtain completions, you can can the model directly using string prompt."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "beea2b5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'dog'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Calling a single prompt\n",
"\n",
"watsonx_llm(\"Who is man's best friend?\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ab1a25a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[Generation(text='greyhounds', generation_info={'generated_token_count': 4, 'input_token_count': 8, 'finish_reason': 'eos_token'})], [Generation(text='The Basenji is a dog breed from South Africa.', generation_info={'generated_token_count': 13, 'input_token_count': 7, 'finish_reason': 'eos_token'})]], llm_output={'model_id': 'google/flan-ul2'}, run=[RunInfo(run_id=UUID('03c73a42-db68-428e-ab8d-8ae10abc84fc')), RunInfo(run_id=UUID('c289f67a-87d6-4c8b-a8b7-0b5012c94ca8'))])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Calling multiple prompts\n",
"\n",
"watsonx_llm.generate(\n",
" [\n",
" \"The fastest dog in the world?\",\n",
" \"Describe your chosen dog breed\",\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d2c9da33",
"metadata": {},
"source": [
"## Streaming the Model output \n",
"\n",
"You can stream the model output."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "3f63166a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The golden retriever is my favorite dog because it is very friendly and good with children."
]
}
],
"source": [
"for chunk in watsonx_llm.stream(\n",
" \"Describe your favorite breed of dog and why it is your favorite.\"\n",
"):\n",
" print(chunk, end=\"\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,147 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "90cd3ded",
"metadata": {},
"source": [
"# Astra DB \n",
"\n",
"> DataStax [Astra DB](https://docs.datastax.com/en/astra/home/astra.html) is a serverless vector-capable database built on Cassandra and made conveniently available through an easy-to-use JSON API.\n",
"\n",
"This notebook goes over how to use Astra DB to store chat message history."
]
},
{
"cell_type": "markdown",
"id": "f507f58b-bf22-4a48-8daf-68d869bcd1ba",
"metadata": {},
"source": [
"## Setting up\n",
"\n",
"To run this notebook you need a running Astra DB. Get the connection secrets on your Astra dashboard:\n",
"\n",
"- the API Endpoint looks like `https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com`;\n",
"- the Token looks like `AstraCS:6gBhNmsk135...`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7092199",
"metadata": {},
"outputs": [],
"source": [
"!pip install --quiet \"astrapy>=0.6.2\""
]
},
{
"cell_type": "markdown",
"id": "e3d97b65",
"metadata": {},
"source": [
"### Set up the database connection parameters and secrets"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "163d97f0",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"ASTRA_DB_API_ENDPOINT = https://01234567-89ab-cdef-0123-456789abcdef-us-east1.apps.astra.datastax.com\n",
"ASTRA_DB_APPLICATION_TOKEN = ········\n"
]
}
],
"source": [
"import getpass\n",
"\n",
"ASTRA_DB_API_ENDPOINT = input(\"ASTRA_DB_API_ENDPOINT = \")\n",
"ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(\"ASTRA_DB_APPLICATION_TOKEN = \")"
]
},
{
"cell_type": "markdown",
"id": "55860b2d",
"metadata": {},
"source": [
"Depending on whether local or cloud-based Astra DB, create the corresponding database connection \"Session\" object."
]
},
{
"cell_type": "markdown",
"id": "36c163e8",
"metadata": {},
"source": [
"## Example"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d15e3302",
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import AstraDBChatMessageHistory\n",
"\n",
"message_history = AstraDBChatMessageHistory(\n",
" session_id=\"test-session\",\n",
" api_endpoint=ASTRA_DB_API_ENDPOINT,\n",
" token=ASTRA_DB_APPLICATION_TOKEN,\n",
")\n",
"\n",
"message_history.add_user_message(\"hi!\")\n",
"\n",
"message_history.add_ai_message(\"whats up?\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "64fc465e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='hi!'), AIMessage(content='whats up?')]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message_history.messages"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,11 +1,22 @@
# AWS
All functionality related to [Amazon AWS](https://aws.amazon.com/) platform
The `LangChain` integrations related to [Amazon AWS](https://aws.amazon.com/) platform.
## LLMs
### Bedrock
>[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that offers a choice of
> high-performing foundation models (FMs) from leading AI companies like `AI21 Labs`, `Anthropic`, `Cohere`,
> `Meta`, `Stability AI`, and `Amazon` via a single API, along with a broad set of capabilities you need to
