Compare commits

...

602 Commits

Author SHA1 Message Date
Bagatur
562b546bcc docs: update chat openai (#20331) 2024-04-11 09:29:46 -07:00
Bagatur
2c4741b5ed docs: add tool-calling agent (#20328) 2024-04-11 09:29:40 -07:00
ccurme
f02e55aaf7 docs: add component page for tool calls (#20282)
Note: includes links to API reference pages for ToolCall and other
objects that currently don't exist (e.g.,
https://api.python.langchain.com/en/latest/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall).
2024-04-11 09:29:25 -07:00
Bagatur
6608089030 langchain[patch]: Release 0.1.16 (#20335) 2024-04-11 09:28:37 -07:00
Eugene Yurtsev
0e74fb4ec1 docs: Update list of chat models tool calling providers (#20330)
Will follow up with a few missing providers
2024-04-11 12:22:49 -04:00
Eugene Yurtsev
653489a1a9 docs: Update documentation for custom LLMs (#19972)
Update documentation for customizing LLMs
2024-04-11 12:21:27 -04:00
Bagatur
799714c629 release anthropic, fireworks, openai, groq, mistral (#20333) 2024-04-11 09:19:52 -07:00
Bagatur
e72330aacc core[patch]: Release 0.1.42 (#20332) 2024-04-11 09:10:27 -07:00
ccurme
795c728f71 mistral[patch]: add IDs to tool calls (#20299)
Mistral gives us one ID per response, no individual IDs for tool calls.

```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_mistralai import ChatMistralAI


prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant"),
        ("human", "{input}"),
        MessagesPlaceholder("agent_scratchpad"),
    ]
)
model = ChatMistralAI(model="mistral-large-latest", temperature=0)

@tool
def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2

tools = [magic_function]

agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-11 11:09:30 -04:00
Eugene Yurtsev
22fd844e8a community[patch]: Add deprecation warnings to postgres implementation (#20222)
Add deprecation warnings to postgres implementation that are in langchain-postgres.
2024-04-11 10:33:22 -04:00
Eugene Yurtsev
f02f708f52 core[patch]: For now remove user warning (#20321)
Remove warning since it creates a lot of noise.
2024-04-11 10:33:01 -04:00
Mayank Solanki
f709ab4cdf docs: added backtick on RunnablePassthrough (#20310)
added backtick on RunnablePassthrough
Isuue: #20094
2024-04-11 08:39:10 -04:00
Bagatur
c706689413 openai[patch]: use tool_calls in request (#20272) 2024-04-11 03:55:52 -07:00
Bagatur
e936fba428 langchain[patch]: agents check prompt partial vars (#20303) 2024-04-11 03:55:09 -07:00
Bagatur
cb25fa0d55 core[patch]: fix ChatGeneration.text with content blocks (#20294) 2024-04-10 15:54:06 -07:00
Bagatur
03b247cca1 core[patch]: include tool_calls in ai msg chunk serialization (#20291) 2024-04-10 22:27:40 +00:00
Erick Friis
0fa551c278 chroma: bump rc, keep optional (#20298) 2024-04-10 14:22:56 -07:00
Erick Friis
16f8fff14f chroma: add required fastapi dep to restrict to <1 (#20297) 2024-04-10 14:16:13 -07:00
Erick Friis
991fd82532 chroma: add optional fastapi dep to restrict to <1 (#20295) 2024-04-10 12:49:44 -07:00
killind-dev
f8a54d1d73 chroma: Add chroma partner package (#19292)
**Description:** Adds chroma to the partners package. Tests & code
mirror those in the community package.
**Dependencies:** None
**Twitter handle:** @akiradev0x

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-10 19:33:45 +00:00
Yuki Watanabe
eef19954f3 core[patch]: fix duplicated kwargs in _load_sql_databse_chain (#19908)
`kwargs` is specified twice in [this
line](3218463f6a/libs/langchain/langchain/chains/loading.py (L386)),
causing runtime error when passing any keyword arguments.
2024-04-10 12:20:28 -07:00
ccurme
39471a9c87 docs: update tool calling cookbook (#20290)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-10 15:06:33 -04:00
Nuno Campos
15271ac832 core: mustache prompt templates (#19980)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-10 11:25:32 -07:00
Leonid Ganeline
4cb5f4c353 community[patch]: import flattening fix (#20110)
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.

See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-10 13:01:19 -04:00
Yuki Oshima
12190ad728 openai[patch]: Fix langchain-openai unknown parameter error with gpt-4-turbo (#20271)
**Description:** 

I fixed langchain-openai unknown parameter error with gpt-4-turbo.

It seems that the behavior of the Chat Completions API implicitly
changed when using the latest gpt-4-turbo model, differing from previous
models. It now appears to reject parameters that are not listed in the
[API
Reference](https://platform.openai.com/docs/api-reference/chat/create).
So I found some errors and fixed them.

**Issue:** https://github.com/langchain-ai/langchain/issues/20264

**Dependencies:** none

**Twitter handle:** https://twitter.com/oshima_123
2024-04-10 09:51:38 -07:00
ccurme
21c1ce0bc1 update agents to use tool call messages (#20074)
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant"),
        MessagesPlaceholder("chat_history", optional=True),
        ("human", "{input}"),
        MessagesPlaceholder("agent_scratchpad"),
    ]
)
model = ChatAnthropic(model="claude-3-opus-20240229")

@tool
def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2

tools = [magic_function]

agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...

Invoking: `magic_function` with `{'input': 3}`
responded: [{'text': '<thinking>\nThe user has asked for the value of magic_function applied to the input 3. Looking at the available tools, magic_function is the relevant one to use here, as it takes an integer input and returns an integer output.\n\nThe magic_function has one required parameter:\n- input (integer)\n\nThe user has directly provided the value 3 for the input parameter. Since the required parameter is present, we can proceed with calling the function.\n</thinking>', 'type': 'text'}, {'id': 'toolu_01HsTheJPA5mcipuFDBbJ1CW', 'input': {'input': 3}, 'name': 'magic_function', 'type': 'tool_use'}]

5
Therefore, the value of magic_function(3) is 5.

> Finished chain.
{'input': 'what is the value of magic_function(3)?',
 'output': 'Therefore, the value of magic_function(3) is 5.'}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-10 11:54:51 -04:00
Erick Friis
9eb6f538f0 infra, multiple: rc release versions (#20252) 2024-04-09 17:54:58 -07:00
Bagatur
0d0458d1a7 mistralai[patch]: Pre-release 0.1.2-rc.1 (#20251) 2024-04-10 00:25:38 +00:00
Bagatur
e4046939d0 anthropic[patch]: Pre-release 0.1.8-rc.1 (#20250) 2024-04-10 00:23:10 +00:00
Bagatur
a8eb0f5b1b openai[patch]: pre-release 0.1.3-rc.1 (#20249) 2024-04-10 00:22:08 +00:00
Bagatur
a43b9e4f33 core[patch]: Pre-release 0.1.42-rc.1 (#20248) 2024-04-09 19:10:38 -05:00
Bagatur
9514bc4d67 core[minor], ...: add tool calls message (#18947)
core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor]

```python
class ToolCall(TypedDict):
    name: str
    args: Dict[str, Any]
    id: Optional[str]

class InvalidToolCall(TypedDict):
    name: Optional[str]
    args: Optional[str]
    id: Optional[str]
    error: Optional[str]

class ToolCallChunk(TypedDict):
    name: Optional[str]
    args: Optional[str]
    id: Optional[str]
    index: Optional[int]


class AIMessage(BaseMessage):
    ...
    tool_calls: List[ToolCall] = []
    invalid_tool_calls: List[InvalidToolCall] = []
    ...


class AIMessageChunk(AIMessage, BaseMessageChunk):
    ...
    tool_call_chunks: Optional[List[ToolCallChunk]] = None
    ...
```
Important considerations:
- Parsing logic occurs within different providers;
- ~Changing output type is a breaking change for anyone doing explicit
type checking;~
- ~Langsmith rendering will need to be updated:
https://github.com/langchain-ai/langchainplus/pull/3561~
- ~Langserve will need to be updated~
- Adding chunks:
- ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has
non-null .tool_calls.~
- Tool call chunks are appended, merging when having equal values of
`index`.
  - additional_kwargs accumulate the normal way.
- During streaming:
- ~Messages can change types (e.g., from AIMessageChunk to
AIToolCallsMessageChunk)~
- Output parsers parse additional_kwargs (during .invoke they read off
tool calls).

Packages outside of `partners/`:
- https://github.com/langchain-ai/langchain-cohere/pull/7
- https://github.com/langchain-ai/langchain-google/pull/123/files

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 18:41:42 -05:00
Erick Friis
00552918ac groq: xfail tool_choice tests (#20247) 2024-04-09 23:29:59 +00:00
Bagatur
2d83505be9 experimental[patch]: Release 0.0.57 (#20243) 2024-04-09 17:08:01 -05:00
Bagatur
f06cb59ab9 groq[patch]: Release 0.1.1 (#20242) 2024-04-09 21:59:58 +00:00
Erick Friis
ad3f1a9e85 docs: fix external repo partner docs (#20238) 2024-04-09 21:58:04 +00:00
Bagatur
0b2f0307d7 openai[patch]: Release 0.1.2 (#20241) 2024-04-09 21:55:19 +00:00
Bagatur
4b84c9b28c anthropic[patch]: Release 0.1.7 (#20240) 2024-04-09 21:53:16 +00:00
Bagatur
74d04a4e80 mistralai[patch]: Release 0.1.1 (#20239) 2024-04-09 21:53:01 +00:00
Bagatur
e5913c8758 langchain[patch]: Release 0.1.15 (#20237) 2024-04-09 21:50:32 +00:00
Bagatur
e39fdfddf1 community[patch]: Release 0.0.32 (#20236) 2024-04-09 21:37:10 +00:00
Bagatur
a07238d14e core[patch]: Release 0.1.41 (#20233) 2024-04-09 21:11:37 +00:00
Chip Davis
806d4ae48f community[patch]: fixed multithreading returning List[List[Documents]] instead of List[Documents] (#20230)
Description: When multithreading is set to True and using the
DirectoryLoader, there was a bug that caused the return type to be a
double nested list. This resulted in other places upstream not being
able to utilize the from_documents method as it was no longer a
`List[Documents]` it was a `List[List[Documents]]`. The change made was
to just loop through the `future.result()` and yield every item.
Issue: #20093
Dependencies: N/A
Twitter handle: N/A
2024-04-09 17:06:37 -04:00
Sholto Armstrong
230376f183 docs: Fix typo in citations example (#20218)
Small typo in the citations notebook "ojbects" changed to "objects"
2024-04-09 21:05:33 +00:00
Eugene Yurtsev
fe35e13083 langchain[patch]: Update unit test (#20228)
This unit test fails likely validation by the openai client.

Newer openai library seems to be doing more validation so the existing
test fails since http_client needs to be of httpx instance
2024-04-09 16:44:23 -04:00
Casper da Costa-Luis
b972f394c8 langchain[patch]: make BooleanOutputParser check words not substrings (#20064)
- **Description**: fixes BooleanOutputParser detecting sub-words ("NOW
this is likely (YES)" -> `True`, not `AmbiguousError`)
- **Issue(s)**: fixes #11408 (follow-up to #17810)
- **Dependencies**: None
- **GitHub handle**: @casperdcl

<!-- if unreviewd after a few days, @-mention one of baskaryan, efriis,
eyurtsev, hwchase17 -->

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-09 20:43:31 +00:00
seray
add31f46d0 community[patch]: OpenLLM Async Client Fixes and Timeout Parameter (#20007)
Same changes as this merged
[PR](https://github.com/langchain-ai/langchain/pull/17478)
(https://github.com/langchain-ai/langchain/pull/17478), but for the
async client, as the same issues persist.

- Replaced 'responses' attribute of OpenLLM's GenerationOutput schema to
'outputs'.
reference:
66de54eae7/openllm-core/src/openllm_core/_schemas.py (L135)

- Added timeout parameter for the async client.

---------

Co-authored-by: Seray Arslan <seray.arslan@knime.com>
2024-04-09 16:34:56 -04:00
Erick Friis
37a9e23c05 community: switch to falkordb python client (#20229) 2024-04-09 20:19:44 +00:00
Christophe Bornet
f43b48aebc core[minor]: Implement aformat_messages for _StringImageMessagePromptTemplate (#20036) 2024-04-09 15:59:39 -04:00
Christophe Bornet
19001e6cb9 core[minor]: Implement aformat for FewShotPromptWithTemplates (#20039) 2024-04-09 15:58:41 -04:00
Erick Friis
855ba46f80 standard-tests: a standard unit and integration test set (#20182)
just chat models for now
2024-04-09 12:43:00 -07:00
Erick Friis
9b5cae045c together: release 0.1.0 (#20225)
Resolved #20217
2024-04-09 12:23:52 -07:00
Eugene Yurtsev
7cfb643a1c langchain-postgres: Remove remaining README.md file (#20221)
Repository has moved to langchain-ai/langchain-postgres
2024-04-09 14:02:15 -04:00
Eugene Yurtsev
2fa7266ebb Remove postgres package (#20207)
Package moved
2024-04-09 13:51:17 -04:00
Simon Kelly
a682f0d12b openai[patch]: wrap stream code in context manager blocks (#18013)
**Description:**
Use the `Stream` context managers in `ChatOpenAi` `stream` and `astream`
method.

Using the context manager returned by the OpenAI client makes it
possible to terminate the stream early since the response connection
will be closed when the context manager exists.

**Issue:** #5340
**Twitter handle:** @snopoke

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-09 17:40:16 +00:00
Shotaro Sano
6c11c8dac6 docs: Add documentation of ElasticsearchStore.BM25RetrievalStrategy (#20098)
This pull request follows up on
https://github.com/langchain-ai/langchain/pull/19314 and
https://github.com/langchain-ai/langchain-elastic/pull/6, adding
documentation for the `ElasticsearchStore.BM25RetrievalStrategy`.

Like other retrieval strategies, we are now introducing
BM25RetrievalStrategy.

### Background
- The `BM25RetrievalStrategy` has been introduced to `langchain-elastic`
via the pull request
https://github.com/langchain-ai/langchain-elastic/pull/6.
- This PR was initially created in the main `langchain` repository but
was moved to `langchain-elastic` during the review process due to the
migration of the partner package.
- The original PR can be found at
https://github.com/langchain-ai/langchain/pull/19314.
- As
[commented](https://github.com/langchain-ai/langchain/pull/19314#issuecomment-2023202401)
by @joemcelroy, documenting the new retrieval strategy is part of the
requirements for its introduction.

Although the `BM25RetrievalStrategy` has been merged into
`langchain-elastic`, its documentation is still to be maintained in the
main `langchain` repository. Therefore, this pull request adds the
documentation portion of `BM25RetrievalStrategy`.

The content of the documentation remains the same as that included in
the original PR, https://github.com/langchain-ai/langchain/pull/19314.

---------

Co-authored-by: Max Jakob <max.jakob@elastic.co>
2024-04-09 12:37:15 -05:00
David Lee
0394c6e126 community[minor]: add allow_dangerous_requests for OpenAPI toolkits (#19493)
**OpenAPI allow_dangerous_requests**: community: add
allow_dangerous_requests for OpenAPI toolkits

**Description:** a description of the change

Due to BaseRequestsTool changes, we need to pass
allow_dangerous_requests manually.


b617085af0/libs/community/langchain_community/tools/requests/tool.py (L26-L46)

While OpenAPI toolkits didn't pass it in the arguments.


b617085af0/libs/community/langchain_community/agent_toolkits/openapi/planner.py (L262-L269)


**Issue:** the issue # it fixes, if applicable

https://github.com/langchain-ai/langchain/issues/19440

If not passing allow_dangerous_requests, it won't be able to do
requests.

**Dependencies:** any dependencies required for this change

Not much

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-09 17:14:02 +00:00
Guangdong Liu
301dc3dfd2 docs: Get rid of ZeroShotAgent and use create_react_agent instead (#20157)
- **Issue:** #20122
 -  @baskaryan, @eyurtsev.
2024-04-09 12:00:29 -05:00
Timothy
0c848a25ad community[patch]: GCSDirectoryLoader bugfix (#20005)
- **Description:** Bug fix. Removed extra line in `GCSDirectoryLoader`
to allow catching Exceptions. Now also logs the file path if Exception
is raised for easier debugging.
- **Issue:** #20198 Bug since langchain-community==0.0.31
- **Dependencies:** No change
- **Twitter handle:** timothywong731

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-09 16:57:00 +00:00
jeff kit
ac42e96e4c community[patch], langchain[minor]: Enhance Tencent Cloud VectorDB, langchain: make Tencent Cloud VectorDB self query retrieve compatible (#19651)
- make Tencent Cloud VectorDB support metadata filtering.
- implement delete function for Tencent Cloud VectorDB.
- support both Langchain Embedding model and Tencent Cloud VDB embedding
model.
- Tencent Cloud VectorDB support filter search keyword, compatible with
langchain filtering syntax.
- add Tencent Cloud VectorDB TranslationVisitor, now work with self
query retriever.
- more documentations.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-09 16:50:48 +00:00
Bagatur
1a34c65e01 community[patch]: pass through sql agent kwargs (#19962)
Fix #19961
2024-04-09 16:47:32 +00:00
Haris Ali
1b480914b4 docs: Fix the class links in openai_tools and openai_functions description in output parser documentations (#20197)
- **Description:** In this PR I fixed the links which points to the API
docs for classes in OpenAI functions and OpenAI tools section of output
parsers.
  - **Issue:** It fixed the issue #19969

Co-authored-by: Haris Ali <haris.ali@formulatrix.com>
2024-04-09 16:07:19 +00:00
Guangdong Liu
97d91ec17c community[patch]: standardize baichuan init args (#20209)
Related to https://github.com/langchain-ai/langchain/issues/20085

@baskaryan
2024-04-09 11:00:40 -05:00
Piyush Jain
cd7abc495a community[minor]: add neptune analytics graph (#20047)
Replacement for PR
[#19772](https://github.com/langchain-ai/langchain/pull/19772).

---------

Co-authored-by: Dave Bechberger <dbechbe@amazon.com>
Co-authored-by: bechbd <bechbd@users.noreply.github.com>
2024-04-09 09:20:59 -05:00
Shuqian
ad9750403b community[minor]: add bedrock anthropic callback for token usage counting (#19864)
**Description:** add bedrock anthropic callback for token usage
counting, consulted openai callback.

---------

Co-authored-by: Massimiliano Pronesti <massimiliano.pronesti@gmail.com>
2024-04-09 09:18:48 -05:00
Prince Canuma
1f9f4d8742 community[minor]: Add support for MLX models (chat & llm) (#18152)
**Description:** This PR adds support for MLX models both chat (i.e.,
instruct) and llm (i.e., pretrained) types/
**Dependencies:** mlx, mlx_lm, transformers
**Twitter handle:** @Prince_Canuma

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-09 14:17:07 +00:00
aditya thomas
6baeaf4802 docs: TogetherAI as a drop-in replacement for OpenAI (#19900)
**Description:** TogetherAI as a drop-in replacement for OpenAI
**Issue:** None
**Dependencies:** None

@baskaryan apropos #20032
2024-04-09 09:12:52 -05:00
Leonid Ganeline
2f8dd1a161 community[patch]: cross_encoders flatten namespaces (#20183)
Issue `langchain_community.cross_encoders` didn't have flattening
namespace code in the __init__.py file.
Changes:
- added code to flattening namespaces (used #20050 as a template)
- added ut for a change
- added missed `test_imports` for `chat_loaders` and
`chat_message_histories` modules
2024-04-08 20:50:23 -04:00
Bagatur
1af7133828 docs: add vertexai to structured output (#20171) 2024-04-08 16:09:49 -05:00
kaijietti
a812839f0c community: add request_timeout and max_retries to ChatAnthropic (#19402)
This PR make `request_timeout` and `max_retries` configurable for
ChatAnthropic.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-08 21:04:17 +00:00
Richmond Alake
c769421aa4 cookbook: MongoDB Cookbook for Chat history and semantic cache (#19998)
Thank you for contributing to LangChain!

- [ ] **PR title**: "community: Add semantic caching and memory using
MongoDB"


- [ ] **PR message**: 
- **Description:** This PR introduces functionality for adding semantic
caching and chat message history using MongoDB in RAG applications. By
leveraging the MongoDBCache and MongoDBChatMessageHistory classes,
developers can now enhance their retrieval-augmented generation
applications with efficient semantic caching mechanisms and persistent
conversation histories, improving response times and consistency across
chat sessions.
    - **Issue:** N/A
- **Dependencies:** Requires `datasets`, `langchain`,
`langchain-mongodb`, `langchain-openai`, `pymongo`, and `pandas` for
implementation. MongoDB Atlas is used for database services, and the
OpenAI API for model access.
    - **Twitter handle:** @richmondalake

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-08 20:21:24 +00:00
Erick Friis
391e8f2050 pinecone[patch]: fix core min version (#20177) 2024-04-08 20:06:59 +00:00
Harry Jiang
1ee208541c langchain: fix pinecone upsert when async_req is set to False (#19793)
Issue: 
When async_req is the default value True, pinecone client return the
multiprocessing AsyncResult object.
When async_req is set to False, pinecone client return the result
directly. `[{'upserted_count': 1}]` . Calling get() method will throw an
error in this case.
2024-04-08 12:55:59 -07:00
Alex Sherstinsky
5f563e040a community: extend Predibase integration to support fine-tuned LLM adapters (#19979)
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
    - **Twitter handle:** `@alexsherstinsky`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-08 18:54:29 +00:00
Bagatur
a27d88f12a anthropic[patch]: standardize init args (#20161)
Related to #20085
2024-04-08 12:09:06 -05:00
Bagatur
3490d70238 mistralai[patch]: standardize model params (#20163)
Related to #20085
2024-04-08 11:48:38 -05:00
Bagatur
17182406f3 docs: standardize fireworks params (#20162)
Related to #20085
2024-04-08 10:57:56 -05:00
Bagatur
5ae0e687b3 docs: use standard openai params (#20160)
Part of #20085
2024-04-08 10:56:53 -05:00
david02871
e1a24d09c5 community: Add PHP language parser to document_loaders (#19850)
**Description:**
Added a PHP language parser to document_loaders
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-08 11:30:28 -04:00
Marlene
2f03bc397e Community: Updating Azure Retriever and Docs to be Azure AI Search instead of Azure Cognitive Search (#19925)
Last year Microsoft [changed the
name](https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search)
of Azure Cognitive Search to Azure AI Search. This PR updates the
Langchain Azure Retriever API and it's associated docs to reflect this
change. It may be confusing for users to see the name Cognitive here and
AI in the Microsoft documentation which is why this is needed. I've also
added a more detailed example to the Azure retriever doc page.

There are more places that need a similar update but I'm breaking it up
so the PRs are not too big 😄 Fixing my errors from the previous PR.

Twitter: @marlene_zw

Two new tests added to test backward compatibility in
`libs/community/tests/integration_tests/retrievers/test_azure_cognitive_search.py`

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-08 11:12:41 -04:00
Rahul Triptahi
820b713086 community[minor]: Add support for Pebblo cloud_api_key in PebbloSafeLoader (#19855)
**Description**:
_PebbloSafeLoader_: Add support for pebblo's cloud api-key in
PebbloSafeLoader

- This Pull request enables PebbloSafeLoader to accept pebblo's cloud
api-key and send the semantic classification data to pebblo cloud.

**Documentation**: Updated 
**Unit test**: Added
**Issue**: NA
**Dependencies**: - None
**Twitter handle**: @rahul_tripathi2

Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-04-08 11:10:04 -04:00
Eugene Yurtsev
34a24d4df6 postgres[minor]: Add pgvector community as is (#20096)
This moves langchain pgvector community as is

The only modification is support for psycopg3 rather than psycopg2!
2024-04-08 09:34:10 -04:00
Eugene Yurtsev
ba9e0d76c1 postgres[minor]: add postgres checkpoint implementation (#20025)
Adds checkpoint implementation using psycopg
2024-04-08 09:27:15 -04:00
William FH
039b7a472d [core] fix: manually specifying run_id for chat models.invoke() and .ainvoke() (#20082) 2024-04-06 16:57:32 -07:00
Chris Germann
ba602dc562 Documentation: Fixed the typo of Discord -> Telegram (#20008)
Description: Just fixed one string
Issues: None
Dependencies: None
Twitter handle: @epu9byj

Co-authored-by: gere <gere@kapo.zh.ch>
2024-04-06 20:00:03 +00:00
Erick Friis
96dc0ea49d pinecone[patch]: release 0.1.0 (#20109) 2024-04-06 18:41:28 +00:00
donbr
de496062b3 templates: migrate to langchain_anthropic package to support Claude 3 models (#19393)
- **Description:** update langchain anthropic templates to support
Claude 3 (iterative search, chain of note, summarization, and XML
response)
- **Issue:** issue # N/A. Stability issues and errors encountered when
trying to use older langchain and anthropic libraries.
- **Dependencies:**
  - langchain_anthropic version 0.1.4\
- anthropic package version in the range ">=0.17.0,<1" to support
langchain_anthropic.
- **Twitter handle:** @d_w_b7


- [ x]**Add tests and docs**: If you're adding a new integration, please
include
  1. used instructions in the README for testing

- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-06 00:33:59 +00:00
Maxime Perrin
5ac0d1f67b partners[anthropic]: fix anthropic chat model message type lookup keys (#19034)
- **Description:** Fixing message formatting issue in ChatAnthropic
model by adding dictionary keys for `AIMessageChunk `and
`HumanMessageChunk`
  - **Issue:** #19025 
  - **Twitter handle:** @maximeperrin_

Co-authored-by: Maxime Perrin <mperrin@doing.fr>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-06 00:22:14 +00:00
Krista Pratico
d64bd32b20 templates: add rag azure search template (#18143)
- **Description:** Adds a template for performing RAG with the
AzureSearch vectorstore.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-06 00:20:40 +00:00
Bagatur
46f580d42d docs: anthropic tool docstring (#20091) 2024-04-05 21:50:40 +00:00
Erick Friis
28dfde2cb2 cohere: move package to external repo (#20081) 2024-04-05 14:29:15 -07:00
Jacob Lee
58a2123ca0 docs[patch]: Add missing redirects (#20076) 2024-04-05 12:54:00 -07:00
Eugene Yurtsev
520ff50adc community[patch]: Improve import callbacks to make it IDE friendly (#20050)
* declares __all__ as a list of strings (instead of dynamically
computing it)
* import type definitions when TYPE_CHECKING is true
2024-04-05 15:17:51 -04:00
Guangdong Liu
5a76087965 langchain-core[minor]: Allow passing local cache to language models (#19331)
After this PR it will be possible to pass a cache instance directly to a
language model. This is useful to allow different language models to use
different caches if needed.

- **Issue:** close #19276

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-05 11:19:54 -04:00
Eugene Yurtsev
e4fc0e7502 core[patch]: Document BaseCache abstraction in code (#20046)
Document the base cache abstraction in the cache.
2024-04-05 10:56:57 -04:00
Christophe Bornet
4d8a6a27a3 core[minor]: Implement aformat_prompt and ainvoke in BasePromptTemplate (#20035) 2024-04-05 10:36:43 -04:00
Christophe Bornet
7e5c1905b1 core[minor]: Add async aformat_document method (#20037) 2024-04-05 10:29:53 -04:00
Christophe Bornet
927793d088 Merge pull request #20038
* Implement aformat_messages for ChatMessagePromptTemplate
2024-04-05 10:25:27 -04:00
Erick Friis
ebd24bb5d6 docs: fix title cap (#20048) 2024-04-05 02:36:33 +00:00
Eugene Yurtsev
1ee8cf7b20 Docs: Update custom chat model (#19967)
* Clean up in the existing tutorial
* Add model_name to identifying params
* Add table to summarize messages
2024-04-04 22:36:03 -04:00
Erick Friis
5fc7bb01e9 docs: weaviate docs (#20042) 2024-04-04 19:01:02 -07:00
Bagatur
38fb1429fe docs: fix together model tab (#20032) 2024-04-04 15:33:43 -07:00
Jacob Lee
b69af26717 docs[patch]: Fix Model I/O quickstart (#20031)
@baskaryan
2024-04-04 15:28:58 -07:00
Usama Ahmed
94ac42c573 docs: fixing typo in argument name (#20028)
it's "mode" instead of "model", I fixed it
2024-04-04 22:28:28 +00:00
Bagatur
07eeeb84f3 docs: hide experimental anthropic (#20030) 2024-04-04 15:27:52 -07:00
Lance Martin
e76b9210dd Update example cookbook for Anthropic tool use (#20029) 2024-04-04 14:53:18 -07:00
Leonid Ganeline
3856dedff4 docs: integrations/providers update 9 (#19941)
- Added missed providers
- Added links, descriptions in related examples
- Formatted in a consistent format

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-04 21:37:48 +00:00
Bagatur
644ff46100 docs: mark anthropic tools wrapper as deprecated (#20024) 2024-04-04 21:33:55 +00:00
Leonid Ganeline
69bf6262aa docs: integrations/providers/unstructured update (#19892)
Updated a page with existing document loaders with links to examples.
Fixed formatting of one example.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-04 21:31:27 +00:00
Bagatur
1b7ed6071a anthropic[patch]: Release 0.1.6 (#20026) 2024-04-04 14:29:50 -07:00
Bagatur
6860450e48 anthropic[patch]: use anthropic 0.23 (#20022) 2024-04-04 14:23:53 -07:00
Leonid Ganeline
4c969286fe docs integrations/providers update 10 (#19970)
Fixed broken links. Formatted to get consistent forms. Added missed
imports in the example code
2024-04-04 14:22:45 -07:00
Leonid Ganeline
82f0198be2 docs: graphs update (#19675)
Issue: The `graph` code was moved into the `community` package a long
ago. But the related documentation is still in the
[use_cases](https://python.langchain.com/docs/use_cases/graph/integrations/diffbot_graphtransformer)
section and not in the `integrations`.
Changes:
- moved the `use_cases/graph/integrations` notebooks into the
`integrations/graphs`
- renamed files and changed titles to follow the consistent format
- redirected old page URLs to new URLs in `vercel.json` and in several
other pages
- added descriptions and links when necessary
- formatted into the consistent format
2024-04-04 14:13:22 -07:00
Bagatur
be3dd62de4 anthropic[patch]: fix experimental tests (#20021) 2024-04-04 13:37:43 -07:00
Lance Martin
a6926772f0 Add cookbook for Anthropic .with_structured_output() (#20017) 2024-04-04 13:30:44 -07:00
Bagatur
86fdb79454 anthropic[patch]: bump core dep (#20019)
]
2024-04-04 13:28:23 -07:00
Bagatur
209de0a561 anthropic[minor]: tool use (#20016) 2024-04-04 13:22:48 -07:00
Leonid Ganeline
3aacd11846 community[minor]: added missed class to __all__ (#19888)
Added missed `UnstructuredCHMLoader` class to the
document_loader.\_\_init\_\_.py \_\_all\_\_
2024-04-04 16:16:51 -04:00
Jacob Lee
7f0cb3bfba docs[patch]: Make Docusaurus and Vercel add trailing slashes when navigating by default (#20014)
Should hopefully avoid weird broken link edge cases.

Relative links now trip up the Docusaurus broken link checker, so this
PR also removes them.

Also snuck in a small addition about asyncio
2024-04-04 12:49:15 -07:00
Chris Papademetrious
a954dedb77 langchain[minor]: enhance LocalFileStore to allow directory/file permissions to be specified (#18857)
**Description:**
The `LocalFileStore` class can be used to create an on-disk
`CacheBackedEmbeddings` cache. However, the default `umask` settings
gives file/directory write permissions only to the original user. Once
the cache directory is created by the first user, other users cannot
write their own cache entries into the directory.

To make the cache usable by multiple users, this pull request updates
the `LocalFileStore` constructor to allow the permissions for newly
created directories and files to be specified. The specified permissions
override the default `umask` values.

For example, when configured as follows:

```python
file_store = LocalFileStore(temp_dir, chmod_dir=0o770, chmod_file=0o660)
```

then "user" and "group" (but not "other") have permissions to access the
store, which means:

* Anyone in our group could contribute embeddings to the cache.
* If we implement cache cleanup/eviction in the future, anyone in our
group could perform the cleanup.

The default values for the `chmod_dir` and `chmod_file` parameters is
`None`, which retains the original behavior of using the default `umask`
settings.

**Issue:**
Implements enhancement #18075.

**Testing:**
I updated the `LocalFileStore` unit tests to test the permissions.

---------

Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-04 16:40:16 +00:00
Tomaz Bratanic
df25829f33 community[minor]: Add metadata filtering support for neo4j vector (#20001) 2024-04-04 11:37:06 -04:00
Ben Mitchell
b52b78478f community[minor]: Implement Async OpenSearch afrom_texts & afrom_embeddings (#20009)
- **Description:** Adds async variants of afrom_texts and
afrom_embeddings into `OpenSearchVectorSearch`, which allows for
`afrom_documents` to be called.
- **Issue:** I implemented this because my use case involves an async
scraper generating documents as and when they're ready to be ingested by
Embedding/OpenSearch
- **Dependencies:** None that I'm aware

Co-authored-by: Ben Mitchell <b.mitchell@reply.com>
2024-04-04 15:36:14 +00:00
Christophe Bornet
02152d3909 [docs][minor]: Fix typo in Custom Document Loader doc (#20003) 2024-04-04 10:59:33 -04:00
Jan Nissen
31e3ecc728 core[minor]: support pydantic V2 for JSONOutputParser, allow for other sources of JSON schemas (#19716)
This PR supports using Pydantic v2 objects to generate the schema for
the JSONOutputParser (#19441). This also adds a `json_schema` parameter
to allow users to pass any JSON schema to validate with, not just
pydantic.
2024-04-04 10:57:47 -04:00
Christophe Bornet
f97de4e275 core[minor]: Add aformat to FewShotPromptTemplate (#19652) 2024-04-04 10:24:55 -04:00
Utkarsha Gupte
b27f81c51c core[patch]: mypy ignore fixes #17048 (#19931)
core/langchain_core/_api[Patch]: mypy ignore fixes #17048
Related to #17048

Applied mypy fixes to below two files:
libs/core/langchain_core/_api/deprecation.py
libs/core/langchain_core/_api/beta_decorator.py

Summary of Fixes:
**Issue 1**
class _deprecated_property(type(obj)): # type: ignore
error: Unsupported dynamic base class "type"  [misc]
Fix: 
1. Added an __init__ method to _deprecated_property to initialize the
fget, fset, fdel, and __doc__ attributes.
2. In the __get__, __set__, and __delete__ methods, we now use the
self.fget, self.fset, and self.fdel attributes to call the original
methods after emitting the warning.

3. The finalize function now creates an instance of _deprecated_property
with the fget, fset, fdel, and doc attributes from the original obj
property.



**Issue 2**



 def finalize(  # type: ignore
                wrapper: Callable[..., Any], new_doc: str
            ) -> T:


error: All conditional function variants must have identical
signatures



Fix:
Ensured that both definitions of the finalize function have the
same signature

Twitter Handle -
https://x.com/gupteutkarsha?s=11&t=uwHe4C3PPpGRvoO5Qpm1aA
2024-04-04 10:22:38 -04:00
harry-cohere
e103492eb8 cohere: Add citations to agent, flexibility to tool parsing, fix SDK issue (#19965)
**Description:** Citations are the main addition in this PR. We now emit
them from the multihop agent! Additionally the agent is now more
flexible with observations (`Any` is now accepted), and the Cohere SDK
version is bumped to fix an issue with the most recent version of
pydantic v1 (1.10.15)
2024-04-04 07:02:30 -07:00
Jacob Lee
605c3f23e1 docs: reorg and visual refresh (#19765)
- put use cases in main sidebar
- move modules to own sidebar, rename components
- cleanup lcel section
- cleanup guides
- update font, cell highlighting

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-04 00:58:36 -07:00
Erick Friis
51bdfe04e9 groq: handle streaming tool call case (#19978) 2024-04-03 15:22:59 -07:00
Erick Friis
5acb564d6f groq: fix core version (#19976) 2024-04-03 14:49:57 -07:00
Erick Friis
9e60159043 groq: release 0.1.0 (#19975) 2024-04-03 14:41:48 -07:00
Graden Rea
88cf8a2905 groq: Add tool calling support (#19971)
**Description:** Add with_structured_output to groq chat models
**Issue:** 
**Dependencies:** N/A
**Twitter handle:** N/A
2024-04-03 14:40:20 -07:00
Eugene Yurtsev
6f20f140ca cli[minor]: Add disable sockets in unit tests (#19877) 2024-04-03 17:17:50 -04:00
Eugene Yurtsev
ea276d6547 docs: Custom Document Loaders (#19935)
Add information that shows how to create custom document loaders
2024-04-03 15:34:01 -04:00
Erick Friis
83f62fdacf core: fix try_load_from_hub for older langchain versions load_chain (#19964) 2024-04-03 17:00:25 +00:00
Tomaz Bratanic
09a0ecd000 langchain[minor]: Tests update metadata filtering examples of documents (#19963)
Removing metadata properties that are dicts as some databases don't
support that, and those properties aren't used in tests anyhow..
2024-04-03 12:44:14 -04:00
happy-go-lucky
c6432abdbe community[patch]: Implement delete method and all async methods in opensearch_vector_search (#17321)
- **Description:** In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, I implemented delete method
and all async methods in opensearch_vector_search
- **Dependencies:** No changes
2024-04-03 09:40:49 -07:00
Cheng, Penghui
cc407e8a1b community[minor]: weight only quantization with intel-extension-for-transformers. (#14504)
Support weight only quantization with intel-extension-for-transformers.
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit to accelerate Transformer-based models on Intel
platforms, in particular effective on 4th Intel Xeon Scalable processor
[Sapphire
Rapids](https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html)
(codenamed Sapphire Rapids). The toolkit provides the below key
features:

* Seamless user experience of model compressions on Transformer-based
models by extending [Hugging Face
transformers](https://github.com/huggingface/transformers) APIs and
leveraging [Intel® Neural
Compressor](https://github.com/intel/neural-compressor)
* Advanced software optimizations and unique compression-aware runtime.
* Optimized Transformer-based model packages.
*
[NeuralChat](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat),
a customizable chatbot framework to create your own chatbot within
minutes by leveraging a rich set of plugins and SOTA optimizations.
*
[Inference](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/llm/runtime/graph)
of Large Language Model (LLM) in pure C/C++ with weight-only
quantization kernels.
This PR is an integration of weight only quantization feature with
intel-extension-for-transformers.

Unit test is in
lib/langchain/tests/integration_tests/llm/test_weight_only_quantization.py
The notebook is in
docs/docs/integrations/llms/weight_only_quantization.ipynb.
The document is in
docs/docs/integrations/providers/weight_only_quantization.mdx.

---------

Signed-off-by: Cheng, Penghui <penghui.cheng@intel.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-03 16:21:34 +00:00
Eugene Yurtsev
d6d843ec24 langchain-postgres: Initial package with postgres chat history implementation (#19884)
- [x] Add in code examples for the chat message history class
- [ ] ~Add docs with notebook examples~ (can this be done later?)
- [x] Update README.md
2024-04-03 10:57:21 -04:00
Eugene Yurtsev
d293431e10 core[minor]: Add aload to document loader (#19936)
Add aload to document loader
2024-04-03 10:46:47 -04:00
Ángel Igareta
31a641a155 core: fix return of draw_mermaid_png and change to not save image by default (#19950)
- **Description:** Improvement for #19599: fixing missing return of
graph.draw_mermaid_png and improve it to make the saving of the rendered
image optional

Co-authored-by: Angel Igareta <angel.igareta@klarna.com>
2024-04-03 06:20:35 -07:00
Bagatur
4328c54aab core[patch]: Release 0.1.39 (#19940) 2024-04-03 00:25:56 +00:00
Nuno Campos
f4568fe0c6 core: BaseChatModel modify chat message before passing to run_manager (#19939)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-02 16:40:27 -07:00
aditya thomas
73ebe78249 docs: update cohere documentation (#19700)
**Description:** Update of Cohere documentation (main provider page)
**Issue:** After addition of the Cohere partner package, the
documentation was out of date
**Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-02 18:16:48 -04:00
Leonid Kuligin
eb0521064e deprecating integrations moved to langchain_google_community (#19841)
Thank you for contributing to LangChain!

- [ ] **PR title**: "community: deprecating integrations moved to
langchain_google_community"

- [ ] **PR message**: deprecating integrations moved to
langchain_google_community

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-04-02 17:06:07 -04:00
Erick Friis
f0d5b59962 core[patch]: remove requests (#19891)
Removes required usage of `requests` from `langchain-core`, all of which
has been deprecated.

- removes Tracer V1 implementations
- removes old `try_load_from_hub` github-based hub implementations

Removal done in a way where imports will still succeed, and usage will
fail with a `RuntimeError`.
2024-04-02 20:28:10 +00:00
Erick Friis
d5a2ff58e9 pinecone[patch]: source tag (#19739) 2024-04-02 19:53:59 +00:00
Wang Guan
8638029a37 docs: mention caveats with CacheBackedEmbeddings.embed_query (#19926)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**:
- **Description:** mention not-caching methods in CacheBackedEmbeddings
  - **Issue:** n/a I almost created one until I read the code 
  - **Dependencies:** n/a
  - **Twitter handle:** `tarsylia`


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-02 19:19:29 +00:00
harry-cohere
beab9adffb cohere: Improve integration test stability, fix documents bug (#19929)
**Description**: Improves the stability of all Cohere partner package
integration tests. Fixes a bug with document parsing (both dicts and
Documents are handled).
2024-04-02 11:22:30 -07:00
harry-cohere
37fc1c525a cohere: simplify integration test (#19928)
**Description**: This PR simplifies an integration test within the
Cohere partner package:
 * It no longer relies on exact model answers
 * It no longer relies on a third party tool
2024-04-02 10:57:25 -07:00
billytrend-cohere
de6c0cf248 cohere, docs: update imports and installs to langchain_cohere (#19918)
cohere: update imports and installs to langchain_cohere

---------

Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-02 09:47:58 -07:00
Erick Friis
146d1a6347 cohere[patch]: release 0.1.0rc2 (#19924) 2024-04-02 16:24:23 +00:00
harry-cohere
e2b83c87b1 cohere[patch]: Add multihop tool agent (#19919)
**Description**: Adds an agent that uses Cohere with multiple hops and
multiple tools.

This PR is a continuation of
https://github.com/langchain-ai/langchain/pull/19650 - which was
previously approved. Conceptually nothing has changed, but this PR has
extra fixes, documentation and testing.

---------

Co-authored-by: BeatrixCohere <128378696+BeatrixCohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
2024-04-02 09:18:50 -07:00
Max Jakob
22dbcc9441 langchain[patch]: fix ElasticsearchStore reference for self query (#19907)
Initializing self query with an ElasticsearchStore from the partners
packages failed previously, see
https://github.com/langchain-ai/langchain/discussions/18976.
2024-04-02 08:39:12 -07:00
Bagatur
3218463f6a core[patch]: Release 0.1.38 (#19895) 2024-04-01 22:47:46 -07:00
Mohammad Mohtashim
9ae2df36fc Core[major]: Base Tracer to propagate raw output from tool for on_tool_end (#18932)
This PR completes work for PR #18798 to expose raw tool output in
on_tool_end.

Affected APIs:
* astream_log
* astream_events
* callbacks sent to langsmith via langsmith-sdk
* Any other code that relies on BaseTracer!

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-02 01:24:46 +00:00
Nuno Campos
2ae6dcdf01 core: Assign missing message ids in BaseChatModel (#19863)
- This ensures ids are stable across streamed chunks
- Multiple messages in batch call get separate ids
- Also fix ids being dropped when combining message chunks

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-02 01:18:36 +00:00
Peter Vandenabeele
e830a4e731 community[patch]: Add remove_comments option (default True): do not extract html comments (#13259)
- **Description:** add `remove_comments` option (default: True): do not
extract html _comments_,
  - **Issue:** None,
  - **Dependencies:** None,
  - **Tag maintainer:** @nfcampos ,
  - **Twitter handle:** peter_v

I ran `make format`, `make lint` and `make test`.

Discussion: I my use case, I prefer to not have the comments in the
extracted text:
* e.g. from a Google tag that is added in the html as comment
* e.g. content that the authors have temporarily hidden to make it non
visible to the regular reader

Removing the comments makes the extracted text more alike the intended
text to be seen by the reader.


**Choice to make:** do we prefer to make the default for this
`remove_comments` option to be True or False?
I have changed it to True in a second commit, since that is how I would
prefer to use it by default. Have the
cleaned text (without technical Google tags etc.) and also closer to the
actually visible and intended content.
I am not sure what is best aligned with the conventions of langchain in
general ...


INITIAL VERSION (new version above):
~**Choice to make:** do we prefer to make the default for this
`ignore_comments` option to be True or False?
I have set it to False now to be backwards compatible. On the other
hand, I would use it mostly with True.
I am not sure what is best aligned with the conventions of langchain in
general ...~

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-02 00:19:12 +00:00
Jamsheed Mistri
4f70bc119d community[minor]: add Layerup Security integration (#19787)
**Description:** adds integration with [Layerup
Security](https://uselayerup.com). Docs can be found
[here](https://docs.uselayerup.com). Integrates directly with our Python
SDK.

**Dependencies:**
[LayerupSecurity](https://pypi.org/project/LayerupSecurity/)

**Note**: all methods for our product require a paid API key, so I only
included 1 test which checks for an invalid API key response. I have
tested extensively locally.

**Twitter handle**: [@layerup_](https://twitter.com/layerup_)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-01 23:49:00 +00:00
Brace Sproul
22f78c37c8 docs[patch]: Hide google from function calling docs (#19887) 2024-04-01 14:26:31 -07:00
Massimiliano Pronesti
06dac394a6 cohere[patch]: support request timeout in BaseCohere (#19641)
As in #19346, this PR exposes `request_timeout` in `BaseCohere`, while
`max_retires` is no longer a parameter of the beneath client
(`cohere.Client`) and it is already configured in
`langchain_cohere.llms.Cohere`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-01 14:16:32 -07:00
Mayank Solanki
d5c412b0a9 core: Add docs for RunnableConfigurableFields (#19849)
- [x] **docs**: core: Add docs for `RunnableConfigurableFields`

- **Description:** Added incode docs for `RunnableConfigurableFields`
with example
    - **Issue:** #18803 
    - **Dependencies:** NA
    - **Twitter handle:** NA

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-01 20:40:10 +00:00
Mahdi Setayesh
c28efb878c text-splitters[minor]: Adding a new section aware splitter to langchain (#16526)
- **Description:** the layout of html pages can be variant based on the
bootstrap framework or the styles of the pages. So we need to have a
splitter to transform the html tags to a proper layout and then split
the html content based on the provided list of tags to determine its
html sections. We are using BS4 library along with xslt structure to
split the html content using an section aware approach.
  - **Dependencies:** No new dependencies
  - **Twitter handle:** @m_setayesh

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-01 20:32:26 +00:00
Eugene Yurtsev
356a139b0a cli[minor]: Add __version__ to integration package template (#19876)
Packages should export __version__
2024-04-01 15:34:38 -04:00
northern-64bit
dfbc10c943 docs: Fix link in Unstructured notebook (#19851)
**Description:** This PR fixes the link to the Unstructured
documentation in the docs.
2024-04-01 15:26:48 -04:00
Brace Sproul
7538c4de19 docs[patch]: Revert quarto update (#19880) 2024-04-01 12:11:27 -07:00
Anıl Berk Altuner
4384fa8e49 community[minor]: Add Dria retriever (#17098)
[Dria](https://dria.co/) is a hub of public RAG models for developers to
both contribute and utilize a shared embedding lake. This PR adds a
retriever that can retrieve documents from Dria.
2024-04-01 12:04:19 -07:00
Erick Friis
0b0a55192f robocorp[patch]: fix core min version (#19879) 2024-04-01 11:34:14 -07:00
Mikko Korpela
3f06cef60c robocorp[patch]: Fix nested arguments descriptors and tool names (#19707)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**:
- **Description:** Fix argument translation from OpenAPI spec to OpenAI
function call (and similar)
- **Issue:** OpenGPTs failures with calling Action Server based actions.
    - **Dependencies:** None
    - **Twitter handle:** mikkorpela


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
~2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.~


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-01 11:29:39 -07:00
Ethan Yang
48f84e253e community[minor]: Add OpenVINO rerank model support (#19791)
@eaidova @AlexKoff88 Could you help to review, thanks

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-01 18:27:23 +00:00
Erick Friis
4fbdc2a7ee openai[patch]: remove openai chunk size validation (#19878) 2024-04-01 18:26:06 +00:00
Chenhui Zhang
a1f3e9f537 community[minor]: Update ChatZhipuAI to support GLM-4 model (#16695)
Description: Update `ChatZhipuAI` to support the latest `glm-4` model.
Issue: N/A
Dependencies: httpx, httpx-sse, PyJWT

The previous `ChatZhipuAI` implementation requires the `zhipuai`
package, and cannot call the latest GLM model. This is because
- The old version `zhipuai==1.*` doesn't support the latest model.
- `zhipuai==2.*` requires `pydantic V2`, which is incompatible with
'langchain-community'.

This re-implementation invokes the GLM model by sending HTTP requests to
[open.bigmodel.cn](https://open.bigmodel.cn/dev/api) via the `httpx`
package, and uses the `httpx-sse` package to handle stream events.

---------

Co-authored-by: zR <2448370773@qq.com>
2024-04-01 18:11:21 +00:00
Bagatur
d25b5b6f25 community[patch]: Release 0.0.31 (#19873) 2024-04-01 10:50:22 -07:00
Erick Friis
e3ed6a7c28 ai21[patch]: fix core dep (#19874) 2024-04-01 10:48:16 -07:00
Nuno Campos
aa5797d908 openai[patch]: Partially Revert Update openai chat model to new base class interface (#19871)
Partially Reverts langchain-ai/langchain#19729

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-01 10:31:06 -07:00
Erick Friis
be92cf57ca openai[patch]: fix azure embedding length check (#19870) 2024-04-01 10:26:15 -07:00
Bagatur
d62e84c4f5 community[patch]: Revert " Fix the bug that Chroma does not specify `e… (#19866)
…mbedding_function` (#19277)"

This reverts commit 7042934b5f.

Fixes #19848
2024-04-01 10:10:44 -07:00
Jacob Lee
f06229bbf1 👥 Update LangChain people data (#19858)
👥 Update LangChain people data

Co-authored-by: github-actions <github-actions@github.com>
2024-04-01 09:57:31 -07:00
Erick Friis
7376e4dbe9 ai21[patch]: release 0.1.3 (#19867) 2024-04-01 09:56:23 -07:00
Ángel Igareta
c2ccf22dfd core: generate mermaid syntax and render visual graph (#19599)
- **Description:** Add functionality to generate Mermaid syntax and
render flowcharts from graph data. This includes support for custom node
colors and edge curve styles, as well as the ability to export the
generated graphs to PNG images using either the Mermaid.INK API or
Pyppeteer for local rendering.
- **Dependencies:** Optional dependencies are `pyppeteer` if rendering
wants to be done using Pypeteer and Javascript code.

---------

Co-authored-by: Angel Igareta <angel.igareta@klarna.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-01 08:14:46 -07:00
Ikko Eltociear Ashimine
8711a05a51 Update cross_encoder_reranker.ipynb (#19846)
HuggingFace -> Hugging Face
2024-04-01 10:49:54 -04:00
Vardhaman
039f314f20 docs: remove unnecessary args from the pip install (#19823)
**Description:** An additional `U` argument was added for the
instructions to install the pip packages for the MediaWiki Dump Document
loader which was leading to error in installing the package. Removing
the argument fixed the command to install.

**Issue:** #19820 
**Dependencies:** No dependency change requierd
**Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
2024-04-01 10:47:26 -04:00
Bagatur
003c98e5b4 experimental[patch]: Release 0.0.56 (#19840) 2024-03-31 22:00:59 -07:00
Bagatur
c4eb841c37 langchain[patch]: Release 0.1.14 (#19839) 2024-03-31 21:44:01 -07:00
Bagatur
0242bce38c community[patch]: Release 0.0.30 (#19838) 2024-03-31 21:26:30 -07:00
Bagatur
08c10bd66a core[patch]: Release 0.1.37 (#19831) 2024-03-31 14:50:39 -07:00
Giannis
8cf1d75d08 cohere[patch]: Fix retriever (#19771)
* Replace `source_documents` with `documents`
* Pass `documents` as a named arg vs keyword
* Make `parsed_docs` more robust
* Fix edge case of doc page_content being `None`
2024-03-31 14:47:03 -07:00
Guangdong Liu
b6ebddbacc langchain[patch]: Upgrade openai's sdk and solve some interface adaptation problems. #19548 (#19785)
- #19548
- @baskaryan @eyurtsev PTAL

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-31 21:35:38 +00:00
Yash Mathur
c42ec58578 together[minor]: Update endpoint to non deprecated version (#19649)
- **Updating Together.ai Endpoint**: "langchain_together: Updated
Deprecated endpoint for partner package"

- Description: The inference API of together is deprecates, do replaced
with completions and made corresponding changes.
- Twitter handle: @dev_yashmathur

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-31 21:21:46 +00:00
hsuyuming
5ab6b39098 community[patch]: add attribution_token within GoogleVertexAISearchRetriever (#18520)
- **Description:** Add attribution_token within
GoogleVertexAISearchRetriever so user can provide this information to
Google support team or product team during debug session.
    
Reference:
https://cloud.google.com/generative-ai-app-builder/docs/view-analytics#user-events

Attribution tokens. Attribution tokens are unique IDs generated by
Vertex AI Search and returned with each search request. Make sure to
include that attribution token as UserEvent.attributionToken with any
user events resulting from a search. This is needed to identify if a
search is served by the API. Only user events with a Google-generated
attribution token are used to compute metrics.
    
    - **Issue:** No
    - **Dependencies:** No
    - **Twitter handle:** abehsu1992626
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-31 13:54:56 -07:00
Kenneth Choe
f98d7f7494 langchain[minor], community[minor]: add CrossEncoderReranker with HuggingFaceCrossEncoder and SagemakerEndpointCrossEncoder (#13687)
- **Description:** Support reranking based on cross encoder models
available from HuggingFace.
      - Added `CrossEncoder` schema
- Implemented `HuggingFaceCrossEncoder` and
`SagemakerEndpointCrossEncoder`
- Implemented `CrossEncoderReranker` that performs similar functionality
to `CohereRerank`
- Added `cross-encoder-reranker.ipynb` to demonstrate how to use it.
Please let me know if anything else needs to be done to make it visible
on the table-of-contents navigation bar on the left, or on the card list
on [retrievers documentation
page](https://python.langchain.com/docs/integrations/retrievers).
  - **Issue:** N/A
  - **Dependencies:** None other than the existing ones.

---------

Co-authored-by: Kenny Choe <kchoe@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-31 20:51:31 +00:00
cxumol
3f7da03dd8 docs: fix a dead link (#19814)
**Description**

Google Colab returned 404 when trying to click an "Open In Colab" button
from document. This PR corrected the link.
2024-03-31 10:28:51 -04:00
aditya thomas
b8271bbc4a docs: (minor) updates to voyage ai documentation (#19819)
**Description:** Updates to Voyage AI documentation
**Issue:** Not Applicable
**Dependencies:** None
2024-03-31 10:27:19 -04:00
Tomaz Bratanic
ed49cca191 templates: Update neo4j templates (#19789) 2024-03-30 14:40:05 +00:00
aditya thomas
765d6762bc docs[minor]: include tab info for togetherai (#19796)
**Description:** Included information for the TogetherAI tab
**Issue:** The tab for TogetherAI information was not correct
**Dependencies:** None
2024-03-30 09:23:45 -04:00
LunarECL
b7d180a70d experimental[minor]: Create Closed Captioning Chain for .mp4 videos (#14059)
Description: Video imagery to text (Closed Captioning)
This pull request introduces the VideoCaptioningChain, a tool for
automated video captioning. It processes audio and video to generate
subtitles and closed captions, merging them into a single SRT output.

Issue: https://github.com/langchain-ai/langchain/issues/11770
Dependencies: opencv-python, ffmpeg-python, assemblyai, transformers,
pillow, torch, openai
Tag maintainer:
@baskaryan
@hwchase17


Hello!

We are a group of students from the University of Toronto
(@LunarECL, @TomSadan, @nicoledroi1, @A2113S) that want to make a
contribution to the LangChain community! We have ran make format, make
lint and make test locally before submitting the PR. To our knowledge,
our changes do not introduce any new errors.

Thank you for taking the time to review our PR!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 01:57:53 +00:00
Harrison Chase
56525f2ac1 dont mutate metadata/tags (#19742) 2024-03-29 17:55:27 -07:00
Kamal Zhang
368e35c3b1 community[patch]: introduce convert_to_secret() to bananadev llm (#14283)
- **Description:** Per #12165, this PR add to BananaLLM the function
convert_to_secret_str() during environment variable validation.
- **Issue:** #12165
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** @treewatcha75751

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-30 00:52:25 +00:00
DrKroll
c4da8d0813 langchain[patch]: load ReadFileTool (#14301)
---------

Co-authored-by: Dr. Simon Kroll <krolls@fida.de>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 00:46:24 +00:00
anshaneel
0884e5de7f community[minor]: Add Alpha Vantage API Tool (#14332)
### Description
This implementation adds functionality from the AlphaVantage API,
renowned for its comprehensive financial data. The class encapsulates
various methods, each dedicated to fetching specific types of financial
information from the API.

### Implemented Functions

- **`search_symbols`**: 
- Searches the AlphaVantage API for financial symbols using the provided
keywords.

- **`_get_market_news_sentiment`**: 
- Retrieves market news sentiment for a specified stock symbol from the
AlphaVantage API.

- **`_get_time_series_daily`**: 
- Fetches daily time series data for a specific symbol from the
AlphaVantage API.

- **`_get_quote_endpoint`**: 
- Obtains the latest price and volume information for a given symbol
from the AlphaVantage API.

- **`_get_time_series_weekly`**: 
- Gathers weekly time series data for a particular symbol from the
AlphaVantage API.

- **`_get_top_gainers_losers`**: 
- Provides details on top gainers, losers, and most actively traded
tickers in the US market from the AlphaVantage API.

  ### Issue: 
  - #11994 
  
### Dependencies: 
  - 'requests' library for HTTP requests. (import requests)
  - 'pytest' library for testing. (import pytest)

---------

Co-authored-by: Adam Badar <94140103+adam-badar@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 00:44:01 +00:00
Alex Sherstinsky
a9bc212bf2 community[minor]: fix failing Predibase integration (#19776)
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
    - **Twitter handle:** `@alexsherstinsky`


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 00:38:13 +00:00
ethynic
e9caa22d47 community[patch]: Update minimax.py (#14384)
MiniMaxChat class _generate method shoud return a ChatResult object not
str

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 23:57:06 +00:00
Ahmed Moubtahij
f5d4ce840f langchain[patch]: Simplify ensemble retriever (#14427)
- **Description:** code simplification to improve readability and remove
unnecessary memory allocations.
  - **Tag maintainer**: @baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 16:49:49 -07:00
Snehil Kumar
b36f4147b0 docs: Google Drive Loader always set the env var (#14791)
- **Description:** Code written by following, the official documentation
of [Google Drive
Loader](https://python.langchain.com/docs/integrations/document_loaders/google_drive),
gives errors. I have opened an issue regarding this. See #14725. This is
a pull request for modifying the documentation to use an approach that
makes the code work. Basically, the change is that we need to always set
the GOOGLE_APPLICATION_CREDENTIALS env var to an emtpy string, rather
than only in case of RefreshError. Also, rewrote 2 paragraphs to make
the instructions more clear.
- **Issue:** See this related [issue #
14725](https://github.com/langchain-ai/langchain/issues/14725)
  - **Dependencies:** NA
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** NA

Co-authored-by: Snehil <snehil@example.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 23:19:37 +00:00
M.Abdulrahman Alnaseer
ba54f1577f community[minor]: add support for llmsherpa (#19741)
Thank you for contributing to LangChain!

- [x] **PR title**: "community: added support for llmsherpa library"

- [x] **Add tests and docs**: 
1. Integration test:
'docs/docs/integrations/document_loaders/test_llmsherpa.py'.
2. an example notebook:
`docs/docs/integrations/document_loaders/llmsherpa.ipynb`.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 16:04:57 -07:00
Naveenkhasyap
a99bd098ac docs: fix for #16702 and #16703 (#16705)
- **Description:** Quickstart Documentation updates for missing
dependency installation steps.
- **Issue:** the issue # it prompts users to install required
dependency.
  - **Dependencies:** no,
  - **Twitter handle:** @naveenkashyap_

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 15:57:51 -07:00
Brace Sproul
6d93a03bef docs[patch]: Fix or remove broken mdx links (#19777)
this pr also drops the community added action for checking broken links
in mdx. It does not work well for our use case, throwing errors for
local paths, plus the rest of the errors our in house solution had.
2024-03-29 15:25:08 -07:00
Bagatur
2f5606a318 mistralai[patch]: correct integration_test (#19774) 2024-03-29 21:47:35 +00:00
Pierre Véron
ace7b66261 mistralai[patch]: add missing _combine_llm_outputs implementation in ChatMistralAI (#18603)
# Description
Implementing `_combine_llm_outputs` to `ChatMistralAI` to override the
default implementation in `BaseChatModel` returning `{}`. The
implementation is inspired by the one in `ChatOpenAI` from package
`langchain-openai`.
# Issue
None
# Dependencies
None
# Twitter handle
None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 14:43:20 -07:00
lvliang-intel
0175906437 templates: add RAG template for Intel Xeon Scalable Processors (#18424)
**Description:**
This template utilizes Chroma and TGI (Text Generation Inference) to
execute RAG on the Intel Xeon Scalable Processors. It serves as a
demonstration for users, illustrating the deployment of the RAG service
on the Intel Xeon Scalable Processors and showcasing the resulting
performance enhancements.

**Issue:**
None

**Dependencies:**
The template contains the poetry project requirements to run this
template.
CPU TGI batching is WIP.

**Twitter handle:**
None

---------

Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 14:37:32 -07:00
Nuno Campos
d4673a3507 openai[patch]: Update openai chat model to new base class interface (#19729) 2024-03-29 14:30:28 -07:00
harry-cohere
23fcc14650 cohere[patch]: support kwargs in with_structured_output (#19736)
**Description:** We'd like to support passing additional kwargs in
`with_structured_output`. I believe this is the accepted approach to
enable additional arguments on API calls.
2024-03-29 14:30:14 -07:00
Brace Sproul
ce0a588ae6 docs[minor]: Add chat model tabs to docs pages (#19589) 2024-03-29 14:23:55 -07:00
BeatrixCohere
bd02b83acd cohere[patch]: Allow overriding of the base URL in Cohere Client (#19766)
This PR adds the ability for a user to override the base API url for the
Cohere client for embeddings and chat llm.
2024-03-29 14:22:30 -07:00
Nisarg Trivedi
1252ccce6f text-splitters[minor]: Added Haskell support in langchain.text_splitter module (#16191)
- **Description:** Haskell language support added in text_splitter
module
  - **Dependencies:** No
  - **Twitter handle:** @nisargtr

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 20:17:50 +00:00
Hrvoje Milković
b7344e3347 community[minor]: Infobip tool integration (#16805)
**Description:** Adding Tool that wraps Infobip API for sending sms or
emails and email validation.
**Dependencies:** None,
**Twitter handle:** @hmilkovic

Implementation:
```
libs/community/langchain_community/utilities/infobip.py
```

Integration tests:
```
libs/community/tests/integration_tests/utilities/test_infobip.py
```

Example notebook:
```
docs/docs/integrations/tools/infobip.ipynb
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 19:01:27 +00:00
Luka Krapic
727a2ea9f1 community[patch]: history size support for DynamoDBChatMessageHistory (#16794)
**Description:** PR adds support for limiting number of messages
preserved in a session history for DynamoDBChatMessageHistory

