- **Description:** To adapt more parameters related to
MemorySearchPayload for the search method of ZepChatMessageHistory,
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
**Description:**
Updated the retry.ipynb notebook, it contains the illustrations of
RetryOutputParser in LangChain. But the notebook lacks to explain the
compatibility of RetryOutputParser with existing chains. This changes
adds some code to illustrate the workflow of using RetryOutputParser
with the user chain.
Changes:
1. Changed RetryWithErrorOutputParser with RetryOutputParser, as the
markdown text says so.
2. Added code at the last of the notebook to define a chain which passes
the LLM completions to the retry parser, which can be customised for
user needs.
**Issue:**
Since RetryOutputParser/RetryWithErrorOutputParser does not implement
the parse function it cannot be used with LLMChain directly like
[this](https://python.langchain.com/docs/expression_language/cookbook/prompt_llm_parser#prompttemplate-llm-outputparser).
This also raised various issues #15133#12175#11719 still open, instead
of adding new features/code changes its best to explain the "how to
integrate LLMChain with retry parsers" clearly with an example in the
corresponding notebook.
Inspired from:
https://github.com/langchain-ai/langchain/issues/15133#issuecomment-1868972580
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add missing async similarity_distance_threshold handling in
RedisVectorStoreRetriever
- **Description:** added method `_aget_relevant_documents` to
`RedisVectorStoreRetriever` that overrides parent method to add support
of `similarity_distance_threshold` in async mode (as for sync mode)
- **Issue:** #16099
- **Dependencies:** N/A
- **Twitter handle:** N/A
- **Description:** This is a template for creating shopping assistant
chat bots
- **Issue:** Example for creating a shopping assistant with OpenAI Tools
Agent
- **Dependencies:** Ionic
https://github.com/ioniccommerce/ionic_langchain
- **Twitter handle:** @ioniccommerce
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Presidio-based anonymizers are not working because
`_remove_conflicts_and_get_text_manipulation_data` was being called
without a conflict resolution strategy. This PR fixes this issue. In
addition, it removes some mutable default arguments (antipattern).
To reproduce the issue, just run the very first cell of this
[notebook](https://python.langchain.com/docs/guides/privacy/2/) from
langchain's documentation.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description** : This PR updates the documentation for installing
llama-cpp-python on Windows.
- Updates install command to support pyproject.toml
- Makes CPU/GPU install instructions clearer
- Adds reinstall with GPU support command
**Issue**: Existing
[documentation](https://python.langchain.com/docs/integrations/llms/llamacpp#compiling-and-installing)
lists the following commands for installing llama-cpp-python
```
python setup.py clean
python setup.py install
````
The current version of the repo does not include a `setup.py` and uses a
`pyproject.toml` instead.
This can be replaced with
```
python -m pip install -e .
```
As explained in
https://github.com/abetlen/llama-cpp-python/issues/965#issuecomment-1837268339
**Dependencies**: None
**Twitter handle**: None
---------
Co-authored-by: blacksmithop <angstycoder101@gmaii.com>
- **Description:** The current pubmed tool documentation is referencing
the path to langchain core not the path to the tool in community. The
old tool redirects anyways, but for efficiency of using the more direct
path, just adding this documentation so it references the new path
- **Issue:** doesn't fix an issue
- **Dependencies:** no dependencies
- **Twitter handle:** rooftopzen
* Description: Fixed schema discrepancy in **from_texts** function for
weaviate vectorstore which created a redundant property "key" inside a
class.
* Issue: Fixed: https://github.com/langchain-ai/langchain/issues/16692
* Twitter handle: @pashvamehta1
- **Description:** Syntax correction according to langchain version
update in 'Retry Parser' tutorial example,
- **Issue:** #16698
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adds Wikidata support to langchain. Can read out
documents from Wikidata.
- **Issue:** N/A
- **Dependencies:** Adds implicit dependencies for
`wikibase-rest-api-client` (for turning items into docs) and
`mediawikiapi` (for hitting the search endpoint)
- **Twitter handle:** @derenrich
You can see an example of this tool used in a chain
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Langchain.ipynb)
or
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Lars_Kai_Hansen.ipynb)
<!-- Thank you for contributing to LangChain!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
URL : https://python.langchain.com/docs/use_cases/extraction
Desc:
<b> While the following statement executes successfully, it throws an
error which is described below when we use the imported packages</b>
```py
from pydantic import BaseModel, Field, validator
```
Code:
```python
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
PromptTemplate,
)
from langchain_openai import OpenAI
from pydantic import BaseModel, Field, validator
# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# You can add custom validation logic easily with Pydantic.
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
```
Error:
```md
PydanticUserError: The `field` and `config` parameters are not available
in Pydantic V2, please use the `info` parameter instead.
For further information visit
https://errors.pydantic.dev/2.5/u/validator-field-config-info
```
Solution:
Instead of doing:
```py
from pydantic import BaseModel, Field, validator
```
We should do:
```py
from langchain_core.pydantic_v1 import BaseModel, Field, validator
```
Thanks.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This update ensures that the user-defined embedding
function specified during vector store creation is applied during
queries. Previously, even if a custom embedding function was defined at
the time of store creation, Bagel DB would default to using the standard
embedding function during query execution. This pull request addresses
this issue by consistently using the user-defined embedding function for
queries if one has been specified earlier.
- **Description:** This change allows the `_fetch` method in the
`WebBaseLoader` class to utilize cookies from an existing
`requests.Session`. It ensures that when the `fetch` method is used, any
cookies in the provided session are included in the request. This
enhancement maintains compatibility with existing functionality while
extending the utility of the `fetch` method for scenarios where cookie
persistence is necessary.
- **Issue:** Not applicable (new feature),
- **Dependencies:** Requires `aiohttp` and `requests` libraries (no new
dependencies introduced),
- **Twitter handle:** N/A
Co-authored-by: Joao Almeida <joao.almeida@mercedes-benz.io>
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
if eg. the stream iterator is interrupted then adding more events to the
send_stream will raise an exception that we should catch (and handle
where appropriate)
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description**: YoutubeLoader right now returns one document that
contains the entire transcript. I think it would be useful to add an
option to return multiple documents, where each document would contain
one line of transcript with the start time and duration in the metadata.
For example,
[AssemblyAIAudioTranscriptLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/assemblyai.py)
is implemented in a similar way, it allows you to choose between the
format to use for the document loader.
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.
- **Dependencies**: No dependencies are added as we call a rest API.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
… converters
One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
community:
- **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
- Add tests and Jupyter notebook.
- **Issue:** None
- **Dependencies:** Relies on existing ChatLiteLLM integration
- **Twitter handle:** @bburgin_0
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
The parameters for user and assistant in Anthropic should be 'ai ->
assistant,' but they are reversed to 'assistant -> ai.'
Below is error code.
```python
anthropic.BadRequestError: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'messages: Unexpected role "ai". Allowed roles are "user" or "assistant"'}}
```
[anthropic](7177f3a71f/src/anthropic/types/beta/message_param.py (L13))
- **Issue:** : #16561
- **Dependencies:** : None
- **Twitter handle:** : None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
- **Issue:** None,
- **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.
@baskaryan @hwchase17
```python
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
guardrails={"id": " <guardrail_id>",
"version": "<guardrail_version>",
"trace": True}, callbacks=[BedrockAsyncCallbackHandler()])
class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
"""Async callback handler that can be used to handle callbacks from langchain."""
async def on_llm_error(
self,
error: BaseException,
**kwargs: Any,
) -> Any:
reason = kwargs.get("reason")
if reason == "GUARDRAIL_INTERVENED":
# kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
print(f"""Guardrails: {kwargs}""")
# streaming
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
streaming=True,
guardrails={"id": "<guardrail_id>",
"version": "<guardrail_version>"})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).
- **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
- **Twitter handle:** @sapopensource
Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`
Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`
Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`
Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
Access credentials for execution of the integration tests can be
provided to the maintainers.
---------
Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
- checked that the doc chat/google_vertex_ai_palm is using new
functions: invoke, stream etc.