> build generative AI applications with security, privacy, and responsible AI. Using `Amazon Bedrock`,
> you can easily experiment with and evaluate top FMs for your use case, privately customize them with
> your data using techniques such as fine-tuning and `Retrieval Augmented Generation` (`RAG`), and build
> agents that execute tasks using your enterprise systems and data sources. Since `Amazon Bedrock` is
> serverless, you don't have to manage any infrastructure, and you can securely integrate and deploy
> generative AI capabilities into your applications using the AWS services you are already familiar with.
See a [usage example](/docs/integrations/llms/bedrock).
```python
@@ -14,32 +25,28 @@ from langchain.llms.bedrock import Bedrock
### Amazon API Gateway
[Amazon API Gateway](https://aws.amazon.com/api-gateway/) is a fully managed service that makes it easy for developers to create, publish, maintain, monitor, and secure APIs at any scale. APIs act as the "front door" for applications to access data, business logic, or functionality from your backend services. Using API Gateway, you can create RESTful APIs and WebSocket APIs that enable real-time two-way communication applications. API Gateway supports containerized and serverless workloads, as well as web applications.
>[Amazon API Gateway](https://aws.amazon.com/api-gateway/) is a fully managed service that makes it easy for
> developers to create, publish, maintain, monitor, and secure APIs at any scale. APIs act as the "front door"
> for applications to access data, business logic, or functionality from your backend services. Using
> `API Gateway`, you can create RESTful APIs and WebSocket APIs that enable real-time two-way communication
> applications. `API Gateway` supports containerized and serverless workloads, as well as web applications.
>
> `API Gateway` handles all the tasks involved in accepting and processing up to hundreds of thousands of
> concurrent API calls, including traffic management, CORS support, authorization and access control,
> throttling, monitoring, and API version management. `API Gateway` has no minimum fees or startup costs.
> You pay for the API calls you receive and the amount of data transferred out and, with the `API Gateway`
> tiered pricing model, you can reduce your cost as your API usage scales.
API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, CORS support, authorization and access control, throttling, monitoring, and API version management. API Gateway has no minimum fees or startup costs. You pay for the API calls you receive and the amount of data transferred out and, with the API Gateway tiered pricing model, you can reduce your cost as your API usage scales.
See a [usage example](/docs/integrations/llms/amazon_api_gateway_example).
See a [usage example](/docs/integrations/llms/amazon_api_gateway).
```python
from langchain.llms import AmazonAPIGateway
api_url = "https://<api_gateway_id>.execute-api.<region>.amazonaws.com/LATEST/HF"
# These are sample parameters for Falcon 40B Instruct Deployed from Amazon SageMaker JumpStart
model_kwargs = {
"max_new_tokens": 100,
"num_return_sequences": 1,
"top_k": 50,
"top_p": 0.95,
"do_sample": False,
"return_full_text": True,
"temperature": 0.2,
}
llm = AmazonAPIGateway(api_url=api_url, model_kwargs=model_kwargs)
```
### SageMaker Endpoint
>[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a system that can build, train, and deploy machine learning (ML) models with fully managed infrastructure, tools, and workflows.
>[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a system that can build, train, and deploy
> machine learning (ML) models with fully managed infrastructure, tools, and workflows.
We use `SageMaker` to host our model and expose it as the `SageMaker Endpoint`.
@@ -50,6 +57,16 @@ from langchain.llms import SagemakerEndpoint
from langchain.llms.sagemaker_endpoint import LLMContentHandler
```
## Chat models
### Bedrock Chat
See a [usage example](/docs/integrations/chat/bedrock).
```python
from langchain.chat_models import BedrockChat
```
## Text Embedding Models
### Bedrock
@@ -67,11 +84,32 @@ from langchain.embeddings import SagemakerEndpointEmbeddings
from langchain.llms.sagemaker_endpoint import ContentHandlerBase
```
## Chains
### Amazon Comprehend Moderation Chain
>[Amazon Comprehend](https://aws.amazon.com/comprehend/) is a natural-language processing (NLP) service that
> uses machine learning to uncover valuable insights and connections in text.
We need to install the `boto3` and `nltk` libraries.
```bash
pip install boto3 nltk
```
See a [usage example](/docs/guides/safety/amazon_comprehend_chain).
```python
from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain
```