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 18:56:21 +00:00
Dt22
6dbf1a2de0 community[patch]: fix redis input type for index_schema field (#16874)
### Subject: Fix Type Misdeclaration for index_schema in redis/base.py

I noticed a type misdeclaration for the index_schema column in the
redis/base.py file.

When following the instructions outlined in [Redis Custom Metadata
Indexing](https://python.langchain.com/docs/integrations/vectorstores/redis)
to create our own index_schema, it leads to a Pylance type error. <br/>
**The error message indicates that Dict[str, list[Dict[str, str]]] is
incompatible with the type Optional[Union[Dict[str, str], str,
os.PathLike]].**

```
index_schema = {
    "tag": [{"name": "credit_score"}],
    "text": [{"name": "user"}, {"name": "job"}],
    "numeric": [{"name": "age"}],
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users_modified",
    index_schema=index_schema,  
)
```
Therefore, I have created this pull request to rectify the type
declaration problem.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 18:55:54 +00:00
morgana
074ad5095f community[patch]: mmr search for Rockset vectorstore integration (#16908)
- **Description:** Adding support for mmr search in the Rockset
vectorstore integration.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@_morgan_adams_`

---------

Co-authored-by: Rockset API Bot <admin@rockset.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 18:45:22 +00:00
shahrin014
f51e6a35ba community[patch]: OllamaEmbeddings - Pass headers to post request (#16880)
## Feature
- Set additional headers in constructor
- Headers will be sent in post request

This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.

## Tests
- Test if header is passed
- Test if header is not passed

Similar to https://github.com/langchain-ai/langchain/pull/15881

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 18:44:52 +00:00
Lance Martin
e0f137dbe0 docs: Agentic and Self-RAG w/ LangGraph (#16910)
To do:
[ ] Add streaming
[ ] Move to LangGraph
2024-03-29 11:11:35 -07:00
Jan Chorowski
b8b42ccbc5 community[minor]: Pathway vectorstore(#14859)
- **Description:** Integration with pathway.com data processing pipeline
acting as an always updated vectorstore
  - **Issue:** not applicable
- **Dependencies:** optional dependency on
[`pathway`](https://pypi.org/project/pathway/)
  - **Twitter handle:** pathway_com

The PR provides and integration with `pathway` to provide an easy to use
always updated vector store:

```python
import pathway as pw
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import PathwayVectorClient, PathwayVectorServer

data_sources = []
data_sources.append(
    pw.io.gdrive.read(object_id="17H4YpBOAKQzEJ93xmC2z170l0bP2npMy", service_user_credentials_file="credentials.json", with_metadata=True))

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
embeddings_model = OpenAIEmbeddings(openai_api_key=os.environ["OPENAI_API_KEY"])
vector_server = PathwayVectorServer(
    *data_sources,
    embedder=embeddings_model,
    splitter=text_splitter,
)
vector_server.run_server(host="127.0.0.1", port="8765", threaded=True, with_cache=False)
client = PathwayVectorClient(
    host="127.0.0.1",
    port="8765",
)
query = "What is Pathway?"
docs = client.similarity_search(query)
```

The `PathwayVectorServer` builds a data processing pipeline which
continusly scans documents in a given source connector (google drive,
s3, ...) and builds a vector store. The `PathwayVectorClient` implements
LangChain's `VectorStore` interface and connects to the server to
retrieve documents.

---------

Co-authored-by: Mateusz Lewandowski <lewymati@users.noreply.github.com>
Co-authored-by: mlewandowski <mlewandowski@MacBook-Pro-mlewandowski.local>
Co-authored-by: Berke <berkecanrizai1@gmail.com>
Co-authored-by: Adrian Kosowski <adrian@pathway.com>
Co-authored-by: mlewandowski <mlewandowski@macbook-pro-mlewandowski.home>
Co-authored-by: berkecanrizai <63911408+berkecanrizai@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: mlewandowski <mlewandowski@MBPmlewandowski.ht.home>
Co-authored-by: Szymon Dudycz <szymond@pathway.com>
Co-authored-by: Szymon Dudycz <szymon.dudycz@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 10:50:39 -07:00
ccurme
0dbd5f5012 add script to check imports (#19611) 2024-03-29 13:30:20 -04:00
Arturs Konfino
2319212d54 community[patch]: avoid executing toolkit.get_context() when not necessary (#19762)
If `prompt` is passed into `create_sql_agent()`, then
`toolkit.get_context()` shouldn't be executed against the database
unless relevant prompt variables (`table_info` or `table_names`) are
present .
2024-03-29 16:42:21 +00:00
高璟琦
ec7a59c96c community[minor]: Add solar embedding (#19761)
Solar is a large language model developed by
[Upstage](https://upstage.ai/). It's a powerful and purpose-trained LLM.
You can visit the embedding service provided by Solar within this pr.

You may get **SOLAR_API_KEY** from
https://console.upstage.ai/services/embedding
You can refer to more details about accepted llm integration at
https://python.langchain.com/docs/integrations/llms/solar.
2024-03-29 09:36:05 -07:00
Tomaz Bratanic
dec00d3050 community[patch]: Add the ability to pass maps to neo4j retrieval query (#19758)
Makes it easier to flatten complex values to text, so you don't have to
use a lot of Cypher to do it.
2024-03-29 08:33:48 -07:00
Robby
f7e8a382cc community[minor]: add hugging face text-to-speech inference API (#18880)
Description: I implemented a tool to use Hugging Face text-to-speech
inference API.

Issue: n/a

Dependencies: n/a

Twitter handle: No Twitter, but do have
[LinkedIn](https://www.linkedin.com/in/robby-horvath/) lol.

---------

Co-authored-by: Robby <h0rv@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-29 15:02:29 +00:00
DasDingoCodes
73eb3f8fd9 community[minor]: Implement DirectoryLoader lazy_load function (#19537)
Thank you for contributing to LangChain!

- [x] **PR title**: "community: Implement DirectoryLoader lazy_load
function"

- [x] **Description**: The `lazy_load` function of the `DirectoryLoader`
yields each document separately. If the given `loader_cls` of the
`DirectoryLoader` also implemented `lazy_load`, it will be used to yield
subdocuments of the file.

