While going through the chatbot tutorial, I noticed a couple of typos
and grammatical issues. Also, the pip install command for
langchain_community was commented out, but the document mentions
installing it.
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
docs:tutorials:llm_chain:fix typo
- [ ] **PR message**:
fix typo in llm chain tutorial
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
Hello,
fix: https://github.com/langchain-ai/langchain/issues/26183
Adding documentation regarding SQL like filter for Google BigQuery
Vector Search coming in next langchain-google-community 1.0.9 release.
Note: langchain-google-community==1.0.9 is not yet released
Question: There is no way to warn the user int the doc about the
availability of a feature after a specific package version ?
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Fix docstring for two functions that look like have
docstrings carried over from other functions.
- **Issue:** Not found issue reporting the miss-leading docstrings.
- **Dependencies:** None
- **Twitter handle:**
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Changed
> "At a high-level, the steps of constructing a knowledge are from text
are:"
to
> "At a high-level, the steps of constructing a knowledge graph from
text are:"
Co-authored-by: Erick Friis <erick@langchain.dev>
The object extends from
langchain_community.chat_models.openai.ChatOpenAI which doesn't have
`bind_tools` defined. I tried extending from
`langchain_openai.ChatOpenAI` in
https://github.com/langchain-ai/langchain/pull/25975 but that PR got
closed because this is not correct.
So adding our own `bind_tools` (which for now copying from ChatOpenAI is
good enough) will solve the tool calling issue we are having now.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR fixes a minor typo in the ScrapflyLoader documentation. The word
"passigng" was changed to "passing."
Before: passigng
After: passing
This change improves the clarity and professionalism of the
documentation.
Co-authored-by: Ashar <asharmalik.ds193@gmail.com>
- **Description:** This is a **one line change**. the
`self.async_client.with_raw_response.create(**payload)` call is not
properly awaited within the `_astream` method. In `_agenerate` this is
done already, but likely forgotten in the other method.
- **Issue:** Not applicable
- **Dependencies:** No dependencies required.
(If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.)
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Open source models like Llama3.1 have function calling, but it's not
that great. Therefore, we introduce the option to ignore model's
function calling and just use the prompt-based approach
Thank you for contributing to LangChain!
- [X ] **PR title**
- [X ] **PR message**:
**Description:** adds a handler for when delta choice is None
**Issue:** Fixes#25951
**Dependencies:** Not applicable
- [ X] **Add tests and docs**: Not applicable
- [X ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Change the default Neo4j username/password (when not supplied as
environment variable or in code) from `None` to `""`.
Neo4j has an option to [disable
auth](https://neo4j.com/docs/operations-manual/current/configuration/configuration-settings/#config_dbms.security.auth_enabled)
which is helpful when developing. When auth is disabled, the username /
password through the `neo4j` module should be `""` (ie an empty string).
Empty strings get marked as false in
`langchain_core.utils.env.get_from_dict_or_env` -- changing this code /
behaviour would have a wide impact and is undesirable.
In order to both _allow_ access to Neo4j with auth disabled and _not_
impact `langchain_core` this patch is presented. The downside would be
that if a user forgets to set NEO4J_USERNAME or NEO4J_PASSWORD they
would see an invalid credentials error rather than missing credentials
error. This could be mitigated but would result in a less elegant patch!
**Issue:**
Fix issue where langchain cannot communicate with Neo4j if Neo4j auth is
disabled.
Thank you for contributing to LangChain!
**Description:**
Similar to other packages (`langchain_openai`, `langchain_anthropic`) it
would be beneficial if that `ChatMistralAI` model could fetch the API
base URL from the environment.
This PR allows this via the following order:
- provided value
- then whatever `MISTRAL_API_URL` is set to
- then whatever `MISTRAL_BASE_URL` is set to
- if `None`, then default is ` "https://api.mistral.com/v1"`
- [x] **Add tests and docs**:
Added unit tests, docs I feel are unnecessary, as this is just aligning
with other packages that do the same?
- [x] **Lint and test**:
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Updating the gateway pages in the documentation to name the
`langchain-databricks` integration.
---------
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **PR title**: "community: add Jina Search tool"
- **Description:** Added the Jina Search tool for querying the Jina
search API. This includes the implementation of the JinaSearchAPIWrapper
and the JinaSearch tool, along with a Jupyter notebook example
demonstrating its usage.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** [Twitter
handle](https://x.com/yashp3020?t=7wM0gQ7XjGciFoh9xaBtqA&s=09)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Previously, regardless of whether or not strip_whitespace was set to
true or false, the strip text method in the SpacyTextSplitter class used
`sent.text` to get the sentence. I modified this to include a ternary
such that if strip_whitespace is false, it uses `sent.text_with_ws`
I also modified the project.toml to include the spacy pipeline package
and to lock the numpy version, as higher versions break spacy.
- **Issue:** N/a
- **Dependencies:** None
Returns an array of results which is more specific and easier for later
use.
Tested locally:
```
resp = tool.invoke("what's the weather like in Shanghai?")
for item in resp:
print(item)
```
returns
```
{'snippet': '<b>Shanghai</b>, <b>Shanghai</b>, China <b>Weather</b> Forecast, with current conditions, wind, air quality, and what to expect for the next 3 days.', 'title': 'Shanghai, Shanghai, China Weather Forecast | AccuWeather', 'link': 'https://www.accuweather.com/en/cn/shanghai/106577/weather-forecast/106577'}
{'snippet': '5. 99 / 87 °F. 6. 99 / 86 °F. 7. Detailed forecast for 14 days. Need some help? Current <b>weather</b> <b>in Shanghai</b> and forecast for today, tomorrow, and next 14 days.', 'title': 'Weather for Shanghai, Shanghai Municipality, China - timeanddate.com', 'link': 'https://www.timeanddate.com/weather/china/shanghai'}
{'snippet': '<b>Shanghai</b> - <b>Weather</b> warnings issued 14-day forecast. <b>Weather</b> warnings issued. Forecast - <b>Shanghai</b>. Day by day forecast. Last updated Friday at 01:05. Tonight, ... Temperature feels <b>like</b> 34 ...', 'title': 'Shanghai - BBC Weather', 'link': 'https://www.bbc.com/weather/1796236'}
{'snippet': 'Current <b>weather</b> <b>in Shanghai</b>, <b>Shanghai</b>, China. Check current conditions <b>in Shanghai</b>, <b>Shanghai</b>, China with radar, hourly, and more.', 'title': 'Shanghai, Shanghai, China Current Weather | AccuWeather', 'link': 'https://www.accuweather.com/en/cn/shanghai/106577/current-weather/106577'}
13-Day Beijing, Xi'an, Chengdu, <b>Shanghai</b> Chinese Language and Culture Immersion Tour. <b>Shanghai</b> in September. Average daily temperature range: 23–29°C (73–84°F) Average rainy days: 10. Average sunny days: 20. September ushers in pleasant autumn <b>weather</b>, making it one of the best months to visit <b>Shanghai</b>. <b>Weather</b> in <b>Shanghai</b>: Climate, Seasons, and Average Monthly Temperature. <b>Shanghai</b> has a subtropical maritime monsoon climate, meaning high humidity and lots of rain. Hot muggy summers, cool falls, cold winters with little snow, and warm springs are the norm. Midsummer through early fall is the best time to visit <b>Shanghai</b>. <b>Shanghai</b>, <b>Shanghai</b>, China <b>Weather</b> Forecast, with current conditions, wind, air quality, and what to expect for the next 3 days. 1165. 45.9. 121. Winter, from December to February, is quite cold: the average January temperature is 5 °C (41 °F). There may be cold periods, with highs around 5 °C (41 °F) or below, and occasionally, even snow can fall. The temperature dropped to -10 °C (14 °F) in January 1977 and to -7 °C (19.5 °F) in January 2016. 5. 99 / 87 °F. 6. 99 / 86 °F. 7. Detailed forecast for 14 days. Need some help? Current <b>weather</b> in <b>Shanghai</b> and forecast for today, tomorrow, and next 14 days. Everything you need to know about today's <b>weather</b> in <b>Shanghai</b>, <b>Shanghai</b>, China. High/Low, Precipitation Chances, Sunrise/Sunset, and today's Temperature History. <b>Shanghai</b> - <b>Weather</b> warnings issued 14-day forecast. <b>Weather</b> warnings issued. Forecast - <b>Shanghai</b>. Day by day forecast. Last updated Friday at 01:05. Tonight, ... Temperature feels <b>like</b> 34 ... <b>Shanghai</b> 14 Day Extended Forecast. <b>Weather</b> Today <b>Weather</b> Hourly 14 Day Forecast Yesterday/Past <b>Weather</b> Climate (Averages) Currently: 84 °F. Passing clouds. (<b>Weather</b> station: <b>Shanghai</b> Hongqiao Airport, China). See more current <b>weather</b>. Current <b>weather</b> in <b>Shanghai</b>, <b>Shanghai</b>, China. Check current conditions in <b>Shanghai</b>, <b>Shanghai</b>, China with radar, hourly, and more. <b>Shanghai</b> <b>Weather</b> Forecasts. <b>Weather Underground</b> provides local & long-range <b>weather</b> forecasts, weatherreports, maps & tropical <b>weather</b> conditions for the <b>Shanghai</b> area.
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**:
docs: fix typo in summarization_tutorial
- [ ] **PR message**:
docs: fix couple of typos in summarization_tutorial
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
Adding a new option to the CSVLoader that allows us to implicitly
specify the columns that are used for generating the Document content.
Currently these are implicitly set as "all fields not part of the
metadata_columns".
In some cases however it is useful to have a field both as a metadata
and as part of the document content.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** The function `_is_assistants_builtin_tool` didn't had
support for `file_search` from OpenAI. This was creating conflict and
blocking the usage of such. OpenAI Assistant changed from`retrieval` to
`file_search`.
The following code
```
agent = OpenAIAssistantV2Runnable.create_assistant(
name="Data Analysis Assistant",
instructions=prompt[0].content,
tools={'type': 'file_search'},
model=self.chat_config.connection.deployment_name,
client=llm,
as_agent=True,
tool_resources={
"file_search": {
"vector_store_ids": vector_store_id
}
}
)
```
Was throwing the following error
```
Traceback (most recent call last):
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 500, in get_response
return await super().get_response(post, context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 96, in get_response
response = await self.inner_chat.get_response(post, context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 96, in get_response
response = await self.inner_chat.get_response(post, context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/chat_decorators.py",
line 96, in get_response
response = await self.inner_chat.get_response(post, context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[Previous line repeated 4 more times]
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/chat/azure_open_ai_chat.py",
line 147, in get_response
chain = chain_factory.get_chain(prompts, post.conversation.id,
overrides, context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/Documents/codes/shellai-nlp-backend/app/llm_connections/chains.py",
line 1324, in get_chain
agent = OpenAIAssistantV2Runnable.create_assistant(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_community/agents/openai_assistant/base.py",
line 256, in create_assistant
tools=[_get_assistants_tool(tool) for tool in tools], # type: ignore
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_community/agents/openai_assistant/base.py",
line 256, in <listcomp>
tools=[_get_assistants_tool(tool) for tool in tools], # type: ignore
^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_community/agents/openai_assistant/base.py",
line 119, in _get_assistants_tool
return convert_to_openai_tool(tool)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_core/utils/function_calling.py",
line 255, in convert_to_openai_tool
function = convert_to_openai_function(tool)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File
"/Users/l.guedesdossantos/anaconda3/envs/shell-e/lib/python3.11/site-packages/langchain_core/utils/function_calling.py",
line 230, in convert_to_openai_function
raise ValueError(
ValueError: Unsupported function
{'type': 'file_search'}
Functions must be passed in as Dict, pydantic.BaseModel, or Callable. If
they're a dict they must either be in OpenAI function format or valid
JSON schema with top-level 'title' and 'description' keys.
```
With the proposed changes, this is fixed and the function will have support for `file_search`.
This was the only place missing the support for `file_search`.
Reference doc
https://platform.openai.com/docs/assistants/tools/file-search
- **Twitter handle:** luizf0992
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description:
- Add system templates and user templates in integration testing
- initialize the response id field value to request_id
- Adjust the default model to hunyuan-pro
- Remove the default values of Temperature and TopP
- Add SystemMessage
all the integration tests have passed.
1、Execute integration tests for the first time
<img width="1359" alt="71ca77a2-e9be-4af6-acdc-4d665002bd9b"
src="https://github.com/user-attachments/assets/9298dc3a-aa26-4bfa-968b-c011a4e699c9">
2、Run the integration test a second time
<img width="1501" alt="image"
src="https://github.com/user-attachments/assets/61335416-4a67-4840-bb89-090ba668e237">
Issue: None
Dependencies: None
Twitter handle: None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** [IPEX-LLM](https://github.com/intel-analytics/ipex-llm)
is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local
PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low
latency. This PR adds Intel GPU support to `ipex-llm` llm integration.
**Dependencies:** `ipex-llm`
**Contribution maintainer**: @ivy-lv11 @Oscilloscope98
**tests and docs**:
- Add: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/docs/docs/integrations/llms/ipex_llm_gpu.ipynb
- Update: langchain/libs/community/tests/llms/test_ipex_llm.py
---------
Co-authored-by: ivy-lv11 <zhicunlv@gmail.com>
Thank you for contributing to LangChain!
**Description:**
The current documentation of using the Huggingface with Langchain needs
to set return_full_text as False otherwise pipeline by default returns
both the prompt and response as output.
Code to reproduce:
```python
from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline
from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
llm = HuggingFacePipeline.from_model_id(
model_id="microsoft/Phi-3.5-mini-instruct",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
# return_full_text=False
),
device=0
)
chat_model = ChatHuggingFace(llm=llm)
messages = [
SystemMessage(content="You're a helpful assistant"),
HumanMessage(
content="What happens when an unstoppable force meets an immovable object?"
),
]
ai_msg = chat_model.invoke(messages)
print(ai_msg.content)
```
Output:
```
<|system|>
You're a helpful assistant<|end|>
<|user|>
What happens when an unstoppable force meets an immovable object?<|end|>
<|assistant|>
The scenario of an "unstoppable force" meeting an "immovable object" is a classic paradox that has puzzled philosophers, scientists, and thinkers for centuries. In physics, however, there are no such things as truly unstoppable forces or immovable objects because all physical entities have mass and interact with other masses through fundamental forces (like gravity).
When we consider the laws of motion, particularly Newton's third law which states that for every action, there is an equal and opposite reaction, it becomes clear that if one were to exist, the other would necessarily be negated by the interaction. For example, if you push against a solid wall with great force, the wall exerts an equal and opposite force back on you, preventing your movement.
In theoretical discussions, this paradox often serves as a thought experiment to explore concepts like determinism versus free will, the limits of physical laws, and the nature of reality itself. However, in practical terms, any force applied to an object will result in some form of deformation, transfer of energy, or movement, depending on the properties of both the force and the object.
So while the idea of an unstoppable force and an immovable object remains a fascinating philosophical conundrum, it does not hold up under the scrutiny of physical laws as we understand them.
```
---------
Co-authored-by: Kirushikesh D B kirushi@ibm.com <kirushi@cccxl012.pok.ibm.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: “syd” <“zheng.yuxi@outlook.com>
- **Description:**
Improve llamacpp embedding class by adding the `device` parameter so it
can be passed to the model and used with `gpu`, `cpu` or Apple metal
(`mps`).
Improve performance by making use of the bulk client api to compute
embeddings in batches.
- **Dependencies:** none
- **Tag maintainer:**
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
Starting from Neo4j 5.23 (22 August 2024), with vector-2.0 indexes,
`vector.dimensions` is not required to be set, which will cause it the
key not exist error in index config if it's not set.
Since the existence of vector.dimensions will only ensure additional
checks, this commit turns embedding dimension check optional, and only
do checks when it exists (not None).
https://neo4j.com/release-notes/database/neo4j-5/
**Twitter handle:** @HollowM186
Signed-off-by: Hollow Man <hollowman@opensuse.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- **AI Agent Built With LangChain and FireWorksAI**: "community
notebook"
- **Description:** Added a new AI agent in the cookbook folder that
integrates prompt compression using LLMLingua and arXiv retrieval tools.
The agent is designed to optimize the efficiency and performance of
research tasks by compressing lengthy prompts and retrieving relevant
academic papers. The agent also makes uses of MongoDB to store
conversational history and as it's knowledge base using MongoDB vector
store
- **Twitter handle:** https://x.com/richmondalake
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
## Description
- Updates the self-query retriever factory to check for the new Qdrant
vector store class. i.e. `langchain_qdrant.QdrantVectorstore`.
- Deprecates `QdrantSparseVectorRetriever`, since the vector store
implementation natively supports it now.
Resolves#25798
- **Description:** When useing LLM integration moonshot,it's occurring
error "'Moonshot' object has no attribute '_client'",it's because of the
"_client" that is private in pydantic v1.0 so that we can't use it.I
turn "_client" into "client" , the error to be resolved!
- **Issue:** the issue #24390
- **Dependencies:** none
- **Twitter handle:** @Rainsubtime
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Cyue <Cyue_work2001@163.com>
- **Description:** if you use callback handlers when using tool,
run_manager will be added to input, so you need to explicitly specify
args_schema, but i was confused because it was not listed, so i added
it. Also, it seems that the type does not work with pydantic.BaseModel.
- **Issue:** None
- **Dependencies:** None
- [x] **PR title - community: add neo4j query constructor for self
query**
- [x] **PR message**
- **Description:** adding a Neo4jTranslator so that the Neo4j vector
database can use SelfQueryRetriever
- **Issue:** this issue had been raised before in #19748
- **Dependencies:** none.
- **Twitter handle:** @moyi_dang
- p.s. I have not added the query constructor in BUILTIN_TRANSLATORS in
this PR, I want to make changes to only one package at a time.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Added: arxiv references to the concepts page.
Regenerated: arxiv references page.
Improved: formatting of the concepts page (moved the Partner packages
section after langchain_community)
- **Description:** OpenAI recently introduced a "strict" parameter for
[structured outputs in their
API](https://openai.com/index/introducing-structured-outputs-in-the-api/).
An optional `strict` parameter has been added to
`create_openai_functions_agent()` and `create_openai_tools_agent()` so
developers can use this feature in those agents.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [ ] **PR title**: community: add tests for ChatOctoAI
- [ ] **PR message**:
Description: Added unit tests for the ChatOctoAI class in the community
package to ensure proper validation and default values. These tests
verify the correct initialization of fields, the handling of missing
required parameters, and the proper setting of aliases.
Issue: N/A
Dependencies: None
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Thank you for contributing to LangChain!
community:premai[patch]: standardize init args
- updated `temperature` with Pydantic Field, updated the unit test.
- updated `max_tokens` with Pydantic Field, updated the unit test.
- updated `max_retries` with Pydantic Field, updated the unit test.
Related to #20085
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Description: Moves yield to after callback for _astream for gigachat in
the community package
Issue: #16913
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] **PR title**: "community: Patch enable to use Amazon OpenSearch
Serverless for Semantic Cache store"
- [x] **PR message**:
- **Description:** OpenSearchSemanticCache class support Amazon
OpenSearch Serverless for Semantic Cache store, it's only required to
pass auth(http_auth) parameter to initializer
- **Dependencies:** none
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Jinoos Lee <jinoos@amazon.com>
it fixes two issues:
### YGPTs are broken #25575
```
File ....conda/lib/python3.11/site-packages/langchain_community/embeddings/yandex.py:211, in _make_request(self, texts, **kwargs)
..
--> 211 res = stub.TextEmbedding(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
AttributeError: 'YandexGPTEmbeddings' object has no attribute '_grpc_metadata'
```
My gut feeling that #23841 is the cause.
I have to drop leading underscore from `_grpc_metadata` for quickfix,
but I just don't know how to do it _pydantic_ enough.