## Document loaders
### AWS S3 Directory and File
>[Amazon Simple Storage Service (Amazon S3)](https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html) is an object storage service.
>[Amazon Simple Storage Service (Amazon S3)](https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html)
> is an object storage service.
>[AWS S3 Directory](https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html)
>[AWS S3 Buckets](https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingBucket.html)
@@ -83,6 +121,17 @@ See a [usage example for S3FileLoader](/docs/integrations/document_loaders/aws_s
from langchain.document_loaders import S3DirectoryLoader, S3FileLoader
```
### Amazon Textract
>[Amazon Textract](https://docs.aws.amazon.com/managedservices/latest/userguide/textract.html) is a machine
> learning (ML) service that automatically extracts text, handwriting, and data from scanned documents.
See a [usage example](/docs/integrations/document_loaders/amazon_textract).
```python
from langchain.document_loaders import AmazonTextractPDFLoader
```
## Memory
### AWS DynamoDB
@@ -103,3 +152,112 @@ See a [usage example](/docs/integrations/memory/aws_dynamodb).
```python
from langchain.memory import DynamoDBChatMessageHistory
```
## Retrievers
### Amazon Kendra
> [Amazon Kendra](https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html) is an intelligent search service
> provided by `Amazon Web Services` (`AWS`). It utilizes advanced natural language processing (NLP) and machine
> learning algorithms to enable powerful search capabilities across various data sources within an organization.
> `Kendra` is designed to help users find the information they need quickly and accurately,
> improving productivity and decision-making.
> With `Kendra`, we can search across a wide range of content types, including documents, FAQs, knowledge bases,
> manuals, and websites. It supports multiple languages and can understand complex queries, synonyms, and
> contextual meanings to provide highly relevant search results.
We need to install the `boto3` library.
```bash
pip install boto3
```
See a [usage example](/docs/integrations/retrievers/amazon_kendra_retriever).
```python
from langchain.retrievers import AmazonKendraRetriever
```
### Amazon Bedrock (Knowledge Bases)
> [Knowledge bases for Amazon Bedrock](https://aws.amazon.com/bedrock/knowledge-bases/) is an
> `Amazon Web Services` (`AWS`) offering which lets you quickly build RAG applications by using your
> private data to customize foundation model response.
We need to install the `boto3` library.
```bash
pip install boto3
```
See a [usage example](/docs/integrations/retrievers/amazon_bedrock_knowledge_bases).
```python
from langchain.retrievers import AmazonKnowledgeBasesRetriever
```
## Vector stores
### Amazon OpenSearch Service
> [Amazon OpenSearch Service](https://aws.amazon.com/opensearch-service/) performs
> interactive log analytics, real-time application monitoring, website search, and more. `OpenSearch` is
> an open source,
> distributed search and analytics suite derived from `Elasticsearch`. `Amazon OpenSearch Service` offers the
> latest versions of `OpenSearch`, support for many versions of `Elasticsearch`, as well as
> visualization capabilities powered by `OpenSearch Dashboards` and `Kibana`.
We need to install several python libraries.
```bash
pip install boto3 requests requests-aws4auth
```
See a [usage example](/docs/integrations/vectorstores/opensearch#using-aos-amazon-opensearch-service).
```python
from langchain.vectorstores import OpenSearchVectorSearch
```
## Tools
### AWS Lambda
>[`Amazon AWS Lambda`](https://aws.amazon.com/pm/lambda/) is a serverless computing service provided by
> `Amazon Web Services` (`AWS`). It helps developers to build and run applications and services without
> provisioning or managing servers. This serverless architecture enables you to focus on writing and
> deploying code, while AWS automatically takes care of scaling, patching, and managing the
> infrastructure required to run your applications.
We need to install `boto3` python library.
```bash
pip install boto3
```
See a [usage example](/docs/integrations/tools/awslambda).
## Callbacks
### SageMaker Tracking
>[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a fully managed service that is used to quickly
> and easily build, train and deploy machine learning (ML) models.
>[Amazon SageMaker Experiments](https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html) is a capability
> of `Amazon SageMaker` that lets you organize, track,
> compare and evaluate ML experiments and model versions.
We need to install several python libraries.
```bash
pip install google-search-results sagemaker
```
See a [usage example](/docs/integrations/callbacks/sagemaker_tracking).
```python
from langchain.callbacks import SageMakerCallbackHandler
```