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access:
`libs/community/tests/unit_tests/document_loaders/test_directory_loader.py`
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory:
`docs/docs/integrations/document_loaders/directory.ipynb`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-29 14:46:52 +00:00
Christophe Bornet
6b2b511f68 core[minor]: Add aformat_messages to FewShotChatMessagePromptTemplate and ChatPromptTemplate (#19648)
Needed since the example selector may use a vector store.
2024-03-29 10:31:32 -04:00
Leonid Ganeline
5f814820f6 docs: providers pinecone fix (#19737)
Current providers page use link to the old package.
- Fixed installation instructions
- Added a reference to the Pinecone retriever
2024-03-29 08:30:30 -04:00
Bob Lin
53a74ad12b docs: use markdown cell instead of code block (#19740)
I found that the code of async and async batch was divided into two
blocks:

<img width="823" alt="Screenshot 2024-03-29 at 7 45 59 AM"
src="https://github.com/langchain-ai/langchain/assets/10000925/0fa59d29-a692-4309-afb8-2260f03242ec">


so I changed it to unified.
2024-03-29 08:27:48 -04:00
Ekaterina Aidova
4ce36af335 docs: fix link in openvino integration doc (#19749)
- **Description:** fix incorrect link in docs
 - **Dependencies:** None
2024-03-29 12:24:07 +00:00
Jialei
f7c903e24a community[minor]: add support for Moonshot llm and chat model (#17100) 2024-03-29 08:54:23 +00:00
Gustavo Isturiz
824dccf5e2 docs: fixed xml URL on sitemap docs exmaple, issue #17236 (#17304) 2024-03-29 01:36:54 -07:00
Ethan Yang
7164015135 community[minor]: Add Openvino embedding support (#19632)
This PR is used to support both HF and BGE embeddings with openvino

---------

Co-authored-by: Alexander Kozlov <alexander.kozlov@intel.com>
2024-03-29 01:34:51 -07:00
Guangdong Liu
cd55d587c2 langchain[patch]: Upgrade openai's sdk and solve some interface adaptation problems. (#19548)
- **Issue:** close #19534
2024-03-29 01:25:17 -07:00
Kirushikesh DB
12861273e1 experimental[patch]: Removed 'SQLResults:' from the LLMResponse in SQLDatabaseChain (#17104)
**Description:** 
When using the SQLDatabaseChain with Llama2-70b LLM and, SQLite
database. I was getting `Warning: You can only execute one statement at
a time.`.

```
from langchain.sql_database import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain

sql_database_path = '/dccstor/mmdataretrieval/mm_dataset/swimming_record/rag_data/swimmingdataset.db'
sql_db = get_database(sql_database_path)
db_chain = SQLDatabaseChain.from_llm(mistral, sql_db, verbose=True, callbacks = [callback_obj])
db_chain.invoke({
    "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
})
```
Error:
```
Warning                                   Traceback (most recent call last)
Cell In[31], line 3
      1 import langchain
      2 langchain.debug=False
----> 3 db_chain.invoke({
      4     "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
      5 })

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:162, in Chain.invoke(self, input, config, **kwargs)
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)
--> 162     raise e
    163 run_manager.on_chain_end(outputs)
    164 final_outputs: Dict[str, Any] = self.prep_outputs(
    165     inputs, outputs, return_only_outputs
    166 )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:156, in Chain.invoke(self, input, config, **kwargs)
    149 run_manager = callback_manager.on_chain_start(
    150     dumpd(self),
    151     inputs,
    152     name=run_name,
    153 )
    154 try:
    155     outputs = (
--> 156         self._call(inputs, run_manager=run_manager)
    157         if new_arg_supported
    158         else self._call(inputs)
    159     )
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:198, in SQLDatabaseChain._call(self, inputs, run_manager)
    194 except Exception as exc:
    195     # Append intermediate steps to exception, to aid in logging and later
    196     # improvement of few shot prompt seeds
    197     exc.intermediate_steps = intermediate_steps  # type: ignore
--> 198     raise exc

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:143, in SQLDatabaseChain._call(self, inputs, run_manager)
    139     intermediate_steps.append(
    140         sql_cmd
    141     )  # output: sql generation (no checker)
    142     intermediate_steps.append({"sql_cmd": sql_cmd})  # input: sql exec
--> 143     result = self.database.run(sql_cmd)
    144     intermediate_steps.append(str(result))  # output: sql exec
    145 else:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:436, in SQLDatabase.run(self, command, fetch, include_columns)
    425 def run(
    426     self,
    427     command: str,
    428     fetch: Literal["all", "one"] = "all",
    429     include_columns: bool = False,
    430 ) -> str:
    431     """Execute a SQL command and return a string representing the results.
    432 
    433     If the statement returns rows, a string of the results is returned.
    434     If the statement returns no rows, an empty string is returned.
    435     """
--> 436     result = self._execute(command, fetch)
    438     res = [
    439         {
    440             column: truncate_word(value, length=self._max_string_length)
   (...)
    443         for r in result
    444     ]
    446     if not include_columns:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:413, in SQLDatabase._execute(self, command, fetch)
    410     elif self.dialect == "postgresql":  # postgresql
    411         connection.exec_driver_sql("SET search_path TO %s", (self._schema,))
--> 413 cursor = connection.execute(text(command))
    414 if cursor.returns_rows:
    415     if fetch == "all":

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1416, in Connection.execute(self, statement, parameters, execution_options)
   1414     raise exc.ObjectNotExecutableError(statement) from err
   1415 else:
-> 1416     return meth(
   1417         self,
   1418         distilled_parameters,
   1419         execution_options or NO_OPTIONS,
   1420     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/sql/elements.py:516, in ClauseElement._execute_on_connection(self, connection, distilled_params, execution_options)
    514     if TYPE_CHECKING:
    515         assert isinstance(self, Executable)
--> 516     return connection._execute_clauseelement(
    517         self, distilled_params, execution_options
    518     )
    519 else:
    520     raise exc.ObjectNotExecutableError(self)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1639, in Connection._execute_clauseelement(self, elem, distilled_parameters, execution_options)
   1627 compiled_cache: Optional[CompiledCacheType] = execution_options.get(
   1628     "compiled_cache", self.engine._compiled_cache
   1629 )
   1631 compiled_sql, extracted_params, cache_hit = elem._compile_w_cache(
   1632     dialect=dialect,
   1633     compiled_cache=compiled_cache,
   (...)
   1637     linting=self.dialect.compiler_linting | compiler.WARN_LINTING,
   1638 )
-> 1639 ret = self._execute_context(
   1640     dialect,
   1641     dialect.execution_ctx_cls._init_compiled,
   1642     compiled_sql,
   1643     distilled_parameters,
   1644     execution_options,
   1645     compiled_sql,
   1646     distilled_parameters,
   1647     elem,
   1648     extracted_params,
   1649     cache_hit=cache_hit,
   1650 )
   1651 if has_events:
   1652     self.dispatch.after_execute(
   1653         self,
   1654         elem,
   (...)
   1658         ret,
   1659     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1848, in Connection._execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)
   1843     return self._exec_insertmany_context(
   1844         dialect,
   1845         context,
   1846     )
   1847 else:
-> 1848     return self._exec_single_context(
   1849         dialect, context, statement, parameters
   1850     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1988, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1985     result = context._setup_result_proxy()
   1987 except BaseException as e:
-> 1988     self._handle_dbapi_exception(
   1989         e, str_statement, effective_parameters, cursor, context
   1990     )
   1992 return result

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:2346, in Connection._handle_dbapi_exception(self, e, statement, parameters, cursor, context, is_sub_exec)
   2344     else:
   2345         assert exc_info[1] is not None
-> 2346         raise exc_info[1].with_traceback(exc_info[2])
   2347 finally:
   2348     del self._reentrant_error

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1969, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1967                 break
   1968     if not evt_handled:
-> 1969         self.dialect.do_execute(
   1970             cursor, str_statement, effective_parameters, context
   1971         )
   1973 if self._has_events or self.engine._has_events:
   1974     self.dispatch.after_cursor_execute(
   1975         self,
   1976         cursor,
   (...)
   1980         context.executemany,
   1981     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/default.py:922, in DefaultDialect.do_execute(self, cursor, statement, parameters, context)
    921 def do_execute(self, cursor, statement, parameters, context=None):
--> 922     cursor.execute(statement, parameters)

Warning: You can only execute one statement at a time.
```
**Issue:** 
The Error occurs because when generating the SQLQuery, the llm_input
includes the stop character of "\nSQLResult:", so for this user query
the LLM generated response is **SELECT Time FROM men_butterfly_100m
WHERE Swimmer = 'Lance Larson';\nSQLResult:** it is required to remove
the SQLResult suffix on the llm response before executing it on the
database.

```
llm_inputs = {
            "input": input_text,
            "top_k": str(self.top_k),
            "dialect": self.database.dialect,
            "table_info": table_info,
            "stop": ["\nSQLResult:"],
        }

sql_cmd = self.llm_chain.predict(
                callbacks=_run_manager.get_child(),
                **llm_inputs,
            ).strip()

if SQL_RESULT in sql_cmd:
    sql_cmd = sql_cmd.split(SQL_RESULT)[0].strip()
result = self.database.run(sql_cmd)
```


<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 01:22:35 -07:00
T Cramer
540ebf35a9 community[patch]: Add explicit error message to Bedrock error output. (#17328)
- **Description:** Propagate Bedrock errors into Langchain explicitly.
Use-case: unset region error is hidden behind 'Could not load
credentials...' message
- **Issue:**
[17654](https://github.com/langchain-ai/langchain/issues/17654)
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 03:07:33 +00:00
Marcus Virginia
69bb96c80f community[patch]: surrealdb handle for empty metadata and allow collection names with complex characters (#17374)
- **Description:** Handle for empty metadata and allow collection names
with complex characters
  - **Issue:** #17057
  - **Dependencies:** `surrealdb`

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 01:04:27 +00:00
ale-delfino
0df76bee37 core[patch]:: XML parser to cover the case when the xml only contains the root level tag (#17456)
Description: Fix xml parser to handle strings that only contain the root
tag
Issue: N/A
Dependencies: None
Twitter handle: N/A

A valid xml text can contain only the root level tag. Example: <body>
  Some text here
</body>
The example above is a valid xml string. If parsed with the current
implementation the result is {"body": []}. This fix checks if the root
level text contains any non-whitespace character and if that's the case
it returns {root.tag: root.text}. The result is that the above text is
correctly parsed as {"body": "Some text here"}

@ale-delfino

Thank you for contributing to LangChain!

Checklist:

- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"
- [x] PR message: **Delete this entire template message** and replace it
with the following bulleted list
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-29 00:55:23 +00:00
kYLe
124ab79c23 community[minor]: Add Anyscale embedding support (#17605)
**Description:** Add embedding model support for Anyscale Endpoint
**Dependencies:** openai

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:53:53 +00:00
Lance Martin
12843f292f community[patch]: llama cpp embeddings reset default n_batch (#17594)
When testing Nomic embeddings --
```
from langchain_community.embeddings import LlamaCppEmbeddings
embd_model_path = "/Users/rlm/Desktop/Code/llama.cpp/models/nomic-embd/nomic-embed-text-v1.Q4_K_S.gguf"
embd_lc = LlamaCppEmbeddings(model_path=embd_model_path)
embedding_lc = embd_lc.embed_query(query)
```

We were seeing this error for strings > a certain size -- 
```
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/llama.py:827, in Llama.embed(self, input, normalize, truncate, return_count)
    824     s_sizes = []
    826 # add to batch
--> 827 self._batch.add_sequence(tokens, len(s_sizes), False)
    828 t_batch += n_tokens
    829 s_sizes.append(n_tokens)

File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/_internals.py:542, in _LlamaBatch.add_sequence(self, batch, seq_id, logits_all)
    540 self.batch.token[j] = batch[i]
    541 self.batch.pos[j] = i
--> 542 self.batch.seq_id[j][0] = seq_id
    543 self.batch.n_seq_id[j] = 1
    544 self.batch.logits[j] = logits_all

ValueError: NULL pointer access
```

The default `n_batch` of llama-cpp-python's Llama is `512` but we were
explicitly setting it to `8`.
 
These need to be set to equal for embedding models. 
* The embedding.cpp example has an assertion to make sure these are
always equal.
* Apparently this is not being done properly in llama-cpp-python.

With `n_batch` set to 8, if more than 8 tokens are passed the batch runs
out of space and it crashes.

This also explains why the CPU compute buffer size was small:

raw client with default `n_batch=512`
```
llama_new_context_with_model:        CPU input buffer size   =     3.51 MiB
llama_new_context_with_model:        CPU compute buffer size =    21.00 MiB
```
langchain with `n_batch=8`
```
llama_new_context_with_model:        CPU input buffer size   =     0.04 MiB
llama_new_context_with_model:        CPU compute buffer size =     0.33 MiB
```

We can work around this by passing `n_batch=512`, but this will not be
obvious to some users:
```
    embedding = LlamaCppEmbeddings(model_path=embd_model_path,
                                   n_batch=512)
```

From discussion w/ @cebtenzzre. Related:

https://github.com/abetlen/llama-cpp-python/issues/1189

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:47:22 +00:00
Zijian Han
8e976545f3 community[patch]: support OpenAI whisper base url (#17695)
**Description:** The base URL for OpenAI is retrieved from the
environment variable "OPENAI_BASE_URL", whereas for langchain it is
obtained from "OPENAI_API_BASE". By adding `base_url =
os.environ.get("OPENAI_API_BASE")`, the OpenAI proxy can execute
correctly.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:35:27 +00:00
Paulo Nascimento
44a3484503 community[patch]: add NotebookLoader unit test (#17721)
Thank you for contributing to LangChain!

- **Description:** added unit tests for NotebookLoader. Linked PR:
https://github.com/langchain-ai/langchain/pull/17614
- **Issue:**
[#17614](https://github.com/langchain-ai/langchain/pull/17614)
    - **Twitter handle:** @paulodoestech
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: lachiewalker <lachiewalker1@hotmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:27:46 +00:00
Paulo Nascimento
4c3a67122f community[patch]: add Integration for OpenAI image gen with v1 sdk (#17771)
**Description:** Created a Langchain Tool for OpenAI DALLE Image
Generation.
**Issue:**
[#15901](https://github.com/langchain-ai/langchain/issues/15901)
**Dependencies:** n/a
**Twitter handle:** @paulodoestech

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:23:14 +00:00
Kaixin Yang
a8104ea8e9 openai[patch]: add checking codes for calling AI model get error (#17909)
**Description:**: adding checking codes for calling AI model get error
in chat_models/base.py and llms/base.py
**Issue**: Sometimes the AI Model calling will get error, we should
raise it.
Otherwise, the next code 'choices.extend(response["choices"])' will
throw a "TypeError: 'NoneType' object is not iterable" error to mask the
true error.
       Because 'response["choices"]' is None.
**Dependencies**: None

---------

Co-authored-by: yangkx <yangkx@asiainfo-int.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 00:17:32 +00:00
Vincent Chen
833d61adb3 docs: update Together README.md (#18004)
## PR message
**Description:** This PR adds a README file for the Together API in the
`libs/partners` folder of this repository. The README includes:
 - A brief description of the package
 - Installation instructions and class introductions
 - Simple usage examples

**Issue:** #17545 

This PR only contains document changes.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:02:32 +00:00
Jiaming
3d3cc71287 community[patch]: fix bugs for bilibili Loader (#18036)
- **Description:** 
1. Fix the BiliBiliLoader that can receive cookie parameters, it
requires 3 other parameters to run. The change is backward compatible.
  2. Add test;      
  3. Add example in docs

- **Issue:** [#14213]

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-28 16:39:38 -07:00
Ethan Knights
1ef3fa0411 docs: improve readability of Langchain Expression Language get_started.ipynb (#18157)
**Description:** A few grammatical changes to improve readability of the
LCEL .ipynb and tidy some null characters.
**Issue:** N/A

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-28 23:38:30 +00:00
Sachin Paryani
25c9f3d1d1 community[patch]: Support Streaming in Azure Machine Learning (#18246)
- [x] **PR title**: "community: Support streaming in Azure ML and few
naming changes"

- [x] **PR message**:
- **Description:** Added support for streaming for azureml_endpoint.
Also, renamed and AzureMLEndpointApiType.realtime to
AzureMLEndpointApiType.dedicated. Also, added new classes
CustomOpenAIChatContentFormatter and CustomOpenAIContentFormatter and
updated the classes LlamaChatContentFormatter and LlamaContentFormatter
to now show a deprecated warning message when instantiated.

---------

Co-authored-by: Sachin Paryani <saparan@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 23:38:20 +00:00
xiaohuanshu
ecb11a4a32 langchain[patch]: fix BaseChatMemory get output data error with extra key (#18117)
**Description:** At times, BaseChatMemory._get_input_output may acquire
some extra keys such as 'intermediate_steps' (agent_executor with
return_intermediate_steps set to True) and 'messages'
(agent_executor.iter with memory). In these instances, _get_input_output
can raise an error due to the presence of multiple keys. The 'output'
field should be used as the default field in these cases.
**Issue:** #16791
2024-03-28 16:38:08 -07:00
Isaac Francisco
f5e84c8858 docs: fixing markdown for tips (#18199)
Previous markdown code was not working as intended, new code should add
green box around the tip so it is highlighted

Co-authored-by: Hershenson, Isaac (Extern) <isaac.hershenson.extern@bayer04.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 23:37:37 +00:00
Hayden Wolff
85deee521a docs: Nvidia Riva Runnables Documentation (#18237)
- **Description:** Documents how to use the Riva runnables to add
streamed automatic-speech-recognition (ASR) and text-to-speech (TTS) to
chains.
  - **Issue:** None
  - **Dependencies:** None
  - **Twitter handle:** @HaydenWolff1

---------

Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <hwolff@MacBook-Pro.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 23:35:00 +00:00
Victor Adan
afa2d85405 community[patch]: Added missing from_documents method to KNNRetriever. (#18411)
- Description: Added missing `from_documents` method to `KNNRetriever`,
providing the ability to supply metadata to LangChain `Document`s, and
to give it parity to the other retrievers, which do have
`from_documents`.
- Issue: None
- Dependencies: None
- Twitter handle: None

Co-authored-by: Victor Adan <vadan@netroadshow.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-28 23:18:50 +00:00
Smit Parmar
dfc4177b50 community[patch]: mypy ignore fix (#18483)
Relates to #17048 
Description : Applied fix to dynamodb and elasticsearch file.

Error was : `Cannot override writeable attribute with read-only
property`
Suggestion:
instead of adding 
```
@messages.setter
def messages(self, messages: List[BaseMessage]) -> None:
    raise NotImplementedError("Use add_messages instead")
```

we can change base class property
`messages: List[BaseMessage]`
to
```
@property
def messages(self) -> List[BaseMessage]:...
```

then we don't need to add `@messages.setter` in all child classes.
2024-03-28 15:36:53 -07:00
aditya thomas
dc9e9a66db docs: update docstring of the ChatAnthropic and AnthropicLLM classes (#18649)
**Description:** Update docstring of the ChatAnthropic and AnthropicLLM
classes
**Issue:** Not applicable
**Dependencies:** None
2024-03-28 15:33:54 -07:00
Luca Dorigo
f19229c564 core[patch]: fix beta, deprecated typing (#18877)
**Description:** 

While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.

This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 22:33:43 +00:00
aditya thomas
263ee78886 core[runnables]: docstring for class RunnableSerializable, method configurable_fields (#19722)
**Description:** Update to the docstring for class RunnableSerializable,
method configurable_fields
**Issue:** [Add in code documentation to core Runnable methods
#18804](https://github.com/langchain-ai/langchain/issues/18804)
**Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-03-28 18:15:18 -04:00
HuangZiy
e1f10a697e openai[patch]: perform judgment processing on chat model streaming delta (#18983)
**PR title:** partners: openai chat model
**PR message:** perform judgment processing on chat model streaming
delta
Closes #18977

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-28 14:46:27 -07:00
wulixuan
b7c8bc8268 community[patch]: fix yuan2 errors in LLMs (#19004)
1. fix yuan2 errors while invoke Yuan2.
2. update tests.
2024-03-28 14:37:44 -07:00
Bob Lin
aba4bd0d13 docs: Add async batch case (#19686) 2024-03-28 14:00:46 -07:00
aditya thomas
ec4dcfca7f core[runnables]: docstring of class RunnableSerializable, method configurable_alternatives (#19724)
**Description:** Update to the docstring for class RunnableSerializable,
method configurable_alternatives
**Issue:** [Add in code documentation to core Runnable methods
#18804](https://github.com/langchain-ai/langchain/issues/18804)
**Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-03-28 17:00:08 -04:00
Davide Menini
824dbc49ee langchain[patch]: add template_tool_response arg to create_json_chat (#19696)
In this small PR I added the `template_tool_response` arg to the
`create_json_chat` function, so that users can customize this prompt in
case of need.
Thanks for your reviews!

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
2024-03-28 13:59:54 -07:00
高远
688ca48019 community[patch]: Adding validation when vector does not exist (#19698)
Adding validation when vector does not exist

Co-authored-by: gaoyuan <gaoyuan.20001218@bytedance.com>
2024-03-28 13:58:23 -07:00
Erick Friis
f55b11fb73 infra: Revert run partner CI on core PRs (#19733)
Reverts parts of langchain-ai/langchain#19688
2024-03-28 20:45:59 +00:00
Alessandro Rossi
665f15bd48 docs: fix typos and make quickstart more readable (#19712)
Description: minor docs changes to make it more readable.
Issue: N/A
Dependencies: N/A
Twitter handle: _kubealex
2024-03-28 20:10:32 +00:00
standby24x7
36090c84f2 docs: Update function "run" to "invoke" in llm_symbolic_math.ipynb (#19713)
This patch updates multiple function "run" to "invoke" in
llm_symbolic_math.ipynb.

Without this patch, you see following message.
The function `run` was deprecated in LangChain 0.1.0
 and will be removed in 0.2.0. Use invoke instead.

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2024-03-28 13:08:22 -07:00
Chaunte W. Lacewell
4a49fc5a95 community[patch]: Fix bug in vdms (#19728)
**Description:** Fix embedding check in vdms
**Contribution maintainer:** [@cwlacewe](https://github.com/cwlacewe)
2024-03-28 12:54:24 -07:00
高璟琦
75173d31db community[minor]: Add solar model chat model (#18556)
Add our solar chat models, available model choices:
* solar-1-mini-chat
* solar-1-mini-translate-enko
* solar-1-mini-translate-koen

More documents and pricing can be found at
https://console.upstage.ai/services/solar.

The references to our solar model can be found at
* https://arxiv.org/abs/2402.17032

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 12:31:11 -07:00
Erick Friis
e576d6c6b4 cohere[patch]: release 0.1.0rc1 (rc1-2 never released) (#19731) 2024-03-28 19:12:22 +00:00
harry-cohere
ea57050122 cohere: add with_structured_output to ChatCohere (#19730)
**Description:** Adds support for `with_structured_output` to Cohere,
which supports single function calling.

---------

Co-authored-by: BeatrixCohere <128378696+BeatrixCohere@users.noreply.github.com>
2024-03-28 12:09:25 -07:00
Guangdong Liu
0571f886d1 core[patch]: Fix jsonOutputParser fails if a json value contains ``` inside it. (#19717)
- **Issue:** fix #19646 
- @baskaryan, @eyurtsev PTAL
2024-03-28 12:01:09 -07:00
Davide Menini
f7042321f1 community[patch]: gather token usage info in BedrockChat during generation (#19127)
This PR allows to calculate token usage for prompts and completion
directly in the generation method of BedrockChat. The token usage
details are then returned together with the generations, so that other
downstream tasks can access them easily.

This allows to define a callback for tokens tracking and cost
calculation, similarly to what happens with OpenAI (see
[OpenAICallbackHandler](https://api.python.langchain.com/en/latest/_modules/langchain_community/callbacks/openai_info.html#OpenAICallbackHandler).
I plan on adding a BedrockCallbackHandler later.
Right now keeping track of tokens in the callback is already possible,
but it requires passing the llm, as done here:
https://how.wtf/how-to-count-amazon-bedrock-anthropic-tokens-with-langchain.html.
However, I find the approach of this PR cleaner.