### minor issue:
if we use `api_key`, which is not the best practice the code fails with
```
File ~/git/...../python3.11/site-packages/langchain_community/embeddings/yandex.py:119, in YandexGPTEmbeddings.validate_environment(cls, values)
...
AttributeError: 'tuple' object has no attribute 'append'
```
- Added new integration test. But it requires YGPT env available and
active account. I don't know how int tests dis\enabled in CI.
- added small unit tests with mocks. Should be fine.
---------
Co-authored-by: mikhail-khludnev <mikhail_khludnev@rntgroup.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Support passing extra params when executing UC functions:
The params should be a dictionary with key EXECUTE_FUNCTION_ARG_NAME,
the assumption is that the function itself doesn't use such variable
name (starting and ending with double underscores), and if it does we
raise Exception.
If invalid params passing to the execute_statement, we raise Exception
as well.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: optimize xinference llm import"
- [ ] **PR message**:
- **Description:** from xinferece_client import RESTfulClient when there
is no importing xinference.
- **Dependencies:** xinferece_client
- **Why do so:** the total xinference(pip install xinference[all]) is
too heavy for installing, let alone it is useless for langchain user
except RESTfulClient. The modification has maintained consistency with
the xinference embeddings
[embeddings/xinference](../blob/master/libs/community/langchain_community/embeddings/xinference.py#L89).
[This
commit](d3ca2cc8c3)
has broken the moderation chain so we've faced a crash when migrating
the LangChain from v0.1 to v0.2.
The issue appears that the class attribute the code refers to doesn't
hold the value processed in the `validate_environment` method. We had
`extras={}` in this attribute, and it was casted to `True` when it
should've been `False`. Adding a simple assignment seems to resolve the
issue, though I'm not sure it's the right way.
---
---------
Co-authored-by: Michael Rubél <mrubel@oroinc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: docs: fixed syntax error in ChatAnthropic Example -
rag app tutorial notebook - generation
- [ ] **PR message**:
- **Description:** Fixed a syntax error in the ChatAnthropic
initialization example in the RAG tutorial notebook. The original code
had an extra set of quotation marks around the model parameter, which
would cause a Python syntax error. The corrected version removes these
unnecessary quotes.
- **Dependencies:** No new dependencies required for this documentation
fix.
I've verified that the corrected code is syntactically valid and matches
the expected format for initializing a ChatAnthropic instance in
LangChain.
- **Twitter handle:** madhu_shantan
- [ ] **Add tests and docs**: the error in Jupyter notebook:
<img width="1189" alt="Screenshot 2024-08-29 at 12 43 47 AM"
src="https://github.com/user-attachments/assets/07148a93-300f-40e2-ad4a-ac219cbb56a4">
the corrected cell:
<img width="983" alt="Screenshot 2024-08-29 at 12 44 18 AM"
src="https://github.com/user-attachments/assets/75b1455a-3671-454e-ac16-8ca77c049dbd">
- [ ] **Lint and test**: As this is a documentation-only change, I have
not run the full test suite. However, I have verified that the corrected
code example is syntactically valid and matches the expected usage of
the ChatAnthropic class.
the error in the docs is here -
<img width="1020" alt="Screenshot 2024-08-29 at 12 48 36 AM"
src="https://github.com/user-attachments/assets/812ccb20-b411-4a5b-afc1-41742efb32a7">
## Description
In `langchain_prompty`, messages are templated by Prompty. However, a
call to `ChatPromptTemplate` was initiating a second templating. We now
convert parsed messages to `Message` objects before calling
`ChatPromptTemplate`, signifying clearly that they are already
templated.
We also revert #25739 , which applied to this second templating, which
we now avoid, and did not fix the original issue.
## Issue
Closes#25703
I have validated langchain interface with tei/tgi works as expected when
TEI and TGI running on Intel Gaudi2. Adding some references to notebooks
to help users find relevant info.
---------
Co-authored-by: Rita Brugarolas <rbrugaro@idc708053.jf.intel.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Add array data type for milvus vector store collection create
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Rohit Gupta <rohit.gupta2@walmart.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Adds the 'score' returned by Pinecone to the
`PineconeHybridSearchRetriever` list of returned Documents.
There is currently no way to return the score when using Pinecone hybrid
search, so in this PR I include it by default.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
### Description
adds an init method to ChatDeepInfra to set the model_name attribute
accordings to the argument
### Issue
currently, the model_name specified by the user during initialization of
the ChatDeepInfra class is never set. Therefore, it always chooses the
default model (meta-llama/Llama-2-70b-chat-hf, however probably since
this is deprecated it always uses meta-llama/Llama-3-70b-Instruct). We
stumbled across this issue and fixed it as proposed in this pull
request. Feel free to change the fix according to your coding guidelines
and style, this is just a proposal and we want to draw attention to this
problem.
### Dependencies
no additional dependencies required
Feel free to contact me or @timo282 and @finitearth if you have any
questions.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Make the hyperlink only appear once in the
extract_hyperlinks tool output. (for some websites output contains
meaningless '#' hyperlinks multiple times which will extend the tokens
of context window without any advantage)
**Issue:** None
**Dependencies:** None
Thank you for contributing to LangChain!
- [x] **PR title**: "langchain: Chains: query_constructor: add date time
parser"
- [x] **PR message**:
- **Description:** add date time parser to langchain Chains
query_constructor
- **Issue: https://github.com/langchain-ai/langchain/issues/25526
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Added Azure Search Access Token Authentication instead of API KEY auth.
Fixes Issue: https://github.com/langchain-ai/langchain/issues/24263
Dependencies: None
Twitter: @levalencia
@baskaryan
Could you please review? First time creating a PR that fixes some code.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This pull request introduces support for the AI21 tools calling feature,
available by the Jamba-1.5 models. When Jamba-1.5 detects the necessity
to invoke a provided tool, as indicated by the 'tools' parameter passed
to the model:
```
class ToolDefinition(TypedDict, total=False):
type: Required[Literal["function"]]
function: Required[FunctionToolDefinition]
class FunctionToolDefinition(TypedDict, total=False):
name: Required[str]
description: str
parameters: ToolParameters
class ToolParameters(TypedDict, total=False):
type: Literal["object"]
properties: Required[Dict[str, Any]]
required: List[str]
```
It will respond with a list of tool calls structured as follows:
```
class ToolCall(AI21BaseModel):
id: str
function: ToolFunction
type: Literal["function"] = "function"
class ToolFunction(AI21BaseModel):
name: str
arguments: str
```
This pull request incorporates the necessary modifications to integrate
this functionality into the ai21-langchain library.
---------
Co-authored-by: asafg <asafg@ai21.com>
Co-authored-by: pazshalev <111360591+pazshalev@users.noreply.github.com>
Co-authored-by: Paz Shalev <pazs@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- "libs: langchain_milvus: add db name to milvus connection check"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** add db name to milvus connection check
- **Issue:** https://github.com/langchain-ai/langchain/issues/25277
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This addresses the issue mentioned in #25702
I have updated the endpoint used in validating the endpoint API type in
the AzureMLBaseEndpoint class from `/v1/completions` to `/completions`
and `/v1/chat/completions` to `/chat/completions`.
Co-authored-by: = <=>
- **Description:** Added a `template_format` parameter to
`create_chat_prompt` to allow `.prompty` files to handle variables in
different template formats.
- **Issue:** #25703
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Added langchain version while calling discover API
during both ingestion and retrieval
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA
---------
Co-authored-by: dristy.cd <dristy@clouddefense.io>
- **Description:** Updating source path and file path in Pebblo safe
loader for SharePoint apps during loading
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA
---------
Co-authored-by: dristy.cd <dristy@clouddefense.io>
- **PR message**: **Fix URL construction in newer Python versions**
- **Description:**
- Update the URL construction logic to use the .value attribute for
Routes enum members.
- This adjustment resolves an issue where the code worked correctly in
Python 3.9 but failed in Python 3.11.
- Clean up unused routes.
- **Issue:** NA
- **Dependencies:** NA
* Removed `ruff check --select I` as `I` is already selected and checked
in the main `ruff check` command
* Added checks for non-empty `PYTHON_FILES`
* Run `ruff check` only on `PYTHON_FILES`
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Fix the validation error for `endpoint_url` for
HuggingFaceEndpoint. I have given a descriptive detail of the isse in
the issue that I have created.
- **Issue:** #24742
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
### Summary
Add `DatabricksVectorSearch` and `DatabricksEmbeddings` classes to the
`langchain-databricks` partner packages. Core functionality is
unchanged, but the vector search class is largely refactored for
readability and maintainability.
This PR does not add integration tests yet. This will be added once the
Databricks test workspace is ready.
Tagging @efriis as POC
### Tracker
[✅] Create a package and imgrate ChatDatabricks
[✍️] Migrate DatabricksVectorSearch, DatabricksEmbeddings, and their
docs
~[ ] Migrate UCFunctionToolkit and its doc~
[ ] Add provider document and update README.md
[ ] Add integration tests and set up secrets (after moved to an external
package)
[ ] Add deprecation note to the community implementations.
---------
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- [ ] **PR message**:
- **Description:** Compatible with other llm (eg: deepseek-chat, glm-4)
usage meta data
- **Issue:** N/A
- **Dependencies:** no new dependencies added
- [ ] **Add tests and docs**:
libs/partners/openai/tests/unit_tests/chat_models/test_base.py
```shell
cd libs/partners/openai
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_openai_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_openai_stream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_deepseek_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_deepseek_stream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_glm4_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_glm4_stream
```
---------
Co-authored-by: hyman <hyman@xiaozancloud.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **PR title**: "langchain-core: Fix type"
- The file to modify is located in
/libs/core/langchain_core/prompts/base.py
- [ ] **PR message**:
- **Description:** The change is a type for the inner input variable,
the type go from dict to Any. This change is required since the method
_validate input expects a type that is not only a dictionary.
- **Dependencies:** There are no dependencies for this change
- [ ] **Add tests and docs**:
1. A test is not needed. This error occurs because I overrode a portion
of the _validate_input method, which is causing a 'beartype' to raise an
error.
This PR introduces adjustments to ensure compatibility with the recently
released preview version of [TiDB Serverless Vector
Search](https://tidb.cloud/ai), aiming to prevent user confusion.
- TiDB Vector now supports vector indexing with cosine and l2 distance
strategies, although inner_product remains unsupported.
- Changing the distance strategy is currently not supported, so the test
cased should be adjusted.
Issue: the `service` optional parameter was mentioned but not used.
Fix: added this parameter.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
There is a bug in the concatenation of embeddings obtained from MLflow
that does not conform to the type hint requested by the function.
``` python
def _query(self, texts: List[str]) -> List[List[float]]:
```
It is logical to expect a **List[List[float]]** for a **List[str]**.
However, the append method encapsulates the response in a global List.
To avoid this, the extend method should be used, which will add the
embeddings of all strings at the same list level.
## Testing
I have tried using OpenAI-ADA to obtain the embeddings, and the result
of executing this snippet is as follows:
``` python
embeds = await MlflowAIGatewayEmbeddings().aembed_documents(texts=["hi", "how are you?"])
print(embeds)
```
``` python
[[[-0.03512698, -0.020624293, -0.015343423, ...], [-0.021260535, -0.011461929, -0.00033121882, ...]]]
```
When in reality, the expected result should be:
``` python
[[-0.03512698, -0.020624293, -0.015343423, ...], [-0.021260535, -0.011461929, -0.00033121882, ...]]
```
The above result complies with the expected type hint:
**List[List[float]]** . As I mentioned, we can achieve that by using the
extend method instead of the append method.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Description: Simply pass kwargs to allow arguments like "where" to be
propagated
Issue: Previously, db.delete(where={}) wouldn't work for chroma
vectorstores
Dependencies: N/A
Twitter handle: N/A
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Description: Send both the query and query_embedding to the Databricks
index for hybrid search.
Issue: When using hybrid search with non-Databricks managed embedding we
currently don't pass both the embedding and query_text to the index.
Hybrid search requires both of these. This change fixes this issue for
both `similarity_search` and `similarity_search_by_vector`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
# Issue
As of late July, Perplexity [no longer supports Llama 3
models](https://docs.perplexity.ai/changelog/introducing-new-and-improved-sonar-models).
# Description
This PR updates the default model and doc examples to reflect their
latest supported model. (Mostly updating the same places changed by
#23723.)
# Twitter handle
`@acompa_` on behalf of the team at Not Diamond. Check us out
[here](https://notdiamond.ai).
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Updated titles into a consistent format.
Fixed links to the diagrams.
Fixed typos.
Note: The Templates menu in the navbar is now sorted by the file names.
I'll try sorting the navbar menus by the page titles, not the page file
names.
- Output of the cells was not included in the documentation. I have
added them.
- There is another parameter in the `WikipediaLoader` class called
`doc_content_chars_max` (Based on
[this](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.wikipedia.WikipediaLoader.html)).
I have included this in the list of parameters.
- I put the list of parameters under a new section called "Parameters"
in the documentation.
- I also included the `langchain_community` package in the installation
command.
- Some minor formatting/spelling issues were fixed.
Hello.
First of all, thank you for maintaining such a great project.
## Description
In https://github.com/langchain-ai/langchain/pull/25123, support for
structured_output is added. However, `"additionalProperties": false`
needs to be included at all levels when a nested object is generated.
error from current code:
https://gist.github.com/fufufukakaka/e9b475300e6934853d119428e390f204
```
BadRequestError: Error code: 400 - {'error': {'message': "Invalid schema for response_format 'JokeWithEvaluation': In context=('properties', 'self_evaluation'), 'additionalProperties' is required to be supplied and to be false", 'type': 'invalid_request_error', 'param': 'response_format', 'code': None}}
```
Reference: [Introducing Structured Outputs in the
API](https://openai.com/index/introducing-structured-outputs-in-the-api/)
```json
{
"model": "gpt-4o-2024-08-06",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor."
},
{
"role": "user",
"content": "solve 8x + 31 = 2"
}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "math_response",
"strict": true,
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": ["explanation", "output"],
"additionalProperties": false
}
},
"final_answer": {
"type": "string"
}
},
"required": ["steps", "final_answer"],
"additionalProperties": false
}
}
}
}
```
In the current code, `"additionalProperties": false` is only added at
the last level.
This PR introduces the `_add_additional_properties_key` function, which
recursively adds `"additionalProperties": false` to the entire JSON
schema for the request.
Twitter handle: `@fukkaa1225`
Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Previously the code was able to only handle a single level of nesting
for subgraphs in mermaid. This change adds support for arbitrary nesting
of subgraphs.
This PR adds tiny improvements to the `GithubFileLoader` document loader
and its code sample, addressing the following issues:
1. Currently, the `file_extension` argument of `GithubFileLoader` does
not change its behavior at all.
1. The `GithubFileLoader` sample code in
`docs/docs/integrations/document_loaders/github.ipynb` does not work as
it stands.
The respective solutions I propose are the following:
1. Remove `file_extension` argument from `GithubFileLoader`.
1. Specify the branch as `master` (not the default `main`) and rename
`documents` as `document`.
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
When I used the Neo4JGraph enhanced_schema=True option, I ran into an
error because a prop min_size of None was compared numerically with an
int.
The fix I applied is similar to the pattern of skipping embeddings
elsewhere in the file.
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:**
LLM will stop generating text even in the middle of a sentence if
`finish_reason` is `length` (for OpenAI) or `stop_reason` is
`max_tokens` (for Anthropic).
To obtain longer outputs from LLM, we should call the message generation
API multiple times and merge the results into the text to circumvent the
API's output token limit.
The extra line breaks forced by the `merge_message_runs` function when
seamlessly merging messages can be annoying, so I added the option to
specify the chunk separator.
**Issue:**
No corresponding issues.
**Dependencies:**
No dependencies required.
**Twitter handle:**
@hanama_chem
https://x.com/hanama_chem
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
parsed_json is expected to be a list of dictionaries, but it seems to…
be a single dictionary instead.
This is at
libs/experimental/langchain_experimental/graph_transformers/llm.py
process process_response
Thank you for contributing to LangChain!
- [ ] **Bugfix**: "experimental: bugfix"
---------
Co-authored-by: based <basir.sedighi@nris.no>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Cause chunks are joined by space, so they can't be found in text, and
the final `start_index` is very possibility to be -1.
- The simplest way is to use the natural index of the chunk as
`start_index`.
**Description:** This part of the documentation didn't explain about the
`required` property of function calling. I added additional line as a
note.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** This change adds the ID field that's required in
Pinecone to the result documents of the similarity search method.
- **Issue:** Lack of document metadata namely the ID field
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
[langchain_core] Fix UnionType type var replacement
- Added types.UnionType to typing.Union mapping
Type replacement cause `TypeError: 'type' object is not subscriptable`
if any of union type comes as function `_py_38_safe_origin` return
`types.UnionType` instead of `typing.Union`
```python
>>> from types import UnionType
>>> from typing import Union, get_origin
>>> type_ = get_origin(str | None)
>>> type_
<class 'types.UnionType'>
>>> UnionType[(str, None)]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'type' object is not subscriptable
>>> Union[(str, None)]
typing.Optional[str]
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
I was trying to add this package using langchain-cli: `langchain app add
openai-functions-agent-gmail`, but when then try to build the whole
project using poetry or pip, it fails with the following
error:`poetry.core.masonry.utils.module.ModuleOrPackageNotFound: No
file/folder found for package openai-functions-agent-gmail`
This was fixed by modifying the pyproject.toml as in this commit
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** In GitLab we call these "merge requests" rather than
"pull requests" so I thought I'd go ahead and update the notebook.
- **Issue:** N/A
- **Dependencies:** none
- **Twitter handle:** N/A
Thanks for creating the tools and notebook to help people work with
GitLab. I thought I'd contribute some minor docs updates here.
Description: DeepInfra 500 errors have useful information in the text
field that isn't being exposed to the user. I updated the error message
to fix this.
As an example, this code
```
from langchain_community.chat_models import ChatDeepInfra
from langchain_core.messages import HumanMessage
model = "meta-llama/Meta-Llama-3-70B-Instruct"
deepinfra_api_token = "..."
model = ChatDeepInfra(model=model, deepinfra_api_token=deepinfra_api_token)
messages = [HumanMessage("All work and no play makes Jack a dull boy\n" * 9000)]
response = model.invoke(messages)
```
Currently gives this error:
```
langchain_community.chat_models.deepinfra.ChatDeepInfraException: DeepInfra Server: Error 500
```
This change would give the following error:
```
langchain_community.chat_models.deepinfra.ChatDeepInfraException: DeepInfra Server error status 500: {"error":{"message":"Requested input length 99009 exceeds maximum input length 8192"}}
```
**Refactor PebbloRetrievalQA**
- Created `APIWrapper` and moved API logic into it.
- Created smaller functions/methods for better readability.
- Properly read environment variables.
- Removed unused code.
- Updated models
**Issue:** NA
**Dependencies:** NA
**tests**: NA
**Refactor PebbloSafeLoader**
- Created `APIWrapper` and moved API logic into it.
- Moved helper functions to the utility file.
- Created smaller functions and methods for better readability.
- Properly read environment variables.
- Removed unused code.
**Issue:** NA
**Dependencies:** NA
**tests**: Updated
limit the most recent documents to fetch from MongoDB database.
Thank you for contributing to LangChain!
- [ ] **limit the most recent documents to fetch from MongoDB
database.**: "langchain_mongodb: limit the most recent documents to
fetch from MongoDB database."
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Added a doc_limit parameter which enables the limit
for the documents to fetch from MongoDB database
- **Issue:**
- **Dependencies:** None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description: The neo4j driver can raise a SessionExpired error, which is
considered a retriable error. If a query fails with a SessionExpired
error, this change retries every query once. This change will make the
neo4j integration less flaky.
