Compare commits

...

635 Commits

Author SHA1 Message Date
isaac hershenson
8f2c481e43 newline error 2024-07-22 09:48:07 -07:00
isaac hershenson
b5f22195b6 Merge branch 'master' of https://github.com/langchain-ai/langchain 2024-07-22 09:43:33 -07:00
maang-h
721f709dec community: Improve QianfanChatEndpoint tool result to model (#24466)
- **Description:** `QianfanChatEndpoint` When using tool result to
answer questions, the content of the tool is required to be in Dict
format. Of course, this can require users to return Dict format when
calling the tool, but in order to be consistent with other Chat Models,
I think such modifications are necessary.
2024-07-22 11:29:00 -04:00
Chaunte W. Lacewell
02f0a29293 Cookbook: Add Visual RAG example using VDMS (#24353)
- **Description:** Adding notebook to demonstrate visual RAG which uses
both video scene description generated by open source vision models (ex.
video-llama, video-llava etc.) as text embeddings and frames as image
embeddings to perform vector similarity search using VDMS.
  - **Issue:** N/A
  - **Dependencies:** N/A
2024-07-22 11:16:06 -04:00
ccurme
dcba7df2fe community[patch]: deprecate langchain_community Chroma in favor of langchain_chroma (#24474) 2024-07-22 11:00:13 -04:00
ccurme
0f7569ddbc core[patch]: enable RunnableWithMessageHistory without config (#23775)
Feedback that `RunnableWithMessageHistory` is unwieldy compared to
ConversationChain and similar legacy abstractions is common.

Legacy chains using memory typically had no explicit notion of threads
or separate sessions. To use `RunnableWithMessageHistory`, users are
forced to introduce this concept into their code. This possibly felt
like unnecessary boilerplate.

Here we enable `RunnableWithMessageHistory` to run without a config if
the `get_session_history` callable has no arguments. This enables
minimal implementations like the following:
```python
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
memory = InMemoryChatMessageHistory()
chain = RunnableWithMessageHistory(llm, lambda: memory)

chain.invoke("Hi I'm Bob")  # Hello Bob!
chain.invoke("What is my name?")  # Your name is Bob.
```
2024-07-22 10:36:53 -04:00
Mohammad Mohtashim
5ade0187d0 [Commutiy]: Prompts Fixed for ZERO_SHOT_REACT React Agent Type in create_sql_agent function (#23693)
- **Description:** The correct Prompts for ZERO_SHOT_REACT were not
being used in the `create_sql_agent` function. They were not using the
specific `SQL_PREFIX` and `SQL_SUFFIX` prompts if client does not
provide any prompts. This is fixed.
- **Issue:** #23585

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 14:04:20 +00:00
ZhangShenao
0f6737cbfe [Vector Store] Fix function add_texts in TencentVectorDB (#24469)
Regardless of whether `embedding_func` is set or not, the 'text'
attribute of document should be assigned, otherwise the `page_content`
in the document of the final search result will be lost
2024-07-22 09:50:22 -04:00
남광우
7ab82eb8cc langchain: Copy libs/standard-tests folder when building devcontainer (#24470)
### Description

* Fix `libs/langchain/dev.Dockerfile` file. copy the
`libs/standard-tests` folder when building the devcontainer.
* `poetry install --no-interaction --no-ansi --with dev,test,docs`
command requires this folder, but it was not copied.

### Reference

#### Error message when building the devcontainer from the master branch

```
...

[2024-07-20T14:27:34.779Z] ------
 > [langchain langchain-dev-dependencies 7/7] RUN poetry install --no-interaction --no-ansi --with dev,test,docs:
0.409 
0.409 Directory ../standard-tests does not exist
------

...
```

#### After the fix

Build success at vscode:

<img width="866" alt="image"
src="https://github.com/user-attachments/assets/10db1b50-6fcf-4dfe-83e1-d93c96aa2317">
2024-07-22 13:46:38 +00:00
rbrugaro
37b89fb7fc fix RAG with quantized embeddings notebook (#24422)
1. Fix HuggingfacePipeline import error to newer partner package
 2. Switch to IPEXModelForCausalLM for performance

There are no dependency changes since optimum intel is also needed for
QuantizedBiEncoderEmbeddings

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-22 13:44:03 +00:00
Thomas Meike
40c02cedaf langchain[patch]: add async methods to ConversationSummaryBufferMemory (#20956)
Added asynchronously callable methods according to the
ConversationSummaryBufferMemory API documentation.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-22 09:21:43 -04:00
Steve Sharp
cecd875cdc docs: Update streaming.ipynb (typo fix) (#24483)
**Description:** Fixes typo `Le'ts` -> `Let's`.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-22 11:09:13 +00:00
Sheng Han Lim
0c6a3fdd6b langchain: Update ContextualCompressionRetriever base_retriever type to RetrieverLike (#24192)
**Description:**
When initializing retrievers with `configurable_fields` as base
retriever, `ContextualCompressionRetriever` validation fails with the
following error:

```
ValidationError: 1 validation error for ContextualCompressionRetriever
base_retriever
  Can't instantiate abstract class BaseRetriever with abstract method _get_relevant_documents (type=type_error)
```

Example code:

```python
esearch_retriever = VertexAISearchRetriever(
    project_id=GCP_PROJECT_ID,
    location_id="global",
    data_store_id=SEARCH_ENGINE_ID,
).configurable_fields(
    filter=ConfigurableField(id="vertex_search_filter", name="Vertex Search Filter")
)

# rerank documents with Vertex AI Rank API
reranker = VertexAIRank(
    project_id=GCP_PROJECT_ID,
    location_id=GCP_REGION,
    ranking_config="default_ranking_config",
)

retriever_with_reranker = ContextualCompressionRetriever(
    base_compressor=reranker, base_retriever=esearch_retriever
)
```

It seems like the issue stems from ContextualCompressionRetriever
insisting that base retrievers must be strictly `BaseRetriever`
inherited, and doesn't take into account cases where retrievers need to
be chained and can have configurable fields defined.


0a1e475a30/libs/langchain/langchain/retrievers/contextual_compression.py (L15-L22)

This PR proposes that the base_retriever type be set to `RetrieverLike`,
similar to how `EnsembleRetriever` validates its list of retrievers:


0a1e475a30/libs/langchain/langchain/retrievers/ensemble.py (L58-L75)
2024-07-21 14:23:19 -04:00
clement.l
d98b830e4b community: add flag to toggle progress bar (#24463)
- **Description:** Add a flag to determine whether to show progress bar 
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** n/a

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-20 13:18:02 +00:00
chuanbei888
6b08a33fa4 community: fix QianfanChatEndpoint default model (#24464)
the baidu_qianfan_endpoint has been changed from ERNIE-Bot-turbo to
ERNIE-Lite-8K
2024-07-20 13:00:29 +00:00
Nuno Campos
947628311b core[patch]: Accept configurable keys top-level (#23806)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-20 03:49:00 +00:00
Jesus Martinez
c1d1fc13c2 langchain[patch]: Remove multiagent return_direct validation (#24419)
**Description:**

When you use Agents with multi-input tool and some of these tools have
`return_direct=True`, langchain thrown an error related to one
validator.
This change is implemented on [JS
community](https://github.com/langchain-ai/langchainjs/pull/4643) as
well

**Issue**:
This MR resolves #19843

**Dependencies:**

None

Co-authored-by: Jesus Martinez <jesusabraham.martinez@tyson.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-20 03:27:43 +00:00
Will Badart
74e3d796f1 core[patch]: ensure iterator_ in scope for _atransform_stream_with_config except (#24454)
Before, if an exception was raised in the outer `try` block in
`Runnable._atransform_stream_with_config` before `iterator_` is
assigned, the corresponding `finally` block would blow up with an
`UnboundLocalError`:

```txt
UnboundLocalError: cannot access local variable 'iterator_' where it is not associated with a value
```

By assigning an initial value to `iterator_` before entering the `try`
block, this commit ensures that the `finally` can run, and not bury the
"true" exception under a "During handling of the above exception [...]"
traceback.

Thanks for your consideration!
2024-07-20 03:24:04 +00:00
maang-h
7b28359719 docs: Add ChatSparkLLM docstrings (#24449)
- **Description:** 
  - Add `ChatSparkLLM` docstrings, the issue #22296 
  - To support `stream` method
2024-07-19 20:19:14 -07:00
Eugene Yurtsev
5e48f35fba core[minor]: Relax constraints on type checking for tools and parsers (#24459)
This will allow tools and parsers to accept pydantic models from any of
the
following namespaces:

* pydantic.BaseModel with pydantic 1
* pydantic.BaseModel with pydantic 2
* pydantic.v1.BaseModel with pydantic 2
2024-07-19 21:47:34 -04:00
Isaac Francisco
838464de25 ollama: init package (#23615)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-20 00:43:29 +00:00
Erick Friis
f4ee3c8a22 infra: add min version testing to pr test flow (#24358)
xfailing some sql tests that do not currently work on sqlalchemy v1

#22207 was very much not sqlalchemy v1 compatible. 

Moving forward, implementations should be compatible with both to pass
CI
2024-07-19 22:03:19 +00:00
Erick Friis
50cb0a03bc docs: advanced feature note (#24456)
fixes #24430
2024-07-19 20:05:59 +00:00
Bagatur
842065a9cc community[patch]: Release 0.2.9 (#24453) 2024-07-19 12:50:22 -07:00
Bagatur
27ad6a4bb3 langchain[patch]: Release 0.2.10 (#24452) 2024-07-19 12:50:13 -07:00
Bagatur
dda9438e87 community[patch]: gpt-4o-mini costs (#24421) 2024-07-19 19:02:44 +00:00
Eugene Yurtsev
604dfe2d99 community[patch]: Force opt-in for WebResearchRetriever (CVE-2024-3095) (#24451)
This PR addresses the issue raised by (CVE-2024-3095)

https://huntr.com/bounties/e62d4895-2901-405b-9559-38276b6a5273

Unfortunately, we didn't do a good job writing the initial report. It's
pointing at both the wrong package and the wrong code.

The affected code is the Web Retriever not the AsyncHTMLLoader, and the
WebRetriever lives in langchain-community

The vulnerable code lives here: 

0bd3f4e129/libs/community/langchain_community/retrievers/web_research.py (L233-L233)


This PR adds a forced opt-in for users to make sure they are aware of
the risk and can mitigate by configuring a proxy:


0bd3f4e129/libs/community/langchain_community/retrievers/web_research.py (L84-L84)
2024-07-19 18:51:35 +00:00
Bagatur
f101c759ed docs: how to pass runtime secrets (#24450) 2024-07-19 18:36:28 +00:00
Asi Greenholts
372c27f2e5 community[minor]: [GoogleApiYoutubeLoader] Replace API used in _get_document_for_channel from search to playlistItem (#24034)
- **Description:** Search has a limit of 500 results, playlistItems
doesn't. Added a class in except clause to catch another common error.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** @TupleType

---------

Co-authored-by: asi-cider <88270351+asi-cider@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 14:04:34 -04:00
Rafael Pereira
6a45bf9554 community[minor]: GraphCypherQAChain to accept additional inputs as provided by the user for cypher generation (#24300)
**Description:** This PR introduces a change to the
`cypher_generation_chain` to dynamically concatenate inputs. This
improvement aims to streamline the input handling process and make the
method more flexible. The change involves updating the arguments
dictionary with all elements from the `inputs` dictionary, ensuring that
all necessary inputs are dynamically appended. This will ensure that any
cypher generation template will not require a new `_call` method patch.

**Issue:** This PR fixes issue #24260.
2024-07-19 14:03:14 -04:00
Philippe PRADOS
f5856680fe community[minor]: add mongodb byte store (#23876)
The `MongoDBStore` can manage only documents.
It's not possible to use MongoDB for an `CacheBackedEmbeddings`.

With this new implementation, it's possible to use:
```python
CacheBackedEmbeddings.from_bytes_store(
    underlying_embeddings=embeddings,
    document_embedding_cache=MongoDBByteStore(
      connection_string=db_uri,
      db_name=db_name,
      collection_name=collection_name,
  ),
)
```
and use MongoDB to cache the embeddings !
2024-07-19 13:54:12 -04:00
yabooung
07715f815b community[minor]: Add ability to specify file encoding and json encoding for FileChatMessageHistory (#24258)
Description:
Add UTF-8 encoding support

Issue:
Inability to properly handle characters from certain languages (e.g.,
Korean)

Fix:
Implement UTF-8 encoding in FileChatMessageHistory

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 13:53:21 -04:00
Dristy Srivastava
020cc1cf3e Community[minor]: Added checksum in while send data to pebblo-cloud (#23968)
- **Description:** 
            - Updated checksum in doc metadata
- Sending checksum and removing actual content, while sending data to
`pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`/loader/doc` API
            - Adding `pb_id` i.e. pebblo id to doc metadata
            - Refactoring as needed.
- Sending `content-checksum` and removing actual content, while sending
data to `pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`prmopt` API
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** Updated
- **Docs** NA

---------

Co-authored-by: dristy.cd <dristy@clouddefense.io>
2024-07-19 13:52:54 -04:00
Eun Hye Kim
9aae8ef416 core[patch]: Fix utils.json_schema.dereference_refs (#24335 KeyError: 400 in JSON schema processing) (#24337)
Description:
This PR fixes a KeyError: 400 that occurs in the JSON schema processing
within the reduce_openapi_spec function. The _retrieve_ref function in
json_schema.py was modified to handle missing components gracefully by
continuing to the next component if the current one is not found. This
ensures that the OpenAPI specification is fully interpreted and the
agent executes without errors.

Issue:
Fixes issue #24335

Dependencies:
No additional dependencies are required for this change.

Twitter handle:
@lunara_x
2024-07-19 13:31:00 -04:00
keval dekivadiya
06f47678ae community[minor]: Add TextEmbed Embedding Integration (#22946)
**Description:**

**TextEmbed** is a high-performance embedding inference server designed
to provide a high-throughput, low-latency solution for serving
embeddings. It supports various sentence-transformer models and includes
the ability to deploy image and text embedding models. TextEmbed offers
flexibility and scalability for diverse applications.

- **PyPI Package:** [TextEmbed on
PyPI](https://pypi.org/project/textembed/)
- **Docker Image:** [TextEmbed on Docker
Hub](https://hub.docker.com/r/kevaldekivadiya/textembed)
- **GitHub Repository:** [TextEmbed on
GitHub](https://github.com/kevaldekivadiya2415/textembed)

**PR Description**
This PR adds functionality for embedding documents and queries using the
`TextEmbedEmbeddings` class. The implementation allows for both
synchronous and asynchronous embedding requests to a TextEmbed API
endpoint. The class handles batching and permuting of input texts to
optimize the embedding process.

**Example Usage:**

```python
from langchain_community.embeddings import TextEmbedEmbeddings

# Initialise the embeddings class
embeddings = TextEmbedEmbeddings(model="your-model-id", api_key="your-api-key", api_url="your_api_url")

# Define a list of documents
documents = [
    "Data science involves extracting insights from data.",
    "Artificial intelligence is transforming various industries.",
    "Cloud computing provides scalable computing resources over the internet.",
    "Big data analytics helps in understanding large datasets.",
    "India has a diverse cultural heritage."
]

# Define a query
query = "What is the cultural heritage of India?"

# Embed all documents
document_embeddings = embeddings.embed_documents(documents)

# Embed the query
query_embedding = embeddings.embed_query(query)

# Print embeddings for each document
for i, embedding in enumerate(document_embeddings):
    print(f"Document {i+1} Embedding:", embedding)

# Print the query embedding
print("Query Embedding:", query_embedding)

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-19 17:30:25 +00:00
Shikanime Deva
9c3da11910 Fix MultiQueryRetriever breaking Embeddings with empty lines (#21093)
Fix MultiQueryRetriever breaking Embeddings with empty lines

```
[chain/end] [1:chain:ConversationalRetrievalChain > 2:retriever:Retriever > 3:retriever:Retriever > 4:chain:LLMChain] [2.03s] Exiting Chain run with output:
[outputs]
> /workspaces/Sfeir/sncf/metabot-backend/.venv/lib/python3.11/site-packages/langchain/retrievers/multi_query.py(116)_aget_relevant_documents()
-> if self.include_original:
(Pdb) queries
['## Alternative questions for "Hello, tell me about phones?":', '', '1. **What are the latest trends in smartphone technology?** (Focuses on recent advancements)', '2. **How has the mobile phone industry evolved over the years?** (Historical perspective)', '3. **What are the different types of phones available in the market, and which one is best for me?** (Categorization and recommendation)']
```

Example of failure on VertexAIEmbeddings

```
grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
	status = StatusCode.INVALID_ARGUMENT
	details = "The text content is empty."
	debug_error_string = "UNKNOWN:Error received from peer ipv4:142.250.184.234:443 {created_time:"2024-04-30T09:57:45.625698408+00:00", grpc_status:3, grpc_message:"The text content is empty."}"
```

Fixes: #15959

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 17:13:12 +00:00
John Kelly
5affbada61 langchain: Add aadd_documents to ParentDocumentRetriever (#23969)
- **Description:** Add an async version of `add_documents` to
`ParentDocumentRetriever`
-  **Twitter handle:** @johnkdev

---------

Co-authored-by: John Kelly <j.kelly@mwam.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 13:12:39 -04:00
Andrew Benton
f9d64d22e5 community[minor]: Add Riza Python/JS code execution tool (#23995)
- **Description:** Add Riza Python/JS code execution tool
- **Issue:** N/A
- **Dependencies:** an optional dependency on the `rizaio` pypi package
- **Twitter handle:** [@rizaio](https://x.com/rizaio)

[Riza](https://riza.io) is a safe code execution environment for
agent-generated Python and JavaScript that's easy to integrate into
langchain apps. This PR adds two new tool classes to the community
package.
2024-07-19 17:03:22 +00:00
Ben Chambers
3691701d58 community[minor]: Add keybert-based link extractor (#24311)
- **Description:** Add a `KeybertLinkExtractor` for graph vectorstores.
This allows extracting links from keywords in a Document and linking
nodes that have common keywords.
- **Issue:** None
- **Dependencies:** None.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-19 12:25:07 -04:00
Erick Friis
ef049769f0 core[patch]: Release 0.2.22 (#24423)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-19 09:09:24 -07:00
Bagatur
cd19ba9a07 core[patch]: core lint fix (#24447) 2024-07-19 09:01:22 -07:00
Ben Chambers
83f3d95ffa community[minor]: GLiNER link extraction (#24314)
- **Description:** This allows extracting links between documents with
common named entities using [GLiNER](https://github.com/urchade/GLiNER).
- **Issue:** None
- **Dependencies:** None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 15:34:54 +00:00
Anas Khan
b5acb91080 Mask API keys for various LLM/ChatModel Modules (#13885)
**Description:** 
- Added masking of the API Keys for the modules:
  - `langchain/chat_models/openai.py`
  - `langchain/llms/openai.py`
  - `langchain/llms/google_palm.py`
  - `langchain/chat_models/google_palm.py`
  - `langchain/llms/edenai.py`

- Updated the modules to utilize `SecretStr` from pydantic to securely
manage API key.
- Added unit/integration tests
- `langchain/chat_models/asure_openai.py` used the `open_api_key` that
is derived from the `ChatOpenAI` Class and it was assuming
`openai_api_key` is a str so we changed it to expect `SecretStr`
instead.

**Issue:** https://github.com/langchain-ai/langchain/issues/12165 ,
**Dependencies:** none,
**Tag maintainer:** @eyurtsev

---------

Co-authored-by: HassanA01 <anikeboss@gmail.com>
Co-authored-by: Aneeq Hassan <aneeq.hassan@utoronto.ca>
Co-authored-by: kristinspenc <kristinspenc2003@gmail.com>
Co-authored-by: faisalt14 <faisalt14@gmail.com>
Co-authored-by: Harshil-Patel28 <76663814+Harshil-Patel28@users.noreply.github.com>
Co-authored-by: kristinspenc <146893228+kristinspenc@users.noreply.github.com>
Co-authored-by: faisalt14 <90787271+faisalt14@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 15:23:34 +00:00
ccurme
f99369a54c community[patch]: fix formatting (#24443)
Somehow this got through CI:
https://github.com/langchain-ai/langchain/pull/24363
2024-07-19 14:38:53 +00:00
Ben Chambers
242b085be7 Merge pull request #24315
* community: Add Hierarchy link extractor

* add example

* lint
2024-07-19 09:42:26 -04:00
Rhuan Barros
c3308f31bc Merge pull request #24363
* important email fields
2024-07-19 09:41:20 -04:00
Piotr Romanowski
c50dd79512 docs: Update langchain-openai package version in chat_token_usage_tracking (#24436)
This PR updates docs to mention correct version of the
`langchain-openai` package required to use the `stream_usage` parameter.

As it can be noticed in the details of this [merge
commit](722c8f50ea),
that functionality is available only in `langchain-openai >= 0.1.9`
while docs state it's available in `langchain-openai >= 0.1.8`.
2024-07-19 13:07:37 +00:00
Han Sol Park
aade9bfde5 Mask API key for ChatOpenAI based chat_models (#14293)
- **Description**: Mask API key for ChatOpenAi based chat_models
(openai, azureopenai, anyscale, everlyai).
Made changes to all chat_models that are based on ChatOpenAI since all
of them assumes that openai_api_key is str rather than SecretStr.
  - **Issue:**: #12165 
  - **Dependencies:**  N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-19 02:25:38 +00:00
William FH
0ee6ed76ca [Evaluation] Pass in seed directly (#24403)
adding test rn
2024-07-18 19:12:28 -07:00
Nuno Campos
62b6965d2a core: In ensure_config don't copy dunder configurable keys to metadata (#24420) 2024-07-18 22:28:52 +00:00
Eugene Yurtsev
ef22ebe431 standard-tests[patch]: Add pytest assert rewrites (#24408)
This will surface nice error messages in subclasses that fail assertions.
2024-07-18 21:41:11 +00:00
Eugene Yurtsev
f62b323108 core[minor]: Support all versions of pydantic base model in argsschema (#24418)
This adds support to any pydantic base model for tools.

The only potential issue is that `get_input_schema()` will not always
return a v1 base model.
2024-07-18 17:14:23 -04:00
Prakul
b2bc15e640 docs: Update mongodb README.md (#24412)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-18 14:02:34 -07:00
Evan Harris
61ea7bf60b Add a ListRerank document compressor (#13311)
- **Description:** This PR adds a new document compressor called
`ListRerank`. It's derived from `BaseDocumentCompressor`. It's a near
exact implementation of introduced by this paper: [Zero-Shot Listwise
Document Reranking with a Large Language
Model](https://arxiv.org/pdf/2305.02156.pdf) which it finds to
outperform pointwise reranking, which is somewhat implemented in
LangChain as
[LLMChainFilter](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py).
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @hwchase17 @izzymsft
- **Twitter handle:** @HarrisEMitchell

Notes:
1. I didn't add anything to `docs`. I wasn't exactly sure which patterns
to follow as [cohere reranker is under
Retrievers](https://python.langchain.com/docs/integrations/retrievers/cohere-reranker)
with other external document retrieval integrations, but other
contextual compression is
[here](https://python.langchain.com/docs/modules/data_connection/retrievers/contextual_compression/).
Happy to contribute to either with some direction.
2. I followed syntax, docstrings, implementation patterns, etc. as well
as I could looking at nearby modules. One thing I didn't do was put the
default prompt in a separate `.py` file like [Chain
Filter](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_filter_prompt.py)
and [Chain
Extract](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/document_compressors/chain_extract_prompt.py).
Happy to follow that pattern if it would be preferred.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 20:34:38 +00:00
Srijan Dubey
4c651ba13a Adding LangChain v0.2 support for nvidia ai endpoint, langchain-nvidia-ai-endpoints. Removed deprecated classes from nvidia_ai_endpoints.ipynb (#24411)
Description: added support for LangChain v0.2 for nvidia ai endpoint.
Implremented inMemory storage for chains using
RunnableWithMessageHistory which is analogous to using
`ConversationChain` which was used in v0.1 with the default
`ConversationBufferMemory`. This class is deprecated in favor of
`RunnableWithMessageHistory` in LangChain v0.2

Issue: None

Dependencies: None.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 15:59:26 -04:00
Erick Friis
334fc1ed1c mongodb: release 0.1.7 (#24409) 2024-07-18 18:13:27 +00:00
ccurme
ba74341eee docs: update tool calling how-to to pass functions to bind_tools (#24402) 2024-07-18 08:53:48 -07:00
Harrison Chase
3adf710f1d docs: improve docs on tools (#24404)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-18 08:52:12 -07:00
Eun Hye Kim
07c5c60f63 community: fix tool appending logic and update planner prompt in OpenAPI agent toolkit (#24384)
**Description:**
- Updated the format for the 'Action' section in the planner prompt to
ensure it must be one of the tools without additional words. Adjusted
the phrasing from "should be" to "must be" for clarity and
enforceability.
- Corrected the tool appending logic in the
`_create_api_controller_agent` function to ensure that
`RequestsDeleteToolWithParsing` and `RequestsPatchToolWithParsing` are
properly added to the tools list for "DELETE" and "PATCH" operations.

**Issue:** #24382

**Dependencies:** None

**Twitter handle:** @lunara_x

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-18 13:37:46 +00:00
Casey Clements
aade1550c6 docs: Adds MongoDBAtlasVectorSearch to VectorStore list compatible with Indexing API (#24374)
Adds MongoDBAtlasVectorSearch to list of VectorStores compatible with
the Indexing API.

(One line change.)

As of `langchain-mongodb = "0.1.7"`, the requirements that the
VectorStore have both add_documents and delete methods with an ids kwarg
is satisfied. #23535 contains the implementation of that, and has been
merged.
2024-07-18 09:37:29 -04:00
Chen Xiabin
63c60a31f0 [fix] baidu qianfan AiMessage with usage_metadata (#24389)
make AIMessage usage_metadata has error
2024-07-18 09:28:16 -04:00
João Dinis Ferreira
242de9aa5e docs: remove redundant --quiet option in pip install command (#24397)
- **Description:** Removes a redundant option in a `pip install` command
in the documentation.
- **Issue:** N/A
- **Dependencies:** N/A
2024-07-18 13:24:42 +00:00
ZhangShenao
916b813107 community[patch]: Fix spelling error in ConversationVectorStoreTokenBufferMemory doc-string (#24385)
Fix word spelling error in `ConversationVectorStoreTokenBufferMemory`
2024-07-18 12:27:36 +00:00
Rajendra Kadam
1c65529fd7 community[minor]: [PebbloSafeLoader] Rename loader type and add SharePointLoader to supported loaders (#24393)
Thank you for contributing to LangChain!

- [x] **PR title**: [PebbloSafeLoader] Rename loader type and add
SharePointLoader to supported loaders
    - **Description:** Minor fixes in the PebbloSafeLoader:
        - Renamed the loader type from `remote_db` to `cloud_folder`.
- Added `SharePointLoader` to the list of loaders supported by
PebbloSafeLoader.
    - **Issue:** NA
    - **Dependencies:** NA
- [x] **Add tests and docs**: NA
2024-07-18 08:23:12 -04:00
Eugene Yurtsev
6182a402f1 experimental[patch]: block a few more things from PALValidator (#24379)
* Please see security warning already in existing class.
* The approach here is fundamentally insecure as it's relying on a block
  approach rather than an approach based on only running allowed nodes.
So users should only use this code if its running from a properly
sandboxed  environment.
2024-07-18 08:22:45 -04:00
Paolo Ráez
0dec72cab0 Community[patch]: Missing "stream" parameter in cloudflare_workersai (#23987)
### Description
Missing "stream" parameter. Without it, you'd never receive a stream of
tokens when using stream() or astream()

### Issue
No existing issue available
2024-07-18 02:09:39 +00:00
Eugene Yurtsev
570566b858 core[patch]: Update API reference for astream events (#24359)
Update the API reference for astream events to include information about
custom events.
2024-07-17 21:48:53 -04:00
isaac hershenson
ed45cba7ab first draft 2024-07-17 17:10:02 -07:00
Bagatur
f9baaae3ec docs: clean up tool how to titles (#24373) 2024-07-17 17:08:31 -07:00
Bagatur
4da1df568a docs: tools concepts (#24368) 2024-07-17 17:08:16 -07:00
Erick Friis
96ccba9c27 infra: 15s retry wait on test pypi (#24375) 2024-07-17 23:41:22 +00:00
Bagatur
a4c101ae97 core[patch]: Release 0.2.21 (#24372) 2024-07-17 22:44:35 +00:00
William FH
c5a07e2dd8 core[patch]: add InjectedToolArg annotation (#24279)
```python
from typing_extensions import Annotated
from langchain_core.tools import tool, InjectedToolArg
from langchain_anthropic import ChatAnthropic

@tool
def multiply(x: int, y: int, not_for_model: Annotated[dict, InjectedToolArg]) -> str:
    """multiply."""
    return x * y 

ChatAnthropic(model='claude-3-sonnet-20240229',).bind_tools([multiply]).invoke('5 times 3').tool_calls
'''
-> [{'name': 'multiply',
  'args': {'x': 5, 'y': 3},
  'id': 'toolu_01Y1QazYWhu4R8vF4hF4z9no',
  'type': 'tool_call'}]
'''
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-17 15:28:40 -07:00
Erick Friis
80f3d48195 openai: release 0.1.18 (#24369) 2024-07-17 22:26:33 +00:00
Bagatur
7d83189b19 openai[patch]: use model_name in AzureOpenAI.ls_model_name (#24366) 2024-07-17 15:24:05 -07:00
Nithish Raghunandanan
eb26b5535a couchbase: Add chat message history (#24356)
**Description:** : Add support for chat message history using Couchbase

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
2024-07-17 15:22:42 -07:00
Eugene Yurtsev
96bac8e20d core[patch]: Fix regression requiring input_variables in few chat prompt templates (#24360)
* Fix regression that requires users passing input_variables=[].

* Regression introduced by my own changes to this PR:
https://github.com/langchain-ai/langchain/pull/22851
2024-07-17 18:14:57 -04:00
Brice Fotzo
034a8c7c1b community: support advanced text extraction options for pdf documents (#20265)
**Description:** 
- Updated constructors in PyPDFParser and PyPDFLoader to handle
`extraction_mode` and additional kwargs, aligning with the capabilities
of `PageObject.extract_text()` from pypdf.

- Added `test_pypdf_loader_with_layout` along with a corresponding
example text file to validate layout extraction from PDFs.

**Issue:** fixes #19735 

**Dependencies:** This change requires updating the pypdf dependency
from version 3.4.0 to at least 4.0.0.

Additional changes include the addition of a new test
test_pypdf_loader_with_layout and an example text file to ensure the
functionality of layout extraction from PDFs aligns with the new
capabilities.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 20:47:09 +00:00
hmasdev
a402de3dae langchain[patch]: fix wrong dict key in OutputFixingParser, RetryOutputParser and RetryWithErrorOutputParser (#23967)
# Description
This PR aims to solve a bug in `OutputFixingParser`, `RetryOutputParser`
and `RetryWithErrorOutputParser`
The bug is that the wrong keyword argument was given to `retry_chain`.
The correct keyword argument is 'completion', but 'input' is used.

This pull request makes the following changes:
1. correct a `dict` key given to `retry_chain`;
2. add a test when using the default prompt.
   - `NAIVE_FIX_PROMPT` for `OutputFixingParser`;
   - `NAIVE_RETRY_PROMPT` for `RetryOutputParser`;
   - `NAIVE_RETRY_WITH_ERROR_PROMPT` for `RetryWithErrorOutputParser`;
3. ~~add comments on `retry_chain` input and output types~~ clarify
`InputType` and `OutputType` of `retry_chain`

# Issue
The bug is pointed out in
https://github.com/langchain-ai/langchain/pull/19792#issuecomment-2196512928

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 20:34:46 +00:00
Casey Clements
a47f69a120 partners/mongodb : Significant MongoDBVectorSearch ID enhancements (#23535)
## Description

This pull-request improves the treatment of document IDs in
`MongoDBAtlasVectorSearch`.

Class method signatures of add_documents, add_texts, delete, and
from_texts
now include an `ids:Optional[List[str]]` keyword argument permitting the
user
greater control. 
Note that, as before, IDs may also be inferred from
`Document.metadata['_id']`
if present, but this is no longer required,
IDs can also optionally be returned from searches.

This PR closes the following JIRA issues.

* [PYTHON-4446](https://jira.mongodb.org/browse/PYTHON-4446)
MongoDBVectorSearch delete / add_texts function rework
* [PYTHON-4435](https://jira.mongodb.org/browse/PYTHON-4435) Add support
for "Indexing"
* [PYTHON-4534](https://jira.mongodb.org/browse/PYTHON-4534) Ensure
datetimes are json-serializable

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-17 13:26:20 -07:00
Erick Friis
cc2cbfabfc milvus: release 0.1.2 (#24365) 2024-07-17 19:42:44 +00:00
Eugene Yurtsev
9e4a0e76f6 core[patch]: Fix one unit test for chat prompt template (#24362)
Minor change that fixes a unit test that had missing assertions.
2024-07-17 18:56:48 +00:00
Erick Friis
81639243e2 openai: release 0.1.17 (#24361) 2024-07-17 18:50:42 +00:00
Erick Friis
61976a4147 pinecone: release 0.1.2 (#24355) 2024-07-17 17:09:07 +00:00
Bagatur
b5360e2e5f community[patch]: Release 0.2.8 (#24354) 2024-07-17 17:07:27 +00:00
ccurme
4cf67084d3 openai[patch]: fix key collision and _astream (#24345)
Fixes small issues introduced in
https://github.com/langchain-ai/langchain/pull/24150 (unreleased).
2024-07-17 12:59:26 -04:00
Luis Moros
bcb5f354ad community: Fix SQLDatabse.from_databricks issue when ran from Job (#24346)
- Description: When SQLDatabase.from_databricks is ran from a Databricks
Workflow job, line 205 (default_host = context.browserHostName) throws
an ``AttributeError`` as the ``context`` object has no
``browserHostName`` attribute. The fix handles the exception and sets
the ``default_host`` variable to null

---------

Co-authored-by: lmorosdb <lmorosdb>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-17 12:40:12 -04:00
Bagatur
24e9b48d15 langchain[patch]: Release 0.2.9 (#24327) 2024-07-17 09:39:57 -07:00
Rafael Pereira
cf28708e7b Neo4j: Update with non-deprecated cypher methods, and new method to associate relationship embeddings (#23725)
**Description:** At the moment neo4j wrapper is using setVectorProperty,
which is deprecated
([link](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setVectorProperty)).
I replaced with the non-deprecated version.

Neo4j recently introduced a new cypher method to associate embeddings
into relations using "setRelationshipVectorProperty" method. In this PR
I also implemented a new method to perform this association maintaining
the same format used in the "add_embeddings" method which is used to
associate embeddings into Nodes.
I also included a test case for this new method.
2024-07-17 12:37:47 -04:00
maang-h
2a3288b15d docs: Add ChatBaichuan docstrings (#24348)
- **Description:** Add ChatBaichuan rich docstrings.
- **Issue:** the issue #22296
2024-07-17 12:00:16 -04:00
Srijan Dubey
1792684e8f removed deprecated classes from pipelineai.ipynb, added support for LangChain v0.2 for PipelineAI integration (#24333)
Description: added support for LangChain v0.2 for PipelineAI
integration. Removed deprecated classes and incorporated support for
LangChain v0.2 to integrate with PipelineAI. Removed LLMChain and
replaced it with Runnable interface. Also added StrOutputParser, that
parses LLMResult into the top likely string.

Issue: None

Dependencies: None.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-17 13:48:32 +00:00
Tobias Sette
e60ad12521 docs(infobip.ipynb): fix typo (#24328) 2024-07-17 13:33:34 +00:00
Rafael Pereira
fc41730e28 neo4j: Fix test for order-insensitive comparison and floating-point precision issues (#24338)
**Description:** 
This PR addresses two main issues in the `test_neo4jvector.py`:
1. **Order-insensitive Comparison:** Modified the
`test_retrieval_dictionary` to ensure that it passes regardless of the
order of returned values by parsing `page_content` into a structured
format (dictionary) before comparison.
2. **Floating-point Precision:** Updated
`test_neo4jvector_relevance_score` to handle minor floating-point
precision differences by using the `isclose` function for comparing
relevance scores with a relative tolerance.

Errors addressed:

- **test_neo4jvector_relevance_score:**
  ```
AssertionError: assert [(Document(page_content='foo', metadata={'page':
'0'}), 1.0000014305114746), (Document(page_content='bar',
metadata={'page': '1'}), 0.9998371005058289),
(Document(page_content='baz', metadata={'page': '2'}),
0.9993508458137512)] == [(Document(page_content='foo', metadata={'page':
'0'}), 1.0), (Document(page_content='bar', metadata={'page': '1'}),
0.9998376369476318), (Document(page_content='baz', metadata={'page':
'2'}), 0.9993523359298706)]
At index 0 diff: (Document(page_content='foo', metadata={'page': '0'}),
1.0000014305114746) != (Document(page_content='foo', metadata={'page':
'0'}), 1.0)
  Full diff:
  - [(Document(page_content='foo', metadata={'page': '0'}), 1.0),
+ [(Document(page_content='foo', metadata={'page': '0'}),
1.0000014305114746),
? +++++++++++++++
- (Document(page_content='bar', metadata={'page': '1'}),
0.9998376369476318),
? ^^^ ------
+ (Document(page_content='bar', metadata={'page': '1'}),
0.9998371005058289),
? ^^^^^^^^^
- (Document(page_content='baz', metadata={'page': '2'}),
0.9993523359298706),
? ----------
+ (Document(page_content='baz', metadata={'page': '2'}),
0.9993508458137512),
? ++++++++++
  ]
  ```

- **test_retrieval_dictionary:**
  ```
AssertionError: assert [Document(page_content='skills:\n- Python\n- Data
Analysis\n- Machine Learning\nname: John\nage: 30\n')] ==
[Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')]
At index 0 diff: Document(page_content='skills:\n- Python\n- Data
Analysis\n- Machine Learning\nname: John\nage: 30\n') !=
Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')
  Full diff:
- [Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: 30\nname: John\n')]
? ---------
+ [Document(page_content='skills:\n- Python\n- Data Analysis\n- Machine
Learning\nage: John\nage: 30\n')]
? +++++++++
  ```
2024-07-17 09:28:25 -04:00
Erick Friis
47ed7f766a infra: fix release prerelease deps bug (#24323) 2024-07-16 15:13:41 -07:00
Bagatur
80e7cd6cff core[patch]: Release 0.2.20 (#24322) 2024-07-16 15:04:36 -07:00
Erick Friis
6c3e65a878 infra: prerelease dep checking on release (#23269) 2024-07-16 21:48:15 +00:00
Eugene Yurtsev
616196c620 Docs: Add how to dispatch custom callback events (#24278)
* Add how-to guide for dispatching custom callback events.
* Add links from index to the how to guide
* Add link from streaming from within a tool
* Update versionadded to correct release
https://github.com/langchain-ai/langchain/releases/tag/langchain-core%3D%3D0.2.15
2024-07-16 17:38:32 -04:00
Erick Friis
dd7938ace8 docs: readthedocs deprecation fix (#24321)
https://about.readthedocs.com/blog/2024/07/addons-by-default/#how-does-it-affect-my-projects

we use build.command so we're already using addons, so I think this is
it
2024-07-16 20:32:51 +00:00
Srijan Dubey
ef07308c30 Upgraded shaleprotocol to use langchain v0.2 removed deprecated classes (#24320)
Description: Added support for langchain v0.2 for shale protocol.
Replaced LLMChain with Runnable interface which allows any two Runnables
to be 'chained' together into sequences. Also added
StreamingStdOutCallbackHandler. Callback handler for streaming.
Issue: None
Dependencies: None.
2024-07-16 20:07:36 +00:00
pbharti0831
049bc37111 Cookbook for applying RAG locally using open source models and tools on CPU (#24284)
This cookbook guides user to implement RAG locally on CPU using
langchain tools and open source models. It enables Llama2 model to
answer queries about Intel Q1 2024 earning release using RAG pipeline.

Main libraries are langchain, llama-cpp-python and gpt4all.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Sriragavi <sriragavi.r@intel.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-16 15:17:10 -04:00
Leonid Ganeline
5ccf8ebfac core: docstrings vectorstores update (#24281)
Added missed docstrings. Formatted docstrings to the consistent form.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-16 16:58:11 +00:00
Erick Friis
1e9cc02ed8 openai: raw response headers (#24150) 2024-07-16 09:54:54 -07:00
Bagatur
dc42279eb5 core[patch]: fix Typing.cast import (#24313)
Fixes #24287
2024-07-16 16:53:48 +00:00
Anush
e38bf08139 qdrant: Fixed typos in Qdrant vectorstore docs (#24312)
## Description 

As that title goes.
2024-07-16 09:44:07 -07:00
bovlb
5caa381177 community[minor]: Add ApertureDB as a vectorstore (#24088)
Thank you for contributing to LangChain!

- [X] *ApertureDB as vectorstore**: "community: Add ApertureDB as a
vectorestore"

- **Description:** this change provides a new community integration that
uses ApertureData's ApertureDB as a vector store.
    - **Issue:** none
    - **Dependencies:** depends on ApertureDB Python SDK
    - **Twitter handle:** ApertureData

- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

Integration tests rely on a local run of a public docker image.
Example notebook additionally relies on a local Ollama server.

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

All lint tests pass.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Gautam <gautam@aperturedata.io>
2024-07-16 09:32:59 -07:00
frob
c59e663365 community[patch]: Fix docstring for ollama parameter "keep_alive" (#23973)
Fix doc-string for ollama integration
2024-07-16 14:48:38 +00:00
Mazen Ramadan
0c1889c713 docs: fix parameter typo in scrapfly loader docs (#24307)
Fixed wrong parameter typo in
[ScrapflyLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/scrapfly.py)
docs, where `ignore_scrape_failures` is used instead of
`continue_on_failure`.

- Description: Fix wrong param typo in ScrapflyLoader docs.
2024-07-16 14:48:13 +00:00
Leonid Ganeline
5fcf2ef7ca core: docstrings documents (#23506)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-16 10:43:54 -04:00
Rafael Pereira
77dd327282 Docs: Fix Concepts Integration Tools Link (#24301)
- **Description:** This PR fix concepts integrations tools link.

- **Issue:** Fixes issue #24112

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-16 10:29:30 -04:00
Rahul Raghavendra Choudhury
f5a38772a8 community[patch]: Update TavilySearch to use TavilyClient instead of the deprecated Client (#24270)
On using TavilySearchAPIRetriever with any conversation chain getting
error :

`TypeError: Client.__init__() got an unexpected keyword argument
'api_key'`

It is because the retreiver class is using the depreciated `Client`
class, `TavilyClient` need to be used instead.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-16 13:35:28 +00:00
Shenhai Ran
5f2dea2b20 core[patch]: Add encoding options when create prompt template from a file (#24054)
- Uses default utf-8 encoding for loading prompt templates from file

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-16 09:35:09 -04:00
Chen Xiabin
69b1603173 baidu qianfan AiMessage with usage_metadata (#24288)
add usage_metadata to qianfan AIMessage. Thanks
2024-07-16 09:30:50 -04:00
amcastror
d83164f837 Update retrievers.ipynb (#24289)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-16 13:30:41 +00:00
Leonid Ganeline
198b85334f core[patch]: docstrings langchain_core/ files update (#24285)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-16 09:21:51 -04:00
Dobiichi-Origami
7aeaa1974d community[patch]: change the class of qianfan_ak and qianfan_sk parameters (#24293)
- **Description:** we changed the class of two parameters to fix a bug,
which causes validation failure when using QianfanEmbeddingEndpoint
2024-07-16 09:17:48 -04:00
Tibor Reiss
1c753d1e81 core[patch]: Update typing for template format to include jinja2 as a Literal (#24144)
Fixes #23929 via adjusting the typing
2024-07-16 09:09:42 -04:00
Jacob Lee
6716379f0c docs[patch]: Fix rendering issue in code splitter page (#24291) 2024-07-15 23:08:21 -07:00
Jacob Lee
58fdb070fa docs[patch]: Update intro diagram (#24290)
CC @agola11
2024-07-15 22:04:42 -07:00
Erick Friis
1d7a3ae7ce infra: add test deps to add_dependents (#24283) 2024-07-15 15:48:53 -07:00
Erick Friis
d2f671271e langchain: fix extended test (#24282) 2024-07-15 15:29:48 -07:00
Lage Ragnarsson
a3c10fc6ce community: Add support for specifying hybrid search for Databricks vector search (#23528)
**Description:**

Databricks Vector Search recently added support for hybrid
keyword-similarity search.
See [usage
examples](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint)
from their documentation.

This PR updates the Langchain vectorstore interface for Databricks to
enable the user to pass the *query_type* parameter to
*similarity_search* to make use of this functionality.
By default, there will not be any changes for existing users of this
interface. To use the new hybrid search feature, it is now possible to
do

```python
# ...
dvs = DatabricksVectorSearch(index)
dvs.similarity_search("my search query", query_type="HYBRID")
```

Or using the retriever:

```python
retriever = dvs.as_retriever(
    search_kwargs={
        "query_type": "HYBRID",
    }
)
retriever.invoke("my search query")
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-15 22:14:08 +00:00
Christopher Tee
5171ffc026 community(you): Integrate You.com conversational APIs (#23046)
You.com is releasing two new conversational APIs — Smart and Research. 

This PR:
- integrates those APIs with Langchain, as an LLM
- streaming is supported

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-15 17:46:58 -04:00
maang-h
6c7d9f93b9 feat: Add ChatTongyi structured output (#24187)
- **Description:** Add `with_structured_output` method to ChatTongyi to
support structured output.
2024-07-15 15:57:21 -04:00
Chen Xiabin
8f4620f4b8 baidu qianfan streaming token_usage (#24117)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 19:52:31 +00:00
maang-h
9d97de34ae community[patch]: Improve ChatBaichuan init args and role (#23878)
- **Description:** Improve ChatBaichuan init args and role
   -  ChatBaichuan adds `system` role
   - alias: `baichuan_api_base` -> `base_url`
   - `with_search_enhance` is deprecated
   - Add `max_tokens` argument
2024-07-15 15:17:00 -04:00
Erick Friis
56cca23745 openai: remove some params from default serialization (#24280) 2024-07-15 18:53:36 +00:00
mrugank-wadekar
66bebeb76a partners: add similarity search by image functionality to langchain_chroma partner package (#22982)
- **Description:** This pull request introduces two new methods to the
Langchain Chroma partner package that enable similarity search based on
image embeddings. These methods enhance the package's functionality by
allowing users to search for images similar to a given image URI. Also
introduces a notebook to demonstrate it's use.
  - **Issue:** N/A
  - **Dependencies:** None
  - **Twitter handle:** @mrugank9009

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-15 18:48:22 +00:00
pm390
b0aa915dea community[patch]: use asyncio.sleep instead of sleep in OpenAI Assistant async (#24275)
**Description:** Implemented async sleep using asyncio instead of
synchronous sleep in openAI Assistants
**Issue:** 24194
**Dependencies:** asyncio
**Twitter handle:** pietromald60939
2024-07-15 18:14:39 +00:00
Anush
d93ae756e6 qdrant: Documentation for the new QdrantVectorStore class (#24166)
## Description

Follow up on #24165. Adds a page to document the latest usage of the new
`QdrantVectorStore` class.
2024-07-15 10:39:23 -07:00
Erick Friis
1244e66bd4 docs: remove couchbase from docs linking (#24277)
`pip install couchbase` adds 12 minutes to the docs build...
2024-07-15 17:34:41 +00:00
wenngong
a001037319 retrievers: MultiVectorRetriever similarity_score_threshold search type (#23539)
Description: support MultiVectorRetriever similarity_score_threshold
search type.

Issue: #23387 #19404

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-15 13:31:34 -04:00
Carlos André Antunes
20151384d7 fix azure_openai.py: some keys do not exists (#24158)
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method

Thank you for contributing to LangChain!

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-15 17:17:05 +00:00
blueoom
d895614d19 text_splitters: add request parameters for function HTMLHeaderTextSplitter.split_text… (#24178)
**Description:**

The `split_text_from_url` method of `HTMLHeaderTextSplitter` does not
include parameters like `timeout` when using `requests` to send a
request. Therefore, I suggest adding a `kwargs` parameter to the
function, which can be passed as arguments to `requests.get()`
internally, allowing control over the `get` request.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 16:43:56 +00:00
Bagatur
9d0c1d2dc9 docs: specify init_chat_model version (#24274) 2024-07-15 16:29:06 +00:00
MoraxMa
a7296bddc2 docs: updated Tongyi package (#24259)
* updated pip install package
2024-07-15 16:25:35 +00:00
Bagatur
c9473367b1 langchain[patch]: Release 0.2.8 (#24273) 2024-07-15 16:05:51 +00:00
JP-Ellis
f77659463a core[patch]: allow message utils to work with lcel (#23743)
The functions `convert_to_messages` has had an expansion of the
arguments it can take:

1. Previously, it only could take a `Sequence` in order to iterate over
it. This has been broadened slightly to an `Iterable` (which should have
no other impact).
2. Support for `PromptValue` and `BaseChatPromptTemplate` has been
added. These are generated when combining messages using the overloaded
`+` operator.

Functions which rely on `convert_to_messages` (namely `filter_messages`,
`merge_message_runs` and `trim_messages`) have had the type of their
arguments similarly expanded.

Resolves #23706.

<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->

---------

Signed-off-by: JP-Ellis <josh@jpellis.me>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-15 08:58:05 -07:00
Harold Martin
ccdaf14eff docs: Spell check fixes (#24217)
**Description:** Spell check fixes for docs, comments, and a couple of
strings. No code change e.g. variable names.
**Issue:** none
**Dependencies:** none
**Twitter handle:** hmartin
2024-07-15 15:51:43 +00:00
Leonid Ganeline
cacdf96f9c core docstrings tracers update (#24211)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-15 11:37:09 -04:00
Leonid Ganeline
36ee083753 core: docstrings utils update (#24213)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-15 11:36:00 -04:00
thehunmonkgroup
e8a21146d3 community[patch]: upgrade default model for ChatAnyscale (#24232)
Old default `meta-llama/Llama-2-7b-chat-hf` no longer supported.
2024-07-15 11:34:59 -04:00
Bagatur
a0958c0607 docs: more tool call -> tool message docs (#24271) 2024-07-15 07:55:07 -07:00
Bagatur
620b118c70 core[patch]: Release 0.2.19 (#24272) 2024-07-15 07:51:30 -07:00
ccurme
888fbc07b5 core[patch]: support passing args_schema through as_tool (#24269)
Note: this allows the schema to be passed in positionally.

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda


class Add(BaseModel):
    """Add two integers together."""

    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")


def add(input: dict) -> int:
    return input["a"] + input["b"]


runnable = RunnableLambda(add)
as_tool = runnable.as_tool(Add)
as_tool.args_schema.schema()
```
```
{'title': 'Add',
 'description': 'Add two integers together.',
 'type': 'object',
 'properties': {'a': {'title': 'A',
   'description': 'First integer',
   'type': 'integer'},
  'b': {'title': 'B', 'description': 'Second integer', 'type': 'integer'}},
 'required': ['a', 'b']}
```
2024-07-15 07:51:05 -07:00
ccurme
ab2d7821a7 fireworks[patch]: use firefunction-v2 in standard tests (#24264) 2024-07-15 13:15:08 +00:00
ccurme
6fc7610b1c standard-tests[patch]: update test_bind_runnables_as_tools (#24241)
Reduce number of tool arguments from two to one.
2024-07-15 08:35:07 -04:00
Bagatur
0da5078cad langchain[minor]: Generic configurable model (#23419)
alternative to
[23244](https://github.com/langchain-ai/langchain/pull/23244). allows
you to use chat model declarative methods

![Screenshot 2024-06-25 at 1 07 10
PM](https://github.com/langchain-ai/langchain/assets/22008038/910d1694-9b7b-46bc-bc2e-3792df9321d6)
2024-07-15 01:11:01 +00:00
Bagatur
d0728b0ba0 core[patch]: add tool name to tool message (#24243)
Copying current ToolNode behavior
2024-07-15 00:42:40 +00:00
Bagatur
9224027e45 docs: tool artifacts how to (#24198) 2024-07-14 17:04:47 -07:00
Bagatur
5c3e2612da core[patch]: Release 0.2.18 (#24230) 2024-07-13 09:14:43 -07:00
Bagatur
65321bf975 core[patch]: fix ToolCall "type" when streaming (#24218) 2024-07-13 08:59:03 -07:00
Jacob Lee
2b7d1cdd2f docs[patch]: Update tool child run docs (#24160)
Documents #24143
2024-07-13 07:52:37 -07:00
Anush
a653b209ba qdrant: test new QdrantVectorStore (#24165)
## Description

This PR adds integration tests to follow up on #24164.

By default, the tests use an in-memory instance.