Thanks for your reviews. FYI @baskaryan, @hwchase17

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 18:58:46 +00:00
ligang-super
a662468dde community[patch]: Fix the error of Baidu Qianfan not passing the stop parameter (#18666)
- [x] **PR title**: "community: fix baidu qianfan missing stop
parameter"
- [x] **PR message**:
- **Description: Baidu Qianfan lost the stop parameter when requesting
service due to extracting it from kwargs. This bug can cause the agent
to receive incorrect results

---------

Co-authored-by: ligang33 <ligang33@baidu.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 18:21:49 +00:00
BeatrixCohere
d1a2e194c3 cohere[patch]: misc fixs tool use agent and cohere chat (#19705)
Bug fixes in this PR:
* allows for other params such as "message" not just the input param to
the prompt for the cohere tools agent
* fixes to documents kwarg from messages
* fixes to tool_calls API call

---------

Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
2024-03-28 10:19:38 -07:00
ccurme
b35e68c41f docs: update use_cases/question_answering/chat_history (#19349)
Update following https://github.com/langchain-ai/langchain/issues/19344
2024-03-28 12:51:01 -04:00
Erick Friis
8c2ed85a45 core[patch], infra: release 0.1.36, run partner CI on core PRs (#19688) 2024-03-28 08:55:10 -07:00
Erick Friis
5327bc9ec4 elasticsearch[patch]: move to repo (#19620) 2024-03-28 08:54:57 -07:00
Nilanjan De
239dd7c0c0 langchain[patch]: Use map() and avoid "ValueError: max() arg is an empty sequence" in MergerRetriever (#18679)
- **Issue:** When passing an empty list to MergerRetriever it fails with
error: ValueError: max() arg is an empty sequence

- **Description:** We have a use case where we dynamically select
retrievers and use MergerRetriever for merging the output of the
retrievers. We faced this issue when the retriever_docs list is empty.
Adding a default 0 for cases when retriever_docs is an empty list to
avoid "ValueError: max() arg is an empty sequence". Also, changed to use
map() which is more than twice as fast compared to the current
implementation.
```
import timeit
# Sample retriever_docs with varying lengths of sublists
retriever_docs = [[i for i in range(j)] for j in range(1, 1000)]
# First code snippet
code1 = '''
max_docs = max(len(docs) for docs in retriever_docs)
'''
# Second code snippet
code2 = '''
max_docs = max(map(len, retriever_docs), default=0)
'''
# Benchmarking
time1 = timeit.timeit(stmt=code1, globals=globals(), number=10000)
time2 = timeit.timeit(stmt=code2, globals=globals(), number=10000)
# Output
print(f"Execution time for code snippet 1: {time1} seconds")
print(f"Execution time for code snippet 2: {time2} seconds")
```

- **Dependencies:** none
2024-03-27 23:52:57 -07:00
aditya thomas
4cd38fe89f docs: update docstring of the ChatGroq class (#18645)
**Description:** Update docstring of the ChatGroq class
**Issue:** Not applicable
**Dependencies:** None
2024-03-27 23:46:52 -07:00
Jaid
e4d7b1a482 voyageai[patch]: top level reranker import (#19645)
The previous version didn't had  Voyage rerank in the init file


- [ ] **PR title**: langchain_voyageai reranker is not working
 


- [ ] **PR message**: 
    - **Description:** This fix let you run reranker from voyage
    - **Issue:** Was not able to run reranker from voyage
  






 @efriis
2024-03-28 06:37:55 +00:00
Xinwei Xiong
26eed70c11 infra: Optimize Makefile for Better Usability and Maintenance (#18859)
**Previous screenshots:**


![image](https://github.com/langchain-ai/langchain/assets/86140903/e2f326e3-4d97-4b22-aacb-e789a9d815e4)

**Current screenshot:**

![image](https://github.com/langchain-ai/langchain/assets/86140903/bd8a3ea7-1b8a-4803-9168-df45f6fa4893)
2024-03-27 23:37:39 -07:00
Juan Jose Miguel Ovalle Villamil
51baa1b5cf langchain[patch]: fix-cohere-reranker-rerank-method with cohere v5 (#19486)
#### Description
Fixed the following error with `rerank` method from `CohereRerank`:
```
---> [79](https://vscode-remote+wsl-002bubuntu.vscode-resource.vscode-cdn.net/home/jjmov99/legal-colombia/~/legal-colombia/.venv/lib/python3.11/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py:79) results = self.client.rerank(
     [80](https://vscode-remote+wsl-002bubuntu.vscode-resource.vscode-cdn.net/home/jjmov99/legal-colombia/~/legal-colombia/.venv/lib/python3.11/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py:80)     query, docs, model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc
     [81](https://vscode-remote+wsl-002bubuntu.vscode-resource.vscode-cdn.net/home/jjmov99/legal-colombia/~/legal-colombia/.venv/lib/python3.11/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py:81) )
     [82](https://vscode-remote+wsl-002bubuntu.vscode-resource.vscode-cdn.net/home/jjmov99/legal-colombia/~/legal-colombia/.venv/lib/python3.11/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py:82) result_dicts = []
     [83](https://vscode-remote+wsl-002bubuntu.vscode-resource.vscode-cdn.net/home/jjmov99/legal-colombia/~/legal-colombia/.venv/lib/python3.11/site-packages/langchain/retrievers/document_compressors/cohere_rerank.py:83) for res in results.results:

TypeError: BaseCohere.rerank() takes 1 positional argument but 4 positional arguments (and 2 keyword-only arguments) were given
```
This was easily fixed going from this:
```
   def rerank(
        self,
        documents: Sequence[Union[str, Document, dict]],
        query: str,
        *,
        model: Optional[str] = None,
        top_n: Optional[int] = -1,
        max_chunks_per_doc: Optional[int] = None,
    ) -> List[Dict[str, Any]]:
         ...
        if len(documents) == 0:  # to avoid empty api call
            return []
        docs = [
            doc.page_content if isinstance(doc, Document) else doc for doc in documents
        ]
        model = model or self.model
        top_n = top_n if (top_n is None or top_n > 0) else self.top_n
        results = self.client.rerank(
            query, docs, model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc
        )
        result_dicts = []
        for res in results:
            result_dicts.append(
                {"index": res.index, "relevance_score": res.relevance_score}
            )
        return result_dicts
```
to this:
```
    def rerank(
        self,
        documents: Sequence[Union[str, Document, dict]],
        query: str,
        *,
        model: Optional[str] = None,
        top_n: Optional[int] = -1,
        max_chunks_per_doc: Optional[int] = None,
    ) -> List[Dict[str, Any]]:
         ...
        if len(documents) == 0:  # to avoid empty api call
            return []
        docs = [
            doc.page_content if isinstance(doc, Document) else doc for doc in documents
        ]
        model = model or self.model
        top_n = top_n if (top_n is None or top_n > 0) else self.top_n
        results = self.client.rerank(
            query=query, documents=docs, model=model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc <-------------
        )
        result_dicts = []
        for res in results.results:  <-------------
            result_dicts.append(
                {"index": res.index, "relevance_score": res.relevance_score}
            )
        return result_dicts
```
#### Unit & Integration tests
I added a unit test to check the behaviour of `rerank`. Also fixed the
original integration test which was failing.

#### Format & Linting
Everything worked properly with `make lint_diff`, `make format_diff` and
`make format`. However I noticed an error coming from other part of the
library when doing `make lint`:

```
(langchain-py3.9) ➜  langchain git:(master) make format
[ "." = "" ] || poetry run ruff format .
1636 files left unchanged
[ "." = "" ] || poetry run ruff --select I --fix .
(langchain-py3.9) ➜  langchain git:(master) make lint
./scripts/check_pydantic.sh .
./scripts/lint_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run ruff format . --diff
1636 files already formatted
[ "." = "" ] || poetry run ruff --select I .
[ "." = "" ] || mkdir -p .mypy_cache && poetry run mypy . --cache-dir .mypy_cache
langchain/agents/openai_assistant/base.py:252: error: Argument "file_ids" to "create" of "Assistants" has incompatible type "Optional[Any]"; expected "Union[list[str], NotGiven]"  [arg-type]
langchain/agents/openai_assistant/base.py:374: error: Argument "file_ids" to "create" of "AsyncAssistants" has incompatible type "Optional[Any]"; expected "Union[list[str], NotGiven]"  [arg-type]
Found 2 errors in 1 file (checked 1634 source files)
make: *** [Makefile:65: lint] Error 1
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 06:32:03 +00:00
Shuqian
332996b4b2 openai[patch]: fix ChatOpenAI model's openai proxy (#19559)
Due to changes in the OpenAI SDK, the previous method of setting the
OpenAI proxy in ChatOpenAI no longer works. This PR fixes this issue,
making the previous way of setting the OpenAI proxy in ChatOpenAI
effective again.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 23:16:55 -07:00
Bagatur
b15c7fdde6 anthropic[patch]: fix response metadata type (#19683) 2024-03-27 23:16:26 -07:00
kaijietti
9c4b6dc979 community[patch]: fix bug in cohere that async for a coroutine in ChatCohere (#19381)
Without `await`, the `stream` returned from the `async_client` is
actually a coroutine, which could not be used in `async for`.
2024-03-27 21:34:46 -07:00
Christian Galo
1adaa3c662 community[minor]: Update Azure Cognitive Services to Azure AI Services (#19488)
This is a follow up to #18371. These are the changes:
- New **Azure AI Services** toolkit and tools to replace those of
**Azure Cognitive Services**.
- Updated documentation for Microsoft platform.
- The image analysis tool has been rewritten to use the new package
`azure-ai-vision-imageanalysis`, doing a proper replacement of
`azure-ai-vision`.

These changes:
- Update outdated naming from "Azure Cognitive Services" to "Azure AI
Services".
- Update documentation to use non-deprecated methods to create and use
agents.
- Removes need to depend on yanked python package (`azure-ai-vision`)

There is one new dependency that is needed as a replacement to
`azure-ai-vision`:
- `azure-ai-vision-imageanalysis`. This is optional and declared within
a function.

There is a new `azure_ai_services.ipynb` notebook showing usage; Changes
have been linted and formatted.

I am leaving the actions of adding deprecation notices and future
removal of Azure Cognitive Services up to the LangChain team, as I am
not sure what the current practice around this is.

---

If this PR makes it, my handle is  @galo@mastodon.social

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-03-28 03:19:02 +00:00
Shengsheng Huang
ac1dd8ad94 community[minor]: migrate bigdl-llm to ipex-llm (#19518)
- **Description**: `bigdl-llm` library has been renamed to
[`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR
migrates the `bigdl-llm` integration to `ipex-llm` .
- **Issue**: N/A. The original PR of `bigdl-llm` is
https://github.com/langchain-ai/langchain/pull/17953
- **Dependencies**: `ipex-llm` library
- **Contribution maintainer**: @shane-huang

Updated doc:   docs/docs/integrations/llms/ipex_llm.ipynb
Updated test:
libs/community/tests/integration_tests/llms/test_ipex_llm.py
2024-03-27 20:12:59 -07:00
Chaunte W. Lacewell
a31f692f4e community[minor]: Add VDMS vectorstore (#19551)
- **Description:** Add support for Intel Lab's [Visual Data Management
System (VDMS)](https://github.com/IntelLabs/vdms) as a vector store
- **Dependencies:** `vdms` library which requires protobuf = "4.24.2".
There is a conflict with dashvector in `langchain` package but conflict
is resolved in `community`.
- **Contribution maintainer:** [@cwlacewe](https://github.com/cwlacewe)
- **Added tests:**
libs/community/tests/integration_tests/vectorstores/test_vdms.py
- **Added docs:** docs/docs/integrations/vectorstores/vdms.ipynb
- **Added cookbook:** cookbook/multi_modal_RAG_vdms.ipynb

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 03:12:11 +00:00
William FH
b7b62e29fb community[patch], mongodb[patch]: Stop spamming SIMD import warnings (#19531)
If you use an embedding dist function in an eval loop, you get warned
every time. Would prefer to just check once and forget about it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 03:11:02 +00:00
Tomaz Bratanic
b04e663426 experimental[patch]: Flatten relationships in LLM graph transformer (#19642) 2024-03-27 19:35:34 -07:00
billytrend-cohere
36abb5dd41 cohere[patch]: Fix positional argument (#19678)
cohere: Fix positional argument

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-28 02:26:08 +00:00
Nuno Campos
fdfb51ad8d core: Two updates to chat model interface (#19684)
- .stream() and .astream() call on_llm_new_token, removing the need for
subclasses to do so. Backwards compatible because now we don't pass
run_manager into ._stream and ._astream
- .generate() and .agenerate() now handle `stream: bool` kwarg for
_generate and _agenerate. Subclasses handle this arg by delegating to
._stream(), now one less thing they need to do. Backwards compat because
this is an optional arg that we now never pass to the subclasses
- .generate() and .agenerate() now inspect callback handlers to decide
on a default value for stream:bool if not passed in. This auto enables
streaming when using astream_events and astream_log
- as a result of these three changes any usage of .astream_events and
.astream_log should now yield chat model stream events
- In future PRs we can update all subclasses to reflect these two things
now handled by base class, but in meantime all will continue to work
2024-03-27 18:45:01 -07:00
harry-cohere
3685f8ceac cohere[patch]: Add cohere tools agent (#19602)
**Description**: Adds a cohere tools agent and related notebook.

---------

Co-authored-by: BeatrixCohere <128378696+BeatrixCohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-27 18:35:43 -07:00
William FH
5c41f4083e [Evals] Fix function calling support (#19658)
Current implementation is overzealous in validating chat datasets

Fixes
[#langsmith-sdk:557](https://github.com/langchain-ai/langsmith-sdk/issues/557)
2024-03-27 17:23:35 -07:00
yongheng.liu
7e29b6061f community[minor]: integrate China Mobile Ecloud vector search (#15298)
- **Description:** integrate China Mobile Ecloud vector search, 
  - **Dependencies:** elasticsearch==7.10.1

Co-authored-by: liuyongheng <liuyongheng@cmss.chinamobile.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 23:02:40 +00:00
Hyeongchan Kim
9b70131aed community[patch]: refactor the type hint of file_path in UnstructuredAPIFileLoader class (#18839)
* **Description**: add `None` type for `file_path` along with `str` and
`List[str]` types.
* `file_path`/`filename` arguments in `get_elements_from_api()` and
`partition()` can be `None`, however, there's no `None` type hint for
`file_path` in `UnstructuredAPIFileLoader` and `UnstructuredFileLoader`
currently.
* calling the function with `file_path=None` is no problem, but my IDE
annoys me lol.
* **Issue**: N/A
* **Dependencies**: N/A

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-27 22:31:54 +00:00
CaroFG
cf96060ab7 community[patch]: update for compatibility with latest Meilisearch version (#18970)
- **Description:** Updates Meilisearch vectorstore for compatibility
with v1.6 and above. Adds embedders settings and embedder_name which are
now required.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 22:08:27 +00:00
chyroc
be2adb1083 community[patch]: support unstructured_kwargs for s3 loader (#15473)
fix https://github.com/langchain-ai/langchain/issues/15472

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 22:03:48 +00:00
Bagatur
b901649032 docs: move extraction up (#19667) 2024-03-27 14:55:16 -07:00
Kahlil Wehmeyer
9c08cdea92 core[patch]: ToolException docs/exception message (#17590)
**Description:**
This PR adds a slightly more helpful message to a Tool Exception

```
# current state
langchain_core.tools.ToolException: Too many arguments to single-input tool

# proposed state
langchain_core.tools.ToolException: Too many arguments to single-input tool. Consider using a StructuredTool instead.
```
**Issue:** Somewhat discussed here 👉  #6197 
 **Dependencies:** None
**Twitter handle:** N/A

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-27 21:52:36 +00:00
Evgenii Zheltonozhskii
5b1f9c6d3a infra: Consistent lxml requirements (#19520)
Update the dependency for lxml to be consistent among different
packages; should fix
https://github.com/langchain-ai/langchain/issues/19040
2024-03-27 20:27:59 +00:00
Filip Michalsky
2fceec3771 docs: update cookbook example for SalesGPT - include Stripe Payment Link Generation (#19622)
Thank you for contributing to LangChain!

- [ ] **cookbook** - update example for SalesGPT - include Stripe
Payment Link Generation

- **Description:** We updated the Jupyter notebook example with the
ability of the AI Agent to negotiate with customers and then close the
deal by generating a custom Stripe payment link.
    - **Issue:** N/A
    - **Dependencies:** N/a
    - **Twitter handle:** @FilipMichalsky @0xtotaylor


If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Filip Michalsky <filip_michalsky@g.harvard.edu>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 20:16:21 +00:00
Christophe Bornet
33fa8cfcd0 core[minor]: Add async methods to MaxMarginalRelevanceExampleSelector (#19639) 2024-03-27 16:03:18 -04:00
Taqi Jaffri
72c8b3127d cli[patch]: Fix typo in dev script name for the --chat-playground option on the cli (#19673)
Fixes typo

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2024-03-27 15:56:11 -04:00
Jan Nissen
2e0ddd6fb8 core[minor]: support pydantic v2 models in PydanticOutputParser (#18811)
As mentioned in #18322, the current PydanticOutputParser won't work for
anyone trying to parse to pydantic v2 models. This PR adds a separate
`PydanticV2OutputParser`, as well as a `langchain_core.pydantic_v2`
namespace that will fail on import to any projects using pydantic<2.
Happy to update the docs for output parsers if this is something we're
interesting in adding.

On a separate note, I also updated `check_pydantic.sh` to detect
pydantic imports with leading whitespace and excluded the internal
namespaces. That change can be separated into its own PR if needed.

---------

Co-authored-by: Jan Nissen <jan23@gmail.com>
2024-03-27 15:37:52 -04:00
Kangmoon Seo
d0accc3275 docs: fix error output in XMLOutputParser documentation (#19569)
- **Description:** I've made a fix to a ParseError call in the
XMLOutputParser documentation.
- **Issue:** None
- **Dependencies:** None

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-27 18:29:00 +00:00
Tomaz Bratanic
87d2a6b777 community[minor]: Add the option to omit schema refresh in Neo4jGraph (#19654) 2024-03-27 14:20:12 -04:00
Bagatur
5fc6531c74 docs: use first_tool_only instead of return_single (#19666) 2024-03-27 18:19:39 +00:00
jhicks2306
bcb8ab5216 docs: Improve docstring for Runnable bind method (#19659)
Added example to the docstring of the "bind" method of Runnable. This
makes it easier to understand the purpose of the method when reviewing
in code editors. E.g. VS Code below.

<img width="833" alt="Screenshot 2024-03-27 at 16 24 18"
src="https://github.com/langchain-ai/langchain/assets/45722942/ad022d4e-7bc0-4f4b-aa7a-838f1816cc52">

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-03-27 14:05:41 -04:00
ccurme
4e9b358ed8 docs: Fix broken imports in documentation (#19655)
Found via script in https://github.com/langchain-ai/langchain/pull/19611
2024-03-27 13:54:05 -04:00
Rajendra Kadam
0019d8a948 community[minor]: Add support for non-file-based Document Loaders in PebbloSafeLoader (#19574)
**Description:**
PebbloSafeLoader: Add support for non-file-based Document Loaders

This pull request enhances PebbloSafeLoader by introducing support for
several non-file-based Document Loaders. With this update,
PebbloSafeLoader now seamlessly integrates with the following loaders:
- GoogleDriveLoader
- SlackDirectoryLoader
- Unstructured EmailLoader

**Issue:** NA
**Dependencies:** - None
**Twitter handle:** @Raj__725

---------

Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-03-27 17:39:52 +00:00
Christophe Bornet
9954c6a38e langchain[minor]: Add async methods to EncoderBackedStore (#19597)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-27 17:36:36 +00:00
Erick Friis
929ed65554 cohere[patch]: release 0.1.0rc1 (#19663) 2024-03-27 17:14:56 +00:00
hulitaitai
dc2c9dd4d7 Update text2vec.py (#19657)
Add that URL of the embedding tool "text2vec".
Fix minor mistakes in the doc-string.
2024-03-27 13:13:30 -04:00
Erick Friis
7630e9529c Revert "community: added partners/package-name folders" (#19662)
Reverts langchain-ai/langchain#19290
2024-03-27 17:09:30 +00:00
Christophe Bornet
409c6eeb0b core: Add async methods to LengthBasedExampleSelector (#19640) 2024-03-27 13:05:58 -04:00
Bagatur
c7f1962f73 core[patch]: Release 0.1.35 (#19660) 2024-03-27 16:54:03 +00:00
Eugene Yurtsev
e8339b1d83 core[patch]: Patch XML vulnerability in XMLOutputParser (CVE-2024-1455) (#19653)
Patch potential XML vulnerability CVE-2024-1455

This patches a potential XML vulnerability in the XMLOutputParser in
langchain-core. The vulnerability in some situations could lead to a
denial of service attack.

At risk are users that:

1) Running older distributions of python that have older version of
libexpat
2) Are using XMLOutputParser with an agent
3) Accept inputs from untrusted sources with this agent (e.g., endpoint
on the web that allows an untrusted user to interact wiith the parser)
2024-03-27 12:41:52 -04:00
Guangdong Liu
7042934b5f community[patch]: Fix the bug that Chroma does not specify embedding_function (#19277)
- **Issue:** close #18291
- @baskaryan, @eyurtsev PTAL
2024-03-27 11:43:38 -04:00
billytrend-cohere
85f57ab4cd cohere[patch]: Fix cohere rerank (#19624)
Fix cohere rerank inspired by
https://github.com/langchain-ai/langchain/pull/19486
2024-03-27 08:41:53 -07:00
Eugene Yurtsev
8ab7bb3166 core[patch]: XMLOutputParser fix to handle changes to xml standard library (#19612)
Newest python micro releases broke streaming in the XMLOutputParser. This fixes the parsing code to work with trailing junk after the XML content.
2024-03-27 09:25:28 -04:00
yuwenzho
3a7d2cf443 community[minor]: Add ITREX optimized Embeddings (#18474)
Introduction
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit designed to accelerate GenAI/LLM everywhere
with the optimal performance of Transformer-based models on various
Intel platforms

Description

adding ITREX runtime embeddings using intel-extension-for-transformers.
added mdx documentation and example notebooks
added embedding import testing.

---------

Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 07:22:06 +00:00
Juan Jose Miguel Ovalle Villamil
1fe10a3e3d experimental[patch]: Enhance LLMGraphTransformer with async processing and improved readability (#19205)
- [x] **PR title**: "experimental: Enhance LLMGraphTransformer with
async processing and improved readability"


- [x] **PR message**: 
- **Description:** This pull request refactors the `process_response`
and `convert_to_graph_documents` methods in the LLMGraphTransformer
class to improve code readability and adds async versions of these
methods for concurrent processing.
    The main changes include:
- Simplifying list comprehensions and conditional logic in the
process_response method for better readability.
- Adding async versions aprocess_response and
aconvert_to_graph_documents to enable concurrent processing of
documents.
These enhancements aim to improve the overall efficiency and
maintainability of the `LLMGraphTransformer` class.
  - **Issue:** N/A
  - **Dependencies:** No additional dependencies required.
  - **Twitter handle:** @jjovalle99


- [x] **Add tests and docs**: N/A (This PR does not introduce a new
integration)


- [x] **Lint and test**: Ran make format, make lint, and make test from
the root of the modified package(s). All tests pass successfully.

Additional notes:

- The changes made in this PR are backwards compatible and do not
introduce any breaking changes.
- The PR touches only the `LLMGraphTransformer` class within the
experimental package.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 23:40:21 -07:00
Fabrizio Ruocco
f12cb0bea4 community[patch]: Microsoft Azure Document Intelligence updates (#16932)
- **Description:** Update Azure Document Intelligence implementation by
Microsoft team and RAG cookbook with Azure AI Search

---------

Co-authored-by: Lu Zhang (AI) <luzhan@microsoft.com>
Co-authored-by: Yateng Hong <yatengh@microsoft.com>
Co-authored-by: teethache <hongyateng2006@126.com>
Co-authored-by: Lu Zhang <44625949+luzhang06@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 23:36:59 -07:00
Guangdong Liu
cd79305eb9 openai[patch]: fix AzureChatOpenAI missing parameter problem (#19258)
- **Issue:** close #19255
- PTAL @baskaryan @eyurtsev
2024-03-26 22:31:36 -07:00
Leonid Ganeline
3a978a4bdc docs: output_parsers page fix (#19623)
Issue with this
[page](https://python.langchain.com/docs/modules/model_io/output_parsers/):
Table: "Input Type" columns: strings `str \| Message` (the escape char
"\" doesn't work inside backticked text).
2024-03-26 22:17:41 -07:00
Ethan Yang
28cd5522c2 docs: fix typo in openvino document (#19627) 2024-03-26 22:13:54 -07:00
xsai9101
1c27de6ce2 docs: Fix oracle doc loader format issue (#19628) 2024-03-26 22:13:36 -07:00
Timothy
ad77fa15ee community[patch]: Adding try-except block for GCSDirectoryLoader (#19591)
- **Description:** Implemented try-except block for
`GCSDirectoryLoader`. Reason: Users processing large number of
unstructured files in a folder may experience many different errors. A
try-exception block is added to capture these errors. A new argument
`use_try_except=True` is added to enable *silent failure* so that error
caused by processing one file does not break the whole function.
- **Issue:** N/A
- **Dependencies:** no new dependencies
- **Twitter handle:** timothywong731

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 00:12:24 +00:00
fzowl
aea2be5bf3 voyageai[patch]: VoyageAI rerank (#19521)
Adding VoyageAI reranking

---------

Co-authored-by: fodizoltan <zoltan@conway.expert>
Co-authored-by: Yujie Qian <thomasq0809@gmail.com>
2024-03-26 17:07:23 -07:00
Leonid Ganeline
4d85485e71 docs: PromptTemplate import from core (#19616)
Changed import of `PromptTemplate` from `langchain` to `langchain_core`
in all examples (notebooks)
2024-03-26 17:03:36 -07:00
Leonid Ganeline
3dc0f3c371 experimental[patch]: PromptTemplate import fix (#19617)
Changed import of `PromptTemplate` from `langchain` to `langchain_core`
in `langchain_experimental`
2024-03-26 17:03:13 -07:00
xsai9101
160a8eb178 community[minor]: add oracle autonomous database doc loader integration (#19536)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Adding oracle autonomous database document loader
integration. This will allow users to connect to oracle autonomous
database through connection string or TNS configuration.
    https://www.oracle.com/autonomous-database/
    - **Issue:** None
    - **Dependencies:** oracledb python package 
    https://pypi.org/project/oracledb/
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
  Unit test and doc are added.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-26 17:02:18 -07:00
Ethan Yang
5784dfed00 docs: update openvino documents (#19543)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 22:15:30 +00:00
Erick Friis
bf8ba00520 cli[patch]: release 0.0.22rc0, chat playground (#19614) 2024-03-26 15:08:56 -07:00
Leonid Ganeline
a3d24bc10b docs: release date fix (#19585)
Replaced the overdue release promise.
2024-03-26 14:51:09 -07:00
Raghav Rawat
b5640a0883 docs: Update apify.ipynb for Document class import (#19598)
- **Description:**
Update to correctly import Document class -
from langchain_core.documents import Document

- **Issue:**
Fixes the notebook and the hosted documentation
[here](https://python.langchain.com/docs/integrations/tools/apify)

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 21:46:29 +00:00
jhicks2306
087823aefa docs: Update docstring for MessagesPlaceholder (#19601)
Update to docstring for MessagesPlaceholder so that it shows helpful
information in code editors. E.g. VS Code as shown below.


<img width="587" alt="Screenshot 2024-03-26 at 17 18 58"
src="https://github.com/langchain-ai/langchain/assets/45722942/8f49d09f-ed8d-4f61-a9d4-3611dbe9c9c5">

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-26 14:34:00 -07:00
Christophe Bornet
7c2578bd55 langchain[patch]: Add async methods to EmbeddingRouterChain (#19603) 2024-03-26 14:33:36 -07:00
Christophe Bornet
b3d7b5a653 langchain[patch[: Add async methods to TimeWeightedVectorStoreRetriever (#19606) 2024-03-26 14:03:47 -07:00
Adam Law
aeb7b6b11d community[patch]: use semantic_configurations in AzureSearch (#19347)
- **Description:** Currently the semantic_configurations are not used
when creating an AzureSearch instance, instead creating a new one with
default values. This PR changes the behavior to use the passed
semantic_configurations if it is present, and the existing default
configuration if not.

---------

Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-26 13:57:39 -07:00
Christophe Bornet
a7274f006e langchain[patch]: Add async methods to VectorstoreIndexCreator (#19582) 2024-03-26 13:57:13 -07:00
Bagatur
241774012a core[patch]: Release 0.1.34 (#19609)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-26 13:50:48 -07:00
Nuno Campos
c78eb55859 load: Optionally disable reading secrets from env (#19596)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-26 20:32:56 +00:00
Eugene Yurtsev
d3c9974da2 core[patch]: Temporarily disable test for streaming xml parser (#19610)
Test is failing due to micro version bump in python interpreter which
changed something about how std xml parser works
2024-03-26 20:24:20 +00:00
Eugene Yurtsev
8bc5cdccee core[patch]: Reverting changes with defusedXML (#19604)
DefusedXML is causing parsing errors on previously functional code with
the 0.7.x versions. These do not seem to support newer version of python
well. 0.8.x has only been released as rc, so we're not going to to use
it in the core package
2024-03-26 15:13:09 -04:00
Giannis
9ea2a9b0c1 cohere[patch]: Add additional kwargs support for Cohere SDK params (#19533)
* Adds support for `additional_kwargs` in `get_cohere_chat_request`
* This functionality passes in Cohere SDK specific parameters from
`BaseMessage` based classes to the API

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-26 18:30:37 +00:00
Adrian Valente
2763d8cbe5 community: add len() implementation to Chroma (#19419)
Thank you for contributing to LangChain!

- [x] **Add len() implementation to Chroma**: "package: community"


- [x] **PR message**: 
- **Description:** add an implementation of the __len__() method for the
Chroma vectostore, for convenience.
- **Issue:** no exposed method to know the size of a Chroma vectorstore
    - **Dependencies:** None
    - **Twitter handle:** lowrank_adrian


- [x] **Add tests and docs**

- [x] **Lint and test**

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 12:53:10 -04:00
Tom Aarsen
e0a1278d2b docs: HFEmbeddings: Add more information to model_kwargs/encode_kwargs (#19594)
- **Description:** Be more explicit with the `model_kwargs` and
`encode_kwargs` for `HuggingFaceEmbeddings`.
    - **Issue:** -
    - **Dependencies:** -

I received some reports by my users that they didn't realise that you
could change the default `batch_size` with `HuggingFaceEmbeddings`,
which may be attributed to how the `model_kwargs` and `encode_kwargs`
don't give much information about what you can specify.

I've added some parameter names & links to the Sentence Transformers
documentation to help clear it up. Let me know if you'd rather have
Markdown/Sphinx-style hyperlinks rather than a "bare URL".

- Tom Aarsen
2024-03-26 12:46:04 -04:00
Dobiichi-Origami
18e6f9376d community[Qianfan]: add function_call in additional_kwargs (#19550)
- **Description:** add lacked `function_call` field in
`additional_kwargs` in previous version
- **Dependencies:** None of new dependency
2024-03-26 12:20:19 -04:00
Eugene Yurtsev
9c7e860cf6 core[patch]: Remove anyio dependency (#19583)
The dependency isn't used anymore
2024-03-26 11:59:22 -04:00
mwmajewsk
f7a1fd91b8 community: better support of pathlib paths in document loaders (#18396)
So this arose from the
https://github.com/langchain-ai/langchain/pull/18397 problem of document
loaders not supporting `pathlib.Path`.

This pull request provides more uniform support for Path as an argument.
The core ideas for this upgrade: 
- if there is a local file path used as an argument, it should be
supported as `pathlib.Path`
- if there are some external calls that may or may not support Pathlib,
the argument is immidiately converted to `str`
- if there `self.file_path` is used in a way that it allows for it to
stay pathlib without conversion, is is only converted for the metadata.

Twitter handle: https://twitter.com/mwmajewsk
2024-03-26 11:51:52 -04:00
Guangdong Liu
94b869a974 github action: Add dead link check for .mdx files (#19492)
- **Description:** Add dead link check for .mdx files. I checked the
logs and found that files with .mdx suffix were not checked.

https://github.com/langchain-ai/langchain/actions/runs/8409525467/job/23026924465#logs
- @baskaryan, @efriis, @eyurtsev, @hwchase17.
2024-03-26 08:42:34 -07:00
Christophe Bornet
6f477e3cb6 docs: Remove chromadb from required dependency in examples with VectorstoreIndexCreator (#19578) 2024-03-26 11:12:21 -04:00
Yuki Watanabe
cfecbda48b community[minor]: Allow passing allow_dangerous_deserialization when loading LLM chain (#18894)
### Issue
Recently, the new `allow_dangerous_deserialization` flag was introduced
for preventing unsafe model deserialization that relies on pickle
without user's notice (#18696). Since then some LLMs like Databricks
requires passing in this flag with true to instantiate the model.

However, this breaks existing functionality to loading such LLMs within
a chain using `load_chain` method, because the underlying loader
function
[load_llm_from_config](f96dd57501/libs/langchain/langchain/chains/loading.py (L40))
 (and load_llm) ignores keyword arguments passed in. 

### Solution
This PR fixes this issue by propagating the
`allow_dangerous_deserialization` argument to the class loader iff the
LLM class has that field.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 11:07:55 -04:00
hulitaitai
d7c14cb6f9 community[minor]: Add embeddings integration for text2vec (#19267)
Create a Class which allows to use the "text2vec" open source embedding
model.

It should install the model by running 'pip install -U text2vec'.
Example to call the model through LangChain:

from langchain_community.embeddings.text2vec import Text2vecEmbeddings

            embedding = Text2vecEmbeddings()
            bookend.embed_documents([
                "This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
            ])
            bookend.embed_query(
                "It can be used for text matching or semantic search."
            )

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-26 11:06:58 -04:00
Shotaro Sano
55c624a694 infra: Resolve the endless dependency resolution during the build of dev.Dockerfile by copying poetry.lock (#19465)
## Description
This PR proposes a modification to the `libs/langchain/dev.Dockerfile`
configuration to copy the `libs/langchain/poetry.lock` into the working
directory. The change aims to address the issue where the Poetry install
command, the last command in the `dev.Dockerfile`, takes excessively
long hours, and to ensure the reproducibility of the poetry environment
in the devcontainer.

## Problem
The `dev.Dockerfile`, prepared for development environments such as
`.devcontainer`, encounters an unending dependency resolution when
attempting the Poetry installation.

### Steps to Reproduce
Execute the following build command: 