Twitter handle: noahmay_
### Summary
Create `langchain-databricks` as a new partner packages. This PR does
not migrate all existing Databricks integration, but the package will
eventually contain:
* `ChatDatabricks` (implemented in this PR)
* `DatabricksVectorSearch`
* `DatabricksEmbeddings`
* ~`UCFunctionToolkit`~ (will be done after UC SDK work which
drastically simplify implementation)
Also, this PR does not add integration tests yet. This will be added
once the Databricks test workspace is ready.
Tagging @efriis as POC
### Tracker
[✍️] Create a package and imgrate ChatDatabricks
[ ] Migrate DatabricksVectorSearch, DatabricksEmbeddings, and their docs
~[ ] Migrate UCFunctionToolkit and its doc~
[ ] Add provider document and update README.md
[ ] Add integration tests and set up secrets (after moved to an external
package)
[ ] Add deprecation note to the community implementations.
---------
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
**Description:** Adding `BoxRetriever` for langchain_box. This retriever
handles two use cases:
* Retrieve all documents that match a full-text search
* Retrieve the answer to a Box AI prompt as a Document
**Twitter handle:** @BoxPlatform
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Updating metadata for sharepoint loader with full
path i.e., webUrl
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA
Co-authored-by: dristy.cd <dristy@clouddefense.io>
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
-Description: Adding new package: `langchain-box`:
* `langchain_box.document_loaders.BoxLoader` — DocumentLoader
functionality
* `langchain_box.utilities.BoxAPIWrapper` — Box-specific code
* `langchain_box.utilities.BoxAuth` — Helper class for Box
authentication
* `langchain_box.utilities.BoxAuthType` — enum used by BoxAuth class
- Twitter handle: @boxplatform
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
also remove some unused dependencies (fastapi) and unused test/lint/dev
dependencies (community, openai, textsplitters)
chromadb 0.5.4 introduced usage of `model_fields` which is pydantic v2
specific. also released in 0.5.5
The new `langchain-ollama` package seems pretty well implemented, but I
noticed the docs were still outdated so I decided to fix em up a bit.
- Llama3.1 was release on 23rd of July;
https://ai.meta.com/blog/meta-llama-3-1/
- Ollama supports tool calling since 25th of July;
https://ollama.com/blog/tool-support
- LangChain Ollama partner package was released 1st of august;
https://pypi.org/project/langchain-ollama/
**Problem**: Docs note langchain-community instead of langchain-ollama
**Solution**: Update docs to
https://python.langchain.com/v0.2/docs/integrations/chat/ollama/
**Problem**: OllamaFunctions is deprecated, as noted on
[Integrations](https://python.langchain.com/v0.2/docs/integrations/chat/ollama_functions/):
This was an experimental wrapper that attempts to bolt-on tool calling
support to models that do not natively support it. The [primary Ollama
integration](https://python.langchain.com/v0.2/docs/integrations/chat/ollama/) now
supports tool calling, and should be used instead.
**Solution**: Delete old notebook from repo, update the existing one
with @tool decorator + pydantic examples to the notebook
**Problem**: Llama3.1 was released while llama3-groq-tool-call fine-tune
Is noted in notebooks.
**Solution**: update docs + notebooks to llama3.1 (which has improved
tool calling support)
**Problem**: Install instructions are incomplete, there is no
information to download a model and/or run the Ollama server
**Solution**: Add simple instructions to start the ollama service and
pull model (for toolcalling)
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This will allow complextype metadata to be returned. the current
implementation throws error when dealing with nested metadata
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Here we allow standard tests to specify a value for `tool_choice` via a
`tool_choice_value` property, which defaults to None.
Chat models [available in
Together](https://docs.together.ai/docs/chat-models) have issues passing
standard tool calling tests:
- llama 3.1 models currently [appear to rely on user-side
parsing](https://docs.together.ai/docs/llama-3-function-calling) in
Together;
- Mixtral-8x7B and Mistral-7B (currently tested) consistently do not
call tools in some tests.
Specifying tool_choice also lets us remove an existing `xfail` and use a
smaller model in Groq tests.
- **Description:** The following
[line](fd546196ef/libs/community/langchain_community/document_loaders/parsers/audio.py (L117))
in `OpenAIWhisperParser` returns a text object for some odd reason
despite the official documentation saying it should return `Transcript`
Instance which should have the text attribute. But for the example given
in the issue and even when I tried running on my own, I was directly
getting the text. The small PR accounts for that.
- **Issue:** : #25218
I was able to replicate the error even without the GenericLoader as
shown below and the issue was with `OpenAIWhisperParser`
```python
parser = OpenAIWhisperParser(api_key="sk-fxxxxxxxxx",
response_format="srt",
temperature=0)
list(parser.lazy_parse(Blob.from_path('path_to_file.m4a')))
```
…he prompt in the create_stuff_documents_chain
Thank you for contributing to LangChain!
- [ ] **PR title**: "langchain:add document_variable_name in the
function _validate_prompt in create_stuff_documents_chain"
- [ ] **PR message**:
- **Description:** add document_variable_name in the function
_validate_prompt in create_stuff_documents_chain
- **Issue:** according to the description of
create_stuff_documents_chain function, the parameter
document_variable_name can be used to override the "context" in the
prompt, but in the function, _validate_prompt it still use DOCUMENTS_KEY
to check if it is a valid prompt, the value of DOCUMENTS_KEY is always
"context", so even through the user use document_variable_name to
override it, the code still tries to check if "context" is in the
prompt, and finally it reports error. so I use document_variable_name to
replace DOCUMENTS_KEY, the default value of document_variable_name is
"context" which is same as DOCUMENTS_KEY, but it can be override by
users.
- **Dependencies:** none
- **Twitter handle:** https://x.com/xjr199703
- [ ] **Add tests and docs**: none
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
fix: #25482
- **Description:**
Add a prompt to install beautifulsoup4 in places where `from
langchain_community.document_loaders import WebBaseLoader` is used.
- **Issue:** #25482
**Description:** This PR fixes an issue in the demo notebook of
Databricks Vector Search in "Work with Delta Sync Index" section.
**Issue:** N/A
**Dependencies:** N/A
---------
Co-authored-by: Chengzu Ou <chengzu.ou@databrick.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Check whether the API key is already in the environment
Update:
```python
import getpass
import os
os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
os.environ["DATABRICKS_TOKEN"] = getpass.getpass("Enter your Databricks access token: ")
```
To:
```python
import getpass
import os
os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
if "DATABRICKS_TOKEN" not in os.environ:
os.environ["DATABRICKS_TOKEN"] = getpass.getpass(
"Enter your Databricks access token: "
)
```
grit migration:
```
engine marzano(0.1)
language python
`os.environ[$Q] = getpass.getpass("$X")` as $CHECK where {
$CHECK <: ! within if_statement(),
$CHECK => `if $Q not in os.environ:\n $CHECK`
}
```
- [x] NatbotChain: move to community, deprecate langchain version.
Update to use `prompt | llm | output_parser` instead of LLMChain.
- [x] LLMMathChain: deprecate + add langgraph replacement example to API
ref
- [x] HypotheticalDocumentEmbedder (retriever): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] FlareChain: update to use `prompt | llm | output_parser` instead
of LLMChain
- [x] ConstitutionalChain: deprecate + add langgraph replacement example
to API ref
- [x] LLMChainExtractor (document compressor): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] LLMChainFilter (document compressor): update to use `prompt | llm
| output_parser` instead of LLMChain
- [x] RePhraseQueryRetriever (retriever): update to use `prompt | llm |
output_parser` instead of LLMChain
Within the semantic chunker, when calling `_threshold_from_clusters`
there is the possibility for a divide by 0 error if the
`number_of_chunks` is equal to the length of `distances`.
Fix simply implements a check if these values match to prevent the error
and enable chunking to continue.
Remove the period after the hyperlink in the docstring of
BaseChatOpenAI.with_structured_output.
I have repeatedly copied the extra period at the end of the hyperlink,
which results in a "Page not found" page when pasted into the browser.
Fix typo
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Fix typo and some `callout` tags
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Backwards compatible change that converts pydantic extras to literals
which is consistent with pydantic 2 usage.
- fireworks
- voyage ai
- mistralai
- mistral ai
- together ai
- huggigng face
- pinecone
**Description**
Fix the asyncronous methods to retrieve documents from AzureSearch
VectorStore. The previous changes from [this
commit](ffe6ca986e)
create a similar code for the syncronous methods and the asyncronous
ones but the asyncronous client return an asyncronous iterator
"AsyncSearchItemPaged" as said in the issue #24740.
To solve this issue, the syncronous iterators in asyncronous methods
where changed to asyncronous iterators.
@chrislrobert said in [this
comment](https://github.com/langchain-ai/langchain/issues/24740#issuecomment-2254168302)
that there was a still a flaw due to `with` blocks that close the client
after each call. I removed this `with` blocks in the `async_client`
following the same pattern as the sync `client`.
In order to close up the connections, a __del__ method is included to
gently close up clients once the vectorstore object is destroyed.
**Issue:** #24740 and #24064
**Dependencies:** No new dependencies for this change
**Example notebook:** I created a notebook just to test the changes work
and gives the same results as the syncronous methods for vector and
hybrid search. With these changes, the asyncronous methods in the
retriever work as well.

**Lint and test**: Passes the tests and the linter
This adds `args_schema` member to `SearxSearchResults` tool. This member
is already present in the `SearxSearchRun` tool in the same file.
I was having `TypeError: Type is not JSON serializable:
AsyncCallbackManagerForToolRun` being thrown in langserve playground
when I was using `SearxSearchResults` tool as a part of chain there.
This fixes the issue, so the error is not raised anymore.
This is a example langserve app that was giving me the error, but it
works properly after the proposed fix:
```python
#!/usr/bin/env python
from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_community.utilities import SearxSearchWrapper
from langchain_community.tools.searx_search.tool import SearxSearchResults
from langserve import add_routes
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
s = SearxSearchWrapper(searx_host="http://localhost:8080")
search = SearxSearchResults(wrapper=s)
search_chain = (
{"context": search, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
app = FastAPI()
add_routes(
app,
search_chain,
path="/chain",
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="localhost", port=8000)
```
- **Description:** Runhouse recently migrated from Read the Docs to a
self-hosted solution. This PR updates a broken link from the old docs to
www.run.house/docs. Also changed "The Runhouse" to "Runhouse" (it's
cleaner).
- **Issue:** None
- **Dependencies:** None
- **Description:** Standardize SparkLLM, include:
- docs, the issue #24803
- to support stream
- update api url
- model init arg names, the issue #20085
Cleaned up the "Tying it Together" section of the Conversational RAG
tutorial by removing unnecessary imports that were not used. This
reduces confusion and makes the code more concise.
Thank you for contributing to LangChain!
PR title: docs: remove unused imports in Conversational RAG tutorial
PR message:
Description: Removed unnecessary imports from the "Tying it Together"
section of the Conversational RAG tutorial. These imports were not used
in the code and created confusion. The updated code is now more concise
and easier to understand.
Issue: N/A
Dependencies: None
LinkedIn handle: [Hassan
Memon](https://www.linkedin.com/in/hassan-memon-a109b3257/)
Add tests and docs:
Hi [LangChain Team Member’s Name],
I hope you're doing well! I’m thrilled to share that I recently made my
second contribution to the LangChain project. If possible, could you
give me a shoutout on LinkedIn? It would mean a lot to me and could help
inspire others to contribute to the community as well.
Here’s my LinkedIn profile: [Hassan
Memon](https://www.linkedin.com/in/hassan-memon-a109b3257/).
Thank you so much for your support and for creating such a great
platform for learning and collaboration. I'm looking forward to
contributing more in the future!
Best regards,
Hassan Memon
fix: #25137
`SqliteSaver.from_conn_string()` has been changed to a `contextmanager`
method in `langgraph >= 0.2.0`, the original usage is no longer
applicable.
Refer to
<https://github.com/langchain-ai/langgraph/pull/1271#issue-2454736415>
modification method to replace `SqliteSaver` with `MemorySaver`.
- **Description:** This PR implements the `bind_tool` functionality for
ChatZhipuAI as requested by the user. ChatZhipuAI models support tool
calling according to the `OpenAI` tool format, as outlined in their
official documentation [here](https://open.bigmodel.cn/dev/api#glm-4).
- **Issue:** ##23868
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
…ctions to match LangGraph v2 documentation. Corrected code snippet to
prevent validation errors.
Here's how you can fill out the provided template for your pull request:
---
**Thank you for contributing to LangChain!**
- [ ] **PR title**: `docs: update checkpointer example in Conversational
RAG tutorial`
- [ ] **PR message**:
- **Description:** Updated the Conversational RAG tutorial to correct
the checkpointer example by replacing `SqliteSaver` with `MemorySaver`.
Added installation instructions for `langgraph-checkpoint-memory` to
match LangGraph v2 documentation and prevent validation errors.
- **Issue:** N/A
- **Dependencies:** `langgraph-checkpoint-memory`
- **Twitter handle:** N/A
- [ ] **Add tests and docs**:
1. No new integration tests are required.
2. Updated documentation in the Conversational RAG tutorial.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: [LangChain Contribution
Guidelines](https://python.langchain.com/docs/contributing/)
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** This PR rearranges the examples in Upstash Vector
integration documentation to describe how to use namespaces and improve
the description of metadata filtering.
Thank you for contributing to LangChain!
- **Description:** Fixing package install bug in cookbook
- **Issue:** zsh:1: no matches found: unstructured[all-docs]
- **Dependencies:** N/A
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** Fix link for API reference of Gmail Toolkit
- **Issue:** I've just found this issue while I'm reading the doc
- **Dependencies:** N/A
- **Twitter handle:** [@soichisumi](https://x.com/soichisumi)
TODO: If no one reviews your PR within a few days, please @-mention one
of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- In the in ` embedding-3 ` and later models of Zhipu AI, it is
supported to specify the dimensions parameter of Embedding. Ref:
https://bigmodel.cn/dev/api#text_embedding-3 .
- Add test case for `embedding-3` model by assigning dimensions.
This PR deprecates the beta upsert APIs in vectorstore.
We'll introduce them in a V2 abstraction instead to keep the existing
vectorstore implementations lighter weight.
The main problem with the existing APIs is that it's a bit more
challenging to
implement the correct behavior w/ respect to IDs since ID can be present
in
both the function signature and as an optional attribute on the document
object.
But VectorStores that pass the standard tests should have implemented
the semantics properly!
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR gets rid `root_validators(allow_reuse=True)` logic used in
EdenAI Tool in preparation for pydantic 2 upgrade.
- add another test to secret_from_env_factory
**Description:**
The get time point method in the _consume() method of
core.rate_limiters.InMemoryRateLimiter uses time.time(), which can be
affected by system time backwards. Therefore, it is recommended to use
the monotonically increasing monotonic() to obtain the time
```python
with self._consume_lock:
now = time.time() # time.time() -> time.monotonic()
# initialize on first call to avoid a burst
if self.last is None:
self.last = now
elapsed = now - self.last # when use time.time(), elapsed may be negative when system time backwards
```
Thank you for contributing to LangChain!
- [X] **PR title**: "community: fix valueerror mentions wrong argument
missing"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** when faiss.py has a None relevance_score_fn it raises
a ValueError that says a normalize_fn_score argument is needed.
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:** This minor PR aims to add `llm_extraction` to Firecrawl
loader. This feature is supported on API and PythonSDK, but the
langchain loader omits adding this to the response.
**Twitter handle:** [scalable_pizza](https://x.com/scalablepizza)
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Description: As described in the related issue: There is an error
occuring when using langchain-openai>=0.1.17 which can be attributed to
the following PR: #23691
Here, the parameter logprobs is added to requests per default.
However, AzureOpenAI takes issue with this parameter as stated here:
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?tabs=python-new&pivots=programming-language-chat-completions
-> "If you set any of these parameters, you get an error."
Therefore, this PR changes the default value of logprobs parameter to
None instead of False. This results in it being filtered before the
request is sent.
- Issue: #24880
- Dependencies: /
Co-authored-by: blaufink <sebastian.brueckner@outlook.de>
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.
Code mod generated using the following grit pattern:
```
engine marzano(0.1)
language python
`$X.__fields__` => `get_fields($X)` where {
add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
Migrate pydantic extra to literals
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
Add a utility that can be used as a default factory
The goal will be to start migrating from of the pydantic models to use
`from_env` as a default factory if possible.
```python
from pydantic import Field, BaseModel
from langchain_core.utils import from_env
class Foo(BaseModel):
name: str = Field(default_factory=from_env('HELLO'))
```
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.
Code mod generated using the following grit pattern:
```
engine marzano(0.1)
language python
`$X.__fields__` => `get_fields($X)` where {
add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
## Description
This PR adds back snippets demonstrating sparse and hybrid retrieval in
the Qdrant notebook.
Without the snippets, it's hard to grok the usage.
For business subscription the status is STOCKSBUSINESS not OK
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
## Description
This pull-request extends the existing vector search strategies of
MongoDBAtlasVectorSearch to include Hybrid (Reciprocal Rank Fusion) and
Full-text via new Retrievers.
There is a small breaking change in the form of the `prefilter` kwarg to
search. For this, and because we have now added a great deal of
features, including programmatic Index creation/deletion since 0.1.0, we
plan to bump the version to 0.2.0.
### Checklist
* Unit tests have been extended
* formatting has been applied
* One mypy error remains which will either go away in CI or be
simplified.
---------
Signed-off-by: Casey Clements <casey.clements@mongodb.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **PR title**: "Documentation Update : Semantic Caching Update for
Upstash"
- Docs, llm caching integrations update
- **Description:** Upstash supports semantic caching, and we would like
to inform you about this
- **Twitter handle:** You can mention eray_eroglu_ if you want to post a
tweet about the PR
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Instantiating `GPT4AllEmbeddings` with no
`gpt4all_kwargs` argument raised a `ValidationError`. Root cause: #21238
added the capability to pass `gpt4all_kwargs` through to the `GPT4All`
instance via `Embed4All`, but broke code that did not specify a
`gpt4all_kwargs` argument.
- **Issue:** #25119
- **Dependencies:** None
- **Twitter handle:** [`@metadaddy`](https://twitter.com/metadaddy)
updated with langchain_google_community instead as the latest revision
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR does an aesthetic sort of the config object attributes. This
will make it a bit easier to go back and forth between pydantic v1 and
pydantic v2 on the 0.3.x branch
Among integration packages in libs/partners, Groq is an exception in
that it errors on warnings.
Following https://github.com/langchain-ai/langchain/pull/25084, Groq
fails with
> pydantic.warnings.PydanticDeprecatedSince20: The `__fields__`
attribute is deprecated, use `model_fields` instead. Deprecated in
Pydantic V2.0 to be removed in V3.0.
Here we update the behavior to no longer fail on warning, which is
consistent with the rest of the packages in libs/partners.
**Description:**
In this PR, I am adding three stock market tools from
financialdatasets.ai (my API!):
- get balance sheets
- get cash flow statements
- get income statements
Twitter handle: [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Example: "community: Added bedrock 3-5 sonnet cost detials for
BedrockAnthropicTokenUsageCallbackHandler"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Naval Chand <navalchand@192.168.1.36>
- description: I remove the limitation of mandatory existence of
`QIANFAN_AK` and default model name which langchain uses cause there is
already a default model nama underlying `qianfan` SDK powering langchain
component.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- community: Allow authorization to Confluence with bearer token
- **Description:** Allow authorization to Confluence with [Personal
Access
Token](https://confluence.atlassian.com/enterprise/using-personal-access-tokens-1026032365.html)
by checking for the keys `['client_id', token: ['access_token',
'token_type']]`
- **Issue:**
Currently the following error occurs when using an personal access token
for authorization.