- added Gemini example
- fixed wrong output in Sanskrit example
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
Flushing out the `mypy` config in `langchain-google-vertexai` to show
error codes and other warnings
This PR also bumps `mypy` to above version 1's stable release
**Description:**
Handle unsupported languages in same way as when none is provided
**Issue:**
The following line will throw a KeyError if the language is not
supported.
```python
self.Segmenter = LANGUAGE_SEGMENTERS[language]
```
E.g. when using `Language.CPP` we would get `KeyError: <Language.CPP:
'cpp'>`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** added the conversational task to hugginFace endpoint
in order to use models designed for chatbot programming.
- **Dependencies:** None
---------
Co-authored-by: Alessio Serra (ext.) <alessio.serra@partner.bmw.de>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
- **Issue:** Fixed#15607,
- **Dependencies:** NA
- **Twitter handle:** NA
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
- **Dependencies:** websocket-client ^1.6.1
- **Tag maintainer:** @baskaryan
### SparkLLM chat model usage
Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:
```python3
from langchain.chat_models.sparkllm import ChatSparkLLM
client = ChatSparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
```
- **Description:**
This PR aims to enhance the `langchain` library by enabling the support
for passing `custom_headers` in the `GraphQLAPIWrapper` usage within
`langchain/agents/load_tools.py`.
While the `GraphQLAPIWrapper` from the `langchain_community` module is
inherently capable of handling `custom_headers`, its current invocation
in `load_tools.py` does not facilitate this functionality.
This limitation restricts the use of the `graphql` tool with databases
or APIs that require token-based authentication.
The absence of support for `custom_headers` in this context also leads
to a lack of error messages when attempting to interact with secured
GraphQL endpoints, making debugging and troubleshooting more
challenging.
This update modifies the `load_tools` function to correctly handle
`custom_headers`, thereby allowing secure and authenticated access to
GraphQL services requiring tokens.
Example usage after the proposed change:
```python
tools = load_tools(
["graphql"],
graphql_endpoint="https://your-graphql-endpoint.com/graphql",
custom_headers={"Authorization": f"Token {api_token}"},
)
```
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
- **Description:** This addresses the issue tagged below where if you
try to pass your own client when creating an OpenAI assistant, a
pydantic error is raised:
Example code:
```python
import openai
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
client = openai.OpenAI()
interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=[{"type": "code_interpreter"}],
model="gpt-4-1106-preview",
client=client
)
```
Error:
`pydantic.v1.errors.ConfigError: field "client" not yet prepared, so the
type is still a ForwardRef. You might need to call
OpenAIAssistantRunnable.update_forward_refs()`
It additionally updates type hints and docstrings to indicate that an
AzureOpenAI client is permissible as well.
- **Issue:** https://github.com/langchain-ai/langchain/issues/15948
- **Dependencies:** N/A
Description:
- Added output and environment variables
- Updated the documentation for chat/anthropic, changing references from
`langchain.schema` to `langchain_core.prompts`.
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
Since this is my first open-source PR, please feel free to point out any
mistakes, and I'll be eager to make corrections.
This PR introduces update to Konko Integration with LangChain.
1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.
2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.
4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.
Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.
---------
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
- **Description:** extreact the _aperform_agent_action in the
AgentExecutor class to allow for easier overriding. Extracted logic from
_iter_next_step into a new method _perform_agent_action for consistency
and easier overriding.
- **Issue:** #15706Closes#15706
- **Description:** The HTMLHeaderTextSplitter Class now explicitly
specifies utf-8 encoding in the part of the split_text_from_file method
that calls the HTMLParser.
- **Issue:** Prevent garbled characters due to differences in encoding
of html files (except for English in particular, I noticed that problem
with Japanese).
- **Dependencies:** No dependencies,
- **Twitter handle:** @i_w__a
Adds the ability to return similarity scores when using
`RetrievalQA.from_chain_type` with `MongoDBAtlasVectorSearch`. Requires
that `return_source_documents=True` is set.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vector_search.as_retriever(search_kwargs={"additional": ["similarity_score"]}),
return_source_documents=True
)
...
docs = qa({"query": "..."})
docs["source_documents"][0].metadata["score"] # score will be here
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
- **Description:** Allow passing run_id to MLflowCallbackHandler to
resume a run instead of creating a new run. Support recording retriever
relevant metrics. Refactor the code to fix some bugs.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
In this PR I added a post-processing function to normalize the
embeddings. This happens only if the new `normalize` flag is `True`.
---------
Co-authored-by: taamedag <Davide.Menini@swisscom.com>
- **Description:** Baichuan Chat (with both Baichuan-Turbo and
Baichuan-Turbo-192K models) has updated their APIs. There are breaking
changes. For example, BAICHUAN_SECRET_KEY is removed in the latest API
but is still required in Langchain. Baichuan's Langchain integration
needs to be updated to the latest version.
- **Issue:** #15206
- **Dependencies:** None,
- **Twitter handle:** None
@hwchase17.
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
**Description:**
- Implement `SQLStrStore` and `SQLDocStore` classes that inherits from
`BaseStore` to allow to persist data remotely on a SQL server.
- SQL is widely used and sometimes we do not want to install a caching
solution like Redis.
- Multiple issues/comments complain that there is no easy remote and
persistent solution that are not in memory (users want to replace
InMemoryStore), e.g.,
https://github.com/langchain-ai/langchain/issues/14267,
https://github.com/langchain-ai/langchain/issues/15633,
https://github.com/langchain-ai/langchain/issues/14643,
https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
- This is particularly painful when wanting to use
`ParentDocumentRetriever `
- This implementation is particularly useful when:
* it's expensive to construct an InMemoryDocstore/dict
* you want to retrieve documents from remote sources
* you just want to reuse existing objects
- This implementation integrates well with PGVector, indeed, when using
PGVector, you already have a SQL instance running. `SQLDocStore` is a
convenient way of using this instance to store documents associated to
vectors. An integration example with ParentDocumentRetriever and
PGVector is provided in docs/docs/integrations/stores/sql.ipynb or
[here](https://github.com/gcheron/langchain/blob/sql-store/docs/docs/integrations/stores/sql.ipynb).
- It persists `str` and `Document` objects but can be easily extended.
**Issue:**
Provide an easy SQL alternative to `InMemoryStore`.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** this PR upgrades the `HuggingFaceHub` LLM:
* support more tasks (`translation` and `conversational`)
* replaced the deprecated `InferenceApi` with `InferenceClient`
* adjusted the overall logic to use the "recommended" model for each
task when no model is provided, and vice-versa.
- **Tag mainter(s)**: @baskaryan @hwchase17
For tracing, if a validation error occurs, currently it is attributed to
the previous step of the chain. It would be nice to have the on_start
and on_error callbacks called for tools when there is a validation error
that occurs to more easily attribute the root-cause
**Description** : New documents loader for visio files (with extension
.vsdx)
A [visio file](https://fr.wikipedia.org/wiki/Microsoft_Visio) (with
extension .vsdx) is associated with Microsoft Visio, a diagram creation
software. It stores information about the structure, layout, and
graphical elements of a diagram. This format facilitates the creation
and sharing of visualizations in areas such as business, engineering,
and computer science.
A Visio file can contain multiple pages. Some of them may serve as the
background for others, and this can occur across multiple layers. This
loader extracts the textual content from each page and its associated
pages, enabling the extraction of all visible text from each page,
similar to what an OCR algorithm would do.
**Dependencies** : xmltodict package
- **Description:** Updated the Chat/Ollama docs notebook with LCEL chain
examples
- **Issue:** #15664 I'm a new contributor 😊
- **Dependencies:** No dependencies
- **Twitter handle:**
Comments:
- How do I truncate the output of the stream in the notebook if and or
when it goes on and on and on for even the basic of prompts?
Edit:
Looking forward to feedback @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Problem
Spent several hours trying to figure out how to pass
`RedisChatMessageHistory` as a `GetSessionHistoryCallable` with a
different REDIS hostname. This example kept connecting to
`redis://localhost:6379`, but I wanted to connect to a server not hosted
locally.
## Cause
Assumption the user knows how to implement `BaseChatMessageHistory` and
`GetSessionHistoryCallable`
## Solution
Update documentation to show how to explicitly set the REDIS hostname
using a lambda function much like the MongoDB and SQLite examples.