To run the full suite of tests, with both in-memory and Qdrant server:

```
$ docker run -p 6333:6333 qdrant/qdrant

$ make test

$ make integration_test
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:59:30 +00:00
Roman Solomatin
f071581aea openai[patch]: update openai params (#23691)
**Description:** Explicitly add parameters from openai API



- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 16:53:33 -07:00
Leonid Ganeline
f0a7581b50 milvus: docstring (#23151)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:31 +00:00
Christian D. Glissov
474b88326f langchain_qdrant: Added method "_asimilarity_search_with_relevance_scores" to Qdrant class (#23954)
I stumbled upon a bug that led to different similarity scores between
the async and sync similarity searches with relevance scores in Qdrant.
The reason being is that _asimilarity_search_with_relevance_scores is
missing, this makes langchain_qdrant use the method of the vectorstore
baseclass leading to drastically different results.

To illustrate the magnitude here are the results running an identical
search in a test vectorstore.

Output of asimilarity_search_with_relevance_scores:
[0.9902903374601824, 0.9472135924938804, 0.8535534011299859]

Output of similarity_search_with_relevance_scores:
[0.9805806749203648, 0.8944271849877607, 0.7071068022599718]

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:20 +00:00
Bagatur
bdc03997c9 standard-tests[patch]: check for ToolCall["type"] (#24209) 2024-07-12 16:17:34 -07:00
Nada Amin
3f1cf00d97 docs: Improve neo4j semantic templates (#23939)
I made some changes based on the issues I stumbled on while following
the README of neo4j-semantic-ollama.
I made the changes to the ollama variant, and can also port the relevant
ones to the layer variant once this is approved.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:08:25 +00:00
Nada Amin
6b47c7361e docs: fix code usage to use the ollama variant (#23937)
**Description:** the template neo4j-semantic-ollama uses an import from
the neo4j-semantic-layer template instead of its own.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:07:42 +00:00
Anirudh31415926535
7677ceea60 docs: model parameter mandatory for cohere embedding and rerank (#23349)
Latest langchain-cohere sdk mandates passing in the model parameter into
the Embeddings and Reranker inits.

This PR is to update the docs to reflect these changes.
2024-07-12 23:07:28 +00:00
Miroslav
aee55eda39 community: Skip Login to HuggubgFaceHub when token is not set (#21561)
Thank you for contributing to LangChain!

- [ ] **HuggingFaceEndpoint**: "Skip Login to HuggingFaceHub"
  - Where:  langchain, community, llm, huggingface_endpoint
 


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Skip login to huggingface hub when when
`huggingfacehub_api_token` is not set. This is needed when using custom
`endpoint_url` outside of HuggingFaceHub.
- **Issue:** the issue # it fixes
https://github.com/langchain-ai/langchain/issues/20342 and
https://github.com/langchain-ai/langchain/issues/19685
    - **Dependencies:** None


- [ ] **Add tests and docs**: 
  1. Tested with locally available TGI endpoint
  2.  Example Usage
```python
from langchain_community.llms import HuggingFaceEndpoint

llm = HuggingFaceEndpoint(
    endpoint_url='http://localhost:8080',
    server_kwargs={
        "headers": {"Content-Type": "application/json"}
    }
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
 Also tested against HF Endpoints
 ```python
 from langchain_community.llms import HuggingFaceEndpoint
huggingfacehub_api_token = "hf_xyz"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
    huggingfacehub_api_token=huggingfacehub_api_token,
    repo_id=repo_id,
)
resp = llm.invoke("Tell me a joke")
print(resp)
 ```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 22:10:32 +00:00
Anush
d09dda5a08 qdrant: Bump patch version (#24168)
# Description

To release a new version of `langchain-qdrant` after #24165 and #24166.
2024-07-12 14:48:50 -07:00
Bagatur
12950cc602 standard-tests[patch]: improve runnable tool description (#24210) 2024-07-12 21:33:56 +00:00
Erick Friis
e8ee781a42 ibm: move to external repo (#24208) 2024-07-12 21:14:24 +00:00
Bagatur
02e71cebed together[patch]: Release 0.1.4 (#24205) 2024-07-12 13:59:58 -07:00
Bagatur
259d4d2029 anthropic[patch]: Release 0.1.20 (#24204) 2024-07-12 13:59:15 -07:00
Bagatur
3aed74a6fc fireworks[patch]: Release 0.1.5 (#24203) 2024-07-12 13:58:58 -07:00
Bagatur
13b0d7ec8f openai[patch]: Release 0.1.16 (#24202) 2024-07-12 13:58:39 -07:00
Bagatur
71cd6e6feb groq[patch]: Release 0.1.7 (#24201) 2024-07-12 13:58:19 -07:00
Bagatur
99054e19eb mistralai[patch]: Release 0.1.10 (#24200) 2024-07-12 13:57:58 -07:00
Bagatur
7a1321e2f9 ibm[patch]: Release 0.1.10 (#24199) 2024-07-12 13:57:38 -07:00
Bagatur
cb5031f22f integrations[patch]: require core >=0.2.17 (#24207) 2024-07-12 20:54:01 +00:00
Nithish Raghunandanan
f1618ec540 couchbase: Add standard and semantic caches (#23607)
Thank you for contributing to LangChain!

**Description:** Add support for caching (standard + semantic) LLM
responses using Couchbase


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 20:30:03 +00:00
Eugene Yurtsev
8d82a0d483 core[patch]: Mark GraphVectorStore as beta (#24195)
* This PR marks graph vectorstore as beta
2024-07-12 14:28:06 -04:00
Bagatur
0a1e475a30 core[patch]: Release 0.2.17 (#24189) 2024-07-12 17:08:29 +00:00
Bagatur
6166ea67a8 core[minor]: rename ToolMessage.raw_output -> artifact (#24185) 2024-07-12 09:52:44 -07:00
Jean Nshuti
d77d9bfc00 community[patch]: update typo document content returned from semanticscholar (#24175)
Update "astract" -> abstract
2024-07-12 15:40:47 +00:00
Leonid Ganeline
aa3e3cfa40 core[patch]: docstrings runnables update (#24161)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-12 11:27:06 -04:00
mumu
14ba1d4b45 docs: fix numeric errors in tools_chain.ipynb (#24169)
Description: Corrected several numeric errors in the
docs/docs/how_to/tools_chain.ipynb file to ensure the accuracy of the
documentation.
2024-07-12 11:26:26 -04:00
Ikko Eltociear Ashimine
18da9f5e59 docs: update custom_chat_model.ipynb (#24170)
characetrs -> characters
2024-07-12 06:48:22 -04:00
Tomaz Bratanic
d3a2b9fae0 Fix neo4j type error on missing constraint information (#24177)
If you use `refresh_schema=False`, then the metadata constraint doesn't
exist. ATM, we used default `None` in the constraint check, but then
`any` fails because it can't iterate over None value
2024-07-12 06:39:29 -04:00
Anush
7014d07cab qdrant: new Qdrant implementation (#24164) 2024-07-12 04:52:02 +02:00
Xander Dumaine
35784d1c33 langchain[minor]: add document_variable_name to create_stuff_documents_chain (#24083)
- **Description:** `StuffDocumentsChain` uses `LLMChain` which is
deprecated by langchain runnables. `create_stuff_documents_chain` is the
replacement, but needs support for `document_variable_name` to allow
multiple uses of the chain within a longer chain.
- **Issue:** none
- **Dependencies:** none
2024-07-12 02:31:46 +00:00
Eugene Yurtsev
8858846607 milvus[patch]: Fix Milvus vectorstore for newer versions of langchain-core (#24152)
Fix for: https://github.com/langchain-ai/langchain/issues/24116

This keeps the old behavior of add_documents and add_texts
2024-07-11 18:51:18 -07:00
thedavgar
ffe6ca986e community: Fix Bug in Azure Search Vectorstore search asyncronously (#24081)
Thank you for contributing to LangChain!

**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.

With this PR the code given by the user in the issue works.

```python
vectorstore = AzureSearch(
    azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
    azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
    index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
    fields=fields,
    embedding_function=encoder,
)

retriever = vectorstore.as_retriever(search_type="hybrid", k=2)

await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```

**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064

**Dependencies**:
There are no extra dependencies required for this change.

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-11 18:32:19 -07:00
Anush
7790d67f94 qdrant: New sparse embeddings provider interface - PART 1 (#24015)
## Description

This PR introduces a new sparse embedding provider interface to work
with the new Qdrant implementation that will follow this PR.

Additionally, an implementation of this interface is provided with
https://github.com/qdrant/fastembed.

This PR will be followed by
https://github.com/Anush008/langchain/pull/3.
2024-07-11 17:07:25 -07:00
Erick Friis
1132fb801b core: release 0.2.16 (#24159) 2024-07-11 23:59:41 +00:00
Nuno Campos
1d37aa8403 core: Remove extra newline (#24157) 2024-07-11 23:55:36 +00:00
ccurme
cb95198398 standard-tests[patch]: add tests for runnables as tools and streaming usage metadata (#24153) 2024-07-11 18:30:05 -04:00
Erick Friis
d002fa902f infra: fix redundant matrix config (#24151) 2024-07-11 15:15:41 -07:00
Bagatur
8d100c58de core[patch]: Tool accept RunnableConfig (#24143)
Relies on #24038

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 22:13:17 +00:00
Bagatur
5fd1e67808 core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00
Bagatur
eeb996034b core[patch]: Release 0.2.15 (#24149) 2024-07-11 21:34:25 +00:00
Nuno Campos
03fba07d15 core[patch]: Update styles for mermaid graphs (#24147) 2024-07-11 14:19:36 -07:00
Jacob Lee
c481a2715d docs[patch]: Add structural example to style guide (#24133)
CC @nfcampos
2024-07-11 13:20:14 -07:00
ccurme
8ee8ca7c83 core[patch]: propagate parse_docstring to tool decorator (#24123)
Disabled by default.

```python
from langchain_core.tools import tool

@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
    """The foo.

    Args:
        bar: this is the bar
        baz: this is the baz
    """
    return bar


foo.args_schema.schema()
```
```json
{
  "title": "fooSchema",
  "description": "The foo.",
  "type": "object",
  "properties": {
    "bar": {
      "title": "Bar",
      "description": "this is the bar",
      "type": "string"
    },
    "baz": {
      "title": "Baz",
      "description": "this is the baz",
      "type": "integer"
    }
  },
  "required": [
    "bar",
    "baz"
  ]
}
```
2024-07-11 20:11:45 +00:00
Jacob Lee
4121d4151f docs[patch]: Fix typo (#24132)
CC @efriis
2024-07-11 20:10:48 +00:00
Erick Friis
bd18faa2a0 infra: add SQLAlchemy to min version testing (#23186)
preventing issues like #22546 

Notes:
- this will only affect release CI. We may want to consider adding
running unit tests with min versions to PR CI in some form
- because this only affects release CI, it could create annoying issues
releasing while I'm on vacation. Unless anyone feels strongly, I'll wait
to merge this til when I'm back
2024-07-11 20:09:57 +00:00
Jacob Lee
f1f1f75782 community[patch]: Make AzureML endpoint return AI messages for type assistant (#24085) 2024-07-11 21:45:30 +02:00
Eugene Yurtsev
4ba14adec6 core[patch]: Clean up indexing test code (#24139)
Refactor the code to use the existing InMemroyVectorStore.

This change is needed for another PR that moves some of the imports
around (and messes up the mock.patch in this file)
2024-07-11 18:54:46 +00:00
Atul R
457677c1b7 community: Fixes use of ImagePromptTemplate with Ollama (#24140)
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr

Details:

When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.

```python
image_url_components = image_url.split(",")
                           ^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```

From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.

This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.

@hwchase17
2024-07-11 11:31:48 -07:00
Matt
8327925ab7 community:support additional Azure Search Options (#24134)
- **Description:** Support additional kwargs options for the Azure
Search client (Described here
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations)
    - **Issue:** N/A
    - **Dependencies:** No additional Dependencies

---------
2024-07-11 18:22:36 +00:00
ccurme
122e80e04d core[patch]: add versionadded to as_tool (#24138) 2024-07-11 18:08:08 +00:00
Erick Friis
c4417ea93c core: release 0.2.14, remove poetry 1.7 incompatible flag from root (#24137) 2024-07-11 17:59:51 +00:00
Isaac Francisco
7a62d3dbd6 standard-tests[patch]: test that bind_tools can accept regular python function (#24135) 2024-07-11 17:42:17 +00:00
Nuno Campos
2428984205 core: Add metadata to graph json repr (#24131)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-11 17:23:52 +00:00
Harley Gross
ea3cd1ebba community[minor]: added support for C in RecursiveCharacterTextSplitter (#24091)
Description: Added support for C in RecursiveCharacterTextSplitter by
reusing the separators for C++
2024-07-11 16:47:48 +00:00
Nuno Campos
3e454d7568 core: fix docstring (#24129) 2024-07-11 16:38:14 +00:00
Eugene Yurtsev
08638ccc88 community[patch]: QianfanLLMEndpoint fix type information for the keys (#24128)
Fix for issue: https://github.com/langchain-ai/langchain/issues/24126
2024-07-11 16:24:26 +00:00
Nuno Campos
ee3fe20af4 core: mermaid: Render metadata key-value pairs when drawing mermaid graph (#24103)
- if node is runnable binding with metadata attached
2024-07-11 16:22:23 +00:00
Eugene Yurtsev
1e7d8ba9a6 ci[patch]: Update community linter to provide a helpful error message (#24127)
Update community import linter to explain what's wrong
2024-07-11 16:22:08 +00:00
maang-h
16e178a8c2 docs: Add MiniMaxChat docstrings (#24026)
- **Description:** Add MiniMaxChat rich docstrings.
- **Issue:** the issue #22296
2024-07-11 10:55:02 -04:00
Christophe Bornet
5fc5ef2b52 community[minor]: Add graph store extractors (#24065)
This adds an extractor interface and an implementation for HTML pages.
Extractors are used to create GraphVectorStore Links on loaded content.

**Twitter handle:** cbornet_
2024-07-11 10:35:31 -04:00
maang-h
9bcf8f867d docs: Add SQLChatMessageHistory docstring (#23978)
- **Description:** Add SQLChatMessageHistory docstring.
- **Issue:** the issue #21983

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-11 14:24:28 +00:00
Rafael Pereira
092e9ee0e6 community[minor]: Neo4j Fixed similarity docs (#23913)
**Description:** There was missing some documentation regarding the
`filter` and `params` attributes in similarity search methods.

---------

Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
2024-07-11 10:16:48 -04:00
Mis
10d8c3cbfa docs: Fix column positioning in the text splitting section for AI21SemanticTextSplitter (#24062) 2024-07-11 09:38:04 -04:00
Jacob Lee
555c6d3c20 docs[patch]: Updates tool error handling guide, add admonition (#24102)
@eyurtsev
2024-07-10 21:10:46 -07:00
Eugene Yurtsev
dc131ac42a core[minor]: Add dispatching for custom events (#24080)
This PR allows dispatching adhoc events for a given run.

# Context

This PR allows users to send arbitrary data to the callback system and
to the astream events API from within a given runnable. This can be
extremely useful to surface custom information to end users about
progress etc.

Integration with langsmith tracer will be done separately since the data
cannot be currently visualized. It'll be accommodated using the events
attribute of the Run

# Examples with astream events

```python
from langchain_core.callbacks import adispatch_custom_event
from langchain_core.tools import tool

@tool
async def foo(x: int) -> int:
    """Foo"""
    await adispatch_custom_event("event1", {"x": x})
    await adispatch_custom_event("event2", {"x": x})
    return x + 1

async for event in foo.astream_events({'x': 1}, version='v2'):
    print(event)
```

```python
{'event': 'on_tool_start', 'data': {'input': {'x': 1}}, 'name': 'foo', 'tags': [], 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'metadata': {}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_tool_end', 'data': {'output': 2}, 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}
```

```python
from langchain_core.callbacks import adispatch_custom_event
from langchain_core.runnables import RunnableLambda

@RunnableLambda
async def foo(x: int) -> int:
    """Foo"""
    await adispatch_custom_event("event1", {"x": x})
    await adispatch_custom_event("event2", {"x": x})
    return x + 1

async for event in foo.astream_events(1, version='v2'):
    print(event)
```

```python
{'event': 'on_chain_start', 'data': {'input': 1}, 'name': 'foo', 'tags': [], 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'metadata': {}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_chain_stream', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 2}, 'parent_ids': []}
{'event': 'on_chain_end', 'data': {'output': 2}, 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}
```

# Examples with handlers 

This is copy pasted from unit tests

```python
    class CustomCallbackManager(BaseCallbackHandler):
        def __init__(self) -> None:
            self.events: List[Any] = []

        def on_custom_event(
            self,
            name: str,
            data: Any,
            *,
            run_id: UUID,
            tags: Optional[List[str]] = None,
            metadata: Optional[Dict[str, Any]] = None,
            **kwargs: Any,
        ) -> None:
            assert kwargs == {}
            self.events.append(
                (
                    name,
                    data,
                    run_id,
                    tags,
                    metadata,
                )
            )

    callback = CustomCallbackManager()

    run_id = uuid.UUID(int=7)

    @RunnableLambda
    def foo(x: int, config: RunnableConfig) -> int:
        dispatch_custom_event("event1", {"x": x})
        dispatch_custom_event("event2", {"x": x}, config=config)
        return x

    foo.invoke(1, {"callbacks": [callback], "run_id": run_id})

    assert callback.events == [
        ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}),
        ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}),
    ]
```
2024-07-11 02:25:12 +00:00
Jacob Lee
14a8bbc21a docs[patch]: Adds tool intermediate streaming guide (#24098)
Can merge now and update when we add support for custom events.

CC @eyurtsev @vbarda
2024-07-10 17:38:51 -07:00
Erick Friis
1de1182a9f docs: discourage unconfirmed partner packages (#24099) 2024-07-11 00:34:37 +00:00
Erick Friis
71c2221f8c openai: release 0.1.15 (#24097) 2024-07-10 16:45:42 -07:00
Erick Friis
6ea6f9f7bc core: release 0.2.13 (#24096) 2024-07-10 16:39:15 -07:00
ccurme
975b6129f6 core[patch]: support conversion of runnables to tools (#23992)
Open to other thoughts on UX.

string input:
```python
as_tool = retriever.as_tool()
as_tool.invoke("cat")  # [Document(...), ...]
```

typed dict input:
```python
class Args(TypedDict):
    key: int

def f(x: Args) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(f).as_tool(
    name="my tool",
    description="description",  # name, description are inferred if not supplied
)
as_tool.invoke({"key": 3})  # "6"
```

for untyped dict input, allow specification of parameters + types
```python
def g(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(g).as_tool(arg_types={"key": int})
result = as_tool.invoke({"key": 3})  # "6"
```

Passing the `arg_types` is slightly awkward but necessary to ensure tool
calls populate parameters correctly:
```python
from typing import Any, Dict

from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI


def f(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"key": int})

llm = ChatOpenAI().bind_tools([as_tool])

result = llm.invoke("Use the tool on 3.")
tool_call = result.tool_calls[0]
args = tool_call["args"]
assert args == {"key": 3}

as_tool.run(args)
```

Contrived (?) example with langgraph agent as a tool:
```python
from typing import List, Literal
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent


llm = ChatOpenAI(temperature=0)


def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2


agent_1 = create_react_agent(llm, [magic_function])


class Message(TypedDict):
    role: Literal["human"]
    content: str

agent_tool = agent_1.as_tool(
    arg_types={"messages": List[Message]},
    name="Jeeves",
    description="Ask Jeeves.",
)

agent_2 = create_react_agent(llm, [agent_tool])
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-10 19:29:59 -04:00
Jacob Lee
b63a48b7d3 docs[patch]: Fix typos, add prereq sections (#24095) 2024-07-10 23:15:37 +00:00
Erick Friis
9de562f747 infra: create individual jobs in check_diff, do max milvus testing in 3.11 (#23829)
pickup from #23721
2024-07-10 22:45:18 +00:00
Erick Friis
141943a7e1 infra: docs ignore step in script (#24090) 2024-07-10 15:18:00 -07:00
Bagatur
6928f4c438 core[minor]: Add ToolMessage.raw_output (#23994)
Decisions to discuss:
1.  is a new attr needed or could additional_kwargs be used for this
2. is raw_output a good name for this attr
3. should raw_output default to {} or None
4. should raw_output be included in serialization
5. do we need to update repr/str to  exclude raw_output
2024-07-10 20:11:10 +00:00
jongwony
14dd89a1ee docs: add itemgetter in how_to/dynamic_chain (#23951)
Hello! I am honored to be able to contribute to the LangChain project
for the first time.

- **Description:** Using `RunnablePassthrough` logic without providing
`chat_history` key will result in nested keys in `question`, so I submit
a pull request to resolve this issue.

I am attaching a LangSmith screenshot below.

This is the result of the current version of the document.

<img width="1112" alt="image"
src="https://github.com/langchain-ai/langchain/assets/12846075/f0597089-c375-472f-b2bf-793baaecd836">

without `chat_history`:

<img width="1112" alt="image"
src="https://github.com/langchain-ai/langchain/assets/12846075/5c0e3ae7-3afe-417c-9132-770387f0fff2">


- **Lint and test**: 

<img width="777" alt="image"
src="https://github.com/langchain-ai/langchain/assets/12846075/575d2545-3aed-4338-9779-1a0b17365418">
2024-07-10 17:17:51 +00:00
Eugene Yurtsev
c4e149d4f1 community[patch]: Add linter to catch @root_validator (#24070)
- Add linter to prevent further usage of vanilla root validator
- Udpate remaining root validators
2024-07-10 14:51:03 +00:00
ccurme
9c6efadec3 community[patch]: propagate cost information to OpenAI callback (#23996)
This is enabled following
https://github.com/langchain-ai/langchain/pull/22716.
2024-07-10 14:50:35 +00:00
Dismas Banda
91b37b2d81 docs: fix spelling mistake in concepts.mdx: Fouth -> Fourth (#24067)
**Description:** 
Corrected the spelling for fourth.

**Twitter handle:** @dismasbanda
2024-07-10 14:35:54 +00:00
William FH
1e1fd30def [Core] Fix fstring in logger warning (#24043) 2024-07-09 19:53:18 -07:00
Jacob Lee
66265aaac4 docs[patch]: Update GPT4All docs (#24044)
CC @efriis
2024-07-10 02:39:42 +00:00
Jacob Lee
8dac0fb3f1 docs[patch]: Remove deprecated Airbyte loaders from listings (#23927)
CC @efriis
2024-07-10 02:21:25 +00:00
G Sreejith
68fee3e44b docs: template readme update, fix docstring typo in a runnable (#24002)
URL

https://python.langchain.com/v0.2/docs/templates/openai-functions-tool-retrieval-agent/

Checklist
I added a url -
https://python.langchain.com/v0.2/docs/templates/openai-functions-agent/
2024-07-09 14:03:31 -07:00
Ethan Yang
13855ef0c3 [HuggingFace Pipeline] add streaming support (#23852) 2024-07-09 17:02:00 -04:00
Erick Friis
34a02efcf9 infra: remove double heading in release notes (#24037) 2024-07-09 20:48:17 +00:00
Nuno Campos
859e434932 core: Speed up json parse for large strings (#24036)
for a large string:
- old 4.657918874989264
- new 0.023724667000351474
2024-07-09 12:26:50 -07:00
Nuno Campos
160fc7f246 core: Move json parsing in base chat model / output parser to bg thread (#24031)
- add version of AIMessageChunk.__add__ that can add many chunks,
instead of only 2
- In agenerate_from_stream merge and parse chunks in bg thread
- In output parse base classes do more work in bg threads where
appropriate

---------

Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
2024-07-09 12:26:36 -07:00
Nuno Campos
73966e693c openai: Create msg chunk in bg thread (#24032)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-09 12:01:51 -07:00
Erick Friis
007c5a85d5 multiple: use modern installer in poetry (#23998) 2024-07-08 18:50:48 -07:00
Erick Friis
e80c150c44 community: release 0.2.7 (prev was langchain) (#23997) 2024-07-08 23:43:32 +00:00
Erick Friis
9f8fd08955 community: release 0.2.7 (#23993) 2024-07-08 22:04:58 +00:00
Bhadresh Savani
5d78b34a6f [Docs] typo Update in azureopenai.ipynb (#23945)
Update documentation for a typo.
2024-07-08 17:48:33 -04:00
Erick Friis
bedd893cd1 core: release 0.2.12 (#23991) 2024-07-08 21:29:29 +00:00
Bagatur
1e957c0c23 docs: rm discord (#23985) 2024-07-08 14:27:58 -07:00
Eugene Yurtsev
f765e8fa9d core[minor],community[patch],standard-tests[patch]: Move InMemoryImplementation to langchain-core (#23986)
This PR moves the in memory implementation to langchain-core.

* The implementation remains importable from langchain-community.
* Supporting utilities are marked as private for now.
2024-07-08 14:11:51 -07:00
Eugene Yurtsev
aa8c9bb4a9 community[patch]: Add constraint for pdfminer.six to unbreak CI (#23988)
Something changed in pdfminer six. This PR unreaks CI without
fixing the underlying PDF parser.
2024-07-08 20:55:19 +00:00
Eugene Yurtsev
2c180d645e core[minor],community[minor]: Upgrade all @root_validator() to @pre_init (#23841)
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
2024-07-08 16:09:29 -04:00
Mustafa Abdul-Kader
f152d6ed3d docs(llamacpp): fix copy paste error (#23983) 2024-07-08 20:06:04 +00:00
JonasDeitmersATACAMA
4d6f28cdde Update annoy.ipynb (#23970)
mmemory in the description -> memory (corrected spelling mistake)

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-08 12:52:05 +00:00
Zheng Robert Jia
bf8d4716a7 Update concepts.mdx (#23955)
Added link to list of built-in tools.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-08 08:47:51 -04:00
Zheng Robert Jia
4ec5fdda8d Update index.mdx (#23956)
Added reference to built-in tools list.
2024-07-08 08:47:28 -04:00
ccurme
ee579c77c1 docs: chain migration guide (#23844)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
2024-07-05 16:37:34 -07:00
Eugene Yurtsev
9787552b00 core[patch]: Use InMemoryChatMessageHistory in unit tests (#23916)
Update unit test to use the existing implementation of chat message
history
2024-07-05 20:10:54 +00:00
Rajendra Kadam
8b84457b17 community[minor]: Support PGVector in PebbloRetrievalQA (#23874)
- **Description:** Support PGVector in PebbloRetrievalQA
  - Identity and Semantic Enforcement support for PGVector
  - Refactor Vectorstore validation and name check
  - Clear the overridden identity and semantic enforcement filters
- **Issue:** NA
- **Dependencies:** NA
- **Tests**: NA(already added)
-  **Docs**: Updated
- **Twitter handle:** [@Raj__725](https://twitter.com/Raj__725)
2024-07-05 16:02:25 -04:00
Eugene Yurtsev
e0186df56b core[patch]: Clarify upsert response semantics (#23921) 2024-07-05 15:59:47 -04:00
Leonid Ganeline
fcd018be47 docs: langgraph link fix (#23848)
Link for the LangGraph doc is instead the LG repo link.
Fixed the link
2024-07-05 15:50:45 -04:00
Robbie Cronin
0990ab146c community: update import in chatbot tutorial to use InMemoryChatMessageHistory (#23903)
Summary of change:

- Replace ChatMessageHistory with InMemoryChatMessageHistory

Fixes #23892

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-05 15:48:11 -04:00
Rajendra Kadam
ee8aa54f53 community[patch]: Fix source path mismatch in PebbloSafeLoader (#23857)
**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**:  Updated tests
2024-07-05 15:24:17 -04:00
Eugene Yurtsev
5b7d5f7729 core[patch]: Add comment to clarify aadd_documents (#23920)
Add comment to clarify how add documents works
2024-07-05 15:20:16 -04:00
Eugene Yurtsev
e0889384d9 standard-tests[minor]: add unit tests for testing get_by_ids, aget_by_ids, upsert, aupsert_by_ids (#23919)
These standard unit tests provide standard tests for functionality
introduced in these PRs:

* https://github.com/langchain-ai/langchain/pull/23774
* https://github.com/langchain-ai/langchain/pull/23594
2024-07-05 19:11:54 +00:00
ccurme
74c7198906 core, anthropic[patch]: support streaming tool calls when function has no arguments (#23915)
resolves https://github.com/langchain-ai/langchain/issues/23911

When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.

Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.

This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
2024-07-05 18:57:41 +00:00
Mateusz Szewczyk
902b57d107 IBM: Added WatsonxChat passing params to invoke method (#23758)
Thank you for contributing to LangChain!

- [x] **PR title**: "IBM: Added WatsonxChat to chat models preview,
update passing params to invoke method"


- [x] **PR message**: 
- **Description:** Added WatsonxChat passing params to invoke method,
added integration tests
    - **Dependencies:** `ibm_watsonx_ai`


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-05 18:07:50 +00:00
ccurme
1f5a163f42 langchain[patch]: deprecate QAGenerationChain (#23730) 2024-07-05 18:06:19 +00:00
ccurme
25de47878b langchain[patch]: deprecate AnalyzeDocumentChain (#23769) 2024-07-05 14:00:23 -04:00
Christophe Bornet
42d049f618 core[minor]: Add Graph Store component (#23092)
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.

This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.

When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.

2 retrieving methods are added to the VectorStore ones : 
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.

If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.

An implementation for Apache Cassandra is also proposed.

See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.

**Twitter handle:** _cbornet
2024-07-05 12:24:10 -04:00
Leonid Ganeline
77f5fc3d55 core: docstrings load (#23787)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:23:19 -04:00
Eugene Yurtsev
6f08e11d7c core[minor]: add upsert, streaming_upsert, aupsert, astreaming_upsert methods to the VectorStore abstraction (#23774)
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.

The PR makes the following changes:

1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.

A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
 
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-05 12:21:40 -04:00
G Sreejith
3c752238c5 core[patch]: Fix typo in docstring (graphm -> graph) (#23910)
Changes has been as per the request
Replaced graphm with graph
2024-07-05 16:20:33 +00:00
Leonid Ganeline
12c92b6c19 core: docstrings outputs (#23889)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:18:17 -04:00
Leonid Ganeline
1eca98ec56 core: docstrings prompts (#23890)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:17:52 -04:00
Philippe PRADOS
289960bc60 community[patch]: Redis.delete should be a regular method not a static method (#23873)
The `langchain_common.vectostore.Redis.delete()` must not be a
`@staticmethod`.

With the current implementation, it's not possible to have multiple
instances of Redis vectorstore because all versions must share the
`REDIS_URL`.

It's not conform with the base class.
2024-07-05 12:04:58 -04:00
Mohammad Mohtashim
2274d2b966 core[patch]: Accounting for Optional Input Variables in BasePromptTemplate (#22851)
**Description**: After reviewing the prompts API, it is clear that the
only way a user can explicitly mark an input variable as optional is
through the `MessagePlaceholder.optional` attribute. Otherwise, the user
must explicitly pass in the `input_variables` expected to be used in the
`BasePromptTemplate`, which will be validated upon execution. Therefore,
to semantically handle a `MessagePlaceholder` `variable_name` as
optional, we will treat the `variable_name` of `MessagePlaceholder` as a
`partial_variable` if it has been marked as optional. This approach
aligns with how the `variable_name` of `MessagePlaceholder` is already
handled
[here](https://github.com/keenborder786/langchain/blob/optional_input_variables/libs/core/langchain_core/prompts/chat.py#L991).
Additionally, an attribute `optional_variable` has been added to
`BasePromptTemplate`, and the `variable_name` of `MessagePlaceholder` is
also made part of `optional_variable` when marked as optional.

Moreover, the `get_input_schema` method has been updated for
`BasePromptTemplate` to differentiate between optional and non-optional
variables.

**Issue**: #22832, #21425

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-05 15:49:40 +00:00
Klaudia Lemiec
a2082bc1f8 docs: Arxiv docs update (#23871)
- [X] **PR title**
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Update of docstrings and docpages
- **Issue:**
[22866](https://github.com/langchain-ai/langchain/issues/22866)

- [X] **Add tests and docs**

- [X] **Lint and test**
2024-07-05 11:43:51 -04:00
jonathan | ヨナタン
d311f22182 Langchain: fixed a typo in the imports (#23864)
Description: Fixed a typo during the imports for the
GoogleDriveSearchTool
    
Issue: It's only for the docs, but it bothered me so i decided to fix it
quickly :D
2024-07-05 15:42:50 +00:00
Arun Sasidharan
db6512aa35 docs: fix typo in llm_chain.ipynb (#23907)
- Fix typo in the tutorial step
- Add some context on `text`
2024-07-05 15:41:46 +00:00
André Quintino
99b1467b63 community: add support for 'cloud' parameter in JiraAPIWrapper (#23057)
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
 - **Twitter handle:** Andre_Q_Pereira

---------

Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-05 15:11:10 +00:00
wenngong
b1e90b3075 community: add model_name param valid for GPT4AllEmbeddings (#23867)
Description: add model_name param valid for GPT4AllEmbeddings

Issue: #23863 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-05 10:46:34 -04:00
volodymyr-memsql
a4eb6d0fb1 community: add SingleStoreDB semantic cache (#23218)
This PR adds a `SingleStoreDBSemanticCache` class that implements a
cache based on SingleStoreDB vector store, integration tests, and a
notebook example.

Additionally, this PR contains minor changes to SingleStoreDB vector
store:
 - change add texts/documents methods to return a list of inserted ids
 - implement delete(ids) method to delete documents by list of ids
 - added drop() method to drop a correspondent database table
- updated integration tests to use and check functionality implemented
above


CC: @baskaryan, @hwchase17

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2024-07-05 09:26:06 -04:00
Igor Drozdov
bb597b1286 feat(community): add bind_tools function for ChatLiteLLM (#23823)
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765

Now the tools can be bound by calling `bind_tools`

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-05 09:19:41 -04:00
eliasecchig
efb48566d0 docs: add Vertex Feature Store, edit BigQuery Vector Search (#23709)
Add Vertex Feature Store, edit BigQuery Vector Search docs

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-05 12:12:21 +00:00
Yuki Watanabe
0e916d0d55 community: Overhaul MLflow Integration documentation (#23067) 2024-07-03 22:52:17 -04:00
ccurme
e62f8f143f infra: remove cohere from monorepo scheduled tests (#23846) 2024-07-03 21:48:39 +00:00
Jiejun Tan
2be66a38d8 huggingface: Fix huggingface tei support (#22653)
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22595.

Modified
`libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py`,
where the API call function does not match current [Text Embeddings
Inference
API](https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed).
One example is:
```json
{
  "inputs": "string",
  "normalize": true,
  "truncate": false
}
```
Parameters in `_model_kwargs` are not passed properly in the latest
version. By the way, the issue *[why cause 413?
#50](https://github.com/huggingface/text-embeddings-inference/issues/50)*
might be solved.
2024-07-03 13:30:29 -07:00
Eugene Yurtsev
9ccc4b1616 core[patch]: Fix logic in BaseChatModel that processes the llm string that is used as a key for caching chat models responses (#23842)
This PR should fix the following issue:
https://github.com/langchain-ai/langchain/issues/23824
Introduced as part of this PR:
https://github.com/langchain-ai/langchain/pull/23416

I am unable to reproduce the issue locally though it's clear that we're
getting a `serialized` object which is not a dictionary somehow.

The test below passes for me prior to the PR as well

```python

def test_cache_with_sqllite() -> None:
    from langchain_community.cache import SQLiteCache

    from langchain_core.globals import set_llm_cache

    cache = SQLiteCache(database_path=".langchain.db")
    set_llm_cache(cache)
    chat_model = FakeListChatModel(responses=["hello", "goodbye"], cache=True)
    assert chat_model.invoke("How are you?").content == "hello"
    assert chat_model.invoke("How are you?").content == "hello"
```
2024-07-03 16:23:55 -04:00
Vadym Barda
9bb623381b core[minor]: update conversion utils to handle RemoveMessage (#23840) 2024-07-03 16:13:31 -04:00
Eugene Yurtsev
4ab78572e7 core[patch]: Speed up unit tests for imports (#23837)
Speed up unit tests for imports
2024-07-03 15:55:15 -04:00
Nico Puhlmann
4a15fce516 langchain: update declarative_base import (#20056)
**Description**: The ``declarative_base()`` function is now available as
sqlalchemy.orm.declarative_base(). (depreca ted since: 2.0) (Background
on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-03 15:52:35 -04:00
Mu Xian Ming
c06c666ce5 docs: fix docs/tutorials/llm_chain.ipynb (#23807)
to correctly display the link

Co-authored-by: Mu Xianming <mu.xianming@lmwn.com>
2024-07-03 15:38:31 -04:00
Vadym Barda
d206df8d3d docs: improve structure in the agent migration to langgraph guide (#23817) 2024-07-03 12:25:11 -07:00
Théo Deschamps
39b19cf764 core[patch]: extract input variables for path and detail keys in order to format an ImagePromptTemplate (#22613)
- Description: Add support for `path` and `detail` keys in
`ImagePromptTemplate`. Previously, only variables associated with the
`url` key were considered. This PR allows for the inclusion of a local
image path and a detail parameter as input to the format method.
- Issues:
    - fixes #20820 
    - related to #22024 
- Dependencies: None
- Twitter handle: @DeschampsTho5

---------

Co-authored-by: tdeschamps <tdeschamps@kameleoon.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-03 18:58:42 +00:00
Bagatur
a4798802ef cli[patch]: ruff 0.5 (#23833) 2024-07-03 18:33:15 +00:00
Leonid Ganeline
55f6f91f17 core[patch]: docstrings output_parsers (#23825)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-03 14:27:40 -04:00
Philippe PRADOS
26cee2e878 partners[patch]: MongoDB vectorstore to return and accept string IDs (#23818)
The mongdb have some errors.
- `add_texts() -> List` returns a list of `ObjectId`, and not a list of
string
- `delete()` with `id` never remove chunks.

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-03 14:14:08 -04:00
Ikko Eltociear Ashimine
75734fbcf1 community: fix typo in unit tests for test_zenguard.py (#23819)
enviroment -> environment


- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"
2024-07-03 14:05:42 -04:00
Bagatur
a0c2281540 infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
William FH
6cd56821dc [Core] Unify function schema parsing (#23370)
Use pydantic to infer nested schemas and all that fun.
Include bagatur's convenient docstring parser
Include annotation support


Previously we didn't adequately support many typehints in the
bind_tools() method on raw functions (like optionals/unions, nested
types, etc.)
2024-07-03 09:55:38 -07:00
Oguz Vuruskaner
2a2c0d1a94 community[deepinfra]: fix tool call parsing. (#23162)
This PR includes fix for DeepInfra tool call parsing.
2024-07-03 12:11:37 -04:00
maang-h
525109e506 feat: Implement ChatBaichuan asynchronous interface (#23589)
- **Description:** Add interface to `ChatBaichuan` to support
asynchronous requests
    - `_agenerate` method
    - `_astream` method

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-03 12:10:04 -04:00
Bagatur
8842a0d986 docs: fireworks nit (#23822) 2024-07-03 15:36:27 +00:00
Leonid Ganeline
716a316654 core: docstrings indexing (#23785)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-03 11:27:34 -04:00
Leonid Ganeline
30fdc2dbe7 core: docstrings messages (#23788)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-03 11:25:00 -04:00
ccurme
54e730f6e4 fireworks[patch]: read from tool calls attribute (#23820) 2024-07-03 11:11:17 -04:00
Bagatur
e787249af1 docs: fireworks standard page (#23816) 2024-07-03 14:33:05 +00:00
Jacob Lee
27aa4d38bf docs[patch]: Update structured output docs to have more discussion (#23786)
CC @agola11 @ccurme
2024-07-02 16:53:31 -07:00
Bagatur
ebb404527f anthropic[patch]: Release 0.1.19 (#23783) 2024-07-02 18:17:25 -04:00
Bagatur
6168c846b2 openai[patch]: Release 0.1.14 (#23782) 2024-07-02 18:17:15 -04:00
Bagatur
cb9812593f openai[patch]: expose model request payload (#23287)
![Screenshot 2024-06-21 at 3 12 12
PM](https://github.com/langchain-ai/langchain/assets/22008038/6243a01f-1ef6-4085-9160-2844d9f2b683)
2024-07-02 17:43:55 -04:00
Bagatur
ed200bf2c4 anthropic[patch]: expose payload (#23291)
![Screenshot 2024-06-21 at 4 56 02
PM](https://github.com/langchain-ai/langchain/assets/22008038/a2c6224f-3741-4502-9607-1a726a0551c9)
2024-07-02 17:43:47 -04:00
Bagatur
7a3d8e5a99 core[patch]: Release 0.2.11 (#23780) 2024-07-02 17:35:57 -04:00
Bagatur
d677dadf5f core[patch]: mark RemoveMessage beta (#23656) 2024-07-02 21:27:21 +00:00
ccurme
1d54ac93bb ai21[patch]: release 0.1.7 (#23781) 2024-07-02 21:24:13 +00:00
Asaf Joseph Gardin
320dc31822 partners: AI21 Labs Jamba Streaming Support (#23538)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"

- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Added support for streaming in AI21 Jamba Model
    - **Twitter handle:** https://github.com/AI21Labs


- [x] **Add tests and docs**: If you're adding a new integration, please
include

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

---------

Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-02 17:15:46 -04:00
Qingchuan Hao
5cd4083457 community: make bing web search as the only option (#23523)
This PR make bing web search as the option for BingSearchAPIWrapper to
facilitate and simply the user interface on Langchain.
This is a follow-up work of
https://github.com/langchain-ai/langchain/pull/23306.
2024-07-02 17:13:54 -04:00
William W Wang
76e7e4e9e6 Update docs: LangChain agent memory (#23673)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


**Description:** Update docs content on agent memory

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 17:06:32 -04:00
ccurme
7c1cddf1b7 anthropic[patch]: release 0.1.18 (#23778) 2024-07-02 16:46:47 -04:00
ccurme
c9dac59008 anthropic[patch]: fix model name in some integration tests (#23779) 2024-07-02 20:45:52 +00:00
Bagatur
7a6c06cadd anthropic[patch]: tool output parser fix (#23647) 2024-07-02 16:33:22 -04:00
ccurme
46cbf0e4aa anthropic[patch]: use core output parsers for structured output (#23776)
Also add to standard tests for structured output.
2024-07-02 16:15:26 -04:00
kiarina
dc396835ed langchain_anthropic: add stop_reason in ChatAnthropic stream result (#23689)
`ChatAnthropic` can get `stop_reason` from the resulting `AIMessage` in
`invoke` and `ainvoke`, but not in `stream` and `astream`.
This is a different behavior from `ChatOpenAI`.
It is possible to get `stop_reason` from `stream` as well, since it is
needed to determine the next action after the LLM call. This would be
easier to handle in situations where only `stop_reason` is needed.

- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37
2024-07-02 15:16:20 -04:00
Bagatur
27ce58f86e docs: google genai standard page (#23766)
Part of #22296
2024-07-02 13:54:34 -04:00
maang-h
e4e28a6ff5 community[patch]: Fix MiniMaxChat validate_environment error (#23770)
- **Description:** Fix some issues in MiniMaxChat 
  - Fix `minimax_api_host` not in `values` error
- Remove `minimax_group_id` from reading environment variables, the
`minimax_group_id` no longer use in MiniMaxChat
  - Invoke callback prior to yielding token, the issus #16913
2024-07-02 13:23:32 -04:00
SN
acc457f645 core[patch]: fix nested sections for mustache templating (#23747)
The prompt template variable detection only worked for singly-nested
sections because we just kept track of whether we were in a section and
then set that to false as soon as we encountered an end block. i.e. the
following:

```
{{#outerSection}}
    {{variableThatShouldntShowUp}}
    {{#nestedSection}}
        {{nestedVal}}
    {{/nestedSection}}
    {{anotherVariableThatShouldntShowUp}}
{{/outerSection}}
```

Would yield `['outerSection', 'anotherVariableThatShouldntShowUp']` as
input_variables (whereas it should just yield `['outerSection']`). This
fixes that by keeping track of the current depth and using a stack.
2024-07-02 10:20:45 -07:00
Karim Lalani
acc8fb3ead docs[patch]: Update OllamaFunctions docs to match chat model integration template (#23179)
Added Tool Calling Agent Example with langgraph to OllamaFunctions
documentation
2024-07-02 10:05:44 -07:00
Bagatur
79c07a8ade docs: standardize bedrock page (#23738)
Part of #22296
2024-07-02 12:03:36 -04:00
Teja Hara
a77a263e24 Added langchain-community installation (#23741)
PR title: Docs enhancement

- Description: Adding installation instructions for integrations
requiring langchain-community package since 0.2
- Issue: https://github.com/langchain-ai/langchain/issues/22005

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-02 11:03:07 -04:00
Eugene Yurtsev
46ff0f7a3c community[patch]: Update @root_validators to use explicit pre=True or pre=False (#23737) 2024-07-02 10:47:21 -04:00
Igor Drozdov
b664dbcc36 feat(community): add support for tool_calls response (#23765)
When `model_kwargs={"tools": tools}` are passed to `ChatLiteLLM`, they
are executed, but the response is not recognized correctly

Let's add `tool_calls` to the `additional_kwargs`

Thank you for contributing to LangChain!

## ChatAnthropic

I used the following example to verify the output of llm with tools:

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic import ChatAnthropic

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

llm = ChatAnthropic(model="claude-3-sonnet-20240229")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
print(ai_msg.tool_calls)
```

I get the following response:

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01UfDA89knrhw3vFV9X47neT'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01NrYVRYae7m7z7tBgyPb3Gd'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01EPFEpDgzL6vV2dTpD9SVP5'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01B5J6tPJXgwwfhQX9BHP2dt'}]
```

## LiteLLM

Based on https://litellm.vercel.app/docs/completion/function_call

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
import litellm

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

response = litellm.completion(model="claude-3-sonnet-20240229", messages=[{'role': 'user', 'content': prompt}], tools=tools)
print(response.choices[0].message.tool_calls)
```

```python
[ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetWeather'), id='toolu_01HeDWV5vP7BDFfytH5FJsja', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetWeather'), id='toolu_01EiLesUSEr3YK1DaE2jxsQv', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetPopulation'), id='toolu_01Xz26zvkBDRxEUEWm9pX6xa', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetPopulation'), id='toolu_01SDqKnsLjvUXuBsgAZdEEpp', type='function')]
```

## ChatLiteLLM

When I try the following

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229", model_kwargs={"tools": tools})
ai_msg = llm.invoke(prompt)
print(ai_msg)
print(ai_msg.tool_calls)
```

```python
content="Okay, let's find out the current weather and populations for Los Angeles and New York City:" response_metadata={'token_usage': Usage(prompt_tokens=329, completion_tokens=193, total_tokens=522), 'model': 'claude-3-sonnet-20240229', 'finish_reason': 'tool_calls'} id='run-748b7a84-84f4-497e-bba1-320bd4823937-0'
[]
```

---

When I apply the changes of this PR, the output is

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_017D2tGjiaiakB1HadsEFZ4e'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01WrDpJfVqLkPejWzonPCbLW'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_016UKyYrVAV9Pz99iZGgGU7V'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01Sgv1imExFX1oiR1Cw88zKy'}]
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-02 10:42:08 -04:00
Eugene Yurtsev
338cef35b4 community[patch]: update @root_validator in utilities namespace (#23768)
Update all utilities to use `pre=True` or `pre=False`

https://github.com/langchain-ai/langchain/issues/22819
2024-07-02 14:33:01 +00:00
wenngong
ee5eedfa04 partners: support reading HuggingFace params from env (#23309)
Description: 
1. partners/HuggingFace module support reading params from env. Not
adjust langchain_community/.../huggingfaceXX modules since they are
deprecated.
  2. pydantic 2 @root_validator migration.

Issue: #22448 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-02 10:12:45 -04:00
antonpibm
ffde8a6a09 Milvus vectorstore: fix pass ids as argument after upsert (#23761)
**Description**: Milvus vectorstore supports both `add_documents` via
the base class and `upsert` method which deletes and re-adds documents
based on their ids

**Issue**: Due to mismatch in the interfaces the ids used by `upsert`
are neglected in `add_documents`, as `ids` are passed as argument in
`upsert` but via `kwargs` is `add_documents`

This caused exceptions and inconsistency in the DB, tested with
`auto_id=False`

**Fix**: pass `ids` via `kwargs` to `add_documents`
2024-07-02 13:45:30 +00:00
Eugene Yurtsev
d084172b63 community[patch]: root validator set explicit pre=False or pre=True (#23764)
See issue: https://github.com/langchain-ai/langchain/issues/22819
2024-07-02 09:42:05 -04:00
Khelan Modi
4457e64e13 Update azure_cosmos_db for mongodb documentation (#23740)
added pre-filtering documentation

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: 
    - **Description:** added filter vector search 
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:**: n/a


- [x] **Add tests and docs**: If you're adding a new integration, please
include - No need for tests, just a simple doc update
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 12:53:05 +00:00
panwg3
bc98f90ba3 update wrong words (#23749)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-02 08:50:20 -04:00
mattthomps1
cc55823486 docs: updated PPLX model (#23723)
Description: updated pplx docs to reference a currently [supported
model](https://docs.perplexity.ai/docs/model-cards). pplx-70b-online
->llama-3-sonar-small-32k-online

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-02 08:48:49 -04:00
Bagatur
aa165539f6 docs: standardize cohere page (#23739)
Part of #22296
2024-07-01 19:34:13 -04:00
Jacob Lee
7791d92711 community[patch]: Fix requests alias for load_tools (#23734)
CC @baskaryan
2024-07-01 15:02:14 -07:00
Eugene Yurtsev
f24e38876a community[patch]: Update root_validators to use explicit pre=True or pre=False (#23736) 2024-07-01 17:13:23 -04:00
Yannick Stephan
5b1de2ae93 mistralai: Fixed streaming in MistralAI with ainvoke and callbacks (#22000)
# Fix streaming in mistral with ainvoke 
- [x] **PR title**
- [x] **PR message**
- [x] **Add tests and docs**:
  1. [x] Added a test for the fixed integration.
2. [x] An example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Ran `make format`, `make lint` and `make test`
from the root of the package(s) I've modified.

Hello 

* I Identified an issue in the mistral package where the callback
streaming (see on_llm_new_token) was not functioning correctly when the
streaming parameter was set to True and call with `ainvoke`.
* The root cause of the problem was the streaming not taking into
account. ( I think it's an oversight )
* To resolve the issue, I added the `streaming` attribut.
* Now, the callback with streaming works as expected when the streaming
parameter is set to True.

## How to reproduce

```
from langchain_mistralai.chat_models import ChatMistralAI
chain = ChatMistralAI(streaming=True)
# Add a callback
chain.ainvoke(..)