```python
loader = ConfluenceLoader(
url=os.getenv('CONFLUENCE_URL'),
oauth2={
'token': {"access_token": os.getenv("CONFLUENCE_ACCESS_TOKEN"), "token_type": "bearer"},
'client_id': 'client_id',
},
page_ids=['12345678'],
)
```
```
ValueError: Error(s) while validating input: ["You have either omitted require keys or added extra keys to the oauth2 dictionary. key values should be `['access_token', 'access_token_secret', 'consumer_key', 'key_cert']`"]
```
With this PR the loader runs as expected.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** This includes Pydantic field metadata in
`_create_subset_model_v2` so that it gets included in the final
serialized form that get sent out.
- **Issue:** #25031
- **Dependencies:** n/a
- **Twitter handle:** @gramliu
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Fixes Neo4JVector.from_existing_graph integration with huggingface
Previously threw an error with existing databases, because
from_existing_graph query returns empty list of new nodes, which are
then passed to embedding function, and huggingface errors with empty
list.
Fixes [24401](https://github.com/langchain-ai/langchain/issues/24401)
---------
Co-authored-by: Jeff Katzy <jeffreyerickatz@gmail.com>
You can use this with:
```
from langchain_experimental.graph_transformers import GlinerGraphTransformer
gliner = GlinerGraphTransformer(allowed_nodes=["Person", "Organization", "Nobel"], allowed_relationships=["EMPLOYEE", "WON"])
from langchain_core.documents import Document
text = """
Marie Curie, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.
Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.
She was, in 1906, the first woman to become a professor at the University of Paris.
"""
documents = [Document(page_content=text)]
gliner.convert_to_graph_documents(documents)
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR adds a minimal document indexer abstraction.
The goal of this abstraction is to allow developers to create custom
retrievers that also have a standard indexing API and allow updating the
document content in them.
The abstraction comes with a test suite that can verify that the indexer
implements the correct semantics.
This is an iteration over a previous PRs
(https://github.com/langchain-ai/langchain/pull/24364). The main
difference is that we're sub-classing from BaseRetriever in this
iteration and as so have consolidated the sync and async interfaces.
The main problem with the current design is that runt time search
configuration has to be specified at init rather than provided at run
time.
We will likely resolve this issue in one of the two ways:
(1) Define a method (`get_retriever`) that will allow creating a
retriever at run time with a specific configuration.. If we do this, we
will likely break the subclass on BaseRetriever
(2) Generalize base retriever so it can support structured queries
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: "docs: changed example for Exa search retriever
usage"
- [x] **PR message**:
- **Description:** Changed Exa integration doc at
`docs/docs/integrations/tools/exa_search.ipynb` to better reflect simple
Exa use case
- **Issue:** move toward more canonical use of Exa method
(`search_and_contents` rather than just `search`)
- **Dependencies:** no dependencies; docs only change
- **Twitter handle:** n/a - small change
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. - will do
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
This PR fixes a bug where if `enable_dynamic_field` and
`partition_key_field` are enabled at the same time, a pymilvus error
occurs.
Milvus requires the partition key field to be a full schema defined
field, and not a dynamic one, so it will throw the error "the specified
partition key field {field} not exist" when creating the collection.
When `enabled_dynamic_field` is set to `True`, all schema field creation
based on `metadatas` is skipped. This code now checks if
`partition_key_field` is set, and creates the field.
Integration test added.
**Twitter handle:** StuartMarshUK
---------
Co-authored-by: Stuart Marsh <stuart.marsh@qumata.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** This PR makes the AthenaLoader profile_name optional
and fixes the type hint which says the type is `str` but it should be
`str` or `None` as None is handled in the loader init. This is a minor
problem but it just confused me when I was using the Athena Loader to
why we had to use a Profile, as I want that for local but not
production.
- **Issue:** #24957
- **Dependencies:** None.
Description: RetryWithErrorOutputParser.from_llm() creates a retry chain
that returns a Generation instance, when it should actually just return
a string.
This class was forgotten when fixing the issue in PR #24687
The comments inside some code blocks seems to be misplaced. The comment
lines containing explanation about `default_key` behavior when operating
with prompts are updated.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Added to `docs/how_to/tools_runtime` as a proof of concept, will apply
everywhere if we like.
A bit more compact than the default callouts, will help standardize the
layout of our pages since we frequently use these boxes.
<img width="1088" alt="Screenshot 2024-07-23 at 4 49 02 PM"
src="https://github.com/user-attachments/assets/7380801c-e092-4d31-bcd8-3652ee05f29e">
Hardens index commands with try/except for free clusters and optional
waits for syncing and tests.
[efriis](https://github.com/efriis) These are the upgrades to the search
index commands (CRUD) that I mentioned.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** The UnstructuredClient will have a breaking change in
the near future. Add a note in the docs that the examples here may not
use the latest version and users should refer to the SDK docs for the
latest info.
This PR introduces a module with some helper utilities for the pydantic
1 -> 2 migration.
They're meant to be used in the following way:
1) Use the utility code to get unit tests pass without requiring
modification to the unit tests
2) (If desired) upgrade the unit tests to match pydantic 2 output
3) (If desired) stop using the utility code
Currently, this module contains a way to map `schema()` generated by
pydantic 2 to (mostly) match the output from pydantic v1.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **Description:**
Support ChatMlflow.bind_tools method
Tested in Databricks:
<img width="836" alt="image"
src="https://github.com/user-attachments/assets/fa28ef50-0110-4698-8eda-4faf6f0b9ef8">
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
- **Description:** When adding docs for constructing ChatHuggingFace
using a HuggingFacePipeline, I forgot to add `return_full_text=False` as
an argument. In this setup, the chat response would incorrectly contain
all the input text. I am fixing that here by adding that line to the
offending notebook.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** This PR fixes a KeyError in NotionDBLoader when the
"name" key is missing in the "people" property.
**Issue:** Fixes#24223
**Dependencies:** None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
instead of hardcoding a linter for each, iterate through the lines of
the template notebook and find lines that start with `##` (includes
lower headings), and enforce that those headings are found in new docs
that are contributed
Add compatibility for pydantic 2 for a utility function.
This will help push some small changes to master, so they don't have to
be kept track of on a separate branch.
The @pre_init validator is a temporary solution for base models. It has
similar (but not identical) semantics to @root_validator(), but it works
strictly as a pre-init validator.
It'll work as expected as long as the pydantic model type hints were
correct.
supports following UX
```python
class SubTool(TypedDict):
"""Subtool docstring"""
args: Annotated[Dict[str, Any], {}, "this does bar"]
class Tool(TypedDict):
"""Docstring
Args:
arg1: foo
"""
arg1: str
arg2: Union[int, str]
arg3: Optional[List[SubTool]]
arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
arg5: Annotated[Optional[float], None]
```
- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
This PR adds annotations in comunity package.
Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.
This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
Title: [pebblo_retrieval] Identifying entities in prompts given in
PebbloRetrievalQA leading to prompt governance
Description: Implemented identification of entities in the prompt using
Pebblo prompt governance API.
Issue: NA
Dependencies: NA
Add tests and docs: NA
- **Title:** [PebbloSafeLoader] Implement content-size-based batching in
the classification flow(loader/doc API)
- **Description:**
- Implemented content-size-based batching in the loader/doc API, set to
100KB with no external configuration option, intentionally hard-coded to
prevent timeouts.
- Remove unused field(pb_id) from doc_metadata
- **Issue:** NA
- **Dependencies:** NA
- **Add tests and docs:** Updated
Description: The old method will be discontinued; use the official SDK
for more model options.
Issue: None
Dependencies: None
Twitter handle: None
Co-authored-by: trumanyan <trumanyan@tencent.com>
**Description:** Updated the Langgraph migration docs to use
`state_modifier` rather than `messages_modifier`
**Issue:** N/A
**Dependencies:** N/A
- [ X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
PR title: Experimental: Add config to convert_to_graph_documents
Description: In order to use langfuse, i need to pass the langfuse
configuration when invoking the chain. langchain_experimental does not
allow to add any parameters (beside the documents) to the
convert_to_graph_documents method. This way, I cannot monitor the chain
in langfuse.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Catarina Franco <catarina.franco@criticalsoftware.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
## Description
This PR:
- Fixes the validation error in `FastEmbedEmbeddings`.
- Adds support for `batch_size`, `parallel` params.
- Removes support for very old FastEmbed versions.
- Updates the FastEmbed doc with the new params.
Associated Issues:
- Resolves#24039
- Resolves #https://github.com/qdrant/fastembed/issues/296
**Description:**
This update significantly improves the Brave Search Tool's utility
within the LangChain library by enriching the search results it returns.
The tool previously returned title, link, and snippet, with the snippet
being a truncated 140-character description from the search engine. To
make the search results more informative, this update enables
extra_snippets by default and introduces additional result fields:
title, link, description (enhancing and renaming the former snippet
field), age, and snippets. The snippets field provides a list of strings
summarizing the webpage, utilizing Brave's capability for more detailed
search insights. This enhancement aims to make the search tool far more
informative and beneficial for users.
**Issue:** N/A
**Dependencies:** No additional dependencies introduced.
**Twitter handle:** @davidalexr987
**Code Changes Summary:**
- Changed the default setting to include extra_snippets in search
results.
- Renamed the snippet field to description to accurately reflect its
content and included an age field for search results.
- Introduced a snippets field that lists webpage summaries, providing
users with comprehensive search result insights.
**Backward Compatibility Note:**
The renaming of snippet to description improves the accuracy of the
returned data field but may impact existing users who have developed
integration's or analyses based on the snippet field. I believe this
change is essential for clarity and utility, and it aligns better with
the data provided by Brave Search.
**Additional Notes:**
This proposal focuses exclusively on the Brave Search package, without
affecting other LangChain packages or introducing new dependencies.
Description: Since moving away from `langchain-community` is
recommended, `init_chat_models()` should import ChatOllama from
`langchain-ollama` instead.
Anthropic models (including via Bedrock and other cloud platforms)
accept a status/is_error attribute on tool messages/results
(specifically in `tool_result` content blocks for Anthropic API). Adding
a ToolMessage.status attribute so that users can set this attribute when
using those models
**Description:** Add empty string default for api_key and change
`server_url` to `url` to match existing loaders.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description**
Fixes DocumentDBVectorSearch similarity_search when no filter is used;
it defaults to None but $match does not accept None, so changed default
to empty {} before pipeline is created.
**Issue**
AWS DocumentDB similarity search does not work when no filter is used.
Error msg: "the match filter must be an expression in an object" #24775
**Dependencies**
No dependencies
**Twitter handle**
https://x.com/perepasamonte
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Mixtral with Groq has started consistently failing tool calling tests.
Here we restrict testing to llama 3.1.
- `.schema` is deprecated in pydantic proper in favor of
`.model_json_schema`.
There is an issue with the prompt format in `GenerativeAgentMemory` ,
try to fix it.
The prompt is same as the one in method `_score_memory_importance`.
issue: #24615
descriptions: The _Graph pydantic model generated from
create_simple_model (which LLMGraphTransformer uses when allowed nodes
and relationships are provided) does not constrain the relationships
(source and target types, relationship type), and the node and
relationship properties with enums when using ChatOpenAI.
The issue is that when calling optional_enum_field throughout
create_simple_model the llm_type parameter is not passed in except for
when creating node type. Passing it into each call fixes the issue.
Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
- [ ] **PR title**: "langchain-openai: openai proxy added to base
embeddings"
- [ ] **PR message**:
- **Description:**
Dear langchain developers,
You've already supported proxy for ChatOpenAI implementation in your
package. At the same time, if somebody needed to use proxy for chat, it
also could be necessary to be able to use it for OpenAIEmbeddings.
That's why I think it's important to add proxy support for OpenAI
embeddings. That's what I've done in this PR.
@baskaryan
---------
Co-authored-by: karpov <karpov@dohod.ru>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "Add documentaiton on InMemoryVectorStore driver for
MemoryDB to langchain-aws"
- Langchain-aws repo :Add MemoryDB documentation
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Added documentation on InMemoryVectorStore driver to
aws.mdx and usage example on MemoryDB clusuter
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
Add memorydb notebook to docs/docs/integrations/ folde
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
In the `ChatFireworks` class definition, the Field() call for the "stop"
("stop_sequences") parameter is missing the "default" keyword.
**Issue:**
Type checker reports "stop_sequences" as a missing arg (not recognizing
the default value is None)
**Dependencies:**
None
**Twitter handle:**
None
Description: OutputFixingParser.from_llm() creates a retry chain that
returns a Generation instance, when it should actually just return a
string.
Issue: https://github.com/langchain-ai/langchain/issues/24600
Twitter handle: scribu
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Thank you for contributing to LangChain!
- [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds support for the Yi model to LangChain.
- **Dependencies:**
[langchain_core,requests,contextlib,typing,logging,json,langchain_community]
- **Twitter handle:** 01.AI
- [x] **Add tests and docs**: I've added the corresponding documentation
to the relevant paths
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Raise `LangChainException` instead of `Exception`. This alleviates the
need for library users to use bare try/except to handle exceptions
raised by `AzureSearch`.
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description:
add a optional score relevance threshold for select only coherent
document, it's in complement of top_n
Discussion:
add relevance score threshold in flashrank_rerank document compressors
#24013
Dependencies:
no dependencies
---------
Co-authored-by: Benjamin BERNARD <benjamin.bernard@openpathview.fr>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description:
- This PR adds a self query retriever implementation for SAP HANA Cloud
Vector Engine. The retriever supports all operators except for contains.
- Issue: N/A
- Dependencies: no new dependencies added
**Add tests and docs:**
Added integration tests to:
libs/community/tests/unit_tests/query_constructors/test_hanavector.py
**Documentation for self query retriever:**
/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Expanded the chat model functionality to support tools
in the 'baichuan.py' file. Updated module imports and added tool object
handling in message conversions. Additional changes include the
implementation of tool binding and related unit tests. The alterations
offer enhanced model capabilities by enabling interaction with tool-like
objects.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- [x] **PR title**:
community: Add OCI Generative AI tool and structured output support
- [x] **PR message**:
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
- [x] **Add tests and docs**:
1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb
- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
This PR proposes to create a rate limiter in the chat model directly,
and would replace: https://github.com/langchain-ai/langchain/pull/21992
It resolves most of the constraints that the Runnable rate limiter
introduced:
1. It's not annoying to apply the rate limiter to existing code; i.e.,
possible to roll out the change at the location where the model is
instantiated,
rather than at every location where the model is used! (Which is
necessary
if the model is used in different ways in a given application.)
2. batch rate limiting is enforced properly
3. the rate limiter works correctly with streaming
4. the rate limiter is aware of the cache
5. The rate limiter can take into account information about the inputs
into the
model (we can add optional inputs to it down-the road together with
outputs!)
The only downside is that information will not be properly reflected in
tracing
as we don't have any metadata evens about a rate limiter. So the total
time
spent on a model invocation will be:
* time spent waiting for the rate limiter
* time spend on the actual model request
## Example
```python
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_groq import ChatGroq
groq = ChatGroq(rate_limiter=InMemoryRateLimiter(check_every_n_seconds=1))
groq.invoke('hello')
```
**Description:**
- This PR exposes some functions in VDMS vectorstore, updates VDMS
related notebooks, updates tests, and upgrade version of VDMS (>=0.0.20)
**Issue:** N/A
**Dependencies:**
- Update vdms>=0.0.20
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Lots of duplicated content from concepts, missing pointers to the second
half of the tool calling loop
Simpler + more focused + a more prominent link to the second half of the
loop was what I was aiming for, but down to be more conservative and
just more prominently link the "passing tools back to the model" guide.
I have also moved the tool calling conceptual guide out from under
`Structured Output` (while leaving a small section for structured
output-specific information) and added more content. The existing
`#functiontool-calling` link will go to this new section.
Fixes for Eden AI Custom tools and ChatEdenAI:
- add missing import in __init__ of chat_models
- add `args_schema` to custom tools. otherwise '__arg1' would sometimes
be passed to the `run` method
- fix IndexError when no human msg is added in ChatEdenAI
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Mistral appears to have added validation for the format of its tool call
IDs:
`{"object":"error","message":"Tool call id was abc123 but must be a-z,
A-Z, 0-9, with a length of
9.","type":"invalid_request_error","param":null,"code":null}`
This breaks compatibility of messages from other providers. Here we add
a function that converts any string to a Mistral-valid tool call ID, and
apply it to incoming messages.
Thank you for contributing to LangChain!
**Description:**
This PR allows users of `langchain_community.llms.ollama.Ollama` to
specify the `auth` parameter, which is then forwarded to all internal
calls of `requests.request`. This works in the same way as the existing
`headers` parameters. The auth parameter enables the usage of the given
class with Ollama instances, which are secured by more complex
authentication mechanisms, that do not only rely on static headers. An
example are AWS API Gateways secured by the IAM authorizer, which
expects signatures dynamically calculated on the specific HTTP request.
**Issue:**
Integrating a remote LLM running through Ollama using
`langchain_community.llms.ollama.Ollama` only allows setting static HTTP
headers with the parameter `headers`. This does not work, if the given
instance of Ollama is secured with an authentication mechanism that
makes use of dynamically created HTTP headers which for example may
depend on the content of a given request.
**Dependencies:**
None
**Twitter handle:**
None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
### Description
* support asynchronous in InMemoryVectorStore
* since embeddings might be possible to call asynchronously, ensure that
both asynchronous and synchronous functions operate correctly.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR introduces the following Runnables:
1. BaseRateLimiter: an abstraction for specifying a time based rate
limiter as a Runnable
2. InMemoryRateLimiter: Provides an in-memory implementation of a rate
limiter
## Example
```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
from datetime import datetime
foo = InMemoryRateLimiter(requests_per_second=0.5)
def meow(x):
print(datetime.now().strftime("%H:%M:%S.%f"))
return x
chain = foo | meow
for _ in range(10):
print(chain.invoke('hello'))
```
Produces:
```
17:12:07.530151
hello
17:12:09.537932
hello
17:12:11.548375
hello
17:12:13.558383
hello
17:12:15.568348
hello
17:12:17.578171
hello
17:12:19.587508
hello
17:12:21.597877
hello
17:12:23.607707
hello
17:12:25.617978
hello
```

## Interface
The rate limiter uses the following interface for acquiring a token:
```python
class BaseRateLimiter(Runnable[Input, Output], abc.ABC):
@abc.abstractmethod
def acquire(self, *, blocking: bool = True) -> bool:
"""Attempt to acquire the necessary tokens for the rate limiter.```
```
The flag `blocking` has been added to the abstraction to allow
supporting streaming (which is easier if blocking=False).
## Limitations
- The rate limiter is not designed to work across different processes.
It is an in-memory rate limiter, but it is thread safe.
- The rate limiter only supports time-based rate limiting. It does not
take into account the size of the request or any other factors.
- The current implementation does not handle streaming inputs well and
will consume all inputs even if the rate limit has been reached. Better
support for streaming inputs will be added in the future.
- When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
One way to mitigate this is to use batch_as_completed() or
abatch_as_completed().
## Bursty behavior in `batch` and `abatch`
When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
This becomes a problem if users are using `batch` and `abatch` with many
inputs (e.g., 100). In this case, there will be a burst of 100 inputs
into the batch of the rate limited runnable.
1. Using a RunnableBinding
The API would look like:
```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
rate_limiter = InMemoryRateLimiter(requests_per_second=0.5)
def meow(x):
return x
rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter)
```
2. Another option is to add some init option to RunnableSequence that
changes `.batch()` to be depth first (e.g., by delegating to
`batch_as_completed`)
```python
RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first')
```
Pros: Does not require Runnable Binding
Cons: Feels over-complicated
Added [ScrapingAnt](https://scrapingant.com/) Web Loader integration.
ScrapingAnt is a web scraping API that allows extracting web page data
into accessible and well-formatted markdown.
Description: Added ScrapingAnt web loader for retrieving web page data
as markdown
Dependencies: scrapingant-client
Twitter: @WeRunTheWorld3
---------
Co-authored-by: Oleg Kulyk <oleg@scrapingant.com>
#### Update (2):
A single `UnstructuredLoader` is added to handle both local and api
partitioning. This loader also handles single or multiple documents.