After merging [PR
#16304](https://github.com/langchain-ai/langchain/pull/16304), I
realized that our notebook example for integrating TiDB with LangChain
was too basic. To make it more useful and user-friendly, I plan to
create a detailed example. This will show how to use TiDB for saving
history messages in LangChain, offering a clearer, more practical guide
for our users
I also added LANGCHAIN_COMET_TRACING to enable the CometLLM tracing
integration similar to other tracing integrations. This is easier for
end-users to enable it rather than importing the callback and pass it
manually.
(This is the same content as
https://github.com/langchain-ai/langchain/pull/14650 but rebased and
squashed as something seems to confuse Github Action).
- **Description:** At the moment it's not possible to include in the
same project langchain-google-vertexai and boto3 (e.g. use bedrock and
vertex in the same application) because of the dependency resolutions
conflict. boto3 is still using urllib3 1.x, meanwhile
langchain-google-vertexai -> types-requests depends on urllib3 2.x. [the
last version of types-requests that allows urllib3 1.x is
2.31.0.6](https://pypi.org/project/types-requests/#description).
In this PR I allow the vertexai package to get that version also.
- **Twitter handle:** nicoloboschi
Description: Added support for asynchronous streaming in the Bedrock
class and corresponding tests.
Primarily:
async def aprepare_output_stream
async def _aprepare_input_and_invoke_stream
async def _astream
async def _acall
I've ensured that the code adheres to the project's linting and
formatting standards by running make format, make lint, and make test.
Issue: #12054, #11589
Dependencies: None
Tag maintainer: @baskaryan
Twitter handle: @dominic_lovric
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
Replace this entire comment with:
- **Description:** allow user to define tVector length in PGVector when
creating the embedding store, this allows for later indexing
- **Issue:** #16132
- **Dependencies:** None
**Description:** Add support for querying TigerGraph databases through
the InquiryAI service.
**Issue**: N/A
**Dependencies:** N/A
**Twitter handle:** @TigerGraphDB
there is a case where "coords" does not exist in the "sentence"
therefore, the "split(";")" will lead to error.
we can fix that by adding "if sentence.get("coords") is not None:"
the resulting empty "sbboxes" from this scenario will raise error at
"sbboxes[0]["page"]" because sbboxes are empty.
the PDF from https://pubmed.ncbi.nlm.nih.gov/23970373/ can replicate
those errors.
This pull request integrates the TiDB database into LangChain for
storing message history, marking one of several steps towards a
comprehensive integration of TiDB with LangChain.
A simple usage
```python
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory
history = TiDBChatMessageHistory(
connection_string="mysql+pymysql://<host>:<PASSWORD>@<host>:4000/<db>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true",
session_id="code_gen",
earliest_time=datetime.utcnow(), # Optional to set earliest_time to load messages after this time point.
)
history.add_user_message("hi! How's feature going?")
history.add_ai_message("It's almot done")
```
The callbacks get started demo code was updated , replacing the
chain.run() command ( which is now depricated) ,with the updated
chain.invoke() command.
Solving the following issue : #16379
Twitter/X : @Hazxhx
- **Description:** add support for kwargs in`MlflowEmbeddings`
`embed_document()` and `embed_query()` so that all the arguments
required by Cohere API (and others?) can be passed down to the server.
- **Issue:** #15234
- **Dependencies:** MLflow with MLflow Deployments (`pip install
mlflow[genai]`)
**Tests**
Now this code [adapted from the
docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example)
for the Cohere API works locally.
```python
"""
Setup
-----
export COHERE_API_KEY=...
mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml
Run
---
python /path/to/this/file.py
"""
embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
```
Output
```
[0.060455322, 0.028793335, -0.025848389]
[0.031707764, 0.021057129, -0.009361267]
```
Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.
Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
Adjusted `deprecate` decorator to make sure decorated async functions
are still recognized as "coroutinefunction" by `inspect`.
Before change, functions such as `LLMChain.acall` which are decorated as
deprecated are not recognized as coroutine functions. After the change,
they are recognized:
```python
import inspect
from langchain import LLMChain
# Is false before change but true after.
inspect.iscoroutinefunction(LLMChain.acall)
```
- **Description:** I removed two queries to the database and left just
one whose results were formatted afterward into other type of schema
(avoided two calls to DB)
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** @supe_katarina
- **Description:** Some code sources have been moved from `langchain` to
`langchain_community` and so the documentation is not yet up-to-date.
This is specifically true for `StreamlitCallbackHandler` which returns a
`warning` message if not loaded from `langchain_community`.,
- **Issue:** I don't see a # issue that could address this problem but
perhaps #10744,
- **Dependencies:** Since it's a documentation change no dependencies
are required
- **Description:** update documentation on jaguar vector store:
Instruction for setting up jaguar server and usage of text_tag.
- **Issue:**
- **Dependencies:**
- **Twitter handle:**
---------
Co-authored-by: JY <jyjy@jaguardb>
Implement similarity function selector for ElasticsearchStore. The
scores coming back from Elasticsearch are already similarities (not
distances) and they are already normalized (see
[docs](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)).
Hence we leave the scores untouched and just forward them.
This fixes#11539.
However, in hybrid mode (when keyword search and vector search are
involved) Elasticsearch currently returns no scores. This PR adds an
error message around this fact. We need to think a bit more to come up
with a solution for this case.
This PR also corrects a small error in the Elasticsearch integration
test.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Issue:** This is a PR about #16340
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: yuhei.tsunoda <yuhei.tsunoda@brainpad.co.jp>
- **Description:** Updating documentation of IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM with using
`invoke` instead of `__call__`
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
The following warning information show when i use `run` and `__call__`
method:
```
LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
We need to update documentation for using `invoke` method
The following warning information will be displayed when i use
`llm(PROMPT)`:
```python
/Users/169/llama.cpp/venv/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
So I changed to standard usage.
**Description:**
In this PR, I am adding a `PolygonLastQuote` Tool, which can be used to
get the latest price quote for a given ticker / stock.
Additionally, I've added a Polygon Toolkit, which we can use to
encapsulate future tools that we build for Polygon.
**Twitter handle:** [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Used to be None, now is just the last chunk
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
fixed multi-query template for Vectara
added self-query template for Vectara
Also added prompt_name parameter to summarization
CC @efriis
**Twitter handle:** @ofermend
Add a version parameter while the method is in beta phase.
The idea is to make it possible to minimize making breaking changes for users while we're iterating on schema.
Once the API is stable we can assign a default version requirement.
- **Description:** Adds a text splitter based on
[Konlpy](https://konlpy.org/en/latest/#start) which is a Python package
for natural language processing (NLP) of the Korean language. (It is
like Spacy or NLTK for Korean)
- **Dependencies:** Konlpy would have to be installed before this
splitter is used,
- **Twitter handle:** @untilhamza
- **Description:** Fixes a few issues in NVIDIAcanonical RAG template's
README, and adds a notebook for the template
- **Dependencies:** Adds the pypdf dependency which is needed for
ingestion, and updates the lock file
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Add privileged version for issue creation.
This adds a version of issue creation which is unstructured by design to
make it easier for maintainers to create issues.
Maintainers are expected to write / describe issues clearly.
- **Description:** Some text-generation models on huggingface repeat the
prompt in their generated response, but not all do! The tests use "gpt2"
which DOES repeat the prompt and as such, the HuggingFaceHub class is
hardcoded to remove the first few characters of the response (to match
the len(prompt)). However, if you are using a model (such as the very
popular "meta-llama/Llama-2-7b-chat-hf") that DOES NOT repeat the prompt
in it's generated text, then the beginning of the generated text will be
cut off. This code change fixes that bug by first checking whether the
prompt is repeated in the generated response and removing it
conditionally.
- **Issue:** #16232
- **Dependencies:** N/A
- **Twitter handle:** N/A
This PR adds `astream_events` method to Runnables to make it easier to
stream data from arbitrary chains.
* Streaming only works properly in async right now
* One should use `astream()` with if mixing in imperative code as might
be done with tool implementations
* Astream_log has been modified with minimal additive changes, so no
breaking changes are expected
* Underlying callback code / tracing code should be refactored at some
point to handle things more consistently (OK for now)
- ~~[ ] verify event for on_retry~~ does not work until we implement
streaming for retry
- ~~[ ] Any rrenaming? Should we rename "event" to "hook"?~~
- [ ] Any other feedback from community?