View File

@@ -393,14 +393,24 @@ from langchain.chat_loaders.gmail import GMailLoader
## 3rd Party Integrations
### SearchApi
>[SearchApi](https://www.searchapi.io/) provides a 3rd-party API to access Google search results, YouTube search & transcripts, and other Google-related engines.
See [usage examples and authorization instructions](/docs/integrations/tools/searchapi).
```python
from langchain.utilities import SearchApiAPIWrapper
```
### SerpAPI
>[SerpApi](https://serpapi.com/) provides a 3rd-party API to access Google search results.
See a [usage example and authorization instructions](/docs/integrations/tools/google_serper).
See a [usage example and authorization instructions](/docs/integrations/tools/serpapi).
```python
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.utilities import SerpAPIWrapper
```
### YouTube

View File

@@ -0,0 +1,136 @@
# Hugging Face
All functionality related to the [Hugging Face Platform](https://huggingface.co/).
## LLMs
### Hugging Face Hub
>The [Hugging Face Hub](https://huggingface.co/docs/hub/index) is a platform
> with over 350k models, 75k datasets, and 150k demo apps (Spaces), all open source
> and publicly available, in an online platform where people can easily
> collaborate and build ML together. The Hub works as a central place where anyone
> can explore, experiment, collaborate, and build technology with Machine Learning.
To use, we should have the `huggingface_hub` python [package installed](https://huggingface.co/docs/huggingface_hub/installation).
```bash
pip install huggingface_hub
```
See a [usage example](/docs/integrations/llms/huggingface_hub).
```python
from langchain.llms import HuggingFaceHub
```
### Hugging Face Local Pipelines
Hugging Face models can be run locally through the `HuggingFacePipeline` class.
We need to install `transformers` python package.
```bash
pip install transformers
```
See a [usage example](/docs/integrations/llms/huggingface_pipelines).
```python
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
```
### Hugging Face TextGen Inference
>[Text Generation Inference](https://github.com/huggingface/text-generation-inference) is
> a Rust, Python and gRPC server for text generation inference. Used in production at
> [HuggingFace](https://huggingface.co/) to power LLMs api-inference widgets.
We need to install `text_generation` python package.
```bash
pip install text_generation
```
See a [usage example](/docs/integrations/llms/huggingface_textgen_inference).
```python
from langchain.llms import HuggingFaceTextGenInference
```
## Document Loaders
### Hugging Face dataset
>[Hugging Face Hub](https://huggingface.co/docs/hub/index) is home to over 75,000
> [datasets](https://huggingface.co/docs/hub/index#datasets) in more than 100 languages
> that can be used for a broad range of tasks across NLP, Computer Vision, and Audio.
> They used for a diverse range of tasks such as translation, automatic speech
> recognition, and image classification.
We need to install `datasets` python package.
```bash
pip install datasets
```
See a [usage example](/docs/integrations/document_loaders/hugging_face_dataset).
```python
from langchain.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader
```
## Embedding Models
### Hugging Face Hub
>The [Hugging Face Hub](https://huggingface.co/docs/hub/index) is a platform
> with over 350k models, 75k datasets, and 150k demo apps (Spaces), all open source
> and publicly available, in an online platform where people can easily
> collaborate and build ML together. The Hub works as a central place where anyone
> can explore, experiment, collaborate, and build technology with Machine Learning.
We need to install the `sentence_transformers` python package.
```bash
pip install sentence_transformers
```
#### HuggingFaceEmbeddings
See a [usage example](/docs/integrations/text_embedding/huggingfacehub).
```python
from langchain.embeddings import HuggingFaceEmbeddings
```
#### HuggingFaceInstructEmbeddings
See a [usage example](/docs/integrations/text_embedding/instruct_embeddings).
```python
from langchain.embeddings import HuggingFaceInstructEmbeddings
```
## Tools
### Hugging Face Hub Tools
>[Hugging Face Tools](https://huggingface.co/docs/transformers/v4.29.0/en/custom_tools)
> support text I/O and are loaded using the `load_huggingface_tool` function.
We need to install several python packages.
```bash
pip install transformers huggingface_hub
```
See a [usage example](/docs/integrations/tools/huggingface_tools).
```python
from langchain.agents import load_huggingface_tool
```