#### Changes in `community`:
Changes here do not affect users. In the initial process of using the
SDK for the API Loaders, the Loaders in community were refactored.
Other changes include:
The `UnstructuredBaseLoader` has a new check to see if both
`mode="paged"` and `chunking_strategy="by_page"`. It also now has
`Element.element_id` added to the `Document.metadata`.
`UnstructuredAPIFileLoader` and `UnstructuredAPIFileIOLoader`. As such,
now both directly inherit from `UnstructuredBaseLoader` and initialize
their `file_path`/`file` attributes respectively and implement their own
`_post_process_elements` methods.
--------
#### Update:
New SDK Loaders in a [partner
package](https://python.langchain.com/v0.1/docs/contributing/integrations/#partner-package-in-langchain-repo)
are introduced to prevent breaking changes for users (see discussion
below).
##### TODO:
- [x] Test docstring examples
--------
- **Description:** UnstructuredAPIFileIOLoader and
UnstructuredAPIFileLoader calls to the unstructured api are now made
using the unstructured-client sdk.
- **New Dependencies:** unstructured-client
- [x] **Add tests and docs**: If you're adding a new integration, please
include
- [x] a test for the integration, preferably unit tests that do not rely
on network access,
- [x] update the description in
`docs/docs/integrations/providers/unstructured.mdx`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
TODO:
- [x] Update
https://python.langchain.com/v0.1/docs/integrations/document_loaders/unstructured_file/#unstructured-api
-
`langchain/docs/docs/integrations/document_loaders/unstructured_file.ipynb`
- The description here needs to indicate that users should install
`unstructured-client` instead of `unstructured`. Read over closely to
look for any other changes that need to be made.
- [x] Update the `lazy_load` method in `UnstructuredBaseLoader` to
handle json responses from the API instead of just lists of elements.
- This method may need to be overwritten by the API loaders instead of
changing it in the `UnstructuredBaseLoader`.
- [x] Update the documentation links in the class docstrings (the
Unstructured documents have moved)
- [x] Update Document.metadata to include `element_id` (see thread
[here](https://unstructuredw-kbe4326.slack.com/archives/C044N0YV08G/p1718187499818419))
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
- [ ] **PR title**: "experimental: Adding compatibility for
OllamaFunctions with ImagePromptTemplate"
- [ ] **PR message**:
- **Description:** Removes the outdated
`_convert_messages_to_ollama_messages` method override in the
`OllamaFunctions` class to ensure that ollama multimodal models can be
invoked with an image.
- **Issue:** #24174
---------
Co-authored-by: Joel Akeret <joel.akeret@ti&m.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
add dynamic field feature to langchain_milvus
more unittest, more robustic
plan to deprecate the `metadata_field` in the future, because it's
function is the same as `enable_dynamic_field`, but the latter one is a
more advanced concept in milvus
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This linter is meant to move development to use __init__ instead of
root_validator and validator.
We need to investigate whether we need to lint some of the functionality
of Field (e.g., `lt` and `gt`, `alias`)
`alias` is the one that's most popular:
(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "alias=" | wc -l
144
(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "ge=" | wc -l
10
(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "gt=" | wc -l
4
This PR is under WIP and adds the following functionalities:
- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
- [ ] **Community**: "Retrievers: Product Quantization"
- [X] This PR adds Product Quantization feature to the retrievers to the
Langchain Community. PQ is one of the fastest retrieval methods if the
embeddings are rich enough in context due to the concepts of
quantization and representation through centroids
- **Description:** Adding PQ as one of the retrievers
- **Dependencies:** using the package nanopq for this PR
- **Twitter handle:** vishnunkumar_
- [X] **Add tests and docs**: If you're adding a new integration, please
include
- [X] Added unit tests for the same in the retrievers.
- [] Will add an example notebook subsequently
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/ -
done the same
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: Update IBM docs about information to pass client
into WatsonxLLM and WatsonxEmbeddings object.
- [x] **PR message**:
- **Description:** Update IBM docs about information to pass client into
WatsonxLLM and WatsonxEmbeddings object.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for contributing to LangChain!
- This PR adds vector search filtering for Azure Cosmos DB Mongo vCore
and NoSQL.
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description**
Add support for Pinecone hosted embedding models as
`PineconeEmbeddings`. Replacement for #22890
**Dependencies**
Add `aiohttp` to support async embeddings call against REST directly
- [x] **Add tests and docs**: If you're adding a new integration, please
include
Added `docs/docs/integrations/text_embedding/pinecone.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Twitter: `gdjdg17`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method
- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
The previous implementation would never be called.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out [`create_sql_query_chain`](https://github.com/langchain-ai/langchain/blob/master/docs/extras/use_cases/tabular/sql_query.ipynb)
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out this [`SQL question-answering tutorial`](https://python.langchain.com/v0.2/docs/tutorials/sql_qa/#convert-question-to-sql-query)
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
[](https://codespaces.new/langchain-ai/langchain)
@@ -15,18 +14,20 @@
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
### Open-source libraries
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
@@ -50,9 +52,11 @@ Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-c
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it.
### Productionization:
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.

@@ -77,15 +81,17 @@ Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-c
And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more.
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1.**Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2.**Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
## LangChain Expression Language (LCEL)
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows.
- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
@@ -124,7 +130,6 @@ Please see [here](https://python.langchain.com) for full documentation, which in
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
## 💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
@@ -4,6 +4,8 @@ Example code for building applications with LangChain, with an emphasis on more
Notebook | Description
:- | :-
[agent_fireworks_ai_langchain_mongodb.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/agent_fireworks_ai_langchain_mongodb.ipynb) | Build an AI Agent With Memory Using MongoDB, LangChain and FireWorksAI.
[mongodb-langchain-cache-memory.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/mongodb-langchain-cache-memory.ipynb) | Build a RAG Application with Semantic Cache Using MongoDB and LangChain.
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a SQL database using an open source llm (llama2), specifically demonstrated on an SQLite database containing rosters.
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
@@ -36,6 +38,7 @@ Notebook | Description
[llm_symbolic_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_symbolic_math.ipynb) | Solve algebraic equations with the help of llms (language learning models) and sympy, a python library for symbolic mathematics.
[meta_prompt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/meta_prompt.ipynb) | Implement the meta-prompt concept, which is a method for building self-improving agents that reflect on their own performance and modify their instructions accordingly.
[multi_modal_output_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_output_agent.ipynb) | Generate multi-modal outputs, specifically images and text.
[multi_modal_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_RAG_vdms.ipynb) | Perform retrieval-augmented generation (rag) on documents including text and images, using unstructured for parsing, Intel's Visual Data Management System (VDMS) as the vectorstore, and chains.
[multi_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_player_dnd.ipynb) | Simulate multi-player dungeons & dragons games, with a custom function determining the speaking schedule of the agents.
[multiagent_authoritarian.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_authoritarian.ipynb) | Implement a multi-agent simulation where a privileged agent controls the conversation, including deciding who speaks and when the conversation ends, in the context of a simulated news network.
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
"We'll use the LangChain [SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase) interface to connect to our DB and query it. This works with any SQL database supported by [SQLAlchemy](https://www.sqlalchemy.org/)."
"We'll use the LangChain [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase) interface to connect to our DB and query it. This works with any SQL database supported by [SQLAlchemy](https://www.sqlalchemy.org/)."
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/toolkits/sql_database.html) for answering questions over a Databricks database."
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/tools/sql_database) for answering questions over a Databricks database."
"* Use of multimodal embeddings (such as [CLIP](https://openai.com/research/clip)) to embed images and text\n",
"* Use of [VDMS](https://github.com/IntelLabs/vdms/blob/master/README.md) as a vector store with support for multi-modal\n",
"* Retrieval of both images and text using similarity search\n",
"* Passing raw images and text chunks to a multimodal LLM for answer synthesis \n",
"\n",
"\n",
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
"* Passing raw images and text chunks to a multimodal LLM for answer synthesis "
]
},
{
@@ -53,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"id": "5f483872",
"metadata": {},
"outputs": [
@@ -61,8 +42,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"docker: Error response from daemon: Conflict. The container name \"/vdms_rag_nb\" is already in use by container \"0c19ed281463ac10d7efe07eb815643e3e534ddf24844357039453ad2b0c27e8\". You have to remove (or rename) that container to be able to reuse that name.\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
"We can use `partition_pdf` below from [Unstructured](https://unstructured-io.github.io/unstructured/introduction.html#key-concepts) to extract text and images."
"We can use `partition_pdf` from [Unstructured](https://unstructured-io.github.io/unstructured/introduction.html#key-concepts) to extract text and images."
"We will use [OpenClip multimodal embeddings](https://python.langchain.com/docs/integrations/text_embedding/open_clip).\n",
"\n",
"We use a larger model for better performance (set in `langchain_experimental.open_clip.py`).\n",
"\n",
"```\n",
"model_name = \"ViT-g-14\"\n",
"checkpoint = \"laion2b_s34b_b88k\"\n",
"```"
"In this section, we initialize the VDMS vector store for both text and images. For better performance, we use model `ViT-g-14` from [OpenClip multimodal embeddings](https://python.langchain.com/docs/integrations/text_embedding/open_clip).\n",
"The images are stored as base64 encoded strings with `vectorstore.add_images`.\n"
"`vectorstore.add_images` will store / retrieve images as base64 encoded strings."
"Here we define helper functions for image results."
]
},
{
@@ -392,7 +382,8 @@
"id": "1566096d-97c2-4ddc-ba4a-6ef88c525e4e",
"metadata": {},
"source": [
"## Test retrieval and run RAG"
"## Test retrieval and run RAG\n",
"Now let's query for a `woman with children` and retrieve the top results."
]
},
{
@@ -452,6 +443,14 @@
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"id": "15e9b54d",
"metadata": {},
"source": [
"Now let's use the `multi_modal_rag_chain` to process the same query and display the response."
]
},
{
"cell_type": "code",
"execution_count": 11,
@@ -462,10 +461,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
"1. Detailed description of the visual elements in the image: The image features a woman with children, likely a mother and her family, standing together outside. They appear to be poor or struggling financially, as indicated by their attire and surroundings.\n",
"2. Historical and cultural context of the image: The photo was taken in 1936 during the Great Depression, when many families struggled to make ends meet. Dorothea Lange, a renowned American photographer, took this iconic photograph that became an emblem of poverty and hardship experienced by many Americans at that time.\n",
"3. Interpretation of the image's symbolism and meaning: The image conveys a sense of unity and resilience despite adversity. The woman and her children are standing together, displaying their strength as a family unit in the face of economic challenges. The photograph also serves as a reminder of the importance of empathy and support for those who are struggling.\n",
"4. Connections between the image and the related text: The text provided offers additional context about the woman in the photo, her background, and her feelings towards the photograph. It highlights the historical backdrop of the Great Depression and emphasizes the significance of this particular image as a representation of that time period.\n"
" The image depicts a woman with several children. The woman appears to be of Cherokee heritage, as suggested by the text provided. The image is described as having been initially regretted by the subject, Florence Owens Thompson, due to her feeling that it did not accurately represent her leadership qualities.\n",
"The historical and cultural context of the image is tied to the Great Depression and the Dust Bowl, both of which affected the Cherokee people in Oklahoma. The photograph was taken during this period, and its subject, Florence Owens Thompson, was a leader within her community who worked tirelessly to help those affected by these crises.\n",
"The image's symbolism and meaning can be interpreted as a representation of resilience and strength in the face of adversity. The woman is depicted with multiple children, which could signify her role as a caregiver and protector during difficult times.\n",
"Connections between the image and the related text include Florence Owens Thompson's leadership qualities and her regretted feelings about the photograph. Additionally, the mention of Dorothea Lange, the photographer who took this photo, ties the image to its historical context and the broader narrative of the Great Depression and Dust Bowl in Oklahoma. \n"
"**Now we see the results are correct as it is mentioned in earnings release.** <br>\n",
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents seperately**"
"**To further automate, we will create a chain that will take input as question and retriever so that we don't need to retrieve documents separately**"
* master color map. Only the colors that actually differ between light and dark
* themes are specified separately.
*
* To see the full list of colors see https://www.figma.com/file/rUrrHGhUBBIAAjQ82x6pz9/PyData-Design-system---proposal-for-implementation-(2)?node-id=1234%3A765&t=ifcFT1JtnrSshGfi-1
..NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
..currentmodule:: {{ module }}
..autoclass:: {{ objname }}
..NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
..NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
..NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024-01-08 | `Cookbook:` [together_ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023-12-11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023-11-15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023-10-17 | `Cookbook:` [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023-10-09 | `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023-07-18 | `Cookbook:` [Semi_Structured_RAG](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023-05-23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [tree_of_thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023-05-06 | `Cookbook:` [plan_and_execute_agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023-04-07 | `Cookbook:` [multiagent_bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb), [generative_agents_interactive_simulacra_of_human_behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb)
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023-03-31 | `Cookbook:` [camel_role_playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
| `2303.08774v6` [GPT-4 Technical Report](http://arxiv.org/abs/2303.08774v6) | OpenAI, Josh Achiam, Steven Adler, et al. | 2023-03-15 | `Docs:` [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb)
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), `Cookbook:` [program_aided_language_model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022-10-06 | `Docs:` [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/integrations/chat/huggingface](https://python.langchain.com/docs/integrations/chat/huggingface), [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `API:` [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL), [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference)
| `1908.10084v1` [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](http://arxiv.org/abs/1908.10084v1) | Nils Reimers, Iryna Gurevych | 2019-08-27 | `Docs:` [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024‑03‑21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024‑02‑06 | `Cookbook:` [Self-Discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb)
| `2402.03367v2` [RAG-Fusion: a New Take on Retrieval-Augmented Generation](http://arxiv.org/abs/2402.03367v2) | Zackary Rackauckas | 2024‑01‑31 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024‑01‑16 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024‑01‑08 | `Cookbook:` [Together Ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb)
| `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023‑12‑11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval)
| `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023‑11‑15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki)
| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023‑10‑17 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb)
| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023‑10‑09 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb)
| `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023‑07‑18 | `Cookbook:` [Semi Structured Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb)
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023‑07‑06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder)
| `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023‑05‑23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [Rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb)
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023‑05‑15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [Tree Of Thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb)
| `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023‑05‑06 | `Cookbook:` [Plan And Execute Agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb)
| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023‑05‑03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank)
| `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023‑04‑17 | `Cookbook:` [Semi Structured Multi Modal Rag Llama2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi Structured And Multi Modal Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb)
| `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023‑04‑07 | `Cookbook:` [Generative Agents Interactive Simulacra Of Human Behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [Multiagent Bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb)
| `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023‑03‑31 | `Cookbook:` [Camel Role Playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb)
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023‑03‑30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [Hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb)
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023‑01‑24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022‑12‑15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain)
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022‑12‑12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022‑11‑25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022‑11‑18 | `API:` [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [Program Aided Language Model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb)
| `2210.11934v2` [An Analysis of Fusion Functions for Hybrid Retrieval](http://arxiv.org/abs/2210.11934v2) | Sebastian Bruch, Siyu Gai, Amir Ingber | 2022‑10‑21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022‑10‑06 | `Docs:` [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022‑09‑22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake)
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022‑05‑25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022‑03‑15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022‑02‑01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021‑12‑02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021‑02‑26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020‑05‑28 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020‑05‑22 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts)
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019‑09‑11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
## Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
- **Authors:** Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al.
@@ -15,11 +15,6 @@ The interfaces for core components like LLMs, vector stores, retrievers and more
No third party integrations are defined here.
The dependencies are kept purposefully very lightweight.
### Partner packages
While the long tail of integrations are in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
### `langchain`
The main `langchain` package contains chains, agents, and retrieval strategies that make up an application's cognitive architecture.
@@ -33,6 +28,11 @@ Key partner packages are separated out (see below).
This contains all integrations for various components (LLMs, vector stores, retrievers).
All dependencies in this package are optional to keep the package as lightweight as possible.
### Partner packages
While the long tail of integrations is in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
`langgraph` is an extension of `langchain` aimed at
@@ -61,28 +61,28 @@ A developer platform that lets you debug, test, evaluate, and monitor LLM applic
## LangChain Expression Language (LCEL)
<span data-heading-keywords="lcel"></span>
LangChain Expression Language, or LCEL, is a declarative way to chain LangChain components.
`LangChain Expression Language`, or `LCEL`, is a declarative way to chain LangChain components.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (we’ve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
**First-class streaming support**
- **First-class streaming support:**
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
**Async support**
- **Async support:**
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langserve/) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
**Optimized parallel execution**
- **Optimized parallel execution:**
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
**Retries and fallbacks**
- **Retries and fallbacks:**
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. We’re currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
**Access intermediate results**
- **Access intermediate results:**
For more complex chains it’s often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and it’s available on every [LangServe](/docs/langserve) server.
**Input and output schemas**
- **Input and output schemas**
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way.
The standard interface includes:
@@ -165,7 +165,7 @@ Some important things to note:
ChatModels also accept other parameters that are specific to that integration. To find all the parameters supported by a ChatModel head to the API reference for that model.
:::important
**Tool Calling** Some chat models have been fine-tuned for tool calling and provide a dedicated API for tool calling.
Some chat models have been fine-tuned for **tool calling** and provide a dedicated API for it.
Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling.
Please see the [tool calling section](/docs/concepts/#functiontool-calling) for more information.
:::
@@ -186,7 +186,7 @@ For a full list of LangChain model providers with multimodal models, [check out
<span data-heading-keywords="llm,llms"></span>
:::caution
Pure text-in/text-out LLMs tend to be older or lower-level. Many popular models are best used as [chat completion models](/docs/concepts/#chat-models),
Pure text-in/text-out LLMs tend to be older or lower-level. Many new popular models are best used as [chat completion models](/docs/concepts/#chat-models),
even for non-chat use cases.
You are probably looking for [the section above instead](/docs/concepts/#chat-models).
@@ -201,7 +201,7 @@ When messages are passed in as input, they will be formatted into a string under
LangChain does not host any LLMs, rather we rely on third party integrations.
For specifics on how to use LLMs, see the [relevant how-to guides here](/docs/how_to/#llms).
For specifics on how to use LLMs, see the [how-to guides](/docs/how_to/#llms).
### Messages
@@ -209,22 +209,25 @@ Some language models take a list of messages as input and return a message.
There are a few different types of messages.
All messages have a `role`, `content`, and `response_metadata` property.
The `role` describes WHO is saying the message.
The `role` describes WHO is saying the message. The standard roles are "user", "assistant", "system", and "tool".
LangChain has different message classes for different roles.
The `content` property describes the content of the message.
This can be a few different things:
- A string (most models deal this type of content)
- A string (most models deal with this type of content)
- A List of dictionaries (this is used for multimodal input, where the dictionary contains information about that input type and that input location)
Optionally, messages can have a `name` property which allows for differentiating between multiple speakers with the same role.
For example, if there are two users in the chat history it can be useful to differentiate between them. Not all models support this.
#### HumanMessage
This represents a message from the user.
This represents a message with role "user".
#### AIMessage
This represents a message from the model. In addition to the `content` property, these messages also have:
This represents a message with role "assistant". In addition to the `content` property, these messages also have:
**`response_metadata`**
@@ -244,18 +247,18 @@ This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with t
#### SystemMessage
This represents a system message, which tells the model how to behave. Not every model provider supports this.
This represents a message with role "system", which tells the model how to behave. Not every model provider supports this.
#### ToolMessage
This represents the result of a tool call. In addition to `role` and `content`, this message has:
This represents a message with role "tool", which contains the result of calling a tool. In addition to `role` and `content`, this message has:
- a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result.
- an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model.
#### (Legacy) FunctionMessage
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. ToolMessage should be used instead to correspond to the updated tool-calling API.
This is a legacy message type, corresponding to OpenAI's legacy function-calling API. `ToolMessage` should be used instead to correspond to the updated tool-calling API.