- [x] throw NotImplementedError for `RunnableEach` for now
## Example
See this [Example
Notebook](dbbc7fa0d6/docs/docs/modules/agents/how_to/streaming_events.ipynb)
for an example with streaming in the context of an Agent
## Event Hooks Reference
Here is a reference table that shows some events that might be emitted
by the various Runnable objects.
Definitions for some of the Runnable are included after the table.
| event | name | chunk | input | output |
|----------------------|------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------|
| on_chat_model_start | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | |
| on_chat_model_stream | [model name] | AIMessageChunk(content="hello")
| | |
| on_chat_model_end | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | {"generations": [...], "llm_output": None, ...} |
| on_llm_start | [model name] | | {'input': 'hello'} | |
| on_llm_stream | [model name] | 'Hello' | | |
| on_llm_end | [model name] | | 'Hello human!' |
| on_chain_start | format_docs | | | |
| on_chain_stream | format_docs | "hello world!, goodbye world!" | | |
| on_chain_end | format_docs | | [Document(...)] | "hello world!,
goodbye world!" |
| on_tool_start | some_tool | | {"x": 1, "y": "2"} | |
| on_tool_stream | some_tool | {"x": 1, "y": "2"} | | |
| on_tool_end | some_tool | | | {"x": 1, "y": "2"} |
| on_retriever_start | [retriever name] | | {"query": "hello"} | |
| on_retriever_chunk | [retriever name] | {documents: [...]} | | |
| on_retriever_end | [retriever name] | | {"query": "hello"} |
{documents: [...]} |
| on_prompt_start | [template_name] | | {"question": "hello"} | |
| on_prompt_end | [template_name] | | {"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
Here are declarations associated with the events shown above:
`format_docs`:
```python
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
```
`some_tool`:
```python
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
```
`prompt`:
```python
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
```
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** In Google Vertex AI, Gemini Chat models currently
doesn't have a support for SystemMessage. This PR adds support for it
only if a user provides additional convert_system_message_to_human flag
during model initialization (in this case, SystemMessage would be
prepended to the first HumanMessage). **NOTE:** The implementation is
similar to #14824
- **Twitter handle:** rajesh_thallam
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description**: Updated doc for llm/google_vertex_ai_palm with new
functions: `invoke`, `stream`... Changed structure of the document to
match the required one.
- **Issue**: #15664
- **Dependencies**: None
- **Twitter handle**: None
---------
Co-authored-by: Jorge Zaldívar <jzaldivar@google.com>
**Description:** Gemini model has quite annoying default safety_settings
settings. In addition, current VertexAI class doesn't provide a property
to override such settings.
So, this PR aims to
- add safety_settings property to VertexAI
- fix issue with incorrect LLM output parsing when LLM responds with
appropriate 'blocked' response
- fix issue with incorrect parsing LLM output when Gemini API blocks
prompt itself as inappropriate
- add safety_settings related tests
I'm not enough familiar with langchain code base and guidelines. So, any
comments and/or suggestions are very welcome.
**Issue:** it will likely fix#14841
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
* Removed some env vars not used in langchain package IT
* Added Astra DB env vars in langchain package, used for cache tests
* Added conftest.py to load env vars in langchain_community IT
* Added .env.example in langchain_community IT
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The timeout function comes in handy when you want to kill longrunning
queries.
The value sanitization removes all lists that are larger than 128
elements. The idea here is to remove embedding properties from results.
- **Description:** As Shell tool is very versatile, while integrating it
into applications as openai functions, developers have no clue about
what command is being executed using the ShellTool. All one can see is:

Summarising my feature request:
1. There's no visibility about what command was executed.
2. There's no mechanism to prevent a command to be executed using
ShellTool, like a y/n human input which can be accepted from user to
proceed with executing the command.,
- **Issue:** the issue #15931 it fixes if applicable,
- **Dependencies:** There isn't any dependancy,
- **Twitter handle:** @krishnashed
- **Description:** Made a small fix for the `SQLDatabase` highlighted in
an issue. The issue pertains to switching schema for different SQL
engines.
- **Issue:** #16023
@baskaryan
- **Description:** Support IN and LIKE comparators in Milvus
self-querying retriever, based on [Boolean Expression
Rules](https://milvus.io/docs/boolean.md)
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** No
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
**Description**: This PR fixes an error in the documentation for Azure
Cosmos DB Integration.
**Issue**: The correct way to import `AzureCosmosDBVectorSearch` is
```python
from langchain_community.vectorstores.azure_cosmos_db import (
AzureCosmosDBVectorSearch,
)
```
While the
[documentation](https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db)
states it to be
```python
from langchain_community.vectorstores.azure_cosmos_db_vector_search import (
AzureCosmosDBVectorSearch,
CosmosDBSimilarityType,
)
```
As you can see in
[azure_cosmos_db.py](c323742f4f/libs/langchain/langchain/vectorstores/azure_cosmos_db.py (L1C45-L2))
**Dependencies:**: None
**Twitter handle**: None
- **Description:** This handles the cohere response when documents
aren't included in the response
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
- bumps package post versions for packages without current unreleased
updates
- will bump package version in release prs associated with packages that
do have changes (mistral, vertex)
- **Description:** Adds MistralAIEmbeddings class for embeddings, using
the new official API.
- **Dependencies:** mistralai
- **Tag maintainer**: @efriis, @hwchase17
- **Twitter handle:** @LMS_David_RS
Create `integrations/text_embedding/mistralai.ipynb`: an example
notebook for MistralAIEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/mistralai.py`: The embedding class
Create `integration_tests/embeddings/test_mistralai.py`: The test file.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Implement `adelete` function from `VectorStore` in `Qdrant` to support
other asynchronous flows such as async indexing (`aindex`) which
requires `adelete` to be implemented. Since `Qdrant` can be passed an
async qdrant client, this can be supported easily.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR addresses an issue in OpenAIWhisperParserLocal where requesting
CUDA without availability leads to an AttributeError #15143
Changes:
- Refactored Logic for CUDA Availability: The initialization now
includes a check for CUDA availability. If CUDA is not available, the
code falls back to using the CPU. This ensures seamless operation
without manual intervention.
- Parameterizing Batch Size and Chunk Size: The batch_size and
chunk_size are now configurable parameters, offering greater flexibility
and optimization options based on the specific requirements of the use
case.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** This new feature enhances the flexibility of pipeline
integration, particularly when working with RESTful APIs.
``JsonRequestsWrapper`` allows for the decoding of JSON output, instead
of the only option for text output.
---------
Co-authored-by: Zhichao HAN <hanzhichao2000@hotmail.com>
- **Description:** Adds documentation for the
`FirestoreChatMessageHistory` integration and lists integration in
Google's documentation
- **Issue:** NA
- **Dependencies:** No
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixed the issue mentioned in #15698 for SlackGetChannel Tool.
@baskaryan.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** add deprecated warning for ErnieBotChat and
ErnieEmbeddings.
- These two classes **lack maintenance** and do not use the sdk provided
by qianfan, which means hard to implement some key feature like
streaming.
- The alternative `langchain_community.chat_models.QianfanChatEndpoint`
and `langchain_community.embeddings.QianfanEmbeddingsEndpoint` can
completely replace these two classes, only need to change configuration
items.
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**: `zip` is iterator that will only produce result once,
so the previous code will cause the `embeddings` to be an empty list.
**Issue**: I could not find a related issue.
**Dependencies**: this PR does not introduce or affect dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** docs update following the changes introduced in
#15879
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR:
1. Add `metadata[_job_ib]` in Document returned by any similarity search
2. Add `explore_job_stats` to enable users to explore job statistics and
better the debuggability
3. Set the minimum row limit for running create vector index.
## Description
In this update, I addressed the missing implementation for
atransform_document, which is the asynchronous counterpart of
transform_document in Doctran.