View File

@@ -81,6 +81,7 @@ See a [usage example for the Azure Files](/docs/integrations/document_loaders/az
from langchain.document_loaders import AzureBlobStorageFileLoader
```
### Microsoft OneDrive
>[Microsoft OneDrive](https://en.wikipedia.org/wiki/OneDrive) (formerly `SkyDrive`) is a file-hosting service operated by Microsoft.
@@ -97,6 +98,7 @@ See a [usage example](/docs/integrations/document_loaders/microsoft_onedrive).
from langchain.document_loaders import OneDriveLoader
```
### Microsoft Word
>[Microsoft Word](https://www.microsoft.com/en-us/microsoft-365/word) is a word processor developed by Microsoft.
@@ -108,6 +110,48 @@ from langchain.document_loaders import UnstructuredWordDocumentLoader
```
### Microsoft Excel
>[Microsoft Excel](https://en.wikipedia.org/wiki/Microsoft_Excel) is a spreadsheet editor developed by
> Microsoft for Windows, macOS, Android, iOS and iPadOS.
> It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming
> language called Visual Basic for Applications (VBA). Excel forms part of the Microsoft 365 suite of software.
The `UnstructuredExcelLoader` is used to load `Microsoft Excel` files. The loader works with both `.xlsx` and `.xls` files.
The page content will be the raw text of the Excel file. If you use the loader in `"elements"` mode, an HTML
representation of the Excel file will be available in the document metadata under the `text_as_html` key.
See a [usage example](/docs/integrations/document_loaders/excel).
```python
from langchain.document_loaders import UnstructuredExcelLoader
```
### Microsoft SharePoint
>[Microsoft SharePoint](https://en.wikipedia.org/wiki/SharePoint) is a website-based collaboration system
> that uses workflow applications, “list” databases, and other web parts and security features to
> empower business teams to work together developed by Microsoft.
See a [usage example](/docs/integrations/document_loaders/microsoft_sharepoint).
```python
from langchain.document_loaders.sharepoint import SharePointLoader
```
### Microsoft PowerPoint
>[Microsoft PowerPoint](https://en.wikipedia.org/wiki/Microsoft_PowerPoint) is a presentation program by Microsoft.
See a [usage example](/docs/integrations/document_loaders/microsoft_powerpoint).
```python
from langchain.document_loaders import UnstructuredPowerPointLoader
```
## Vector stores
### Azure Cosmos DB

View File

@@ -99,3 +99,10 @@ See a [usage example](/docs/guides/safety/moderation).
from langchain.chains import OpenAIModerationChain
```
## Adapter
See a [usage example](/docs/integrations/adapters/openai).
```python
from langchain.adapters import openai as lc_openai
```

View File

@@ -29,6 +29,47 @@ vector_store = AstraDB(
Learn more in the [example notebook](/docs/integrations/vectorstores/astradb).
### LLM Cache
```python
from langchain.globals import set_llm_cache
from langchain.cache import AstraDBCache
set_llm_cache(AstraDBCache(
api_endpoint="...",
token="...",
))
```
Learn more in the [example notebook](/docs/integrations/llms/llm_caching) (scroll to the Astra DB section).
### Semantic LLM Cache
```python
from langchain.globals import set_llm_cache
from langchain.cache import AstraDBSemanticCache
set_llm_cache(AstraDBSemanticCache(
embedding=my_embedding,
api_endpoint="...",
token="...",
))
```
Learn more in the [example notebook](/docs/integrations/llms/llm_caching) (scroll to the appropriate section).
### Chat message history
```python
from langchain.memory import AstraDBChatMessageHistory
message_history = AstraDBChatMessageHistory(
session_id="test-session"
api_endpoint="...",
token="...",
)
```
Learn more in the [example notebook](/docs/integrations/memory/astradb_chat_message_history).
## Apache Cassandra and Astra DB through CQL