# Oberve on_llm_new_token
# Now, the callback is given as streaming tokens, before it was in grouped format.
```

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 20:53:09 +00:00
Jacob Lee
f4b2e553e7 docs[patch]: Update Unstructured loader notebooks and install instructions (#23726)
CC @baskaryan @MthwRobinson
2024-07-01 13:36:48 -07:00
Eugene Yurtsev
5d2262af34 community[patch]: Update root_validators to use pre=True or pre=False (#23731)
Update root_validators in preparation for pydantic 2 migration.
2024-07-01 20:10:15 +00:00
Erick Friis
6019147b66 infra: filter template check (#23727) 2024-07-01 13:00:33 -07:00
Eugene Yurtsev
ebcee4f610 core[patch]: Add versionadded to get_by_ids (#23728) 2024-07-01 15:16:00 -04:00
Eugene Yurtsev
e800f6bb57 core[minor]: Create BaseMedia object (#23639)
This PR implements a BaseContent object from which Document and Blob
objects will inherit proposed here:
https://github.com/langchain-ai/langchain/pull/23544

Alternative: Create a base object that only has an identifier and no
metadata.

For now decided against it, since that refactor can be done at a later
time. It also feels a bit odd since our IDs are optional at the moment.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 15:07:30 -04:00
Chip Davis
04bc5f1a95 partners[azure]: fix having openai_api_base set for other packages (#22068)
This fix is for #21726. When having other packages installed that
require the `openai_api_base` environment variable, users are not able
to instantiate the AzureChatModels or AzureEmbeddings.

This PR adds a new value `ignore_openai_api_base` which is a bool. When
set to True, it sets `openai_api_base` to `None`

Two new tests were added for the `test_azure` and a new file
`test_azure_embeddings`

A different approach may be better for this. If you can think of better
logic, let me know and I can adjust it.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-01 18:35:20 +00:00
Nuno Campos
b36e95caa9 core[patch]: use async messages where possible (#23718)
Fix #23716

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-01 18:33:05 +00:00
Spyros Avlonitis
8cfb2fa1b7 core[minor]: Add maxsize for InMemoryCache (#23405)
This PR introduces a maxsize parameter for the InMemoryCache class,
allowing users to specify the maximum number of items to store in the
cache. If the cache exceeds the specified maximum size, the oldest items
are removed. Additionally, comprehensive unit tests have been added to
ensure all functionalities are thoroughly tested. The tests are written
using pytest and cover both synchronous and asynchronous methods.

Twitter: @spyrosavl

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-01 14:21:21 -04:00
maang-h
96af8f31ae community[patch]: Invoke callback prior to yielding token (#23638)
- **Description:** Invoke callback prior to yielding token in stream and
astream methods for ChatZhipuAI.
- **Issue:** the issue #16913
2024-07-01 18:12:24 +00:00
Eugene Yurtsev
b5aef4cf97 core[patch]: Fix llm string representation for serializable models (#23416)
Fix LLM string representation for serializable objects.

Fix for issue: https://github.com/langchain-ai/langchain/issues/23257

The llm string of serializable chat models is the serialized
representation of the object. LangChain serialization dumps some basic
information about non serializable objects including their repr() which
includes an object id.

This means that if a chat model has any non serializable fields (e.g., a
cache), then any new instantiation of the those fields will change the
llm representation of the chat model and cause chat misses.

i.e., re-instantiating a postgres cache would result in cache misses!
2024-07-01 14:06:33 -04:00
nobbbbby
3904f2cd40 core: fix NameError (#23658)
**Description:** In the chat_models module of the language model, the
import statement for BaseModel has been moved from the conditionally
imported section to the main import area, fixing `NameError `.
**Issue:** fix `NameError `
2024-07-01 17:51:23 +00:00
Jacob Lee
d2c7379f1c 👥 Update LangChain people data (#23697)
👥 Update LangChain people data

---------

Co-authored-by: github-actions <github-actions@github.com>
2024-07-01 17:42:55 +00:00
Jordy Jackson Antunes da Rocha
a50eabbd48 experimental: LLMGraphTransformer add missing conditional adding restrictions to prompts for LLM that do not support function calling (#22793)
- Description: Modified the prompt created by the function
`create_unstructured_prompt` (which is called for LLMs that do not
support function calling) by adding conditional checks that verify if
restrictions on entity types and rel_types should be added to the
prompt. If the user provides a sufficiently large text, the current
prompt **may** fail to produce results in some LLMs. I have first seen
this issue when I implemented a custom LLM class that did not support
Function Calling and used Gemini 1.5 Pro, but I was able to replicate
this issue using OpenAI models.

By loading a sufficiently large text
```python
from langchain_community.llms import Ollama
from langchain_openai import ChatOpenAI, OpenAI
from langchain_core.prompts import PromptTemplate
import re
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.documents import Document

with open("texto-longo.txt", "r") as file:
    full_text = file.read()
    partial_text = full_text[:4000]

documents = [Document(page_content=partial_text)] # cropped to fit GPT 3.5 context window
```

And using the chat class (that has function calling)
```python
chat_openai = ChatOpenAI(model="gpt-3.5-turbo", model_kwargs={"seed": 42})
chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
```
It works:
```
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy of Man's Desiring", type='Music'), Node(id='Godel', type='Person'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='clever way of encoding the complicated expressions as numbers', type='Concept')]
```

But if you try to use the non-chat LLM class (that does not support
function calling)
```python
openai = OpenAI(
    model="gpt-3.5-turbo-instruct",
    max_tokens=1000,
)
gpt35_transformer = LLMGraphTransformer(llm=openai)
graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
```

It uses the prompt that has issues and sometimes does not produce any
result
```
>>> print(graph_from_gpt35[0].nodes)
[]
```

After implementing the changes, I was able to use both classes more
consistently:

```shell
>>> chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
>>> graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy Of Man'S Desiring", type='Music'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='Godel', type='Person')]
>>> gpt35_transformer = LLMGraphTransformer(llm=openai)
>>> graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_gpt35[0].nodes)
[Node(id='I', type='Pronoun'), Node(id="JESU, JOY OF MAN'S DESIRING", type='Song'), Node(id='larger memory', type='Memory'), Node(id='this nice tree structure', type='Structure'), Node(id='how you can do it all with the numbers', type='Process'), Node(id='JOHANN SEBASTIAN BACH', type='Composer'), Node(id='type of structure', type='Characteristic'), Node(id='that', type='Pronoun'), Node(id='we', type='Pronoun'), Node(id='worry', type='Verb')]
```

The results are a little inconsistent because the GPT 3.5 model may
produce incomplete json due to the token limit, but that could be solved
(or mitigated) by checking for a complete json when parsing it.
2024-07-01 17:33:51 +00:00
Eugene Yurtsev
4f1821db3e core[minor]: Add get_by_ids to vectorstore interface (#23594)
This PR adds a part of the indexing API proposed in this RFC
https://github.com/langchain-ai/langchain/pull/23544/files.

It allows rolling out `get_by_ids` which should be uncontroversial to
existing vectorstores without introducing new abstractions.

The semantics for this method depend on the ability of identifying
returned documents using the new optional ID field on documents:
https://github.com/langchain-ai/langchain/pull/23411

Alternatives are:

1. Relax the sequence requirement

```python
def get_by_ids(self, ids: Iterable[str], /) -> Iterable[Document]:
```

Rejected:
- implementations are more likley to start batching with bad defaults
- users would need to call list() or we'd need to introduce another
convenience method

2. Support more kwargs

```python

def get_by_ids(self, ids: Sequence[str], /, **kwargs) -> List[Document]:
...
```

Rejected: 
- No need for `batch` parameter since IDs is a sequence
- Output cannot be customized since `Document` is fixed. (e.g.,
parameters could be useful to grab extra metadata like the vector that
was indexed with the Document or to project a part of the document)
2024-07-01 13:04:33 -04:00
Valentin
bf402f902e community: Fix LanceDB similarity search bug (#23591)
**Description:** LanceDB didn't allow querying the database using
similarity score thresholds because the metrics value was missing. This
PR simply fixes that bug.
**Issue:** not applicable
**Dependencies:** none
**Twitter handle:** not available

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-01 16:33:45 +00:00
Bagatur
389a568f9a standard-tests[patch]: add anthropic format integration test (#23717) 2024-07-01 11:06:04 -04:00
Rafael Pereira
4b9517db85 Jira: Allow Jira access using only the token (#23708)
- **Description:** At the moment the Jira wrapper only accepts the the
usage of the Username and Password/Token at the same time. However Jira
allows the connection using only is useful for enterprise context.

Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
2024-07-01 13:13:51 +00:00
Francesco Kruk
7538f3df58 Update jina embedding notebook to show multimodal capability more clearly (#23702)
After merging the [PR #22594 to include Jina AI multimodal capabilities
in the Langchain
documentation](https://github.com/langchain-ai/langchain/pull/22594), we
updated the notebook to showcase the difference between text and
multimodal capabilities more clearly.
2024-07-01 09:13:19 -04:00
Tim Van Wassenhove
24916c6703 community: Register pandas df in duckdb when creating vector_store (#23690)
- **Description:** Register pandas df in duckdb when creating
vector_store
- **Issue:** Resolves #23308
- **Dependencies:** None
- **Twitter handle:** @timvw

Co-authored-by: Tim Van Wassenhove <tim.van.wassenhove@telenetgroup.be>
2024-07-01 09:12:06 -04:00
Sourav Biswal
b60df8bb4f Update chatbot.ipynb (#23688)
DOC: missing parenthesis #23687

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-01 13:00:34 +00:00
Jacob Lee
9604cb833b ci[patch]: Update people PR CI permissions (#23696)
CC @agola11
2024-06-30 22:25:08 -07:00
Bagatur
29aa9d6750 groq[patch]: Release 0.1.6 (#23655) 2024-06-29 07:35:23 -04:00
Bagatur
f2d0c13a15 fireworks[patch]: Release 0.1.4 (#23654) 2024-06-29 07:35:16 -04:00
Bagatur
9a5e35d1ba mistralai[patch]: Release 0.1.9 (#23653) 2024-06-29 07:35:09 -04:00
Bagatur
74321e546d infra: update release permissions (#23662) 2024-06-29 07:31:36 -04:00
Mateusz Szewczyk
a78ccb993c ibm: Add support for Chat Models (#22979) 2024-06-29 01:59:25 -07:00
Jacob Lee
16c59118eb docs[patch]: Adds short tracing how-tos and conceptual guide (#23657)
CC @agola11
2024-06-28 18:28:49 -07:00
Jacob Lee
c0bb26e85b docs[patch]: Typo fix (#23652) 2024-06-28 17:27:44 -07:00
Jacob Lee
72175c57bd docs[patch]: Fix docs bugs in response to feedback (#23649)
- Update Meta Llama 3 cookbook link
- Add prereq section and information on `messages_modifier` to LangGraph
migration guide
- Update `PydanticToolsParser` explanation and entrypoint in tool
calling guide
- Add more obvious warning to `OllamaFunctions`
- Fix Wikidata tool install flow
- Update Bedrock LLM initialization

@baskaryan can you add a bit of information on how to authenticate into
the `ChatBedrock` and `BedrockLLM` models? I wasn't able to figure it
out :(
2024-06-28 17:24:55 -07:00
Bagatur
af2c05e5f3 openai[patch]: Release 0.1.13 (#23651) 2024-06-28 17:10:30 -07:00
Bagatur
b63c7f10bc anthropic[patch]: Release 0.1.17 (#23650) 2024-06-28 17:07:08 -07:00
Bagatur
fc8fd49328 openai, anthropic, ...: with_structured_output to pass in explicit tool choice (#23645)
...community, mistralai, groq, fireworks

part of #23644
2024-06-28 16:39:53 -07:00
Bagatur
c5f35a72da docs: vllm pkg nit (#23648) 2024-06-28 16:09:36 -07:00
Bagatur
81064017a9 docs: azure openai docstring (#23643)
part of #22296
2024-06-28 15:15:58 -07:00
Bagatur
381aedcc61 docs: standardize azure openai page (#23642)
part of #22296
2024-06-28 15:15:41 -07:00
Vadym Barda
e8d77002ea core: add RemoveMessage (#23636)
This change adds a new message type `RemoveMessage`. This will enable
`langgraph` users to manually modify graph state (or have the graph
nodes modify the state) to remove messages by `id`

Examples:

* allow users to delete messages from state by calling

```python
graph.update_state(config, values=[RemoveMessage(id=state.values[-1].id)])
```

* allow nodes to delete messages

```python
graph.add_node("delete_messages", lambda state: [RemoveMessage(id=state[-1].id)])
```
2024-06-28 14:40:02 -07:00
ccurme
8fce8c6771 community: fix extended tests (#23640) 2024-06-28 16:35:38 -04:00
ccurme
5d93916665 openai[patch]: release 0.1.12 (#23641) 2024-06-28 19:51:16 +00:00
Jacob Lee
a032583b17 docs[patch]: Update diagrams (#23613) 2024-06-28 12:36:00 -07:00
ccurme
390ee8d971 standard-tests: add test for structured output (#23631)
- add test for structured output
- fix bug with structured output for Azure
- better testing on Groq (break out Mixtral + Llama3 and add xfails
where needed)
2024-06-28 15:01:40 -04:00
Eugene Yurtsev
6c1ba9731d docs: Resurface some methods in API reference and clarify note at top of Reference (#23633)
This PR modifies the API Reference in the following way:

1. Relist standard methods: invoke, ainvoke, batch, abatch,
batch_as_completed, abatch_as_completed, stream, astream,
astream_events. These are the main entry points for a lot of runnables,
so we'll keep them for each runnable.
2. Relist methods from Runnable Serializable: to_json,
configurable_fields, configurable_alternatives.
3. Expand the note in the API reference documentation to explain that
additional methods are available.
2024-06-28 12:31:37 -04:00
Brace Sproul
800b0ff3b9 docs[minor]: Hide langserve pages (#23618) 2024-06-28 08:25:08 -07:00
j pradhan
5f21eab491 community:perplexity[patch]: standardize init args (#21794)
updated request_timeout default alias value per related docstring.

Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)

Thank you for contributing to LangChain!

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-28 13:26:12 +00:00
mackong
11483b0fb8 community[patch]: set tool name for tongyi&qianfan llm (#22889)
- **Description:** The name of ToolMessage is default to None, which
makes tool message send to LLM likes
 ```json
{"role": "tool",
   "tool_call_id": "",
   "content": "{\"time\": \"12:12\"}",
   "name": null}
```
But the name seems essential for some LLMs like TongYi Qwen. so we need to set the name use agent_action's tool value.
  - **Issue:** N/A
  - **Dependencies:** N/A
2024-06-28 09:17:05 -04:00
Leonid Ganeline
e4caa41aa9 community: docstrings toolkits (#23616)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-28 08:40:52 -04:00
clement.l
19eb82e68b docs: Fix link in LLMChain tutorial (#23620)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-28 03:59:24 +00:00
Bagatur
bd68a38723 docs: update chatmodel.with_structured_output feat in table (#23610) 2024-06-27 20:38:49 -07:00
ccurme
adf2dc13de community: fix lint (#23611) 2024-06-27 22:12:16 +00:00
Bagatur
ef0593db58 docs: tool call run model (#23609) 2024-06-27 22:02:12 +00:00
Leonid Ganeline
75a44fe951 core: chat_* docstrings (#23412)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-27 17:29:38 -04:00
Bagatur
3b1fcb2a65 chroma[patch]: Release 0.1.2 (#23604) 2024-06-27 13:58:24 -07:00
Eugene Yurtsev
68f348357e community[patch]: Test InMemoryVectorStore with RWAPI test suite (#23603)
Add standard test suite to InMemoryVectorStore implementation.
2024-06-27 16:43:43 -04:00
Eugene Yurtsev
da7beb1c38 core[patch]: Add unit test when catching generator exit (#23402)
This pr adds a unit test for:
https://github.com/langchain-ai/langchain/pull/22662
And narrows the scope where the exception is caught.
2024-06-27 20:36:07 +00:00
NG Sai Prasanth
5e6d23f27d community: Standardise tool import for arxiv & semantic scholar (#23578)
- **Description:** Fixing the way users have to import Arxiv and
Semantic Scholar
- **Issue:** Changed to use `from langchain_community.tools.arxiv import
ArxivQueryRun` instead of `from langchain_community.tools.arxiv.tool
import ArxivQueryRun`
    - **Dependencies:** None
    - **Twitter handle:** Nope
2024-06-27 16:35:50 -04:00
ccurme
d04f657424 langchain[patch]: deprecate ConversationChain (#23504)
Would like some feedback on how to best incorporate legacy memory
objects into `RunnableWithMessageHistory`.
2024-06-27 16:32:44 -04:00
Ayo Ayibiowu
c6f700b7cb fix(community): allow support for disabling max_tokens args (#21534)
This PR fixes an issue with not able to use unlimited/infinity tokens
from the respective provider for the LiteLLM provider.

This is an issue when working in an agent environment that the token
usage can drastically increase beyond the initial value set causing
unexpected behavior.
2024-06-27 16:28:59 -04:00
WU LIFU
2a0d6788f7 docs[patch]: extraction_examples fix the examples given to the llm (#23393)
Descriptions: currently in the
[doc](https://python.langchain.com/v0.2/docs/how_to/extraction_examples/)
it sets "Data" as the LLM's structured output schema, however its
examples given to the LLM output's "Person", which causes the LLM to be
confused and might occasionally return "Person" as the function to call

issue: #23383

Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
2024-06-27 16:22:26 -04:00
Leonid Ganeline
c0fdbaac85 langchain: docstrings in agents root (#23561)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-27 15:52:18 -04:00
Leonid Ganeline
b64c4b4750 langchain: docstrings agents nested (#23598)
Added missed docstrings. Formatted docstrings to the consistent form.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 19:49:41 +00:00
mackong
70834cd741 community[patch]: support convert FunctionMessage for Tongyi (#23569)
**Description:** For function call agent with Tongyi, cause the
AgentAction will be converted to FunctionMessage by

47f69fe0d8/libs/core/langchain_core/agents.py (L188)
But now Tongyi's *convert_message_to_dict* doesn't support
FunctionMessage

47f69fe0d8/libs/community/langchain_community/chat_models/tongyi.py (L184-L207)
Then next round conversation will be failed by the *TypeError*
exception.

This patch adds the support to convert FunctionMessage for Tongyi.

**Issue:** N/A
**Dependencies:** N/A
2024-06-27 15:49:26 -04:00
Bagatur
d45ece0e58 chroma[patch]: loosen py req (#23599)
currently causes issues if you try adding to a project that supports
py<4
2024-06-27 12:40:59 -07:00
Mohammad Mohtashim
4796b7eb15 [Community [HuggingFace]]: Small Fix for ChatHuggingFace. (#22925)
- **Description:** A small fix where I moved the `available_endpoints`
in order to avoid the token error in the below issue. Also I have added
conftest file and updated the `scripy`,`numpy` versions to support newer
python versions in poetry files.
- **Issue:** #22804

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 19:37:20 +00:00
Jacob Lee
644723adda docs[patch]: Add search keyword, update contribution guide (#23602)
CC @vbarda @hinthornw
2024-06-27 12:36:02 -07:00
ccurme
bffc3c24a0 openai[patch]: release 0.1.11 (#23596) 2024-06-27 18:48:40 +00:00
ccurme
a1520357c8 openai[patch]: revert addition of "name" to supported properties for tool messages (#23600) 2024-06-27 18:40:04 +00:00
joshc-ai21
16a293cc3a Small bug fixes (#23353)
Small bug fixes according to your comments

---------

Signed-off-by: Joffref <mariusjoffre@gmail.com>
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Baskar Gopinath <73015364+baskargopinath@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Mathis Joffre <51022808+Joffref@users.noreply.github.com>
Co-authored-by: Baur <baur.krykpayev@gmail.com>
Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Rave Harpaz <rave.harpaz@oracle.com>
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: RUO <61719257+comsa33@users.noreply.github.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Luis Rueda <userlerueda@gmail.com>
Co-authored-by: Jib <Jibzade@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: S M Zia Ur Rashid <smziaurrashid@gmail.com>
Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com>
Co-authored-by: yuncliu <lyc1990@qq.com>
Co-authored-by: wenngong <76683249+wenngong@users.noreply.github.com>
Co-authored-by: gongwn1 <gongwn1@lenovo.com>
Co-authored-by: Mirna Wong <89008547+mirnawong1@users.noreply.github.com>
Co-authored-by: Rahul Triptahi <rahul.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: maang-h <55082429+maang-h@users.noreply.github.com>
Co-authored-by: asafg <asafg@ai21.com>
Co-authored-by: Asaf Joseph Gardin <39553475+Josephasafg@users.noreply.github.com>
2024-06-27 17:58:22 +00:00
panwg3
9308bf32e5 spelling errors in words (#23559)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 17:16:22 +00:00
clement.l
182fc06769 docs: Fix typo in LLMChain tutorial (#23593)
When using `model_with_tools.invoke`, the `content` returns as an empty
string.
For more details, please refer to my [trace
log](https://smith.langchain.com/public/6fd24bc4-86c4-4627-8565-9a8adaf4ad7d/r).
2024-06-27 17:01:05 +00:00
ccurme
5536420bee openai[patch]: add comment (#23595)
Forgot to push this to
https://github.com/langchain-ai/langchain/pull/23551
2024-06-27 16:47:14 +00:00
andrewmjc
9f0f3c7e29 partners[openai]: Add name field to tool message to match OpenAI spec (#23551)
Discovered alongside @t968914

  - **Description:**
According to OpenAI docs, tool messages (response from calling tools)
must have a 'name' field.

https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models

  - **Issue:** N/A (as of right now)
  - **Dependencies:** N/A
  - **Twitter handle:** N/A

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-27 12:42:36 -04:00
Krista Pratico
85e36b0f50 partners[openai]: only add stream_options to kwargs if requested (#23552)
- **Description:** This PR
https://github.com/langchain-ai/langchain/pull/22854 added the ability
to pass `stream_options` through to the openai service to get token
usage information in the response. Currently OpenAI supports this
parameter, but Azure OpenAI does not yet. For users who proxy their
calls to both services through ChatOpenAI, this breaks when targeting
Azure OpenAI (see related discussion opened in openai-python:
https://github.com/openai/openai-python/issues/1469#issuecomment-2192658630).

> Error code: 400 - {'error': {'code': None, 'message': 'Unrecognized
request argument supplied: stream_options', 'param': None, 'type':
'invalid_request_error'}}

This PR fixes the issue by only adding `stream_options` to the request
if it's actually requested by the user (i.e. set to True). If I'm not
mistaken, we have a test case that already covers this scenario:
https://github.com/langchain-ai/langchain/blob/master/libs/partners/openai/tests/integration_tests/chat_models/test_base.py#L398-L399

- **Issue:** Issue opened in openai-python:
https://github.com/openai/openai-python/issues/1469
  - **Dependencies:** N/A
  - **Twitter handle:** N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-27 12:23:05 -04:00
Eugene Yurtsev
96b72edac8 core[minor]: Add optional ID field to Document schema (#23411)
This PR adds an optional ID field to the document schema.

# 1. Optional or Required

- An optional field will will requrie additional checking for the type
in user code (annoying).
- However, vectorstores currently don't respect this field. So if we
make it
required and start returning random UUIDs that might be even more
confusing
  to users.


**Proposal**: Start with Optional and convert to Required (with default
set to uuid4()) in 1-2 major releases.


# 2. Override __str__ or generic solution in prompts

Overriding __str__ as a simple way to avoid changing user code that
relies on
default str(document) in prompts. 


I considered rolling out a more general solution in prompts
(https://github.com/langchain-ai/langchain/pull/8685),
but to do that we need to:

1. Make things serializable
2. The more general solution would likely need to be backwards
compatible as well
3. It's unclear that one wants to format a List[int] in the same way as
List[Document]. The former should be `,` seperated (likely), the latter
   should be `---` separated (likely).


**Proposal** Start with __str__ override and focus on the vectorstore
APIs, we generalize prompts later
2024-06-27 12:15:58 -04:00
ccurme
5bfcb898ad openai[patch]: bump sdk version (#23592)
Tests failing with `TypeError: Completions.create() got an unexpected
keyword argument 'parallel_tool_calls'`
2024-06-27 11:57:24 -04:00
Jacob Lee
60fc15a56b docs[patch]: Update docs introduction and README (#23558)
CC @hwchase17 @baskaryan
2024-06-27 08:51:43 -07:00
panwg3
2445b997ee Correction of incorrect words (#23557)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-27 15:13:15 +00:00
Aditya
6721b991ab docs: realigned sections for langchain-google-vertexai (#23584)
- **Description:** Re-aligned sections in documentation of Vertex AI
LLMs
    - **Issue:** NA
    - **Dependencies:** NA
    - **Twitter handle:**NA

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 10:42:32 -04:00
mackong
daf733b52e langchain[minor]: fix comment typo (#23564)
**Description:** fix typo of comment
**Issue:** N/A
**Dependencies:** N/A
2024-06-27 10:09:18 -04:00
Jacob Lee
47f69fe0d8 docs[patch]: Add ReAct agent conceptual guide, improve search (#23554)
@baskaryan
2024-06-26 19:02:03 -07:00
Jacob Lee
672fcbb8dc docs[patch]: Fix bad link format (#23553) 2024-06-26 16:43:26 -07:00
Jacob Lee
13254715a2 docs[patch]: Update installation guide with diagram (#23548)
CC @baskaryan
2024-06-26 15:10:22 -07:00
Leonid Ganeline
2c9b84c3a8 core[patch]: docstrings agents (#23502)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-26 17:50:48 -04:00
Jacob Lee
79d8556c22 docs[patch]: Address feedback from docs users (#23550)
- Updates chat few shot prompt tutorial to show off a more cohesive
example
- Fix async Chromium loader guide
- Fix Excel loader install instructions
- Reformat Html2Text page
- Add install instructions to Azure OpenAI embeddings page
- Add missing dep install to SQL QA tutorial

@baskaryan
2024-06-26 14:47:01 -07:00
Leonid Ganeline
2a5d59b3d7 core[patch]: callbacks docstrings (#23375)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-26 17:11:06 -04:00
Leonid Ganeline
1141b08eb8 core: docstrings example_selectors (#23542)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-06-26 17:10:40 -04:00
wenngong
3bf1d98dbf langchain[patch]: update agent and chains modules root_validators (#23256)
Description: update agent and chains modules Pydantic root_validators.
Issue: the issue #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-06-26 17:09:50 -04:00
Bagatur
a7ab93479b anthropic[patch]: Release 0.1.16 (#23549) 2024-06-26 20:49:13 +00:00
Jib
c0fcf76e93 LangChain-MongoDB: [Experimental] Driver-side index creation helper (#19359)
## Description
Created a helper method to make vector search indexes via client-side
pymongo.

**Recent Update** -- Removed error suppressing/overwriting layer in
favor of letting the original exception provide information.

## ToDo's
- [x] Make _wait_untils for integration test delete index
functionalities.
- [x] Add documentation for its use. Highlight it's experimental
- [x] Post Integration Test Results in a screenshot
- [x] Get review from MongoDB internal team (@shaneharvey, @blink1073 ,
@NoahStapp , @caseyclements)



- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added new integration tests. Not eligible for unit testing since the
operation is Atlas Cloud specific.
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

![image](https://github.com/langchain-ai/langchain/assets/2887713/a3fc8ee1-e04c-4976-accc-fea0eeae028a)


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-26 15:07:28 -04:00
Jacob Lee
b1dfb8ea1e docs[patch]: Update contribution guides (#23382)
CC @vbarda @hwchase17
2024-06-26 11:12:41 -07:00
maang-h
5070004e8a docs: Update Tongyi ChatModel docstring (#23540)
- **Description:** Update Tongyi ChatModel rich docstring
- **Issue:** the issue #22296
2024-06-26 13:07:13 -04:00
Nuradil
2f976c5174 community: fix code example in ZenGuard docs (#23541)
Thank you for contributing to LangChain!

- [X] **PR title**: "community: fix code example in ZenGuard docs"


- [X] **PR message**: 
- **Description:** corrected the docs by indicating in the code example
that the tool accepts a list of prompts instead of just one


- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Thank you for review

---------

Co-authored-by: Baur <baur.krykpayev@gmail.com>
2024-06-26 13:05:59 -04:00
yonarw
6d0ebbca1e community: SAP HANA Vector Engine fix for latest HANA release (#23516)
- **Description:** This PR fixes an issue with SAP HANA Cloud QRC03
version. In that version the number to indicate no length being set for
a vector column changed from -1 to 0. The change in this PR support both
behaviours (old/new).
- **Dependencies:** No dependencies have been introduced.

- **Tests**:  The change is covered by previous unit tests.
2024-06-26 13:15:51 +00:00
Roman Solomatin
1e3e05b0c3 openai[patch]: add support for extra_body (#23404)
**Description:** Add support passing extra_body parameter

Some OpenAI compatible API's have additional parameters (for example
[vLLM](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#extra-parameters))
that can be passed thought `extra_body`. Same question in
https://github.com/openai/openai-python/issues/767

<!--
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->
2024-06-26 13:11:59 +00:00
Alireza Kashani
c39521b70d Update grobid.py (#23399)
fixed potential `IndexError: list index out of range` in case there is
no title

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-26 09:11:02 -04:00
Qingchuan Hao
ee282a1d2e community: add missing link (#23526) 2024-06-26 09:06:28 -04:00
Lincoln Stein
c314222796 Add a conversation memory that combines a (optionally persistent) vectorstore history with a token buffer (#22155)
**langchain: ConversationVectorStoreTokenBufferMemory**

-**Description:** This PR adds ConversationVectorStoreTokenBufferMemory.
It is similar in concept to ConversationSummaryBufferMemory. It
maintains an in-memory buffer of messages up to a preset token limit.
After the limit is hit timestamped messages are written into a
vectorstore retriever rather than into a summary. The user's prompt is
then used to retrieve relevant fragments of the previous conversation.
By persisting the vectorstore, one can maintain memory from session to
session.
-**Issue:** n/a
-**Dependencies:** none
-**Twitter handle:** Please no!!!
- [X] **Add tests and docs**: I looked to see how the unit tests were
written for the other ConversationMemory modules, but couldn't find
anything other than a test for successful import. I need to know whether
you are using pytest.mock or another fixture to simulate the LLM and
vectorstore. In addition, I would like guidance on where to place the
documentation. Should it be a notebook file in docs/docs?

- [X] **Lint and test**: I am seeing some linting errors from a couple
of modules unrelated to this PR.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-06-25 20:17:10 -07:00
Bagatur
32f8f39974 core[patch]: use args_schema doc for tool description (#23503) 2024-06-25 15:26:35 -07:00
ccurme
6f7fe82830 text-splitters: release 0.2.2 (#23508) 2024-06-25 18:26:05 -04:00
ccurme
62b16fcc6b experimental: release 0.0.62 (#23507) 2024-06-25 22:01:35 +00:00
ccurme
99ce84ef23 community: release 0.2.6 (#23501) 2024-06-25 21:29:52 +00:00
ccurme
03c41e725e langchain: release 0.2.6 (#23426) 2024-06-25 21:03:41 +00:00
ccurme
86ca44d451 core: release 0.2.10 (#23420) 2024-06-25 16:26:31 -04:00
Isaac Francisco
85f5d14cef [docs]: split up tool docs (#22919) 2024-06-25 13:15:08 -07:00
ccurme
f788d0982d docs: update trim messages guide (#23418)
- rerun to remove warnings following
https://github.com/langchain-ai/langchain/pull/23363
- `raise` -> `return`
2024-06-25 19:50:53 +00:00
ccurme
c9619349d6 docs: rerun chatbot tutorial to remove warnings (#23417) 2024-06-25 19:26:54 +00:00
Nuradil
c93d9e66e4 Community: Update and fix ZenGuardTool docs and add ZenguardTool to init files (#23415)
Thank you for contributing to LangChain!

- [x] **PR title**: "community: update docs and add tool to init.py"

- [x] **PR message**: 
- **Description:** Fixed some errors and comments in the docs and added
our ZenGuardTool and additional classes to init.py for easy access when
importing
- **Question:** when will you update the langchain-community package in
pypi to make our tool available?


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Thank you for review!

---------

Co-authored-by: Baur <baur.krykpayev@gmail.com>
2024-06-25 19:26:32 +00:00
William FH
8955bc1866 [Core] Logging: Suppress missing parent warning (#23363) 2024-06-25 14:57:23 -04:00
ccurme
730c551819 core[patch]: export tool output parsers from langchain_core.output_parsers (#23305)
These currently read off AIMessage.tool_calls, and only fall back to
OpenAI parsing if tool calls aren't populated.

Importing these from `openai_tools` (e.g., in our [tool calling
docs](https://python.langchain.com/v0.2/docs/how_to/tool_calling/#tool-calls))
can lead to confusion.

After landing, would need to release core and update docs.
2024-06-25 14:40:42 -04:00
Eugene Yurtsev
7e9e69c758 core[patch]: Add unit test for str and repr for Document (#23414) 2024-06-25 18:28:21 +00:00
Bagatur
f055f2a1e3 infra: install integration deps as needed (#23413) 2024-06-25 11:17:43 -07:00
Bagatur
92ac0fc9bd openai[patch]: Release 0.1.10 (#23410) 2024-06-25 17:40:02 +00:00
Bagatur
fb3df898b5 docs: Update README.md (#23409) 2024-06-25 17:35:00 +00:00
Bagatur
9d145b9630 openai[patch]: fix tool calling token counting (#23408)
Resolves https://github.com/langchain-ai/langchain/issues/23388
2024-06-25 10:34:25 -07:00
Tomaz Bratanic
22fa32e164 LLM Graph transformer dealing with empty strings (#23368)
Pydantic allows empty strings:

```
from langchain.pydantic_v1 import Field, BaseModel

class Property(BaseModel):
  """A single property consisting of key and value"""
  key: str = Field(..., description="key")
  value: str = Field(..., description="value")

x = Property(key="", value="")
```

Which can produce errors downstream. We simply ignore those records
2024-06-25 13:01:53 -04:00
Rajendra Kadam
d3520a784f docs: Added providers page for Pebblo and docs for PebbloRetrievalQA (#20746)
- **Description:** Added providers page for Pebblo and docs for
PebbloRetrievalQA
- **Issue:** NA
- **Dependencies:** None
- **Unit tests**: NA
2024-06-25 12:46:11 -04:00
clement.l
a75b32a54a docs: Fix typo in LLMChain tutorial (#23380)
Description: Fix a typo
Issue: n/a
Dependencies: None
Twitter handle:
2024-06-25 13:03:24 +00:00
Riccardo Schirone
4530d851e4 Merge pull request #22662
* core: runnables: special handling GeneratorExit because no error
2024-06-25 08:42:03 -04:00
Qingchuan Hao
ad50702934 community: add default value to bing_search_url (#23306)
bing_search_url is an endpoint to requests bing search resource and is
normally invariant to users, we can give it the default value to simply
the uesages of this utility/tool
2024-06-25 08:08:41 -04:00
ccurme
68e0ae3286 langchain[patch]: update removal target for LLMChain (#23373)
to 1.0

Also improve replacement example in docstring.
2024-06-24 21:51:29 +00:00
wenngong
b33d2346db community: FlashrankRerank support loading customer client (#23350)
Description: FlashrankRerank Document compressor support loading
customer client
Issue: #23338

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-06-24 17:50:08 -04:00
maang-h
f58c40b4e3 docs: Update QianfanChatEndpoint ChatModel docstring (#23337)
- **Description:** Update QianfanChatEndpoint ChatModel rich docstring
- **Issue:** the issue #22296
2024-06-24 17:42:46 -04:00
Rahul Triptahi
9ef93ecd7c community[minor]: Added classification_location parameter in PebbloSafeLoader. (#22565)
Description: Add classifier_location feature flag. This flag enables
Pebblo to decide the classifier location, local or pebblo-cloud.
Unit Tests: N/A
Documentation: N/A

---------

Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-06-24 17:30:38 -04:00
Mirna Wong
2115fb76de Replace llm variable with model (#23280)
The code snippet under ‘pdfs_qa’ contains an small incorrect code
example , resulting in users getting errors. This pr replaces ‘llm’
variable with ‘model’ to help user avoid a NameError message.

Resolves #22689


If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-24 17:08:02 -04:00
wenngong
af620db9c7 partners: add lint docstrings for azure-dynamic-sessions/together modules (#23303)
Description: add lint docstrings for azure-dynamic-sessions/together
modules
Issue: #23188 @baskaryan

test: ruff check passed.
<img width="782" alt="image"
src="https://github.com/langchain-ai/langchain/assets/76683249/bf11783d-65b3-4e56-a563-255eae89a3e4">

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-06-24 16:26:54 -04:00
yuncliu
398b2b9c51 community[minor]: Add Ascend NPU optimized Embeddings (#20260)
- **Description:** Add NPU support for embeddings

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-24 20:15:11 +00:00
Ikko Eltociear Ashimine
7b1066341b docs: update sql_query_checking.ipynb (#23345)
creat -> create
2024-06-24 16:03:32 -04:00
S M Zia Ur Rashid
d5b2a93c6d package: security update urllib3 to @1.26.19 (#23366)
urllib3 version update 1.26.18 to 1.26.19 to address a security
vulnerability.

**Reference:**
https://security.snyk.io/vuln/SNYK-PYTHON-URLLIB3-7267250
2024-06-24 19:44:39 +00:00
Jacob Lee
57c13b4ef8 docs[patch]: Fix typo in how to guide for message history (#23364) 2024-06-24 15:43:05 -04:00
Luis Rueda
168e9ed3a5 partners: add custom options to MongoDBChatMessageHistory (#22944)
**Description:** Adds options for configuring MongoDBChatMessageHistory
(no breaking changes):
- session_id_key: name of the field that stores the session id
- history_key: name of the field that stores the chat history
- create_index: whether to create an index on the session id field
- index_kwargs: additional keyword arguments to pass to the index
creation

**Discussion:**
https://github.com/langchain-ai/langchain/discussions/22918
**Twitter handle:** @userlerueda

---------

Co-authored-by: Jib <Jibzade@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-06-24 19:42:56 +00:00
Eugene Yurtsev
1e750f12f6 standard-tests[minor]: Add standard read write test suite for vectorstores (#23355)
Add standard read write test suite for vectorstores
2024-06-24 19:40:56 +00:00
Eugene Yurtsev
3b3ed72d35 standard-tests[minor]: Add standard tests for BaseStore (#23360)
Add standard tests to base store abstraction. These only work on [str,
str] right now. We'll need to check if it's possible to add
encoder/decoders to generalize
2024-06-24 19:38:50 +00:00
ccurme
e1190c8f3c mongodb[patch]: fix CI for python 3.12 (#23369) 2024-06-24 19:31:20 +00:00
RUO
2b87e330b0 community: fix issue with nested field extraction in MongodbLoader (#22801)
**Description:** 
This PR addresses an issue in the `MongodbLoader` where nested fields
were not being correctly extracted. The loader now correctly handles
nested fields specified in the `field_names` parameter.

**Issue:** 
Fixes an issue where attempting to extract nested fields from MongoDB
documents resulted in `KeyError`.

**Dependencies:** 
No new dependencies are required for this change.

**Twitter handle:** 
(Optional, your Twitter handle if you'd like a mention when the PR is
announced)

### Changes
1. **Field Name Parsing**:
- Added logic to parse nested field names and safely extract their
values from the MongoDB documents.

2. **Projection Construction**:
- Updated the projection dictionary to include nested fields correctly.

3. **Field Extraction**:
- Updated the `aload` method to handle nested field extraction using a
recursive approach to traverse the nested dictionaries.

### Example Usage
Updated usage example to demonstrate how to specify nested fields in the
`field_names` parameter:

```python
loader = MongodbLoader(
    connection_string=MONGO_URI,
    db_name=MONGO_DB,
    collection_name=MONGO_COLLECTION,
    filter_criteria={"data.job.company.industry_name": "IT", "data.job.detail": { "$exists": True }},
    field_names=[
        "data.job.detail.id",
        "data.job.detail.position",
        "data.job.detail.intro",
        "data.job.detail.main_tasks",
        "data.job.detail.requirements",
        "data.job.detail.preferred_points",
        "data.job.detail.benefits",
    ],
)

docs = loader.load()
print(len(docs))
for doc in docs:
    print(doc.page_content)
```
### Testing
Tested with a MongoDB collection containing nested documents to ensure
that the nested fields are correctly extracted and concatenated into a
single page_content string.
### Note
This change ensures backward compatibility for non-nested fields and
improves functionality for nested field extraction.
### Output Sample
```python
print(docs[:3])
```
```shell
# output sample:
[
    Document(
        # Here in this example, page_content is the combined text from the fields below
        # "position", "intro", "main_tasks", "requirements", "preferred_points", "benefits"
        page_content='all combined contents from the requested fields in the document',
        metadata={'database': 'Your Database name', 'collection': 'Your Collection name'}
    ),
    ...
]
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-24 19:29:11 +00:00
Tomaz Bratanic
aeeda370aa Sanitize backticks from neo4j labels and types for import (#23367) 2024-06-24 19:05:31 +00:00
Jacob Lee
d2db561347 docs[patch]: Adds callout in LLM concept docs, remove deprecated code (#23361)
CC @baskaryan @hwchase17
2024-06-24 12:03:18 -07:00
Rave Harpaz
f5ff7f178b Add OCI Generative AI new model support (#22880)
- [x] PR title: 
community: Add OCI Generative AI new model support
 
- [x] PR message:
- Description: adding support for new models offered by OCI Generative
AI services. This is a moderate update of our initial integration PR
16548 and includes a new integration for our chat models under
/langchain_community/chat_models/oci_generative_ai.py
    - Issue: NA
- Dependencies: No new Dependencies, just latest version of our OCI sdk
    - Twitter handle: NA


- [x] Add tests and docs: 
  1. we have updated our unit tests
2. we have updated our documentation including a new ipynb for our new
chat integration


- [x] Lint and test: 
 `make format`, `make lint`, and `make test` run successfully

---------

Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
2024-06-24 14:48:23 -04:00
Jacob Lee
753edf9c80 docs[patch]: Update chatbot tools how-to guide (#23362) 2024-06-24 11:46:06 -07:00
Baur
aa358f2be4 community: Add ZenGuard tool (#22959)
** Description**
This is the community integration of ZenGuard AI - the fastest
guardrails for GenAI applications. ZenGuard AI protects against:

- Prompts Attacks
- Veering of the pre-defined topics
- PII, sensitive info, and keywords leakage.
- Toxicity
- Etc.

**Twitter Handle** : @zenguardai

- [x] **Add tests and docs**: If you're adding a new integration, please
include
  1. Added an integration test
  2. Added colab


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.

---------

Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>
2024-06-24 17:40:56 +00:00
Mathis Joffre
60103fc4a5 community: Fix OVHcloud 401 Unauthorized on embedding. (#23260)
They are now rejecting with code 401 calls from users with expired or
invalid tokens (while before they were being considered anonymous).
Thus, the authorization header has to be removed when there is no token.

Related to: #23178

---------

Signed-off-by: Joffref <mariusjoffre@gmail.com>
2024-06-24 12:58:32 -04:00
Baskar Gopinath
4964ba74db Update multimodal_prompts.ipynb (#23301)
fixes #23294

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-24 15:58:51 +00:00
Eugene Yurtsev
d90379210a standard-tests[minor]: Add standard tests for cache (#23357)
Add standard tests for cache abstraction
2024-06-24 15:15:03 +00:00
Leonid Ganeline
987099cfcd community: toolkits docstrings (#23286)
Added missed docstrings. Formatted docstrings to the consistent form.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-22 14:37:52 +00:00
Rahul Triptahi
0cd3f93361 Enhance metadata of sharepointLoader. (#22248)
Description: 2 feature flags added to SharePointLoader in this PR:

1. load_auth: if set to True, adds authorised identities to metadata
2. load_extended_metadata, adds source, owner and full_path to metadata

Unit tests:N/A
Documentation: To be done.

---------

Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-06-21 17:03:38 -07:00
Yuki Watanabe
5d4133d82f community: Overhaul Databricks provider documentation (#23203)
**Description**: Update [Databricks
Provider](https://python.langchain.com/v0.2/docs/integrations/providers/databricks/)
documentations to the latest component notebooks and draw better
navigation path to related notebooks.

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
2024-06-21 16:57:35 -07:00
Bagatur
bcac6c3aff openai[patch]: temp fix ignore lint (#23290) 2024-06-21 16:52:52 -07:00
William FH
efb4c12abe [Core] Add support for inferring Annotated types (#23284)
in bind_tools() / convert_to_openai_function
2024-06-21 15:16:30 -07:00
Vadym Barda
9ac302cb97 core[minor]: update draw_mermaid node label processing (#23285)
This fixes processing issue for nodes with numbers in their labels (e.g.
`"node_1"`, which would previously be relabeled as `"node__"`, and now
are correctly processed as `"node_1"`)
2024-06-21 21:35:32 +00:00
Rajendra Kadam
7ee2822ec2 community: Fix TypeError in PebbloRetrievalQA (#23170)
**Description:** 
Fix "`TypeError: 'NoneType' object is not iterable`" when the
auth_context is absent in PebbloRetrievalQA. The auth_context is
optional; hence, PebbloRetrievalQA should work without it, but it throws
an error at the moment. This PR fixes that issue.

**Issue:** NA
**Dependencies:** None
**Unit tests:** NA

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-21 17:04:00 -04:00
Iurii Umnov
3b7b933aa2 community[minor]: OpenAPI agent. Add support for PUT, DELETE and PATCH (#22962)
**Description**: Add PUT, DELETE and PATCH tools to tool list for
OpenAPI agent if dangerous requests are allowed.

**Issue**: https://github.com/langchain-ai/langchain/issues/20469
2024-06-21 20:44:23 +00:00
Guangdong Liu
3c42bf8d97 community(patch):Fix PineconeHynridSearchRetriever not having search_kwargs (#21577)
- close #21521
2024-06-21 16:27:52 -04:00
Rahul Triptahi
4bb3d5c488 [community][quick-fix]: changed from blob.path to blob.path.name in 0365BaseLoader. (#22287)
Description: file_metadata_ was not getting propagated to returned
documents. Changed the lookup key to the name of the blob's path.
Changed blob.path key to blob.path.name for metadata_dict key lookup.
Documentation: N/A
Unit tests: N/A

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-21 15:51:03 -04:00
Bagatur
f824f6d925 docs: fix merge message runs docstring (#23279) 2024-06-21 19:50:50 +00:00
wenngong
f9aea3db07 partners: add lint docstrings for chroma module (#23249)
Description: add lint docstrings for chroma module
Issue: the issue #23188 @baskaryan

test:  ruff check passed.


![image](https://github.com/langchain-ai/langchain/assets/76683249/5e168a0c-32d0-464f-8ddb-110233918019)

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-06-21 19:49:24 +00:00
Bagatur
9eda8f2fe8 docs: fix trim_messages code blocks (#23271) 2024-06-21 17:15:31 +00:00
Jacob Lee
86326269a1 docs[patch]: Adds prereqs to trim messages (#23270)
CC @baskaryan
2024-06-21 10:09:41 -07:00
Bagatur
4c97a9ee53 docs: fix message transformer docstrings (#23264) 2024-06-21 16:10:03 +00:00
Vwake04
0deb98ac0c pinecone: Fix multiprocessing issue in PineconeVectorStore (#22571)
**Description:**

Currently, the `langchain_pinecone` library forces the `async_req`
(asynchronous required) argument to Pinecone to `True`. This design
choice causes problems when deploying to environments that do not
support multiprocessing, such as AWS Lambda. In such environments, this
restriction can prevent users from successfully using
`langchain_pinecone`.

This PR introduces a change that allows users to specify whether they
want to use asynchronous requests by passing the `async_req` parameter
through `**kwargs`. By doing so, users can set `async_req=False` to
utilize synchronous processing, making the library compatible with AWS
Lambda and other environments that do not support multithreading.

**Issue:**
This PR does not address a specific issue number but aims to resolve
compatibility issues with AWS Lambda by allowing synchronous processing.

**Dependencies:**
None, that I'm aware of.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-06-21 15:46:01 +00:00
ccurme
75c7c3a1a7 openai: release 0.1.9 (#23263) 2024-06-21 11:15:29 -04:00
Brace Sproul
abe7566d7d core[minor]: BaseChatModel with_structured_output implementation (#22859) 2024-06-21 08:14:03 -07:00
mackong
360a70c8a8 core[patch]: fix no current event loop for sql history in async mode (#22933)
- **Description:** When use
RunnableWithMessageHistory/SQLChatMessageHistory in async mode, we'll
get the following error:
```
Error in RootListenersTracer.on_chain_end callback: RuntimeError("There is no current event loop in thread 'asyncio_3'.")
```
which throwed by
ddfbca38df/libs/community/langchain_community/chat_message_histories/sql.py (L259).
and no message history will be add to database.

In this patch, a new _aexit_history function which will'be called in
async mode is added, and in turn aadd_messages will be called.

In this patch, we use `afunc` attribute of a Runnable to check if the
end listener should be run in async mode or not.

  - **Issue:** #22021, #22022 
  - **Dependencies:** N/A
2024-06-21 10:39:47 -04:00
Philippe PRADOS
1c2b9cc9ab core[minor]: Update pgvector transalor for langchain_postgres (#23217)
The SelfQuery PGVectorTranslator is not correct. The operator is "eq"
and not "$eq".
This patch use a new version of PGVectorTranslator from
langchain_postgres.

It's necessary to release a new version of langchain_postgres (see
[here](https://github.com/langchain-ai/langchain-postgres/pull/75)
before accepting this PR in langchain.
2024-06-21 10:37:09 -04:00
Mu Yang
401d469a92 langchain: fix systax warning in create_json_chat_agent (#23253)
fix systax warning in `create_json_chat_agent`

```
.../langchain/agents/json_chat/base.py:22: SyntaxWarning: invalid escape sequence '\ '
  """Create an agent that uses JSON to format its logic, build for Chat Models.
```
2024-06-21 10:05:38 -04:00
mackong
b108b4d010 core[patch]: set schema format for AsyncRootListenersTracer (#23214)
- **Description:** AsyncRootListenersTracer support on_chat_model_start,
it's schema_format should be "original+chat".
  - **Issue:** N/A
  - **Dependencies:**
2024-06-21 09:30:27 -04:00
Bagatur
976b456619 docs: BaseChatModel key methods table (#23238)
If we're moving documenting inherited params think these kinds of tables
become more important

![Screenshot 2024-06-20 at 3 59 12
PM](https://github.com/langchain-ai/langchain/assets/22008038/722266eb-2353-4e85-8fae-76b19bd333e0)
2024-06-20 21:00:22 -07:00
Jacob Lee
5da7eb97cb docs[patch]: Update link (#23240)
CC @agola11
2024-06-20 17:43:12 -07:00
ccurme
a7b4175091 standard tests: add test for tool calling (#23234)
Including streaming
2024-06-20 17:20:11 -04:00
Bagatur
12e0c28a6e docs: fix chat model methods table (#23233)
rst table not md
![Screenshot 2024-06-20 at 12 37 46
PM](https://github.com/langchain-ai/langchain/assets/22008038/7a03b869-c1f4-45d0-8d27-3e16f4c6eb19)
2024-06-20 19:51:10 +00:00
Zheng Robert Jia
a349fce880 docs[minor],community[patch]: Minor tutorial docs improvement, minor import error quick fix. (#22725)
minor changes to module import error handling and minor issues in
tutorial documents.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-06-20 15:36:49 -04:00
Eugene Yurtsev
7545b1d29b core[patch]: Fix doc-strings for code blocks (#23232)
Code blocks need extra space around them to be rendered properly by
sphinx
2024-06-20 19:34:52 +00:00
Luis Moros
d5be160af0 community[patch]: Fix sql_databse.from_databricks issue when ran from Job (#23224)
**Desscription**: When the ``sql_database.from_databricks`` is executed
from a Workflow Job, the ``context`` object does not have a
"browserHostName" property, resulting in an error. This change manages
the error so the "DATABRICKS_HOST" env variable value is used instead of
stoping the flow

Co-authored-by: lmorosdb <lmorosdb>
2024-06-20 19:34:15 +00:00
Cory Waddingham
cd6812342e pinecone[patch]: Update Poetry requirements for pinecone-client >=3.2.2 (#22094)
This change updates the requirements in
`libs/partners/pinecone/pyproject.toml` to allow all versions of
`pinecone-client` greater than or equal to 3.2.2.

This change resolves issue
[21955](https://github.com/langchain-ai/langchain/issues/21955).

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-20 18:59:36 +00:00
ccurme
abb3066150 docs: clarify streaming with RunnableLambda (#23228) 2024-06-20 14:49:00 -04:00
ccurme
bf7763d9b0 docs: add serialization guide (#23223) 2024-06-20 12:50:24 -04:00
Eugene Yurtsev
59d7adff8f core[patch]: Add clarification about streaming to RunnableLambda (#23227)
Add streaming clarification to runnable lambda docstring.
2024-06-20 16:47:16 +00:00
Jacob Lee
60db79a38a docs[patch]: Update Anthropic chat model docs (#23226)
CC @baskaryan
2024-06-20 09:46:43 -07:00
maang-h
bc4cd9c5cc community[patch]: Update root_validators ChatModels: ChatBaichuan, QianfanChatEndpoint, MiniMaxChat, ChatSparkLLM, ChatZhipuAI (#22853)
This PR updates root validators for:

- ChatModels: ChatBaichuan, QianfanChatEndpoint, MiniMaxChat,
ChatSparkLLM, ChatZhipuAI

Issues #22819

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-06-20 16:36:41 +00:00
ChrisDEV
cb6cf4b631 Fix return value type of dumpd (#20123)
The return type of `json.loads` is `Any`.

In fact, the return type of `dumpd` must be based on `json.loads`, so
the correction here is understandable.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-20 16:31:41 +00:00
Guangdong Liu
0bce28cd30 core(patch): Fix encoding problem of load_prompt method (#21559)
- description: Add encoding parameters.
- @baskaryan, @efriis, @eyurtsev, @hwchase17.


![54d25ac7b1d5c2e47741a56fe8ed8ba](https://github.com/langchain-ai/langchain/assets/48236177/ffea9596-2001-4e19-b245-f8a6e231b9f9)
2024-06-20 09:25:54 -07:00
Philippe PRADOS
8711c61298 core[minor]: Adds an in-memory implementation of RecordManager (#13200)
**Description:**
langchain offers three technologies to save data:
-
[vectorstore](https://python.langchain.com/docs/modules/data_connection/vectorstores/)
- [docstore](https://js.langchain.com/docs/api/schema/classes/Docstore)
- [record
manager](https://python.langchain.com/docs/modules/data_connection/indexing)

If you want to combine these technologies in a sample persistence
stategy you need a common implementation for each. `DocStore` propose
`InMemoryDocstore`.

We propose the class `MemoryRecordManager` to complete the system.

This is the prelude to another full-request, which needs a consistent
combination of persistence components.

**Tag maintainer:**
@baskaryan

**Twitter handle:**
@pprados

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-06-20 12:19:10 -04:00
Eugene Yurtsev
3ab49c0036 docs: API reference remove Prev/Up/Next buttons (#23225)
These do not work anyway. Let's remove them for now for simplicity.
2024-06-20 16:15:45 +00:00
Eugene Yurtsev
61daa16e5d docs: Update clean up API reference (#23221)
- Fix bug with TypedDicts rendering inherited methods if inherting from
  typing_extensions.TypedDict rather than typing.TypedDict
- Do not surface inherited pydantic methods for subclasses of BaseModel
- Subclasses of RunnableSerializable will not how methods inherited from
  Runnable or from BaseModel
- Subclasses of Runnable that not pydantic models will include a link to
RunnableInterface (they still show inherited methods, we can fix this
later)
2024-06-20 11:35:00 -04:00
Leonid Ganeline
51e75cf59d community: docstrings (#23202)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
2024-06-20 11:08:13 -04:00
Julian Weng
6a1a0d977a partners[minor]: Fix value error message for with_structured_output (#22877)
Currently, calling `with_structured_output()` with an invalid method
argument raises `Unrecognized method argument. Expected one of
'function_calling' or 'json_format'`, but the JSON mode option [is now
referred
to](https://python.langchain.com/v0.2/docs/how_to/structured_output/#the-with_structured_output-method)
by `'json_mode'`. This fixes that.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-20 15:03:21 +00:00
Qingchuan Hao
dd4d4411c9 doc: replace function all with tool call (#23184)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-20 09:27:39 -04:00
Yahkeef Davis
b03c801523 Docs: Update Rag tutorial so it includes an additional notebook cell with pip installs of required langchain_chroma and langchain_community. (#23204)
Description: Update Rag tutorial notebook so it includes an additional
notebook cell with pip installs of required langchain_chroma and
langchain_community.

This fixes the issue with the rag tutorial gives you a 'missing modules'
error if you run code in the notebook as is.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-20 09:22:49 -04:00
Leonid Ganeline
41f7620989 huggingface: docstrings (#23148)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-20 13:22:40 +00:00
ccurme
066a5a209f huggingface[patch]: fix CI for python 3.12 (#23197) 2024-06-20 09:17:26 -04:00
xyd
9b3a025f9c fix https://github.com/langchain-ai/langchain/issues/23215 (#23216)
fix bug 
The ZhipuAIEmbeddings class is not working.

Co-authored-by: xu yandong <shaonian@acsx1.onexmail.com>
2024-06-20 13:04:50 +00:00
Bagatur
ad7f2ec67d standard-tests[patch]: test stop not stop_sequences (#23200) 2024-06-19 18:07:33 -07:00
Bagatur
bd5c92a113 docs: standard params (#23199) 2024-06-19 17:57:05 -07:00
David DeCaprio
a4bcb45f65 core:Add optional max_messages to MessagePlaceholder (#16098)
- **Description:** Add optional max_messages to MessagePlaceholder
- **Issue:**
[16096](https://github.com/langchain-ai/langchain/issues/16096)
- **Dependencies:** None
- **Twitter handle:** @davedecaprio

Sometimes it's better to limit the history in the prompt itself rather
than the memory. This is needed if you want different prompts in the
chain to have different history lengths.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-19 23:39:51 +00:00
shaunakgodbole
7193634ae6 fireworks[patch]: fix api_key alias in Fireworks LLM (#23118)
Thank you for contributing to LangChain!

**Description**
The current code snippet for `Fireworks` had incorrect parameters. This
PR fixes those parameters.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-19 21:14:42 +00:00
Eugene Yurtsev
1fcf875fe3 core[patch]: Document agent schema (#23194)
* Document agent schema
* Refer folks to langgraph for more information on how to create agents.
2024-06-19 20:16:57 +00:00
Bagatur
255ad39ae3 infra: run CI on large diffs (#23192)
currently we skip CI on diffs >= 300 files. think we should just run it
on all packages instead

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-06-19 19:30:56 +00:00
Eugene Yurtsev
c2d43544cc core[patch]: Document messages namespace (#23154)
- Moved doc-strings below attribtues in TypedDicts -- seems to render
better on APIReference pages.
* Provided more description and some simple code examples
2024-06-19 15:00:00 -04:00
Eugene Yurtsev
3c917204dc core[patch]: Add doc-strings to outputs, fix @root_validator (#23190)
- Document outputs namespace
- Update a vanilla @root_validator that was missed
2024-06-19 14:59:06 -04:00
Bagatur
8698cb9b28 infra: add more formatter rules to openai (#23189)
Turns on
https://docs.astral.sh/ruff/settings/#format_docstring-code-format and
https://docs.astral.sh/ruff/settings/#format_skip-magic-trailing-comma

```toml
[tool.ruff.format]
docstring-code-format = true
skip-magic-trailing-comma = true
```
2024-06-19 11:39:58 -07:00
Michał Krassowski
710197e18c community[patch]: restore compatibility with SQLAlchemy 1.x (#22546)
- **Description:** Restores compatibility with SQLAlchemy 1.4.x that was
broken since #18992 and adds a test run for this version on CI (only for
Python 3.11)
- **Issue:** fixes #19681
- **Dependencies:** None
- **Twitter handle:** `@krassowski_m`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-06-19 17:58:57 +00:00
Erick Friis
48d6ea427f upstage: move to external repo (#22506) 2024-06-19 17:56:07 +00:00
Bagatur
0a4ee864e9 openai[patch]: image token counting (#23147)
Resolves #23000

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-19 10:41:47 -07:00
Jorge Piedrahita Ortiz
b3e53ffca0 community[patch]: sambanova llm integration improvement (#23137)
- **Description:** sambanova sambaverse integration improvement: removed
input parsing that was changing raw user input, and was making to use
process prompt parameter as true mandatory
2024-06-19 10:30:14 -07:00
Jorge Piedrahita Ortiz
e162893d7f community[patch]: update sambastudio embeddings (#23133)
Description: update sambastudio embeddings integration, now compatible
with generic endpoints and CoE endpoints
2024-06-19 10:26:56 -07:00
Philippe PRADOS
db6f46c1a6 langchain[small]: Change type to BasePromptTemplate (#23083)
```python
Change from_llm(
 prompt: PromptTemplate 
 ...
 )
```
 to
```python
Change from_llm(
 prompt: BasePromptTemplate 
 ...
 )
```
2024-06-19 13:19:36 -04:00
Sergey Kozlov
94452a94b1 core[patch[: add exceptions propagation test for astream_events v2 (#23159)
**Description:** `astream_events(version="v2")` didn't propagate
exceptions in `langchain-core<=0.2.6`, fixed in the #22916. This PR adds
a unit test to check that exceptions are propagated upwards.