### Usage Example:
```py
# Instantiate DoctranPropertyExtractor with specified properties
property_extractor = DoctranPropertyExtractor(properties=properties)
# Asynchronously extract properties from a list of documents
extracted_document = await property_extractor.atransform_documents(
documents, properties=properties
)
# Display metadata of the first extracted document
print(json.dumps(extracted_document[0].metadata, indent=2))
```
## Issue
- Pull request #14525 has caused a break in the aforementioned code.
Instead of removing an asynchronous implementation of a function,
consider implementing a synchronous version alongside it.
- **Description:** Added parenthesis in return statement of
aembed_query() funtion to fix 'coroutine' object is not subscriptable
error.
- **Dependencies:** NA
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
## Feature
- Follow parameter structure as per official documentation
- top level parameters (e.g. model, system, template) will be passed as
top level parameters
- other parameters will be sent in options unless options is provided

## Tests
- Test if top level parameters handled properly
- Test if parameters that are not top level parameters are handled as
options
- Test if options is provided, it will be passed as is
**Description:** Added the new gpt-3.5-turbo-1106 for **finetuned** cost
calculation,
**Issue:** no issue found open
By the information in OpenAI the pricing is the same as the older model
(0613)
- vertex chat
- google
- some pip openai
- percent and openai
- all percent
- more
- pip
- fmt
- docs: google vertex partner docs
- fmt
- docs: more pip installs
- **Description:** Added a `PolygonAPIWrapper` and an initial
`get_last_quote` endpoint, which allows us to get the last price quote
for a given `ticker`. Once merged, I can add a Polygon tool in `tools/`
for agents to use.
- **Twitter handle:** [@virattt](https://twitter.com/virattt)
The Polygon.io Stocks API provides REST endpoints that let you query the
latest market data from all US stock exchanges.
Support [Lantern](https://github.com/lanterndata/lantern) as a new
VectorStore type.
- Added Lantern as VectorStore.
It will support 3 distance functions `l2 squared`, `cosine` and
`hamming` and will use `HNSW` index.
- Added tests
- Added example notebook
**Description**: the "page" mode in the
AzureAIDocumentIntelligenceParser is not accessible due to a wrong
membership test. The mode argument can only be a string (also see the
assertion in the `__init__`: `assert self.mode in ["single", "page",
"object", "markdown"]`, so the check `elif self.mode == ["page"]:`
always fails.
As a result, effectively the "object" mode is used when selecting the
"page" mode, which may lead to errors.
The docstring of the `AzureAIDocumentIntelligenceLoader` also ommitted
the `mode` parameter alltogether, so I added it.
**Issue**: I could not find a related issue (this class is only 3 weeks
old anyways)
**Dependencies**: this PR does not introduce or affect dependencies.
The current demo notebook and examples are not affected because they all
use the default markdown mode.
- **Description:** Azure Cognitive Search vector DB store performs slow
embedding as it does not utilize the batch embedding functionality. This
PR provide a fix to improve the performance of Azure Search class when
adding documents to the vector search,
- **Issue:** #11313 ,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Remove section on how to install Action Server and direct the users t o
the instructions on Robocorp repository.
**Reason:**
Robocorp Action Server has moved from a pip installation to a standalone
cli application and is due for changes. Because of that, leaving only
LangChain integration relevant part in the documentation.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Milvus's partition key is an important feature. It
can support multi-tenancy. We hope to introduce this feature.
https://milvus.io/docs/partition_key.md
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** No
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add support for end_point and transport parameters to the Gemini API
---------
Co-authored-by: yangenfeng <yangenfeng@xiaoniangao.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Added aembed_documents() and aembed_query() async functions in
HuggingFaceHubEmbeddings class in
langchain_community\embeddings\huggingface_hub.py file. It will support
to make async calls to HuggingFaceHub's
embedding endpoint and generate embeddings asynchronously.
Test Cases: Added test_huggingfacehub_embedding_async_documents() and
test_huggingfacehub_embedding_async_query()
functions in test_huggingface_hub.py file to test the two async
functions created in HuggingFaceHubEmbeddings class.
Documentation: Updated huggingfacehub.ipynb with steps to install
huggingface_hub package and use
HuggingFaceHubEmbeddings.
**Dependencies:** None,
**Twitter handle:** I do not have a Twitter account
---------
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
- **Description:** This PR defines the output parser of
OpenAIFunctionsAgent as an attribute, enabling customization and
subclassing of the parser logic.
- **Issue:** Subclassing is currently impossible as the
`OpenAIFunctionsAgentOutputParser` class is hard coded into the `plan`
and `aplan` methods
- **Dependencies:** None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Feature
- Set additional headers in constructor
- Headers will be sent in post request
This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.
## Tests
- Test if header is passed
- Test if header is not passed
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Major changes:
- Rename `wasm_chat.py` to `llama_edge.py`
- Rename the `WasmChatService` class to `ChatService`
- Implement the `stream` interface for `ChatService`
- Add `test_chat_wasm_service_streaming` in the integration test
- Update `llama_edge.ipynb`
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
- **Description:** `AmadeusToolkit` and `AmadeusClosestAirport`
contained a hardcoded call to `ChatOpenAI`. This PR makes it
LLM-independent, while guaranteeing backward compatibility.
- **Issue:** #15847
- **Dependencies:** None
@baskaryan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Fixes OutputParserException thrown by the output_parser when 'query' is
'Null'.
Replace this entire comment with:
- **Description:** Current implentation of output_parser throws
OutputParserException if the response from the LLM contains `query:
null`. This unfortunately happens for my use case. And since there is no
way to modify the prompt used in SelfQueryRetriever, then we have to fix
it here, so it doesn't crash.
- **Issue:** https://github.com/langchain-ai/langchain/issues/15914
Didn't run tests. `make test` is not working. There is no `test` rule in
the `Makefile`.
Co-authored-by: Jan Horcicka <jhorcick@amazon.com>
- **Description:** The pinecone docstring instructs to pass the
embedding query text causing the warning below. It should be the
embeddings object.
warning message: UserWarning: Passing in `embedding` as a Callable is
deprecated. Please pass in an Embeddings object instead.
- **Issue:** NA
- **Dependencies:** None
@baskaryan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Community : Modified doc strings and example notebook for Clarifai
Description:
1. Modified doc strings inside clarifai vectorstore class and
embeddings.
2. Modified notebook examples.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Adds a RAG template that uses NVIDIA AI playground
and embedding models, along with Milvus vector store
- **Dependencies:** This template depends on the AI playground service
in NVIDIA NGC. API keys with a significant trial compute are available
(10k queries at the time of writing). This template also depends on the
Milvus Vector store which is publicly available.
Note: [A quick link to get a
key](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/codellama-13b/api)
when you have an NGC account. Generate Key button at the top right of
the code window.
---------
Co-authored-by: Sagar B Manjunath <sbogadimanju@nvidia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR fixes an issue where AgentExecutor with RunnableAgent does not allow users to see individual llm tokens if streaming=True is not set explicitly on the underlying chat model.
The majority of this PR is testing code:
1. Create a test chat model that makes it easier to test streaming and
supports AIMessages that include function invocation information.
2. Tests for the chat model
3. Tests for RunnableAgent (previously untested)
4. Tests for openai agent (previously untested)
- **Description:**
`QianfanChatEndpoint` extends `BaseChatModel` as a super class, which
has a default stream implement might concat the MessageChunk with
`__add__`. When call stream(), a ValueError for duplicated key will be
raise.
- **Issues:**
* #13546
* #13548
* merge two single test file related to qianfan.
- **Dependencies:** no
- **Tag maintainer:**
---------
Co-authored-by: root <liujun45@baidu.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
experimental relies on `from langchain_core.runnables.config import
run_in_executor` which was introduced in core 0.1.5.
Updated pyproject dependency as well as minimum version test.
Now the SQL used to delete vector doc from myscale is as follow:
```sql
DELETE FROM collection WHERE id = '1' AND id = '2' AND id = '3'
```
But the expected one should be
```sql
DELETE FROM collection WHERE id IN ('1', '2', '3')
```
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
**Description:** Fixes the word "iteratively" in the use-cases
documentation
**Twitter handle:** @untilhamza
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change fixes the AstraDB logical operator filtering (`$and,`
`$or`).