View File

@@ -7,9 +7,8 @@ Databricks embraces the LangChain ecosystem in various ways:
1. Databricks connector for the SQLDatabase Chain: SQLDatabase.from_databricks() provides an easy way to query your data on Databricks through LangChain
2. Databricks MLflow integrates with LangChain: Tracking and serving LangChain applications with fewer steps
3. Databricks MLflow AI Gateway
4. Databricks as an LLM provider: Deploy your fine-tuned LLMs on Databricks via serving endpoints or cluster driver proxy apps, and query it as langchain.llms.Databricks
5. Databricks Dolly: Databricks open-sourced Dolly which allows for commercial use, and can be accessed through the Hugging Face Hub
3. Databricks as an LLM provider: Deploy your fine-tuned LLMs on Databricks via serving endpoints or cluster driver proxy apps, and query it as langchain.llms.Databricks
4. Databricks Dolly: Databricks open-sourced Dolly which allows for commercial use, and can be accessed through the Hugging Face Hub
Databricks connector for the SQLDatabase Chain
----------------------------------------------
@@ -25,19 +24,58 @@ Databricks provides a fully managed and hosted version of MLflow integrated with
Databricks MLflow makes it more convenient to develop LangChain applications on Databricks. For MLflow tracking, you don't need to set the tracking uri. For MLflow Model Serving, you can save LangChain Chains in the MLflow langchain flavor, and then register and serve the Chain with a few clicks on Databricks, with credentials securely managed by MLflow Model Serving.
Databricks MLflow AI Gateway
----------------------------
Databricks External Models
--------------------------
See [MLflow AI Gateway](/docs/integrations/providers/mlflow_ai_gateway).
[Databricks External Models](https://docs.databricks.com/generative-ai/external-models/index.html) is a service that is designed to streamline the usage and management of various large language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests. The following example creates an endpoint that serves OpenAI's GPT-4 model and generates a chat response from it:
```python
from langchain.chat_models import ChatDatabricks
from langchain.schema.messages import HumanMessage
from mlflow.deployments import get_deploy_client
client = get_deploy_client("databricks")
name = f"chat"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "gpt-4",
"provider": "openai",
"task": "llm/v1/chat",
"openai_config": {
"openai_api_key": "{{secrets/<scope>/<key>}}",
},
},
}
],
},
)
chat = ChatDatabricks(endpoint=name, temperature=0.1)
print(chat([HumanMessage(content="hello")]))
# -> content='Hello! How can I assist you today?'
```
Databricks Foundation Model APIs
--------------------------------
[Databricks Foundation Model APIs](https://docs.databricks.com/machine-learning/foundation-models/index.html) allow you to access and query state-of-the-art open source models from dedicated serving endpoints. With Foundation Model APIs, developers can quickly and easily build applications that leverage a high-quality generative AI model without maintaining their own model deployment. The following example uses the `databricks-bge-large-en` endpoint to generate embeddings from text:
```python
from langchain.llms import DatabricksEmbeddings
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
print(embeddings.embed_query("hello")[:3])
# -> [0.051055908203125, 0.007221221923828125, 0.003879547119140625, ...]
```
Databricks as an LLM provider
-----------------------------
The notebook [Wrap Databricks endpoints as LLMs](/docs/integrations/llms/databricks) illustrates the method to wrap Databricks endpoints as LLMs in LangChain. It supports two types of endpoints: the serving endpoint, which is recommended for both production and development, and the cluster driver proxy app, which is recommended for interactive development.
Databricks endpoints support Dolly, but are also great for hosting models like MPT-7B or any other models from the Hugging Face ecosystem. Databricks endpoints can also be used with proprietary models like OpenAI to provide a governance layer for enterprises.
Databricks Dolly
----------------
Databricks Dolly is an instruction-following large language model trained on the Databricks machine learning platform that is licensed for commercial use. The model is available on Hugging Face Hub as databricks/dolly-v2-12b. See the notebook [Hugging Face Hub](/docs/integrations/llms/huggingface_hub) for instructions to access it through the Hugging Face Hub integration with LangChain.
The notebook [Wrap Databricks endpoints as LLMs](/docs/integrations/llms/databricks#wrapping-a-serving-endpoint-custom-model) demonstrates how to serve a custom model that has been registered by MLflow as a Databricks endpoint.
It supports two types of endpoints: the serving endpoint, which is recommended for both production and development, and the cluster driver proxy app, which is recommended for interactive development.