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2024-06-19 13:00:25 -04:00
Leonid Ganeline
50484be330 prompty: docstring (#23152)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-19 12:50:58 -04:00
Qingchuan Hao
9b82707ea6 docs: add bing search tool to ms platform (#23183)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-19 12:43:05 -04:00
chenxi
505a2e8743 fix: MoonshotChat fails when setting the moonshot_api_key through the OS environment. (#23176)
Close #23174

Co-authored-by: tianming <tianming@bytenew.com>
2024-06-19 16:28:24 +00:00
Bagatur
677408bfc9 core[patch]: fix chat history circular import (#23182) 2024-06-19 09:08:36 -07:00
Eugene Yurtsev
883e90d06e core[patch]: Add an example to the Document schema doc-string (#23131)
Add an example to the document schema
2024-06-19 11:35:30 -04:00
ccurme
2b08e9e265 core[patch]: update test to catch circular imports (#23172)
This raises ImportError due to a circular import:
```python
from langchain_core import chat_history
```

This does not:
```python
from langchain_core import runnables
from langchain_core import chat_history
```

Here we update `test_imports` to run each import in a separate
subprocess. Open to other ways of doing this!
2024-06-19 15:24:38 +00:00
Eugene Yurtsev
ae4c0ed25a core[patch]: Add documentation to load namespace (#23143)
Document some of the modules within the load namespace
2024-06-19 15:21:41 +00:00
Eugene Yurtsev
a34e650f8b core[patch]: Add doc-string to document compressor (#23085) 2024-06-19 11:03:49 -04:00
Eugene Yurtsev
1007a715a5 community[patch]: Prevent unit tests from making network requests (#23180)
* Prevent unit tests from making network requests
2024-06-19 14:56:30 +00:00
ccurme
ca798bc6ea community: move test to integration tests (#23178)
Tests failing on master with

> FAILED
tests/unit_tests/embeddings/test_ovhcloud.py::test_ovhcloud_embed_documents
- ValueError: Request failed with status code: 401, {"message":"Bad
token; invalid JSON"}
2024-06-19 14:39:48 +00:00
Eugene Yurtsev
4fe8403bfb core[patch]: Expand documentation in the indexing namespace (#23134) 2024-06-19 10:11:44 -04:00
Eugene Yurtsev
fe4f10047b core[patch]: Document embeddings namespace (#23132)
Document embeddings namespace
2024-06-19 10:11:16 -04:00
Eugene Yurtsev
a3bae56a48 core[patch]: Update documentation in LLM namespace (#23138)
Update documentation in lllm namespace.
2024-06-19 10:10:50 -04:00
Leonid Ganeline
a70b7a688e ai21: docstrings (#23142)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
2024-06-19 08:51:15 -04:00
Jacob Lee
0c2ebe5f47 docs[patch]: Standardize prerequisites in tutorial docs (#23150)
CC @baskaryan
2024-06-18 23:10:13 -07:00
bilk0h
3d54784e6d text-splitters: Fix/recursive json splitter data persistence issue (#21529)
Thank you for contributing to LangChain!

**Description:** Noticed an issue with when I was calling
`RecursiveJsonSplitter().split_json()` multiple times that I was getting
weird results. I found an issue where `chunks` list in the `_json_split`
method. If chunks is not provided when _json_split (which is the case
when split_json calls _json_split) then the same list is used for
subsequent calls to `_json_split`.


You can see this in the test case i also added to this commit.

Output should be: 
```
[{'a': 1, 'b': 2}]
[{'c': 3, 'd': 4}]
```

Instead you get:
```
[{'a': 1, 'b': 2}]
[{'a': 1, 'b': 2, 'c': 3, 'd': 4}]
```

---------

Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
2024-06-18 20:21:55 -07:00
Yuki Watanabe
9ab7a6df39 docs: Overhaul Databricks components documentation (#22884)
**Description:** Documentation at
[integrations/llms/databricks](https://python.langchain.com/v0.2/docs/integrations/llms/databricks/)
is not up-to-date and includes examples about chat model and embeddings,
which should be located in the different corresponding subdirectories.
This PR split the page into correct scope and overhaul the contents.

**Note**: This PR might be hard to review on the diffs view, please use
the following preview links for the changed pages.
- `ChatDatabricks`:
https://langchain-git-fork-b-step62-chat-databricks-doc-langchain.vercel.app/v0.2/docs/integrations/chat/databricks/
- `Databricks`:
https://langchain-git-fork-b-step62-chat-databricks-doc-langchain.vercel.app/v0.2/docs/integrations/llms/databricks/
- `DatabricksEmbeddings`:
https://langchain-git-fork-b-step62-chat-databricks-doc-langchain.vercel.app/v0.2/docs/integrations/text_embedding/databricks/

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
2024-06-18 20:10:54 -07:00
鹿鹿鹿鲨
6b46b5e9ce community: add **request_kwargs and expect TimeError AsyncHtmlLoader (#23068)
- **Description:** add `**request_kwargs` and expect `TimeError` in
`_fetch` function for AsyncHtmlLoader. This allows you to fill in the
kwargs parameter when using the `load()` method of the `AsyncHtmlLoader`
class.

Co-authored-by: Yucolu <yucolu@tencent.com>
2024-06-18 20:02:46 -07:00
Leonid Ganeline
109a70fc64 ibm: docstrings (#23149)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
2024-06-18 20:00:27 -07:00
Ryan Elston
86ee4f0daa text-splitters: Introduce Experimental Markdown Syntax Splitter (#22257)
#### Description
This MR defines a `ExperimentalMarkdownSyntaxTextSplitter` class. The
main goal is to replicate the functionality of the original
`MarkdownHeaderTextSplitter` which extracts the header stack as metadata
but with one critical difference: it keeps the whitespace of the
original text intact.

This draft reimplements the `MarkdownHeaderTextSplitter` with a very
different algorithmic approach. Instead of marking up each line of the
text individually and aggregating them back together into chunks, this
method builds each chunk sequentially and applies the metadata to each
chunk. This makes the implementation simpler. However, since it's
designed to keep white space intact its not a full drop in replacement
for the original. Since it is a radical implementation change to the
original code and I would like to get feedback to see if this is a
worthwhile replacement, should be it's own class, or is not a good idea
at all.

Note: I implemented the `return_each_line` parameter but I don't think
it's a necessary feature. I'd prefer to remove it.

This implementation also adds the following additional features:
- Splits out code blocks and includes the language in the `"Code"`
metadata key
- Splits text on the horizontal rule `---` as well
- The `headers_to_split_on` parameter is now optional - with sensible
defaults that can be overridden.

#### Issue
Keeping the whitespace keeps the paragraphs structure and the formatting
of the code blocks intact which allows the caller much more flexibility
in how they want to further split the individuals sections of the
resulting documents. This addresses the issues brought up by the
community in the following issues:
- https://github.com/langchain-ai/langchain/issues/20823
- https://github.com/langchain-ai/langchain/issues/19436
- https://github.com/langchain-ai/langchain/issues/22256

#### Dependencies
N/A

#### Twitter handle
@RyanElston

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-06-18 19:44:00 -07:00
Bagatur
93d0ad97fe anthropic[patch]: test image input (#23155) 2024-06-19 02:32:15 +00:00
Leonid Ganeline
3dfd055411 anthropic: docstrings (#23145)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
2024-06-18 22:26:45 -04:00
Bagatur
90559fde70 openai[patch], standard-tests[patch]: don't pass in falsey stop vals (#23153)
adds an image input test to standard-tests as well
2024-06-18 18:13:13 -07:00
Bagatur
e8a8286012 core[patch]: runnablewithchathistory from core.runnables (#23136) 2024-06-19 00:15:18 +00:00
Jacob Lee
2ae718796e docs[patch]: Fix typo in feedback (#23146) 2024-06-18 16:32:04 -07:00
Jacob Lee
74749c909d docs[patch]: Adds feedback input after thumbs up/down (#23141)
CC @baskaryan
2024-06-18 16:08:22 -07:00
Bagatur
cf38981bb7 docs: use trim_messages in chatbot how to (#23139) 2024-06-18 15:48:03 -07:00
Vadym Barda
b483bf5095 core[minor]: handle boolean data in draw_mermaid (#23135)
This change should address graph rendering issues for edges with boolean
data

Example from langgraph:

```python
from typing import Annotated, TypedDict

from langchain_core.messages import AnyMessage
from langgraph.graph import END, START, StateGraph
from langgraph.graph.message import add_messages


class State(TypedDict):
    messages: Annotated[list[AnyMessage], add_messages]


def branch(state: State) -> bool:
    return 1 + 1 == 3


graph_builder = StateGraph(State)
graph_builder.add_node("foo", lambda state: {"messages": [("ai", "foo")]})
graph_builder.add_node("bar", lambda state: {"messages": [("ai", "bar")]})

graph_builder.add_conditional_edges(
    START,
    branch,
    path_map={True: "foo", False: "bar"},
    then=END,
)

app = graph_builder.compile()
print(app.get_graph().draw_mermaid())
```

Previous behavior:

```python
AttributeError: 'bool' object has no attribute 'split'
```

Current behavior:

```python
%%{init: {'flowchart': {'curve': 'linear'}}}%%
graph TD;
	__start__[__start__]:::startclass;
	__end__[__end__]:::endclass;
	foo([foo]):::otherclass;
	bar([bar]):::otherclass;
	__start__ -. ('a',) .-> foo;
	foo --> __end__;
	__start__ -. ('b',) .-> bar;
	bar --> __end__;
	classDef startclass fill:#ffdfba;
	classDef endclass fill:#baffc9;
	classDef otherclass fill:#fad7de;
```
2024-06-18 20:15:42 +00:00
Bagatur
093ae04d58 core[patch]: Pin pydantic in py3.12.4 (#23130) 2024-06-18 12:00:02 -07:00
hmasdev
ff0c06b1e5 langchain[patch]: fix OutputType of OutputParsers and fix legacy API in OutputParsers (#19792)
# Description

This pull request aims to address specific issues related to the
ambiguity and error-proneness of the output types of certain output
parsers, as well as the absence of unit tests for some parsers. These
issues could potentially lead to runtime errors or unexpected behaviors
due to type mismatches when used, causing confusion for developers and
users. Through clarifying output types, this PR seeks to improve the
stability and reliability.

Therefore, this pull request

- fixes the `OutputType` of OutputParsers to be the expected type;
- e.g. `OutputType` property of `EnumOutputParser` raises `TypeError`.
This PR introduce a logic to extract `OutputType` from its attribute.
- and fixes the legacy API in OutputParsers like `LLMChain.run` to the
modern API like `LLMChain.invoke`;
- Note: For `OutputFixingParser`, `RetryOutputParser` and
`RetryWithErrorOutputParser`, this PR introduces `legacy` attribute with
False as default value in order to keep the backward compatibility
- and adds the tests for the `OutputFixingParser` and
`RetryOutputParser`.

The following table shows my expected output and the actual output of
the `OutputType` of OutputParsers.
I have used this table to fix `OutputType` of OutputParsers.

| Class Name of OutputParser | My Expected `OutputType` (after this PR)|
Actual `OutputType` [evidence](#evidence) (before this PR)| Fix Required
|
|---------|--------------|---------|--------|
| BooleanOutputParser | `<class 'bool'>` | `<class 'bool'>` | NO |
| CombiningOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| DatetimeOutputParser | `<class 'datetime.datetime'>` | `<class
'datetime.datetime'>` | NO |
| EnumOutputParser(enum=MyEnum) | `MyEnum` | `TypeError` is raised | YES
|
| OutputFixingParser | The same type as `self.parser.OutputType` | `~T`
| YES |
| CommaSeparatedListOutputParser | `typing.List[str]` |
`typing.List[str]` | NO |
| MarkdownListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| NumberedListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| JsonOutputKeyToolsParser | `typing.Any` | `typing.Any` | NO |
| JsonOutputToolsParser | `typing.Any` | `typing.Any` | NO |
| PydanticToolsParser | `typing.Any` | `typing.Any` | NO |
| PandasDataFrameOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| PydanticOutputParser(pydantic_object=MyModel) | `<class
'__main__.MyModel'>` | `<class '__main__.MyModel'>` | NO |
| RegexParser | `typing.Dict[str, str]` | `TypeError` is raised | YES |
| RegexDictParser | `typing.Dict[str, str]` | `TypeError` is raised |
YES |
| RetryOutputParser | The same type as `self.parser.OutputType` | `~T` |
YES |
| RetryWithErrorOutputParser | The same type as `self.parser.OutputType`
| `~T` | YES |
| StructuredOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| YamlOutputParser(pydantic_object=MyModel) | `MyModel` | `~T` | YES |

NOTE: In "Fix Required", "YES" means that it is required to fix in this
PR while "NO" means that it is not required.

# Issue

No issues for this PR.

# Twitter handle

- [hmdev3](https://twitter.com/hmdev3)

# Questions:

1. Is it required to create tests for legacy APIs `LLMChain.run` in the
following scripts?
   - libs/langchain/tests/unit_tests/output_parsers/test_fix.py;
   - libs/langchain/tests/unit_tests/output_parsers/test_retry.py.

2. Is there a more appropriate expected output type than I expect in the
above table?
- e.g. the `OutputType` of `CombiningOutputParser` should be
SOMETHING...

# Actual outputs (before this PR)

<div id='evidence'></div>

<details><summary>Actual outputs</summary>

## Requirements

- Python==3.9.13
- langchain==0.1.13

```python
Python 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import langchain
>>> langchain.__version__
'0.1.13'
>>> from langchain import output_parsers
```

### `BooleanOutputParser`

```python
>>> output_parsers.BooleanOutputParser().OutputType
<class 'bool'>
```

### `CombiningOutputParser`

```python
>>> output_parsers.CombiningOutputParser(parsers=[output_parsers.DatetimeOutputParser(), output_parsers.CommaSeparatedListOutputParser()]).OutputType
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
    raise TypeError(
TypeError: Runnable CombiningOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```

### `DatetimeOutputParser`

```python
>>> output_parsers.DatetimeOutputParser().OutputType
<class 'datetime.datetime'>
```

### `EnumOutputParser`

```python
>>> from enum import Enum
>>> class MyEnum(Enum):
...     a = 'a'
...     b = 'b'
...
>>> output_parsers.EnumOutputParser(enum=MyEnum).OutputType
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
    raise TypeError(
TypeError: Runnable EnumOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```

### `OutputFixingParser`

```python
>>> output_parsers.OutputFixingParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```

### `CommaSeparatedListOutputParser`

```python
>>> output_parsers.CommaSeparatedListOutputParser().OutputType
typing.List[str]
```

### `MarkdownListOutputParser`

```python
>>> output_parsers.MarkdownListOutputParser().OutputType
typing.List[str]
```

### `NumberedListOutputParser`

```python
>>> output_parsers.NumberedListOutputParser().OutputType
typing.List[str]
```

### `JsonOutputKeyToolsParser`

```python
>>> output_parsers.JsonOutputKeyToolsParser(key_name='tool').OutputType
typing.Any
```

### `JsonOutputToolsParser`

```python
>>> output_parsers.JsonOutputToolsParser().OutputType
typing.Any
```

### `PydanticToolsParser`

```python
>>> from langchain.pydantic_v1 import BaseModel
>>> class MyModel(BaseModel):
...     a: int
...
>>> output_parsers.PydanticToolsParser(tools=[MyModel, MyModel]).OutputType
typing.Any
```

### `PandasDataFrameOutputParser`

```python
>>> output_parsers.PandasDataFrameOutputParser().OutputType
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
    raise TypeError(
TypeError: Runnable PandasDataFrameOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```

### `PydanticOutputParser`

```python
>>> output_parsers.PydanticOutputParser(pydantic_object=MyModel).OutputType
<class '__main__.MyModel'>
```

### `RegexParser`

```python
>>> output_parsers.RegexParser(regex='$', output_keys=['a']).OutputType
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
    raise TypeError(
TypeError: Runnable RegexParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```

### `RegexDictParser`

```python
>>> output_parsers.RegexDictParser(output_key_to_format={'a':'a'}).OutputType
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
    raise TypeError(
TypeError: Runnable RegexDictParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```

### `RetryOutputParser`

```python
>>> output_parsers.RetryOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```

### `RetryWithErrorOutputParser`

```python
>>> output_parsers.RetryWithErrorOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```

### `StructuredOutputParser`

```python
>>> from langchain.output_parsers.structured import ResponseSchema
>>> response_schemas = [ResponseSchema(name="foo",description="a list of strings",type="List[string]"),ResponseSchema(name="bar",description="a string",type="string"), ]
>>> output_parsers.StructuredOutputParser.from_response_schemas(response_schemas).OutputType
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
    raise TypeError(
TypeError: Runnable StructuredOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```

### `YamlOutputParser`

```python
>>> output_parsers.YamlOutputParser(pydantic_object=MyModel).OutputType
~T
```


<div>

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-06-18 18:59:42 +00:00
Artem Mukhin
e271f75bee docs: Fix URL formatting in deprecation warnings (#23075)
**Description**

Updated the URLs in deprecation warning messages. The URLs were
previously written as raw strings and are now formatted to be clickable
HTML links.

Example of a broken link in the current API Reference:
https://api.python.langchain.com/en/latest/chains/langchain.chains.openai_functions.extraction.create_extraction_chain_pydantic.html

<img width="942" alt="Screenshot 2024-06-18 at 13 21 07"
src="https://github.com/langchain-ai/langchain/assets/4854600/a1b1863c-cd03-4af2-a9bc-70375407fb00">
2024-06-18 14:49:58 -04:00
Gabriel Petracca
c6660df58e community[minor]: Implement Doctran async execution (#22372)
**Description**

The DoctranTextTranslator has an async transform function that was not
implemented because [the doctran
library](https://github.com/psychic-api/doctran) uses a sync version of
the `execute` method.

- I implemented the `DoctranTextTranslator.atransform_documents()`
method using `asyncio.to_thread` to run the function in a separate
thread.
- I updated the example in the Notebook with the new async version.
- The performance improvements can be appreciated when a big document is
divided into multiple chunks.

Relates to:
- Issue #14645: https://github.com/langchain-ai/langchain/issues/14645
- Issue #14437: https://github.com/langchain-ai/langchain/issues/14437
- https://github.com/langchain-ai/langchain/pull/15264

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-06-18 18:17:37 +00:00
Eugene Yurtsev
aa6415aa7d core[minor]: Support multiple keys in get_from_dict_or_env (#23086)
Support passing multiple keys for ge_from_dict_or_env
2024-06-18 14:13:28 -04:00
nold
226802f0c4 community: add args_schema to SearxSearch (#22954)
This change adds args_schema (pydantic BaseModel) to SearxSearchRun for
correct schema formatting on LLM function calls

Issue: currently using SearxSearchRun with OpenAI function calling
returns the following error "TypeError: SearxSearchRun._run() got an
unexpected keyword argument '__arg1' ".

This happens because the schema sent to the LLM is "input:
'{"__arg1":"foobar"}'" while the method should be called with the
"query" parameter.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-18 17:27:39 +00:00
Bagatur
01783d67fc core[patch]: Release 0.2.9 (#23091) 2024-06-18 17:15:04 +00:00
Finlay Macklon
616d06d7fe community: glob multiple patterns when using DirectoryLoader (#22852)
- **Description:** Updated
*community.langchain_community.document_loaders.directory.py* to enable
the use of multiple glob patterns in the `DirectoryLoader` class. Now,
the glob parameter is of type `list[str] | str` and still defaults to
the same value as before. I updated the docstring of the class to
reflect this, and added a unit test to
*community.tests.unit_tests.document_loaders.test_directory.py* named
`test_directory_loader_glob_multiple`. This test also shows an example
of how to use the new functionality.
- ~~Issue:~~**Discussion Thread:**
https://github.com/langchain-ai/langchain/discussions/18559
- **Dependencies:** None
- **Twitter handle:** N/a

- [x] **Add tests and docs**
    - Added test (described above)
    - Updated class docstring

- [x] **Lint and test**

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
2024-06-18 09:24:50 -07:00
Eugene Yurtsev
5564d9e404 core[patch]: Document BaseStore (#23082)
Add doc-string to BaseStore
2024-06-18 11:47:47 -04:00
Takuya Igei
9f791b6ad5 core[patch],community[patch],langchain[patch]: tenacity dependency to version >=8.1.0,<8.4.0 (#22973)
Fix https://github.com/langchain-ai/langchain/issues/22972.

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-18 10:34:28 -04:00
Raghav Dixit
74c4cbb859 LanceDB example minor change (#23069)
Removed package version `0.6.13` in the example.
2024-06-18 09:16:17 -04:00
Bagatur
ddfbca38df docs: add trim_messages to chatbot (#23061) 2024-06-17 22:39:39 -07:00
Lance Martin
931b41b30f Update Fireworks link (#23058) 2024-06-17 21:16:18 -07:00
Leonid Ganeline
6a66d8e2ca docs: AWS platform page update (#23063)
Added a reference to the `GlueCatalogLoader` new document loader.
2024-06-17 21:01:58 -07:00
Raviraj
858ce264ef SemanticChunker : Feature Addition ("Semantic Splitting with gradient") (#22895)
```SemanticChunker``` currently provide three methods to split the texts semantically:
- percentile
- standard_deviation
- interquartile

I propose new method ```gradient```. In this method, the gradient of distance is used to split chunks along with the percentile method (technically) . This method is useful when chunks are highly correlated with each other or specific to a domain e.g. legal or medical. The idea is to apply anomaly detection on gradient array so that the distribution become wider and easy to identify boundaries in highly semantic data.
I have tested this merge on a set of 10 domain specific documents (mostly legal).

Details : 
    - **Issue:** Improvement
    - **Dependencies:** NA
    - **Twitter handle:** [x.com/prajapat_ravi](https://x.com/prajapat_ravi)


@hwchase17

---------

Co-authored-by: Raviraj Prajapat <raviraj.prajapat@sirionlabs.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-06-17 21:01:08 -07:00
Raghav Dixit
55705c0f5e LanceDB integration update (#22869)
Added : 

- [x] relevance search (w/wo scores)
- [x] maximal marginal search
- [x] image ingestion
- [x] filtering support
- [x] hybrid search w reranking 

make test, lint_diff and format checked.
2024-06-17 20:54:26 -07:00
Chang Liu
62c8a67f56 community: add KafkaChatMessageHistory (#22216)
Add chat history store based on Kafka.

Files added: 
`libs/community/langchain_community/chat_message_histories/kafka.py`
`docs/docs/integrations/memory/kafka_chat_message_history.ipynb`

New issue to be created for future improvement:
1. Async method implementation.
2. Message retrieval based on timestamp.
3. Support for other configs when connecting to cloud hosted Kafka (e.g.
add `api_key` field)
4. Improve unit testing & integration testing.
2024-06-17 20:34:01 -07:00
shimajiroxyz
3e835a1aa1 langchain: add id_key option to EnsembleRetriever for metadata-based document merging (#22950)
**Description:**
- What I changed
- By specifying the `id_key` during the initialization of
`EnsembleRetriever`, it is now possible to determine which documents to
merge scores for based on the value corresponding to the `id_key`
element in the metadata, instead of `page_content`. Below is an example
of how to use the modified `EnsembleRetriever`:
    ```python
retriever = EnsembleRetriever(retrievers=[ret1, ret2], id_key="id") #
The Document returned by each retriever must keep the "id" key in its
metadata.
    ```

- Additionally, I added a script to easily test the behavior of the
`invoke` method of the modified `EnsembleRetriever`.

- Why I changed
- There are cases where you may want to calculate scores by treating
Documents with different `page_content` as the same when using
`EnsembleRetriever`. For example, when you want to ensemble the search
results of the same document described in two different languages.
- The previous `EnsembleRetriever` used `page_content` as the basis for
score aggregation, making the above usage difficult. Therefore, the
score is now calculated based on the specified key value in the
Document's metadata.

**Twitter handle:** @shimajiroxyz
2024-06-18 03:29:17 +00:00
mackong
39f6c4169d langchain[patch]: add tool messages formatter for tool calling agent (#22849)
- **Description:** add tool_messages_formatter for tool calling agent,
make tool messages can be formatted in different ways for your LLM.
  - **Issue:** N/A
  - **Dependencies:** N/A
2024-06-17 20:29:00 -07:00
Lucas Tucker
e25a5966b5 docs: Standardize DocumentLoader docstrings (#22932)
**Standardizing DocumentLoader docstrings (of which there are many)**

This PR addresses issue #22866 and adds docstrings according to the
issue's specified format (in the appendix) for files csv_loader.py and
json_loader.py in langchain_community.document_loaders. In particular,
the following sections have been added to both CSVLoader and JSONLoader:
Setup, Instantiate, Load, Async load, and Lazy load. It may be worth
adding a 'Metadata' section to the JSONLoader docstring to clarify how
we want to extract the JSON metadata (using the `metadata_func`
argument). The files I used to walkthrough the various sections were
`example_2.json` from
[HERE](https://support.oneskyapp.com/hc/en-us/articles/208047697-JSON-sample-files)
and `hw_200.csv` from
[HERE](https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html).

---------

Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-06-18 03:26:36 +00:00
Leonid Ganeline
a56ff199a7 docs: embeddings classes (#22927)
Added a table with all Embedding classes.
2024-06-17 20:17:24 -07:00
Mohammad Mohtashim
60ba02f5db [Community]: Fixed DDG DuckDuckGoSearchResults Docstring (#22968)
- **Description:** A very small fix in the Docstring of
`DuckDuckGoSearchResults` identified in the following issue.
- **Issue:** #22961

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-18 03:16:24 +00:00
Eun Hye Kim
70761af8cf community: Fix #22975 (Add SSL Verification Option to Requests Class in langchain_community) (#22977)
- **PR title**: "community: Fix #22975 (Add SSL Verification Option to
Requests Class in langchain_community)"
- **PR message**: 
    - **Description:**
- Added an optional verify parameter to the Requests class with a
default value of True.
- Modified the get, post, patch, put, and delete methods to include the
verify parameter.
- Updated the _arequest async context manager to include the verify
parameter.
- Added the verify parameter to the GenericRequestsWrapper class and
passed it to the Requests class.
    - **Issue:** This PR fixes issue #22975.
- **Dependencies:** No additional dependencies are required for this
change.
    - **Twitter handle:** @lunara_x