The `metadata` prefix must not be added if the key is `$and` or `$or`.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
See preview :
https://langchain-git-fork-cbornet-astra-loader-doc-langchain.vercel.app/docs/integrations/document_loaders/astradb
This means that users of astream_log() now get streamed output of
virtually all requested runs, whereas before the only streamed output
would be for the root run and raw llm runs
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Add missing import of 'ConfigurableField' in 'Full
code comparison' example in LCEL
- **Issue:** Example code not running
- **Dependencies:** None
- **Twitter handle:** @heyyoshan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This update rectifies an error in the notebook by
changing the input variable from `zhipu_api_key` to `api_key`. It also
includes revisions to comments to improve program readability.
- **Issue:** The input variable in the notebook example should be
`api_key` instead of `zhipu_api_key`.
- **Dependencies:** No additional dependencies are required for this
change.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
- ArgillaCallbackHandler does not properly set the default values while
initializing. This PR corrects the line.
- Issue: #15531
- Dependencies: Argilla
- Also corrected some dead links.
fix of #14905
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Improving documentation
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding resource for Curie model
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** @mmarccode
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** The `delete_collection` method deletes an entire
collection regardless of custom ID. The `delete` method deletes
everything with the provided custom IDs regardless of collection. It can
be useful to restrict deletion to both the collection and a set of
custom IDs. This change adds support for that by allowing you to
optionally specify that `delete` should be restricted to the collection
defined on the `PGVector` instance.
- **Description:** Includes the PDF ID in the MathPix document metadata.
This is useful in case you need to re-request a processed PDF from the
MathPix API later.
- **Description:** The `error_info['id']` can be cross-referenced with
the MathPix API documentation to get very specific information about why
an error occurred.
- **Description:** This PR is to fix a bug of "system message check" in
langchain_community/ chat_models/tongyi.py
- **Issue:** In term of current logic, if there's no system message in
the chat messages, an error of "System message can only be the first
message." will be wrongly raised.
- **Dependencies:** No.
- **Twitter handle:** I don't have a Twitter account.
- **Description:** This PR is to fix a bug in
semantic_hybrid_search_with_score_and_rerank() function in
langchain_community/vectorstores/azuresearch.py. The hardcoded
"metadata" name is replaced with FIELDS_METADATA variable with an if
block to check if the metadata column exists or not.
- **Issue:** Fixed#15581
- **Dependencies:** No
- **Twitter handle:** None
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
Updates docs and cookbooks to import ChatOpenAI, OpenAI, and OpenAI
Embeddings from `langchain_openai`
There are likely more
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Todo
- [x] copy over integration tests
- [x] update docs with new instructions in #15513
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models
Contributor steps:
- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml
Maintainer steps (Contributors should not do these):
- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge
Functional changes to existing classes:
- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package
Codebase organization
- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
removed the deprecated model from text embedding page of openai notebook
and added the suggested model from openai page
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Removes unused `Params` in `libs/langchain/langchain/llms/mlflow.py`.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The example code for `llms.Mlflow` is outdated.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** `MarkdownHeaderTextSplitter` currently strips header
lines from chunked content. Many applications require these header lines
are preserved. This adds an optional parameter to preserve those headers
in the chunked content.
- **Issue:** #2836 (relevant)
- **Dependencies:** -
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @finnless
Unit tests and new examples in notebook included.
cc @rlancemartin
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds `WasmChat` integration. `WasmChat` runs GGUF models locally or via
chat service in lightweight and secure WebAssembly containers. In this
PR, `WasmChatService` is introduced as the first step of the
integration. `WasmChatService` is driven by
[llama-api-server](https://github.com/second-state/llama-utils) and
[WasmEdge Runtime](https://wasmedge.org/).
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
Follow up on https://github.com/langchain-ai/langchain/pull/13048.
This PR intends to simplify the Qdrant async implementation by replacing
the internal GRPC methods with the `QdrantAsyncClient` methods.
This is a backward compatible change with no additional steps required
after merge.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixes#14347
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Added the traceback of the previous error to keep the
initial error type,
- **Issue:** #14347 ,
- **Dependencies:** None,
- **Tag maintainer:**
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Julien Raffy <julien.raffy@emeria.eu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** the ability to add all extra parameter of vectorstore
and using them SemanticSimilarityExampleSelector.
- **Issue:** #14583
- **Dependencies:** no dependensies
- **Tag maintainer:**
- **Twitter handle:** @AmirMalekiz
---------
Co-authored-by: Amir Maleki <amaleki@fb.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Add support for setting the `score_threshold` for
similarity search in SupabaseVectoreStore.
This pull request addresses issue #14438
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** changed json.py to handle additional cases of partial
json string to be parsed, basically by dropping the last character in
the string until a valid json string is found or the string is empty.
Also added additional test cases.
- **Issue:** function parse_partial_json could not parse cases where the
key is present but the value is not.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Because Milvus' collection_name doesn't support UFT8 characters in other
languages, I want the `collection_descriotion`.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Fix for processing for serpapi response for Google Maps
API
**Issue:** Due to the fact corresponding
[api](https://serpapi.com/google-maps-api) returns 'local_results' as
list, and old version requested `res["local_results"].keys()` of the
list. As the result we got exception: ```AttributeError: 'list' object
has no attribute 'keys'```.
Way to reproduce wrong behaviour:
```
params = {
"engine": "google_maps",
"type": "search",
"google_domain": "google.de",
"ll": "@51.1917,10.525,14z",
"hl": "de",
"gl": "de",
}
search = SerpAPIWrapper(params=params)
results = search.run("cafe")
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Ran <rccalman@gmail.com>
Because Milvus doesn't support nullable fields, but document metadata is
very rich, so it makes more sense to store it as json.
https://github.com/milvus-io/pymilvus/issues/1705#issuecomment-1731112372
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR integrates LangChain vectorstore with BigQuery Vector Search.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Vlad Kolesnikov <vladkol@google.com>
- **Description:** replace score_threshold with args
- **Issue:** needs a way to pass more options to similarity search
- **Dependencies:** None
- **Twitter handle:** @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
- **Description:** Tool now supports querying over 200 million
scientific articles, vastly expanding its reach beyond the 2 million
articles accessible through Arxiv. This update significantly broadens
access to the entire scope of scientific literature.
- **Dependencies:** semantischolar
https://github.com/danielnsilva/semanticscholar
- **Twitter handle:** @shauryr
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
- easier to write custom logic/loops with automatic tracing
- if you don't want to streaming support write a regular function and
pass to RunnableLambda
- if you do want streaming write a generator and pass it to
RunnableGenerator
```py
import json
from typing import AsyncIterator
from langchain_core.messages import BaseMessage, FunctionMessage, HumanMessage
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import Runnable, RunnableGenerator, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.tools.render import format_tool_to_openai_function
def _get_tavily():
from langchain.tools.tavily_search import TavilySearchResults
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
tavily_search = TavilySearchAPIWrapper()
return TavilySearchResults(api_wrapper=tavily_search)
async def _agent_executor_generator(
input: AsyncIterator[list[BaseMessage]],
*,
max_iterations: int = 10,
tools: dict[str, BaseTool],
agent: Runnable[list[BaseMessage], BaseMessage],
parser: Runnable[BaseMessage, AgentAction | AgentFinish],
) -> AsyncIterator[BaseMessage]:
messages = [m async for mm in input for m in mm]
for _ in range(max_iterations):
next_message = await agent.ainvoke(messages)
yield next_message
messages.append(next_message)
parsed = await parser.ainvoke(next_message)
if isinstance(parsed, AgentAction):
result = await tools[parsed.tool].ainvoke(parsed.tool_input)
next_message = FunctionMessage(name=parsed.tool, content=json.dumps(result))
yield next_message
messages.append(next_message)
elif isinstance(parsed, AgentFinish):
return
def get_agent_executor(tools: list[BaseTool], system_message: str):
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0, streaming=True)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_message),
MessagesPlaceholder(variable_name="messages"),
]
)
llm_with_tools = llm.bind(
functions=[format_tool_to_openai_function(t) for t in tools]
)
agent = {"messages": RunnablePassthrough()} | prompt | llm_with_tools
parser = OpenAIFunctionsAgentOutputParser()
executor = RunnableGenerator(_agent_executor_generator)
return executor.bind(
tools={tool.name for tool in tools}, agent=agent, parser=parser
)
agent = get_agent_executor([_get_tavily()], "You are a very nice agent!")
async def main():
async for message in agent.astream(
[HumanMessage(content="whats the weather in sf tomorrow?")]