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
@@ -343,6 +346,7 @@ For specifics on how to use prompt templates, see the [relevant how-to guides he
### Example selectors
One common prompting technique for achieving better performance is to include examples as part of the prompt.
This is known as [few-shot prompting](/docs/concepts/#few-shot-prompting).
This gives the language model concrete examples of how it should behave.
Sometimes these examples are hardcoded into the prompt, but for more advanced situations it may be nice to dynamically select them.
Example Selectors are classes responsible for selecting and then formatting examples into prompts.
@@ -361,38 +365,32 @@ See documentation for that [here](/docs/concepts/#function-tool-calling).
:::
Responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
`Output parser` is responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
Useful when you are using LLMs to generate structured data, or to normalize output from chat models and LLMs.
LangChain has lots of different types of output parsers. This is a list of output parsers LangChain supports. The table below has various pieces of information:
**Name**: The name of the output parser
**Supports Streaming**: Whether the output parser supports streaming.
**Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
**Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
**Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
**Output Type**: The output type of the object returned by the parser.
**Description**: Our commentary on this output parser and when to use it.
- **Name**: The name of the output parser
- **Supports Streaming**: Whether the output parser supports streaming.
- **Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
- **Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
- **Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
- **Output Type**: The output type of the object returned by the parser.
- **Description**: Our commentary on this output parser and when to use it.
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
| [JSON](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
| [RetryWithError](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
| [Pydantic](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
| [YAML](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
| [Enum](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
| [Datetime](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
| [Structured](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
| [JSON](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
| [RetryWithError](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
| [Pydantic](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
| [YAML](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
| [Enum](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
| [Datetime](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
| [Structured](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
For specifics on how to use output parsers, see the [relevant how-to guides here](/docs/how_to/#output-parsers).
@@ -498,6 +496,30 @@ Retrievers accept a string query as input and return a list of Document's as out
For specifics on how to use retrievers, see the [relevant how-to guides here](/docs/how_to/#retrievers).
### Key-value stores
For some techniques, such as [indexing and retrieval with multiple vectors per document](/docs/how_to/multi_vector/) or
[caching embeddings](/docs/how_to/caching_embeddings/), having a form of key-value (KV) storage is helpful.
LangChain includes a [`BaseStore`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) interface,
which allows for storage of arbitrary data. However, LangChain components that require KV-storage accept a
more specific `BaseStore[str, bytes]` instance that stores binary data (referred to as a `ByteStore`), and internally take care of
encoding and decoding data for their specific needs.
This means that as a user, you only need to think about one type of store rather than different ones for different types of data.
#### Interface
All [`BaseStores`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows
for modifying **multiple** key-value pairs at once:
- `mget(key: Sequence[str]) -> List[Optional[bytes]]`: get the contents of multiple keys, returning `None` if the key does not exist
- `mset(key_value_pairs: Sequence[Tuple[str, bytes]]) -> None`: set the contents of multiple keys
# -> ToolMessage(content="tool result foobar...", tool_call_id=..., name="tool_name")
# -> ToolMessage(
content="tool result foobar...",
tool_call_id=...,
name="tool_name"
)
```
If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things.
@@ -606,14 +644,14 @@ The results of those actions can then be fed back into the agent and it determin
[LangGraph](https://github.com/langchain-ai/langgraph) is an extension of LangChain specifically aimed at creating highly controllable and customizable agents.
Please check out that documentation for a more in depth overview of agent concepts.
There is a legacy agent concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
There is a legacy `agent` concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
AgentExecutor was essentially a runtime for agents.
It was a great place to get started, however, it was not flexible enough as you started to have more customized agents.
In order to solve that we built LangGraph to be this flexible, highly-controllable runtime.
If you are still using AgentExecutor, do not fear: we still have a guide on [how to use AgentExecutor](/docs/how_to/agent_executor).
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
In order to assist in this, we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent).
@@ -670,10 +708,10 @@ You can subscribe to these events by using the `callbacks` argument available th
Callback handlers can either be `sync` or `async`:
* Sync callback handlers implement the [BaseCallbackHandler](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
#### Passing callbacks
@@ -699,7 +737,7 @@ callbacks to any child objects.
:::important Async in Python<=3.10
Any `RunnableLambda`, a `RunnableGenerator`, or `Tool` that invokes other runnables
and is running async in python<=3.10, will have to propagate callbacks to child
and is running `async` in python<=3.10, will have to propagate callbacks to child
objects manually. This is because LangChain cannot automatically propagate
callbacks to child objects in this case.
@@ -741,7 +779,7 @@ For models (or other components) that don't support streaming natively, this ite
you could still use the same general pattern when calling them. Using `.stream()` will also automatically call the model in streaming mode
without the need to provide additional config.
The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html).
The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html).
Because this method is part of [LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel),
you can handle formatting differences from different outputs using an [output parser](/docs/concepts/#output-parsers) to transform
each yielded chunk.
@@ -789,10 +827,10 @@ including a table listing available events.
#### Callbacks
The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a
callback handler that handles the [`on_llm_new_token`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
callback handler that handles the [`on_llm_new_token`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any
[LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls
the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response.
You can also handle the [`on_llm_end`](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can also handle the [`on_llm_end`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup.
You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks.
@@ -826,6 +864,61 @@ units (like words or subwords) that carry meaning, rather than individual charac
to learn and understand the structure of the language, including grammar and context.
Furthermore, using tokens can also improve efficiency, since the model processes fewer units of text compared to character-level processing.
### Function/tool calling
:::info
We use the term `tool calling` interchangeably with `function calling`. Although
function calling is sometimes meant to refer to invocations of a single function,
we treat all models as though they can return multiple tool or function calls in
each message.
:::
Tool calling allows a [chat model](/docs/concepts/#chat-models) to respond to a given prompt by generating output that
matches a user-defined schema.
While the name implies that the model is performing
some action, this is actually not the case! The model only generates the arguments to a tool, and actually running the tool (or not) is up to the user.
One common example where you **wouldn't** want to call a function with the generated arguments
is if you want to [extract structured output matching some schema](/docs/concepts/#structured-output)
from unstructured text. You would give the model an "extraction" tool that takes
parameters matching the desired schema, then treat the generated output as your final
result.

Tool calling is not universal, but is supported by many popular LLM providers, including [Anthropic](/docs/integrations/chat/anthropic/),
[Mistral](/docs/integrations/chat/mistralai/), [OpenAI](/docs/integrations/chat/openai/), and even for locally-running models via [Ollama](/docs/integrations/chat/ollama/).
LangChain provides a standardized interface for tool calling that is consistent across different models.
The standard interface consists of:
* `ChatModel.bind_tools()`: a method for specifying which tools are available for a model to call. This method accepts [LangChain tools](/docs/concepts/#tools) as well as [Pydantic](https://pydantic.dev/) objects.
* `AIMessage.tool_calls`: an attribute on the `AIMessage` returned from the model for accessing the tool calls requested by the model.
#### Tool usage
After the model calls tools, you can use the tool by invoking it, then passing the arguments back to the model.
LangChain provides the [`Tool`](/docs/concepts/#tools) abstraction to help you handle this.
The general flow is this:
1. Generate tool calls with a chat model in response to a query.
2. Invoke the appropriate tools using the generated tool call as arguments.
3. Format the result of the tool invocations as [`ToolMessages`](/docs/concepts/#toolmessage).
4. Pass the entire list of messages back to the model so that it can generate a final answer (or call more tools).

This is how tool calling [agents](/docs/concepts/#agents) perform tasks and answer queries.
Check out some more focused guides below:
- [How to use chat models to call tools](/docs/how_to/tool_calling/)
- [How to pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model/)
- [Building an agent with LangGraph](https://langchain-ai.github.io/langgraph/tutorials/introduction/)
### Structured output
LLMs are capable of generating arbitrary text. This enables the model to respond appropriately to a wide
@@ -869,7 +962,6 @@ structured_llm.invoke("Tell me a joke about cats")
```
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
```
We recommend this method as a starting point when working with structured output:
@@ -958,58 +1050,139 @@ chain.invoke({ "question": "What is the powerhouse of the cell?" })
For a full list of model providers that support JSON mode, see [this table](/docs/integrations/chat/#advanced-features).
[Mistral](https://mistral.ai/), [OpenAI](https://openai.com/), and others,
support variants of a tool calling feature. These features typically allow requests
to the LLM to include available tools and their schemas, and for responses to include
calls to these tools. For instance, given a search engine tool, an LLM might handle a
query by first issuing a call to the search engine. The system calling the LLM can
receive the tool call, execute it, and return the output to the LLM to inform its
response. LangChain includes a suite of [built-in tools](/docs/integrations/tools/)
and supports several methods for defining your own [custom tools](/docs/how_to/custom_tools).
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
LangChain provides a standardized interface for tool calling that is consistent across different models.
class ResponseFormatter(BaseModel):
"""Always use this tool to structure your response to the user."""
The standard interface consists of:
answer: str = Field(description="The answer to the user's question")
followup_question: str = Field(description="A followup question the user could ask")
* `ChatModel.bind_tools()`: a method for specifying which tools are available for a model to call. This method accepts [LangChain tools](/docs/concepts/#tools) here.
* `AIMessage.tool_calls`: an attribute on the `AIMessage` returned from the model for accessing the tool calls requested by the model.
model = ChatOpenAI(
model="gpt-4o",
temperature=0,
)
The following how-to guides are good practical resources for using function/tool calling:
ai_msg = model_with_tools.invoke("What is the powerhouse of the cell?")
ai_msg.tool_calls[0]["args"]
```
```
{'answer': "The powerhouse of the cell is the mitochondrion. It generates most of the cell's supply of adenosine triphosphate (ATP), which is used as a source of chemical energy.",
'followup_question': 'How do mitochondria generate ATP?'}
```
Tool calling is a generally consistent way to get a model to generate structured output, and is the default technique
used for the [`.with_structured_output()`](/docs/concepts/#with_structured_output) method when a model supports it.
The following how-to guides are good practical resources for using function/tool calling for structured output:
- [How to return structured data from an LLM](/docs/how_to/structured_output/)
- [How to use a model to call tools](/docs/how_to/tool_calling)
For a full list of model providers that support tool calling, [see this table](/docs/integrations/chat/#advanced-features).
### Few-shot prompting
One of the most effective ways to improve model performance is to give a model examples of
what you want it to do. The technique of adding example inputs and expected outputs
to a model prompt is known as "few-shot prompting". The technique is based on the
[Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165) paper.
There are a few things to think about when doing few-shot prompting:
1. How are examples generated?
2. How many examples are in each prompt?
3. How are examples selected at runtime?
4. How are examples formatted in the prompt?
Here are the considerations for each.
#### 1. Generating examples
The first and most important step of few-shot prompting is coming up with a good dataset of examples. Good examples should be relevant at runtime, clear, informative, and provide information that was not already known to the model.
At a high-level, the basic ways to generate examples are:
- Manual: a person/people generates examples they think are useful.
- Better model: a better (presumably more expensive/slower) model's responses are used as examples for a worse (presumably cheaper/faster) model.
- User feedback: users (or labelers) leave feedback on interactions with the application and examples are generated based on that feedback (for example, all interactions with positive feedback could be turned into examples).
- LLM feedback: same as user feedback but the process is automated by having models evaluate themselves.
Which approach is best depends on your task. For tasks where a small number core principles need to be understood really well, it can be valuable hand-craft a few really good examples.
For tasks where the space of correct behaviors is broader and more nuanced, it can be useful to generate many examples in a more automated fashion so that there's a higher likelihood of there being some highly relevant examples for any runtime input.
**Single-turn v.s. multi-turn examples**
Another dimension to think about when generating examples is what the example is actually showing.
The simplest types of examples just have a user input and an expected model output. These are single-turn examples.
One more complex type if example is where the example is an entire conversation, usually in which a model initially responds incorrectly and a user then tells the model how to correct its answer.
This is called a multi-turn example. Multi-turn examples can be useful for more nuanced tasks where its useful to show common errors and spell out exactly why they're wrong and what should be done instead.
#### 2. Number of examples
Once we have a dataset of examples, we need to think about how many examples should be in each prompt.
The key tradeoff is that more examples generally improve performance, but larger prompts increase costs and latency.
And beyond some threshold having too many examples can start to confuse the model.
Finding the right number of examples is highly dependent on the model, the task, the quality of the examples, and your cost and latency constraints.
Anecdotally, the better the model is the fewer examples it needs to perform well and the more quickly you hit steeply diminishing returns on adding more examples.
But, the best/only way to reliably answer this question is to run some experiments with different numbers of examples.
#### 3. Selecting examples
Assuming we are not adding our entire example dataset into each prompt, we need to have a way of selecting examples from our dataset based on a given input. We can do this:
- Randomly
- By (semantic or keyword-based) similarity of the inputs
- Based on some other constraints, like token size
LangChain has a number of [`ExampleSelectors`](/docs/concepts/#example-selectors) which make it easy to use any of these techniques.
Generally, selecting by semantic similarity leads to the best model performance. But how important this is is again model and task specific, and is something worth experimenting with.
#### 4. Formatting examples
Most state-of-the-art models these days are chat models, so we'll focus on formatting examples for those. Our basic options are to insert the examples:
- In the system prompt as a string
- As their own messages
If we insert our examples into the system prompt as a string, we'll need to make sure it's clear to the model where each example begins and which parts are the input versus output. Different models respond better to different syntaxes, like [ChatML](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chat-markup-language), XML, TypeScript, etc.
If we insert our examples as messages, where each example is represented as a sequence of Human, AI messages, we might want to also assign [names](/docs/concepts/#messages) to our messages like `"example_user"` and `"example_assistant"` to make it clear that these messages correspond to different actors than the latest input message.
**Formatting tool call examples**
One area where formatting examples as messages can be tricky is when our example outputs have tool calls. This is because different models have different constraints on what types of message sequences are allowed when any tool calls are generated.
- Some models require that any AIMessage with tool calls be immediately followed by ToolMessages for every tool call,
- Some models additionally require that any ToolMessages be immediately followed by an AIMessage before the next HumanMessage,
- Some models require that tools are passed in to the model if there are any tool calls / ToolMessages in the chat history.
These requirements are model-specific and should be checked for the model you are using. If your model requires ToolMessages after tool calls and/or AIMessages after ToolMessages and your examples only include expected tool calls and not the actual tool outputs, you can try adding dummy ToolMessages / AIMessages to the end of each example with generic contents to satisfy the API constraints.
In these cases it's especially worth experimenting with inserting your examples as strings versus messages, as having dummy messages can adversely affect certain models.
You can see a case study of how Anthropic and OpenAI respond to different few-shot prompting techniques on two different tool calling benchmarks [here](https://blog.langchain.dev/few-shot-prompting-to-improve-tool-calling-performance/).
### Retrieval
LLMs are trained on a large but fixed dataset, limiting their ability to reason over private or recent information. Fine-tuning an LLM with specific facts is one way to mitigate this, but is often [poorly suited for factual recall](https://www.anyscale.com/blog/fine-tuning-is-for-form-not-facts) and [can be costly](https://www.glean.com/blog/how-to-build-an-ai-assistant-for-the-enterprise).
Retrieval is the process of providing relevant information to an LLM to improve its response for a given input. Retrieval augmented generation (RAG) is the process of grounding the LLM generation (output) using the retrieved information.
LLMs are trained on a large but fixed dataset, limiting their ability to reason over private or recent information.
Fine-tuning an LLM with specific facts is one way to mitigate this, but is often [poorly suited for factual recall](https://www.anyscale.com/blog/fine-tuning-is-for-form-not-facts) and [can be costly](https://www.glean.com/blog/how-to-build-an-ai-assistant-for-the-enterprise).
`Retrieval` is the process of providing relevant information to an LLM to improve its response for a given input.
`Retrieval augmented generation` (`RAG`) [paper](https://arxiv.org/abs/2005.11401) is the process of grounding the LLM generation (output) using the retrieved information.
:::tip
@@ -1029,12 +1202,12 @@ First, consider the user input(s) to your RAG system. Ideally, a RAG system can
**Using an LLM to review and optionally modify the input is the central idea behind query translation.** This serves as a general buffer, optimizing raw user inputs for your retrieval system.
For example, this can be as simple as extracting keywords or as complex as generating multiple sub-questions for a complex query.
| [Multi-query](/docs/how_to/MultiQueryRetriever/) | When you need to cover multiple perspectives of a question. | Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, return the unique documents for all queries. |
| [Decomposition](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a question can be broken down into smaller subproblems. | Decompose a question into a set of subproblems / questions, which can either be solved sequentially (use the answer from first + retrieval to answer the second) or in parallel (consolidate each answer into final answer). |
| [Step-back](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a higher-level conceptual understanding is required. | First prompt the LLM to ask a generic step-back question about higher-level concepts or principles, and retrieve relevant facts about them. Use this grounding to help answer the user question. |
| [HyDE](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | If you have challenges retrieving relevant documents using the raw user inputs. | Use an LLM to convert questions into hypothetical documents that answer the question. Use the embedded hypothetical documents to retrieve real documents with the premise that doc-doc similarity search can produce more relevant matches. |
| [Decomposition](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a question can be broken down into smaller subproblems. | Decompose a question into a set of subproblems / questions, which can either be solved sequentially (use the answer from first + retrieval to answer the second) or in parallel (consolidate each answer into final answer). |
| [Step-back](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | When a higher-level conceptual understanding is required. | First prompt the LLM to ask a generic step-back question about higher-level concepts or principles, and retrieve relevant facts about them. Use this grounding to help answer the user question. [Paper](https://arxiv.org/pdf/2310.06117). |
| [HyDE](https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb) | If you have challenges retrieving relevant documents using the raw user inputs. | Use an LLM to convert questions into hypothetical documents that answer the question. Use the embedded hypothetical documents to retrieve real documents with the premise that doc-doc similarity search can produce more relevant matches. [Paper](https://arxiv.org/abs/2212.10496). |
:::tip
@@ -1108,11 +1281,11 @@ Fifth, consider ways to improve the quality of your similarity search itself. Em
There are some additional tricks to improve the quality of your retrieval. Embeddings excel at capturing semantic information, but may struggle with keyword-based queries. Many [vector stores](/docs/integrations/retrievers/pinecone_hybrid_search/) offer built-in [hybrid-search](https://docs.pinecone.io/guides/data/understanding-hybrid-search) to combine keyword and semantic similarity, which marries the benefits of both approaches. Furthermore, many vector stores have [maximal marginal relevance](https://python.langchain.com/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/), which attempts to diversify the results of a search to avoid returning similar and redundant documents.
| [ColBERT](/docs/integrations/providers/ragatouille/#using-colbert-as-a-reranker) | When higher granularity embeddings are needed. | ColBERT uses contextually influenced embeddings for each token in the document and query to get a granular query-document similarity score. |
| [Hybrid search](/docs/integrations/retrievers/pinecone_hybrid_search/) | When combining keyword-based and semantic similarity. | Hybrid search combines keyword and semantic similarity, marrying the benefits of both approaches. |
| [Maximal Marginal Relevance (MMR)](/docs/integrations/vectorstores/pinecone/#maximal-marginal-relevance-searches) | When needing to diversify search results. | MMR attempts to diversify the results of a search to avoid returning similar and redundant documents. |
| [ColBERT](/docs/integrations/providers/ragatouille/#using-colbert-as-a-reranker) | When higher granularity embeddings are needed. | ColBERT uses contextually influenced embeddings for each token in the document and query to get a granular query-document similarity score. [Paper](https://arxiv.org/abs/2112.01488). |
| [Hybrid search](/docs/integrations/retrievers/pinecone_hybrid_search/) | When combining keyword-based and semantic similarity. | Hybrid search combines keyword and semantic similarity, marrying the benefits of both approaches. [Paper](https://arxiv.org/abs/2210.11934). |
| [Maximal Marginal Relevance (MMR)](/docs/integrations/vectorstores/pinecone/#maximal-marginal-relevance-searches) | When needing to diversify search results. | MMR attempts to diversify the results of a search to avoid returning similar and redundant documents. |
:::tip
@@ -1132,7 +1305,7 @@ Sixth, consider ways to filter or rank retrieved documents. This is very useful
:::tip
See our RAG from Scratch video on [RAG-Fusion](https://youtu.be/77qELPbNgxA?feature=shared), on approach for post-processing across multiple queries: Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, and combine the ranks of multiple search result lists to produce a single, unified ranking with [Reciprocal Rank Fusion (RRF)](https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1).