You can check this change with below code.
```python
from langchain_openai.chat_models import ChatOpenAI
from langchain.requests import RequestsWrapper
from langchain_community.agent_toolkits.openapi import planner
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec

with open("swagger.yaml") as f:
    data = yaml.load(f, Loader=yaml.FullLoader)
swagger_api_spec = reduce_openapi_spec(data)

llm = ChatOpenAI(model='gpt-4o')
swagger_requests_wrapper = RequestsWrapper(verify=False) # modified point
superset_agent = planner.create_openapi_agent(swagger_api_spec, swagger_requests_wrapper, llm, allow_dangerous_requests=True, handle_parsing_errors=True)

superset_agent.run(
    "Tell me the number and types of charts and dashboards available."
)
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-18 03:12:40 +00:00
Mohammad Mohtashim
bf839676c7 [Community]: FIxed the DocumentDBVectorSearch _similarity_search_without_score (#22970)
- **Description:** The PR #22777 introduced a bug in
`_similarity_search_without_score` which was raising the
`OperationFailure` error. The mistake was syntax error for MongoDB
pipeline which has been corrected now.
    - **Issue:** #22770
2024-06-17 20:08:42 -07:00
Nuno Campos
f01f12ce1e Include "no escape" and "inverted section" mustache vars in Prompt.input_variables and Prompt.input_schema (#22981) 2024-06-17 19:24:13 -07:00
Bella Be
7a0b36501f docs: Update how to docs for pydantic compatibility (#22983)
Add missing imports in docs from langchain_core.tools  BaseTool

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-06-18 01:49:56 +00:00
Jacob Lee
3b7b276f6f docs[patch]: Adds evaluation sections (#23050)
Also want to add an index/rollup page to LangSmith docs to enable
linking to a how-to category as a group (e.g.
https://docs.smith.langchain.com/how_to_guides/evaluation/)

CC @agola11 @hinthornw
2024-06-17 17:25:04 -07:00
Jacob Lee
6605ae22f6 docs[patch]: Update docs links (#23013) 2024-06-17 15:58:28 -07:00
Bagatur
c2b2e3266c core[minor]: message transformer utils (#22752) 2024-06-17 15:30:07 -07:00
Qingchuan Hao
c5e0acf6f0 docs: add bing search integration to agent (#22929)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-17 18:08:52 -04:00
Anders Swanson
aacc6198b9 community: OCI GenAI embedding batch size (#22986)
Thank you for contributing to LangChain!

- [x] **PR title**: "community: OCI GenAI embedding batch size"



- [x] **PR message**:
    - **Issue:** #22985 


- [ ] **Add tests and docs**: N/A


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: Anders Swanson <anders.swanson@oracle.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-17 22:06:45 +00:00
Bagatur
8235bae48e core[patch]: Release 0.2.8 (#23012) 2024-06-17 20:55:39 +00:00
Bagatur
5ee6e22983 infra: test all dependents on any change (#22994) 2024-06-17 20:50:31 +00:00
Nuno Campos
bd4b68cd54 core: run_in_executor: Wrap StopIteration in RuntimeError (#22997)
- StopIteration can't be set on an asyncio.Future it raises a TypeError
and leaves the Future pending forever so we need to convert it to a
RuntimeError
2024-06-17 20:40:01 +00:00
Bagatur
d96f67b06f standard-tests[patch]: Update chat model standard tests (#22378)
- Refactor standard test classes to make them easier to configure
- Update openai to support stop_sequences init param
- Update groq to support stop_sequences init param
- Update fireworks to support max_retries init param
- Update ChatModel.bind_tools to type tool_choice
- Update groq to handle tool_choice="any". **this may be controversial**

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-17 13:37:41 -07:00
Bob Lin
14f0cdad58 docs: Add some 3rd party tutorials (#22931)
Langchain is very popular among developers in China, but there are still
no good Chinese books or documents, so I want to add my own Chinese
resources on langchain topics, hoping to give Chinese readers a better
experience using langchain. This is not a translation of the official
langchain documentation, but my understanding.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-17 20:12:49 +00:00
Jacob Lee
893299c3c9 docs[patch]: Reorder streaming guide, add tags (#22993)
CC @hinthornw
2024-06-17 13:10:51 -07:00
Oguz Vuruskaner
dd25d08c06 community[minor]: add tool calling for DeepInfraChat (#22745)
DeepInfra now supports tool calling for supported models.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-17 15:21:49 -04:00
Bagatur
158701ab3c docs: update universal init title (#22990) 2024-06-17 12:13:31 -07:00
Lance Martin
a54deba6bc Add RAG to conceptual guide (#22790)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
2024-06-17 11:20:28 -07:00
maang-h
c6b7db6587 community: Add Baichuan Embeddings batch size (#22942)
- **Support batch size** 
Baichuan updates the document, indicating that up to 16 documents can be
imported at a time

- **Standardized model init arg names**
    - baichuan_api_key -> api_key
    - model_name  -> model
2024-06-17 14:11:04 -04:00
ccurme
722c8f50ea openai[patch]: add stream_usage parameter (#22854)
Here we add `stream_usage` to ChatOpenAI as:

1. a boolean attribute
2. a kwarg to _stream and _astream.

Question: should the `stream_usage` attribute be `bool`, or `bool |
None`?

Currently I've kept it `bool` and defaulted to False. It was implemented
on
[ChatAnthropic](e832bbb486/libs/partners/anthropic/langchain_anthropic/chat_models.py (L535))
as a bool. However, to maintain support for users who access the
behavior via OpenAI's `stream_options` param, this ends up being
possible:
```python
llm = ChatOpenAI(model_kwargs={"stream_options": {"include_usage": True}})
assert not llm.stream_usage
```
(and this model will stream token usage).

Some options for this:
- it's ok
- make the `stream_usage` attribute bool or None
- make an \_\_init\_\_ for ChatOpenAI, set a `._stream_usage` attribute
and read `.stream_usage` from a property

Open to other ideas as well.
2024-06-17 13:35:18 -04:00
Shubham Pandey
56ac94e014 community[minor]: add ChatSnowflakeCortex chat model (#21490)
**Description:** This PR adds a chat model integration for [Snowflake
Cortex](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions),
which gives an instant access to industry-leading large language models
(LLMs) trained by researchers at companies like Mistral, Reka, Meta, and
Google, including [Snowflake
Arctic](https://www.snowflake.com/en/data-cloud/arctic/), an open
enterprise-grade model developed by Snowflake.

**Dependencies:** Snowflake's
[snowpark](https://pypi.org/project/snowflake-snowpark-python/) library
is required for using this integration.

**Twitter handle:** [@gethouseware](https://twitter.com/gethouseware)

- [x] **Add tests and docs**:
1. integration tests:
`libs/community/tests/integration_tests/chat_models/test_snowflake.py`
2. unit tests:
`libs/community/tests/unit_tests/chat_models/test_snowflake.py`
  3. example notebook: `docs/docs/integrations/chat/snowflake.ipynb`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-17 09:47:05 -07:00
Lance Martin
ea96133890 docs: Update llamacpp ntbk (#22907)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-17 15:42:56 +00:00
Bagatur
e2304ebcdb standard-tests[patch]: Release 0.1.1 (#22984) 2024-06-17 15:31:34 +00:00
Hakan Özdemir
c437b1aab7 [Partner]: Add metadata to stream response (#22716)
Adds `response_metadata` to stream responses from OpenAI. This is
returned with `invoke` normally, but wasn't implemented for `stream`.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-17 09:46:50 -04:00
Baskar Gopinath
42a379c75c docs: Standardise formatting (#22948)
Standardised formatting 


![image](https://github.com/langchain-ai/langchain/assets/73015364/ea3b5c5c-e7a6-4bb7-8c6b-e7d8cbbbf761)
2024-06-17 09:00:05 -04:00
Ikko Eltociear Ashimine
3e7bb7690c docs: update databricks.ipynb (#22949)
arbitary -> arbitrary
2024-06-17 08:57:49 -04:00
Baskar Gopinath
19356b6445 Update sql_qa.ipynb (#22966)
fixes #22798 
fixes #22963
2024-06-17 08:57:16 -04:00
Bagatur
9ff249a38d standard-tests[patch]: don't require str chunk contents (#22965) 2024-06-17 08:52:24 -04:00
Daniel Glogowski
892bd4c29b docs: nim model name update (#22943)
NIM Model name change in a notebook and mdx file.

Thanks!
2024-06-15 16:38:28 -04:00
Christopher Tee
ada03dd273 community(you): Better support for You.com News API (#22622)
## Description
While `YouRetriever` supports both You.com's Search and News APIs, news
is supported as an afterthought.
More specifically, not all of the News API parameters are exposed for
the user, only those that happen to overlap with the Search API.

This PR:
- improves support for both APIs, exposing the remaining News API
parameters while retaining backward compatibility
- refactor some REST parameter generation logic
- updates the docstring of `YouSearchAPIWrapper`
- add input validation and warnings to ensure parameters are properly
set by user
- 🚨 Breaking: Limit the news results to `k` items

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-15 20:05:19 +00:00
ccurme
e09c6bb58b infra: update integration test workflow (#22945) 2024-06-15 19:52:43 +00:00
Tomaz Bratanic
1c661fd849 Improve llm graph transformer docstring (#22939) 2024-06-15 15:33:26 -04:00
maang-h
7a0af56177 docs: update ZhipuAI ChatModel docstring (#22934)
- **Description:** Update ZhipuAI ChatModel rich docstring
- **Issue:** the issue #22296
2024-06-15 09:12:21 -04:00
Appletree24
6838804116 docs:Fix mispelling in streaming doc (#22936)
Description: Fix mispelling
Issue: None
Dependencies: None
Twitter handle: None

Co-authored-by: qcloud <ubuntu@localhost.localdomain>
2024-06-15 12:24:50 +00:00
Bitmonkey
570d45b2a1 Update ollama.py with optional raw setting. (#21486)
Ollama has a raw option now. 

https://github.com/ollama/ollama/blob/main/docs/api.md

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-06-14 17:19:26 -07:00
caiyueliang
9944ad7f5f community: 'Solve the issue where the _search function in ElasticsearchStore supports passing a query_vector parameter, but the parameter does not take effect. (#21532)
**Issue:**
When using the similarity_search_with_score function in
ElasticsearchStore, I expected to pass in the query_vector that I have
already obtained. I noticed that the _search function does support the
query_vector parameter, but it seems to be ineffective. I am attempting
to resolve this issue.

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
2024-06-14 17:13:11 -07:00
Erick Friis
764f1958dd docs: add ollama json mode (#22926)
fixes #22910
2024-06-14 23:27:55 +00:00
Erick Friis
c374c98389 experimental: release 0.0.61 (#22924) 2024-06-14 15:55:07 -07:00
BuxianChen
af65cac609 cli[minor]: remove redefined DEFAULT_GIT_REF (#21471)
remove redefined DEFAULT_GIT_REF

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
2024-06-14 15:49:15 -07:00
Erick Friis
79a64207f5 community: release 0.2.5 (#22923) 2024-06-14 15:45:07 -07:00
Jiejun Tan
c8c67dde6f text-splitters[patch]: Fix HTMLSectionSplitter (#22812)
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22654.

Modified `langchain_text_splitters.HTMLSectionSplitter`, where in the
latest version `dict` data structure is used to store sections from a
html document, in function `split_html_by_headers`. The header/section
element names serve as dict keys. This can be a problem when duplicate
header/section element names are present in a single html document.
Latter ones can replace former ones with the same name. Therefore some
contents can be miss after html text splitting is conducted.

Using a list to store sections can hopefully solve the problem. A Unit
test considering duplicate header names has been added.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-14 22:40:39 +00:00
Erick Friis
fbeeb6da75 langchain: release 0.2.5 (#22922) 2024-06-14 15:37:54 -07:00
1984 changed files with 83273 additions and 28601 deletions

View File

@@ -5,10 +5,10 @@ services:
dockerfile: libs/langchain/dev.Dockerfile
context: ..
volumes:
# Update this to wherever you want VS Code to mount the folder of your project
# Update this to wherever you want VS Code to mount the folder of your project
- ..:/workspaces/langchain:cached
networks:
- langchain-network
- langchain-network
# environment:
# MONGO_ROOT_USERNAME: root
# MONGO_ROOT_PASSWORD: example123
@@ -28,5 +28,3 @@ services:
networks:
langchain-network:
driver: bridge

View File

@@ -4,9 +4,6 @@ contact_links:
- name: 🤔 Question or Problem
about: Ask a question or ask about a problem in GitHub Discussions.
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
- name: Discord
url: https://discord.gg/6adMQxSpJS
about: General community discussions
- name: Feature Request
url: https://www.github.com/langchain-ai/langchain/discussions/categories/ideas
about: Suggest a feature or an idea

View File

@@ -350,11 +350,7 @@ def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
print("Querying PRs...")
else:
print(f"Querying PRs with cursor {after}...")
data = get_graphql_response(
settings=settings,
query=prs_query,
after=after
)
data = get_graphql_response(settings=settings, query=prs_query, after=after)
graphql_response = PRsResponse.model_validate(data)
return graphql_response.data.repository.pullRequests.edges
@@ -484,10 +480,16 @@ def get_contributors(settings: Settings):
lines_changed = pr.additions + pr.deletions
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
contributor_scores[pr.author.login] += score
three_months_ago = (datetime.now(timezone.utc) - timedelta(days=3*30))
three_months_ago = datetime.now(timezone.utc) - timedelta(days=3 * 30)
if pr.createdAt > three_months_ago:
recent_contributor_scores[pr.author.login] += score
return contributors, contributor_scores, recent_contributor_scores, reviewers, authors
return (
contributors,
contributor_scores,
recent_contributor_scores,
reviewers,
authors,
)
def get_top_users(
@@ -524,9 +526,13 @@ if __name__ == "__main__":
# question_commentors, question_last_month_commentors, question_authors = get_experts(
# settings=settings
# )
contributors, contributor_scores, recent_contributor_scores, reviewers, pr_authors = get_contributors(
settings=settings
)
(
contributors,
contributor_scores,
recent_contributor_scores,
reviewers,
pr_authors,
) = get_contributors(settings=settings)
# authors = {**question_authors, **pr_authors}
authors = {**pr_authors}
maintainers_logins = {
@@ -547,6 +553,7 @@ if __name__ == "__main__":
"obi1kenobi",
"langchain-infra",
"jacoblee93",
"isahers1",
"dqbd",
"bracesproul",
"akira",
@@ -558,7 +565,7 @@ if __name__ == "__main__":
maintainers.append(
{
"login": login,
"count": contributors[login], #+ question_commentors[login],
"count": contributors[login], # + question_commentors[login],
"avatarUrl": user.avatarUrl,
"twitterUsername": user.twitterUsername,
"url": user.url,
@@ -614,9 +621,7 @@ if __name__ == "__main__":
new_people_content = yaml.dump(
people, sort_keys=False, width=200, allow_unicode=True
)
if (
people_old_content == new_people_content
):
if people_old_content == new_people_content:
logging.info("The LangChain People data hasn't changed, finishing.")
sys.exit(0)
people_path.write_text(new_people_content, encoding="utf-8")
@@ -629,9 +634,7 @@ if __name__ == "__main__":
logging.info(f"Creating a new branch {branch_name}")
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
logging.info("Adding updated file")
subprocess.run(
["git", "add", str(people_path)], check=True
)
subprocess.run(["git", "add", str(people_path)], check=True)
logging.info("Committing updated file")
message = "👥 Update LangChain people data"
result = subprocess.run(["git", "commit", "-m", message], check=True)
@@ -640,4 +643,4 @@ if __name__ == "__main__":
logging.info("Creating PR")
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
logging.info(f"Created PR: {pr.number}")
logging.info("Finished")
logging.info("Finished")

View File

@@ -1,7 +1,13 @@
import glob
import json
import sys
import os
from typing import Dict
import re
import sys
import tomllib
from collections import defaultdict
from typing import Dict, List, Set
from pathlib import Path
LANGCHAIN_DIRS = [
"libs/core",
@@ -11,6 +17,112 @@ LANGCHAIN_DIRS = [
"libs/experimental",
]
def all_package_dirs() -> Set[str]:
return {
"/".join(path.split("/")[:-1]).lstrip("./")
for path in glob.glob("./libs/**/pyproject.toml", recursive=True)
if "libs/cli" not in path and "libs/standard-tests" not in path
}
def dependents_graph() -> dict:
"""
Construct a mapping of package -> dependents, such that we can
run tests on all dependents of a package when a change is made.
"""
dependents = defaultdict(set)
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
if "template" in path:
continue
# load regular and test deps from pyproject.toml
with open(path, "rb") as f:
pyproject = tomllib.load(f)["tool"]["poetry"]
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
for dep in [
*pyproject["dependencies"].keys(),
*pyproject["group"]["test"]["dependencies"].keys(),
]:
if "langchain" in dep:
dependents[dep].add(pkg_dir)
continue
# load extended deps from extended_testing_deps.txt
package_path = Path(path).parent
extended_requirement_path = package_path / "extended_testing_deps.txt"
if extended_requirement_path.exists():
with open(extended_requirement_path, "r") as f:
extended_deps = f.read().splitlines()
for depline in extended_deps:
if depline.startswith("-e "):
# editable dependency
assert depline.startswith(
"-e ../partners/"
), "Extended test deps should only editable install partner packages"
partner = depline.split("partners/")[1]
dep = f"langchain-{partner}"
else:
dep = depline.split("==")[0]
if "langchain" in dep:
dependents[dep].add(pkg_dir)
return dependents
def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]:
updated = set()
for dir_ in dirs_to_eval:
# handle core manually because it has so many dependents
if "core" in dir_:
updated.add(dir_)
continue
pkg = "langchain-" + dir_.split("/")[-1]
updated.update(dependents[pkg])
updated.add(dir_)
return list(updated)
def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
min_python = "3.8"
max_python = "3.12"
# custom logic for specific directories
if dir_ == "libs/partners/milvus":
# milvus poetry doesn't allow 3.12 because they
# declare deps in funny way
max_python = "3.11"
return [
{"working-directory": dir_, "python-version": min_python},
{"working-directory": dir_, "python-version": max_python},
]
def _get_configs_for_multi_dirs(
job: str, dirs_to_run: List[str], dependents: dict
) -> List[Dict[str, str]]:
if job == "lint":
dirs = add_dependents(
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"],
dependents,
)
elif job in ["test", "compile-integration-tests", "dependencies"]:
dirs = add_dependents(
dirs_to_run["test"] | dirs_to_run["extended-test"], dependents
)
elif job == "extended-tests":
dirs = list(dirs_to_run["extended-test"])
else:
raise ValueError(f"Unknown job: {job}")
return [
config for dir_ in dirs for config in _get_configs_for_single_dir(job, dir_)
]
if __name__ == "__main__":
files = sys.argv[1:]
@@ -21,10 +133,11 @@ if __name__ == "__main__":
}
docs_edited = False
if len(files) == 300:
if len(files) >= 300:
# max diff length is 300 files - there are likely files missing
raise ValueError("Max diff reached. Please manually run CI on changed libs.")
dirs_to_run["lint"] = all_package_dirs()
dirs_to_run["test"] = all_package_dirs()
dirs_to_run["extended-test"] = set(LANGCHAIN_DIRS)
for file in files:
if any(
file.startswith(dir_)
@@ -81,14 +194,25 @@ if __name__ == "__main__":
docs_edited = True
dirs_to_run["lint"].add(".")
outputs = {
"dirs-to-lint": list(
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"]
),
"dirs-to-test": list(dirs_to_run["test"] | dirs_to_run["extended-test"]),
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
"docs-edited": "true" if docs_edited else "",
dependents = dependents_graph()
# we now have dirs_by_job
# todo: clean this up
map_job_to_configs = {
job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents)
for job in [
"lint",
"test",
"extended-tests",
"compile-integration-tests",
"dependencies",
]
}
for key, value in outputs.items():
map_job_to_configs["test-doc-imports"] = (
[{"python-version": "3.12"}] if docs_edited else []
)
for key, value in map_job_to_configs.items():
json_output = json.dumps(value)
print(f"{key}={json_output}")

View File

@@ -0,0 +1,35 @@
import sys
import tomllib
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
# read toml file
with open(toml_file, "rb") as file:
toml_data = tomllib.load(file)
# see if we're releasing an rc
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["tool"]["poetry"]["dependencies"]
for lib in dependencies:
dep_version = dependencies[lib]
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {lib} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
)

View File

@@ -1,6 +1,11 @@
import sys
import tomllib
if sys.version_info >= (3, 11):
import tomllib
else:
# for python 3.10 and below, which doesnt have stdlib tomllib
import tomli as tomllib
from packaging.version import parse as parse_version
import re
@@ -9,6 +14,7 @@ MIN_VERSION_LIBS = [
"langchain-community",
"langchain",
"langchain-text-splitters",
"SQLAlchemy",
]
@@ -74,6 +80,4 @@ if __name__ == "__main__":
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file)
print(
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
)
print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()]))

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -17,22 +21,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: "poetry run pytest -m compile tests/integration_tests #${{ matrix.python-version }}"
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: compile-integration

View File

@@ -11,6 +11,10 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -21,22 +25,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: dependency checks ${{ matrix.python-version }}
name: dependency checks ${{ inputs.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat

View File

@@ -6,30 +6,28 @@ on:
working-directory:
required: true
type: string
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
jobs:
build:
environment: Scheduled testing
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.11"
name: Python ${{ matrix.python-version }}
name: Python ${{ inputs.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
@@ -53,8 +51,15 @@ jobs:
shell: bash
env:
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}

View File

@@ -11,6 +11,10 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -21,27 +25,15 @@ env:
jobs:
build:
name: "make lint #${{ matrix.python-version }}"
name: "make lint #${{ inputs.python-version }}"
runs-on: ubuntu-latest
strategy:
matrix:
# Only lint on the min and max supported Python versions.
# It's extremely unlikely that there's a lint issue on any version in between
# that doesn't show up on the min or max versions.
#
# GitHub rate-limits how many jobs can be running at any one time.
# Starting new jobs is also relatively slow,
# so linting on fewer versions makes CI faster.
python-version:
- "3.8"
- "3.12"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: lint-with-extras
@@ -86,7 +78,7 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
@@ -120,7 +112,7 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}

View File

@@ -122,7 +122,6 @@ jobs:
fi
{
echo 'release-body<<EOF'
echo "# Release $TAG"
echo $PREAMBLE
echo
git log --format="%s" "$PREV_TAG"..HEAD -- $WORKING_DIR
@@ -135,6 +134,7 @@ jobs:
- release-notes
uses:
./.github/workflows/_test_release.yml
permissions: write-all
with:
working-directory: ${{ inputs.working-directory }}
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
@@ -189,7 +189,7 @@ jobs:
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" || \
( \
sleep 5 && \
sleep 15 && \
poetry run pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION" \
@@ -202,7 +202,7 @@ jobs:
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
- name: Import test dependencies
run: poetry install --with test,test_integration
run: poetry install --with test
working-directory: ${{ inputs.working-directory }}
# Overwrite the local version of the package with the test PyPI version.
@@ -221,6 +221,11 @@ jobs:
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Check for prerelease versions
working-directory: ${{ inputs.working-directory }}
run: |
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
@@ -245,6 +250,10 @@ jobs:
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Import integration test dependencies
run: poetry install --with test,test_integration
working-directory: ${{ inputs.working-directory }}
- name: Run integration tests
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
env:

View File

@@ -11,6 +11,10 @@ on:
required: false
type: string
description: "Relative path to the langchain library folder"
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -21,22 +25,14 @@ jobs:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
name: "make test #${{ matrix.python-version }}"
name: "make test #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: core
@@ -69,3 +65,21 @@ jobs:
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging tomli
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -2,6 +2,11 @@ name: test_doc_imports
on:
workflow_call:
inputs:
python-version:
required: true
type: string
description: "Python version to use"
env:
POETRY_VERSION: "1.7.1"
@@ -9,18 +14,14 @@ env:
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.12"
name: "check doc imports #${{ matrix.python-version }}"
name: "check doc imports #${{ inputs.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: core

View File

@@ -26,98 +26,103 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: '3.10'
python-version: '3.11'
- id: files
uses: Ana06/get-changed-files@v2.2.0
- id: set-matrix
run: |
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
outputs:
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
docs-edited: ${{ steps.set-matrix.outputs.docs-edited }}
lint: ${{ steps.set-matrix.outputs.lint }}
test: ${{ steps.set-matrix.outputs.test }}
extended-tests: ${{ steps.set-matrix.outputs.extended-tests }}
compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }}
dependencies: ${{ steps.set-matrix.outputs.dependencies }}
test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }}
lint:
name: cd ${{ matrix.working-directory }}
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-lint != '[]' }}
if: ${{ needs.build.outputs.lint != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-lint) }}
job-configs: ${{ fromJson(needs.build.outputs.lint) }}
uses: ./.github/workflows/_lint.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
test:
name: cd ${{ matrix.working-directory }}
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.test != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
job-configs: ${{ fromJson(needs.build.outputs.test) }}
uses: ./.github/workflows/_test.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
test-doc-imports:
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' || needs.build.outputs.docs-edited }}
uses: ./.github/workflows/_test_doc_imports.yml
secrets: inherit
compile-integration-tests:
name: cd ${{ matrix.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.test-doc-imports != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
job-configs: ${{ fromJson(needs.build.outputs.test-doc-imports) }}
uses: ./.github/workflows/_test_doc_imports.yml
secrets: inherit
with:
python-version: ${{ matrix.job-configs.python-version }}
compile-integration-tests:
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.compile-integration-tests != '[]' }}
strategy:
matrix:
job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }}
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
dependencies:
name: cd ${{ matrix.working-directory }}
name: cd ${{ matrix.job-configs.working-directory }}
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.dependencies != '[]' }}
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
job-configs: ${{ fromJson(needs.build.outputs.dependencies) }}
uses: ./.github/workflows/_dependencies.yml
with:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
python-version: ${{ matrix.job-configs.python-version }}
secrets: inherit
extended-tests:
name: "cd ${{ matrix.working-directory }} / make extended_tests #${{ matrix.python-version }}"
name: "cd ${{ matrix.job-configs.working-directory }} / make extended_tests #${{ matrix.job-configs.python-version }}"
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-extended-test != '[]' }}
if: ${{ needs.build.outputs.extended-tests != '[]' }}
strategy:
matrix:
# note different variable for extended test dirs
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-extended-test) }}
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ matrix.job-configs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ matrix.working-directory }}
working-directory: ${{ matrix.job-configs.working-directory }}
cache-key: extended
- name: Install dependencies

View File

@@ -26,6 +26,11 @@ jobs:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
with:
filter: |
*.ipynb
*.md
*.mdx
- name: Check new docs
run: |
python docs/scripts/check_templates.py ${{ steps.files.outputs.added }}

View File

@@ -16,6 +16,7 @@ jobs:
langchain-people:
if: github.repository_owner == 'langchain-ai'
runs-on: ubuntu-latest
permissions: write-all
steps:
- name: Dump GitHub context
env:

View File

@@ -27,7 +27,6 @@ jobs:
- "libs/partners/groq"
- "libs/partners/mistralai"
- "libs/partners/together"
- "libs/partners/cohere"
- "libs/partners/google-vertexai"
- "libs/partners/google-genai"
- "libs/partners/aws"
@@ -40,10 +39,6 @@ jobs:
with:
repository: langchain-ai/langchain-google
path: langchain-google
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-cohere
path: langchain-cohere
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-aws
@@ -53,11 +48,9 @@ jobs:
run: |
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/cohere
langchain/libs/partners/google-vertexai
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: Set up Python ${{ matrix.python-version }}
@@ -116,7 +109,6 @@ jobs:
rm -rf \
langchain/libs/partners/google-genai \
langchain/libs/partners/google-vertexai \
langchain/libs/partners/cohere \
langchain/libs/partners/aws
- name: Ensure the tests did not create any additional files

View File

@@ -11,7 +11,6 @@
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/issues)
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode&style=flat-square)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain)
[![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
@@ -38,24 +37,25 @@ conda install langchain -c conda-forge
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's [modular building blocks](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel) and [components](https://python.langchain.com/v0.2/docs/concepts/#components). Integrate with hundreds of [third-party providers](https://python.langchain.com/v0.2/docs/integrations/platforms/).
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn any chain into a REST API with [LangServe](https://python.langchain.com/v0.2/docs/langserve/).
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
### Open-source libraries
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
### Productionization:
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangServe](https://python.langchain.com/v0.2/docs/langserve/)**: A library for deploying LangChain chains as REST APIs.
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack.svg "LangChain Architecture Overview")
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack_062024.svg "LangChain Architecture Overview")
## 🧱 What can you build with LangChain?
@@ -106,7 +106,7 @@ Retrieval Augmented Generation involves [loading data](https://python.langchain.
**🤖 Agents**
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents) along with the [LangGraph](https://github.com/langchain-ai/langgraph) extension for building custom agents.
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
## 📖 Documentation
@@ -120,10 +120,9 @@ Please see [here](https://python.langchain.com) for full documentation, which in
## 🌐 Ecosystem
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Tracing and evaluating your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Creating stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploying LangChain runnables and chains as REST APIs.
- [LangChain Templates](https://python.langchain.com/v0.2/docs/templates/): Example applications hosted with LangServe.
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
## 💁 Contributing

View File

@@ -64,7 +64,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -355,7 +355,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -37,7 +37,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -U --quiet langchain langchain_community openai chromadb langchain-experimental\n",
"%pip install -U --quiet langchain langchain-chroma langchain-community openai langchain-experimental\n",
"%pip install --quiet \"unstructured[all-docs]\" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken"
]
},
@@ -344,8 +344,8 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import VertexAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub chromadb langchain-anthropic"
"pip install -U langchain umap-learn scikit-learn langchain_community tiktoken langchain-openai langchainhub langchain-chroma langchain-anthropic"
]
},
{
@@ -645,7 +645,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"\n",
"# Initialize all_texts with leaf_texts\n",
"all_texts = leaf_texts.copy()\n",

View File

@@ -57,4 +57,6 @@ Notebook | Description
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml langchainhub"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml langchainhub"
]
},
{
@@ -320,7 +320,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
]
},
{
@@ -375,7 +375,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -59,7 +59,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain unstructured[all-docs] pydantic lxml"
"! pip install langchain langchain-chroma unstructured[all-docs] pydantic lxml"
]
},
{
@@ -378,8 +378,8 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -19,7 +19,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain_chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -132,7 +132,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"baseline = Chroma.from_texts(\n",

View File

@@ -28,7 +28,7 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",

View File

@@ -14,7 +14,7 @@
}
],
"source": [
"%pip install -qU langchain-airbyte"
"%pip install -qU langchain-airbyte langchain_chroma"
]
},
{
@@ -123,7 +123,7 @@
"outputs": [],
"source": [
"import tiktoken\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",

File diff suppressed because one or more lines are too long

View File

@@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet"
"! pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub langchain-chroma hnswlib --upgrade --quiet"
]
},
{
@@ -547,7 +547,7 @@
"\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",

View File

@@ -84,7 +84,7 @@
}
],
"source": [
"%pip install --quiet pypdf chromadb tiktoken openai \n",
"%pip install --quiet pypdf langchain-chroma tiktoken openai \n",
"%pip uninstall -y langchain-fireworks\n",
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
]
@@ -138,7 +138,7 @@
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
"\n",
"vectorstore = Chroma.from_documents(\n",

View File

@@ -170,7 +170,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"\n",
"with open(\"../../state_of_the_union.txt\") as f:\n",

File diff suppressed because one or more lines are too long

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
]
},
{
@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph tavily-python"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph tavily-python"
]
},
{
@@ -77,8 +77,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",
@@ -180,8 +180,8 @@
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import Document\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",

View File

@@ -7,7 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph"
"! pip install langchain-chroma langchain_community tiktoken langchain-openai langchainhub langchain langgraph"
]
},
{
@@ -86,8 +86,8 @@
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"urls = [\n",
@@ -188,7 +188,7 @@
"from langchain.output_parsers import PydanticOutputParser\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.messages import BaseMessage, FunctionMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",

View File

@@ -58,7 +58,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)"
"! pip install -U langchain openai langchain-chroma langchain-experimental # (newest versions required for multi-modal)"
]
},
{
@@ -187,7 +187,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",

View File

@@ -58,7 +58,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain"
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain"
]
},
{
@@ -167,7 +167,7 @@
"source": [
"import os\n",
"\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_nomic import NomicEmbeddings\n",

View File

@@ -56,7 +56,7 @@
},
"outputs": [],
"source": [
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain # (newest versions required for multi-modal)"
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain # (newest versions required for multi-modal)"
]
},
{
@@ -194,7 +194,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_nomic import NomicEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",

View File

@@ -20,8 +20,8 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter"
]

View File

@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_chroma import Chroma\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()"

View File

@@ -0,0 +1,756 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "10f50955-be55-422f-8c62-3a32f8cf02ed",
"metadata": {},
"source": [
"# RAG application running locally on Intel Xeon CPU using langchain and open-source models"
]
},
{
"cell_type": "markdown",
"id": "48113be6-44bb-4aac-aed3-76a1365b9561",
"metadata": {},
"source": [
"Author - Pratool Bharti (pratool.bharti@intel.com)"
]
},
{
"cell_type": "markdown",
"id": "8b10b54b-1572-4ea1-9c1e-1d29fcc3dcd9",
"metadata": {},
"source": [
"In this cookbook, we use langchain tools and open source models to execute locally on CPU. This notebook has been validated to run on Intel Xeon 8480+ CPU. Here we implement a RAG pipeline for Llama2 model to answer questions about Intel Q1 2024 earnings release."
]
},
{
"cell_type": "markdown",
"id": "acadbcec-3468-4926-8ce5-03b678041c0a",
"metadata": {},
"source": [
"**Create a conda or virtualenv environment with python >=3.10 and install following libraries**\n",
"<br>\n",
"\n",
"`pip install --upgrade langchain langchain-community langchainhub langchain-chroma bs4 gpt4all pypdf pysqlite3-binary` <br>\n",
"`pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu`"
]
},
{
"cell_type": "markdown",
"id": "84c392c8-700a-42ec-8e94-806597f22e43",
"metadata": {},
"source": [
"**Load pysqlite3 in sys modules since ChromaDB requires sqlite3.**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "145cd491-b388-4ea7-bdc8-2f4995cac6fd",
"metadata": {},
"outputs": [],
"source": [
"__import__(\"pysqlite3\")\n",
"import sys\n",
"\n",
"sys.modules[\"sqlite3\"] = sys.modules.pop(\"pysqlite3\")"
]
},
{
"cell_type": "markdown",
"id": "14dde7e2-b236-49b9-b3a0-08c06410418c",
"metadata": {},
"source": [
"**Import essential components from langchain to load and split data**"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "887643ba-249e-48d6-9aa7-d25087e8dfbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.document_loaders import PyPDFLoader"
]
},
{
"cell_type": "markdown",
"id": "922c0eba-8736-4de5-bd2f-3d0f00b16e43",
"metadata": {},
"source": [
"**Download Intel Q1 2024 earnings release**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2d6a2419-5338-4188-8615-a40a65ff8019",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-07-15 15:04:43-- https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf\n",
"Resolving proxy-dmz.intel.com (proxy-dmz.intel.com)... 10.7.211.16\n",
"Connecting to proxy-dmz.intel.com (proxy-dmz.intel.com)|10.7.211.16|:912... connected.\n",
"Proxy request sent, awaiting response... 200 OK\n",
"Length: 133510 (130K) [application/pdf]\n",
"Saving to: intel_q1_2024_earnings.pdf\n",
"\n",
"intel_q1_2024_earni 100%[===================>] 130.38K --.-KB/s in 0.005s \n",
"\n",
"2024-07-15 15:04:44 (24.6 MB/s) - intel_q1_2024_earnings.pdf saved [133510/133510]\n",
"\n"
]
}
],
"source": [
"!wget 'https://d1io3yog0oux5.cloudfront.net/_11d435a500963f99155ee058df09f574/intel/db/887/9014/earnings_release/Q1+24_EarningsRelease_FINAL.pdf' -O intel_q1_2024_earnings.pdf"
]
},
{
"cell_type": "markdown",
"id": "e3612627-e105-453d-8a50-bbd6e39dedb5",
"metadata": {},
"source": [
"**Loading earning release pdf document through PyPDFLoader**"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cac6278e-ebad-4224-a062-bf6daca24cb0",
"metadata": {},
"outputs": [],
"source": [
"loader = PyPDFLoader(\"intel_q1_2024_earnings.pdf\")\n",
"data = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "a7dca43b-1c62-41df-90c7-6ed2904f823d",
"metadata": {},
"source": [
"**Splitting entire document in several chunks with each chunk size is 500 tokens**"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4486adbe-0d0e-4685-8c08-c1774ed6e993",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)"
]
},
{
"cell_type": "markdown",
"id": "af142346-e793-4a52-9a56-63e3be416b3d",
"metadata": {},
"source": [
"**Looking at the first split of the document**"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e4240fd1-898e-4bfc-a377-02c9bc25b56e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'source': 'intel_q1_2024_earnings.pdf', 'page': 0}, page_content='Intel Corporation\\n2200 Mission College Blvd.\\nSanta Clara, CA 95054-1549\\n \\nNews Release\\n Intel Reports First -Quarter 2024 Financial Results\\nNEWS SUMMARY\\n▪First-quarter revenue of $12.7 billion , up 9% year over year (YoY).\\n▪First-quarter GAAP earnings (loss) per share (EPS) attributable to Intel was $(0.09) ; non-GAAP EPS \\nattributable to Intel was $0.18 .')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_splits[0]"
]
},
{
"cell_type": "markdown",
"id": "b88d2632-7c1b-49ef-a691-c0eb67d23e6a",
"metadata": {},
"source": [
"**One of the major step in RAG is to convert each split of document into embeddings and store in a vector database such that searching relevant documents are efficient.** <br>\n",
"**For that, importing Chroma vector database from langchain. Also, importing open source GPT4All for embedding models**"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9ff99dd7-9d47-4239-ba0a-d775792334ba",
"metadata": {},
"outputs": [],
"source": [
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings"
]
},
{
"cell_type": "markdown",
"id": "b5d1f4dd-dd8d-4a20-95d1-2dbdd204375a",
"metadata": {},
"source": [
"**In next step, we will download one of the most popular embedding model \"all-MiniLM-L6-v2\". Find more details of the model at this link https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2**"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "05db3494-5d8e-4a13-9941-26330a86f5e5",
"metadata": {},
"outputs": [],
"source": [
"model_name = \"all-MiniLM-L6-v2.gguf2.f16.gguf\"\n",
"gpt4all_kwargs = {\"allow_download\": \"True\"}\n",
"embeddings = GPT4AllEmbeddings(model_name=model_name, gpt4all_kwargs=gpt4all_kwargs)"
]
},
{
"cell_type": "markdown",
"id": "4e53999e-1983-46ac-8039-2783e194c3ae",
"metadata": {},
"source": [
"**Store all the embeddings in the Chroma database**"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "0922951a-9ddf-4761-973d-8e9a86f61284",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=embeddings)"
]
},
{
"cell_type": "markdown",
"id": "29f94fa0-6c75-4a65-a1a3-debc75422479",
"metadata": {},
"source": [
"**Now, let's find relevant splits from the documents related to the question**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "88c8152d-ec7a-4f0b-9d86-877789407537",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"question = \"What is Intel CCG revenue in Q1 2024\"\n",
"docs = vectorstore.similarity_search(question)\n",
"print(len(docs))"
]
},
{
"cell_type": "markdown",
"id": "53330c6b-cb0f-43f9-b379-2e57ac1e5335",
"metadata": {},
"source": [
"**Look at the first retrieved document from the vector database**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "43a6d94f-b5c4-47b0-a353-2db4c3d24d9c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'page': 1, 'source': 'intel_q1_2024_earnings.pdf'}, page_content='Client Computing Group (CCG) $7.5 billion up31%\\nData Center and AI (DCAI) $3.0 billion up5%\\nNetwork and Edge (NEX) $1.4 billion down 8%\\nTotal Intel Products revenue $11.9 billion up17%\\nIntel Foundry $4.4 billion down 10%\\nAll other:\\nAltera $342 million down 58%\\nMobileye $239 million down 48%\\nOther $194 million up17%\\nTotal all other revenue $775 million down 46%\\nIntersegment eliminations $(4.4) billion\\nTotal net revenue $12.7 billion up9%\\nIntel Products Highlights')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0]"
]
},
{
"cell_type": "markdown",
"id": "64ba074f-4b36-442e-b7e2-b26d6e2815c3",
"metadata": {},
"source": [
"**Download Lllama-2 model from Huggingface and store locally** <br>\n",
"**You can download different quantization variant of Lllama-2 model from the link below. We are using Q8 version here (7.16GB).** <br>\n",
"https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8dd0811-6f43-4bc6-b854-2ab377639c9a",
"metadata": {},
"outputs": [],
"source": [
"!huggingface-cli download TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q8_0.gguf --local-dir . --local-dir-use-symlinks False"
]
},
{
"cell_type": "markdown",
"id": "3895b1f5-f51d-4539-abf0-af33d7ca48ea",
"metadata": {},
"source": [
"**Import langchain components required to load downloaded LLMs model**"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "fb087088-aa62-44c0-8356-061e9b9f1186",
"metadata": {},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"from langchain_community.llms import LlamaCpp"
]
},
{
"cell_type": "markdown",
"id": "5a8a111e-2614-4b70-b034-85cd3e7304cb",
"metadata": {},
"source": [
"**Loading the local Lllama-2 model using Llama-cpp library**"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "fb917da2-c0d7-4995-b56d-26254276e0da",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q8_0.gguf (version GGUF V2)\n",
"llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n",
"llama_model_loader: - kv 0: general.architecture str = llama\n",
"llama_model_loader: - kv 1: general.name str = LLaMA v2\n",
"llama_model_loader: - kv 2: llama.context_length u32 = 4096\n",
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008\n",
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32\n",
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001\n",
"llama_model_loader: - kv 10: general.file_type u32 = 7\n",
"llama_model_loader: - kv 11: tokenizer.ggml.model str = llama\n",
"llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
"llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
"llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
"llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1\n",
"llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2\n",
"llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0\n",
"llama_model_loader: - kv 18: general.quantization_version u32 = 2\n",
"llama_model_loader: - type f32: 65 tensors\n",
"llama_model_loader: - type q8_0: 226 tensors\n",
"llm_load_vocab: special tokens cache size = 259\n",
"llm_load_vocab: token to piece cache size = 0.1684 MB\n",
"llm_load_print_meta: format = GGUF V2\n",
"llm_load_print_meta: arch = llama\n",
"llm_load_print_meta: vocab type = SPM\n",
"llm_load_print_meta: n_vocab = 32000\n",
"llm_load_print_meta: n_merges = 0\n",
"llm_load_print_meta: vocab_only = 0\n",
"llm_load_print_meta: n_ctx_train = 4096\n",
"llm_load_print_meta: n_embd = 4096\n",
"llm_load_print_meta: n_layer = 32\n",
"llm_load_print_meta: n_head = 32\n",
"llm_load_print_meta: n_head_kv = 32\n",
"llm_load_print_meta: n_rot = 128\n",
"llm_load_print_meta: n_swa = 0\n",
"llm_load_print_meta: n_embd_head_k = 128\n",
"llm_load_print_meta: n_embd_head_v = 128\n",
"llm_load_print_meta: n_gqa = 1\n",
"llm_load_print_meta: n_embd_k_gqa = 4096\n",
"llm_load_print_meta: n_embd_v_gqa = 4096\n",
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
"llm_load_print_meta: f_norm_rms_eps = 1.0e-06\n",
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
"llm_load_print_meta: f_logit_scale = 0.0e+00\n",
"llm_load_print_meta: n_ff = 11008\n",
"llm_load_print_meta: n_expert = 0\n",
"llm_load_print_meta: n_expert_used = 0\n",
"llm_load_print_meta: causal attn = 1\n",
"llm_load_print_meta: pooling type = 0\n",
"llm_load_print_meta: rope type = 0\n",
"llm_load_print_meta: rope scaling = linear\n",
"llm_load_print_meta: freq_base_train = 10000.0\n",
"llm_load_print_meta: freq_scale_train = 1\n",
"llm_load_print_meta: n_ctx_orig_yarn = 4096\n",
"llm_load_print_meta: rope_finetuned = unknown\n",
"llm_load_print_meta: ssm_d_conv = 0\n",
"llm_load_print_meta: ssm_d_inner = 0\n",
"llm_load_print_meta: ssm_d_state = 0\n",
"llm_load_print_meta: ssm_dt_rank = 0\n",
"llm_load_print_meta: model type = 7B\n",
"llm_load_print_meta: model ftype = Q8_0\n",
"llm_load_print_meta: model params = 6.74 B\n",
"llm_load_print_meta: model size = 6.67 GiB (8.50 BPW) \n",
"llm_load_print_meta: general.name = LLaMA v2\n",
"llm_load_print_meta: BOS token = 1 '<s>'\n",
"llm_load_print_meta: EOS token = 2 '</s>'\n",
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
"llm_load_print_meta: max token length = 48\n",
"llm_load_tensors: ggml ctx size = 0.14 MiB\n",
"llm_load_tensors: CPU buffer size = 6828.64 MiB\n",
"...................................................................................................\n",
"llama_new_context_with_model: n_ctx = 2048\n",
"llama_new_context_with_model: n_batch = 512\n",
"llama_new_context_with_model: n_ubatch = 512\n",
"llama_new_context_with_model: flash_attn = 0\n",
"llama_new_context_with_model: freq_base = 10000.0\n",
"llama_new_context_with_model: freq_scale = 1\n",
"llama_kv_cache_init: CPU KV buffer size = 1024.00 MiB\n",
"llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB\n",
"llama_new_context_with_model: CPU output buffer size = 0.12 MiB\n",
"llama_new_context_with_model: CPU compute buffer size = 164.01 MiB\n",
"llama_new_context_with_model: graph nodes = 1030\n",
"llama_new_context_with_model: graph splits = 1\n",
"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | \n",
"Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.rope.dimension_count': '128', 'llama.attention.head_count': '32', 'tokenizer.ggml.bos_token_id': '1', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '7'}\n",
"Using fallback chat format: llama-2\n"
]
}
],
"source": [
"llm = LlamaCpp(\n",
" model_path=\"llama-2-7b-chat.Q8_0.gguf\",\n",
" n_gpu_layers=-1,\n",
" n_batch=512,\n",
" n_ctx=2048,\n",
" f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "43e06f56-ef97-451b-87d9-8465ea442aed",
"metadata": {},
"source": [
"**Now let's ask the same question to Llama model without showing them the earnings release.**"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1033dd82-5532-437d-a548-27695e109589",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"?\n",
"(NASDAQ:INTC)\n",
"Intel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 16.05 ms / 68 runs ( 0.24 ms per token, 4236.76 tokens per second)\n",
"llama_print_timings: prompt eval time = 131.14 ms / 16 tokens ( 8.20 ms per token, 122.01 tokens per second)\n",
"llama_print_timings: eval time = 3225.00 ms / 67 runs ( 48.13 ms per token, 20.78 tokens per second)\n",
"llama_print_timings: total time = 3466.40 ms / 83 tokens\n"
]
},
{
"data": {
"text/plain": [
"\"?\\n(NASDAQ:INTC)\\nIntel's CCG (Client Computing Group) revenue for Q1 2024 was $9.6 billion, a decrease of 35% from the previous quarter and a decrease of 42% from the same period last year.\""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.invoke(question)"
]
},
{
"cell_type": "markdown",
"id": "75f5cb10-746f-4e37-9386-b85a4d2b84ef",
"metadata": {},
"source": [
"**As you can see, model is giving wrong information. Correct asnwer is CCG revenue in Q1 2024 is $7.5B. Now let's apply RAG using the earning release document**"
]
},
{
"cell_type": "markdown",
"id": "0f4150ec-5692-4756-b11a-22feb7ab88ff",
"metadata": {},
"source": [
"**in RAG, we modify the input prompt by adding relevent documents with the question. Here, we use one of the popular RAG prompt**"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "226c14b0-f43e-4a1f-a1e4-04731d467ec4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template=\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\\nQuestion: {question} \\nContext: {context} \\nAnswer:\"))]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import hub\n",
"\n",
"rag_prompt = hub.pull(\"rlm/rag-prompt\")\n",
"rag_prompt.messages"
]
},
{
"cell_type": "markdown",
"id": "77deb6a0-0950-450a-916a-f2a029676c20",
"metadata": {},
"source": [
"**Appending all retreived documents in a single document**"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "2dbc3327-6ef3-4c1f-8797-0c71964b0921",
"metadata": {},
"outputs": [],
"source": [
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)"
]
},
{
"cell_type": "markdown",
"id": "2e2d9f18-49d0-43a3-bea8-78746ffa86b7",
"metadata": {},
"source": [
"**The last step is to create a chain using langchain tool that will create an e2e pipeline. It will take question and context as an input.**"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "427379c2-51ff-4e0f-8278-a45221363299",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough, RunnablePick\n",
"\n",
"# Chain\n",
"chain = (\n",
" RunnablePassthrough.assign(context=RunnablePick(\"context\") | format_docs)\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "095d6280-c949-4d00-8e32-8895a82d245f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Llama.generate: prefix-match hit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 7.74 ms / 31 runs ( 0.25 ms per token, 4004.13 tokens per second)\n",
"llama_print_timings: prompt eval time = 2529.41 ms / 674 tokens ( 3.75 ms per token, 266.46 tokens per second)\n",
"llama_print_timings: eval time = 1542.94 ms / 30 runs ( 51.43 ms per token, 19.44 tokens per second)\n",
"llama_print_timings: total time = 4123.68 ms / 704 tokens\n"
]
},
{
"data": {
"text/plain": [
"' Based on the provided context, Intel CCG revenue in Q1 2024 was $7.5 billion up 31%.'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"context\": docs, \"question\": question})"
]
},
{
"cell_type": "markdown",
"id": "638364b2-6bd2-4471-9961-d3a1d1b9d4ee",
"metadata": {},
"source": [
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "4654e5b7-635f-4767-8b31-4c430164cdd5",
"metadata": {},
"outputs": [],
"source": [
"retriever = vectorstore.as_retriever()\n",
"qa_chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
" | rag_prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0979f393-fd0a-4e82-b844-68371c6ad68f",
"metadata": {},
"source": [
"**Now we only need to pass the question to the chain and it will fetch the contexts directly from the vector database to generate the answer**\n",
"<br>\n",
"**Let's try with another question**"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "3ea07b82-e6ec-4084-85f4-191373530172",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Llama.generate: prefix-match hit\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"llama_print_timings: load time = 131.20 ms\n",
"llama_print_timings: sample time = 6.28 ms / 31 runs ( 0.20 ms per token, 4937.88 tokens per second)\n",
"llama_print_timings: prompt eval time = 2681.93 ms / 730 tokens ( 3.67 ms per token, 272.19 tokens per second)\n",
"llama_print_timings: eval time = 1471.07 ms / 30 runs ( 49.04 ms per token, 20.39 tokens per second)\n",
"llama_print_timings: total time = 4206.77 ms / 760 tokens\n"
]
},
{
"data": {
"text/plain": [
"' According to the provided context, Intel DCAI revenue in Q1 2024 was $3.0 billion up 5%.'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qa_chain.invoke(\"what is Intel DCAI revenue in Q1 2024?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9407f2a0-4a35-4315-8e96-02fcb80f210c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "rag-on-intel",
"language": "python",
"name": "rag-on-intel"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -36,10 +36,10 @@
"from bs4 import BeautifulSoup as Soup\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryByteStore, LocalFileStore\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.document_loaders.recursive_url_loader import (\n",
" RecursiveUrlLoader,\n",
")\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"# For our example, we'll load docs from the web\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
@@ -370,13 +370,14 @@
],
"source": [
"import torch\n",
"from langchain.llms.huggingface_pipeline import HuggingFacePipeline\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"from langchain_huggingface.llms import HuggingFacePipeline\n",
"from optimum.intel.ipex import IPEXModelForCausalLM\n",
"from transformers import AutoTokenizer, pipeline\n",
"\n",
"model_id = \"Intel/neural-chat-7b-v3-3\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_id, device_map=\"auto\", torch_dtype=torch.bfloat16\n",
"model = IPEXModelForCausalLM.from_pretrained(\n",
" model_id, torch_dtype=torch.bfloat16, export=True\n",
")\n",
"\n",
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, max_new_tokens=100)\n",
@@ -581,7 +582,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
"version": "3.10.14"
}
},
"nbformat": 4,

View File

@@ -740,7 +740,7 @@ Even this relatively large model will most likely fail to generate more complica
```bash
poetry run pip install pyyaml chromadb
poetry run pip install pyyaml langchain_chroma
import yaml
```
@@ -994,7 +994,7 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
example_prompt = PromptTemplate(
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],

View File

@@ -22,7 +22,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
"! pip install --quiet pypdf tiktoken openai langchain-chroma langchain-together"
]
},
{
@@ -45,8 +45,8 @@
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_chroma import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"\"\"\"\n",
"from langchain_together.embeddings import TogetherEmbeddings\n",

File diff suppressed because one or more lines are too long

View File

@@ -13,7 +13,7 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
PYTHON = .venv/bin/python
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm" | tr '\n' ' ')
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm|couchbase" | tr '\n' ' ')
PORT ?= 3001
@@ -61,7 +61,7 @@ render:
$(PYTHON) scripts/notebook_convert.py $(INTERMEDIATE_DIR) $(OUTPUT_NEW_DOCS_DIR)
md-sync:
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
generate-references:
$(PYTHON) scripts/generate_api_reference_links.py --docs_dir $(OUTPUT_NEW_DOCS_DIR)

View File

@@ -178,3 +178,10 @@ autosummary_generate = True
html_copy_source = False
html_show_sourcelink = False
# Set canonical URL from the Read the Docs Domain
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
# Tell Jinja2 templates the build is running on Read the Docs
if os.environ.get("READTHEDOCS", "") == "True":
html_context["READTHEDOCS"] = True

View File

@@ -10,12 +10,21 @@ from pathlib import Path
from typing import Dict, List, Literal, Optional, Sequence, TypedDict, Union
import toml
import typing_extensions
from langchain_core.runnables import Runnable, RunnableSerializable
from pydantic import BaseModel
ROOT_DIR = Path(__file__).parents[2].absolute()
HERE = Path(__file__).parent
ClassKind = Literal["TypedDict", "Regular", "Pydantic", "enum"]
ClassKind = Literal[
"TypedDict",
"Regular",
"Pydantic",
"enum",
"RunnablePydantic",
"RunnableNonPydantic",
]
class ClassInfo(TypedDict):
@@ -69,8 +78,36 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
continue
if inspect.isclass(type_):
if type(type_) == typing._TypedDictMeta: # type: ignore
# The type of the class is used to select a template
# for the object when rendering the documentation.
# See `templates` directory for defined templates.
# This is a hacky solution to distinguish between different
# kinds of thing that we want to render.
if type(type_) is typing_extensions._TypedDictMeta: # type: ignore
kind: ClassKind = "TypedDict"
elif type(type_) is typing._TypedDictMeta: # type: ignore
kind: ClassKind = "TypedDict"
elif (
issubclass(type_, Runnable)
and issubclass(type_, BaseModel)
and type_ is not Runnable
):
# RunnableSerializable subclasses from Pydantic which
# for which we use autodoc_pydantic for rendering.
# We need to distinguish these from regular Pydantic
# classes so we can hide inherited Runnable methods
# and provide a link to the Runnable interface from
# the template.
kind = "RunnablePydantic"
elif (
issubclass(type_, Runnable)
and not issubclass(type_, BaseModel)
and type_ is not Runnable
):
# These are not pydantic classes but are Runnable.
# We'll hide all the inherited methods from Runnable
# but use a regular class template to render.
kind = "RunnableNonPydantic"
elif issubclass(type_, Enum):
kind = "enum"
elif issubclass(type_, BaseModel):
@@ -251,6 +288,10 @@ Classes
template = "enum.rst"
elif class_["kind"] == "Pydantic":
template = "pydantic.rst"
elif class_["kind"] == "RunnablePydantic":
template = "runnable_pydantic.rst"
elif class_["kind"] == "RunnableNonPydantic":
template = "runnable_non_pydantic.rst"
else:
template = "class.rst"

File diff suppressed because one or more lines are too long

View File

@@ -33,4 +33,4 @@
{% endblock %}
.. example_links:: {{ objname }}
.. example_links:: {{ objname }}

View File

@@ -15,6 +15,8 @@
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace
{% block attributes %}
{% endblock %}

View File

@@ -0,0 +1,40 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{% block attributes %}
{% if attributes %}
.. rubric:: {{ _('Attributes') }}
.. autosummary::
{% for item in attributes %}
~{{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
~{{ name }}.{{ item }}
{%- endfor %}
{% for item in methods %}
.. automethod:: {{ name }}.{{ item }}
{%- endfor %}
{% endif %}
{% endblock %}
.. example_links:: {{ objname }}

View File

@@ -0,0 +1,24 @@
:mod:`{{module}}`.{{objname}}
{{ underline }}==============
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
.. currentmodule:: {{ module }}
.. autopydantic_model:: {{ objname }}
:model-show-json: False
:model-show-config-summary: False
:model-show-validator-members: False
:model-show-field-summary: False
:field-signature-prefix: param
:members:
:undoc-members:
:inherited-members:
:member-order: groupwise
:show-inheritance: True
:special-members: __call__
:exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, with_listeners, with_alisteners, with_config, with_fallbacks, with_types, with_retry, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, bind, assign
.. example_links:: {{ objname }}

View File

@@ -2,132 +2,129 @@
{%- set url_root = pathto('', 1) %}
{%- if url_root == '#' %}{% set url_root = '' %}{% endif %}
{%- if not embedded and docstitle %}
{%- set titlesuffix = " &mdash; "|safe + docstitle|e %}
{%- set titlesuffix = " &mdash; "|safe + docstitle|e %}
{%- else %}
{%- set titlesuffix = "" %}
{%- set titlesuffix = "" %}
{%- endif %}
{%- set lang_attr = 'en' %}
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="{{ lang_attr }}" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="{{ lang_attr }}" > <!--<![endif]-->
<!--[if gt IE 8]><!-->
<html class="no-js" lang="{{ lang_attr }}"> <!--<![endif]-->
<head>
<meta charset="utf-8">
{{ metatags }}
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta charset="utf-8">
{{ metatags }}
<meta name="viewport" content="width=device-width, initial-scale=1.0">
{% block htmltitle %}
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
{% endblock %}
<link rel="canonical" href="https://api.python.langchain.com/en/latest/{{pagename}}.html" />
{% block htmltitle %}
<title>{{ title|striptags|e }}{{ titlesuffix }}</title>
{% endblock %}
<link rel="canonical"
href="https://api.python.langchain.com/en/latest/{{ pagename }}.html"/>
{% if favicon_url %}
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>
{% endif %}
{% if favicon_url %}
<link rel="shortcut icon" href="{{ favicon_url|e }}"/>
{% endif %}
<link rel="stylesheet" href="{{ pathto('_static/css/vendor/bootstrap.min.css', 1) }}" type="text/css" />
{%- for css in css_files %}
{%- if css|attr("rel") %}
<link rel="{{ css.rel }}" href="{{ pathto(css.filename, 1) }}" type="text/css"{% if css.title is not none %} title="{{ css.title }}"{% endif %} />
{%- else %}
<link rel="stylesheet" href="{{ pathto(css, 1) }}" type="text/css" />
{%- endif %}
{%- endfor %}
<link rel="stylesheet" href="{{ pathto('_static/' + style, 1) }}" type="text/css" />
<script id="documentation_options" data-url_root="{{ pathto('', 1) }}" src="{{ pathto('_static/documentation_options.js', 1) }}"></script>
<script src="{{ pathto('_static/jquery.js', 1) }}"></script>
{%- block extrahead %} {% endblock %}
<link rel="stylesheet"
href="{{ pathto('_static/css/vendor/bootstrap.min.css', 1) }}"
type="text/css"/>
{%- for css in css_files %}
{%- if css|attr("rel") %}
<link rel="{{ css.rel }}" href="{{ pathto(css.filename, 1) }}"
type="text/css"{% if css.title is not none %}
title="{{ css.title }}"{% endif %} />
{%- else %}
<link rel="stylesheet" href="{{ pathto(css, 1) }}" type="text/css"/>
{%- endif %}
{%- endfor %}
<link rel="stylesheet" href="{{ pathto('_static/' + style, 1) }}" type="text/css"/>
<script id="documentation_options" data-url_root="{{ pathto('', 1) }}"
src="{{ pathto('_static/documentation_options.js', 1) }}"></script>
<script src="{{ pathto('_static/jquery.js', 1) }}"></script>
{%- block extrahead %} {% endblock %}
</head>
<body>
{% include "nav.html" %}
{%- block content %}
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
{%- if prev %}
<a href="{{ prev.link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ prev.title|striptags }}">Prev</a>
{%- else %}
<a href="#" role="button" class="btn sk-btn-rellink py-1 disabled"">Prev</a>
{%- endif %}
{%- if parents -%}
<a href="{{ parents[-1].link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ parents[-1].title|striptags }}">Up</a>
{%- else %}
<a href="#" role="button" class="btn sk-btn-rellink disabled py-1">Up</a>
{%- endif %}
{%- if next %}
<a href="{{ next.link|e }}" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="{{ next.title|striptags }}">Next</a>
{%- else %}
<a href="#" role="button" class="btn sk-btn-rellink py-1 disabled"">Next</a>
{%- endif %}
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary"
for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
{%- if meta and meta['parenttoc']|tobool %}
<div class="sk-sidebar-toc">
{% set nav = get_nav_object(maxdepth=3, collapse=True, numbered=True) %}
<ul>
{% for main_nav_item in nav %}
{% if main_nav_item.active %}
<li>
<a href="{{ main_nav_item.url }}"
class="sk-toc-active">{{ main_nav_item.title }}</a>
</li>
<ul>
{% for nav_item in main_nav_item.children %}
<li>
<a href="{{ nav_item.url }}"
class="{% if nav_item.active %}sk-toc-active{% endif %}">{{ nav_item.title }}</a>
{% if nav_item.children %}
<ul>
{% for inner_child in nav_item.children %}
<li class="sk-toctree-l3">
<a href="{{ inner_child.url }}">{{ inner_child.title }}</a>
</li>
{% endfor %}
</ul>
{% endif %}
</li>
{% endfor %}
</ul>
{% endif %}
{% endfor %}
</ul>
</div>
{%- elif meta and meta['globalsidebartoc']|tobool %}
<div class="sk-sidebar-toc sk-sidebar-global-toc">
{{ toctree(maxdepth=2, titles_only=True) }}
</div>
{%- else %}
<div class="sk-sidebar-toc">
{{ toc }}
</div>
{%- endif %}
</div>
</div>
{%- if meta and meta['parenttoc']|tobool %}
<div class="sk-sidebar-toc">
{% set nav = get_nav_object(maxdepth=3, collapse=True, numbered=True) %}
<ul>
{% for main_nav_item in nav %}
{% if main_nav_item.active %}
<li>
<a href="{{ main_nav_item.url }}" class="sk-toc-active">{{ main_nav_item.title }}</a>
</li>
<ul>
{% for nav_item in main_nav_item.children %}
<li>
<a href="{{ nav_item.url }}" class="{% if nav_item.active %}sk-toc-active{% endif %}">{{ nav_item.title }}</a>
{% if nav_item.children %}
<ul>
{% for inner_child in nav_item.children %}
<li class="sk-toctree-l3">
<a href="{{ inner_child.url }}">{{ inner_child.title }}</a>
</li>
{% endfor %}
</ul>
{% endif %}
</li>
{% endfor %}
</ul>
{% endif %}
{% endfor %}
</ul>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
{% block body %}{% endblock %}
</div>
{%- elif meta and meta['globalsidebartoc']|tobool %}
<div class="sk-sidebar-toc sk-sidebar-global-toc">
{{ toctree(maxdepth=2, titles_only=True) }}
<div class="container">
<footer class="sk-content-footer">
{%- if pagename != 'index' %}
{%- if show_copyright %}
{%- if hasdoc('copyright') %}
{% trans path=pathto('copyright'), copyright=copyright|e %}
&copy; {{ copyright }}.{% endtrans %}
{%- else %}
{% trans copyright=copyright|e %}&copy; {{ copyright }}
.{% endtrans %}
{%- endif %}
{%- endif %}
{%- if last_updated %}
{% trans last_updated=last_updated|e %}Last updated
on {{ last_updated }}.{% endtrans %}
{%- endif %}
{%- if show_source and has_source and sourcename %}
<a href="{{ pathto('_sources/' + sourcename, true)|e }}"
rel="nofollow">{{ _('Show this page source') }}</a>
{%- endif %}
{%- endif %}
</footer>
</div>
{%- else %}
<div class="sk-sidebar-toc">
{{ toc }}
</div>
{%- endif %}
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
{% block body %}{% endblock %}
</div>
<div class="container">
<footer class="sk-content-footer">
{%- if pagename != 'index' %}
{%- if show_copyright %}
{%- if hasdoc('copyright') %}
{% trans path=pathto('copyright'), copyright=copyright|e %}&copy; {{ copyright }}.{% endtrans %}
{%- else %}
{% trans copyright=copyright|e %}&copy; {{ copyright }}.{% endtrans %}
{%- endif %}
{%- endif %}
{%- if last_updated %}
{% trans last_updated=last_updated|e %}Last updated on {{ last_updated }}.{% endtrans %}
{%- endif %}
{%- if show_source and has_source and sourcename %}
<a href="{{ pathto('_sources/' + sourcename, true)|e }}" rel="nofollow">{{ _('Show this page source') }}</a>
{%- endif %}
{%- endif %}
</footer>
</div>
</div>
</div>
{%- endblock %}
<script src="{{ pathto('_static/js/vendor/bootstrap.min.js', 1) }}"></script>
{% include "javascript.html" %}

File diff suppressed because it is too large Load Diff

View File

@@ -11,6 +11,7 @@
### [by Prompt Engineering](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr)
### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
### [by BobLin (Chinese language)](https://www.youtube.com/playlist?list=PLbd7ntv6PxC3QMFQvtWfk55p-Op_syO1C)
## Courses
@@ -45,7 +46,6 @@
- [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
- [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
- [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
- [Dive into Langchain (Chinese language)](https://langchain.boblin.app/)
---------------------

View File

@@ -11,7 +11,7 @@ LangChain as a framework consists of a number of packages.
### `langchain-core`
This package contains base abstractions of different components and ways to compose them together.
The interfaces for core components like LLMs, vectorstores, retrievers and more are defined here.
The interfaces for core components like LLMs, vector stores, retrievers and more are defined here.
No third party integrations are defined here.
The dependencies are kept purposefully very lightweight.
@@ -30,7 +30,7 @@ All chains, agents, and retrieval strategies here are NOT specific to any one in
This package contains third party integrations that are maintained by the LangChain community.
Key partner packages are separated out (see below).
This contains all integrations for various components (LLMs, vectorstores, retrievers).
This contains all integrations for various components (LLMs, vector stores, retrievers).
All dependencies in this package are optional to keep the package as lightweight as possible.
### [`langgraph`](https://langchain-ai.github.io/langgraph)
@@ -51,10 +51,11 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
<ThemedImage
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
sources={{
light: useBaseUrl('/svg/langchain_stack.svg'),
dark: useBaseUrl('/svg/langchain_stack_dark.svg'),
light: useBaseUrl('/svg/langchain_stack_062024.svg'),
dark: useBaseUrl('/svg/langchain_stack_062024_dark.svg'),
}}
title="LangChain Framework Overview"
style={{ width: "100%" }}
/>
## LangChain Expression Language (LCEL)
@@ -85,11 +86,16 @@ Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas i
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](https://docs.smith.langchain.com/) for maximum observability and debuggability.
[**Seamless LangServe deployment**](/docs/langserve)
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
LCEL aims to provide consistency around behavior and customization over legacy subclassed chains such as `LLMChain` and
`ConversationalRetrievalChain`. Many of these legacy chains hide important details like prompts, and as a wider variety
of viable models emerge, customization has become more and more important.
If you are currently using one of these legacy chains, please see [this guide for guidance on how to migrate](/docs/how_to/migrate_chains/).
For guides on how to do specific tasks with LCEL, check out [the relevant how-to guides](/docs/how_to/#langchain-expression-language-lcel).
### Runnable interface
<span data-heading-keywords="invoke"></span>
<span data-heading-keywords="invoke,runnable"></span>
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
@@ -144,8 +150,19 @@ LangChain does not host any Chat Models, rather we rely on third party integrati
We have some standardized parameters when constructing ChatModels:
- `model`: the name of the model
- `temperature`: the sampling temperature
- `timeout`: request timeout
- `max_tokens`: max tokens to generate
- `stop`: default stop sequences
- `max_retries`: max number of times to retry requests
- `api_key`: API key for the model provider
- `base_url`: endpoint to send requests to
ChatModels also accept other parameters that are specific to that integration.
Some important things to note:
- standard params only apply to model providers that expose parameters with the intended functionality. For example, some providers do not expose a configuration for maximum output tokens, so max_tokens can't be supported on these.
- standard params are currently only enforced on integrations that have their own integration packages (e.g. `langchain-openai`, `langchain-anthropic`, etc.), they're not enforced on models in ``langchain-community``.
ChatModels also accept other parameters that are specific to that integration. To find all the parameters supported by a ChatModel head to the API reference for that model.
:::important
**Tool Calling** Some chat models have been fine-tuned for tool calling and provide a dedicated API for tool calling.
@@ -168,8 +185,15 @@ For a full list of LangChain model providers with multimodal models, [check out
### LLMs
<span data-heading-keywords="llm,llms"></span>
:::caution
Pure text-in/text-out LLMs tend to be older or lower-level. Many popular models are best used as [chat completion models](/docs/concepts/#chat-models),
even for non-chat use cases.
You are probably looking for [the section above instead](/docs/concepts/#chat-models).
:::
Language models that takes a string as input and returns a string.
These are traditionally older models (newer models generally are [Chat Models](/docs/concepts/#chat-models), see below).
These are traditionally older models (newer models generally are [Chat Models](/docs/concepts/#chat-models), see above).
Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input.
This gives them the same interface as [Chat Models](/docs/concepts/#chat-models).
@@ -212,7 +236,7 @@ This is where information like log-probs and token usage may be stored.
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
They can be accessed from there with the `.tool_calls` property.
This property returns a list of dictionaries. Each dictionary has the following keys:
This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments:
- `name`: The name of the tool that should be called.
- `args`: The arguments to that tool.
@@ -222,13 +246,18 @@ This property returns a list of dictionaries. Each dictionary has the following
This represents a system message, which tells the model how to behave. Not every model provider supports this.
#### FunctionMessage
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
#### ToolMessage
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
This represents the result of a tool call. In addition to `role` and `content`, this message has:
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
#### (Legacy) FunctionMessage
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. ToolMessage should be used instead to correspond to the updated tool-calling API.
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
### Prompt templates
@@ -463,7 +492,7 @@ For specifics on how to use vector stores, see the [relevant how-to guides here]
A retriever is an interface that returns documents given an unstructured query.
It is more general than a vector store.
A retriever does not need to be able to store documents, only to return (or retrieve) them.
Retrievers can be created from vectorstores, but are also broad enough to include [Wikipedia search](/docs/integrations/retrievers/wikipedia/) and [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/).
Retrievers can be created from vector stores, but are also broad enough to include [Wikipedia search](/docs/integrations/retrievers/wikipedia/) and [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/).
Retrievers accept a string query as input and return a list of Document's as output.
@@ -472,33 +501,87 @@ For specifics on how to use retrievers, see the [relevant how-to guides here](/d
### Tools
<span data-heading-keywords="tool,tools"></span>
Tools are interfaces that an agent, a chain, or a chat model / LLM can use to interact with the world.
Tools are utilities designed to be called by a model: their inputs are designed to be generated by models, and their outputs are designed to be passed back to models.
Tools are needed whenever you want a model to control parts of your code or call out to external APIs.
A tool consists of the following components:
A tool consists of:
1. The name of the tool
2. A description of what the tool does
3. JSON schema of what the inputs to the tool are
4. The function to call
5. Whether the result of a tool should be returned directly to the user (only relevant for agents)
1. The name of the tool.
2. A description of what the tool does.
3. A JSON schema defining the inputs to the tool.
4. A function (and, optionally, an async variant of the function).
The name, description and JSON schema are provided as context
to the LLM, allowing the LLM to determine how to use the tool
appropriately.
When a tool is bound to a model, the name, description and JSON schema are provided as context to the model.
Given a list of tools and a set of instructions, a model can request to call one or more tools with specific inputs.
Typical usage may look like the following:
Given a list of available tools and a prompt, an LLM can request
that one or more tools be invoked with appropriate arguments.
```python
tools = [...] # Define a list of tools
llm_with_tools = llm.bind_tools(tools)
ai_msg = llm_with_tools.invoke("do xyz...") # AIMessage(tool_calls=[ToolCall(...), ...], ...)
```
Generally, when designing tools to be used by a chat model or LLM, it is important to keep in mind the following:
The `AIMessage` returned from the model MAY have `tool_calls` associated with it.
Read [this guide](/docs/concepts/#aimessage) for more information on what the response type may look like.
- Chat models that have been fine-tuned for tool calling will be better at tool calling than non-fine-tuned models.
- Non fine-tuned models may not be able to use tools at all, especially if the tools are complex or require multiple tool calls.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas.
- Simpler tools are generally easier for models to use than more complex tools.
Once the chosen tools are invoked, the results can be passed back to the model so that it can complete whatever task
it's performing.
There are generally two different ways to invoke the tool and pass back the response:
For specifics on how to use tools, see the [relevant how-to guides here](/docs/how_to/#tools).
#### Invoke with just the arguments
When you invoke a tool with just the arguments, you will get back the raw tool output (usually a string).
This generally looks like:
```python
# You will want to previously check that the LLM returned tool calls
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
tool_output = tool.invoke(tool_call["args"])
tool_message = ToolMessage(content=tool_output, tool_call_id=tool_call["id"], name=tool_call["name"])
```
Note that the `content` field will generally be passed back to the model.
If you do not want the raw tool response to be passed to the model, but you still want to keep it around,
you can transform the tool output but also pass it as an artifact (read more about [`ToolMessage.artifact` here](/docs/concepts/#toolmessage))
```python
... # Same code as above
response_for_llm = transform(response)
tool_message = ToolMessage(content=response_for_llm, tool_call_id=tool_call["id"], name=tool_call["name"], artifact=tool_output)
```
#### Invoke with `ToolCall`
The other way to invoke a tool is to call it with the full `ToolCall` that was generated by the model.
When you do this, the tool will return a ToolMessage.
The benefits of this are that you don't have to write the logic yourself to transform the tool output into a ToolMessage.
This generally looks like:
```python
tool_call = ai_msg.tool_calls[0] # ToolCall(args={...}, id=..., ...)
tool_message = tool.invoke(tool_call)
# -> ToolMessage(content="tool result foobar...", tool_call_id=..., name="tool_name")
```
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
Read more about [defining tools that return artifacts here](/docs/how_to/tool_artifacts/).
#### Best practices
When designing tools to be used by a model, it is important to keep in mind that:
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
- Simple, narrowly scoped tools are easier for models to use than complex tools.
#### Related
For specifics on how to use tools, see the [tools how-to guides](/docs/how_to/#tools).
To use a pre-built tool, see the [tool integration docs](/docs/integrations/tools/).
### Toolkits
<span data-heading-keywords="toolkit,toolkits"></span>
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
@@ -532,6 +615,28 @@ If you are still using AgentExecutor, do not fear: we still have a guide on [how
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
#### ReAct agents
<span data-heading-keywords="react,react agent"></span>
One popular architecture for building agents is [**ReAct**](https://arxiv.org/abs/2210.03629).
ReAct combines reasoning and acting in an iterative process - in fact the name "ReAct" stands for "Reason" and "Act".
The general flow looks like this:
- The model will "think" about what step to take in response to an input and any previous observations.
- The model will then choose an action from available tools (or choose to respond to the user).
- The model will generate arguments to that tool.
- The agent runtime (executor) will parse out the chosen tool and call it with the generated arguments.
- The executor will return the results of the tool call back to the model as an observation.
- This process repeats until the agent chooses to respond.
There are general prompting based implementations that do not require any model-specific features, but the most
reliable implementations use features like [tool calling](/docs/how_to/tool_calling/) to reliably format outputs
and reduce variance.
Please see the [LangGraph documentation](https://langchain-ai.github.io/langgraph/) for more information,
or [this how-to guide](/docs/how_to/migrate_agent/) for specific information on migrating to LangGraph.
### Callbacks
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
@@ -607,6 +712,7 @@ For specifics on how to use callbacks, see the [relevant how-to guides here](/do
## Techniques
### Streaming
<span data-heading-keywords="stream,streaming"></span>
Individual LLM calls often run for much longer than traditional resource requests.
This compounds when you build more complex chains or agents that require multiple reasoning steps.
@@ -617,49 +723,9 @@ around building apps with LLMs to help alleviate latency issues, and LangChain a
Below, we'll discuss some concepts and considerations around streaming in LangChain.
#### Tokens
The unit that most model providers use to measure input and output is via a unit called a **token**.
Tokens are the basic units that language models read and generate when processing or producing text.
The exact definition of a token can vary depending on the specific way the model was trained -
for instance, in English, a token could be a single word like "apple", or a part of a word like "app".
When you send a model a prompt, the words and characters in the prompt are encoded into tokens using a **tokenizer**.
The model then streams back generated output tokens, which the tokenizer decodes into human-readable text.
The below example shows how OpenAI models tokenize `LangChain is cool!`:
![](/img/tokenization.png)
You can see that it gets split into 5 different tokens, and that the boundaries between tokens are not exactly the same as word boundaries.
The reason language models use tokens rather than something more immediately intuitive like "characters"
has to do with how they process and understand text. At a high-level, language models iteratively predict their next generated output based on
the initial input and their previous generations. Training the model using tokens language models to handle linguistic
units (like words or subwords) that carry meaning, rather than individual characters, which makes it easier for the model
to learn and understand the structure of the language, including grammar and context.
Furthermore, using tokens can also improve efficiency, since the model processes fewer units of text compared to character-level processing.
#### Callbacks
The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a
callback handler that handles the [`on_llm_new_token`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
[LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls
the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response.
You can also handle the [`on_llm_end`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks.
Callbacks were the first technique for streaming introduced in LangChain. While powerful and generalizable,
they can be unwieldy for developers. For example:
- You need to explicitly initialize and manage some aggregator or other stream to collect results.
- The execution order isn't explicitly guaranteed, and you could theoretically have a callback run after the `.invoke()` method finishes.
- Providers would often make you pass an additional parameter to stream outputs instead of returning them all at once.
- You would often ignore the result of the actual model call in favor of callback results.
#### `.stream()` and `.astream()`
LangChain also includes the `.stream()` method (and the equivalent `.astream()` method for [async](https://docs.python.org/3/library/asyncio.html) environments) as a more ergonomic streaming interface.
Most modules in LangChain include the `.stream()` method (and the equivalent `.astream()` method for [async](https://docs.python.org/3/library/asyncio.html) environments) as an ergonomic streaming interface.
`.stream()` returns an iterator, which you can consume with a simple `for` loop. Here's an example with a chat model:
```python
@@ -672,7 +738,7 @@ for chunk in model.stream("what color is the sky?"):
```
For models (or other components) that don't support streaming natively, this iterator would just yield a single chunk, but
you could still use the same general pattern. Using `.stream()` will also automatically call the model in streaming mode
you could still use the same general pattern when calling them. Using `.stream()` will also automatically call the model in streaming mode
without the need to provide additional config.
The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html).
@@ -683,14 +749,15 @@ each yielded chunk.
You can check out [this guide](/docs/how_to/streaming/#using-stream) for more detail on how to use `.stream()`.
#### `.astream_events()`
<span data-heading-keywords="astream_events,stream_events,stream events"></span>
While the `.stream()` method is easier to use than callbacks, it only returns one type of value. This is fine for single LLM calls,
While the `.stream()` method is intuitive, it can only return the final generated value of your chain. This is fine for single LLM calls,
but as you build more complex chains of several LLM calls together, you may want to use the intermediate values of
the chain alongside the final output - for example, returning sources alongside the final generation when building a chat
over documents app.
There are ways to do this using the aforementioned callbacks, or by constructing your chain in such a way that it passes intermediate
values to the end with something like [`.assign()`](/docs/how_to/passthrough/), but LangChain also includes an
There are ways to do this [using callbacks](/docs/concepts/#callbacks-1), or by constructing your chain in such a way that it passes intermediate
values to the end with something like chained [`.assign()`](/docs/how_to/passthrough/) calls, but LangChain also includes an
`.astream_events()` method that combines the flexibility of callbacks with the ergonomics of `.stream()`. When called, it returns an iterator
which yields [various types of events](/docs/how_to/streaming/#event-reference) that you can filter and process according
to the needs of your project.
@@ -716,7 +783,48 @@ async for event in chain.astream_events({"topic": "parrot"}, version="v2"):
You can roughly think of it as an iterator over callback events (though the format differs) - and you can use it on almost all LangChain components!
See [this guide](/docs/how_to/streaming/#using-stream-events) for more detailed information on how to use `.astream_events()`.
See [this guide](/docs/how_to/streaming/#using-stream-events) for more detailed information on how to use `.astream_events()`,
including a table listing available events.
#### Callbacks
The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a
callback handler that handles the [`on_llm_new_token`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
[LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls
the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response.
You can also handle the [`on_llm_end`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks.
Callbacks were the first technique for streaming introduced in LangChain. While powerful and generalizable,
they can be unwieldy for developers. For example:
- You need to explicitly initialize and manage some aggregator or other stream to collect results.
- The execution order isn't explicitly guaranteed, and you could theoretically have a callback run after the `.invoke()` method finishes.
- Providers would often make you pass an additional parameter to stream outputs instead of returning them all at once.
- You would often ignore the result of the actual model call in favor of callback results.
#### Tokens
The unit that most model providers use to measure input and output is via a unit called a **token**.
Tokens are the basic units that language models read and generate when processing or producing text.
The exact definition of a token can vary depending on the specific way the model was trained -
for instance, in English, a token could be a single word like "apple", or a part of a word like "app".
When you send a model a prompt, the words and characters in the prompt are encoded into tokens using a **tokenizer**.
The model then streams back generated output tokens, which the tokenizer decodes into human-readable text.
The below example shows how OpenAI models tokenize `LangChain is cool!`:
![](/img/tokenization.png)
You can see that it gets split into 5 different tokens, and that the boundaries between tokens are not exactly the same as word boundaries.
The reason language models use tokens rather than something more immediately intuitive like "characters"
has to do with how they process and understand text. At a high-level, language models iteratively predict their next generated output based on
the initial input and their previous generations. Training the model using tokens language models to handle linguistic
units (like words or subwords) that carry meaning, rather than individual characters, which makes it easier for the model
to learn and understand the structure of the language, including grammar and context.
Furthermore, using tokens can also improve efficiency, since the model processes fewer units of text compared to character-level processing.
### Structured output
@@ -733,14 +841,54 @@ a few ways to get structured output from models in LangChain.
#### `.with_structured_output()`
For convenience, some LangChain chat models support a `.with_structured_output()` method.
This method only requires a schema as input, and returns a dict or Pydantic object.
For convenience, some LangChain chat models support a [`.with_structured_output()`](/docs/how_to/structured_output/#the-with_structured_output-method)
method. This method only requires a schema as input, and returns a dict or Pydantic object.
Generally, this method is only present on models that support one of the more advanced methods described below,
and will use one of them under the hood. It takes care of importing a suitable output parser and
formatting the schema in the right format for the model.
Here's an example:
```python
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
```
```
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
```
We recommend this method as a starting point when working with structured output:
- It uses other model-specific features under the hood, without the need to import an output parser.
- For the models that use tool calling, no special prompting is needed.
- If multiple underlying techniques are supported, you can supply a `method` parameter to
[toggle which one is used](/docs/how_to/structured_output/#advanced-specifying-the-method-for-structuring-outputs).
You may want or need to use other techniques if:
- The chat model you are using does not support tool calling.
- You are working with very complex schemas and the model is having trouble generating outputs that conform.
For more information, check out this [how-to guide](/docs/how_to/structured_output/#the-with_structured_output-method).
You can also check out [this table](/docs/integrations/chat/#advanced-features) for a list of models that support
`with_structured_output()`.
#### Raw prompting
The most intuitive way to get a model to structure output is to ask nicely.
@@ -763,9 +911,8 @@ for smooth parsing can be surprisingly difficult and model-specific.
Some may be better at interpreting [JSON schema](https://json-schema.org/), others may be best with TypeScript definitions,
and still others may prefer XML.
While we'll next go over some ways that you can take advantage of features offered by
model providers to increase reliability, prompting techniques remain important for tuning your
results no matter what method you choose.
While features offered by model providers may increase reliability, prompting techniques remain important for tuning your
results no matter which method you choose.
#### JSON mode
<span data-heading-keywords="json mode"></span>
@@ -775,10 +922,11 @@ Some models, such as [Mistral](/docs/integrations/chat/mistralai/), [OpenAI](/do
support a feature called **JSON mode**, usually enabled via config.
When enabled, JSON mode will constrain the model's output to always be some sort of valid JSON.
Often they require some custom prompting, but it's usually much less burdensome and along the lines of,
`"you must always return JSON"`, and the [output is easier to parse](/docs/how_to/output_parser_json/).
Often they require some custom prompting, but it's usually much less burdensome than completely raw prompting and
more along the lines of, `"you must always return JSON"`. The [output also generally easier to parse](/docs/how_to/output_parser_json/).
It's also generally simpler and more commonly available than tool calling.
It's also generally simpler to use directly and more commonly available than tool calling, and can give
more flexibility around prompting and shaping results than tool calling.
Here's an example:
@@ -816,7 +964,7 @@ For a full list of model providers that support JSON mode, see [this table](/doc
We use the term tool calling interchangeably with function calling. Although
function calling is sometimes meant to refer to invocations of a single function,
we treat all models as though they can return multiple tool or function calls in
each message.
each message
:::
Tool calling allows a model to respond to a given prompt by generating output that
@@ -854,36 +1002,168 @@ The standard interface consists of:
The following how-to guides are good practical resources for using function/tool calling:
- [How to return structured data from an LLM](/docs/how_to/structured_output/)
- [How to use a model to call tools](/docs/how_to/tool_calling/)
- [How to use a model to call tools](/docs/how_to/tool_calling)
For a full list of model providers that support tool calling, [see this table](/docs/integrations/chat/#advanced-features).
### Retrieval
LangChain provides several advanced retrieval types. A full list is below, along with the following information:
LLMs are trained on a large but fixed dataset, limiting their ability to reason over private or recent information. Fine-tuning an LLM with specific facts is one way to mitigate this, but is often [poorly suited for factual recall](https://www.anyscale.com/blog/fine-tuning-is-for-form-not-facts) and [can be costly](https://www.glean.com/blog/how-to-build-an-ai-assistant-for-the-enterprise).
Retrieval is the process of providing relevant information to an LLM to improve its response for a given input. Retrieval augmented generation (RAG) is the process of grounding the LLM generation (output) using the retrieved information.
**Name**: Name of the retrieval algorithm.
:::tip
**Index Type**: Which index type (if any) this relies on.
* See our RAG from Scratch [code](https://github.com/langchain-ai/rag-from-scratch) and [video series](https://youtube.com/playlist?list=PLfaIDFEXuae2LXbO1_PKyVJiQ23ZztA0x&feature=shared).
* For a high-level guide on retrieval, see this [tutorial on RAG](/docs/tutorials/rag/).
**Uses an LLM**: Whether this retrieval method uses an LLM.
:::
**When to Use**: Our commentary on when you should considering using this retrieval method.
RAG is only as good as the retrieved documents relevance and quality. Fortunately, an emerging set of techniques can be employed to design and improve RAG systems. We've focused on taxonomizing and summarizing many of these techniques (see below figure) and will share some high-level strategic guidance in the following sections.
You can and should experiment with using different pieces together. You might also find [this LangSmith guide](https://docs.smith.langchain.com/how_to_guides/evaluation/evaluate_llm_application) useful for showing how to evaluate different iterations of your app.
**Description**: Description of what this retrieval algorithm is doing.
![](/img/rag_landscape.png)
#### Query Translation
First, consider the user input(s) to your RAG system. Ideally, a RAG system can handle a wide range of inputs, from poorly worded questions to complex multi-part queries.
**Using an LLM to review and optionally modify the input is the central idea behind query translation.** This serves as a general buffer, optimizing raw user inputs for your retrieval system.
For example, this can be as simple as extracting keywords or as complex as generating multiple sub-questions for a complex query.
| Name | When to use | Description |
|---------------|-------------|-------------|
| [Multi-query](/docs/how_to/MultiQueryRetriever/) | When you need to cover multiple perspectives of a question. | Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, return the unique documents for all queries. |
| [Decomposition](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a question can be broken down into smaller subproblems. | Decompose a question into a set of subproblems / questions, which can either be solved sequentially (use the answer from first + retrieval to answer the second) or in parallel (consolidate each answer into final answer). |
| [Step-back](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a higher-level conceptual understanding is required. | First prompt the LLM to ask a generic step-back question about higher-level concepts or principles, and retrieve relevant facts about them. Use this grounding to help answer the user question. |
| [HyDE](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | If you have challenges retrieving relevant documents using the raw user inputs. | Use an LLM to convert questions into hypothetical documents that answer the question. Use the embedded hypothetical documents to retrieve real documents with the premise that doc-doc similarity search can produce more relevant matches. |
:::tip
See our RAG from Scratch videos for a few different specific approaches:
- [Multi-query](https://youtu.be/JChPi0CRnDY?feature=shared)
- [Decomposition](https://youtu.be/h0OPWlEOank?feature=shared)
- [Step-back](https://youtu.be/xn1jEjRyJ2U?feature=shared)
- [HyDE](https://youtu.be/SaDzIVkYqyY?feature=shared)
:::
#### Routing
Second, consider the data sources available to your RAG system. You want to query across more than one database or across structured and unstructured data sources. **Using an LLM to review the input and route it to the appropriate data source is a simple and effective approach for querying across sources.**
| Name | When to use | Description |
|------------------|--------------------------------------------|-------------|
| [Logical routing](/docs/how_to/routing/) | When you can prompt an LLM with rules to decide where to route the input. | Logical routing can use an LLM to reason about the query and choose which datastore is most appropriate. |
| [Semantic routing](/docs/how_to/routing/#routing-by-semantic-similarity) | When semantic similarity is an effective way to determine where to route the input. | Semantic routing embeds both query and, typically a set of prompts. It then chooses the appropriate prompt based upon similarity. |
:::tip
See our RAG from Scratch video on [routing](https://youtu.be/pfpIndq7Fi8?feature=shared).
:::
#### Query Construction
Third, consider whether any of your data sources require specific query formats. Many structured databases use SQL. Vector stores often have specific syntax for applying keyword filters to document metadata. **Using an LLM to convert a natural language query into a query syntax is a popular and powerful approach.**
In particular, [text-to-SQL](/docs/tutorials/sql_qa/), [text-to-Cypher](/docs/tutorials/graph/), and [query analysis for metadata filters](/docs/tutorials/query_analysis/#query-analysis) are useful ways to interact with structured, graph, and vector databases respectively.
| Name | When to Use | Description |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Text to SQL](/docs/tutorials/sql_qa/) | If users are asking questions that require information housed in a relational database, accessible via SQL. | This uses an LLM to transform user input into a SQL query. |
| [Text-to-Cypher](/docs/tutorials/graph/) | If users are asking questions that require information housed in a graph database, accessible via Cypher. | This uses an LLM to transform user input into a Cypher query. |
| [Self Query](/docs/how_to/self_query/) | If users are asking questions that are better answered by fetching documents based on metadata rather than similarity with the text. | This uses an LLM to transform user input into two things: (1) a string to look up semantically, (2) a metadata filter to go along with it. This is useful because oftentimes questions are about the METADATA of documents (not the content itself). |
:::tip
See our [blog post overview](https://blog.langchain.dev/query-construction/) and RAG from Scratch video on [query construction](https://youtu.be/kl6NwWYxvbM?feature=shared), the process of text-to-DSL where DSL is a domain specific language required to interact with a given database. This converts user questions into structured queries.
:::
#### Indexing
Fourth, consider the design of your document index. A simple and powerful idea is to **decouple the documents that you index for retrieval from the documents that you pass to the LLM for generation.** Indexing frequently uses embedding models with vector stores, which [compress the semantic information in documents to fixed-size vectors](/docs/concepts/#embedding-models).
Many RAG approaches focus on splitting documents into chunks and retrieving some number based on similarity to an input question for the LLM. But chunk size and chunk number can be difficult to set and affect results if they do not provide full context for the LLM to answer a question. Furthermore, LLMs are increasingly capable of processing millions of tokens.
Two approaches can address this tension: (1) [Multi Vector](/docs/how_to/multi_vector/) retriever using an LLM to translate documents into any form (e.g., often into a summary) that is well-suited for indexing, but returns full documents to the LLM for generation. (2) [ParentDocument](/docs/how_to/parent_document_retriever/) retriever embeds document chunks, but also returns full documents. The idea is to get the best of both worlds: use concise representations (summaries or chunks) for retrieval, but use the full documents for answer generation.
| Name | Index Type | Uses an LLM | When to Use | Description |
|---------------------------|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Vectorstore](/docs/how_to/vectorstore_retriever/) | Vectorstore | No | If you are just getting started and looking for something quick and easy. | This is the simplest method and the one that is easiest to get started with. It involves creating embeddings for each piece of text. |
| [ParentDocument](/docs/how_to/parent_document_retriever/) | Vectorstore + Document Store | No | If your pages have lots of smaller pieces of distinct information that are best indexed by themselves, but best retrieved all together. | This involves indexing multiple chunks for each document. Then you find the chunks that are most similar in embedding space, but you retrieve the whole parent document and return that (rather than individual chunks). |
| [Multi Vector](/docs/how_to/multi_vector/) | Vectorstore + Document Store | Sometimes during indexing | If you are able to extract information from documents that you think is more relevant to index than the text itself. | This involves creating multiple vectors for each document. Each vector could be created in a myriad of ways - examples include summaries of the text and hypothetical questions. |
| [Self Query](/docs/how_to/self_query/) | Vectorstore | Yes | If users are asking questions that are better answered by fetching documents based on metadata rather than similarity with the text. | This uses an LLM to transform user input into two things: (1) a string to look up semantically, (2) a metadata filer to go along with it. This is useful because oftentimes questions are about the METADATA of documents (not the content itself). |
| [Contextual Compression](/docs/how_to/contextual_compression/) | Any | Sometimes | If you are finding that your retrieved documents contain too much irrelevant information and are distracting the LLM. | This puts a post-processing step on top of another retriever and extracts only the most relevant information from retrieved documents. This can be done with embeddings or an LLM. |
| [Time-Weighted Vectorstore](/docs/how_to/time_weighted_vectorstore/) | Vectorstore | No | If you have timestamps associated with your documents, and you want to retrieve the most recent ones | This fetches documents based on a combination of semantic similarity (as in normal vector retrieval) and recency (looking at timestamps of indexed documents) |
| [Multi-Query Retriever](/docs/how_to/MultiQueryRetriever/) | Any | Yes | If users are asking questions that are complex and require multiple pieces of distinct information to respond | This uses an LLM to generate multiple queries from the original one. This is useful when the original query needs pieces of information about multiple topics to be properly answered. By generating multiple queries, we can then fetch documents for each of them. |
| [Ensemble](/docs/how_to/ensemble_retriever/) | Any | No | If you have multiple retrieval methods and want to try combining them. | This fetches documents from multiple retrievers and then combines them. |
| [Vector store](/docs/how_to/vectorstore_retriever/) | Vector store | No | If you are just getting started and looking for something quick and easy. | This is the simplest method and the one that is easiest to get started with. It involves creating embeddings for each piece of text. |
| [ParentDocument](/docs/how_to/parent_document_retriever/) | Vector store + Document Store | No | If your pages have lots of smaller pieces of distinct information that are best indexed by themselves, but best retrieved all together. | This involves indexing multiple chunks for each document. Then you find the chunks that are most similar in embedding space, but you retrieve the whole parent document and return that (rather than individual chunks). |
| [Multi Vector](/docs/how_to/multi_vector/) | Vector store + Document Store | Sometimes during indexing | If you are able to extract information from documents that you think is more relevant to index than the text itself. | This involves creating multiple vectors for each document. Each vector could be created in a myriad of ways - examples include summaries of the text and hypothetical questions. |
| [Time-Weighted Vector store](/docs/how_to/time_weighted_vectorstore/) | Vector store | No | If you have timestamps associated with your documents, and you want to retrieve the most recent ones | This fetches documents based on a combination of semantic similarity (as in normal vector retrieval) and recency (looking at timestamps of indexed documents) |
For a high-level guide on retrieval, see this [tutorial on RAG](/docs/tutorials/rag/).
:::tip
- See our RAG from Scratch video on [indexing fundamentals](https://youtu.be/bjb_EMsTDKI?feature=shared)
- See our RAG from Scratch video on [multi vector retriever](https://youtu.be/gTCU9I6QqCE?feature=shared)
:::
Fifth, consider ways to improve the quality of your similarity search itself. Embedding models compress text into fixed-length (vector) representations that capture the semantic content of the document. This compression is useful for search / retrieval, but puts a heavy burden on that single vector representation to capture the semantic nuance / detail of the document. In some cases, irrelevant or redundant content can dilute the semantic usefulness of the embedding.
[ColBERT](https://docs.google.com/presentation/d/1IRhAdGjIevrrotdplHNcc4aXgIYyKamUKTWtB3m3aMU/edit?usp=sharing) is an interesting approach to address this with a higher granularity embeddings: (1) produce a contextually influenced embedding for each token in the document and query, (2) score similarity between each query token and all document tokens, (3) take the max, (4) do this for all query tokens, and (5) take the sum of the max scores (in step 3) for all query tokens to get a query-document similarity score; this token-wise scoring can yield strong results.
![](/img/colbert.png)
There are some additional tricks to improve the quality of your retrieval. Embeddings excel at capturing semantic information, but may struggle with keyword-based queries. Many [vector stores](/docs/integrations/retrievers/pinecone_hybrid_search/) offer built-in [hybrid-search](https://docs.pinecone.io/guides/data/understanding-hybrid-search) to combine keyword and semantic similarity, which marries the benefits of both approaches. Furthermore, many vector stores have [maximal marginal relevance](https://python.langchain.com/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/), which attempts to diversify the results of a search to avoid returning similar and redundant documents.
| Name | When to use | Description |
|-------------------|----------------------------------------------------------|-------------|
| [ColBERT](/docs/integrations/providers/ragatouille/#using-colbert-as-a-reranker) | When higher granularity embeddings are needed. | ColBERT uses contextually influenced embeddings for each token in the document and query to get a granular query-document similarity score. |
| [Hybrid search](/docs/integrations/retrievers/pinecone_hybrid_search/) | When combining keyword-based and semantic similarity. | Hybrid search combines keyword and semantic similarity, marrying the benefits of both approaches. |
| [Maximal Marginal Relevance (MMR)](/docs/integrations/vectorstores/pinecone/#maximal-marginal-relevance-searches) | When needing to diversify search results. | MMR attempts to diversify the results of a search to avoid returning similar and redundant documents. |
:::tip
See our RAG from Scratch video on [ColBERT](https://youtu.be/cN6S0Ehm7_8?feature=shared>).
:::
#### Post-processing
Sixth, consider ways to filter or rank retrieved documents. This is very useful if you are [combining documents returned from multiple sources](/docs/integrations/retrievers/cohere-reranker/#doing-reranking-with-coherererank), since it can can down-rank less relevant documents and / or [compress similar documents](/docs/how_to/contextual_compression/#more-built-in-compressors-filters).
| Name | Index Type | Uses an LLM | When to Use | Description |
|---------------------------|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Contextual Compression](/docs/how_to/contextual_compression/) | Any | Sometimes | If you are finding that your retrieved documents contain too much irrelevant information and are distracting the LLM. | This puts a post-processing step on top of another retriever and extracts only the most relevant information from retrieved documents. This can be done with embeddings or an LLM. |
| [Ensemble](/docs/how_to/ensemble_retriever/) | Any | No | If you have multiple retrieval methods and want to try combining them. | This fetches documents from multiple retrievers and then combines them. |
| [Re-ranking](/docs/integrations/retrievers/cohere-reranker/) | Any | Yes | If you want to rank retrieved documents based upon relevance, especially if you want to combine results from multiple retrieval methods . | Given a query and a list of documents, Rerank indexes the documents from most to least semantically relevant to the query. |
:::tip
See our RAG from Scratch video on [RAG-Fusion](https://youtu.be/77qELPbNgxA?feature=shared), on approach for post-processing across multiple queries: Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, and combine the ranks of multiple search result lists to produce a single, unified ranking with [Reciprocal Rank Fusion (RRF)](https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1).
:::
#### Generation
**Finally, consider ways to build self-correction into your RAG system.** RAG systems can suffer from low quality retrieval (e.g., if a user question is out of the domain for the index) and / or hallucinations in generation. A naive retrieve-generate pipeline has no ability to detect or self-correct from these kinds of errors. The concept of ["flow engineering"](https://x.com/karpathy/status/1748043513156272416) has been introduced [in the context of code generation](https://arxiv.org/abs/2401.08500): iteratively build an answer to a code question with unit tests to check and self-correct errors. Several works have applied this RAG, such as Self-RAG and Corrective-RAG. In both cases, checks for document relevance, hallucinations, and / or answer quality are performed in the RAG answer generation flow.
We've found that graphs are a great way to reliably express logical flows and have implemented ideas from several of these papers [using LangGraph](https://github.com/langchain-ai/langgraph/tree/main/examples/rag), as shown in the figure below (red - routing, blue - fallback, green - self-correction):
- **Routing:** Adaptive RAG ([paper](https://arxiv.org/abs/2403.14403)). Route questions to different retrieval approaches, as discussed above
- **Fallback:** Corrective RAG ([paper](https://arxiv.org/pdf/2401.15884.pdf)). Fallback to web search if docs are not relevant to query
- **Self-correction:** Self-RAG ([paper](https://arxiv.org/abs/2310.11511)). Fix answers w/ hallucinations or dont address question
![](/img/langgraph_rag.png)
| Name | When to use | Description |
|-------------------|-----------------------------------------------------------|-------------|
| Self-RAG | When needing to fix answers with hallucinations or irrelevant content. | Self-RAG performs checks for document relevance, hallucinations, and answer quality during the RAG answer generation flow, iteratively building an answer and self-correcting errors. |
| Corrective-RAG | When needing a fallback mechanism for low relevance docs. | Corrective-RAG includes a fallback (e.g., to web search) if the retrieved documents are not relevant to the query, ensuring higher quality and more relevant retrieval. |
:::tip
See several videos and cookbooks showcasing RAG with LangGraph:
- [LangGraph Corrective RAG](https://www.youtube.com/watch?v=E2shqsYwxck)
- [LangGraph combining Adaptive, Self-RAG, and Corrective RAG](https://www.youtube.com/watch?v=-ROS6gfYIts)
- [Cookbooks for RAG using LangGraph](https://github.com/langchain-ai/langgraph/tree/main/examples/rag)
See our LangGraph RAG recipes with partners:
- [Meta](https://github.com/meta-llama/llama-recipes/tree/main/recipes/3p_integrations/langchain)
- [Mistral](https://github.com/mistralai/cookbook/tree/main/third_party/langchain)
:::
### Text splitting
@@ -908,8 +1188,31 @@ Table columns:
| Token | [many classes](/docs/how_to/split_by_token/) | Tokens | | Splits text on tokens. There exist a few different ways to measure tokens. |
| Character | [CharacterTextSplitter](/docs/how_to/character_text_splitter/) | A user defined character | | Splits text based on a user defined character. One of the simpler methods. |
| Semantic Chunker (Experimental) | [SemanticChunker](/docs/how_to/semantic-chunker/) | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb) |
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
### Evaluation
<span data-heading-keywords="evaluation,evaluate"></span>
Evaluation is the process of assessing the performance and effectiveness of your LLM-powered applications.
It involves testing the model's responses against a set of predefined criteria or benchmarks to ensure it meets the desired quality standards and fulfills the intended purpose.
This process is vital for building reliable applications.
![](/img/langsmith_evaluate.png)
[LangSmith](https://docs.smith.langchain.com/) helps with this process in a few ways:
- It makes it easier to create and curate datasets via its tracing and annotation features
- It provides an evaluation framework that helps you define metrics and run your app against your dataset
- It allows you to track results over time and automatically run your evaluators on a schedule or as part of CI/Code
To learn more, check out [this LangSmith guide](https://docs.smith.langchain.com/concepts/evaluation).
### Tracing
<span data-heading-keywords="trace,tracing"></span>
A trace is essentially a series of steps that your application takes to go from input to output.
Traces contain individual steps called `runs`. These can be individual calls from a model, retriever,
tool, or sub-chains.
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
For a deeper dive, check out [this LangSmith conceptual guide](https://docs.smith.langchain.com/concepts/tracing).

View File

@@ -0,0 +1,35 @@
# General guidelines
Here are some things to keep in mind for all types of contributions:
- Follow the ["fork and pull request"](https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project) workflow.
- Fill out the checked-in pull request template when opening pull requests. Note related issues and tag relevant maintainers.
- Ensure your PR passes formatting, linting, and testing checks before requesting a review.
- If you would like comments or feedback on your current progress, please open an issue or discussion and tag a maintainer.
- See the sections on [Testing](/docs/contributing/code/setup#testing) and [Formatting and Linting](/docs/contributing/code/setup#formatting-and-linting) for how to run these checks locally.
- Backwards compatibility is key. Your changes must not be breaking, except in case of critical bug and security fixes.
- Look for duplicate PRs or issues that have already been opened before opening a new one.
- Keep scope as isolated as possible. As a general rule, your changes should not affect more than one package at a time.
## Bugfixes
We encourage and appreciate bugfixes. We ask that you:
- Explain the bug in enough detail for maintainers to be able to reproduce it.
- If an accompanying issue exists, link to it. Prefix with `Fixes` so that the issue will close automatically when the PR is merged.
- Avoid breaking changes if possible.
- Include unit tests that fail without the bugfix.
If you come across a bug and don't know how to fix it, we ask that you open an issue for it describing in detail the environment in which you encountered the bug.
## New features
We aim to keep the bar high for new features. We generally don't accept new core abstractions, changes to infra, changes to dependencies,
or new agents/chains from outside contributors without an existing GitHub discussion or issue that demonstrates an acute need for them.
- New features must come with docs, unit tests, and (if appropriate) integration tests.
- New integrations must come with docs, unit tests, and (if appropriate) integration tests.
- See [this page](/docs/contributing/integrations) for more details on contributing new integrations.
- New functionality should not inherit from or use deprecated methods or classes.
- We will reject features that are likely to lead to security vulnerabilities or reports.
- Do not add any hard dependencies. Integrations may add optional dependencies.

View File

@@ -0,0 +1,6 @@
# Contribute Code
If you would like to add a new feature or update an existing one, please read the resources below before getting started:
- [General guidelines](/docs/contributing/code/guidelines/)
- [Setup](/docs/contributing/code/setup/)

View File

@@ -1,36 +1,9 @@
---
sidebar_position: 1
---
# Contribute Code
# Setup
To contribute to this project, please follow the ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are a maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting, and testing checks first. See [Testing](#testing) and
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
- Fix a bug
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
- Make an improvement
- Update any affected example notebooks and documentation. These live in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/docs/`.
- Add unit and integration tests.
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
best way to get our attention.
## 🚀 Quick Start
This quick start guide explains how to run the repository locally.
This guide walks through how to run the repository locally and check in your first code.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
### Dependency Management: Poetry and other env/dependency managers
## Dependency Management: Poetry and other env/dependency managers
This project utilizes [Poetry](https://python-poetry.org/) v1.7.1+ as a dependency manager.
@@ -41,7 +14,7 @@ Install Poetry: **[documentation on how to install it](https://python-poetry.org
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
### Different packages
## Different packages
This repository contains multiple packages:
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
@@ -59,7 +32,7 @@ For this quickstart, start with langchain-community:
cd libs/community
```
### Local Development Dependencies
## Local Development Dependencies
Install langchain-community development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
@@ -79,9 +52,9 @@ If you are still seeing this bug on v1.6.1+, you may also try disabling "modern
(`poetry config installer.modern-installation false`) and re-installing requirements.
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
### Testing
## Testing
_In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional; see section about optional dependencies_.
**Note:** In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional. See the following section about optional dependencies.
Unit tests cover modular logic that does not require calls to outside APIs.
If you add new logic, please add a unit test.
@@ -118,11 +91,11 @@ poetry install --with test
make test
```
### Formatting and Linting
## Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
#### Code Formatting
### Code Formatting
Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules/).
@@ -174,7 +147,7 @@ This can be very helpful when you've made changes to only certain parts of the p
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
#### Spellcheck
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.

View File

@@ -1,2 +0,0 @@
label: 'Documentation'
position: 3

View File

@@ -0,0 +1,7 @@
# Contribute Documentation
Documentation is a vital part of LangChain. We welcome both new documentation for new features and
community improvements to our current documentation. Please read the resources below before getting started:
- [Documentation style guide](/docs/contributing/documentation/style_guide/)
- [Setup](/docs/contributing/documentation/setup/)

View File

@@ -1,4 +1,8 @@
# Technical logistics
---
sidebar_class_name: "hidden"
---
# Setup
LangChain documentation consists of two components:
@@ -12,8 +16,6 @@ used to generate the externally facing [API Reference](https://api.python.langch
The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that
developers document their code well.
The main documentation is built using [Quarto](https://quarto.org) and [Docusaurus 2](https://docusaurus.io/).
The `API Reference` is largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/)
from the code and is hosted by [Read the Docs](https://readthedocs.org/).
@@ -29,7 +31,7 @@ The content for the main documentation is located in the `/docs` directory of th
The documentation is written using a combination of ipython notebooks (`.ipynb` files)
and markdown (`.mdx` files). The notebooks are converted to markdown
using [Quarto](https://quarto.org) and then built using [Docusaurus 2](https://docusaurus.io/).
and then built using [Docusaurus 2](https://docusaurus.io/).
Feel free to make contributions to the main documentation! 🥰
@@ -48,10 +50,6 @@ locally to ensure that it looks good and is free of errors.
If you're unable to build it locally that's okay as well, as you will be able to
see a preview of the documentation on the pull request page.
### Install dependencies
- [Quarto](https://quarto.org) - package that converts Jupyter notebooks (`.ipynb` files) into mdx files for serving in Docusaurus. [Download link](https://quarto.org/docs/download/).
From the **monorepo root**, run the following command to install the dependencies:
```bash
@@ -71,8 +69,6 @@ make docs_clean
make api_docs_clean
```
Next, you can build the documentation as outlined below:
```bash