):
print(message)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
```
results in this trace
https://smith.langchain.com/public/fa17f05d-9724-4d08-8fa1-750f8fcd051b/r
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** SingleFileFacebookMessengerChatLoader did not handle
the case for when messages had stickers and/or photos so fixed that.
- **Issue:** #15356
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** updates/enhancements to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider
(prompt tuned models and prompt templates deployments support)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** : @hwchase17 , @eyurtsev , @baskaryan
- **Twitter handle:** details in comment below.
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The fix#14221 has broken default gitlab url which is forcing the users
to specify GITLAB_URL for default one. With this fix if GITLAB_URL is
not set, the default gitlab url will be taken.
- **Description:** Add the GITHUB URL instead of None
- **Issue:** the issue #14221 has broken the default github URL
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
- **Twitter handle:** manjunath_shiva
- **Description:** This PR adds `api_base` to `_client_params` in the
`chat_model` of LiteLLM to ensure it's included in API calls.
Previously, `api_base` was set on the client but was not included in the
parameters passed to the completion function. This change ensures that
`api_base` is correctly passed to all API calls.
- **Issue:** #14338
- **Tag maintainer:** @hwchase17 @agola11
- **Twitter handle:** @LMS_David_RS
Sometimes, the tool_schema is like:
` {'action_name': 'search_items', 'action': {'term': 'pizza'}}`
sometimes, specially with gpt3.5 it comes like:
`{'action_name': 'search_items', 'term': 'pizza'}`
and it fails.
This PR is a way to make it work in both scenarios.
issues releated: #6624
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Lucca Zenobio <lucca.zenobio@ifood.com.br>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change addresses the issue where DashScopeEmbeddingAPI limits
requests to 25 lines of data, and DashScopeEmbeddings did not handle
cases with more than 25 lines, leading to errors. I have implemented a
fix to manage data exceeding this limit efficiently.
---------
Co-authored-by: xuxiang <xuxiang@aliyun.com>
Adding to my previously, already merged PR I made some further
improvements:
* Added documentation to the existing Pydantic Parser notebook, with an
example using LCEL and `with_retry()` on `OutputParserException`.
* Added an additional output example to the prompt
* More lenient parser in terms of LLM output format
* Amended unit test
FYI @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Update _retrieve_ref inside json_schema.py to include
an isdigit() check
- **Issue:** This library is used inside dereference_refs inside
langchain_community.agent_toolkits.openapi.spec. When I read in a yaml
file which has references for "400", "401" etc; the line "out =
out[component]" causes a KeyError. The isdigit() check ensures that if
it is an integer like "400" or "401"; it converts it into integer before
using it as a key to prevent the error.
- **Dependencies:** No dependencies
- **Tag maintainer:** @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Description: _python-lint_
This agent writes Python code that is formatted and linted using
`black`, `ruff`, and `mypy`, but does not execute the code. It writes
the code to a temporary file and then runs the linters. Once these
checks pass, the code is returned.
# Dependencies
- black
- ruff
- mypy
# Demo
The functionality can be seen here:
https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo
Added some Headers in steam tool notebook to match consistency with the
other toolkit notebooks
- Dependencies: no new dependencies
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
`integrations/document_loaders/` `Excel` and `OneNote` pages in the
navbar were in the wrong sort order. It is because the file names are
not equal to the page titles.
- renamed `excel` and `onenote` file names
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The regex used to match "Action" and "Action Input" in the output parser
has been updated. Previously, the regex did not correctly handle
multi-line inputs for "Action Input". The updated code uses the
're.DOTALL' flag to ensure multi-line inputs are correctly captured.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:**
- This PR introduces a significant enhancement to the LangChain project
by integrating a new chat model powered by the third-generation base
large model, ChatGLM3, via the zhipuai API.
- This advanced model supports functionalities like function calls, code
interpretation, and intelligent Agent capabilities.
- The additions include the chat model itself, comprehensive
documentation in the form of Python notebook docs, and thorough testing
with both unit and integrated tests.
- **Dependencies:** This update relies on the ZhipuAI package as a key
dependency.
- **Twitter handle:** If this PR receives spotlight attention, we would
be honored to receive a mention for our integration of the advanced
ChatGLM3 model via the ZhipuAI API. Kindly tag us at @kaiwu.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
TO DO: Continue refining and enhancing both the unit tests and
integrated tests.
---------
Co-authored-by: jing <jingguo92@gmail.com>
Co-authored-by: hyy1987 <779003812@qq.com>
Co-authored-by: jianchuanqi <qijianchuan@hotmail.com>
Co-authored-by: lirq <whuclarence@gmail.com>
Co-authored-by: whucalrence <81530213+whucalrence@users.noreply.github.com>
Co-authored-by: Jing Guo <48378126+JaneCrystall@users.noreply.github.com>
Description: Volcano Ark is an enterprise-grade large-model service
platform for developers, providing a full range of functions and
services such as model training, inference, evaluation, fine-tuning. You
can visit its homepage at https://www.volcengine.com/docs/82379/1099455
for details. This change could help developers use the platform for
embedding.
Issue: None
Dependencies: volcengine
Tag maintainer: @baskaryan
Twitter handle: @hinnnnnnnnnnnns
---------
Co-authored-by: lujingxuansc <lujingxuansc@bytedance.com>
Updated prompt input suggestions
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** updated the outdated code in the document that was
generating the error,
- **Issue:** #15086 ,
- **Dependencies:** N/A,
- **Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
**Description:** the MWDumpLoader implementation currently does not
support the lazy_load method, and the files are usually very large. We
are proposing refactoring the load function, extracting two private
functions with the functionality of loading the dump file and parsing a
single page, to reuse the code in the lazy_load implementation.
**Description:**
This PR adds the `**kwargs` parameter to six calls in the `chroma.py`
package. All functions already were able to receive `kwargs` but they
were discarded before.
**Issue:**
When passing `kwargs` to functions in the `chroma.py` package they are
being ignored.
For example:
```
chroma_instance.similarity_search_with_score(
query,
k=100,
include=["metadatas", "documents", "distances", "embeddings"], # this parameter gets ignored
)
```
The `include` parameter does not get passed on to the next function and
does not have any effect.
**Dependencies:**
None
The quickstart doc is missing a few but very simple things that without
them, the code does not work. This PR fixes that by
- Adding commands to install `tiktoken` and `langchainhub`
- Adds a comma between 2 parameters for one of the methods
- **Description:** Fix a few spelling and grammar issues
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** @donovancmuller
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This PR corrects a documentation error in the
`ollama` usage tutorial. Specifically, it fixes a missing `])` in the
`CallbackManager()` example, ensuring that the code snippet is
syntactically correct and can be successfully executed.
- **Issue:** N/A
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** My twitter is @yhzhu99
Updated comment for better understanding
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
- support custom kwargs in object initialization. For instantance, QPS
differs from multiple object(chat/completion/embedding with diverse
models), for which global env is not a good choice for configuration.
- **Issue:** no
- **Dependencies:** no
- **Twitter handle:** no
@baskaryan PTAL
These can happen for edge cases not covered by `default` handler (eg.
"strange" keys in dicts)
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Any direct usage of ThreadPoolExecutor or asyncio.run_in_executor
needs manual handling of context vars
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fix parse issue for AIMessageChunk when using
- **Issue:** https://github.com/langchain-ai/langchain/issues/14511
- **Dependencies:** none
- **Twitter handle:** none
Taken from this fix:
https://github.com/gpt-engineer-org/gpt-engineer/issues/804#issuecomment-1769853850
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
removed bad comments
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fixes and upgrades for the Tongyi LLM and ChatTongyi
Model
- Fixed typos; it should be `Tongyi`, not `OpenAI`.
- Fixed a bug in `stream_generate_with_retry`; it's a real stream
generator now.
- Fixed a bug in `validate_environment`; the `dashscope_api_key` should
be properly handled when set by environment variables or initialization
parameters.