See our RAG from Scratch video on [RAG-Fusion](https://youtu.be/77qELPbNgxA?feature=shared) ([paper](https://arxiv.org/abs/2402.03367)), on approach for post-processing across multiple queries: Rewrite the user question from multiple perspectives, retrieve documents for each rewritten question, and combine the ranks of multiple search result lists to produce a single, unified ranking with [Reciprocal Rank Fusion (RRF)](https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1).
This document outlines the process used by the LangChain maintainers for reviewing pull requests (PRs). The primary objective of this process is to enhance the LangChain developer experience.
## Review Statuses
We categorize PRs using three main statuses, which are marked as project item statuses in the right sidebar and can be viewed in detail [here](https://github.com/orgs/langchain-ai/projects/12/views/1).
- **Triage**:
- Initial status for all newly submitted PRs.
- Requires a maintainer to categorize it into one of the other statuses.
- **Needs Support**:
- PRs that require community feedback or additional input before moving forward.
- Automatically promoted to the backlog if it receives 5 upvotes.
- An auto-comment is generated when this status is applied, explaining the flow and the upvote requirement.
- If the PR remains in this status for 25 days, it will be marked as “stale” via auto-comment.
- PRs will be auto-closed after 30 days if no further action is taken.
- **In Review**:
- PRs that are actively under review by our team.
- These are regularly reviewed and monitored.
**Note:** A PR may only have one status at a time.
**Note:** You may notice 3 additional statuses of Done, Closed, and Internal that
are external to this lifecycle. Done and Closed PRs have been merged or closed,
respectively. Internal is for PRs submitted by core maintainers, and these PRs are owned
by the submitter.
## Review Guidelines
1. **PRs that touch /libs/core**:
- PRs that directly impact core code and are likely to affect end users.
- **Triage Guideline**: most PRs should either go straight to `In Review` or closed.
- These PRs are given top priority and are reviewed the fastest.
- PRs that don't have a **concise** descriptions of their motivation (either in PR summary of in a linked issue) are likely to be closed without an in-depth review. Please do not generate verbose PR descriptions with an LLM.
- PRs that don't have unit tests are likely to be closed.
- Feature requests should first be opened as a GitHub issue and discussed with the LangChain maintainers. Large PRs submitted without prior discussion are likely to be closed.
2. **PRs that touch /libs/langchain**:
- High-impact PRs that are closely related to core PRs but slightly lower in priority.
- **Triage Guideline**: most PRs should either go straight to `In Review` or closed.
- These are reviewed and closed aggressively, similar to core PRs.
- New feature requests should be discussed with the core maintainer team beforehand in an issue.
3. **PRs that touch /libs/partners/****:
- PRs involving integration packages.
- **Triage Guideline**: most PRs should either go straight to `In Review` or closed.
- The review may be conducted by our team or handed off to the partner's development team, depending on the PR's content.
- We maintain communication lines with most partner dev teams to facilitate this process.
4. **Community PRs**:
- Most community PRs will get an initial status of "needs support".
- **Triage Guideline**: most PRs should go to `Needs support`. Bugfixes on high-traffic integrations should go straight to `In review`.
- **Triage Guideline**: all new features and integrations should go to `Needs support` and will be closed if they do not get enough support (measured by upvotes or comments).
- PRs in the `Needs Support` status for 20 days are marked as “stale” and will be closed after 30 days if no action is taken.
5. **Documentation PRs**:
- PRs that touch the documentation content in docs/docs.
- **Triage Guideline**:
- PRs that fix typos or small errors in a single file and pass CI should go straight to `In Review`.
- PRs that make changes that have been discussed and agreed upon in an issue should go straight to `In Review`.
- PRs that add new pages or change the structure of the documentation should go to `Needs Support`.
- We strive to standardize documentation formats to streamline the review process.
- CI jobs run against documentation to ensure adherence to standards, automating much of the review.
6. **PRs must be in English**:
- PRs that are not in English will be closed without review.
- This is to ensure that all maintainers can review the PRs effectively.
## How to see a PR's status
See screenshot:

*To see the status of all open PRs, please visit the [LangChain Project Board](https://github.com/orgs/langchain-ai/projects/12/views/2).*
## Review Prioritization
Our goal is to provide the best possible development experience by focusing on making software that:
- Works: Works as intended (is bug-free).
- Is useful: Improves LLM app development with components that work off-the-shelf and runtimes that simplify app building.
- Is easy: Is intuitive to use and well-documented.
We believe this process reflects our priorities and are open to feedback if you feel it does not.
## Github Discussion
We welcome your feedback on this process. Please feel free to add a comment in
"[HTMLHeaderTextSplitter](https://api.python.langchain.com/en/latest/html/langchain_text_splitters.html.HTMLHeaderTextSplitter.html) is a \"structure-aware\" chunker that splits text at the HTML element level and adds metadata for each header \"relevant\" to any given chunk. It can return chunks element by element or combine elements with the same metadata, with the objectives of (a) keeping related text grouped (more or less) semantically and (b) preserving context-rich information encoded in document structures. It can be used with other text splitters as part of a chunking pipeline.\n",
"[HTMLHeaderTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/html/langchain_text_splitters.html.HTMLHeaderTextSplitter.html) is a \"structure-aware\" chunker that splits text at the HTML element level and adds metadata for each header \"relevant\" to any given chunk. It can return chunks element by element or combine elements with the same metadata, with the objectives of (a) keeping related text grouped (more or less) semantically and (b) preserving context-rich information encoded in document structures. It can be used with other text splitters as part of a chunking pipeline.\n",
"\n",
"It is analogous to the [MarkdownHeaderTextSplitter](/docs/how_to/markdown_header_metadata_splitter) for markdown files.\n",
"Distance-based vector database retrieval embeds (represents) queries in high-dimensional space and finds similar embedded documents based on a distance metric. But, retrieval may produce different results with subtle changes in query wording, or if the embeddings do not capture the semantics of the data well. Prompt engineering / tuning is sometimes done to manually address these problems, but can be tedious.\n",
"\n",
"The [MultiQueryRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query. For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents. By generating multiple perspectives on the same question, the `MultiQueryRetriever` can mitigate some of the limitations of the distance-based retrieval and get a richer set of results.\n",
"The [MultiQueryRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query. For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents. By generating multiple perspectives on the same question, the `MultiQueryRetriever` can mitigate some of the limitations of the distance-based retrieval and get a richer set of results.\n",
"\n",
"Let's build a vectorstore using the [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) blog post by Lilian Weng from the [RAG tutorial](/docs/tutorials/rag):"
]
@@ -125,9 +125,9 @@
"source": [
"#### Supplying your own prompt\n",
"\n",
"Under the hood, `MultiQueryRetriever` generates queries using a specific [prompt](https://api.python.langchain.com/en/latest/_modules/langchain/retrievers/multi_query.html#MultiQueryRetriever). To customize this prompt:\n",
"Under the hood, `MultiQueryRetriever` generates queries using a specific [prompt](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html). To customize this prompt:\n",
"\n",
"1. Make a [PromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.prompt.PromptTemplate.html) with an input variable for the question;\n",
"1. Make a [PromptTemplate](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.prompt.PromptTemplate.html) with an input variable for the question;\n",
"2. Implement an [output parser](/docs/concepts#output-parsers) like the one below to split the result into a list of queries.\n",
"\n",
"The prompt and output parser together must support the generation of a list of queries."
"Retrievers will return sequences of [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the `.metadata` of documents:\n",
"Retrievers will return sequences of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the `.metadata` of documents:\n",
"1. From [vectorstore retrievers](/docs/how_to/vectorstore_retriever);\n",
"2. From higher-order LangChain retrievers, such as [SelfQueryRetriever](/docs/how_to/self_query) or [MultiVectorRetriever](/docs/how_to/multi_vector).\n",
"\n",
@@ -15,7 +15,7 @@
"\n",
"## Create vector store\n",
"\n",
"First we populate a vector store with some data. We will use a [PineconeVectorStore](https://api.python.langchain.com/en/latest/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html), but this guide is compatible with any LangChain vector store that implements a `.similarity_search_with_score` method."
"First we populate a vector store with some data. We will use a [PineconeVectorStore](https://python.langchain.com/v0.2/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html), but this guide is compatible with any LangChain vector store that implements a `.similarity_search_with_score` method."
]
},
{
@@ -263,7 +263,7 @@
"\n",
"To propagate similarity scores through this retriever, we can again subclass `MultiVectorRetriever` and override a method. This time we will override `_get_relevant_documents`.\n",
"\n",
"First, we prepare some fake data. We generate fake \"whole documents\" and store them in a document store; here we will use a simple [InMemoryStore](https://api.python.langchain.com/en/latest/stores/langchain_core.stores.InMemoryBaseStore.html)."
"First, we prepare some fake data. We generate fake \"whole documents\" and store them in a document store; here we will use a simple [InMemoryStore](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryBaseStore.html)."
"Now, we can initalize the agent with the LLM, the prompt, and the tools. The agent is responsible for taking in input and deciding what actions to take. Crucially, the Agent does not execute those actions - that is done by the AgentExecutor (next step). For more information about how to think about these components, see our [conceptual guide](/docs/concepts/#agents).\n",
"Now, we can initialize the agent with the LLM, the prompt, and the tools. The agent is responsible for taking in input and deciding what actions to take. Crucially, the Agent does not execute those actions - that is done by the AgentExecutor (next step). For more information about how to think about these components, see our [conceptual guide](/docs/concepts/#agents).\n",
"\n",
"Note that we are passing in the `model`, not `model_with_tools`. That is because `create_tool_calling_agent` will call `.bind_tools` for us under the hood."
"An alternate way of [passing data through](/docs/how_to/passthrough) steps of a chain is to leave the current values of the chain state unchanged while assigning a new value under a given key. The [`RunnablePassthrough.assign()`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html#langchain_core.runnables.passthrough.RunnablePassthrough.assign) static method takes an input value and adds the extra arguments passed to the assign function.\n",
"An alternate way of [passing data through](/docs/how_to/passthrough) steps of a chain is to leave the current values of the chain state unchanged while assigning a new value under a given key. The [`RunnablePassthrough.assign()`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html#langchain_core.runnables.passthrough.RunnablePassthrough.assign) static method takes an input value and adds the extra arguments passed to the assign function.\n",
"\n",
"This is useful in the common [LangChain Expression Language](/docs/concepts/#langchain-expression-language) pattern of additively creating a dictionary to use as input to a later step.\n",
"Sometimes we want to invoke a [`Runnable`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html) within a [RunnableSequence](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableSequence.html) with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use the [`Runnable.bind()`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind) method to set these arguments ahead of time.\n",
"Sometimes we want to invoke a [`Runnable`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) within a [RunnableSequence](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use the [`Runnable.bind()`](https://python.langchain.com/v0.2/api_reference/langchain_core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind) method to set these arguments ahead of time.\n",
"If you are planning to use the async APIs, it is recommended to use and extend [`AsyncCallbackHandler`](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) to avoid blocking the event.\n",
"If you are planning to use the async APIs, it is recommended to use and extend [`AsyncCallbackHandler`](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) to avoid blocking the event.\n",
"If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n",
"If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n",
"In many cases, it is advantageous to pass in handlers instead when running the object. When we pass through [`CallbackHandlers`](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) using the `callbacks` keyword arg when executing an run, those callbacks will be issued by all nested objects involved in the execution. For example, when a handler is passed through to an Agent, it will be used for all callbacks related to the agent and all the objects involved in the agent's execution, in this case, the Tools and LLM.\n",
"In many cases, it is advantageous to pass in handlers instead when running the object. When we pass through [`CallbackHandlers`](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) using the `callbacks` keyword arg when executing an run, those callbacks will be issued by all nested objects involved in the execution. For example, when a handler is passed through to an Agent, it will be used for all callbacks related to the agent and all the objects involved in the agent's execution, in this case, the Tools and LLM.\n",
"\n",
"This prevents us from having to manually attach the handlers to each individual nested object. Here's an example:"
"To obtain the string content directly, use `.split_text`.\n",
"\n",
"To create LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`."
"To create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`."
"This functionality was added in ``langchain-core == 0.2.24``. Please make sure your package is up to date.\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "cbc3c873-6109-4e03-b775-b73c1003faea",
"metadata": {},
"source": [
"## Initialize a rate limiter\n",
"\n",
"Langchain comes with a built-in in memory rate limiter. This rate limiter is thread safe and can be shared by multiple threads in the same process.\n",
"\n",
"The provided rate limiter can only limit the number of requests per unit time. It will not help if you need to also limited based on the size\n",
"See the [init_chat_model()](https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.base.init_chat_model.html) API reference for a full list of supported integrations.\n",
"See the [init_chat_model()](https://python.langchain.com/v0.2/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) API reference for a full list of supported integrations.\n",
"\n",
"Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n",
"\n",
@@ -89,7 +89,7 @@
"source": [
"## Inferring model provider\n",
"\n",
"For common and distinct model names `init_chat_model()` will attempt to infer the model provider. See the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.base.init_chat_model.html) for a full list of inference behavior. E.g. any model that starts with `gpt-3...` or `gpt-4...` will be inferred as using model provider `openai`."
"For common and distinct model names `init_chat_model()` will attempt to infer the model provider. See the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) for a full list of inference behavior. E.g. any model that starts with `gpt-3...` or `gpt-4...` will be inferred as using model provider `openai`."
"All [chat models](https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) implement the [Runnable interface](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with a **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n",
"All [chat models](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) implement the [Runnable interface](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with a **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n",
"\n",
"The **default** streaming implementation provides an`Iterator` (or `AsyncIterator` for asynchronous streaming) that yields a single value: the final output from the underlying chat model provider.\n",
"\n",
@@ -120,7 +120,7 @@
"source": [
"## Astream events\n",
"\n",
"Chat models also support the standard [astream events](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n",
"Chat models also support the standard [astream events](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n",
"\n",
"This method is useful if you're streaming output from a larger LLM application that contains multiple steps (e.g., an LLM chain composed of a prompt, llm and parser)."
"A number of model providers return token usage information as part of the chat generation response. When available, this information will be included on the `AIMessage` objects produced by the corresponding model.\n",
"\n",
"LangChain `AIMessage` objects include a [usage_metadata](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.usage_metadata) attribute. When populated, this attribute will be a [UsageMetadata](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.UsageMetadata.html) dictionary with standard keys (e.g., `\"input_tokens\"` and `\"output_tokens\"`).\n",
"LangChain `AIMessage` objects include a [usage_metadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.usage_metadata) attribute. When populated, this attribute will be a [UsageMetadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html) dictionary with standard keys (e.g., `\"input_tokens\"` and `\"output_tokens\"`).\n",
"\n",
"Examples:\n",
"\n",
@@ -118,7 +118,7 @@
"source": [
"### Using AIMessage.response_metadata\n",
"\n",
"Metadata from the model response is also included in the AIMessage [response_metadata](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.response_metadata) attribute. These data are typically not standardized. Note that different providers adopt different conventions for representing token counts:"
"Metadata from the model response is also included in the AIMessage [response_metadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.response_metadata) attribute. These data are typically not standardized. Note that different providers adopt different conventions for representing token counts:"
]
},
{
@@ -153,7 +153,7 @@
"\n",
"#### OpenAI\n",
"\n",
"For example, OpenAI will return a message [chunk](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"For example, OpenAI will return a message [chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n",
"It's perfectly fine to store and pass messages directly as an array, but we can use LangChain's built-in [message history class](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.memory) to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers - you can see a [list of integrations here](/docs/integrations/memory) - but for this demo we will use an ephemeral demo class.\n",
"It's perfectly fine to store and pass messages directly as an array, but we can use LangChain's built-in [message history class](https://python.langchain.com/v0.2/api_reference/langchain/index.html#module-langchain.memory) to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers - you can see a [list of integrations here](/docs/integrations/memory) - but for this demo we will use an ephemeral demo class.\n",
"[RecursiveCharacterTextSplitter](https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html) includes pre-built lists of separators that are useful for splitting text in a specific programming language.\n",
"[RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html) includes pre-built lists of separators that are useful for splitting text in a specific programming language.\n",
"\n",
"Supported languages are stored in the `langchain_text_splitters.Language` enum. They include:\n",
"Above, we defined `temperature` as a [`ConfigurableField`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.utils.ConfigurableField.html#langchain_core.runnables.utils.ConfigurableField) that we can set at runtime. To do so, we use the [`with_config`](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method like this:"
"Above, we defined `temperature` as a [`ConfigurableField`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.utils.ConfigurableField.html#langchain_core.runnables.utils.ConfigurableField) that we can set at runtime. To do so, we use the [`with_config`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method like this:"
]
},
{
@@ -409,7 +409,7 @@
" # When configuring the end runnable, we can then use this id to configure this field\n",
" ConfigurableField(id=\"prompt\"),\n",
" # This sets a default_key.\n",
" # If we specify this key, the default LLM (ChatAnthropic initialized above) will be used\n",
" # If we specify this key, the default prompt (asking for a joke, as initialized above) will be used\n",
" default_key=\"joke\",\n",
" # This adds a new option, with name `poem`\n",
" poem=PromptTemplate.from_template(\"Write a short poem about {topic}\"),\n",
@@ -494,7 +494,7 @@
" # When configuring the end runnable, we can then use this id to configure this field\n",
" ConfigurableField(id=\"prompt\"),\n",
" # This sets a default_key.\n",
" # If we specify this key, the default LLM (ChatAnthropic initialized above) will be used\n",
" # If we specify this key, the default prompt (asking for a joke, as initialized above) will be used\n",
" default_key=\"joke\",\n",
" # This adds a new option, with name `poem`\n",
" poem=PromptTemplate.from_template(\"Write a short poem about {topic}\"),\n",
"[LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"[LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n",
"\n",
"Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented."
"LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n",
"\n",
"LangChain tools-- instances of [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"LangChain tools-- instances of [BaseTool](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n",
"\n",
"- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n",
"- They contain names and descriptions indicating how and when they should be used;\n",
"- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n",
"\n",
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
"Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments."