View File

@@ -1,10 +1,8 @@
---
sidebar_label: "Style guide"
sidebar_class_name: "hidden"
---
# LangChain Documentation Style Guide
## Introduction
# Documentation Style Guide
As LangChain continues to grow, the surface area of documentation required to cover it continues to grow too.
This page provides guidelines for anyone writing documentation for LangChain, as well as some of our philosophies around
@@ -12,116 +10,139 @@ organization and structure.
## Philosophy
LangChain's documentation aspires to follow the [Diataxis framework](https://diataxis.fr).
Under this framework, all documentation falls under one of four categories:
LangChain's documentation follows the [Diataxis framework](https://diataxis.fr).
Under this framework, all documentation falls under one of four categories: [Tutorials](/docs/contributing/documentation/style_guide/#tutorials),
[How-to guides](/docs/contributing/documentation/style_guide/#how-to-guides),
[References](/docs/contributing/documentation/style_guide/#references), and [Explanations](/docs/contributing/documentation/style_guide/#conceptual-guide).
- **Tutorials**: Lessons that take the reader by the hand through a series of conceptual steps to complete a project.
- An example of this is our [LCEL streaming guide](/docs/how_to/streaming).
- Our guides on [custom components](/docs/how_to/custom_chat_model) is another one.
- **How-to guides**: Guides that take the reader through the steps required to solve a real-world problem.
- The clearest examples of this are our [Use case](/docs/how_to#use-cases) quickstart pages.
- **Reference**: Technical descriptions of the machinery and how to operate it.
- Our [Runnable interface](/docs/concepts#interface) page is an example of this.
- The [API reference pages](https://api.python.langchain.com/) are another.
- **Explanation**: Explanations that clarify and illuminate a particular topic.
- The [LCEL primitives pages](/docs/how_to/sequence) are an example of this.
### Tutorials
Tutorials are lessons that take the reader through a practical activity. Their purpose is to help the user
gain understanding of concepts and how they interact by showing one way to achieve some goal in a hands-on way. They should **avoid** giving
multiple permutations of ways to achieve that goal in-depth. Instead, it should guide a new user through a recommended path to accomplishing the tutorial's goal. While the end result of a tutorial does not necessarily need to
be completely production-ready, it should be useful and practically satisfy the the goal that you clearly stated in the tutorial's introduction. Information on how to address additional scenarios
belongs in how-to guides.
To quote the Diataxis website:
> A tutorial serves the users *acquisition* of skills and knowledge - their study. Its purpose is not to help the user get something done, but to help them learn.
In LangChain, these are often higher level guides that show off end-to-end use cases.
Some examples include:
- [Build a Simple LLM Application with LCEL](/docs/tutorials/llm_chain/)
- [Build a Retrieval Augmented Generation (RAG) App](/docs/tutorials/rag/)
A good structural rule of thumb is to follow the structure of this [example from Numpy](https://numpy.org/numpy-tutorials/content/tutorial-svd.html).
Here are some high-level tips on writing a good tutorial:
- Focus on guiding the user to get something done, but keep in mind the end-goal is more to impart principles than to create a perfect production system.
- Be specific, not abstract and follow one path.
- No need to go deeply into alternative approaches, but its ok to reference them, ideally with a link to an appropriate how-to guide.
- Get "a point on the board" as soon as possible - something the user can run that outputs something.
- You can iterate and expand afterwards.
- Try to frequently checkpoint at given steps where the user can run code and see progress.
- Focus on results, not technical explanation.
- Crosslink heavily to appropriate conceptual/reference pages.
- The first time you mention a LangChain concept, use its full name (e.g. "LangChain Expression Language (LCEL)"), and link to its conceptual/other documentation page.
- It's also helpful to add a prerequisite callout that links to any pages with necessary background information.
- End with a recap/next steps section summarizing what the tutorial covered and future reading, such as related how-to guides.
### How-to guides
A how-to guide, as the name implies, demonstrates how to do something discrete and specific.
It should assume that the user is already familiar with underlying concepts, and is trying to solve an immediate problem, but
should still give some background or list the scenarios where the information contained within can be relevant.
They can and should discuss alternatives if one approach may be better than another in certain cases.
To quote the Diataxis website:
> A how-to guide serves the work of the already-competent user, whom you can assume to know what they want to do, and to be able to follow your instructions correctly.
Some examples include:
- [How to: return structured data from a model](/docs/how_to/structured_output/)
- [How to: write a custom chat model](/docs/how_to/custom_chat_model/)
Here are some high-level tips on writing a good how-to guide:
- Clearly explain what you are guiding the user through at the start.
- Assume higher intent than a tutorial and show what the user needs to do to get that task done.
- Assume familiarity of concepts, but explain why suggested actions are helpful.
- Crosslink heavily to conceptual/reference pages.
- Discuss alternatives and responses to real-world tradeoffs that may arise when solving a problem.
- Use lots of example code.
- Prefer full code blocks that the reader can copy and run.
- End with a recap/next steps section summarizing what the tutorial covered and future reading, such as other related how-to guides.
### Conceptual guide
LangChain's conceptual guide falls under the **Explanation** quadrant of Diataxis. They should cover LangChain terms and concepts
in a more abstract way than how-to guides or tutorials, and should be geared towards curious users interested in
gaining a deeper understanding of the framework. Try to avoid excessively large code examples - the goal here is to
impart perspective to the user rather than to finish a practical project. These guides should cover **why** things work they way they do.
This guide on documentation style is meant to fall under this category.
To quote the Diataxis website:
> The perspective of explanation is higher and wider than that of the other types. It does not take the users eye-level view, as in a how-to guide, or a close-up view of the machinery, like reference material. Its scope in each case is a topic - “an area of knowledge”, that somehow has to be bounded in a reasonable, meaningful way.
Some examples include:
- [Retrieval conceptual docs](/docs/concepts/#retrieval)
- [Chat model conceptual docs](/docs/concepts/#chat-models)
Here are some high-level tips on writing a good conceptual guide:
- Explain design decisions. Why does concept X exist and why was it designed this way?
- Use analogies and reference other concepts and alternatives
- Avoid blending in too much reference content
- You can and should reference content covered in other guides, but make sure to link to them
### References
References contain detailed, low-level information that describes exactly what functionality exists and how to use it.
In LangChain, this is mainly our API reference pages, which are populated from docstrings within code.
References pages are generally not read end-to-end, but are consulted as necessary when a user needs to know
how to use something specific.
To quote the Diataxis website:
> The only purpose of a reference guide is to describe, as succinctly as possible, and in an orderly way. Whereas the content of tutorials and how-to guides are led by needs of the user, reference material is led by the product it describes.
Many of the reference pages in LangChain are automatically generated from code,
but here are some high-level tips on writing a good docstring:
- Be concise
- Discuss special cases and deviations from a user's expectations
- Go into detail on required inputs and outputs
- Light details on when one might use the feature are fine, but in-depth details belong in other sections.
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
## Taxonomy
Keeping the above in mind, we have sorted LangChain's docs into categories. It is helpful to think in these terms
when contributing new documentation:
### Getting started
The [getting started section](/docs/introduction) includes a high-level introduction to LangChain, a quickstart that
tours LangChain's various features, and logistical instructions around installation and project setup.
It contains elements of **How-to guides** and **Explanations**.
### Use cases
[Use cases](/docs/how_to#use-cases) are guides that are meant to show how to use LangChain to accomplish a specific task (RAG, information extraction, etc.).
The quickstarts should be good entrypoints for first-time LangChain developers who prefer to learn by getting something practical prototyped,
then taking the pieces apart retrospectively. These should mirror what LangChain is good at.
The quickstart pages here should fit the **How-to guide** category, with the other pages intended to be **Explanations** of more
in-depth concepts and strategies that accompany the main happy paths.
:::note
The below sections are listed roughly in order of increasing level of abstraction.
:::
### Expression Language
[LangChain Expression Language (LCEL)](/docs/concepts#langchain-expression-language-lcel) is the fundamental way that most LangChain components fit together, and this section is designed to teach
developers how to use it to build with LangChain's primitives effectively.
This section should contains **Tutorials** that teach how to stream and use LCEL primitives for more abstract tasks, **Explanations** of specific behaviors,
and some **References** for how to use different methods in the Runnable interface.
### Components
The [components section](/docs/concepts) covers concepts one level of abstraction higher than LCEL.
Abstract base classes like `BaseChatModel` and `BaseRetriever` should be covered here, as well as core implementations of these base classes,
such as `ChatPromptTemplate` and `RecursiveCharacterTextSplitter`. Customization guides belong here too.
This section should contain mostly conceptual **Tutorials**, **References**, and **Explanations** of the components they cover.
:::note
As a general rule of thumb, everything covered in the `Expression Language` and `Components` sections (with the exception of the `Composition` section of components) should
cover only components that exist in `langchain_core`.
:::
### Integrations
The [integrations](/docs/integrations/platforms/) are specific implementations of components. These often involve third-party APIs and services.
If this is the case, as a general rule, these are maintained by the third-party partner.
This section should contain mostly **Explanations** and **References**, though the actual content here is more flexible than other sections and more at the
discretion of the third-party provider.
:::note
Concepts covered in `Integrations` should generally exist in `langchain_community` or specific partner packages.
:::
### Guides and Ecosystem
The [Guides](/docs/tutorials) and [Ecosystem](https://docs.smith.langchain.com/) sections should contain guides that address higher-level problems than the sections above.
This includes, but is not limited to, considerations around productionization and development workflows.
These should contain mostly **How-to guides**, **Explanations**, and **Tutorials**.
### API references
LangChain's API references. Should act as **References** (as the name implies) with some **Explanation**-focused content as well.
## Sample developer journey
We have set up our docs to assist a new developer to LangChain. Let's walk through the intended path:
- The developer lands on https://python.langchain.com, and reads through the introduction and the diagram.
- If they are just curious, they may be drawn to the [Quickstart](/docs/tutorials/llm_chain) to get a high-level tour of what LangChain contains.
- If they have a specific task in mind that they want to accomplish, they will be drawn to the Use-Case section. The use-case should provide a good, concrete hook that shows the value LangChain can provide them and be a good entrypoint to the framework.
- They can then move to learn more about the fundamentals of LangChain through the Expression Language sections.
- Next, they can learn about LangChain's various components and integrations.
- Finally, they can get additional knowledge through the Guides.
This is only an ideal of course - sections will inevitably reference lower or higher-level concepts that are documented in other sections.
## Guidelines
## General guidelines
Here are some other guidelines you should think about when writing and organizing documentation.
### Linking to other sections
We generally do not merge new tutorials from outside contributors without an actue need.
We welcome updates as well as new integration docs, how-tos, and references.
### Avoid duplication
Multiple pages that cover the same material in depth are difficult to maintain and cause confusion. There should
be only one (very rarely two), canonical pages for a given concept or feature. Instead, you should link to other guides.
### Link to other sections
Because sections of the docs do not exist in a vacuum, it is important to link to other sections as often as possible
to allow a developer to learn more about an unfamiliar topic inline.
This includes linking to the API references as well as conceptual sections!
### Conciseness
### Be concise
In general, take a less-is-more approach. If a section with a good explanation of a concept already exists, you should link to it rather than
re-explain it, unless the concept you are documenting presents some new wrinkle.
@@ -130,9 +151,10 @@ Be concise, including in code samples.
### General style
- Use active voice and present tense whenever possible.
- Use examples and code snippets to illustrate concepts and usage.
- Use appropriate header levels (`#`, `##`, `###`, etc.) to organize the content hierarchically.
- Use bullet points and numbered lists to break down information into easily digestible chunks.
- Use tables (especially for **Reference** sections) and diagrams often to present information visually.
- Include the table of contents for longer documentation pages to help readers navigate the content, but hide it for shorter pages.
- Use active voice and present tense whenever possible
- Use examples and code snippets to illustrate concepts and usage
- Use appropriate header levels (`#`, `##`, `###`, etc.) to organize the content hierarchically
- Use fewer cells with more code to make copy/paste easier
- Use bullet points and numbered lists to break down information into easily digestible chunks
- Use tables (especially for **Reference** sections) and diagrams often to present information visually
- Include the table of contents for longer documentation pages to help readers navigate the content, but hide it for shorter pages

View File

@@ -12,8 +12,8 @@ As an open-source project in a rapidly developing field, we are extremely open t
There are many ways to contribute to LangChain. Here are some common ways people contribute:
- [**Documentation**](/docs/contributing/documentation/style_guide): Help improve our docs, including this one!
- [**Code**](./code.mdx): Help us write code, fix bugs, or improve our infrastructure.
- [**Documentation**](/docs/contributing/documentation/): Help improve our docs, including this one!
- [**Code**](/docs/contributing/code/): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](integrations.mdx): Help us integrate with your favorite vendors and tools.
- [**Discussions**](https://github.com/langchain-ai/langchain/discussions): Help answer usage questions and discuss issues with users.

View File

@@ -1,6 +1,7 @@
---
sidebar_position: 5
---
# Contribute Integrations
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](/docs/contributing/code/).
@@ -10,7 +11,7 @@ There are a few different places you can contribute integrations for LangChain:
- **Community**: For lighter-weight integrations that are primarily maintained by LangChain and the Open Source Community.
- **Partner Packages**: For independent packages that are co-maintained by LangChain and a partner.
For the most part, new integrations should be added to the Community package. Partner packages require more maintenance as separate packages, so please confirm with the LangChain team before creating a new partner package.
For the most part, **new integrations should be added to the Community package**. Partner packages require more maintenance as separate packages, so please confirm with the LangChain team before creating a new partner package.
In the following sections, we'll walk through how to contribute to each of these packages from a fake company, `Parrot Link AI`.
@@ -59,6 +60,10 @@ And add documentation to:
## Partner package in LangChain repo
:::caution
Before starting a **partner** package, please confirm your intent with the LangChain team. Partner packages require more maintenance as separate packages, so we will close PRs that add new partner packages without prior discussion. See the above section for how to add a community integration.
:::
Partner packages can be hosted in the `LangChain` monorepo or in an external repo.
Partner package in the `LangChain` repo is placed in `libs/partners/{partner}`

View File

@@ -7,6 +7,7 @@ If you plan on contributing to LangChain code or documentation, it can be useful
to understand the high level structure of the repository.
LangChain is organized as a [monorepo](https://en.wikipedia.org/wiki/Monorepo) that contains multiple packages.
You can check out our [installation guide](/docs/how_to/installation/) for more on how they fit together.
Here's the structure visualized as a tree:
@@ -51,7 +52,7 @@ There are other files in the root directory level, but their presence should be
The `/docs` directory contains the content for the documentation that is shown
at https://python.langchain.com/ and the associated API Reference https://api.python.langchain.com/en/latest/langchain_api_reference.html.
See the [documentation](/docs/contributing/documentation/style_guide) guidelines to learn how to contribute to the documentation.
See the [documentation](/docs/contributing/documentation/) guidelines to learn how to contribute to the documentation.
## Code
@@ -59,6 +60,6 @@ The `/libs` directory contains the code for the LangChain packages.
To learn more about how to contribute code see the following guidelines:
- [Code](./code.mdx) Learn how to develop in the LangChain codebase.
- [Integrations](./integrations.mdx) to learn how to contribute to third-party integrations to langchain-community or to start a new partner package.
- [Testing](./testing.mdx) guidelines to learn how to write tests for the packages.
- [Code](/docs/contributing/code/): Learn how to develop in the LangChain codebase.
- [Integrations](./integrations.mdx): Learn how to contribute to third-party integrations to `langchain-community` or to start a new partner package.
- [Testing](./testing.mdx): Guidelines to learn how to write tests for the packages.

View File

@@ -1,5 +1,5 @@
---
sidebar_position: 2
sidebar_position: 6
---
# Testing

View File

@@ -153,7 +153,7 @@
"\n",
" def parse(self, text: str) -> List[str]:\n",
" lines = text.strip().split(\"\\n\")\n",
" return lines\n",
" return list(filter(None, lines)) # Remove empty lines\n",
"\n",
"\n",
"output_parser = LineListOutputParser()\n",

View File

@@ -23,7 +23,7 @@
"This guide assumes familiarity with the following concepts:\n",
"- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language)\n",
"- [Chaining runnables](/docs/how_to/sequence/)\n",
"- [Tool calling](/docs/how_to/tool_calling/)\n",
"- [Tool calling](/docs/how_to/tool_calling)\n",
"\n",
":::\n",
"\n",
@@ -142,7 +142,7 @@
"\n",
"## Attaching OpenAI tools\n",
"\n",
"Another common use-case is tool calling. While you should generally use the [`.bind_tools()`](/docs/how_to/tool_calling/) method for tool-calling models, you can also bind provider-specific args directly if you want lower level control:"
"Another common use-case is tool calling. While you should generally use the [`.bind_tools()`](/docs/how_to/tool_calling) method for tool-calling models, you can also bind provider-specific args directly if you want lower level control:"
]
},
{