- Changed the `dashscope` response to incremental output by setting the
parameter `incremental_output`, which eliminates the need for the
prefix-removal trick.
- Removed some unused parameters, like `n`, `prefix_messages`.
- Added `_stream` method.
- Added async methods support, such as `_astream`, `_agenerate`,
`_abatch`.
- **Dependencies:** No new dependencies.
- **Tag maintainer:** @hwchase17
> PS: Some may be confused about the terms `dashscope`, `tongyi`, and
`Qwen`:
> - `dashscope`: A platform to deploy LLMs and provide APIs to invoke
the LLM.
> - `tongyi`: A brand name or overall term about Alibaba Cloud's LLM/AI.
> - `Qwen`: An LLM that is open-sourced and deployed in `dashscope`.
>
> We use the `dashscope` SDK to interact with the `tongyi`-`Qwen` LLM.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Correcting a small typo ('the' instead of 'then') and changing another
'the' (instead of 'then' too, it was a hard day for the 'n' key :D) to
'also' to match better with what is done in the code
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** in the code_understanding.ipynb example, the loader
errors out on the
langchain/libs/community/tests/examples/non-utf8-encoding.py file, so I
updated the loader to exclude that file. Excluding that file allows the
example to run.
- **Issue:** not applicable
- **Dependencies:** none
- do not match text after - in the middle of a sentence
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…parse
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
```shell
Python 3.11.6 (main, Nov 2 2023, 04:39:43) [Clang 14.0.3 (clang-1403.0.22.14.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> s = {'name': 'gc', 'arguments': '{"prompt":"hi\nbob."}'}
>>> import json
>>> json.loads(s['arguments'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/__init__.py", line 346, in loads
return _default_decoder.decode(s)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py", line 337, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py", line 353, in raw_decode
obj, end = self.scan_once(s, idx)
^^^^^^^^^^^^^^^^^^^^^^
json.decoder.JSONDecodeError: Invalid control character at: line 1 column 14 (char 13)
>>> json.loads(s['arguments'].replace('\n', '\\n'))
{'prompt': 'hi\nbob.'}
>>>
```
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
While using `chain.batch`, the default implementation uses a
`ThreadPoolExecutor` and run the chains in separate threads. An issue
with this approach is that that [the token counting
callback](https://python.langchain.com/docs/modules/callbacks/token_counting)
fails to work as a consequence of the context not being propagated
between threads. This PR adds context propagation to the new threads and
adds some thread synchronization in the OpenAI callback. With this
change, the token counting callback works as intended.
Having the context propagation change would be highly beneficial for
those implementing custom callbacks for similar functionalities as well.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
- Enables strict=False by default
- Uses partial json recovery logic by default
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
description:Submit a proposal/request for a new LangChain feature
labels:["02 Feature Request"]
labels:[idea]
body:
- type:checkboxes
id:checks
attributes:
label:Checked
description:Please confirm and check all the following options.
options:
- label:I searched existing ideas and did not find a similar one
required:true
- label:I added a very descriptive title
required:true
- label:I've clearly described the feature request and motivation for it
required:true
- type:textarea
id:feature-request
validations:
@@ -10,7 +20,6 @@ body:
label:Feature request
description:|
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type:textarea
id:motivation
validations:
@@ -19,12 +28,11 @@ body:
label:Motivation
description:|
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type:textarea
id:contribution
id:proposal
validations:
required:true
required:false
attributes:
label:Your contribution
label:Proposal (If applicable)
description:|
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the [Contributing Guide](https://python.langchain.com/docs/contributing/)
If you would like to propose a solution, please describe it here.
description:Please confirm and check all the following options.
options:
- label:I added a very descriptive title to this question.
required:true
- label:I searched the LangChain documentation with the integrated search.
required:true
- label:I used the GitHub search to find a similar question and didn't find it.
required:true
- type:checkboxes
id:help
attributes:
label:Commit to Help
description:|
After submitting this, I commit to one of:
* Read open questions until I find 2 where I can help someone and add a comment to help there.
* I already hit the "watch" button in this repository to receive notifications and I commit to help at least 2 people that ask questions in the future.
* Once my question is answered, I will mark the answer as "accepted".
options:
- label:I commit to help with one of those options 👆
required:true
- type:textarea
id:example
attributes:
label:Example Code
description:|
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder:|
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
render:python
validations:
required:true
- type:textarea
id:description
attributes:
label:Description
description:|
What is the problem, question, or error?
Write a short description explaining what you are doing, what you expect to happen, and what is currently happening.
placeholder:|
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required:true
- type:textarea
id:system-info
attributes:
label:System Info
description:|
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder:|
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
description:Submit a bug report to help us improve LangChain. To report a security issue, please instead use the security option below.
description:Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the GitHub Discussions.
labels:["02 Bug Report"]
body:
- type:markdown
attributes:
value:>
Thank you for taking the time to file a bug report. Before creating a new
issue, please make sure to take a few moments to check the issue tracker
for existing issues about the bug.
- type:textarea
id:system-info
attributes:
label:System Info
description:Please share your system info with us.
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
The core maintainers strive to read all issues, but tagging them will help them prioritize.
Please tag fewer than 3 people.
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoader Abstractions
- @eyurtsev
LLM/Chat Wrappers
- @hwchase17
- @agola11
Tools / Toolkits
- ...
placeholder:"@Username ..."
Thank you for taking the time to file a bug report.
Use this to report bugs in LangChain.
If you're not certain that your issue is due to a bug in LangChain, please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions)
to ask for help with your issue.
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
- label:I added a very descriptive title to this issue.
required:true
- label:I searched the LangChain documentation with the integrated search.
required:true
- label:I used the GitHub search to find a similar question and didn't find it.
required:true
- label:I am sure that this is a bug in LangChain rather than my code.
required:true
- type:textarea
id:reproduction
validations:
required:true
attributes:
label:Reproduction
label:Example Code
description:|
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder:|
Steps to reproduce the behavior:
1.
2.
3.
The following code:
```python
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
```
- type:textarea
id:expected-behavior
id:error
validations:
required:false
attributes:
label:Error Message and Stack Trace (if applicable)
description:|
If you are reporting an error, please include the full error message and stack trace.
placeholder:|
Exception + full stack trace
- type:textarea
id:description
attributes:
label:Description
description:|
What is the problem, question, or error?
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
placeholder:|
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required:true
- type:textarea
id:system-info
attributes:
label:Expected behavior
description:"A clear and concise description of what you would expect to happen."
label:System Info
description:|
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder:|
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
description:You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
body:
- type:markdown
attributes:
value:|
Thanks for your interest in LangChain! 🚀
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged merged pull requests.
- type:checkboxes
id:privileged
attributes:
label:Privileged issue
description:Confirm that you are allowed to create an issue here.
options:
- label:I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.

"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
"If you want to use the provided folder, then simply opt for a [pdf loader](https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf) for the document:\n",
"Add raw docs and doc summaries to [Multi Vector Retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary): \n",
"\n",
"* Store the raw texts, tables, and images in the `docstore`.\n",
"* Store the texts, table summaries, and image summaries in the `vectorstore` for semantic retrieval."
"* Store the texts, table summaries, and image summaries in the `vectorstore` for efficient semantic retrieval."
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
"2. Question-Answering:\n",
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
"This notebook builds off of [this notebook](/docs/modules/agents/how_to/custom_llm_agent) and assumes familiarity with how agents work.\n",
"\n",
"The novel idea introduced in this notebook is the idea of using retrieval to select the set of tools to use to answer an agent query. This is useful when you have many many tools to select from. You cannot put the description of all the tools in the prompt (because of context length issues) so instead you dynamically select the N tools you do want to consider using at run time.\n",
"\n",
"In this notebook we will create a somewhat contrived example. We will have one legitimate tool (search) and then 99 fake tools which are just nonsense. We will then add a step in the prompt template that takes the user input and retrieves tool relevant to the query."
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
"template = \"\"\"You are a Postgres expert. Given an input question, first create a syntactically correct Postgres query to run, then look at the results of the query and return the answer to the input question.\n",
"Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per Postgres. You can order the results to return the most informative data in the database.\n",
/workspace/langchain/.venv/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.