]
},
{
@@ -180,7 +180,7 @@
"id": "32b1a992-8997-4c98-8eb2-c9fe9431b799",
"metadata": {},
"source": [
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
"Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:"
]
},
{
@@ -267,9 +267,9 @@
"We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n",
"\n",
"```{=mdx}\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
"/>\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"LangChain has some built-in callback handlers, but you will often want to create your own handlers with custom logic.\n",
"\n",
"To create a custom callback handler, we need to determine the [event(s)](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) we want our callback handler to handle as well as what we want our callback handler to do when the event is triggered. Then all we need to do is attach the callback handler to the object, for example via [the constructor](/docs/how_to/callbacks_constructor) or [at runtime](/docs/how_to/callbacks_runtime).\n",
"To create a custom callback handler, we need to determine the [event(s)](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) we want our callback handler to handle as well as what we want our callback handler to do when the event is triggered. Then all we need to do is attach the callback handler to the object, for example via [the constructor](/docs/how_to/callbacks_constructor) or [at runtime](/docs/how_to/callbacks_runtime).\n",
"\n",
"In the example below, we'll implement streaming with a custom handler.\n",
"\n",
@@ -107,7 +107,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see [this reference page](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) for a list of events you can handle. Note that the `handle_chain_*` events run for most LCEL runnables.\n",
"You can see [this reference page](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) for a list of events you can handle. Note that the `handle_chain_*` events run for most LCEL runnables.\n",
"In this guide, we'll learn how to create a custom chat model using LangChain abstractions.\n",
"\n",
"Wrapping your LLM with the standard [`BaseChatModel`](https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n",
"Wrapping your LLM with the standard [`BaseChatModel`](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n",
"\n",
"As an bonus, your LLM will automatically become a LangChain `Runnable` and will benefit from some optimizations out of the box (e.g., batch via a threadpool), async support, the `astream_events` API, etc.\n",
"\n",
@@ -503,7 +503,7 @@
"\n",
"Documentation:\n",
"\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://api.python.langchain.com/en/stable/langchain_api_reference.html).\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n",
"* The class doc-string for the model contains a link to the model API if the model is powered by a service.\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://api.python.langchain.com/en/stable/langchain_api_reference.html).\n",
"* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n",
"* The class doc-string for the model contains a link to the model API if the model is powered by a service.\n",
"* The retriever contains doc-strings for all initialization arguments, as these will be surfaced in the [API Reference](https://api.python.langchain.com/en/stable/langchain_api_reference.html).\n",
"* The retriever contains doc-strings for all initialization arguments, as these will be surfaced in the [API Reference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n",
"* The class doc-string for the model contains a link to any relevant APIs used for the retriever (e.g., if the retriever is retrieving from wikipedia, it'll be good to link to the wikipedia API!)\n",
"When constructing an agent, you will need to provide it with a list of `Tool`s that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
"| name | str | Must be unique within a set of tools provided to an LLM or agent. |\n",
"| description | str | Describes what the tool does. Used as context by the LLM or agent. |\n",
"| args_schema | PydanticBaseModel | Optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"| name | str | Must be unique within a set of tools provided to an LLM or agent. |\n",
"| description | str | Describes what the tool does. Used as context by the LLM or agent. |\n",
"| args_schema | langchain.pydantic_v1.BaseModel | Optional but recommended, and required if using callback handlers. It can be used to provide more information (e.g., few-shot examples) or validation for expected parameters. |\n",
"| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n",
"\n",
"LangChain supports the creation of tools from:\n",
"3. By sub-classing from [BaseTool](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"3. By sub-classing from [BaseTool](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",
@@ -259,7 +259,7 @@
"metadata": {},
"source": [
":::{.callout-caution}\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://api.python.langchain.com/en/latest/tools/langchain_core.tools.tool.html) for detail and examples.\n",
"By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.tool.html) for detail and examples.\n",
":::"
]
},
@@ -270,7 +270,7 @@
"source": [
"### StructuredTool\n",
"\n",
"The `StrurcturedTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
"The `StructuredTool.from_function` class method provides a bit more configurability than the `@tool` decorator, without requiring much additional code."
]
},
{
@@ -366,7 +366,7 @@
"source": [
"## Creating tools from Runnables\n",
"\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n",
"\n",
"Example usage:"
]
@@ -512,7 +512,7 @@
"source": [
"## How to create async tools\n",
"\n",
"LangChain Tools implement the [Runnable interface 🏃](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html).\n",
"LangChain Tools implement the [Runnable interface 🏃](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n",
"\n",
"All Runnables expose the `invoke` and `ainvoke` methods (as well as other methods like `batch`, `abatch`, `astream` etc).\n",
"\n",
@@ -778,7 +778,7 @@
"\n",
"Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n",
"\n",
"The Tool and [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"The Tool and [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n",
"A [comma-separated values (CSV)](https://en.wikipedia.org/wiki/Comma-separated_values) file is a delimited text file that uses a comma to separate values. Each line of the file is a data record. Each record consists of one or more fields, separated by commas.\n",
"\n",
"LangChain implements a [CSV Loader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html) that will load CSV files into a sequence of [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Each row of the CSV file is translated to one document."
"LangChain implements a [CSV Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html) that will load CSV files into a sequence of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Each row of the CSV file is translated to one document."
]
},
{
@@ -88,7 +88,7 @@
"source": [
"## Specify a column to identify the document source\n",
"\n",
"The `\"source\"` key on [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) metadata can be set using a column of the CSV. Use the `source_column` argument to specify a source for the document created from each row. Otherwise `file_path` will be used as the source for all documents created from the CSV file.\n",
"The `\"source\"` key on [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) metadata can be set using a column of the CSV. Use the `source_column` argument to specify a source for the document created from each row. Otherwise `file_path` will be used as the source for all documents created from the CSV file.\n",
"\n",
"This is useful when using documents loaded from CSV files for chains that answer questions using sources."
"* The `load` methods is a convenience method meant solely for prototyping work -- it just invokes `list(self.lazy_load())`.\n",
"* The `alazy_load` has a default implementation that will delegate to `lazy_load`. If you're using async, we recommend overriding the default implementation and providing a native async implementation.\n",
"\n",
":::{.callout-important}\n",
":::{.callout-important}\n",
"When implementing a document loader do **NOT** provide parameters via the `lazy_load` or `alazy_load` methods.\n",
"\n",
"All configuration is expected to be passed through the initializer (__init__). This was a design choice made by LangChain to make sure that once a document loader has been instantiated it has all the information needed to load documents.\n",
@@ -235,7 +235,7 @@
"id": "56cb443e-f987-4386-b4ec-975ee129adb2",
"metadata": {},
"source": [
":::{.callout-tip}\n",
":::{.callout-tip}\n",
"\n",
"`load()` can be helpful in an interactive environment such as a jupyter notebook.\n",
"\n",
@@ -276,7 +276,7 @@
"source": [
"## Working with Files\n",
"\n",
"Many document loaders invovle parsing files. The difference between such loaders usually stems from how the file is parsed rather than how the file is loaded. For example, you can use `open` to read the binary content of either a PDF or a markdown file, but you need different parsing logic to convert that binary data into text.\n",
"Many document loaders involve parsing files. The difference between such loaders usually stems from how the file is parsed, rather than how the file is loaded. For example, you can use `open` to read the binary content of either a PDF or a markdown file, but you need different parsing logic to convert that binary data into text.\n",
"\n",
"As a result, it can be helpful to decouple the parsing logic from the loading logic, which makes it easier to re-use a given parser regardless of how the data was loaded.\n",
"\n",
@@ -355,7 +355,7 @@
"id": "433bfb7c-7767-43bc-b71e-42413d7494a8",
"metadata": {},
"source": [
"Using the **blob** API also allows one to load content direclty from memory without having to read it from a file!"
"Using the **blob** API also allows one to load content directly from memory without having to read it from a file!"
"LangChain's [DirectoryLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html) implements functionality for reading files from disk into LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Here we demonstrate:\n",
"LangChain's [DirectoryLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html) implements functionality for reading files from disk into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Here we demonstrate:\n",
"\n",
"- How to load from a filesystem, including use of wildcard patterns;\n",
"- How to use multithreading for file I/O;\n",
@@ -134,7 +134,7 @@
"metadata": {},
"source": [
"## Change loader class\n",
"By default this uses the `UnstructuredLoader` class. To customize the loader, specify the loader class in the `loader_cls` kwarg. Below we show an example using [TextLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.text.TextLoader.html):"
"By default this uses the `UnstructuredLoader` class. To customize the loader, specify the loader class in the `loader_cls` kwarg. Below we show an example using [TextLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.text.TextLoader.html):"
"The HyperText Markup Language or [HTML](https://en.wikipedia.org/wiki/HTML) is the standard markup language for documents designed to be displayed in a web browser.\n",
"\n",
"This covers how to load `HTML` documents into a LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"This covers how to load `HTML` documents into a LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"\n",
"Parsing HTML files often requires specialized tools. Here we demonstrate parsing via [Unstructured](https://unstructured-io.github.io/unstructured/) and [BeautifulSoup4](https://beautiful-soup-4.readthedocs.io/en/latest/), which can be installed via pip. Head over to the integrations page to find integrations with additional services, such as [Azure AI Document Intelligence](/docs/integrations/document_loaders/azure_document_intelligence) or [FireCrawl](/docs/integrations/document_loaders/firecrawl).\n",
[JSON Lines](https://jsonlines.org/) is a file format where each line is a valid JSON value.
LangChain implements a [JSONLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html)
to convert JSON and JSONL data into LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document)
LangChain implements a [JSONLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html)
to convert JSON and JSONL data into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document)
objects. It uses a specified [jq schema](https://en.wikipedia.org/wiki/Jq_(programming_language)) to parse the JSON files, allowing for the extraction of specific fields into the content
and metadata of the LangChain Document.
@@ -182,7 +182,7 @@ pprint(data)
</CodeOutputBlock>
Another option is set `jq_schema='.'` and provide `content_key`:
Another option is to set `jq_schema='.'` and provide `content_key`:
"[Markdown](https://en.wikipedia.org/wiki/Markdown) is a lightweight markup language for creating formatted text using a plain-text editor.\n",
"\n",
"Here we cover how to load `Markdown` documents into LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"Here we cover how to load `Markdown` documents into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"\n",
"We will cover:\n",
"\n",
"- Basic usage;\n",
"- Parsing of Markdown into elements such as titles, list items, and text.\n",
"\n",
"LangChain implements an [UnstructuredMarkdownLoader](https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://unstructured-io.github.io/unstructured/) package. First we install it:"
"LangChain implements an [UnstructuredMarkdownLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://unstructured-io.github.io/unstructured/) package. First we install it:"
The [Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS.
This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a LangChain
@@ -8,7 +8,7 @@ The Embeddings class is a class designed for interfacing with text embedding mod
Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space.
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former, `.embed_documents`, takes as input multiple texts, while the latter, `.embed_query`, takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former, `.embed_documents`, takes as input multiple texts, while the latter, `.embed_query`, takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
`.embed_query` will return a list of floats, whereas `.embed_documents` returns a list of lists of floats.
## Get started
@@ -94,15 +94,6 @@ from langchain_huggingface import HuggingFaceEmbeddings
You can also leave the `model_name` blank to use the default [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) model.
```python
from langchain_huggingface import HuggingFaceEmbeddings
"# How to combine results from multiple retrievers\n",
"\n",
"The [EnsembleRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://api.python.langchain.com/en/latest/retrievers/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm.\n",
"The [EnsembleRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://python.langchain.com/v0.2/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm.\n",
"\n",
"By leveraging the strengths of different algorithms, the `EnsembleRetriever` can achieve better performance than any single algorithm. \n",
"\n",
@@ -14,7 +14,7 @@
"\n",
"## Basic usage\n",
"\n",
"Below we demonstrate ensembling of a [BM25Retriever](https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html) with a retriever derived from the [FAISS vector store](https://api.python.langchain.com/en/latest/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)."
"Below we demonstrate ensembling of a [BM25Retriever](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html) with a retriever derived from the [FAISS vector store](https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)."
"Now we'll clone a public dataset and turn on indexing for the dataset. We can also turn on indexing via the [LangSmith UI](https://docs.smith.langchain.com/how_to_guides/datasets/index_datasets_for_dynamic_few_shot_example_selection).\n",
"\n",
"We'll clone the [Multiverse math few shot example dataset](https://blog.langchain.dev/few-shot-prompting-to-improve-tool-calling-performance/).\n",
"\n",
"This enables searching over the dataset and will make sure that anytime we update/add examples they are also indexed."
"Indexing can take a few seconds. Once the dataset is indexed, we can search for similar examples. Note that the input to the `similar_examples` method must have the same schema as the examples inputs. In this case our example inputs are a dictionary with a \"question\" key:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5013a56f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples = ls_client.similar_examples(\n",
" {\"question\": \"whats the negation of the negation of the negation of 3\"},\n",
" limit=3,\n",
" dataset_id=dataset_id,\n",
")\n",
"len(examples)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a142db06",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'evaluate the negation of -100'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples[0].inputs[\"question\"]"
]
},
{
"cell_type": "markdown",
"id": "d2627125",
"metadata": {},
"source": [
"For this dataset, the outputs are the conversation that followed the question in OpenAI message format:"
"ai_msg = await chain.ainvoke({\"question\": \"whats the negation of the negation of 3\"})\n",
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"id": "94489b4a",
"metadata": {},
"source": [
"Looking at the LangSmith trace, we can see that relevant examples were pulled in in the `similar_examples` step and passed as messages to ChatOpenAI: https://smith.langchain.com/public/9585e30f-765a-4ed9-b964-2211420cd2f8/r/fdea98d6-e90f-49d4-ac22-dfd012e9e0d9."
"also with JSON more or prompt based techniques.\n",
":::\n",
"\n",
"LangChain implements a [tool-call attribute](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls) on messages from LLMs that include tool calls. See our [how-to guide on tool calling](/docs/how_to/tool_calling) for more detail. To build reference examples for data extraction, we build a chat history containing a sequence of: \n",
"LangChain implements a [tool-call attribute](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls) on messages from LLMs that include tool calls. See our [how-to guide on tool calling](/docs/how_to/tool_calling) for more detail. To build reference examples for data extraction, we build a chat history containing a sequence of: \n",
"\n",
"- [HumanMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.human.HumanMessage.html) containing example inputs;\n",
"- [AIMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html) containing example tool calls;\n",
"- [ToolMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolMessage.html) containing example tool outputs.\n",
"- [HumanMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.human.HumanMessage.html) containing example inputs;\n",
"- [AIMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) containing example tool calls;\n",
"- [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) containing example tool outputs.\n",
"\n",
"LangChain adopts this convention for structuring tool calls into conversation across LLM model providers.\n",
"We need some example data! Let's download an article about [cars from wikipedia](https://en.wikipedia.org/wiki/Car) and load it as a LangChain [Document](https://api.python.langchain.com/en/latest/documents/langchain_core.documents.base.Document.html)."
"We need some example data! Let's download an article about [cars from wikipedia](https://en.wikipedia.org/wiki/Car) and load it as a LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html)."
]
},
{
@@ -214,7 +214,7 @@
"id": "5b43d7e0-3c85-4d97-86c7-e8c984b60b0a",
"metadata": {},
"source": [
"Use [batch](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.Runnable.html) functionality to run the extraction in **parallel** across each chunk! \n",
"Use [batch](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) functionality to run the extraction in **parallel** across each chunk! \n",
"\n",
":::{.callout-tip}\n",
"You can often use .batch() to parallelize the extractions! `.batch` uses a threadpool under the hood to help you parallelize workloads.\n",
"If desired, it's easy to create a custom prompt and parser with `LangChain` and `LCEL`.\n",
"\n",
"To create a custom parser, define a function to parse the output from the model (typically an [AIMessage](https://api.python.langchain.com/en/latest/messages/langchain_core.messages.ai.AIMessage.html)) into an object of your choice.\n",
"To create a custom parser, define a function to parse the output from the model (typically an [AIMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html)) into an object of your choice.\n",
"\n",
"See below for a simple implementation of a JSON parser."
"In this guide, we'll learn how to create a simple prompt template that provides the model with example inputs and outputs when generating. Providing the LLM with a few such examples is called few-shotting, and is a simple yet powerful way to guide generation and in some cases drastically improve model performance.\n",
"\n",
"A few-shot prompt template can be constructed from either a set of examples, or from an [Example Selector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html) class responsible for choosing a subset of examples from the defined set.\n",
"A few-shot prompt template can be constructed from either a set of examples, or from an [Example Selector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html) class responsible for choosing a subset of examples from the defined set.\n",
"\n",
"This guide will cover few-shotting with string prompt templates. For a guide on few-shotting with chat messages for chat models, see [here](/docs/how_to/few_shot_examples_chat/).\n",
"\n",
@@ -160,7 +160,7 @@
"source": [
"### Pass the examples and formatter to `FewShotPromptTemplate`\n",
"\n",
"Finally, create a [`FewShotPromptTemplate`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotPromptTemplate.html) object. This object takes in the few-shot examples and the formatter for the few-shot examples. When this `FewShotPromptTemplate` is formatted, it formats the passed examples using the `example_prompt`, then and adds them to the final prompt before `suffix`:"
"Finally, create a [`FewShotPromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotPromptTemplate.html) object. This object takes in the few-shot examples and the formatter for the few-shot examples. When this `FewShotPromptTemplate` is formatted, it formats the passed examples using the `example_prompt`, then and adds them to the final prompt before `suffix`:"
]
},
{
@@ -251,7 +251,7 @@
"source": [
"## Using an example selector\n",
"\n",
"We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the `FewShotPromptTemplate` object, we will feed them into an implementation of `ExampleSelector` called [`SemanticSimilarityExampleSelector`](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html) instance. This class selects few-shot examples from the initial set based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few-shot examples, as well as a vector store to perform the nearest neighbor search.\n",
"We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the `FewShotPromptTemplate` object, we will feed them into an implementation of `ExampleSelector` called [`SemanticSimilarityExampleSelector`](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html) instance. This class selects few-shot examples from the initial set based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few-shot examples, as well as a vector store to perform the nearest neighbor search.\n",
"\n",
"To show what it looks like, let's initialize an instance and call it in isolation:"
"This guide covers how to prompt a chat model with example inputs and outputs. Providing the model with a few such examples is called few-shotting, and is a simple yet powerful way to guide generation and in some cases drastically improve model performance.\n",
"\n",
"There does not appear to be solid consensus on how best to do few-shot prompting, and the optimal prompt compilation will likely vary by model. Because of this, we provide few-shot prompt templates like the [FewShotChatMessagePromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html?highlight=fewshot#langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate) as a flexible starting point, and you can modify or replace them as you see fit.\n",
"There does not appear to be solid consensus on how best to do few-shot prompting, and the optimal prompt compilation will likely vary by model. Because of this, we provide few-shot prompt templates like the [FewShotChatMessagePromptTemplate](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html?highlight=fewshot#langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate) as a flexible starting point, and you can modify or replace them as you see fit.\n",
"\n",
"The goal of few-shot prompt templates are to dynamically select examples based on an input, and then format the examples in a final prompt to provide for the model.\n",
"\n",
@@ -49,7 +49,7 @@
"\n",
"The basic components of the template are:\n",
"- `examples`: A list of dictionary examples to include in the final prompt.\n",
"- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"\n",
"Below is a simple demonstration. First, define the examples you'd like to include. Let's give the LLM an unfamiliar mathematical operator, denoted by the \"🦜\" emoji:"
]
@@ -239,8 +239,8 @@
"\n",
"Sometimes you may want to select only a few examples from your overall set to show based on the input. For this, you can replace the `examples` passed into `FewShotChatMessagePromptTemplate` with an `example_selector`. The other components remain the same as above! Our dynamic few-shot prompt template would look like:\n",
"\n",
"- `example_selector`: responsible for selecting few-shot examples (and the order in which they are returned) for a given input. These implement the [BaseExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html?highlight=baseexampleselector#langchain_core.example_selectors.base.BaseExampleSelector) interface. A common example is the vectorstore-backed [SemanticSimilarityExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html?highlight=semanticsimilarityexampleselector#langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector)\n",
"- `example_prompt`: convert each example into 1 or more messages through its [`format_messages`](https://api.python.langchain.com/en/latest/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=chatprompttemplate#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"- `example_selector`: responsible for selecting few-shot examples (and the order in which they are returned) for a given input. These implement the [BaseExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html?highlight=baseexampleselector#langchain_core.example_selectors.base.BaseExampleSelector) interface. A common example is the vectorstore-backed [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html?highlight=semanticsimilarityexampleselector#langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector)\n",
"- `example_prompt`: convert each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=chatprompttemplate#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n",
"\n",
"These once again can be composed with other messages and chat templates to assemble your final prompt.\n",
"For a complete description of all arguments head to the API reference: https://api.python.langchain.com/en/latest/messages/langchain_core.messages.utils.filter_messages.html"
"For a complete description of all arguments head to the API reference: https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.utils.filter_messages.html"
]
}
],
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.