View File

@@ -0,0 +1,342 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to dispatch custom callback events\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Callbacks](/docs/concepts/#callbacks)\n",
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
"- [Astream Events API](/docs/concepts/#astream_events) the `astream_events` method will surface custom callback events.\n",
":::\n",
"\n",
"In some situations, you may want to dipsatch a custom callback event from within a [Runnable](/docs/concepts/#runnable-interface) so it can be surfaced\n",
"in a custom callback handler or via the [Astream Events API](/docs/concepts/#astream_events).\n",
"\n",
"For example, if you have a long running tool with multiple steps, you can dispatch custom events between the steps and use these custom events to monitor progress.\n",
"You could also surface these custom events to an end user of your application to show them how the current task is progressing.\n",
"\n",
"To dispatch a custom event you need to decide on two attributes for the event: the `name` and the `data`.\n",
"\n",
"| Attribute | Type | Description |\n",
"|-----------|------|----------------------------------------------------------------------------------------------------------|\n",
"| name | str | A user defined name for the event. |\n",
"| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |\n",
"\n",
"\n",
":::{.callout-important}\n",
"* Dispatching custom callback events requires `langchain-core>=0.2.15`.\n",
"* Custom callback events can only be dispatched from within an existing `Runnable`.\n",
"* If using `astream_events`, you must use `version='v2'` to see custom events.\n",
"* Sending or rendering custom callbacks events in LangSmith is not yet supported.\n",
":::\n",
"\n",
"\n",
":::caution COMPATIBILITY\n",
"LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n",
"\n",
"If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n",
"\n",
"If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in other Python versions.\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain-core"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Astream Events API\n",
"\n",
"The most useful way to consume custom events is via the [Astream Events API](/docs/concepts/#astream_events).\n",
"\n",
"We can use the `async` `adispatch_custom_event` API to emit custom events in an async setting. \n",
"\n",
"\n",
":::{.callout-important}\n",
"\n",
"To see custom events via the astream events API, you need to use the newer `v2` API of `astream_events`.\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'foo', 'tags': [], 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
"{'event': 'on_chain_stream', 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'f354ffe8-4c22-4881-890a-c1cad038a9a6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def foo(x: str) -> str:\n",
" await adispatch_custom_event(\"event1\", {\"x\": x})\n",
" await adispatch_custom_event(\"event2\", 5)\n",
" return x\n",
"\n",
"\n",
"async for event in foo.astream_events(\"hello world\", version=\"v2\"):\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In python <= 3.10, you must propagate the config manually!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'hello world'}, 'name': 'bar', 'tags': [], 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_custom_event', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': 5, 'parent_ids': []}\n",
"{'event': 'on_chain_stream', 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'data': {'chunk': 'hello world'}, 'parent_ids': []}\n",
"{'event': 'on_chain_end', 'data': {'output': 'hello world'}, 'run_id': 'c787b09d-698a-41b9-8290-92aaa656f3e7', 'name': 'bar', 'tags': [], 'metadata': {}, 'parent_ids': []}\n"
]
}
],
"source": [
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def bar(x: str, config: RunnableConfig) -> str:\n",
" \"\"\"An example that shows how to manually propagate config.\n",
"\n",
" You must do this if you're running python<=3.10.\n",
" \"\"\"\n",
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
" return x\n",
"\n",
"\n",
"async for event in bar.astream_events(\"hello world\", version=\"v2\"):\n",
" print(event)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Async Callback Handler\n",
"\n",
"You can also consume the dispatched event via an async callback handler."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n",
"Received event event2 with data: 5, with tags: ['foo', 'bar'], with metadata: {} and run_id: a62b84be-7afd-4829-9947-7165df1f37d9\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List, Optional\n",
"from uuid import UUID\n",
"\n",
"from langchain_core.callbacks import AsyncCallbackHandler\n",
"from langchain_core.callbacks.manager import (\n",
" adispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"class AsyncCustomCallbackHandler(AsyncCallbackHandler):\n",
" async def on_custom_event(\n",
" self,\n",
" name: str,\n",
" data: Any,\n",
" *,\n",
" run_id: UUID,\n",
" tags: Optional[List[str]] = None,\n",
" metadata: Optional[Dict[str, Any]] = None,\n",
" **kwargs: Any,\n",
" ) -> None:\n",
" print(\n",
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
" )\n",
"\n",
"\n",
"@RunnableLambda\n",
"async def bar(x: str, config: RunnableConfig) -> str:\n",
" \"\"\"An example that shows how to manually propagate config.\n",
"\n",
" You must do this if you're running python<=3.10.\n",
" \"\"\"\n",
" await adispatch_custom_event(\"event1\", {\"x\": x}, config=config)\n",
" await adispatch_custom_event(\"event2\", 5, config=config)\n",
" return x\n",
"\n",
"\n",
"async_handler = AsyncCustomCallbackHandler()\n",
"await foo.ainvoke(1, {\"callbacks\": [async_handler], \"tags\": [\"foo\", \"bar\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sync Callback Handler\n",
"\n",
"Let's see how to emit custom events in a sync environment using `dispatch_custom_event`.\n",
"\n",
"You **must** call `dispatch_custom_event` from within an existing `Runnable`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Received event event1 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n",
"Received event event2 with data: {'x': 1}, with tags: ['foo', 'bar'], with metadata: {} and run_id: 27b5ce33-dc26-4b34-92dd-08a89cb22268\n"
]
},
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List, Optional\n",
"from uuid import UUID\n",
"\n",
"from langchain_core.callbacks import BaseCallbackHandler\n",
"from langchain_core.callbacks.manager import (\n",
" dispatch_custom_event,\n",
")\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_core.runnables.config import RunnableConfig\n",
"\n",
"\n",
"class CustomHandler(BaseCallbackHandler):\n",
" def on_custom_event(\n",
" self,\n",
" name: str,\n",
" data: Any,\n",
" *,\n",
" run_id: UUID,\n",
" tags: Optional[List[str]] = None,\n",
" metadata: Optional[Dict[str, Any]] = None,\n",
" **kwargs: Any,\n",
" ) -> None:\n",
" print(\n",
" f\"Received event {name} with data: {data}, with tags: {tags}, with metadata: {metadata} and run_id: {run_id}\"\n",
" )\n",
"\n",
"\n",
"@RunnableLambda\n",
"def foo(x: int, config: RunnableConfig) -> int:\n",
" dispatch_custom_event(\"event1\", {\"x\": x})\n",
" dispatch_custom_event(\"event2\", {\"x\": x})\n",
" return x\n",
"\n",
"\n",
"handler = CustomHandler()\n",
"foo.invoke(1, {\"callbacks\": [handler], \"tags\": [\"foo\", \"bar\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've seen how to emit custom events, you can check out the more in depth guide for [astream events](/docs/how_to/streaming/#using-stream-events) which is the easiest way to leverage custom events."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -5,7 +5,7 @@
"id": "cfdf4f09-8125-4ed1-8063-6feed57da8a3",
"metadata": {},
"source": [
"# How to let your end users choose their model\n",
"# How to init any model in one line\n",
"\n",
"Many LLM applications let end users specify what model provider and model they want the application to be powered by. This requires writing some logic to initialize different ChatModels based on some user configuration. The `init_chat_model()` helper method makes it easy to initialize a number of different model integrations without having to worry about import paths and class names.\n",
"\n",
@@ -15,6 +15,12 @@
"\n",
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
"\n",
":::\n",
"\n",
":::info Requires ``langchain >= 0.2.8``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n",
"\n",
":::"
]
},
@@ -25,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-vertexai"
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
]
},
{
@@ -76,32 +82,6 @@
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
]
},
{
"cell_type": "markdown",
"id": "fff9a4c8-b6ee-4a1a-8d3d-0ecaa312d4ed",
"metadata": {},
"source": [
"## Simple config example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "75c25d39-bf47-4b51-a6c6-64d9c572bfd6",
"metadata": {},
"outputs": [],
"source": [
"user_config = {\n",
" \"model\": \"...user-specified...\",\n",
" \"model_provider\": \"...user-specified...\",\n",
" \"temperature\": 0,\n",
" \"max_tokens\": 1000,\n",
"}\n",
"\n",
"llm = init_chat_model(**user_config)\n",
"llm.invoke(\"what's your name\")"
]
},
{
"cell_type": "markdown",
"id": "f811f219-5e78-4b62-b495-915d52a22532",
@@ -125,12 +105,215 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da07b5c0-d2e6-42e4-bfcd-2efcfaae6221",
"cell_type": "markdown",
"id": "476a44db-c50d-4846-951d-0f1c9ba8bbaa",
"metadata": {},
"outputs": [],
"source": []
"source": [
"## Creating a configurable model\n",
"\n",
"You can also create a runtime-configurable model by specifying `configurable_fields`. If you don't specify a `model` value, then \"model\" and \"model_provider\" be configurable by default."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_d576307f90', 'finish_reason': 'stop', 'logprobs': None}, id='run-5428ab5c-b5c0-46de-9946-5d4ca40dbdc8-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"configurable_model = init_chat_model(temperature=0)\n",
"\n",
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_012XvotUJ3kGLXJUWKBVxJUi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-1ad1eefe-f1c6-4244-8bc6-90e2cb7ee554-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"configurable_model.invoke(\n",
" \"what's your name\", config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}}\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7f3b3d4a-4066-45e4-8297-ea81ac8e70b7",
"metadata": {},
"source": [
"### Configurable model with default values\n",
"\n",
"We can create a configurable model with default model values, specify which parameters are configurable, and add prefixes to configurable params:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "814a2289-d0db-401e-b555-d5116112b413",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_ce0793330f', 'finish_reason': 'stop', 'logprobs': None}, id='run-3923e328-7715-4cd6-b215-98e4b6bf7c9d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_llm = init_chat_model(\n",
" model=\"gpt-4o\",\n",
" temperature=0,\n",
" configurable_fields=(\"model\", \"model_provider\", \"temperature\", \"max_tokens\"),\n",
" config_prefix=\"first\", # useful when you have a chain with multiple models\n",
")\n",
"\n",
"first_llm.invoke(\"what's your name\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6c8755ba-c001-4f5a-a497-be3f1db83244",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_01RyYR64DoMPNCfHeNnroMXm', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-22446159-3723-43e6-88df-b84797e7751d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"first_llm.invoke(\n",
" \"what's your name\",\n",
" config={\n",
" \"configurable\": {\n",
" \"first_model\": \"claude-3-5-sonnet-20240620\",\n",
" \"first_temperature\": 0.5,\n",
" \"first_max_tokens\": 100,\n",
" }\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0072b1a3-7e44-4b4e-8b07-efe1ba91a689",
"metadata": {},
"source": [
"### Using a configurable model declaratively\n",
"\n",
"We can call declarative operations like `bind_tools`, `with_structured_output`, `with_configurable`, etc. on a configurable model and chain a configurable model in the same way that we would a regularly instantiated chat model object."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "067dabee-1050-4110-ae24-c48eba01e13b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetPopulation',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'call_sYT3PFMufHGWJD32Hi2CTNUP'},\n",
" {'name': 'GetPopulation',\n",
" 'args': {'location': 'New York, NY'},\n",
" 'id': 'call_j1qjhxRnD3ffQmRyqjlI1Lnk'}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"class GetPopulation(BaseModel):\n",
" \"\"\"Get the current population in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm = init_chat_model(temperature=0)\n",
"llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])\n",
"\n",
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\", config={\"configurable\": {\"model\": \"gpt-4o\"}}\n",
").tool_calls"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetPopulation',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'toolu_01CxEHxKtVbLBrvzFS7GQ5xR'},\n",
" {'name': 'GetPopulation',\n",
" 'args': {'location': 'New York City, NY'},\n",
" 'id': 'toolu_013A79qt5toWSsKunFBDZd5S'}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_with_tools.invoke(\n",
" \"what's bigger in 2024 LA or NYC\",\n",
" config={\"configurable\": {\"model\": \"claude-3-5-sonnet-20240620\"}},\n",
").tool_calls"
]
}
],
"metadata": {
@@ -149,7 +332,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -16,7 +16,7 @@
"\n",
"Tracking token usage to calculate cost is an important part of putting your app in production. This guide goes over how to obtain this information from your LangChain model calls.\n",
"\n",
"This guide requires `langchain-openai >= 0.1.8`."
"This guide requires `langchain-openai >= 0.1.9`."
]
},
{
@@ -153,7 +153,7 @@
"\n",
"#### OpenAI\n",
"\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.8` and can be enabled by setting `stream_options={\"include_usage\": True}`.\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"\n",
"```{=mdx}\n",
":::note\n",
@@ -172,18 +172,18 @@
"name": "stdout",
"output_type": "stream",
"text": [
"content='' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='Hello' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='!' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' How' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' can' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' I' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' assist' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' you' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content=' today' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='?' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='' response_metadata={'finish_reason': 'stop'} id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf'\n",
"content='' id='run-b40e502e-d30e-4617-94ad-95b4dfee14bf' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n"
"content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='Hello' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='!' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' How' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' can' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' I' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' assist' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' you' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content=' today' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='?' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n",
"content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n"
]
}
],
@@ -191,7 +191,7 @@
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n",
"\n",
"aggregate = None\n",
"for chunk in llm.stream(\"hello\", stream_options={\"include_usage\": True}):\n",
"for chunk in llm.stream(\"hello\", stream_usage=True):\n",
" print(chunk)\n",
" aggregate = chunk if aggregate is None else aggregate + chunk"
]
@@ -229,7 +229,7 @@
"id": "7dba63e8-0ed7-4533-8f0f-78e19c38a25c",
"metadata": {},
"source": [
"To disable streaming token counts for OpenAI, set `\"include_usage\"` to False in `stream_options`, or omit it from the parameters:"
"To disable streaming token counts for OpenAI, set `stream_usage` to False, or omit it from the parameters:"
]
},
{
@@ -242,17 +242,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"content='' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='Hello' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='!' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' How' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' can' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' I' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' assist' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' you' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content=' today' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='?' id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n",
"content='' response_metadata={'finish_reason': 'stop'} id='run-0085d64c-13d2-431b-a0fa-399be8cd3c52'\n"
"content='' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='Hello' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='!' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' How' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' can' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' I' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' assist' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' you' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content=' today' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='?' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n",
"content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-8e758550-94b0-4cca-a298-57482793c25d'\n"
]
}
],
@@ -267,7 +267,7 @@
"id": "6a5d9617-be3a-419a-9276-de9c29fa50ae",
"metadata": {},
"source": [
"You can also enable streaming token usage by setting `model_kwargs` when instantiating the chat model. This can be useful when incorporating chat models into LangChain [chains](/docs/concepts#langchain-expression-language-lcel): usage metadata can be monitored when [streaming intermediate steps](/docs/how_to/streaming#using-stream-events) or using tracing software such as [LangSmith](https://docs.smith.langchain.com/).\n",
"You can also enable streaming token usage by setting `stream_usage` when instantiating the chat model. This can be useful when incorporating chat models into LangChain [chains](/docs/concepts#langchain-expression-language-lcel): usage metadata can be monitored when [streaming intermediate steps](/docs/how_to/streaming#using-stream-events) or using tracing software such as [LangSmith](https://docs.smith.langchain.com/).\n",
"\n",
"See the below example, where we return output structured to a desired schema, but can still observe token usage streamed from intermediate steps."
]
@@ -275,7 +275,7 @@
{
"cell_type": "code",
"execution_count": 8,
"id": "57dec1fb-bd9c-4c98-8798-8fbbe67f6b2c",
"id": "0b1523d8-127e-4314-82fa-bd97aca37f9a",
"metadata": {},
"outputs": [
{
@@ -301,7 +301,7 @@
"\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-3.5-turbo-0125\",\n",
" model_kwargs={\"stream_options\": {\"include_usage\": True}},\n",
" stream_usage=True,\n",
")\n",
"# Under the hood, .with_structured_output binds tools to the\n",
"# chat model and appends a parser.\n",
@@ -341,7 +341,7 @@
{
"cell_type": "code",
"execution_count": 9,
"id": "31667d54",
"id": "b04a4486-72fd-48ce-8f9e-5d281b441195",
"metadata": {},
"outputs": [
{
@@ -361,7 +361,11 @@
"\n",
"from langchain_community.callbacks.manager import get_openai_callback\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-3.5-turbo-0125\",\n",
" temperature=0,\n",
" stream_usage=True,\n",
")\n",
"\n",
"with get_openai_callback() as cb:\n",
" result = llm.invoke(\"Tell me a joke\")\n",
@@ -379,14 +383,14 @@
{
"cell_type": "code",
"execution_count": 10,
"id": "e09420f4",
"id": "05f22a1d-b021-490f-8840-f628a07459f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"55\n"
"54\n"
]
}
],
@@ -397,37 +401,29 @@
" print(cb.total_tokens)"
]
},
{
"cell_type": "markdown",
"id": "9ac51188-c8f4-4230-90fd-3cd78cdd955d",
"metadata": {},
"source": [
"```{=mdx}\n",
":::note\n",
"Cost information is currently not available in streaming mode. This is because model names are currently not propagated through chunks in streaming mode, and the model name is used to look up the correct pricing. Token counts however are available:\n",
":::\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b241069a-265d-4497-af34-b0a5f95ae67f",
"id": "c00c9158-7bb4-4279-88e6-ea70f46e6ac2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"28\n"
"Tokens Used: 27\n",
"\tPrompt Tokens: 11\n",
"\tCompletion Tokens: 16\n",
"Successful Requests: 1\n",
"Total Cost (USD): $2.95e-05\n"
]
}
],
"source": [
"with get_openai_callback() as cb:\n",
" for chunk in llm.stream(\"Tell me a joke\", stream_options={\"include_usage\": True}):\n",
" for chunk in llm.stream(\"Tell me a joke\"):\n",
" pass\n",
" print(cb.total_tokens)"
" print(cb)"
]
},
{
@@ -457,21 +453,7 @@
")\n",
"tools = load_tools([\"wikipedia\"])\n",
"agent = create_tool_calling_agent(llm, tools, prompt)\n",
"agent_executor = AgentExecutor(\n",
" agent=agent, tools=tools, verbose=True, stream_runnable=False\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9c1ae74d-8300-4041-9ff4-66093ee592b1",
"metadata": {},
"source": [
"```{=mdx}\n",
":::note\n",
"We have to set `stream_runnable=False` for cost information, as described above. By default the AgentExecutor will stream the underlying agent so that you can get the most granular results when streaming events via AgentExecutor.stream_events.\n",
":::\n",
"```"
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)"
]
},
{
@@ -503,36 +485,30 @@
"\n",
"\n",
"\n",
"Page: Anna's hummingbird\n",
"Summary: Anna's hummingbird (Calypte anna) is a North American species of hummingbird. It was named after Anna Masséna, Duchess of Rivoli.\n",
"It is native to western coastal regions of North America. In the early 20th century, Anna's hummingbirds bred only in northern Baja California and Southern California. The transplanting of exotic ornamental plants in residential areas throughout the Pacific coast and inland deserts provided expanded nectar and nesting sites, allowing the species to expand its breeding range. Year-round residence of Anna's hummingbirds in the Pacific Northwest is an example of ecological release dependent on acclimation to colder winter temperatures, introduced plants, and human provision of nectar feeders during winter.\n",
"These birds feed on nectar from flowers using a long extendable tongue. They also consume small insects and other arthropods caught in flight or gleaned from vegetation.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Page: Allen's hummingbird\n",
"Summary: Allen's hummingbird (Selasphorus sasin) is a species of hummingbird that breeds in the western United States. It is one of seven species in the genus Selasphorus.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Invoking: `wikipedia` with `{'query': 'fastest bird species'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3mPage: List of birds by flight speed\n",
"Summary: This is a list of the fastest flying birds in the world. A bird's velocity is necessarily variable; a hunting bird will reach much greater speeds while diving to catch prey than when flying horizontally. The bird that can achieve the greatest airspeed is the peregrine falcon (Falco peregrinus), able to exceed 320 km/h (200 mph) in its dives. A close relative of the common swift, the white-throated needletail (Hirundapus caudacutus), is commonly reported as the fastest bird in level flight with a reported top speed of 169 km/h (105 mph). This record remains unconfirmed as the measurement methods have never been published or verified. The record for the fastest confirmed level flight by a bird is 111.5 km/h (69.3 mph) held by the common swift.\n",
"\n",
"\n",
"\n",
"Page: Fastest animals\n",
"Summary: This is a list of the fastest animals in the world, by types of animal.\n",
"\n",
"\n",
"\n",
"Page: Falcon\n",
"Summary: Falcons () are birds of prey in the genus Falco, which includes about 40 species. Falcons are widely distributed on all continents of the world except Antarctica, though closely related raptors did occur there in the Eocene.\n",
"Adult falcons have thin, tapered wings, which enable them to fly at high speed and change direction rapidly. Fledgling falcons, in their first year of flying, have longer flight feathers, which make their configuration more like that of a general-purpose bird such as a broad wing. This makes flying easier while learning the exceptional skills required to be effective hunters as adults.\n",
"The falcons are the largest genus in the Falconinae subfamily of Falconidae, which itself also includes another subfamily comprising caracaras and a few other species. All these birds kill with their beaks, using a tomial \"tooth\" on the side of their beaks—unlike the hawks, eagles, and other birds of prey in the Accipitridae, which use their feet.\n",
"The largest falcon is the gyrfalcon at up to 65 cm in length. The smallest falcon species is the pygmy falcon, which measures just 20 cm. As with hawks and owls, falcons exhibit sexual dimorphism, with the females typically larger than the males, thus allowing a wider range of prey species.\n",
"Some small falcons with long, narrow wings are called \"hobbies\" and some which hover while hunting are called \"kestrels\".\n",
"As is the case with many birds of prey, falcons have exceptional powers of vision; the visual acuity of one species has been measured at 2.6 times that of a normal human. Peregrine falcons have been recorded diving at speeds of 320 km/h (200 mph), making them the fastest-moving creatures on Earth; the fastest recorded dive attained a vertical speed of 390 km/h (240 mph).\u001b[0m\u001b[32;1m\u001b[1;3mThe scientific name for a hummingbird is Trochilidae. The fastest bird species is the peregrine falcon (Falco peregrinus), which can exceed speeds of 320 km/h (200 mph) in its dives.\u001b[0m\n",
"As is the case with many birds of prey, falcons have exceptional powers of vision; the visual acuity of one species has been measured at 2.6 times that of a normal human. Peregrine falcons have been recorded diving at speeds of 320 km/h (200 mph), making them the fastest-moving creatures on Earth; the fastest recorded dive attained a vertical speed of 390 km/h (240 mph).\u001b[0m\u001b[32;1m\u001b[1;3mThe scientific name for a hummingbird is Trochilidae. The fastest bird species in level flight is the common swift, which holds the record for the fastest confirmed level flight by a bird at 111.5 km/h (69.3 mph). The peregrine falcon is known to exceed speeds of 320 km/h (200 mph) in its dives, making it the fastest bird in terms of diving speed.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"Total Tokens: 1787\n",
"Prompt Tokens: 1687\n",
"Completion Tokens: 100\n",
"Total Cost (USD): $0.0009935\n"
"Total Tokens: 1675\n",
"Prompt Tokens: 1538\n",
"Completion Tokens: 137\n",
"Total Cost (USD): $0.0009745000000000001\n"
]
}
],

View File

@@ -71,13 +71,13 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")"
"chat = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")"
]
},
{
@@ -95,19 +95,15 @@
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='I said \"J\\'adore la programmation,\" which means \"I love programming\" in French.')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
"name": "stdout",
"output_type": "stream",
"text": [
"I said \"J'adore la programmation,\" which means \"I love programming\" in French.\n"
]
}
],
"source": [
"from langchain_core.messages import AIMessage, HumanMessage\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
@@ -115,23 +111,25 @@
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" (\"placeholder\", \"{messages}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | chat\n",
"\n",
"chain.invoke(\n",
"ai_msg = chain.invoke(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French: I love programming.\"\n",
" (\n",
" \"human\",\n",
" \"Translate this sentence from English to French: I love programming.\",\n",
" ),\n",
" AIMessage(content=\"J'adore la programmation.\"),\n",
" HumanMessage(content=\"What did you just say?\"),\n",
" (\"ai\", \"J'adore la programmation.\"),\n",
" (\"human\", \"What did you just say?\"),\n",
" ],\n",
" }\n",
")"
")\n",
"print(ai_msg.content)"
]
},
{
@@ -193,7 +191,7 @@
{
"data": {
"text/plain": [
"AIMessage(content='You asked me to translate the sentence \"I love programming\" from English to French.')"
"AIMessage(content='You just asked me to translate the sentence \"I love programming\" from English to French.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 61, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5cbb21c2-9c30-4031-8ea8-bfc497989535-0', usage_metadata={'input_tokens': 61, 'output_tokens': 18, 'total_tokens': 79})"
]
},
"execution_count": 5,
@@ -250,7 +248,7 @@
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"chat_history\"),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
@@ -304,10 +302,17 @@
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run dc4e2f79-4bcd-4a36-9506-55ace9040588 not found for run 34b5773e-3ced-46a6-8daf-4d464c15c940. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='The translation of \"I love programming\" in French is \"J\\'adore la programmation.\"')"
"AIMessage(content='\"J\\'adore la programmation.\"', response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 39, 'total_tokens': 48}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-648b0822-b0bb-47a2-8e7d-7d34744be8f2-0', usage_metadata={'input_tokens': 39, 'output_tokens': 9, 'total_tokens': 48})"
]
},
"execution_count": 8,
@@ -327,10 +332,17 @@
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run cc14b9d8-c59e-40db-a523-d6ab3fc2fa4f not found for run 5b75e25c-131e-46ee-9982-68569db04330. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='You just asked me to translate the sentence \"I love programming\" from English to French.')"
"AIMessage(content='You asked me to translate the sentence \"I love programming\" from English to French.', response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 63, 'total_tokens': 80}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5950435c-1dc2-43a6-836f-f989fd62c95e-0', usage_metadata={'input_tokens': 63, 'output_tokens': 17, 'total_tokens': 80})"
]
},
"execution_count": 9,
@@ -354,12 +366,12 @@
"\n",
"### Trimming messages\n",
"\n",
"LLMs and chat models have limited context windows, and even if you're not directly hitting limits, you may want to limit the amount of distraction the model has to deal with. One solution is to only load and store the most recent `n` messages. Let's use an example history with some preloaded messages:"
"LLMs and chat models have limited context windows, and even if you're not directly hitting limits, you may want to limit the amount of distraction the model has to deal with. One solution is trim the historic messages before passing them to the model. Let's use an example history with some preloaded messages:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 21,
"metadata": {},
"outputs": [
{
@@ -371,7 +383,7 @@
" AIMessage(content='Fine thanks!')]"
]
},
"execution_count": 10,
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -396,34 +408,28 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run 7ff2d8ec-65e2-4f67-8961-e498e2c4a591 not found for run 3881e990-6596-4326-84f6-2b76949e0657. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='Your name is Nemo.')"
"AIMessage(content='Your name is Nemo.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 66, 'total_tokens': 72}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f8aabef8-631a-4238-a39b-701e881fbe47-0', usage_metadata={'input_tokens': 66, 'output_tokens': 6, 'total_tokens': 72})"
]
},
"execution_count": 11,
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"chat_history\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | chat\n",
"\n",
"chain_with_message_history = RunnableWithMessageHistory(\n",
" chain,\n",
" lambda session_id: demo_ephemeral_chat_history,\n",
@@ -443,34 +449,33 @@
"source": [
"We can see the chain remembers the preloaded name.\n",
"\n",
"But let's say we have a very small context window, and we want to trim the number of messages passed to the chain to only the 2 most recent ones. We can use the `clear` method to remove messages and re-add them to the history. We don't have to, but let's put this method at the front of our chain to ensure it's always called:"
"But let's say we have a very small context window, and we want to trim the number of messages passed to the chain to only the 2 most recent ones. We can use the built in [trim_messages](/docs/how_to/trim_messages/) util to trim messages based on their token count before they reach our prompt. In this case we'll count each message as 1 \"token\" and keep only the last two messages:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.messages import trim_messages\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"\n",
"def trim_messages(chain_input):\n",
" stored_messages = demo_ephemeral_chat_history.messages\n",
" if len(stored_messages) <= 2:\n",
" return False\n",
"\n",
" demo_ephemeral_chat_history.clear()\n",
"\n",
" for message in stored_messages[-2:]:\n",
" demo_ephemeral_chat_history.add_message(message)\n",
"\n",
" return True\n",
"\n",
"trimmer = trim_messages(strategy=\"last\", max_tokens=2, token_counter=len)\n",
"\n",
"chain_with_trimming = (\n",
" RunnablePassthrough.assign(messages_trimmed=trim_messages)\n",
" | chain_with_message_history\n",
" RunnablePassthrough.assign(chat_history=itemgetter(\"chat_history\") | trimmer)\n",
" | prompt\n",
" | chat\n",
")\n",
"\n",
"chain_with_trimmed_history = RunnableWithMessageHistory(\n",
" chain_with_trimming,\n",
" lambda session_id: demo_ephemeral_chat_history,\n",
" input_messages_key=\"input\",\n",
" history_messages_key=\"chat_history\",\n",
")"
]
},
@@ -483,22 +488,29 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run 775cde65-8d22-4c44-80bb-f0b9811c32ca not found for run 5cf71d0e-4663-41cd-8dbe-e9752689cfac. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"P. Sherman's address is 42 Wallaby Way, Sydney.\")"
"AIMessage(content='P. Sherman is a fictional character from the animated movie \"Finding Nemo\" who lives at 42 Wallaby Way, Sydney.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 53, 'total_tokens': 80}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5642ef3a-fdbe-43cf-a575-d1785976a1b9-0', usage_metadata={'input_tokens': 53, 'output_tokens': 27, 'total_tokens': 80})"
]
},
"execution_count": 13,
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_trimming.invoke(\n",
"chain_with_trimmed_history.invoke(\n",
" {\"input\": \"Where does P. Sherman live?\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
")"
@@ -506,19 +518,23 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"What's my name?\"),\n",
" AIMessage(content='Your name is Nemo.'),\n",
"[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n",
" AIMessage(content='Hello!'),\n",
" HumanMessage(content='How are you today?'),\n",
" AIMessage(content='Fine thanks!'),\n",
" HumanMessage(content=\"What's my name?\"),\n",
" AIMessage(content='Your name is Nemo.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 66, 'total_tokens': 72}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f8aabef8-631a-4238-a39b-701e881fbe47-0', usage_metadata={'input_tokens': 66, 'output_tokens': 6, 'total_tokens': 72}),\n",
" HumanMessage(content='Where does P. Sherman live?'),\n",
" AIMessage(content=\"P. Sherman's address is 42 Wallaby Way, Sydney.\")]"
" AIMessage(content='P. Sherman is a fictional character from the animated movie \"Finding Nemo\" who lives at 42 Wallaby Way, Sydney.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 53, 'total_tokens': 80}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5642ef3a-fdbe-43cf-a575-d1785976a1b9-0', usage_metadata={'input_tokens': 53, 'output_tokens': 27, 'total_tokens': 80})]"
]
},
"execution_count": 14,
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -536,48 +552,39 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Parent run fde7123f-6fd3-421a-a3fc-2fb37dead119 not found for run 061a4563-2394-470d-a3ed-9bf1388ca431. Treating as a root run.\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"I'm sorry, I don't have access to your personal information.\")"
"AIMessage(content=\"I'm sorry, but I don't have access to your personal information, so I don't know your name. How else may I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 74, 'total_tokens': 105}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-0ab03495-1f7c-4151-9070-56d2d1c565ff-0', usage_metadata={'input_tokens': 74, 'output_tokens': 31, 'total_tokens': 105})"
]
},
"execution_count": 15,
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain_with_trimming.invoke(\n",
"chain_with_trimmed_history.invoke(\n",
" {\"input\": \"What is my name?\"},\n",
" {\"configurable\": {\"session_id\": \"unused\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"cell_type": "markdown",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='Where does P. Sherman live?'),\n",
" AIMessage(content=\"P. Sherman's address is 42 Wallaby Way, Sydney.\"),\n",
" HumanMessage(content='What is my name?'),\n",
" AIMessage(content=\"I'm sorry, I don't have access to your personal information.\")]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"demo_ephemeral_chat_history.messages"
"Check out our [how to guide on trimming messages](/docs/how_to/trim_messages/) for more."
]
},
{
@@ -638,7 +645,7 @@
" \"system\",\n",
" \"You are a helpful assistant. Answer all questions to the best of your ability. The provided chat history includes facts about the user you are speaking with.\",\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"chat_history\"),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"user\", \"{input}\"),\n",
" ]\n",
")\n",
@@ -672,7 +679,7 @@
" return False\n",
" summarization_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" MessagesPlaceholder(variable_name=\"chat_history\"),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\n",
" \"user\",\n",
" \"Distill the above chat messages into a single summary message. Include as many specific details as you can.\",\n",
@@ -772,9 +779,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

View File

@@ -300,7 +300,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"id": "ac9295d3",
"metadata": {},
"outputs": [],
@@ -312,10 +312,8 @@
"\n",
"## Quick Install\n",
"\n",
"```bash\n",
"# Hopefully this code block isn't split\n",
"pip install langchain\n",
"```\n",
"\n",
"As an open-source project in a rapidly developing field, we are extremely open to contributions.\n",
"\"\"\""
@@ -323,7 +321,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"id": "3a0cb17a",
"metadata": {},
"outputs": [
@@ -332,15 +330,14 @@
"text/plain": [
"[Document(page_content='# 🦜️🔗 LangChain'),\n",
" Document(page_content='⚡ Building applications with LLMs through composability ⚡'),\n",
" Document(page_content='## Quick Install\\n\\n```bash'),\n",
" Document(page_content='## Quick Install'),\n",
" Document(page_content=\"# Hopefully this code block isn't split\"),\n",
" Document(page_content='pip install langchain'),\n",
" Document(page_content='```'),\n",
" Document(page_content='As an open-source project in a rapidly developing field, we'),\n",
" Document(page_content='are extremely open to contributions.')]"
]
},
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -742,7 +739,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -48,20 +48,10 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "40ed76a2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai\n",
"\n",

View File

@@ -220,6 +220,57 @@
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "14002ec8-7ee5-4f91-9315-dd21c3808776",
"metadata": {},
"source": [
"### `LLMListwiseRerank`\n",
"\n",
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"\n",
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4ab9ee9f-917e-4d6f-9344-eb7f01533228",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document 1:\n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"from langchain.retrievers.document_compressors import LLMListwiseRerank\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
"\n",
"_filter = LLMListwiseRerank.from_llm(llm, top_n=1)\n",
"compression_retriever = ContextualCompressionRetriever(\n",
" base_compressor=_filter, base_retriever=retriever\n",
")\n",
"\n",
"compressed_docs = compression_retriever.invoke(\n",
" \"What did the president say about Ketanji Jackson Brown\"\n",
")\n",
"pretty_print_docs(compressed_docs)"
]
},
{
"cell_type": "markdown",
"id": "7194da42",
@@ -295,7 +346,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "617a1756",
"metadata": {},
"outputs": [],

View File

@@ -0,0 +1,549 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "9a8bceb3-95bd-4496-bb9e-57655136e070",
"metadata": {},
"source": [
"# How to convert Runnables as Tools\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Runnables](/docs/concepts#runnable-interface)\n",
"- [Tools](/docs/concepts#tools)\n",
"- [Agents](/docs/tutorials/agents)\n",
"\n",
":::\n",
"\n",
"Here we will demonstrate how to convert a LangChain `Runnable` into a tool that can be used by agents, chains, or chat models.\n",
"\n",
"## Dependencies\n",
"\n",
"**Note**: this guide requires `langchain-core` >= 0.2.13. We will also use [OpenAI](/docs/integrations/platforms/openai/) for embeddings, but any LangChain embeddings should suffice. We will use a simple [LangGraph](https://langchain-ai.github.io/langgraph/) agent for demonstration purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "92341f48-2c29-4ce9-8ab8-0a7c7a7c98a1",
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install -U langchain-core langchain-openai langgraph"
]
},
{
"cell_type": "markdown",
"id": "2b0dcc1a-48e8-4a81-b920-3563192ce076",
"metadata": {},
"source": [
"LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n",
"\n",
"LangChain tools-- instances of [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"\n",
"- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n",
"- They contain names and descriptions indicating how and when they should be used;\n",
"- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n",
"\n",
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
]
},
{
"cell_type": "markdown",
"id": "b4d76680-1b6b-4862-8c4f-22766a1d41f2",
"metadata": {},
"source": [
"## Basic usage\n",
"\n",
"With typed `dict` input:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b2cc4231-64a3-4733-a284-932dcbf2fcc3",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain_core.runnables import RunnableLambda\n",
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"class Args(TypedDict):\n",
" a: int\n",
" b: List[int]\n",
"\n",
"\n",
"def f(x: Args) -> str:\n",
" return str(x[\"a\"] * max(x[\"b\"]))\n",
"\n",
"\n",
"runnable = RunnableLambda(f)\n",
"as_tool = runnable.as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "57f2d435-624d-459a-903d-8509fbbde610",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Explanation of when to use tool.\n"
]
},
{
"data": {
"text/plain": [
"{'title': 'My tool',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A', 'type': 'integer'},\n",
" 'b': {'title': 'B', 'type': 'array', 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(as_tool.description)\n",
"\n",
"as_tool.args_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "54ae7384-a03d-4fa4-8cdf-9604a4bc39ee",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'6'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"as_tool.invoke({\"a\": 3, \"b\": [1, 2]})"
]
},
{
"cell_type": "markdown",
"id": "9038f587-4613-4f50-b349-135f9e7e3b15",
"metadata": {},
"source": [
"Without typing information, arg types can be specified via `arg_types`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "169f733c-4936-497f-8577-ee769dc16b88",
"metadata": {},
"outputs": [],
"source": [
"from typing import Any, Dict\n",
"\n",
"\n",
"def g(x: Dict[str, Any]) -> str:\n",
" return str(x[\"a\"] * max(x[\"b\"]))\n",
"\n",
"\n",
"runnable = RunnableLambda(g)\n",
"as_tool = runnable.as_tool(\n",
" name=\"My tool\",\n",
" description=\"Explanation of when to use tool.\",\n",
" arg_types={\"a\": int, \"b\": List[int]},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
"metadata": {},
"source": [
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eb102705-89b7-48dc-9158-d36d5f98ae8e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n",
"\n",
"class GSchema(BaseModel):\n",
" \"\"\"Apply a function to an integer and list of integers.\"\"\"\n",
"\n",
" a: int = Field(..., description=\"Integer\")\n",
" b: List[int] = Field(..., description=\"List of ints\")\n",
"\n",
"\n",
"runnable = RunnableLambda(g)\n",
"as_tool = runnable.as_tool(GSchema)"
]
},
{
"cell_type": "markdown",
"id": "7c474d85-4e01-4fae-9bba-0c6c8c26475c",
"metadata": {},
"source": [
"String input is also supported:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c475282a-58d6-4c2b-af7d-99b73b7d8a13",
"metadata": {},
"outputs": [],
"source": [
"def f(x: str) -> str:\n",
" return x + \"a\"\n",
"\n",
"\n",
"def g(x: str) -> str:\n",
" return x + \"z\"\n",
"\n",
"\n",
"runnable = RunnableLambda(f) | g\n",
"as_tool = runnable.as_tool()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ad6d8d96-3a87-40bd-a2ac-44a8acde0a8e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'baz'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"as_tool.invoke(\"b\")"
]
},
{
"cell_type": "markdown",
"id": "89fdb3a7-d228-48f0-8f73-262af4febb58",
"metadata": {},
"source": [
"## In agents\n",
"\n",
"Below we will incorporate LangChain Runnables as tools in an [agent](/docs/concepts/#agents) application. We will demonstrate with:\n",
"\n",
"- a document [retriever](/docs/concepts/#retrievers);\n",
"- a simple [RAG](/docs/tutorials/rag/) chain, allowing an agent to delegate relevant queries to it.\n",
"\n",
"We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n",
"\n",
"```{=mdx}\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
"/>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d06c9f2a-4475-450f-9106-54db1d99623b",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "e8a2038a-d762-4196-b5e3-fdb89c11e71d",
"metadata": {},
"source": [
"Following the [RAG tutorial](/docs/tutorials/rag/), let's first construct a retriever:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "23d2a47e-6712-4294-81c8-2c1d76b4bb81",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.documents import Document\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"documents = [\n",
" Document(\n",
" page_content=\"Dogs are great companions, known for their loyalty and friendliness.\",\n",
" ),\n",
" Document(\n",
" page_content=\"Cats are independent pets that often enjoy their own space.\",\n",
" ),\n",
"]\n",
"\n",
"vectorstore = InMemoryVectorStore.from_documents(\n",
" documents, embedding=OpenAIEmbeddings()\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever(\n",
" search_type=\"similarity\",\n",
" search_kwargs={\"k\": 1},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9ba737ac-43a2-4a6f-b855-5bd0305017f1",
"metadata": {},
"source": [
"We next create use a simple pre-built [LangGraph agent](https://python.langchain.com/v0.2/docs/tutorials/agents/) and provide it the tool:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c939cf2a-60e9-4afd-8b47-84d76ccb13f5",
"metadata": {},
"outputs": [],
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"tools = [\n",
" retriever.as_tool(\n",
" name=\"pet_info_retriever\",\n",
" description=\"Get information about pets.\",\n",
" )\n",
"]\n",
"agent = create_react_agent(llm, tools)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "be29437b-a187-4a0a-9a5d-419c56f2434e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{\"__arg1\":\"dogs\"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content=\"[Document(id='86f835fe-4bbe-4ec6-aeb4-489a8b541707', page_content='Dogs are great companions, known for their loyalty and friendliness.')]\", name='pet_info_retriever', tool_call_id='call_W8cnfOjwqEn4cFcg19LN9mYD')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}\n",
"----\n"
]
}
],
"source": [
"for chunk in agent.stream({\"messages\": [(\"human\", \"What are dogs known for?\")]}):\n",
" print(chunk)\n",
" print(\"----\")"
]
},
{
"cell_type": "markdown",
"id": "96f2ac9c-36f4-4b7a-ae33-f517734c86aa",
"metadata": {},
"source": [
"See [LangSmith trace](https://smith.langchain.com/public/44e438e3-2faf-45bd-b397-5510fc145eb9/r) for the above run."
]
},
{
"cell_type": "markdown",
"id": "a722fd8a-b957-4ba7-b408-35596b76835f",
"metadata": {},
"source": [
"Going further, we can create a simple [RAG](/docs/tutorials/rag/) chain that takes an additional parameter-- here, the \"style\" of the answer."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "bea518c9-c711-47c2-b8cc-dbd102f71f09",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"system_prompt = \"\"\"\n",
"You are an assistant for question-answering tasks.\n",
"Use the below context to answer the question. If\n",
"you don't know the answer, say you don't know.\n",
"Use three sentences maximum and keep the answer\n",
"concise.\n",
"\n",
"Answer in the style of {answer_style}.\n",
"\n",
"Question: {question}\n",
"\n",
"Context: {context}\n",
"\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system_prompt)])\n",
"\n",
"rag_chain = (\n",
" {\n",
" \"context\": itemgetter(\"question\") | retriever,\n",
" \"question\": itemgetter(\"question\"),\n",
" \"answer_style\": itemgetter(\"answer_style\"),\n",
" }\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "markdown",
"id": "955a23db-5218-4c34-8486-450a2ddb3443",
"metadata": {},
"source": [
"Note that the input schema for our chain contains the required arguments, so it converts to a tool without further specification:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "2c9f6e61-80ed-4abb-8e77-84de3ccbc891",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'RunnableParallel<context,question,answer_style>Input',\n",
" 'type': 'object',\n",
" 'properties': {'question': {'title': 'Question'},\n",
" 'answer_style': {'title': 'Answer Style'}}}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rag_chain.input_schema.schema()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "a3f9cf5b-8c71-4b0f-902b-f92e028780c9",
"metadata": {},
"outputs": [],
"source": [
"rag_tool = rag_chain.as_tool(\n",
" name=\"pet_expert\",\n",
" description=\"Get information about pets.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "4570615b-8f96-4d97-ae01-1c08b14be584",
"metadata": {},
"source": [
"Below we again invoke the agent. Note that the agent populates the required parameters in its `tool_calls`:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "06409913-a2ad-400f-a202-7b8dd2ef483a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{\"question\":\"What are dogs known for according to pirates?\",\"answer_style\":\"quote\"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}\n",
"----\n",
"{'tools': {'messages': [ToolMessage(content='\"Dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.\"', name='pet_expert', tool_call_id='call_17iLPWvOD23zqwd1QVQ00Y63')]}}\n",
"----\n",
"{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}\n",
"----\n"
]
}
],
"source": [
"agent = create_react_agent(llm, [rag_tool])\n",
"\n",
"for chunk in agent.stream(\n",
" {\"messages\": [(\"human\", \"What would a pirate say dogs are known for?\")]}\n",
"):\n",
" print(chunk)\n",
" print(\"----\")"
]
},
{
"cell_type": "markdown",
"id": "96cc9bc3-e79e-49a8-9915-428ea225358b",
"metadata": {},
"source": [
"See [LangSmith trace](https://smith.langchain.com/public/147ae4e6-4dfb-4dd9-8ca0-5c5b954f08ac/r) for the above run."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -131,7 +131,7 @@
"source": [
"## Base Chat Model\n",
"\n",
"Let's implement a chat model that echoes back the first `n` characetrs of the last message in the prompt!\n",
"Let's implement a chat model that echoes back the first `n` characters of the last message in the prompt!\n",
"\n",
"To do so, we will inherit from `BaseChatModel` and we'll need to implement the following:\n",
"\n",

View File

@@ -5,7 +5,7 @@
"id": "5436020b",
"metadata": {},
"source": [
"# How to create custom tools\n",
"# How to create tools\n",
"\n",
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
"\n",
@@ -16,13 +16,15 @@
"| args_schema | Pydantic BaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"\n",
"LangChain provides 3 ways to create tools:\n",
"LangChain supports the creation of tools from:\n",
"\n",
"1. Using [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool) -- the simplest way to define a custom tool.\n",
"2. Using [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method -- this is similar to the `@tool` decorator, but allows more configuration and specification of both sync and async implementations.\n",
"1. Functions;\n",
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"The `@tool` or the `StructuredTool.from_function` class method should be sufficient for most use cases.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",
":::{.callout-tip}\n",
"\n",
@@ -35,7 +37,9 @@
"id": "c7326b23",
"metadata": {},
"source": [
"## @tool decorator\n",
"## Creating tools from functions\n",
"\n",
"### @tool decorator\n",
"\n",
"This `@tool` decorator is the simplest way to define a custom tool. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function's docstring as the tool's description - so a docstring MUST be provided. "
]
@@ -51,7 +55,7 @@
"output_type": "stream",
"text": [
"multiply\n",
"multiply(a: int, b: int) -> int - Multiply two numbers.\n",
"Multiply two numbers.\n",
"{'a': {'title': 'A', 'type': 'integer'}, 'b': {'title': 'B', 'type': 'integer'}}\n"
]
}
@@ -96,6 +100,57 @@
" return a * b"
]
},
{
"cell_type": "markdown",
"id": "8f0edc51-c586-414c-8941-c8abe779943f",
"metadata": {},
"source": [
"Note that `@tool` supports parsing of annotations, nested schemas, and other features:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5626423f-053e-4a66-adca-1d794d835397",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'multiply_by_maxSchema',\n",
" 'description': 'Multiply a by the maximum of b.',\n",
" 'type': 'object',\n",
" 'properties': {'a': {'title': 'A',\n",
" 'description': 'scale factor',\n",
" 'type': 'string'},\n",
" 'b': {'title': 'B',\n",
" 'description': 'list of ints over which to take maximum',\n",
" 'type': 'array',\n",
" 'items': {'type': 'integer'}}},\n",
" 'required': ['a', 'b']}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Annotated, List\n",
"\n",
"\n",
"@tool\n",
"def multiply_by_max(\n",
" a: Annotated[str, \"scale factor\"],\n",
" b: Annotated[List[int], \"list of ints over which to take maximum\"],\n",
") -> int:\n",
" \"\"\"Multiply a by the maximum of b.\"\"\"\n",
" return a * max(b)\n",
"\n",
"\n",
"multiply_by_max.args_schema.schema()"
]
},
{
"cell_type": "markdown",
"id": "98d6eee9",
@@ -106,7 +161,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "9216d03a-f6ea-4216-b7e1-0661823a4c0b",
"metadata": {},
"outputs": [
@@ -115,7 +170,7 @@
"output_type": "stream",
"text": [
"multiplication-tool\n",
"multiplication-tool(a: int, b: int) -> int - Multiply two numbers.\n",
"Multiply two numbers.\n",
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n",
"True\n"
]
@@ -143,19 +198,84 @@
"print(multiply.return_direct)"
]
},
{
"cell_type": "markdown",
"id": "33a9e94d-0b60-48f3-a4c2-247dce096e66",
"metadata": {},
"source": [
"#### Docstring parsing"
]
},
{
"cell_type": "markdown",
"id": "6d0cb586-93d4-4ff1-9779-71df7853cb68",
"metadata": {},
"source": [
"`@tool` can optionally parse [Google Style docstrings](https://google.github.io/styleguide/pyguide.html#383-functions-and-methods) and associate the docstring components (such as arg descriptions) to the relevant parts of the tool schema. To toggle this behavior, specify `parse_docstring`:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "336f5538-956e-47d5-9bde-b732559f9e61",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'title': 'fooSchema',\n",
" 'description': 'The foo.',\n",
" 'type': 'object',\n",
" 'properties': {'bar': {'title': 'Bar',\n",
" 'description': 'The bar.',\n",
" 'type': 'string'},\n",
" 'baz': {'title': 'Baz', 'description': 'The baz.', 'type': 'integer'}},\n",
" 'required': ['bar', 'baz']}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@tool(parse_docstring=True)\n",
"def foo(bar: str, baz: int) -> str:\n",
" \"\"\"The foo.\n",
"\n",
" Args:\n",
" bar: The bar.\n",
" baz: The baz.\n",
" \"\"\"\n",
" return bar\n",
"\n",
"\n",
"foo.args_schema.schema()"
]
},
{
"cell_type": "markdown",
"id": "f18a2503-5393-421b-99fa-4a01dd824d0e",
"metadata": {},
"source": [
":::{.callout-caution}\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "b63fcc3b",
"metadata": {},
"source": [
"## StructuredTool\n",
"### StructuredTool\n",
"\n",
"The `StrurcturedTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"id": "564fbe6f-11df-402d-b135-ef6ff25e1e63",
"metadata": {},
"outputs": [
@@ -198,7 +318,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"id": "6bc055d4-1fbe-4db5-8881-9c382eba6b1b",
"metadata": {},
"outputs": [
@@ -208,7 +328,7 @@
"text": [
"6\n",
"Calculator\n",
"Calculator(a: int, b: int) -> int - multiply numbers\n",
"multiply numbers\n",
"{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n"
]
}
@@ -239,6 +359,63 @@
"print(calculator.args)"
]
},
{
"cell_type": "markdown",
"id": "5517995d-54e3-449b-8fdb-03561f5e4647",
"metadata": {},
"source": [
"## Creating tools from Runnables\n",
"\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"\n",
"Example usage:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ef593c5-cf72-4c10-bfc9-7d21874a0c24",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'answer_style': {'title': 'Answer Style', 'type': 'string'}}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.language_models import GenericFakeChatModel\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"Hello. Please respond in the style of {answer_style}.\")]\n",
")\n",
"\n",
"# Placeholder LLM\n",
"llm = GenericFakeChatModel(messages=iter([\"hello matey\"]))\n",
"\n",
"chain = prompt | llm | StrOutputParser()\n",
"\n",
"as_tool = chain.as_tool(\n",
" name=\"Style responder\", description=\"Description of when to use tool.\"\n",
")\n",
"as_tool.args"
]
},
{
"cell_type": "markdown",
"id": "0521b787-a146-45a6-8ace-ae1ac4669dd7",
"metadata": {},
"source": [
"See [this guide](/docs/how_to/convert_runnable_to_tool) for more detail."
]
},
{
"cell_type": "markdown",
"id": "b840074b-9c10-4ca0-aed8-626c52b2398f",
@@ -251,7 +428,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 10,
"id": "1dad8f8e",
"metadata": {},
"outputs": [],
@@ -300,7 +477,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 11,
"id": "bb551c33",
"metadata": {},
"outputs": [
@@ -351,7 +528,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 12,
"id": "6615cb77-fd4c-4676-8965-f92cc71d4944",
"metadata": {},
"outputs": [
@@ -383,7 +560,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 13,
"id": "bb2af583-eadd-41f4-a645-bf8748bd3dcd",
"metadata": {},
"outputs": [
@@ -428,7 +605,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 14,
"id": "4ad0932c-8610-4278-8c57-f9218f654c8a",
"metadata": {},
"outputs": [
@@ -473,7 +650,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 15,
"id": "7094c0e8-6192-4870-a942-aad5b5ae48fd",
"metadata": {},
"outputs": [],
@@ -496,7 +673,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 16,
"id": "b4d22022-b105-4ccc-a15b-412cb9ea3097",
"metadata": {},
"outputs": [
@@ -506,7 +683,7 @@
"'Error: There is no city by the name of foobar.'"
]
},
"execution_count": 12,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -530,7 +707,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 17,
"id": "3fad1728-d367-4e1b-9b54-3172981271cf",
"metadata": {},
"outputs": [
@@ -540,7 +717,7 @@
"\"There is no such city, but it's probably above 0K there!\""
]
},
"execution_count": 13,
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -564,7 +741,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 18,
"id": "ebfe7c1f-318d-4e58-99e1-f31e69473c46",
"metadata": {},
"outputs": [
@@ -574,7 +751,7 @@
"'The following errors occurred during tool execution: `Error: There is no city by the name of foobar.`'"
]
},
"execution_count": 14,
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -591,13 +768,189 @@
"\n",
"get_weather_tool.invoke({\"city\": \"foobar\"})"
]
},
{
"cell_type": "markdown",
"id": "1a8d8383-11b3-445e-956f-df4e96995e00",
"metadata": {},
"source": [
"## Returning artifacts of Tool execution\n",
"\n",
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"\n",
":::info Requires ``langchain-core >= 0.2.19``\n",
"\n",
"This functionality was added in ``langchain-core == 0.2.19``. Please make sure your package is up to date.\n",
"\n",
":::\n",
"\n",
"If we want our tool to distinguish between message content and other artifacts, we need to specify `response_format=\"content_and_artifact\"` when defining our tool and make sure that we return a tuple of (content, artifact):"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "14905425-0334-43a0-9de9-5bcf622ede0e",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"from typing import List, Tuple\n",
"\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool(response_format=\"content_and_artifact\")\n",
"def generate_random_ints(min: int, max: int, size: int) -> Tuple[str, List[int]]:\n",
" \"\"\"Generate size random ints in the range [min, max].\"\"\"\n",
" array = [random.randint(min, max) for _ in range(size)]\n",
" content = f\"Successfully generated array of {size} random ints in [{min}, {max}].\"\n",
" return content, array"
]
},
{
"cell_type": "markdown",
"id": "49f057a6-8938-43ea-8faf-ae41e797ceb8",
"metadata": {},
"source": [
"If we invoke our tool directly with the tool arguments, we'll get back just the content part of the output:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0f2e1528-404b-46e6-b87c-f0957c4b9217",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Successfully generated array of 10 random ints in [0, 9].'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke({\"min\": 0, \"max\": 9, \"size\": 10})"
]
},
{
"cell_type": "markdown",
"id": "1e62ebba-1737-4b97-b61a-7313ade4e8c2",
"metadata": {},
"source": [
"If we invoke our tool with a ToolCall (like the ones generated by tool-calling models), we'll get back a ToolMessage that contains both the content and artifact generated by the Tool:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cc197777-26eb-46b3-a83b-c2ce116c6311",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[1, 4, 2, 5, 3, 9, 0, 4, 7, 7])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_random_ints.invoke(\n",
" {\n",
" \"name\": \"generate_random_ints\",\n",
" \"args\": {\"min\": 0, \"max\": 9, \"size\": 10},\n",
" \"id\": \"123\", # required\n",
" \"type\": \"tool_call\", # required\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "dfdc1040-bf25-4790-b4c3-59452db84e11",
"metadata": {},
"source": [
"We can do the same when subclassing BaseTool:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fe1a09d1-378b-4b91-bb5e-0697c3d7eb92",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import BaseTool\n",
"\n",
"\n",
"class GenerateRandomFloats(BaseTool):\n",
" name: str = \"generate_random_floats\"\n",
" description: str = \"Generate size random floats in the range [min, max].\"\n",
" response_format: str = \"content_and_artifact\"\n",
"\n",
" ndigits: int = 2\n",
"\n",
" def _run(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" range_ = max - min\n",
" array = [\n",
" round(min + (range_ * random.random()), ndigits=self.ndigits)\n",
" for _ in range(size)\n",
" ]\n",
" content = f\"Generated {size} floats in [{min}, {max}], rounded to {self.ndigits} decimals.\"\n",
" return content, array\n",
"\n",
" # Optionally define an equivalent async method\n",
"\n",
" # async def _arun(self, min: float, max: float, size: int) -> Tuple[str, List[float]]:\n",
" # ..."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8c3d16f6-1c4a-48ab-b05a-38547c592e79",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.4277, 0.7578, 2.4871])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rand_gen = GenerateRandomFloats(ndigits=4)\n",
"\n",
"rand_gen.invoke(\n",
" {\n",
" \"name\": \"generate_random_floats\",\n",
" \"args\": {\"min\": 0.1, \"max\": 3.3333, \"size\": 3},\n",
" \"id\": \"123\",\n",
" \"type\": \"tool_call\",\n",
" }\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "poetry-venv-311",
"language": "python",
"name": "python3"
"name": "poetry-venv-311"
},
"language_info": {
"codemirror_mode": {
@@ -609,7 +962,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.9"
},
"vscode": {
"interpreter": {

View File

@@ -23,12 +23,12 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install \"unstructured[html]\""
"%pip install unstructured"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "7d167ca3-c7c7-4ef0-b509-080629f0f482",
"metadata": {},
"outputs": [
@@ -36,14 +36,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
"[Document(page_content='My First Heading\\n\\nMy first paragraph.', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html'})]\n"
]
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredHTMLLoader\n",
"\n",
"file_path = \"../../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
"file_path = \"../../docs/integrations/document_loaders/example_data/fake-content.html\"\n",
"\n",
"loader = UnstructuredHTMLLoader(file_path)\n",
"data = loader.load()\n",
@@ -73,7 +73,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "0a2050a8-6df6-4696-9889-ba367d6f9caa",
"metadata": {},
"outputs": [
@@ -81,7 +81,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
"[Document(page_content='\\nTest Title\\n\\n\\nMy First Heading\\nMy first paragraph.\\n\\n\\n', metadata={'source': '../../docs/integrations/document_loaders/example_data/fake-content.html', 'title': 'Test Title'})]\n"
]
}
],
@@ -111,7 +111,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -21,12 +21,12 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": null,
"id": "c8b147fb-6877-4f7a-b2ee-ee971c7bc662",
"metadata": {},
"outputs": [],
"source": [
"# !pip install \"unstructured[md]\""
"%pip install \"unstructured[md]\""
]
},
{
@@ -39,7 +39,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"id": "80c50cc4-7ce9-4418-81b9-29c52c7b3627",
"metadata": {},
"outputs": [
@@ -62,7 +62,7 @@
"from langchain_community.document_loaders import UnstructuredMarkdownLoader\n",
"from langchain_core.documents import Document\n",
"\n",
"markdown_path = \"../../../../README.md\"\n",
"markdown_path = \"../../../README.md\"\n",
"loader = UnstructuredMarkdownLoader(markdown_path)\n",
"\n",
"data = loader.load()\n",
@@ -84,7 +84,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "a986bbce-7fd3-41d1-bc47-49f9f57c7cd1",
"metadata": {},
"outputs": [
@@ -92,11 +92,11 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Number of documents: 65\n",
"Number of documents: 66\n",
"\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../README.md', 'category_depth': 0, 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../../README.md', 'last_modified': '2024-04-29T13:40:19', 'page_number': 1, 'languages': ['eng'], 'parent_id': 'c3223b6f7100be08a78f1e8c0c28fde1', 'filetype': 'text/markdown', 'file_directory': '../../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../README.md', 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'parent_id': '200b8a7d0dd03f66e4f13456566d2b3a', 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"\n"
]
}
@@ -121,7 +121,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"id": "75abc139-3ded-4e8e-9f21-d0c8ec40fdfc",
"metadata": {},
"outputs": [
@@ -129,13 +129,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
"{'Title', 'NarrativeText', 'ListItem'}\n"
"{'ListItem', 'NarrativeText', 'Title'}\n"
]
}
],
"source": [
"print(set(document.metadata[\"category\"] for document in data))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "223b4c11",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -154,7 +162,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.5"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -58,6 +58,8 @@
}
],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import Runnable, RunnablePassthrough, chain\n",
@@ -86,7 +88,7 @@
" # NOTE: This is returning another Runnable, not an actual output.\n",
" return contextualize_question\n",
" else:\n",
" return RunnablePassthrough()\n",
" return RunnablePassthrough() | itemgetter(\"question\")\n",
"\n",
"\n",
"@chain\n",

View File

@@ -67,15 +67,16 @@ If you'd prefer not to set an environment variable you can pass the key in direc
```python
from langchain_cohere import CohereEmbeddings
embeddings_model = CohereEmbeddings(cohere_api_key="...")
embeddings_model = CohereEmbeddings(cohere_api_key="...", model='embed-english-v3.0')
```
Otherwise you can initialize without any params:
Otherwise you can initialize simply as shown below:
```python
from langchain_cohere import CohereEmbeddings
embeddings_model = CohereEmbeddings()
embeddings_model = CohereEmbeddings(model='embed-english-v3.0')
```
Do note that it is mandatory to pass the model parameter while initializing the CohereEmbeddings class.
</TabItem>
<TabItem value="huggingface" label="Hugging Face">

View File

@@ -246,11 +246,11 @@
"examples = [\n",
" (\n",
" \"The ocean is vast and blue. It's more than 20,000 feet deep. There are many fish in it.\",\n",
" Person(name=None, height_in_meters=None, hair_color=None),\n",
" Data(people=[]),\n",
" ),\n",
" (\n",
" \"Fiona traveled far from France to Spain.\",\n",
" Person(name=\"Fiona\", height_in_meters=None, hair_color=None),\n",
" Data(people=[Person(name=\"Fiona\", height_in_meters=None, hair_color=None)]),\n",
" ),\n",
"]\n",
"\n",

View File

@@ -23,7 +23,7 @@
"- [Prompt templates](/docs/concepts/#prompt-templates)\n",
"- [Example selectors](/docs/concepts/#example-selectors)\n",
"- [LLMs](/docs/concepts/#llms)\n",
"- [Vectorstores](/docs/concepts/#vectorstores)\n",
"- [Vectorstores](/docs/concepts/#vector-stores)\n",
"\n",
":::\n",
"\n",