View File

@@ -8,7 +8,7 @@
```bash
pip install lxml
pip install dgml-utils
```
## Document Loader

View File

@@ -11,7 +11,7 @@
Click [here](https://www.alibabacloud.com/zh/product/hologres) to fast deploy a Hologres cloud instance.
```bash
pip install psycopg2
pip install hologres-vector
```
## Vector Store

View File

@@ -1,69 +0,0 @@
# Hugging Face
This page covers how to use the Hugging Face ecosystem (including the [Hugging Face Hub](https://huggingface.co)) within LangChain.
It is broken into two parts: installation and setup, and then references to specific Hugging Face wrappers.
## Installation and Setup
If you want to work with the Hugging Face Hub:
- Install the Hub client library with `pip install huggingface_hub`
- Create a Hugging Face account (it's free!)
- Create an [access token](https://huggingface.co/docs/hub/security-tokens) and set it as an environment variable (`HUGGINGFACEHUB_API_TOKEN`)
If you want work with the Hugging Face Python libraries:
- Install `pip install transformers` for working with models and tokenizers
- Install `pip install datasets` for working with datasets
## Wrappers
### LLM
There exists two Hugging Face LLM wrappers, one for a local pipeline and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for models that support the following tasks: [`text2text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text2text-generation&sort=downloads), [`text-generation`](https://huggingface.co/models?library=transformers&pipeline_tag=text-classification&sort=downloads)
To use the local pipeline wrapper:
```python
from langchain.llms import HuggingFacePipeline
```
To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.llms import HuggingFaceHub
```
For a more detailed walkthrough of the Hugging Face Hub wrapper, see [this notebook](/docs/integrations/llms/huggingface_hub)
### Embeddings
There exists two Hugging Face Embeddings wrappers, one for a local model and one for a model hosted on Hugging Face Hub.
Note that these wrappers only work for [`sentence-transformers` models](https://huggingface.co/models?library=sentence-transformers&sort=downloads).
To use the local pipeline wrapper:
```python
from langchain.embeddings import HuggingFaceEmbeddings
```
To use a the wrapper for a model hosted on Hugging Face Hub:
```python
from langchain.embeddings import HuggingFaceHubEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](/docs/integrations/text_embedding/huggingfacehub)
### Tokenizer
There are several places you can use tokenizers available through the `transformers` package.
By default, it is used to count tokens for all LLMs.
You can also use it to count tokens when splitting documents with
```python
from langchain.text_splitter import CharacterTextSplitter
CharacterTextSplitter.from_huggingface_tokenizer(...)
```
For a more detailed walkthrough of this, see [this notebook](/docs/modules/data_connection/document_transformers/text_splitters/huggingface_length_function)
### Datasets
The Hugging Face Hub has lots of great [datasets](https://huggingface.co/datasets) that can be used to evaluate your LLM chains.
For a detailed walkthrough of how to use them to do so, see [this notebook](/docs/integrations/document_loaders/hugging_face_dataset)