View File

@@ -23,7 +23,7 @@
"- [Prompt templates](/docs/concepts/#prompt-templates)\n",
"- [Example selectors](/docs/concepts/#example-selectors)\n",
"- [Chat models](/docs/concepts/#chat-model)\n",
"- [Vectorstores](/docs/concepts/#vectorstores)\n",
"- [Vectorstores](/docs/concepts/#vector-stores)\n",
"\n",
":::\n",
"\n",
@@ -51,7 +51,7 @@
"- `examples`: A list of dictionary examples to include in the final prompt.\n",
"- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"\n",
"Below is a simple demonstration. First, define the examples you'd like to include:"
"Below is a simple demonstration. First, define the examples you'd like to include. Let's give the LLM an unfamiliar mathematical operator, denoted by the \"🦜\" emoji:"
]
},
{
@@ -59,17 +59,7 @@
"execution_count": 1,
"id": "5b79e400",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"outputs": [],
"source": [
"%pip install -qU langchain langchain-openai langchain-chroma\n",
"\n",
@@ -79,9 +69,50 @@
"os.environ[\"OPENAI_API_KEY\"] = getpass()"
]
},
{
"cell_type": "markdown",
"id": "30856d92",
"metadata": {},
"source": [
"If we try to ask the model what the result of this expression is, it will fail:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "174dec5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The expression \"2 🦜 9\" is not a standard mathematical operation or equation. It appears to be a combination of the number 2 and the parrot emoji 🦜 followed by the number 9. It does not have a specific mathematical meaning.', response_metadata={'token_usage': {'completion_tokens': 54, 'prompt_tokens': 17, 'total_tokens': 71}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-aad12dda-5c47-4a1e-9949-6fe94e03242a-0', usage_metadata={'input_tokens': 17, 'output_tokens': 54, 'total_tokens': 71})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n",
"\n",
"model.invoke(\"What is 2 🦜 9?\")"
]
},
{
"cell_type": "markdown",
"id": "e6d58385",
"metadata": {},
"source": [
"Now let's see what happens if we give the LLM some examples to work with. We'll define some below:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0fc5a02a-6249-4e92-95c3-30fff9671e8b",
"metadata": {
"tags": []
@@ -91,8 +122,8 @@
"from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"\n",
"examples = [\n",
" {\"input\": \"2+2\", \"output\": \"4\"},\n",
" {\"input\": \"2+3\", \"output\": \"5\"},\n",
" {\"input\": \"2 🦜 2\", \"output\": \"4\"},\n",
" {\"input\": \"2 🦜 3\", \"output\": \"5\"},\n",
"]"
]
},
@@ -106,7 +137,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"id": "65e72ad1-9060-47d0-91a1-bc130c8b98ac",
"metadata": {
"tags": []
@@ -116,7 +147,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[HumanMessage(content='2+2'), AIMessage(content='4'), HumanMessage(content='2+3'), AIMessage(content='5')]\n"
"[HumanMessage(content='2 🦜 2'), AIMessage(content='4'), HumanMessage(content='2 🦜 3'), AIMessage(content='5')]\n"
]
}
],
@@ -146,7 +177,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"id": "9f86d6d9-50de-41b6-b6c7-0f9980cc0187",
"metadata": {
"tags": []
@@ -162,9 +193,17 @@
")"
]
},
{
"cell_type": "markdown",
"id": "dd8029c5",
"metadata": {},
"source": [
"And now let's ask the model the initial question and see how it does:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"id": "97d443b1-6fae-4b36-bede-3ff7306288a3",
"metadata": {
"tags": []
@@ -173,10 +212,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='A triangle does not have a square. The square of a number is the result of multiplying the number by itself.', response_metadata={'token_usage': {'completion_tokens': 23, 'prompt_tokens': 52, 'total_tokens': 75}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-3456c4ef-7b4d-4adb-9e02-8079de82a47a-0')"
"AIMessage(content='11', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5ec4e051-262f-408e-ad00-3f2ebeb561c3-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})"
]
},
"execution_count": 5,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -184,9 +223,9 @@
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"chain = final_prompt | ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n",
"chain = final_prompt | model\n",
"\n",
"chain.invoke({\"input\": \"What's the square of a triangle?\"})"
"chain.invoke({\"input\": \"What is 2 🦜 9?\"})"
]
},
{
@@ -194,6 +233,8 @@
"id": "70ab7114-f07f-46be-8874-3705a25aba5f",
"metadata": {},
"source": [
"And we can see that the model has now inferred that the parrot emoji means addition from the given few-shot examples!\n",
"\n",
"## Dynamic few-shot prompting\n",
"\n",
"Sometimes you may want to select only a few examples from your overall set to show based on the input. For this, you can replace the `examples` passed into `FewShotChatMessagePromptTemplate` with an `example_selector`. The other components remain the same as above! Our dynamic few-shot prompt template would look like:\n",
@@ -208,7 +249,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"id": "ad66f06a-66fd-4fcc-8166-5d0e3c801e57",
"metadata": {
"tags": []
@@ -220,9 +261,9 @@
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"examples = [\n",
" {\"input\": \"2+2\", \"output\": \"4\"},\n",
" {\"input\": \"2+3\", \"output\": \"5\"},\n",
" {\"input\": \"2+4\", \"output\": \"6\"},\n",
" {\"input\": \"2 🦜 2\", \"output\": \"4\"},\n",
" {\"input\": \"2 🦜 3\", \"output\": \"5\"},\n",
" {\"input\": \"2 🦜 4\", \"output\": \"6\"},\n",
" {\"input\": \"What did the cow say to the moon?\", \"output\": \"nothing at all\"},\n",
" {\n",
" \"input\": \"Write me a poem about the moon\",\n",
@@ -247,7 +288,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"id": "7790303a-f722-452e-8921-b14bdf20bdff",
"metadata": {
"tags": []
@@ -257,10 +298,10 @@
"data": {
"text/plain": [
"[{'input': 'What did the cow say to the moon?', 'output': 'nothing at all'},\n",
" {'input': '2+4', 'output': '6'}]"
" {'input': '2 🦜 4', 'output': '6'}]"
]
},
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -287,7 +328,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 11,
"id": "253c255e-41d7-45f6-9d88-c7a0ced4b1bd",
"metadata": {
"tags": []
@@ -297,7 +338,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[HumanMessage(content='2+3'), AIMessage(content='5'), HumanMessage(content='2+2'), AIMessage(content='4')]\n"
"[HumanMessage(content='2 🦜 3'), AIMessage(content='5'), HumanMessage(content='2 🦜 4'), AIMessage(content='6')]\n"
]
}
],
@@ -317,7 +358,7 @@
" ),\n",
")\n",
"\n",
"print(few_shot_prompt.invoke(input=\"What's 3+3?\").to_messages())"
"print(few_shot_prompt.invoke(input=\"What's 3 🦜 3?\").to_messages())"
]
},
{
@@ -330,7 +371,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 12,
"id": "e731cb45-f0ea-422c-be37-42af2a6cb2c4",
"metadata": {
"tags": []
@@ -340,7 +381,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"messages=[HumanMessage(content='2+3'), AIMessage(content='5'), HumanMessage(content='2+2'), AIMessage(content='4')]\n"
"messages=[HumanMessage(content='2 🦜 3'), AIMessage(content='5'), HumanMessage(content='2 🦜 4'), AIMessage(content='6')]\n"
]
}
],
@@ -353,7 +394,7 @@
" ]\n",
")\n",
"\n",
"print(few_shot_prompt.invoke(input=\"What's 3+3?\"))"
"print(few_shot_prompt.invoke(input=\"What's 3 🦜 3?\"))"
]
},
{
@@ -368,7 +409,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 13,
"id": "0568cbc6-5354-47f1-ab4d-dfcc616cf583",
"metadata": {
"tags": []
@@ -377,10 +418,10 @@
{
"data": {
"text/plain": [
"AIMessage(content='6', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 51, 'total_tokens': 52}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_c2295e73ad', 'finish_reason': 'stop', 'logprobs': None}, id='run-6bcbe158-a8e3-4a85-a754-1ba274a9f147-0')"
"AIMessage(content='6', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d1863e5e-17cd-4e9d-bf7a-b9f118747a65-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})"
]
},
"execution_count": 18,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -388,7 +429,7 @@
"source": [
"chain = final_prompt | ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n",
"\n",
"chain.invoke({\"input\": \"What's 3+3?\"})"
"chain.invoke({\"input\": \"What's 3 🦜 3?\"})"
]
},
{
@@ -428,7 +469,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,203 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e389175d-8a65-4f0d-891c-dbdfabb3c3ef",
"metadata": {},
"source": [
"# How to filter messages\n",
"\n",
"In more complex chains and agents we might track state with a list of messages. This list can start to accumulate messages from multiple different models, speakers, sub-chains, etc., and we may only want to pass subsets of this full list of messages to each model call in the chain/agent.\n",
"\n",
"The `filter_messages` utility makes it easy to filter messages by type, id, or name.\n",
"\n",
"## Basic usage"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f4ad2fd3-3cab-40d4-a989-972115865b8b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='example input', name='example_user', id='2'),\n",
" HumanMessage(content='real input', name='bob', id='4')]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" filter_messages,\n",
")\n",
"\n",
"messages = [\n",
" SystemMessage(\"you are a good assistant\", id=\"1\"),\n",
" HumanMessage(\"example input\", id=\"2\", name=\"example_user\"),\n",
" AIMessage(\"example output\", id=\"3\", name=\"example_assistant\"),\n",
" HumanMessage(\"real input\", id=\"4\", name=\"bob\"),\n",
" AIMessage(\"real output\", id=\"5\", name=\"alice\"),\n",
"]\n",
"\n",
"filter_messages(messages, include_types=\"human\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7b663a1e-a8ae-453e-a072-8dd75dfab460",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content='you are a good assistant', id='1'),\n",
" HumanMessage(content='real input', name='bob', id='4'),\n",
" AIMessage(content='real output', name='alice', id='5')]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filter_messages(messages, exclude_names=[\"example_user\", \"example_assistant\"])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "db170e46-03f8-4710-b967-23c70c3ac054",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='example input', name='example_user', id='2'),\n",
" HumanMessage(content='real input', name='bob', id='4'),\n",
" AIMessage(content='real output', name='alice', id='5')]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filter_messages(messages, include_types=[HumanMessage, AIMessage], exclude_ids=[\"3\"])"
]
},
{
"cell_type": "markdown",
"id": "b7c4e5ad-d1b4-4c18-b250-864adde8f0dd",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"`filter_messages` can be used in an imperatively (like above) or declaratively, making it easy to compose with other components in a chain:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "675f8f79-db39-401c-a582-1df2478cba30",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=[], response_metadata={'id': 'msg_01Wz7gBHahAwkZ1KCBNtXmwA', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 3}}, id='run-b5d8a3fe-004f-4502-a071-a6c025031827-0', usage_metadata={'input_tokens': 16, 'output_tokens': 3, 'total_tokens': 19})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# pip install -U langchain-anthropic\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-sonnet-20240229\", temperature=0)\n",
"# Notice we don't pass in messages. This creates\n",
"# a RunnableLambda that takes messages as input\n",
"filter_ = filter_messages(exclude_names=[\"example_user\", \"example_assistant\"])\n",
"chain = filter_ | llm\n",
"chain.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "4133ab28-f49c-480f-be92-b51eb6559153",
"metadata": {},
"source": [
"Looking at the LangSmith trace we can see that before the messages are passed to the model they are filtered: https://smith.langchain.com/public/f808a724-e072-438e-9991-657cc9e7e253/r\n",
"\n",
"Looking at just the filter_, we can see that it's a Runnable object that can be invoked like all Runnables:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c090116a-1fef-43f6-a178-7265dff9db00",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='real input', name='bob', id='4'),\n",
" AIMessage(content='real output', name='alice', id='5')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filter_.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "ff339066-d424-4042-8cca-cd4b007c1a8e",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For a complete description of all arguments head to the API reference: https://api.python.langchain.com/en/latest/messages/langchain_core.messages.utils.filter_messages.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"language": "python",
"name": "poetry-venv-2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -300,7 +300,11 @@
"id": "922b48bd",
"metadata": {},
"source": [
"# Streaming\n",
"## Streaming\n",
"\n",
":::{.callout-note}\n",
"[RunnableLambda](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableLambda.html) is best suited for code that does not need to support streaming. If you need to support streaming (i.e., be able to operate on chunks of inputs and yield chunks of outputs), use [RunnableGenerator](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableGenerator.html) instead as in the example below.\n",
":::\n",
"\n",
"You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a chain.\n",
"\n",

View File

@@ -9,11 +9,13 @@
"source": [
"# Hybrid Search\n",
"\n",
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, ...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
"The standard search in LangChain is done by vector similarity. However, a number of vectorstores implementations (Astra DB, ElasticSearch, Neo4J, AzureSearch, Qdrant...) also support more advanced search combining vector similarity search and other search techniques (full-text, BM25, and so on). This is generally referred to as \"Hybrid\" search.\n",
"\n",
"**Step 1: Make sure the vectorstore you are using supports hybrid search**\n",
"\n",
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`. By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
"At the moment, there is no unified way to perform hybrid search in LangChain. Each vectorstore may have their own way to do it. This is generally exposed as a keyword argument that is passed in during `similarity_search`.\n",
"\n",
"By reading the documentation or source code, figure out whether the vectorstore you are using supports hybrid search, and, if so, how to use it.\n",
"\n",
"**Step 2: Add that parameter as a configurable field for the chain**\n",
"\n",

View File

@@ -21,7 +21,7 @@ For comprehensive descriptions of every class and function see the [API Referenc
This highlights functionality that is core to using LangChain.
- [How to: return structured data from a model](/docs/how_to/structured_output/)
- [How to: use a model to call tools](/docs/how_to/tool_calling/)
- [How to: use a model to call tools](/docs/how_to/tool_calling)
- [How to: stream runnables](/docs/how_to/streaming)
- [How to: debug your LLM apps](/docs/how_to/debugging/)
@@ -43,6 +43,8 @@ This highlights functionality that is core to using LangChain.
- [How to: create a dynamic (self-constructing) chain](/docs/how_to/dynamic_chain/)
- [How to: inspect runnables](/docs/how_to/inspect)
- [How to: add fallbacks to a runnable](/docs/how_to/fallbacks)
- [How to: migrate chains to LCEL](/docs/how_to/migrate_chains)
- [How to: pass runtime secrets to a runnable](/docs/how_to/runnable_runtime_secrets)
## Components
@@ -80,6 +82,20 @@ These are the core building blocks you can use when building applications.
- [How to: track token usage](/docs/how_to/chat_token_usage_tracking)
- [How to: track response metadata across providers](/docs/how_to/response_metadata)
- [How to: let your end users choose their model](/docs/how_to/chat_models_universal_init/)
- [How to: use chat model to call tools](/docs/how_to/tool_calling)
- [How to: stream tool calls](/docs/how_to/tool_streaming)
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
- [How to: force a specific tool call](/docs/how_to/tool_choice)
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
### Messages
[Messages](/docs/concepts/#messages) are the input and output of chat models. They have some `content` and a `role`, which describes the source of the message.
- [How to: trim messages](/docs/how_to/trim_messages/)
- [How to: filter messages](/docs/how_to/filter_messages/)
- [How to: merge consecutive messages of the same type](/docs/how_to/merge_message_runs/)
### LLMs
@@ -168,15 +184,23 @@ Indexing is the process of keeping your vectorstore in-sync with the underlying
### Tools
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call).
LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to pass to the language model) as well as the implementation of the function to call. Refer [here](/docs/integrations/tools/) for a list of pre-buit tools.
- [How to: create custom tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and built-in toolkits](/docs/how_to/tools_builtin)
- [How to: use a chat model to call tools](/docs/how_to/tool_calling/)
- [How to: add ad-hoc tool calling capability to LLMs and chat models](/docs/how_to/tools_prompting)
- [How to: create tools](/docs/how_to/custom_tools)
- [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin)
- [How to: use chat models to call tools](/docs/how_to/tool_calling)
- [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model)
- [How to: pass run time values to tools](/docs/how_to/tool_runtime)
- [How to: add a human in the loop to tool usage](/docs/how_to/tools_human)
- [How to: handle errors when calling tools](/docs/how_to/tools_error)
- [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human)
- [How to: handle tool errors](/docs/how_to/tools_error)
- [How to: force models to call a tool](/docs/how_to/tool_choice)
- [How to: disable parallel tool calling](/docs/how_to/tool_calling_parallel)
- [How to: access the `RunnableConfig` from a tool](/docs/how_to/tool_configure)
- [How to: stream events from a tool](/docs/how_to/tool_stream_events)
- [How to: return artifacts from a tool](/docs/how_to/tool_artifacts/)
- [How to: convert Runnables to tools](/docs/how_to/convert_runnable_to_tool)
- [How to: add ad-hoc tool calling capability to models](/docs/how_to/tools_prompting)
- [How to: pass in runtime secrets](/docs/how_to/runnable_runtime_secrets)
### Multimodal
@@ -188,7 +212,7 @@ LangChain [Tools](/docs/concepts/#tools) contain a description of the tool (to p
:::note
For in depth how-to guides for agents, please check out [LangGraph](https://github.com/langchain-ai/langgraph) documentation.
For in depth how-to guides for agents, please check out [LangGraph](https://langchain-ai.github.io/langgraph/) documentation.
:::
@@ -204,6 +228,7 @@ For in depth how-to guides for agents, please check out [LangGraph](https://gith
- [How to: pass callbacks into a module constructor](/docs/how_to/callbacks_constructor)
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
- [How to: use callbacks in async environments](/docs/how_to/callbacks_async)
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
### Custom
@@ -216,7 +241,10 @@ All of LangChain components can easily be extended to support your own versions.
- [How to: write a custom output parser class](/docs/how_to/output_parser_custom)
- [How to: create custom callback handlers](/docs/how_to/custom_callbacks)
- [How to: define a custom tool](/docs/how_to/custom_tools)
- [How to: dispatch custom callback events](/docs/how_to/callbacks_custom_events)
### Serialization
- [How to: save and load LangChain objects](/docs/how_to/serialization)
## Use cases
@@ -251,6 +279,7 @@ For a high-level tutorial on building chatbots, check out [this guide](/docs/tut
- [How to: manage memory](/docs/how_to/chatbots_memory)
- [How to: do retrieval](/docs/how_to/chatbots_retrieval)
- [How to: use tools](/docs/how_to/chatbots_tools)
- [How to: manage large chat history](/docs/how_to/trim_messages/)
### Query analysis
@@ -295,7 +324,26 @@ You can peruse [LangGraph how-to guides here](https://langchain-ai.github.io/lan
## [LangSmith](https://docs.smith.langchain.com/)
LangSmith allows you to closely trace, monitor and evaluate your LLM application.
It seamlessly integrates with LangChain, and you can use it to inspect and debug individual steps of your chains as you build.
It seamlessly integrates with LangChain and LangGraph, and you can use it to inspect and debug individual steps of your chains and agents as you build.
LangSmith documentation is hosted on a separate site.
You can peruse [LangSmith how-to guides here](https://docs.smith.langchain.com/how_to_guides/).
You can peruse [LangSmith how-to guides here](https://docs.smith.langchain.com/how_to_guides/), but we'll highlight a few sections that are particularly
relevant to LangChain below:
### Evaluation
<span data-heading-keywords="evaluation,evaluate"></span>
Evaluating performance is a vital part of building LLM-powered applications.
LangSmith helps with every step of the process from creating a dataset to defining metrics to running evaluators.
To learn more, check out the [LangSmith evaluation how-to guides](https://docs.smith.langchain.com/how_to_guides#evaluation).
### Tracing
<span data-heading-keywords="trace,tracing"></span>
Tracing gives you observability inside your chains and agents, and is vital in diagnosing issues.
- [How to: trace with LangChain](https://docs.smith.langchain.com/how_to_guides/tracing/trace_with_langchain)
- [How to: add metadata and tags to traces](https://docs.smith.langchain.com/how_to_guides/tracing/trace_with_langchain#add-metadata-and-tags-to-traces)
You can see general tracing-related how-tos [in this section of the LangSmith docs](https://docs.smith.langchain.com/how_to_guides/tracing).

View File

@@ -60,7 +60,7 @@
" * document addition by id (`add_documents` method with `ids` argument)\n",
" * delete by id (`delete` method with `ids` argument)\n",
"\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
"Compatible Vectorstores: `Aerospike`, `AnalyticDB`, `AstraDB`, `AwaDB`, `AzureCosmosDBNoSqlVectorSearch`, `AzureCosmosDBVectorSearch`, `Bagel`, `Cassandra`, `Chroma`, `CouchbaseVectorStore`, `DashVector`, `DatabricksVectorSearch`, `DeepLake`, `Dingo`, `ElasticVectorSearch`, `ElasticsearchStore`, `FAISS`, `HanaDB`, `Milvus`, `MongoDBAtlasVectorSearch`, `MyScale`, `OpenSearchVectorSearch`, `PGVector`, `Pinecone`, `Qdrant`, `Redis`, `Rockset`, `ScaNN`, `SingleStoreDB`, `SupabaseVectorStore`, `SurrealDBStore`, `TimescaleVector`, `Vald`, `VDMS`, `Vearch`, `VespaStore`, `Weaviate`, `Yellowbrick`, `ZepVectorStore`, `TencentVectorDB`, `OpenSearchVectorSearch`.\n",
" \n",
"## Caution\n",
"\n",

View File

@@ -2,11 +2,14 @@
sidebar_position: 2
---
# Installation
# How to install LangChain packages
The LangChain ecosystem is split into different packages, which allow you to choose exactly which pieces of
functionality to install.
## Official release
To install LangChain run:
To install the main LangChain package, run:
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
@@ -21,11 +24,24 @@ import CodeBlock from "@theme/CodeBlock";
</TabItem>
</Tabs>
This will install the bare minimum requirements of LangChain.
A lot of the value of LangChain comes when integrating it with various model providers, datastores, etc.
While this package acts as a sane starting point to using LangChain,
much of the value of LangChain comes when integrating it with various model providers, datastores, etc.
By default, the dependencies needed to do that are NOT installed. You will need to install the dependencies for specific integrations separately.
We'll show how to do that in the next sections of this guide.
## From source
## Ecosystem packages
With the exception of the `langsmith` SDK, all packages in the LangChain ecosystem depend on `langchain-core`, which contains base
classes and abstractions that other packages use. The dependency graph below shows how the difference packages are related.
A directed arrow indicates that the source package depends on the target package:
![](/img/ecosystem_packages.png)
When installing a package, you do not need to explicitly install that package's explicit dependencies (such as `langchain-core`).
However, you may choose to if you are using a feature only available in a certain version of that dependency.
If you do, you should make sure that the installed or pinned version is compatible with any other integration packages you use.
### From source
If you want to install from source, you can do so by cloning the repo and be sure that the directory is `PATH/TO/REPO/langchain/libs/langchain` running:
@@ -33,21 +49,21 @@ If you want to install from source, you can do so by cloning the repo and be sur
pip install -e .
```
## LangChain core
### LangChain core
The `langchain-core` package contains base abstractions that the rest of the LangChain ecosystem uses, along with the LangChain Expression Language. It is automatically installed by `langchain`, but can also be used separately. Install with:
```bash
pip install langchain-core
```
## LangChain community
### LangChain community
The `langchain-community` package contains third-party integrations. Install with:
```bash
pip install langchain-community
```
## LangChain experimental
### LangChain experimental
The `langchain-experimental` package holds experimental LangChain code, intended for research and experimental uses.
Install with:
@@ -55,14 +71,15 @@ Install with:
pip install langchain-experimental
```
## LangGraph
`langgraph` is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain.
### LangGraph
`langgraph` is a library for building stateful, multi-actor applications with LLMs. It integrates smoothly with LangChain, but can be used without it.
Install with:
```bash
pip install langgraph
```
## LangServe
### LangServe
LangServe helps developers deploy LangChain runnables and chains as a REST API.
LangServe is automatically installed by LangChain CLI.
If not using LangChain CLI, install with:
@@ -80,9 +97,10 @@ Install with:
pip install langchain-cli
```
## LangSmith SDK
The LangSmith SDK is automatically installed by LangChain.
If not using LangChain, install with:
### LangSmith SDK
The LangSmith SDK is automatically installed by LangChain. However, it does not depend on
`langchain-core`, and can be installed and used independently if desired.
If you are not using LangChain, you can install it with:
```bash
pip install langsmith

View File

@@ -0,0 +1,202 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ac47bfab-0f4f-42ce-8bb6-898ef22a0338",
"metadata": {},
"source": [
"# How to merge consecutive messages of the same type\n",
"\n",
"Certain models do not support passing in consecutive messages of the same type (a.k.a. \"runs\" of the same message type).\n",
"\n",
"The `merge_message_runs` utility makes it easy to merge consecutive messages of the same type.\n",
"\n",
"## Basic usage"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1a215bbb-c05c-40b0-a6fd-d94884d517df",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SystemMessage(content=\"you're a good assistant.\\nyou always respond with a joke.\")\n",
"\n",
"HumanMessage(content=[{'type': 'text', 'text': \"i wonder why it's called langchain\"}, 'and who is harrison chasing anyways'])\n",
"\n",
"AIMessage(content='Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!\\nWhy, he\\'s probably chasing after the last cup of coffee in the office!')\n"
]
}
],
"source": [
"from langchain_core.messages import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
" merge_message_runs,\n",
")\n",
"\n",
"messages = [\n",
" SystemMessage(\"you're a good assistant.\"),\n",
" SystemMessage(\"you always respond with a joke.\"),\n",
" HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}]),\n",
" HumanMessage(\"and who is harrison chasing anyways\"),\n",
" AIMessage(\n",
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
" ),\n",
" AIMessage(\"Why, he's probably chasing after the last cup of coffee in the office!\"),\n",
"]\n",
"\n",
"merged = merge_message_runs(messages)\n",
"print(\"\\n\\n\".join([repr(x) for x in merged]))"
]
},
{
"cell_type": "markdown",
"id": "0544c811-7112-4b76-8877-cc897407c738",
"metadata": {},
"source": [
"Notice that if the contents of one of the messages to merge is a list of content blocks then the merged message will have a list of content blocks. And if both messages to merge have string contents then those are concatenated with a newline character."
]
},
{
"cell_type": "markdown",
"id": "11f7e8d3",
"metadata": {},
"source": [
"The `merge_message_runs` utility also works with messages composed together using the overloaded `+` operation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b51855c5",
"metadata": {},
"outputs": [],
"source": [
"messages = (\n",
" SystemMessage(\"you're a good assistant.\")\n",
" + SystemMessage(\"you always respond with a joke.\")\n",
" + HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}])\n",
" + HumanMessage(\"and who is harrison chasing anyways\")\n",
" + AIMessage(\n",
" 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n",
" )\n",
" + AIMessage(\n",
" \"Why, he's probably chasing after the last cup of coffee in the office!\"\n",
" )\n",
")\n",
"\n",
"merged = merge_message_runs(messages)\n",
"print(\"\\n\\n\".join([repr(x) for x in merged]))"
]
},
{
"cell_type": "markdown",
"id": "1b2eee74-71c8-4168-b968-bca580c25d18",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"`merge_message_runs` can be used in an imperatively (like above) or declaratively, making it easy to compose with other components in a chain:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6d5a0283-11f8-435b-b27b-7b18f7693592",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=[], response_metadata={'id': 'msg_01D6R8Naum57q8qBau9vLBUX', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 84, 'output_tokens': 3}}, id='run-ac0c465b-b54f-4b8b-9295-e5951250d653-0', usage_metadata={'input_tokens': 84, 'output_tokens': 3, 'total_tokens': 87})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# pip install -U langchain-anthropic\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(model=\"claude-3-sonnet-20240229\", temperature=0)\n",
"# Notice we don't pass in messages. This creates\n",
"# a RunnableLambda that takes messages as input\n",
"merger = merge_message_runs()\n",
"chain = merger | llm\n",
"chain.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "72e90dce-693c-4842-9526-ce6460fe956b",
"metadata": {},
"source": [
"Looking at the LangSmith trace we can see that before the messages are passed to the model they are merged: https://smith.langchain.com/public/ab558677-cac9-4c59-9066-1ecce5bcd87c/r\n",
"\n",
"Looking at just the merger, we can see that it's a Runnable object that can be invoked like all Runnables:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "460817a6-c327-429d-958e-181a8c46059c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content=\"you're a good assistant.\\nyou always respond with a joke.\"),\n",
" HumanMessage(content=[{'type': 'text', 'text': \"i wonder why it's called langchain\"}, 'and who is harrison chasing anyways']),\n",
" AIMessage(content='Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!\\nWhy, he\\'s probably chasing after the last cup of coffee in the office!')]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merger.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "4548d916-ce21-4dc6-8f19-eedb8003ace6",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For a complete description of all arguments head to the API reference: https://api.python.langchain.com/en/latest/messages/langchain_core.messages.utils.merge_message_runs.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"language": "python",
"name": "poetry-venv-2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -129,7 +129,7 @@
"id": "a531da5e",
"metadata": {},
"source": [
"## What is the runnable you are trying wrap?\n",
"## What is the runnable you are trying to wrap?\n",
"\n",
"`RunnableWithMessageHistory` can only wrap certain types of Runnables. Specifically, it can be used for any Runnable that takes as input one of:\n",
"\n",
@@ -898,7 +898,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "raw",
"id": "adc7ee09",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"keywords: [create_react_agent, create_react_agent()]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "457cdc67-1893-4653-8b0c-b185a5947e74",
@@ -7,9 +21,18 @@
"source": [
"# How to migrate from legacy LangChain agents to LangGraph\n",
"\n",
"Here we focus on how to move from legacy LangChain agents to LangGraph agents.\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [Agents](/docs/concepts/#agents)\n",
"- [LangGraph](https://langchain-ai.github.io/langgraph/)\n",
"- [Tool calling](/docs/how_to/tool_calling/)\n",
"\n",
":::\n",
"\n",
"Here we focus on how to move from legacy LangChain agents to more flexible [LangGraph](https://langchain-ai.github.io/langgraph/) agents.\n",
"LangChain agents (the [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n",
"In this notebook we will show how those parameters map to the LangGraph [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent).\n",
"In this notebook we will show how those parameters map to the LangGraph react agent executor using the [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) prebuilt helper method.\n",
"\n",
"#### Prerequisites\n",
"\n",
@@ -195,7 +218,7 @@
"\n",
"Let's take a look at all of these below. We will pass in custom instructions to get the agent to respond in Spanish.\n",
"\n",
"First up, using AgentExecutor:"
"First up, using `AgentExecutor`:"
]
},
{
@@ -238,7 +261,16 @@
"id": "bd5f5500-5ae4-4000-a9fd-8c5a2cc6404d",
"metadata": {},
"source": [
"Now, let's pass a custom system message to [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent). This can either be a string or a LangChain SystemMessage."
"Now, let's pass a custom system message to [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent).\n",
"\n",
"LangGraph's prebuilt `create_react_agent` does not take a prompt template directly as a parameter, but instead takes a [`messages_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) parameter. This modifies messages before they are passed into the model, and can be one of four values:\n",
"\n",
"- A `SystemMessage`, which is added to the beginning of the list of messages.\n",
"- A `string`, which is converted to a `SystemMessage` and added to the beginning of the list of messages.\n",
"- A `Callable`, which should take in a list of messages. The output is then passed to the language model.\n",
"- Or a [`Runnable`](/docs/concepts/#langchain-expression-language-lcel), which should should take in a list of messages. The output is then passed to the language model.\n",
"\n",
"Here's how it looks in action:"
]
},
{
@@ -319,7 +351,15 @@
"id": "68df3a09",
"metadata": {},
"source": [
"## Memory\n",
"## Memory"
]
},
{
"cell_type": "markdown",
"id": "96e7ffc8",
"metadata": {},
"source": [
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation."
]
@@ -407,7 +447,7 @@
"id": "c2a5a32f",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"Memory is just [persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/), aka [checkpointing](https://langchain-ai.github.io/langgraph/reference/checkpoints/).\n",
"\n",
@@ -478,6 +518,8 @@
"source": [
"## Iterating through steps\n",
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) "
]
},
@@ -536,7 +578,7 @@
"id": "46ccbcbf",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"In LangGraph, things are handled natively using [stream](https://langchain-ai.github.io/langgraph/reference/graphs/#langgraph.graph.graph.CompiledGraph.stream) or the asynchronous `astream` method."
]
@@ -587,6 +629,8 @@
"source": [
"## `return_intermediate_steps`\n",
"\n",
"### In LangChain\n",
"\n",
"Setting this parameter on AgentExecutor allows users to access intermediate_steps, which pairs agent actions (e.g., tool invocations) with their outcomes.\n"
]
},
@@ -615,6 +659,8 @@
"id": "594f7567-302f-4fa8-85bb-025ac8322162",
"metadata": {},
"source": [
"### In LangGraph\n",
"\n",
"By default the [react agent executor](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) in LangGraph appends all messages to the central state. Therefore, it is easy to see any intermediate steps by just looking at the full state."
]
},
@@ -655,11 +701,9 @@
"source": [
"## `max_iterations`\n",
"\n",
"`AgentExecutor` implements a `max_iterations` parameter, whereas this is controlled via `recursion_limit` in LangGraph.\n",
"### In LangChain\n",
"\n",
"Note that in AgentExecutor, an \"iteration\" includes a full turn of tool invocation and execution. In LangGraph, each step contributes to the recursion limit, so we will need to multiply by two (and add one) to get equivalent results.\n",
"\n",
"If the recursion limit is reached, LangGraph raises a specific exception type, that we can catch and manage similarly to AgentExecutor."
"`AgentExecutor` implements a `max_iterations` parameter, allowing users to abort a run that exceeds a specified number of iterations."
]
},
{
@@ -737,6 +781,20 @@
"agent_executor.invoke({\"input\": query})"
]
},
{
"cell_type": "markdown",
"id": "dd3a933f",
"metadata": {},
"source": [
"### In LangGraph\n",
"\n",
"In LangGraph this is controlled via `recursion_limit` configuration parameter.\n",
"\n",
"Note that in `AgentExecutor`, an \"iteration\" includes a full turn of tool invocation and execution. In LangGraph, each step contributes to the recursion limit, so we will need to multiply by two (and add one) to get equivalent results.\n",
"\n",
"If the recursion limit is reached, LangGraph raises a specific exception type, that we can catch and manage similarly to AgentExecutor."
]
},
{
"cell_type": "code",
"execution_count": 16,
@@ -782,6 +840,8 @@
"source": [
"## `max_execution_time`\n",
"\n",
"### In LangChain\n",
"\n",
"`AgentExecutor` implements a `max_execution_time` parameter, allowing users to abort a run that exceeds a total time limit."
]
},
@@ -848,6 +908,8 @@
"id": "d02eb025",
"metadata": {},
"source": [
"### In LangGraph\n",
"\n",
"With LangGraph's react agent, you can control timeouts on two levels. \n",
"\n",
"You can set a `step_timeout` to bound each **step**:"
@@ -936,6 +998,8 @@
"source": [
"## `early_stopping_method`\n",
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)."
]
},
@@ -996,7 +1060,7 @@
"id": "706e05c4",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"In LangGraph, you can explicitly handle the response behavior outside the agent, since the full state can be accessed."
]
@@ -1045,6 +1109,8 @@
"source": [
"## `trim_intermediate_steps`\n",
"\n",
"### In LangChain\n",
"\n",
"With LangChain's [AgentExecutor](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://api.python.langchain.com/en/latest/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n",
"\n",
"For instance, we could trim the value so the agent only sees the most recent intermediate step."
@@ -1148,7 +1214,7 @@
"id": "3d450c5a",
"metadata": {},
"source": [
"#### In LangGraph\n",
"### In LangGraph\n",
"\n",
"We can use the [`messages_modifier`](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) just as before when passing in [prompt templates](#prompt-templates)."
]
@@ -1212,6 +1278,18 @@
"except GraphRecursionError as e:\n",
" print(\"Stopping agent prematurely due to triggering stop condition\")"
]
},
{
"cell_type": "markdown",
"id": "41377eb8",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"You've now learned how to migrate your LangChain agent executors to LangGraph.\n",
"\n",
"Next, check out other [LangGraph how-to guides](https://langchain-ai.github.io/langgraph/how-tos/)."
]
}
],
"metadata": {

View File

@@ -0,0 +1,798 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f331037f-be3f-4782-856f-d55dab952488",
"metadata": {},
"source": [
"# How to migrate chains to LCEL\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"- [LangChain Expression Language](/docs/concepts#langchain-expression-language-lcel)\n",
"\n",
":::\n",
"\n",
"LCEL is designed to streamline the process of building useful apps with LLMs and combining related components. It does this by providing:\n",
"\n",
"1. **A unified interface**: Every LCEL object implements the `Runnable` interface, which defines a common set of invocation methods (`invoke`, `batch`, `stream`, `ainvoke`, ...). This makes it possible to also automatically and consistently support useful operations like streaming of intermediate steps and batching, since every chain composed of LCEL objects is itself an LCEL object.\n",
"2. **Composition primitives**: LCEL provides a number of primitives that make it easy to compose chains, parallelize components, add fallbacks, dynamically configure chain internals, and more.\n",
"\n",
"LangChain maintains a number of legacy abstractions. Many of these can be reimplemented via short combinations of LCEL primitives. Doing so confers some general advantages:\n",
"\n",
"- The resulting chains typically implement the full `Runnable` interface, including streaming and asynchronous support where appropriate;\n",
"- The chains may be more easily extended or modified;\n",
"- The parameters of the chain are typically surfaced for easier customization (e.g., prompts) over previous versions, which tended to be subclasses and had opaque parameters and internals.\n",
"\n",
"The LCEL implementations can be slightly more verbose, but there are significant benefits in transparency and customizability.\n",
"\n",
"In this guide we review LCEL implementations of common legacy abstractions. Where appropriate, we link out to separate guides with more detail."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b99b47ec",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-community langchain langchain-openai faiss-cpu"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "717c8673",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass()"
]
},
{
"cell_type": "markdown",
"id": "e3621b62-a037-42b8-8faa-59575608bb8b",
"metadata": {},
"source": [
"## `LLMChain`\n",
"<span data-heading-keywords=\"llmchain\"></span>\n",
"\n",
"[`LLMChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.llm.LLMChain.html) combined a prompt template, LLM, and output parser into a class.\n",
"\n",
"Some advantages of switching to the LCEL implementation are:\n",
"\n",
"- Clarity around contents and parameters. The legacy `LLMChain` contains a default output parser and other options.\n",
"- Easier streaming. `LLMChain` only supports streaming via callbacks.\n",
"- Easier access to raw message outputs if desired. `LLMChain` only exposes these via a parameter or via callback.\n",
"\n",
"import { ColumnContainer, Column } from \"@theme/Columns\";\n",
"\n",
"<ColumnContainer>\n",
"\n",
"<Column>\n",
"\n",
"#### Legacy\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "e628905c-430e-4e4a-9d7c-c91d2f42052e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'funny',\n",
" 'text': \"Why couldn't the bicycle find its way home?\\n\\nBecause it lost its bearings!\"}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"user\", \"Tell me a {adjective} joke\")],\n",
")\n",
"\n",
"chain = LLMChain(llm=ChatOpenAI(), prompt=prompt)\n",
"\n",
"chain({\"adjective\": \"funny\"})"
]
},
{
"cell_type": "markdown",
"id": "cdc3b527-c09e-4c77-9711-c3cc4506cd95",
"metadata": {},
"source": [
"\n",
"</Column>\n",
"\n",
"<Column>\n",
"\n",
"#### LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0d2a7cf8-1bc7-405c-bb0d-f2ab2ba3b6ab",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why couldn't the bicycle stand up by itself?\\n\\nBecause it was two tired!\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"user\", \"Tell me a {adjective} joke\")],\n",
")\n",
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"\n",
"chain.invoke({\"adjective\": \"funny\"})"
]
},
{
"cell_type": "markdown",
"id": "3c0b0513-77b8-4371-a20e-3e487cec7e7f",
"metadata": {},
"source": [
"\n",
"</Column>\n",
"</ColumnContainer>\n",
"\n",
"Note that `LLMChain` by default returns a `dict` containing both the input and the output. If this behavior is desired, we can replicate it using another LCEL primitive, [`RunnablePassthrough`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "529206c5-abbe-4213-9e6c-3b8586c8000d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'funny',\n",
" 'text': \"Why couldn't the bicycle stand up by itself?\\n\\nBecause it was two tired!\"}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"outer_chain = RunnablePassthrough().assign(text=chain)\n",
"\n",
"outer_chain.invoke({\"adjective\": \"funny\"})"
]
},
{
"cell_type": "markdown",
"id": "29d2e26c-2854-4971-9c2b-613450993921",
"metadata": {},
"source": [
"See [this tutorial](/docs/tutorials/llm_chain) for more detail on building with prompt templates, LLMs, and output parsers."
]
},
{
"cell_type": "markdown",
"id": "00df631d-5121-4918-94aa-b88acce9b769",
"metadata": {},
"source": [
"## `ConversationChain`\n",
"<span data-heading-keywords=\"conversationchain\"></span>\n",
"\n",
"[`ConversationChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversation.base.ConversationChain.html) incorporates a memory of previous messages to sustain a stateful conversation.\n",
"\n",
"Some advantages of switching to the LCEL implementation are:\n",
"\n",
"- Innate support for threads/separate sessions. To make this work with `ConversationChain`, you'd need to instantiate a separate memory class outside the chain.\n",
"- More explicit parameters. `ConversationChain` contains a hidden default prompt, which can cause confusion.\n",
"- Streaming support. `ConversationChain` only supports streaming via callbacks.\n",
"\n",
"`RunnableWithMessageHistory` implements sessions via configuration parameters. It should be instantiated with a callable that returns a [chat message history](https://api.python.langchain.com/en/latest/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html). By default, it expects this function to take a single argument `session_id`.\n",
"\n",
"<ColumnContainer>\n",
"<Column>\n",
"\n",
"#### Legacy\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "4f2cc6dc-d70a-4c13-9258-452f14290da6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'how are you?',\n",
" 'history': '',\n",
" 'response': \"Arrr, I be doin' well, me matey! Just sailin' the high seas in search of treasure and adventure. How can I assist ye today?\"}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import ConversationChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"template = \"\"\"\n",
"You are a pirate. Answer the following questions as best you can.\n",
"Chat history: {history}\n",
"Question: {input}\n",
"\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"memory = ConversationBufferMemory()\n",
"\n",
"chain = ConversationChain(\n",
" llm=ChatOpenAI(),\n",
" memory=memory,\n",
" prompt=prompt,\n",
")\n",
"\n",
"chain({\"input\": \"how are you?\"})"
]
},
{
"cell_type": "markdown",
"id": "f8e36b0e-c7dc-4130-a51b-189d4b756c7f",
"metadata": {},
"source": [
"</Column>\n",
"\n",
"<Column>\n",
"\n",
"#### LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "173e1a9c-2a18-4669-b0de-136f39197786",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Arr, matey! I be sailin' the high seas with me crew, searchin' for buried treasure and adventure! How be ye doin' on this fine day?\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.chat_history import InMemoryChatMessageHistory\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a pirate. Answer the following questions as best you can.\"),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"history = InMemoryChatMessageHistory()\n",
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"\n",
"wrapped_chain = RunnableWithMessageHistory(chain, lambda x: history)\n",
"\n",
"wrapped_chain.invoke(\n",
" {\"input\": \"how are you?\"},\n",
" config={\"configurable\": {\"session_id\": \"42\"}},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "6b386ce6-895e-442c-88f3-7bec0ab9f401",
"metadata": {},
"source": [
"\n",
"</Column>\n",
"</ColumnContainer>\n",
"\n",
"The above example uses the same `history` for all sessions. The example below shows how to use a different chat history for each session."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4e05994f-1fbc-4699-bf2e-62cb0e4deeb8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Ahoy there! What be ye wantin' from this old pirate?\", response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 29, 'total_tokens': 44}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-1846d5f5-0dda-43b6-bb49-864e541f9c29-0', usage_metadata={'input_tokens': 29, 'output_tokens': 15, 'total_tokens': 44})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"\n",
"store = {}\n",
"\n",
"\n",
"def get_session_history(session_id: str) -> BaseChatMessageHistory:\n",
" if session_id not in store:\n",
" store[session_id] = InMemoryChatMessageHistory()\n",
" return store[session_id]\n",
"\n",
"\n",
"chain = prompt | ChatOpenAI() | StrOutputParser()\n",
"\n",
"wrapped_chain = RunnableWithMessageHistory(chain, get_session_history)\n",
"\n",
"wrapped_chain.invoke(\"Hello!\", config={\"configurable\": {\"session_id\": \"abc123\"}})"
]
},
{
"cell_type": "markdown",
"id": "c36ebecb",
"metadata": {},
"source": [
"See [this tutorial](/docs/tutorials/chatbot) for a more end-to-end guide on building with [`RunnableWithMessageHistory`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html).\n",
"\n",
"## `RetrievalQA`\n",
"<span data-heading-keywords=\"retrievalqa\"></span>\n",
"\n",
"The [`RetrievalQA`](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval_qa.base.RetrievalQA.html) chain performed natural-language question answering over a data source using retrieval-augmented generation.\n",
"\n",
"Some advantages of switching to the LCEL implementation are:\n",
"\n",
"- Easier customizability. Details such as the prompt and how documents are formatted are only configurable via specific parameters in the `RetrievalQA` chain.\n",
"- More easily return source documents.\n",
"- Support for runnable methods like streaming and async operations.\n",
"\n",
"Now let's look at them side-by-side. We'll use the same ingestion code to load a [blog post by Lilian Weng](https://lilianweng.github.io/posts/2023-06-23-agent/) on autonomous agents into a local vector store:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1efbe16e",
"metadata": {},
"outputs": [],
"source": [
"# Load docs\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.document_loaders import WebBaseLoader\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_openai.chat_models import ChatOpenAI\n",
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
"\n",
"loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n",
"data = loader.load()\n",
"\n",
"# Split\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Store splits\n",
"vectorstore = FAISS.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())\n",
"\n",
"# LLM\n",
"llm = ChatOpenAI()"
]
},
{
"cell_type": "markdown",
"id": "c7e16438",
"metadata": {},
"source": [
"<ColumnContainer>\n",
"\n",
"<Column>\n",
"\n",
"#### Legacy"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "43bf55a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'query': 'What are autonomous agents?',\n",
" 'result': 'Autonomous agents are LLM-empowered agents that handle autonomous design, planning, and performance of complex tasks, such as scientific experiments. These agents can browse the Internet, read documentation, execute code, call robotics experimentation APIs, and leverage other LLMs. They are capable of reasoning and planning ahead for complicated tasks by breaking them down into smaller steps.'}"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import hub\n",
"from langchain.chains import RetrievalQA\n",
"\n",
"# See full prompt at https://smith.langchain.com/hub/rlm/rag-prompt\n",
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
"\n",
"qa_chain = RetrievalQA.from_llm(\n",
" llm, retriever=vectorstore.as_retriever(), prompt=prompt\n",
")\n",
"\n",
"qa_chain(\"What are autonomous agents?\")"
]
},
{
"cell_type": "markdown",
"id": "081948e5",
"metadata": {},
"source": [
"</Column>\n",
"\n",
"<Column>\n",
"\n",
"#### LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "9efcc931",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Autonomous agents are agents that can handle autonomous design, planning, and performance of complex tasks, such as scientific experiments. They can browse the Internet, read documentation, execute code, call robotics experimentation APIs, and leverage other language model models. These agents use reasoning steps to develop solutions to specific tasks, like creating a novel anticancer drug.'"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import hub\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"# See full prompt at https://smith.langchain.com/hub/rlm/rag-prompt\n",
"prompt = hub.pull(\"rlm/rag-prompt\")\n",
"\n",
"\n",
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
"\n",
"\n",
"qa_chain = (\n",
" {\n",
" \"context\": vectorstore.as_retriever() | format_docs,\n",
" \"question\": RunnablePassthrough(),\n",
" }\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")\n",
"\n",
"qa_chain.invoke(\"What are autonomous agents?\")"
]
},
{
"cell_type": "markdown",
"id": "d6f44fe8",
"metadata": {},
"source": [
"</Column>\n",
"</ColumnContainer>\n",
"\n",
"The LCEL implementation exposes the internals of what's happening around retrieving, formatting documents, and passing them through a prompt to the LLM, but it is more verbose. You can customize and wrap this composition logic in a helper function, or use the higher-level [`create_retrieval_chain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.retrieval.create_retrieval_chain.html) and [`create_stuff_documents_chain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) helper method:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "5fe42761",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What are autonomous agents?',\n",
" 'context': [Document(page_content='Boiko et al. (2023) also looked into LLM-empowered agents for scientific discovery, to handle autonomous design, planning, and performance of complex scientific experiments. This agent can use tools to browse the Internet, read documentation, execute code, call robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested to \"develop a novel anticancer drug\", the model came up with the following reasoning steps:', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'}),\n",
" Document(page_content='Weng, Lilian. (Jun 2023). “LLM-powered Autonomous Agents”. LilLog. https://lilianweng.github.io/posts/2023-06-23-agent/.', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'}),\n",
" Document(page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'}),\n",
" Document(page_content=\"LLM Powered Autonomous Agents | Lil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLil'Log\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPosts\\n\\n\\n\\n\\nArchive\\n\\n\\n\\n\\nSearch\\n\\n\\n\\n\\nTags\\n\\n\\n\\n\\nFAQ\\n\\n\\n\\n\\nemojisearch.app\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n LLM Powered Autonomous Agents\\n \\nDate: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng\\n\\n\\n \\n\\n\\nTable of Contents\\n\\n\\n\\nAgent System Overview\\n\\nComponent One: Planning\\n\\nTask Decomposition\\n\\nSelf-Reflection\\n\\n\\nComponent Two: Memory\\n\\nTypes of Memory\\n\\nMaximum Inner Product Search (MIPS)\", metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'})],\n",
" 'answer': 'Autonomous agents are entities that can operate independently, making decisions and taking actions without direct human intervention. These agents can perform tasks such as planning, executing complex experiments, and leveraging various tools and resources to achieve objectives. In the context provided, LLM-powered autonomous agents are specifically designed for scientific discovery, capable of handling tasks like designing novel anticancer drugs through reasoning steps.'}"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import hub\n",
"from langchain.chains import create_retrieval_chain\n",
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
"\n",
"# See full prompt at https://smith.langchain.com/hub/langchain-ai/retrieval-qa-chat\n",
"retrieval_qa_chat_prompt = hub.pull(\"langchain-ai/retrieval-qa-chat\")\n",
"\n",
"combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)\n",
"rag_chain = create_retrieval_chain(vectorstore.as_retriever(), combine_docs_chain)\n",
"\n",
"rag_chain.invoke({\"input\": \"What are autonomous agents?\"})"
]
},
{
"cell_type": "markdown",
"id": "2772f4e9",
"metadata": {},
"source": [
"## `ConversationalRetrievalChain`\n",
"<span data-heading-keywords=\"conversationalretrievalchain\"></span>\n",
"\n",
"The [`ConversationalRetrievalChain`](https://api.python.langchain.com/en/latest/chains/langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain.html) was an all-in one way that combined retrieval-augmented generation with chat history, allowing you to \"chat with\" your documents.\n",
"\n",
"Advantages of switching to the LCEL implementation are similar to the `RetrievalQA` section above:\n",
"\n",
"- Clearer internals. The `ConversationalRetrievalChain` chain hides an entire question rephrasing step which dereferences the initial query against the chat history.\n",
" - This means the class contains two sets of configurable prompts, LLMs, etc.\n",
"- More easily return source documents.\n",
"- Support for runnable methods like streaming and async operations.\n",
"\n",
"Here are side-by-side implementations with custom prompts. We'll reuse the loaded documents and vector store from the previous section:"
]
},
{
"cell_type": "markdown",
"id": "8bc06416",
"metadata": {},
"source": [
"<ColumnContainer>\n",
"\n",
"<Column>\n",
"\n",
"#### Legacy"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "54eb9576",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What are autonomous agents?',\n",
" 'chat_history': '',\n",
" 'answer': 'Autonomous agents are powered by Large Language Models (LLMs) to handle tasks like scientific discovery and complex experiments autonomously. These agents can browse the internet, read documentation, execute code, and leverage other LLMs to perform tasks. They can reason and plan ahead to decompose complicated tasks into manageable steps.'}"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"\n",
"condense_question_template = \"\"\"\n",
"Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n",
"\n",
"Chat History:\n",
"{chat_history}\n",
"Follow Up Input: {question}\n",
"Standalone question:\"\"\"\n",
"\n",
"condense_question_prompt = ChatPromptTemplate.from_template(condense_question_template)\n",
"\n",
"qa_template = \"\"\"\n",
"You are an assistant for question-answering tasks.\n",
"Use the following pieces of retrieved context to answer\n",
"the question. If you don't know the answer, say that you\n",
"don't know. Use three sentences maximum and keep the\n",
"answer concise.\n",
"\n",
"Chat History:\n",
"{chat_history}\n",
"\n",
"Other context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"\n",
"qa_prompt = ChatPromptTemplate.from_template(qa_template)\n",
"\n",
"convo_qa_chain = ConversationalRetrievalChain.from_llm(\n",
" llm,\n",
" vectorstore.as_retriever(),\n",
" condense_question_prompt=condense_question_prompt,\n",
" combine_docs_chain_kwargs={\n",
" \"prompt\": qa_prompt,\n",
" },\n",
")\n",
"\n",
"convo_qa_chain(\n",
" {\n",
" \"question\": \"What are autonomous agents?\",\n",
" \"chat_history\": \"\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "43a8a23c",
"metadata": {},
"source": [
"</Column>\n",
"\n",
"<Column>\n",
"\n",
"#### LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "c884b138",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input': 'What are autonomous agents?',\n",
" 'chat_history': [],\n",
" 'context': [Document(page_content='Boiko et al. (2023) also looked into LLM-empowered agents for scientific discovery, to handle autonomous design, planning, and performance of complex scientific experiments. This agent can use tools to browse the Internet, read documentation, execute code, call robotics experimentation APIs and leverage other LLMs.\\nFor example, when requested to \"develop a novel anticancer drug\", the model came up with the following reasoning steps:', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'}),\n",
" Document(page_content='Weng, Lilian. (Jun 2023). “LLM-powered Autonomous Agents”. LilLog. https://lilianweng.github.io/posts/2023-06-23-agent/.', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'}),\n",
" Document(page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'}),\n",
" Document(page_content='Or\\n@article{weng2023agent,\\n title = \"LLM-powered Autonomous Agents\",\\n author = \"Weng, Lilian\",\\n journal = \"lilianweng.github.io\",\\n year = \"2023\",\\n month = \"Jun\",\\n url = \"https://lilianweng.github.io/posts/2023-06-23-agent/\"\\n}\\nReferences#\\n[1] Wei et al. “Chain of thought prompting elicits reasoning in large language models.” NeurIPS 2022\\n[2] Yao et al. “Tree of Thoughts: Dliberate Problem Solving with Large Language Models.” arXiv preprint arXiv:2305.10601 (2023).', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'title': \"LLM Powered Autonomous Agents | Lil'Log\", 'description': 'Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.\\nAgent System Overview In a LLM-powered autonomous agent system, LLM functions as the agents brain, complemented by several key components:', 'language': 'en'})],\n",
" 'answer': 'Autonomous agents are entities capable of acting independently, making decisions, and performing tasks without direct human intervention. These agents can interact with their environment, perceive information, and take actions based on their goals or objectives. They often use artificial intelligence techniques to navigate and accomplish tasks in complex or dynamic environments.'}"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import create_history_aware_retriever, create_retrieval_chain\n",
"\n",
"condense_question_system_template = (\n",
" \"Given a chat history and the latest user question \"\n",
" \"which might reference context in the chat history, \"\n",
" \"formulate a standalone question which can be understood \"\n",
" \"without the chat history. Do NOT answer the question, \"\n",
" \"just reformulate it if needed and otherwise return it as is.\"\n",
")\n",
"\n",
"condense_question_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", condense_question_system_template),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"history_aware_retriever = create_history_aware_retriever(\n",
" llm, vectorstore.as_retriever(), condense_question_prompt\n",
")\n",
"\n",
"system_prompt = (\n",
" \"You are an assistant for question-answering tasks. \"\n",
" \"Use the following pieces of retrieved context to answer \"\n",
" \"the question. If you don't know the answer, say that you \"\n",
" \"don't know. Use three sentences maximum and keep the \"\n",
" \"answer concise.\"\n",
" \"\\n\\n\"\n",
" \"{context}\"\n",
")\n",
"\n",
"qa_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", system_prompt),\n",
" (\"placeholder\", \"{chat_history}\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"qa_chain = create_stuff_documents_chain(llm, qa_prompt)\n",
"\n",
"convo_qa_chain = create_retrieval_chain(history_aware_retriever, qa_chain)\n",
"\n",
"convo_qa_chain.invoke(\n",
" {\n",
" \"input\": \"What are autonomous agents?\",\n",
" \"chat_history\": [],\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b2717810",
"metadata": {},
"source": [
"</Column>\n",
"\n",
"</ColumnContainer>\n",
"\n",
"## Next steps\n",
"\n",
"You've now seen how to migrate existing usage of some legacy chains to LCEL.\n",
"\n",
"Next, check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) for more background information."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More