View File

@@ -0,0 +1,11 @@
# Infinity
>[Infinity](https://github.com/michaelfeil/infinity) allows the creation of text embeddings.
## Text Embedding Model
There exists an infinity Embedding model, which you can access with
```python
from langchain.embeddings import InfinityEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](/docs/integrations/text_embedding/infinity)

View File

@@ -1,75 +1,20 @@
# Jina
This page covers how to use the Jina ecosystem within LangChain.
This page covers how to use the Jina Embeddings within LangChain.
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.
## Installation and Setup
- Install the Python SDK with `pip install jina`
- Get a Jina AI Cloud auth token from [here](https://cloud.jina.ai/settings/tokens) and set it as an environment variable (`JINA_AUTH_TOKEN`)
## Wrappers
### Embeddings
- Get a Jina AI API token from [here](https://jina.ai/embeddings/) and set it as an environment variable (`JINA_API_TOKEN`)
There exists a Jina Embeddings wrapper, which you can access with
```python
from langchain.embeddings import JinaEmbeddings
```
For a more detailed walkthrough of this, see [this notebook](/docs/integrations/text_embedding/jina)
## Deployment
[Langchain-serve](https://github.com/jina-ai/langchain-serve), powered by Jina, helps take LangChain apps to production with easy to use REST/WebSocket APIs and Slack bots.
### Usage
Install the package from PyPI.
```bash
pip install langchain-serve
# you can pas jina_api_key, if none is passed it will be taken from `JINA_API_TOKEN` environment variable
embeddings = JinaEmbeddings(jina_api_key='jina_**', model_name='jina-embeddings-v2-base-en')
```
Wrap your LangChain app with the `@serving` decorator.
You can check the list of available models from [here](https://jina.ai/embeddings/)
```python
# app.py
from lcserve import serving
@serving
def ask(input: str) -> str:
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.agents import AgentExecutor, ZeroShotAgent
tools = [...] # list of tools
prompt = ZeroShotAgent.create_prompt(
tools, input_variables=["input", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(
llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools]
)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=True,
)
return agent_executor.run(input)
```
Deploy on Jina AI Cloud with `lc-serve deploy jcloud app`. Once deployed, we can send a POST request to the API endpoint to get a response.
```bash
curl -X 'POST' 'https://<your-app>.wolf.jina.ai/ask' \
-d '{
"input": "Your Question here?",
"envs": {
"OPENAI_API_KEY": "sk-***"
}
}'
```
You can also self-host the app on your infrastructure with Docker-compose or Kubernetes. See [here](https://github.com/jina-ai/langchain-serve#-self-host-llm-apps-with-docker-compose-or-kubernetes) for more details.
Langchain-serve also allows to deploy the apps with WebSocket APIs and Slack Bots both on [Jina AI Cloud](https://cloud.jina.ai/) or self-hosted infrastructure.
For a more detailed walkthrough of this, see [this notebook](/docs/integrations/text_embedding/jina.ipynb)

View File

@@ -0,0 +1,119 @@
# MLflow Deployments for LLMs
>[The MLflow Deployments for LLMs](https://www.mlflow.org/docs/latest/llms/deployments/index.html) is a powerful tool designed to streamline the usage and management of various large
> language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface
> that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests.
## Installation and Setup
Install `mlflow` with MLflow Deployments dependencies:
```sh
pip install 'mlflow[genai]'
```
Set the OpenAI API key as an environment variable:
```sh
export OPENAI_API_KEY=...
```
Create a configuration file:
```yaml
endpoints:
- name: completions
endpoint_type: llm/v1/completions
model:
provider: openai
name: text-davinci-003
config:
openai_api_key: $OPENAI_API_KEY
- name: embeddings
endpoint_type: llm/v1/embeddings
model:
provider: openai
name: text-embedding-ada-002
config:
openai_api_key: $OPENAI_API_KEY
```
Start the deployments server:
```sh
mlflow deployments start-server --config-path /path/to/config.yaml
```
## Example provided by `MLflow`
>The `mlflow.langchain` module provides an API for logging and loading `LangChain` models.
> This module exports multivariate LangChain models in the langchain flavor and univariate LangChain
> models in the pyfunc flavor.
See the [API documentation and examples](https://www.mlflow.org/docs/latest/python_api/mlflow.langchain) for more information.
## Completions Example
```python
import mlflow
from langchain.chains import LLMChain, PromptTemplate
from langchain.llms import Mlflow
llm = Mlflow(
target_uri="http://127.0.0.1:5000",
endpoint="completions",
)
llm_chain = LLMChain(
llm=Mlflow,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
result = llm_chain.run(adjective="funny")
print(result)
with mlflow.start_run():
model_info = mlflow.langchain.log_model(chain, "model")
model = mlflow.pyfunc.load_model(model_info.model_uri)
print(model.predict([{"adjective": "funny"}]))
```
## Embeddings Example
```python
from langchain.embeddings import MlflowEmbeddings
embeddings = MlflowEmbeddings(
target_uri="http://127.0.0.1:5000",
endpoint="embeddings",
)
print(embeddings.embed_query("hello"))
print(embeddings.embed_documents(["hello"]))
```
## Chat Example
```python
from langchain.chat_models import ChatMlflow
from langchain.schema import HumanMessage, SystemMessage
chat = ChatMlflow(
target_uri="http://127.0.0.1:5000",
endpoint="chat",
)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French: I love programming."
),
]
print(chat(messages))
```

View File

@@ -1,5 +1,11 @@
# MLflow AI Gateway
:::warning
MLflow AI Gateway has been deprecated. Please use [MLflow Deployments for LLMs](./mlflow) instead.
:::
>[The MLflow AI Gateway](https://www.mlflow.org/docs/latest/gateway/index) service is a powerful tool designed to streamline the usage and management of various large
> language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface
> that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests.

Some files were not shown because too many files have changed in this diff Show More