```bash
docker build -f libs/langchain/dev.Dockerfile .
```

### Current Behavior
The Docker build process gets stuck at the following step, which, in my
experience, did not conclude even after an entire night:

```
 => [langchain-dev-dependencies 4/6] COPY libs/community/ ../community/                                                                                0.9s
 => [langchain-dev-dependencies 5/6] COPY libs/text-splitters/ ../text-splitters/                                                                      0.0s
 => [langchain-dev-dependencies 6/6] RUN poetry install --no-interaction --no-ansi --with dev,test,docs                                               12.3s
 => => # Updating dependencies                                                                                                                             
 => => # Resolving dependencies...  
```

### Expected Behavior
The Docker build completes in a realistic timeframe. By applying this
PR, the build finishes within a few minutes.

### Analysis
The complexity of LangChain's dependencies has reached a point where
Poetry is required to resolve dependencies akin to threading a needle.
Consequently, poetry install fails to complete in a practical timeframe.

## Solution
The solution for dependency resolution is already recorded in
`libs/langchain/poetry.lock`, so we can use it. When copying
`project.toml` and `poetry.toml`, the `poetry.lock` located in the same
directory should also be copied.

```diff
# Copy only the dependency files for installation
-COPY libs/langchain/pyproject.toml libs/langchain/poetry.toml ./
+COPY libs/langchain/pyproject.toml libs/langchain/poetry.toml libs/langchain/poetry.lock ./
```

## Note
I am not intimately familiar with the historical context of the
`dev.Dockerfile` and thus do not know why `poetry.lock` has not been
copied until now. It might have been an oversight, or perhaps dependency
resolution used to complete quickly even without the `poetry.lock` file
in the past. However, if there are deliberate reasons why copying
`poetry.lock` is not advisable, please just close this PR.
2024-03-26 10:54:53 -04:00
Kalyan Mudumby
d27600c6f7 community[patch]: GPTCache pydantic validation error on lookup (#19427)
Description:
this change fixes the pydantic validation error when looking up from
GPTCache, the `ChatOpenAI` class returns `ChatGeneration` as response
which is not handled.
use the existing `_loads_generations` and `_dumps_generations` functions
to handle it

Trace
```
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/development/scripts/chatbot-postgres-test.py", line 90, in <module>
    print(llm.invoke("tell me a joke"))
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 166, in invoke
    self.generate_prompt(
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 544, in generate_prompt
    return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 408, in generate
    raise e
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 398, in generate
    self._generate_with_cache(
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 585, in _generate_with_cache
    cache_val = llm_cache.lookup(prompt, llm_string)
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_community/cache.py", line 807, in lookup
    return [
           ^
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_community/cache.py", line 808, in <listcomp>
    Generation(**generation_dict) for generation_dict in json.loads(res)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/load/serializable.py", line 120, in __init__
    super().__init__(**kwargs)
  File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/pydantic/v1/main.py", line 341, in __init__
    raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for Generation
type
  unexpected value; permitted: 'Generation' (type=value_error.const; given=ChatGeneration; permitted=('Generation',))
```


Although I don't seem to find any issues here, here's an
[issue](https://github.com/zilliztech/GPTCache/issues/585) raised in
GPTCache. Please let me know if I need to do anything else

Thank you

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 10:52:30 -04:00
Leonid Ganeline
4159a4723c experimental[patch]: update module doc strings (#19539)
Added missed module descriptions. Fixed format.
2024-03-26 10:38:10 -04:00
Piyush Jain
72ba738bf5 community[minor]: Improvements for NeptuneRdfGraph, Improve discovery of graph schema using database statistics (#19546)
Fixes linting for PR
[19244](https://github.com/langchain-ai/langchain/pull/19244)

---------

Co-authored-by: mhavey <mchavey@gmail.com>
2024-03-26 10:36:51 -04:00
aditya thomas
fc6b92bb9a docs: add cohere to the list of partners (#19552)
**Description:** Add Cohere to the list of LangChain partners
**Issue:** The Cohere partner package was recently added
[#19049](https://github.com/langchain-ai/langchain/pull/19049)
**Dependencies:** None
2024-03-26 10:22:03 -04:00
Christophe Bornet
1f422318b7 core[minor]: Use BaseChatMessageHistory async methods in RunnableWithMessageHistory (#19565)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-26 14:13:58 +00:00
Christophe Bornet
8595c3ab59 community[minor]: Add InMemoryVectorStore to module level imports (#19576) 2024-03-26 14:07:44 +00:00
Christophe Bornet
a9457d269e core: Add async methods to BaseExampleSelector and SemanticSimilarityExampleSelector (#19399)
Few-Shot prompt template may use a `SemanticSimilarityExampleSelector`
that in turn uses a `VectorStore` that does I/O operations.
So to work correctly on the event loop, we need:
* async methods for the `VectorStore` (OK)
* async methods for the `SemanticSimilarityExampleSelector` (this PR)
* async methods for `BasePromptTemplate` and `BaseChatPromptTemplate`
(future work)
2024-03-26 10:06:43 -04:00
Christophe Bornet
29c58528c7 core[minor]: Add default implementations to amax_marginal_relevance_search_by_vector and adelete (#19269) 2024-03-26 10:03:22 -04:00
Christophe Bornet
999365186b langchain[major]: Use InMemoryVectorStore by default in VectorstoreIndexCreator (#19575)
This is a small breaking change but I think it should be done as:
* No external dependency needs to be installed anymore for the default
to work
* It is vendor-neutral
2024-03-26 10:01:23 -04:00
standby24x7
16e64d889a docs: Update function "run" to "invoke" in fake_llm.ipynb (#19570)
This patch updates function "run" to "invoke" in fake_llm.ipynb. Without
this patch, you see following warning.

LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2024-03-26 09:54:31 -04:00
Guangdong Liu
c93d4ea91c docs: Add in code documentation to core Runnable map methods (docs only) (#19517)
- **Issue:** #18804
- @baskaryan, @eyurtsev
2024-03-25 19:18:30 -07:00
Leonid Ganeline
0199b73188 docs: added partners/package-name folders (#19290)
Added references to new integration packages from Google, by adding
subfolders to `partners/`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-26 02:16:59 +00:00
Aayush Kataria
03c38005cb community[patch]: Fixing some caching issues for AzureCosmosDBSemanticCache (#18884)
Fixing some issues for AzureCosmosDBSemanticCache
- Added the entry for "AzureCosmosDBSemanticCache" which was missing in
langchain/cache.py
- Added application name when creating the MongoClient for the
AzureCosmosDBVectorSearch, for tracking purposes.

@baskaryan, can you please review this PR, we need this to go in asap.
These are just small fixes which we found today in our testing.
2024-03-25 19:06:17 -07:00
Clément Tamines
a6cbb755a7 community[patch]: fix semantic answer bug in AzureSearch vector store (#18938)
- **Description:** The `semantic_hybrid_search_with_score_and_rerank`
method of `AzureSearch` contains a hardcoded field name "metadata" for
the document metadata in the Azure AI Search Index. Adding such a field
is optional when creating an Azure AI Search Index, as other snippets
from `AzureSearch` test for the existence of this field before trying to
access it. Furthermore, the metadata field name shouldn't be hardcoded
as "metadata" and use the `FIELDS_METADATA` variable that defines this
field name instead. In the current implementation, any index without a
metadata field named "metadata" will yield an error if a semantic answer
is returned by the search in
`semantic_hybrid_search_with_score_and_rerank`.

- **Issue:** https://github.com/langchain-ai/langchain/issues/18731

- **Prior fix to this bug:** This bug was fixed in this PR
https://github.com/langchain-ai/langchain/pull/15642 by adding a check
for the existence of the metadata field named `FIELDS_METADATA` and
retrieving a value for the key called "key" in that metadata if it
exists. If the field named `FIELDS_METADATA` was not present, an empty
string was returned. This fix was removed in this PR
https://github.com/langchain-ai/langchain/pull/15659 (see
ed1ffca911#).
@lz-chen: could you confirm this wasn't intentional? 

- **New fix to this bug:** I believe there was an oversight in the logic
of the fix from
[#1564](https://github.com/langchain-ai/langchain/pull/15642) which I
explain below.
The `semantic_hybrid_search_with_score_and_rerank` method creates a
dictionary `semantic_answers_dict` with semantic answers returned by the
search as follows.

5c2f7e6b2b/libs/community/langchain_community/vectorstores/azuresearch.py (L574-L581)
The keys in this dictionary are the unique document ids in the index, if
I understand the [documentation of semantic
answers](https://learn.microsoft.com/en-us/azure/search/semantic-answers)
in Azure AI Search correctly. When the method transforms a search result
into a `Document` object, an "answer" key is added to the document's
metadata. The value for this "answer" key should be the semantic answer
returned by the search from this document, if such an answer is
returned. The match between a `Document` object and the semantic answers
returned by the search should be done through the unique document id,
which is used as a key for the `semantic_answers_dict` dictionary. This
id is defined in the search result's field named `FIELDS_ID`. I added a
check to avoid any error in case no field named `FIELDS_ID` exists in a
search result (which shouldn't happen in theory).
A benefit of this approach is that this fix should work whether or not
the Azure AI Search Index contains a metadata field.

@levalencia could you confirm my analysis and test the fix?
@raunakshrivastava7 do you agree with the fix?

Thanks for the help!
2024-03-25 18:51:54 -07:00
miri-bar
55db737302 ai21[minor]: AI21 Labs Semantic Text Splitter support (#19510)
Description: Added support for AI21 Labs model - Segmentation, as a Text
Splitter
Dependencies: ai21, langchain-text-splitter
Twitter handle: https://github.com/AI21Labs

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-26 01:39:37 +00:00
Anindyadeep
b2a11ce686 community[minor]: Prem AI langchain integration (#19113)
### Prem SDK integration in LangChain

This PR adds the integration with [PremAI's](https://www.premai.io/)
prem-sdk with langchain. User can now access to deployed models
(llms/embeddings) and use it with langchain's ecosystem. This PR adds
the following:

### This PR adds the following:

- [x]  Add chat support
- [X]  Adding embedding support
- [X]  writing integration tests
    - [X]  writing tests for chat 
    - [X]  writing tests for embedding
- [X]  writing unit tests
    - [X]  writing tests for chat 
    - [X]  writing tests for embedding
- [X]  Adding documentation
    - [X]  writing documentation for chat
    - [X]  writing documentation for embedding
- [X] run `make test`
- [X] run `make lint`, `make lint_diff` 
- [X]  Final checks (spell check, lint, format and overall testing)

---------

Co-authored-by: Anindyadeep Sannigrahi <anindyadeepsannigrahi@Anindyadeeps-MacBook-Pro.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 01:37:19 +00:00
Alessandro D'Armiento
37eb3a4a9e docs: Some import nits (#19130)
- **Description:** fixes some minor issues in the documentation

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-26 01:25:44 +00:00
Souhail Hanfi
cbec43afa9 community[patch]: avoid creating extension PGvector while using readOnly Databases (#19268)
- **Description:** PgVector class always runs "create extension" on init
and this statement crashes on ReadOnly databases (read only replicas).
but wierdly the next create collection etc work even in readOnly
databases
- **Dependencies:** no new dependencies
- **Twitter handle:** @VenOmaX666

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 01:25:01 +00:00
Dixing (Dex) Xu
903541f439 docs: update dependecy for autogpt/marathon.ipynb (#19491)
fixes the import error from notebook based on the
[documentation](https://api.python.langchain.com/en/latest/agents/langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent.html)

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 18:14:22 -07:00
Mauricio Cruz
fb9ce95184 cli[patch]: Fix Tuple typing problem when create new langchain app (#19141)
Thank you for contributing to LangChain!

When run command langchain app new my-app, i get this error:

File
"/home/mauricio/.local/lib/python3.8/site-packages/langchain_cli/utils/pyproject.py",
line 15, in <module>
pyproject_toml: Path, local_editable_dependencies: Iterable[tuple[str,
Path]]
TypeError: 'type' object is not subscriptable

This PR fix the error.
2024-03-26 01:09:51 +00:00
Anthony Shaw
6c9b0f96f3 docs: Add guidance for splitting Chinese, Japanese, and Thai (#19295)
The existing default list of separators for the `RecursiveTextSplitter`
assumes spaces are word boundaries. Some languages [don't use spaces
between
words](https://en.wikipedia.org/wiki/Category:Writing_systems_without_word_boundaries)
(Chinese, Japanese, Thai, Burmese).

This PR extends the documentation to explain how to cater for those
languages by adding additional punctuation to the separators and
zero-width spaces which are used by some typesetters and will assist the
splitter to not split in words.

Ideally, **these separators could be a constant in the module** but for
now, defining them in the documentation is a start.
2024-03-26 00:34:00 +00:00
Erick Friis
441a8012b3 mistralai[patch]: release 0.1.0 (#19540) 2024-03-25 17:29:40 -07:00
Barun Amalkumar Halder
9246ec6b36 community[patch] : [Fiddler] ensure dataset is not added if model is present (#19293)
**Description:**
- minor PR to speed up onboarding by not trying to add a dataset, if a
model is already present.
- replace batch publish API with streaming when single events are
published.

**Dependencies:** any dependencies required for this change
**Twitter handle:** behalder

Co-authored-by: Barun Halder <barun@fiddler.ai>
2024-03-25 17:28:05 -07:00
JSDu
6e090280fd community[patch]: milvus will autoflush, manual flush is slowly (#19300)
reference:


https://milvus.io/docs/configure_quota_limits.md#quotaAndLimitsflushRateenabled

https://github.com/milvus-io/milvus/issues/31407

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 00:26:58 +00:00
mackong
e65dc4b95b community[patch]: clean warning when delete by ids (#19301)
* Description: rearrange to avoid variable overwrite, which cause
warning always.
* Issue: N/A
* Dependencies: N/A
2024-03-25 17:23:22 -07:00
Ian
d5415dbd68 docs: improve tidb integrations documents (#19321)
This PR aims to enhance the documentation for TiDB integration, driven
by feedback from our users. It provides detailed introductions to key
features, ensuring developers can fully leverage TiDB for AI application
development.
2024-03-25 17:08:23 -07:00
Stefano Mosconi
01fc69c191 community[patch]: expanding version in confluence loader (#19324)
**Description:**
Expanding version in all the Confluence API calls so to get when the
page was last modified/created in all cases.

**Issue:** #12812 
**Twitter handle:** zzste
2024-03-25 17:08:01 -07:00
Dmitry Tyumentsev
08b769d539 community[patch]: YandexGPT Use recent yandexcloud sdk version (#19341)
Fixed inability to work with [yandexcloud
SDK](https://pypi.org/project/yandexcloud/) version higher 0.265.0
2024-03-25 17:05:57 -07:00
Marlene
f1313339ac community[patch]: Fixing incorrect base URLs for Azure Cognitive Search Retriever (#19352)
This PR adds code to make sure that the correct base URL is being
created for the Azure Cognitive Search retriever. At the moment an
incorrect base URL is being generated. I think this is happening because
the original code was based on a depreciated API version. No
dependencies need to be added. I've also added more context to the test
doc strings.

I should also note that ACS is now Azure AI Search. I will open a
separate PR to make these changes as that would be a breaking change and
should potentially be discussed.

Twitter: @marlene_zw



- No new tests added, however the current ACS retriever tests are now
passing when I run them.
- Code was linted.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 00:04:59 +00:00
Tridib Roy Arjo
d667b1ea8f docs: Update async_chromium.ipynb (#19514)
In Jupyter, asyncio would throw an error before `.load()` unless
`nest_asyncio` is applied (Issue #8494 mentioned this)

+Minor typo fixes..
2024-03-26 00:02:50 +00:00
Bob Lin
5b6b1f9e1d docs: Fix several sample code errors (#19382) 2024-03-25 16:59:52 -07:00
FinTech秋田
03ba1d4731 community[patch]: Add Support for GPU Index Types in Milvus 2.4 (#19468)
- **Description:** This commit introduces support for the newly
available GPU index types introduced in Milvus 2.4 within the LangChain
project's `milvus.py`. With the release of Milvus 2.4, a range of
GPU-accelerated index types have been added, offering enhanced search
capabilities and performance optimizations for vector search operations.
This update ensures LangChain users can fully utilize the new
performance benefits for vector search operations.
    - Reference: https://milvus.io/docs/gpu_index.md

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 23:39:54 +00:00
Hamid Ali
c281ec8887 docs: Fix broken link in semantic-chunker.ipynb (#19464)
Corrected a broken link within the semantic-chunker.ipynb notebook,
ensuring that users can access the referenced resource.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 23:39:32 +00:00
Ash Vardanian
d01bad5169 core[patch]: Convert SimSIMD back to NumPy (#19473)
This patch fixes the #18022 issue, converting the SimSIMD internal
zero-copy outputs to NumPy.

I've also noticed, that oftentimes `dtype=np.float32` conversion is used
before passing to SimSIMD. Which numeric types do LangChain users
generally care about? We support `float64`, `float32`, `float16`, and
`int8` for cosine distances and `float16` seems reasonable for
practically any kind of embeddings and any modern piece of hardware, so
we can change that part as well 🤗
2024-03-25 16:36:26 -07:00
Ikko Eltociear Ashimine
980658cb47 docs: Update streaming.ipynb (#19500)
Fixed typo.

occuring -> occurring
2024-03-25 16:21:45 -07:00
Leonid Kuligin
91f4c80143 docs: fixed links (#19503)
- [ ] **PR title**: "docs: fixed broken links"


- [ ] **PR message**:
    - **Description:** fixed links in the documentation
2024-03-25 16:19:28 -07:00
Mikelarg
dac2e0165a community[minor]: Added GigaChat Embeddings support + updated previous GigaChat integration (#19516)
- **Description:** Added integration with
[GigaChat](https://developers.sber.ru/portal/products/gigachat)
embeddings. Also added support for extra fields in GigaChat LLM and
fixed docs.
2024-03-25 16:08:37 -07:00
Martin Kolb
e5bdb26f76 community[patch]: More flexible handling for entity names in vector store "HANA Cloud" (#19523)
- **Description:** Added support for lower-case and mixed-case names
The names for tables and columns previouly had to be UPPER_CASE.
With this enhancement, also lower_case and MixedCase are supported,


  - **Issue:** N/A
  - **Dependencies:** no new dependecies added
  - **Twitter handle:** @sapopensource
2024-03-25 15:52:45 -07:00
Erica Clark
a1ff21f90f docs: Update local llms article to use invoke instead of deprecated __call__ (#19528)
- **Description:** Since the implicit `__call__` has been deprecated in
favor of `invoke`, the local_llms article also needed to be updated.
This article was my introduction to Lanchain, and as it was helpful in
getting me setup with running LLMs locally, it is nice to not have any
warnings when running the example code. With this change, the warnings
go away when running the example code.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** clarkerican
2024-03-25 15:51:39 -07:00
Orest Xherija
0b1e09029f openai[patch]: increase max batch size for Azure OpenAI Embeddings API (#19532)
**Description:** Azure OpenAI has increased its maximum batch size from
16 to 2048 for the Embeddings API per this How-To
[page](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/embeddings?tabs=console#best-practices)

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 15:50:07 -07:00
Eugene Yurtsev
56f4c5459b core[patch]: fix xml output parser transform (#19530)
Previous PR passed _parser attribute which apparently is not meant to be
used by user code and causes non deterministic failures on CI when
testing the transform and a transform methods. Reverting this change
temporarily.
2024-03-25 21:34:45 +00:00
Erick Friis
e6952b04d5 cohere[patch]: fix release (#19529) 2024-03-25 13:46:29 -07:00
aditya thomas
aa68fd7e91 core[runnables]: docstring for class runnable, method with_listeners() (#19515)
**Description:** Docstring for method with_listerners() of class
Runnable
**Issue:** [Add in code documentation to core Runnable methods
#18804](https://github.com/langchain-ai/langchain/issues/18804)
**Dependencies:** None
2024-03-25 16:24:58 -04:00
billytrend-cohere
63343b4987 cohere[patch]: add cohere as a partner package (#19049)
Description: adds support for langchain_cohere

---------

Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-25 20:23:47 +00:00
Eugene Yurtsev
727d5023ce core[patch]: Use defusedxml in XMLOutputParser (#19526)
This mitigates a security concern for users still using older versions of libexpat that causes an attacker to compromise the availability of the system if an attacker manages to surface malicious payload to this XMLParser.
2024-03-25 16:21:52 -04:00
Zachary Wilkins
e1a6341940 langchain: Passthrough batch_size on index()/aindex() calls (#19443)
**Description:** This change passes through `batch_size` to
`add_documents()`/`aadd_documents()` on calls to `index()` and
`aindex()` such that the documents are processed in the expected batch
size.
**Issue:** #19415
**Dependencies:** N/A
**Twitter handle:** N/A
2024-03-25 11:58:29 -04:00
ccurme
82de8fd6c9 add kwargs (#19519)
`HanaDB.add_texts` is missing **kwargs.
2024-03-25 11:56:01 -04:00
Nikhil Kumar
3d3b46a782 docs: Update docs for HuggingFacePipeline (#19306)
Updated `HuggingFacePipeline` docs to be in sync with list of supported
tasks, including translation.

- [x] **PR title**: "community: Update docs for `HuggingFacePipeline`"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**:
- **Description:** Update docs for `HuggingFacePipeline`, was earlier
missing `translation` as a valid task
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:** None


- [x] **Add tests and docs**:


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-03-25 00:29:21 -07:00
Igor Muniz Soares
743f888580 community[minor]: Dappier chat model integration (#19370)
**Description:** 

This PR adds [Dappier](https://dappier.com/) for the chat model. It
supports generate, async generate, and batch functionalities. We added
unit and integration tests as well as a notebook with more details about
our chat model.


**Dependencies:** 
    No extra dependencies are needed.
2024-03-25 07:29:05 +00:00
Jacob Lezberg
64e1df3d3a infra: Update package version to apply CVE-related patch (#19490)
- **Description:** [CVE
2024-21503](https://www.cve.org/CVERecord?id=CVE-2024-21503) was
recently identified. The python linter "black" suffers from a potential
Regex-related denial of service attack. Updated version from the
vulnerable 24.2.0 to the patched 24.3.0.
- **Issue:** N/A
- **Dependencies:** The 'black' package in both `langchain` (top-level)
and `templates/python-lint`.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 07:11:23 +00:00
Hugoberry
96dc180883 community[minor]: Add DuckDB as a vectorstore (#18916)
DuckDB has a cosine similarity function along list and array data types,
which can be used as a vector store.
- **Description:** The latest version of DuckDB features a cosine
similarity function, which can be used with its support for list or
array column types. This PR surfaces this functionality to langchain.
    - **Dependencies:** duckdb 0.10.0
    - **Twitter handle:** @igocrite

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 07:02:35 +00:00
Ethan Yang
fa6397d76a docs: Add OpenVINO llms docs (#19489)
Add OpenVINOpipeline instructions in docs. OpenVINO users can find more
details in this page.
2024-03-24 23:57:30 -07:00
preak95
6ea3e57a63 community[minor]: S3FileLoader to use expose mode and post_processors arguments of unstructured loader (#19270)
**Description:** Update s3_file.py to use arguments **mode** and
**post_processors** from the base class **UnstructuredBaseLoader** to
include more metadata about the files from the S3 bucket such as
*'page_number', 'languages'* etc.

**Issue:** NA
**Dependencies:** None
**Twitter handle:** preak95

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-25 06:56:55 +00:00
Guangdong Liu
560e2182d8 docs: docstring Runnable pipe and pick methods (docs only) (#19395)
- **Issue:**  #18804
-  @eyurtsev @ccurme PTAL

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-24 23:50:04 -07:00
Christophe Bornet
63898dbda0 langchain[patch]: Use async memory in Chain when needed (#19429) 2024-03-24 23:49:00 -07:00
Lance Martin
db7403d667 docs: Remove non-rendering images & output spamming from doc ntbks (#19475)
Looking at tokens / page of our docs, we see a few outliers:
<img width="761" alt="image"
src="https://github.com/langchain-ai/langchain/assets/122662504/677aa2d6-0a29-45e4-882a-db2bbf46d02b">

It is due to non-rendering images in one case, and output spamming. 

Clean these, along with other cases of excessing output spamming in
docs.

All get sucked into chat-langchain for retrieval.
2024-03-24 23:47:38 -07:00
Erick Friis
b617085af0 mistralai[patch]: streaming tool calls (#19469) 2024-03-23 19:24:53 +00:00
aditya thomas
b43a9d5808 docs: adding voyageai to the list of partner packages (#19376)
**Description:** Adding VoyageAI to the list of partners
**Issue:** A standalone langchain-voyageai package has been added
**Dependencies:** None
2024-03-22 17:08:15 -07:00
Zeeland
2549df00cd docs: fix error bilibili url (#19375)
Thank you for contributing to LangChain!

bilibili-api-python use https://github.com/Nemo2011/bilibili-api repo.
Change to the correct address.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-22 17:06:17 -07:00
aditya thomas
375ab7bf59 docs: update module imports for fireworks documentation (#19377)
**Description:** Update module imports for Fireworks documentation
**Issue:** Module imports not present or in incorrect location
**Dependencies:** None
2024-03-22 17:05:27 -07:00
aditya thomas
0cc0467267 docs: update import paths and move to lcel for llama.cpp examples (#19391)
**Description:** Update import paths and move to lcel for llama.cpp
examples
**Issue:** Update import paths to reflect package refactoring and move
chains to LCEL in examples
**Dependencies:** None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-23 00:04:12 +00:00
fengjial
3b52ee05d1 community[patch]: fix bugs in baiduvectordb as vectorstore (#19380)
fix small bugs in vectorstore/baiduvectordb
2024-03-22 17:03:59 -07:00
Cailin Wang
5402aef32e docs: Add partition parameter to DashVector (#19385)
**Description**: Add `partition` parameter to DashVector
dashvector.ipynb
**Related PR**: https://github.com/langchain-ai/langchain/pull/19023
**Twitter handle**: @CailinWang_

---------

Co-authored-by: root <root@Bluedot-AI>
2024-03-22 17:00:29 -07:00
aditya thomas
515aab3312 community[patch]: invoke callback prior to yielding token (openai) (#19389)
**Description:** Invoke callback prior to yielding token for BaseOpenAI
& OpenAIChat
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
2024-03-22 16:45:55 -07:00
aditya thomas
49e932cd24 community[patch]: invoke callback prior to yielding token (fireworks) (#19388)
**Description:** Invoke callback prior to yielding token for Fireworks
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
2024-03-22 16:44:06 -07:00
aditya thomas
16ef88a87d docs: moving FireworksEmbeddings documentation to docs folder (#19398)
**Description:** Moving FireworksEmbeddings documentation to the
location docs/integration/text_embedding/ from langchain_fireworks/docs/
**Issue:** FireworksEmbeddings documentation was not in the correct
location
**Dependencies:** None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-22 23:24:22 +00:00
Leonid Ganeline
06190063e7 infra: makefile api_docs_clean fix (#19405)
Fixed a Makefile command that cleans up the api_docs
2024-03-22 15:45:55 -07:00
Christophe Bornet
1b813fe6fe langchain[patch]: Add async methods to VectorStoreRetrieverMemory (#19408) 2024-03-22 15:44:24 -07:00
Tarun Jain
ef6d3d66d6 community[patch]: docarray requires hnsw installation (#19416)
I have a small dataset, and I tried to use docarray:
``DocArrayHnswSearch ``. But when I execute, it returns:

```bash
    raise ImportError(
ImportError: Could not import docarray python package. Please install it with `pip install "langchain[docarray]"`.
```

Instead of docarray it needs to be 

```bash
docarray[hnswlib]
```

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-22 22:39:07 +00:00
German Swan
d4dc98a9f9 community[patch]: RecursiveUrlLoader: add base_url option (#19421)
RecursiveUrlLoader does not currently provide an option to set
`base_url` other than the `url`, though it uses a function with such an
option.
For example, this causes it unable to parse the
`https://python.langchain.com/docs`, as it returns the 404 page, and
`https://python.langchain.com/docs/get_started/introduction` has no
child routes to parse.
`base_url` allows setting the `https://python.langchain.com/docs` to
filter by, while the starting URL is anything inside, that contains
relevant links to continue crawling.
I understand that for this case, the docusaurus loader could be used,
but it's a common issue with many websites.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-22 15:34:31 -07:00
Erick Friis
e71daa7a03 openai[patch]: add test coverage to output (#19462) 2024-03-22 15:33:10 -07:00
igeni
4babefcb2f cli[patch]: Modified regular expression (#19449)
- **Description:** Modified regular expression to add support for
unicode chars and simplify pattern

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-22 15:24:08 -07:00
Ray Bell
7d36ee38b7 docs: point to titantic dataset on web (#19455)
Updated `pd.read_csv("titantic.csv")` to
`pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")`
i.e. it will read it
https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv
and allow anyone to run the code.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-22 22:22:41 +00:00
Ray Bell
f959fad56e docs: use invoke instead of run (#19457)
Updated the deprecated run with invoke

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-22 15:08:26 -07:00
Bagatur
d93d49bc43 openai[patch]: tool use integration test (#19460) 2024-03-22 14:49:54 -07:00
Erick Friis
a99e644913 openai[patch]: integration test structured output (#19459) 2024-03-22 21:43:24 +00:00
Erick Friis
ac57123f40 openai[patch]: release 0.1.1 (#19458) 2024-03-22 21:36:21 +00:00
Luca Dorigo
47cfbe7522 openai[patch]: [URGENT REGRESSION FIX] Don't fail if tool message already doesn't contain name (#19435)
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-22 14:33:50 -07:00
aditya thomas
bc028294d0 docs: delete mistralai embeddings doc from incorrect location (#19432)
**Description:** Delete MistralAIEmbeddings usage document from folder
partners/mistralai/docs
**Issue:** The document is present in the folder docs/docs
**Dependencies:** None
2024-03-22 14:02:59 -07:00
Erick Friis
11e37943ed mistralai[patch]: fix core version (#19454) 2024-03-22 20:48:13 +00:00
Erick Friis
3b093160c4 mistralai[patch]: release 0.1.0rc1 (#19453) 2024-03-22 20:34:36 +00:00
aditya thomas
4856a87261 community[patch]: invoke callback prior to yielding token (llama.cpp) (#19392)
**Description:** Invoke callback prior to yielding token for llama.cpp
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
2024-03-22 16:17:56 -04:00
ccurme
c4599444ee mistralai: update tool calling (#19451)
```python
from langchain.agents import tool
from langchain_mistralai import ChatMistralAI


llm = ChatMistralAI(model="mistral-large-latest", temperature=0)

@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)


tools = [get_word_length]
llm_with_tools = llm.bind_tools(tools)

llm_with_tools.invoke("how long is the word chrysanthemum")
```
currently raises
```
AttributeError: 'dict' object has no attribute 'model_dump'
```

Same with `.with_structured_output`
```python
from langchain_mistralai import ChatMistralAI
from langchain_core.pydantic_v1 import BaseModel

class AnswerWithJustification(BaseModel):
    """An answer to the user question along with justification for the answer."""
    answer: str
    justification: str

llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
```

This appears to fix.
2024-03-22 16:03:48 -04:00
Erick Friis
cceaca3e4f cookbook[patch]: add strip of quotes (#19452) 2024-03-22 19:10:39 +00:00
ccurme
8a2528c34a [langchain] fix OpenAIAssistantRunnable.create_assistant (#19081)
- **Description:** OpenAI assistants support some pre-built tools (e.g.,
`"retrieval"` and `"code_interpreter"`) and expect these as `{"type":
"code_interpreter"}`. This may have been upset by
https://github.com/langchain-ai/langchain/pull/18935
- **Issue:** https://github.com/langchain-ai/langchain/issues/19057
2024-03-22 13:23:19 -04:00
Harrison Chase
b40c80007f core[minor]: Add utility code to create tool examples (#18602)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-03-22 13:17:40 -04:00
Erick Friis
53ac1ebbbc mistralai[minor]: 0.1.0rc0, remove mistral sdk (#19420) 2024-03-22 01:24:58 +00:00
William FH
e980c14d6a core[patch]: allow "placeholder" type in from_messages tuples (#19152)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-21 22:09:24 +00:00
billytrend-cohere
f6bcd42421 community[patch]: Replace positional argument with text=text for cohere>=5 compatibility (#19407)
- **Description:** Replace positional argument with text=text for
cohere>=5 compatibility
2024-03-21 10:42:51 -07:00
enfeng
b20c2640da anthropic[patch]: update base_url of anthropic (#18634)
A small change ~

- [ ] **update base_url**: "package: langchain_anthropic"

---------

Co-authored-by: yangenfeng <yangenfeng@xiaoniangao.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-03-20 21:04:55 -07:00
Erick Friis
a9cda536ad openai[patch]: fix core min version (#19366) 2024-03-20 15:38:29 -07:00
Erick Friis
0b20c098df openai[patch]: fix name param (#19365) 2024-03-20 22:22:09 +00:00
Erick Friis
f6c8700326 openai[patch]: release 0.1.0, message id and name support (#19363) 2024-03-20 15:11:39 -07:00
Bagatur
3fa711dce0 experimental[patch]: Release 0.0.55 (#19353) 2024-03-20 13:06:39 -07:00
Erick Friis
2bcd760c46 robocorp[patch]: run integration tests on release (#19358) 2024-03-20 19:31:12 +00:00
Erick Friis
a031c183ae robocorp[patch]: release 0.0.4 (#19357) 2024-03-20 12:28:41 -07:00
Bagatur
d95ea3550e langchain[patch]: Release 0.1.13 (#19351) 2024-03-20 18:25:12 +00:00
Bagatur
b58b38769d community[patch]: Release 0.0.29 (#19350) 2024-03-20 18:09:48 +00:00
Bagatur
5d220975fc core[patch]: Release 0.1.33 (#19348) 2024-03-20 17:28:56 +00:00
Eugene Yurtsev
aa9ccca775 langchain[patch]: Add tests for indexing (#19342)
This PR adds tests for the indexing API
2024-03-20 13:00:22 -04:00
William FH
68298cdc82 [Feat] Accept non-dict if only 1 prompt input variable (#19156)
For prompt templates with only 1 variable (common in e.g.,
MessageGraph), it's convenient to wrap the incoming object in the
variable before formatting.


The downside of this, of course, would be that some number of
invocations will successfully format when the user may have intended to
format it properly before
2024-03-20 09:59:32 -07:00
mackong
d9396bdec1 langchain[patch]: add stop for various non-openai agents (#19333)
* Description: add stop for various non-openai agents.
* Issue: N/A
* Dependencies: N/A

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-20 11:34:10 -04:00
Yudhajit Sinha
7d216ad1e1 community[patch]: Invoke callback prior to yielding token (titan_takeoff_pro) (#18624)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/titan_takeoff_pro.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:58:18 -07:00
Yudhajit Sinha
455a74486b community[patch]: Invoke callback prior to yielding token (sparkllm) (#18625)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/sparkllm.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:57:53 -07:00
Yudhajit Sinha
5ac1860484 community[patch]: Invoke callback prior to yielding token (replicate) (#18626)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/replicate.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:57:27 -07:00
Yudhajit Sinha
9525e392de community[patch]: Invoke callback prior to yielding token (pai_eas_endpoint) (#18627)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/pai_eas_endpoint.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:56:58 -07:00
Yudhajit Sinha
140f06e59a community[patch]: Invoke callback prior to yielding token (openai) (#18628)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_
method in llms/openai.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:56:30 -07:00
Yudhajit Sinha
280a914920 community[patch]: Invoke callback prior to yielding token (ollama) (#18629)
## PR title
community[patch]: Invoke callback prior to yielding token

## PR message
- Description: Invoke callback prior to yielding token in _stream_ &
_astream_ methods in llms/ollama.
- Issue: #16913 
- Dependencies: None
2024-03-20 07:56:09 -07:00
老阿張
9dfce56b31 docs: Fix typo in infino.ipynb (#18640)
Description: "conquerer should be conqueror "? 🤔
Issue: Typo
Dependencies: Nope
Twitter handle: laoazhang
2024-03-20 07:51:58 -07:00
Christophe Bornet
00614f332a community[minor]: Add InMemoryVectorStore (#19326)
This is a basic VectorStore implementation using an in-memory dict to
store the documents.
It doesn't need any extra/optional dependency as it uses numpy which is
already a dependency of langchain.
This is useful for quick testing, demos, examples.
Also it allows to write vendor-neutral tutorials, guides, etc...
2024-03-20 10:21:07 -04:00
Devesh Rahatekar
3c4529ac69 core: Updated docstring for RunnablePick (#18832)
**Description:** : Updated the docstring for RunnablePick. Added
Overview and an Example for RunnablePick class.
   **Issue:** : #18803
2024-03-20 13:54:42 +00:00
aditya thomas
e46419c851 docs: contribute / integrations code examples update (#19319)
**Description:** Update to make the code examples consistent with the
actual use
**Issue:** Code examples were different from actual use in the LangChain
code
**Dependencies:** Changes on top of
https://github.com/langchain-ai/langchain/pull/19294

Note: If these changes are acceptable, please merge them after
https://github.com/langchain-ai/langchain/pull/19294.
2024-03-20 09:27:53 -04:00
Leonid Ganeline
8609afbd10 core[patch]: Update messages namespace to fix API reference docs (#19161)
Classes and functions defined in __init__.py are not parsed into the API
Reference.
For example:
- libs/core/langchain_core/messages/__init__.py : AnyMessage,
MessageLikeRepresentation, get_buffer_string(), messages_from_dict(),
...

Opinionated: __init__.py is not a typical place to define artifacts.

Moved artifacts from __init__ into utils.py. 
Added `MessageLikeRepresentation` to __all__ since it is used outside of
`messages`, for example, in
`libs/core/langchain_core/language_models/base.py`
Added `_message_from_dict` to __all__ since it is used outside of
`messages`(???) I would add `message_from_dict` (without underscore) as
an alias. Please, advise.
2024-03-20 09:25:09 -04:00
Christophe Bornet
4c2e887276 core: Simplify astream logic in BaseChatModel and BaseLLM (#19332)
Covered by tests in
`libs/core/tests/unit_tests/language_models/chat_models/test_base.py`,
`libs/core/tests/unit_tests/language_models/llms/test_base.py` and
`libs/core/tests/unit_tests/runnables/test_runnable_events.py`
2024-03-20 09:05:51 -04:00
Brace Sproul
40f846e65d docs[minor]: Add chat model selection tabs component (#19296)
<img width="1728" alt="image"
src="https://github.com/langchain-ai/langchain/assets/46789226/45e70a92-c2ee-48c8-9964-100eed22687b">
2024-03-19 18:12:46 -07:00
Erick Friis
69e9610f62 openai[patch]: pass message name (#17537) 2024-03-19 19:57:27 +00:00
Guangdong Liu
e5d7e455dc splitters: Add ensure_ascii parameter (#18485)
- **Description:** Add ensure_ascii parameter
2024-03-19 12:51:16 -07:00
Nithish Raghunandanan
7ad0a3f2a7 community: add Couchbase Vector Store (#18994)
- **Description:** Added support for Couchbase Vector Search to
LangChain.
- **Dependencies:** couchbase>=4.1.12
- **Twitter handle:** @nithishr

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
2024-03-19 12:39:51 -07:00
Chris Papademetrious
305d74c67a core: implement a batch_size parameter for CacheBackedEmbeddings (#18070)
**Description:**

Currently, `CacheBackedEmbeddings` computes vectors for *all* uncached
documents before updating the store. This pull request updates the
embedding computation loop to compute embeddings in batches, updating
the store after each batch.

I noticed this when I tried `CacheBackedEmbeddings` on our 30k document
set and the cache directory hadn't appeared on disk after 30 minutes.

The motivation is to minimize compute/data loss when problems occur:

* If there is a transient embedding failure (e.g. a network outage at
the embedding endpoint triggers an exception), at least the completed
vectors are written to the store instead of being discarded.
* If there is an issue with the store (e.g. no write permissions), the
condition is detected early without computing (and discarding!) all the
vectors.

**Issue:**
Implements enhancement #18026.

**Testing:**
I was unable to run unit tests; details in [this
post](https://github.com/langchain-ai/langchain/discussions/15019#discussioncomment-8576684).

---------

Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-19 18:55:43 +00:00
William FH
89af30807b Permit function eval on llm data type (#19287) 2024-03-19 11:53:50 -07:00
Jib
f8078e41e5 mongodb[patch]: Added scoring threshold to caching (#19286)
## Description
Semantic Cache can retrieve noisy information if the score threshold for
the value is too low. Adding the ability to set a `score_threshold` on
cache construction can allow for less noisy scores to appear.


- [x] **Add tests and docs**
  1. Added tests that confirm the `score_threshold` query is valid.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-19 11:30:02 -07:00
Christophe Bornet
30e4a35d7a community: Use langchain-astradb for AstraDB caches (#18419)
- [x] Needs https://github.com/langchain-ai/langchain-datastax/pull/4
- [x] Needs a new release of langchain-astradb
2024-03-19 14:04:36 -04:00
Brace Sproul
17c62e0f3a ci[minor]: Bump LC scripts package, add retry option (#19285)
The `retryFailed` option will retry all failed links, once at a time
with the goal of not triggering bot protection

`microsoft.com` is now hard coded into the whitelist
2024-03-19 10:42:59 -07:00
Erick Friis
7eb376d5fc docs: integration deprecation docs (#19283) 2024-03-19 17:11:15 +00:00
Guangdong Liu
2c835baae4 code[patch]: Add in code documentation to core Runnable with_retry method (docs only) (#19192)
- **Description:** Add in code documentation to core Runnable with_retry
method (docs only)
- **Issue:** #18804 
@baskaryan @eyurtsev PTAL

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-03-19 12:52:29 -04:00
Eugene Yurtsev
4b3dd34544 core[patch]: Pass sync run manager for sync stream fallback in astream (#19280)
This PR patches the fallback in chat models and language models to pass
in the appropriate version of the run manager (sync vs. async)
2024-03-19 16:32:33 +00:00
Leonid Ganeline
d314acb2d5 core[patch]: Move globals to a module instead of a package (non breaking change) (#19159)
Classes and functions defined in __init__.py are not parsed into the API
Reference.
For example: libs/core/langchain_core/globals/__init__.py :
`set_verbose` `get_llm_cache`, `set_llm_cache`, ...
And the whole `langchain_core.globals` namespace is not visible in the
API Reference. The refactoring is just file renaming.
2024-03-19 12:29:12 -04:00
Al-Ekram Elahee Hridoy
50f93d86ec core[minor]: Enhance cache flexibility in BaseChatModel (#17386)
- **Description:** Enhanced the `BaseChatModel` to support an
`Optional[Union[bool, BaseCache]]` type for the `cache` attribute,
allowing for both boolean flags and custom cache implementations.
Implemented logic within chat model methods to utilize the provided
custom cache implementation effectively. This change aims to provide
more flexibility in caching strategies for chat models.
  - **Issue:** Implements enhancement request #17242.
- **Dependencies:** No additional dependencies required for this change.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-19 11:26:58 -04:00
HatsuneMK00
4761c09e94 docs: update slack toolkit ipynb in integration (#19219)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- **PR message**:
- **Description:** Update the slack toolkit doc to use an agent that
support multiple inputs. Using ReAct agent will cause a ValidationError
when invoking the slack tools. This is because the agent return a string
like `'{"channel": "C05LDF54S21", "message": "Hello, world!"}'` but the
ReAct agent does not support multiple inputs.
- **Issue:** This is related to this
[Discussion#18083](https://github.com/langchain-ai/langchain/discussions/18083)
    - **Dependencies:** No dependencies required

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-03-19 10:39:09 -04:00
Zihong
ff31cc1648 experimental: update the notebook link of semantic chunk. (#19253)
update the notebook link of semantic chunk.
2024-03-19 07:24:51 -04:00
Frederico Wu
f36418a5b0 langchain: creating assistants with file_ids (#19199)
Changing OpenAIAssistantRunnable.create_assistant to send the `file_ids`
parameter to openai.beta.assistants.create

Co-authored-by: Frederico Wu <fred.diaswu@coxautoinc.com>
2024-03-18 21:34:03 -07:00
Vittorio Rigamonti
9b2f9ee952 community: VectorStore Infinispan, adding autoconfiguration (#18967)
**Description**:
this PR enable VectorStore autoconfiguration for Infinispan: if
metadatas are only of basic types, protobuf
config will be automatically generated for the user.
2024-03-18 21:33:45 -07:00
Max Jakob
6f544a6a25 elasticsearch: check for deployed models (#18973)
When creating a new index, if we use a retrieval strategy that expects a
model to be deployed in Elasticsearch, check if a model with this name
is indeed deployed before creating an index. This lowers the probability
to get into a state in which an index was created with a faulty model
ID, which cannot be overwritten any more (the index has to manually be
deleted).
2024-03-18 21:32:00 -07:00
gonvee
b82644078e community: Add keep_alive parameter to control how long the model w… (#19005)
Add `keep_alive` parameter to control how long the model will stay
loaded into memory with Ollama。

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-19 04:29:01 +00:00
Anthony Shaw
bb0dd8f82f docs: Embellish article on splitting by tokens with more examples and missing details (#18997)
**Description**

This PR adds some missing details from the "Split by tokens" page in the
documentation. Specifically:

- The `.from_tiktoken_encoder()` class methods for both the
`CharacterTextSplitter` and `RecursiveCharacterTextSplitter` default to
the old `gpt-2` encoding. I've added a comment to suggest specifying
`model_name` or `encoding`
- The docs didn't mention that the `from_tiktoken_encoder()` class
method passes additional kwargs down to the constructor of the splitter.
I only discovered this by reading the source code
- Added an example of using the `.from_tiktoken_encoder()` class method
with `RecursiveCharacterTextSplitter` which is the recommended approach
for most scenarios above `CharacterTextSplitter`
- Added a warning that `TokenTextSplitter` can split characters which
have multiple tokens (e.g. 猫 has 3 cl100k_base tokens) between multiple
chunks which creates malformed Unicode strings and should not be used in
these situations.

Side note: I think the default argument of `gpt2` for
`.from_tiktoken_encoder()` should be updated?

**Twitter handle** anthonypjshaw

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-18 21:28:17 -07:00
Roshan Santhosh
7afecec280 core: update _rm_titles to account for title argument name bug (#19036)
Issue : For functions which have an argument with the name 'title', the
convert_pydantic_to_openai_function generates an incorrect output and
omits the argument all together. This is because the _rm_titles function
removes all instances of the the key 'title' from the output.



Description : Updates the _rm_titles function to check the presence of
the 'type' key as well before removing the 'title' key. As the title key
that we wish to omit always has a type key along with it.

Potential gap if there is a function defined which has both title and
key as argument names, in which case this would fail. Maybe we could set
a filter on the function argument names and reject those with keyword
argument names.


No dependencies. Passed all tests. 


- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-18 21:25:06 -07:00
Harrison Chase
efcdf54edd Josha91 fix docstring (#19249)
Co-authored-by: Josha van Houdt <josha.van.houdt@sap.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-18 21:19:56 -07:00
Simon Stone
58c7687174 langchain: preserve document metadata in FlashrankRerank (#19148)
**Description:** Preserves document metadata in `FlashrankRerank`
    - **Issue:** #19142
    - **Dependencies:** None
    - **Twitter handle:** n/a

---------

Co-authored-by: Simon Stone <simon.stone@dartmouth.edu>
2024-03-19 04:15:18 +00:00
Aaron Jimenez
bc648f6cfc core: Updated docstring for Context class (#19079)
- **Description:** Improves the docstring for `class Context` by
providing an overview and an example.
- **Issue:** #18803
2024-03-18 21:15:14 -07:00
Taqi Jaffri
044bc22acc Community: Add mistral oss model support to azureml endpoints, plus configurable timeout (#19123)
- **Description:** There was no formatter for mistral models for Azure
ML endpoints. Adding that, plus a configurable timeout (it was hard
coded before)
- **Dependencies:** none
- **Twitter handle:** @tjaffri @docugami
2024-03-18 21:10:42 -07:00
Kangmoon Seo
07de4abe70 core: Fix Exception handling in XMLOutputParser (#19126)
- **Description:** 
  - Exception handling in `XMLOutputParser`
1. Add Exception handling at `root = ET.fromstring(text)` // raises
`ET.ParseError`
    2. Fix Exception class (commonly uses in `BaseOutputParser` class)
  - AS-IS: raise `ValueError`, `ET.ParserError` without handling
    ```python
    # langchain_core/output_parsers/xml.py

        text = text.strip()
        if (text.startswith("<") or text.startswith("\n<")) and (
            text.endswith(">") or text.endswith(">\n")
        ):
            root = ET.fromstring(text)
            return self._root_to_dict(root)
        else:
            raise ValueError(f"Could not parse output: {text}")
    ```
  - TO-BE: raise `OutputParserException`
    ```python
    # langchain_core/output_parsers/xml.py

        text = text.strip()
        if (text.startswith("<") or text.startswith("\n<")) and (
            text.endswith(">") or text.endswith(">\n")
        ):
            try:
                root = ET.fromstring(text)
                return self._root_to_dict(root)

            except ET.ParseError:
raise OutputParserException(f"Could not parse output: {text}")

        else:
raise OutputParserException(f"Could not parse output: {text}")

    ``` 
- **Issue:** #19107  
- **Dependencies:** None
2024-03-18 21:08:32 -07:00
Hamza Muhammad Farooqi
24a0a4472a Add docstrings for Clickhouse class methods (#19195)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-19 04:03:12 +00:00
Simon Stone
dc4ce82ddd docs: fix import path for FlashrankRerank example notebook (#19146)
**Description:** Fixes the import paths for the `FlashrankRerank`
example notebook.
 **Issue:** #19139 
 **Dependencies:** None
 **Twitter handle:** n/a

---------

Co-authored-by: Simon Stone <simon.stone@dartmouth.edu>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-18 21:03:00 -07:00
Saurav Kumar
bde199d128 Updating format of pip install (#19198)
Thank you for contributing to LangChain!

- [x] **PR title**: "Updating format of pip install in two files of
docs/cookbook"
- pip install is not reflecting properly in some of the files in
cookbook
- Example:
[docs/expression_language/cookbook/sql_db](https://python.langchain.com/docs/expression_language/cookbook/sql_db)


- [x] **PR message**: Updating format of pip install in two files of
docs/cookbook
    - **Description:** a description of the change
    - **Issue:** #19197 

- Note - let's do squash merge for the PR

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-19 04:01:24 +00:00
Rohit Gupta
785f8ab174 [langchain_community] milvus vectorstores upsert: add **kwargs to make it use for other argument also (#19193)
add **kwargs in add_documents for upsert, to make it use for other
argument also.
Lets use this, it was unused as of now.

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

Co-authored-by: Rohit Gupta <rohit.gupta2@walmart.com>
2024-03-18 21:01:12 -07:00
Cycle
77868b1974 experimental: add buffer_size hyperparameter to SemanticChunker as in source video (#19208)
add buffer_size hyperparameter which used in combine_sentences function
2024-03-19 03:54:20 +00:00
HowardChan
ae3c7f702c docs:Make url as a markdown link (#19212)
**Description**: same as the title

Co-authored-by: ChenZhengHao <chenzhenghao@mail.teletraan.io>
2024-03-19 03:47:52 +00:00
Shotaro Sano
ca9c8c58ea text-splitters, infra: fix libs/langchain/dev.Dockerfile so that the text-splitter directory is copied before poetry installation (#19214)
## Description
This PR modifies the settings in `libs/langchain/dev.Dockerfile` to
ensure that the `text-splitters` directory is copied before the poetry
installation process begins.

Without this modification, the `docker build` command fails for
`dev.Dockerfile`, preventing the setup of some development environments,
including `.devcontainer`.

## Bug Details

### Repro
Run the following command:

```bash
docker build -f libs/langchain/dev.Dockerfile .
```

### Current Behavior
The docker build command fails, raising the following error:

```
...
 => [langchain-dev-dependencies 4/5] COPY libs/community/ ../community/                                                                                0.4s
 => ERROR [langchain-dev-dependencies 5/5] RUN poetry install --no-interaction --no-ansi --with dev,test,docs                                          1.1s
------                                                                                                                                                      
 > [langchain-dev-dependencies 5/5] RUN poetry install --no-interaction --no-ansi --with dev,test,docs:
#13 0.970 
#13 0.970 Directory ../text-splitters does not exist
------
executor failed running [/bin/sh -c poetry install --no-interaction --no-ansi --with dev,test,docs]: exit code: 1
```

### Expected Behavior
The `docker build` command successfully completes without the poetry
error.

### Analysis
The error occurs because the `text-splitters` directory is not copied
into the build environment, unlike the other packages under the `libs`
directory. I suspect that the `COPY` setting was overlooked since
`text-splitters` was separated in a recent PR.

## Fix
Add the following lines to the `libs/langchain/dev.Dockerfile`:

```dockerfile
# Copy the text-splitters library for installation
COPY libs/text-splitters/ ../text-splitters/
```
2024-03-18 20:45:35 -07:00
Guangdong Liu
c3310c5e7f community: Fix Milvus got multiple values for keyword argument 'timeout' (#19232)
- **Description:** Fix Milvus got multiple values for keyword argument
'timeout'
- **Issue:**  fix #18580
- @baskaryan @eyurtsev PTAL
2024-03-18 20:44:25 -07:00
Erick Friis
95904fe443 langchain[patch]: update base imports to core (#19248)
still deprecated, but was misleading before
2024-03-19 03:17:07 +00:00
Asaf Joseph Gardin
21c45475c5 ai21[patch]: AI21 Labs bump SDK version (#19114)
Description: Added support AI21 SDK version 2.1.2
Twitter handle: https://github.com/AI21Labs

---------

Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-18 19:47:08 -07:00
daniel ung
edf9d1c905 templates: Added template for JaguarDB (#16757)
- **Description:**: added langchain template for JaguarDB

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-19 02:36:24 +00:00
gustavo-yt
7c26ef88a1 templates: Add rag lantern template (#16523)
Replace this entire comment with:
  - **Description:** Added a template for lantern rag usage.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-19 02:34:46 +00:00
Jib
516cc44b3f langchain-mongodb: [test-fix] add explicit index_name setting on test vector creation (#19245)
- **Description:** Tests fail to do value lookup because it does not
specify the index name
  - **Issue:** the issue # Failing integration test
 

- [x] **Add tests and docs**: Tests now pass


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-03-18 15:52:28 -07:00
Estephania Calvo Carvajal
94e58dd827 docs:Fix links to LangSmith docs on Evaluation page (#19210) (#19216)
- **Description:** Same as the title
- **Issue:** #19210
2024-03-18 22:27:43 +00:00
William FH
780337488e [Enhancement] Add support for directly providing a run_id (#18990)
The root run id (~trace id's) is useful for assigning feedback, but the
current recommended approach is to use callbacks to retrieve it, which
has some drawbacks:
1. Doesn't work for streaming until after the first event
2. Doesn't let you call other endpoints with the same trace ID in
parallel (since you have to wait until the call is completed/started to
use

This PR lets you provide = "run_id" in the runnable config.

Couple considerations:

1. For batch calls, we split the trace up into separate trees (to permit
better rendering). We keep the provided run ID for the first one and
generate a unique one for other elements of the batch.
2. For nested calls, the provided ID is ONLY used on the top root/trace.



### Example Usage


```
chain.invoke("foo", {"run_id": uuid.uuid4()})
```
2024-03-18 15:03:04 -07:00
Jacob Lee
bd329e9aad core[patch]: Add LLM output to message response_metadata (#19158)
This will more easily expose token usage information.

CC @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-18 13:58:32 -07:00
Erick Friis
6fa1438334 mongodb[patch]: release 0.1.2 (#19243) 2024-03-18 13:35:45 -07:00
Leonid Ganeline
7de1d9acfd community: llms imports fixes (#18943)
Classes are missed in  __all__  and in different places of __init__.py
- BaichuanLLM 
- ChatDatabricks
- ChatMlflow
- Llamafile
- Mlflow
- Together
Added classes to __all__. I also sorted __all__ list.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-18 20:24:40 +00:00
Anush
aee5138930 templates: update qdrant self query (#19218)
## Description

This PR
- Updates the Qdrant self-query template to reflect the recent updates.
- Enables reading config values from `env` files as the README [mentions
it](https://github.com/Anush008/langchain/tree/self-query-qdrant/templates/self-query-qdrant#environment-setup).

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-18 19:59:08 +00:00
Kenzie Mihardja
21f75991d4 deprecate community docugami loader (#19230)
Thank you for contributing to LangChain!

- [x] **PR title**: "community: deprecate DocugamiLoader"

- [x] **PR message**: Deprecate the langchain_community and use the
docugami_langchain DocugamiLoader

---------

Co-authored-by: Kenzie Mihardja <kenzie28@cs.washington.edu>
2024-03-18 12:56:47 -07:00
Jib
ec026004cb mongodb[patch]: Remove in-memory cache from cache abstractions (#18987)
## Description
* In memory cache easily gets out of sync with the server cache, so we
will remove it entirely to reduce the issues around invalidated caches.

## Dependencies
None

- [x]  If you're adding a new integration, please include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-18 19:44:34 +00:00
Jib
866d6408af mongodb[patch]: Remove embedding retrieval from mongodb payload (#19035)
## Description
Returning the embedding is not necessary in the vector search
functionality unless specified as a debugging step. This change defaults
the behavior such that the server _only_ returns the embedding key if
explicitly requested, such as in the case of
`max_marginal_relevance_search`.


- [x] **Add tests and docs**: If you're adding a new integration, please
include
* Added `test_from_documents_no_embedding_return`


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-18 19:43:50 +00:00
Leonid Kuligin
366ba77459 core[minor]: moved fake llms and embeddings to core (#19226)
- [ ] **PR title**: "core: moved fake llms and embeddings to core"


- [ ] **PR message**:
 - **Description:** moved fake llms and embeddings to core"
2024-03-18 10:01:26 -07:00
Pengfei Jiang
514fe80778 community[patch]: add stop parameter support to volcengine maas (#19052)
- **Description:** add stop parameter to volcengine maas model
- **Dependencies:** no

---------

Co-authored-by: 江鹏飞 <jiangpengfei.jiangpf@bytedance.com>
2024-03-17 01:58:50 +00:00
htaoruan
bcc771e37c docs: ChatTongyi example error (#19013) 2024-03-17 01:55:56 +00:00
Anubhav Madhav
9235dade90 docs: provided hyperlinks to text and fixed grammar (#19092)
1) Provided links to text in the prompt (Refer Page Link 1, Page Link 2
and Page Link 3)
2) Fixed Grammar in Considerations of Model I/O Concepts documentation
page - Update concepts.mdx (Page Link 4)

*Issues are on the following pages:*
Page Link 1:
https://python.langchain.com/docs/modules/model_io/concepts#prompttemplate
Page Link 2:
https://python.langchain.com/docs/modules/model_io/concepts#messageprompttemplate
Page Link 3:
https://python.langchain.com/docs/modules/model_io/concepts#chatprompttemplate
Page Link 4:
https://python.langchain.com/docs/modules/model_io/concepts#considerations


**Fix 1**:
Description: Fixed Grammar in Considerations of Model I/O Documentation
Page
Issue: "to work well with the model are you using" # "to work well with
the model you are using"
Dependencies: None
Twitter handle: @Anubhav_Madhav (https://twitter.com/Anubhav_Madhav)

**Fix 2**:
Description: Provided links to text in the prompt (Refer Page Link 1,
Page Link 2 and Page Link 3)
Issue: links not provided # links have been provided to the text
Dependencies: None
Twitter handle: @Anubhav_Madhav (https://twitter.com/Anubhav_Madhav)
baskaryan, efriis, eyurtsev, hwchase17.


*For Fix 1*
Refer to the first word 'This" word in the image attached with this PR.
PFA
<img width="839" alt="Screenshot 2024-03-15 at 3 04 17 AM"
src="https://github.com/langchain-ai/langchain/assets/42323737/94e8db16-249f-48c3-a1d1-dee8d36067fa">


If no one reviews your PR within a few days, please @-mention one of

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-17 01:37:42 +00:00
primate88
5aa68936e0 community: Fix import path for StreamingStdOutCallbackHandler example (#19170)
- Description:
- Updated the import path for `StreamingStdOutCallbackHandler` in the
streaming response example within `huggingface_endpoint.py`. This change
corrects the import statement to reflect the actual location of
`StreamingStdOutCallbackHandler` in
`langchain_core.callbacks.streaming_stdout`.
- Issue:
  - None
- Dependencies:
  - No additional dependencies are required for this change.
- Twitter handle:
  - None

## Note:
I have tested this change locally and confirmed that the
`StreamingStdOutCallbackHandler` works as expected with the updated
import path. This PR does not require the addition of new tests since it
is a correction to documentation/examples rather than functional code.
2024-03-17 00:50:37 +00:00
Bagatur
611d5a1618 openai[patch]: fix async http client (#19164)
Fix #19116
2024-03-16 17:50:22 -07:00
Nikhil Kumar
635b3372bd community[minor]: Add support for translation in HuggingFacePipeline (#19190)
- [x] **Support for translation**: "community: Add support for
translation in `HuggingFacePipeline`"


- [x] **Add support for translation in `HuggingFacePipeline`**:
- **Description:** Add support for translation in `HuggingFacePipeline`,
which earlier used to support only text summarization and generation.
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:** None
2024-03-17 00:48:13 +00:00
Nikhil Kumar
a1b26dd9b6 docs: Add docs for RouterRunnable (#19191)
- [x] **Docs for `RouterRunnable`**: core: Add docs for `RouterRunnable`

- [x] **Add docs for `RouterRunnable`**:
- **Description:** Add docs for `RouterRunnable`, which was previously
missing documentation
    - **Issue:** #18803 
    - **Dependencies:** N/A
    - **Twitter handle:** None
2024-03-17 00:48:00 +00:00
k.muto
8d2c34e655 community: Fix all page numbers were the same for _BaseGoogleVertexAISearchRetriever (#19175)
- Description:
- This pull request is to fix a bug where page numbers were not set
correctly. In the current code, all chunks share the same metadata
object doc_metadata, so the page number is set with the same value for
all documents. To fix this, I changed to using separate metadata objects
for each chunk.
- Issue:
  - None
- Dependencies:
  - No additional dependencies are required for this change.
- Twitter handle:
  - @eycjur

- Test
- Even if it's not a bug, there are cases where everything ends up with
the same number of pages, so it's very difficult for me to write
integration tests.
2024-03-16 22:28:56 +00:00
Matt Frediani
160a7077b0 Update README.md (#19172)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-16 15:23:25 -07:00
inpyeong
7c092f479f docs: Update why.ipynb (#19173)
I think that cell type for pip command may be 'code'.
Please check, thank you :)

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-16 22:21:51 +00:00
Vitalii Korsakov
d96e0b2de7 docs: Remove duplicated line in Get Started section (#19182)
Line `from langchain_openai import ChatOpenAI` is put twice in Get
Started / Serving with LangServe section.
Imports on lines 559 and 566 are identical

Co-authored-by: Vitalii <vitalii@localhost>
2024-03-16 22:21:25 +00:00
Cailin Wang
7cd87d2f6a community: Add partition parameter to DashVector (#19023)
**Description**: DashVector Add partition parameter
**Twitter handle**: @CailinWang_

---------

Co-authored-by: root <root@Bluedot-AI>
2024-03-16 15:20:30 -07:00
Rodrigo Nogueira
e64cf1aba4 community: Add model argument for maritalk models and better error handling (#19187) 2024-03-16 15:18:56 -07:00
samanhappy
ff94f86ce1 docs: fix link to interface TextSplitter (#19177) 2024-03-16 15:16:34 -07:00
Sergey Kozlov
1a55e950aa community[patch]: support fastembed v1 and v2 (#19125)
**Description:**
#18040 forces `fastembed>2.0`, and this causes dependency conflicts with
the new `unstructured` package (different `onnxruntime`). There may be
other dependency conflicts.. The only way to use
`langchain-community>=0.0.28` is rollback to `unstructured 0.10.X`. But
new `unstructured` contains many fixes.

This PR allows to use both `fastembed` `v1` and `v2`.

How to reproduce:

`pyproject.toml`:
```toml
[tool.poetry]
name = "depstest"
version = "0.0.0"
description = "test"
authors = ["<dev@example.org>"]

[tool.poetry.dependencies]
python = ">=3.10,<3.12"
langchain-community = "^0.0.28"
fastembed = "^0.2.0"
unstructured = {extras = ["pdf"], version = "^0.12"}
```

```bash
$ poetry lock
```

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2024-03-15 18:33:51 -07:00
six17
fd4f536c77 text-splitters[patch]: fix json split of RecursiveJsonSplitter (#19119)
- **Description:** This modification addresses the issue of mutable
default parameters in functions. In the original code, the `chunks`
parameter is defaulted to a list containing an empty dictionary, which
is mutable. Since default parameters in Python are evaluated only once
at function definition time, modifications to the parameter would
persist across future calls. By changing the default to `None` and
checking/initializing within the function, a new list is created for
each call, thus avoiding potential issues.

---------

Co-authored-by: sixiang <sixiang@lixiang.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-15 16:46:49 -07:00
aditya thomas
05008c4f94 docs: update stale links in Together AI documentation (#19011)
**Description:** Update stales link in Together AI documentation
**Issue:** Some links pointed to legacy webpages on the Together AI
website
**Dependencies:** None
**Lint and test**: `make format`, `make lint` were run
2024-03-15 16:38:04 -07:00
aditya thomas
80eb510a7b docs: update docstring of Together class (#19008)
**Description:** Update docstring of Together class to show example and
update API URL
**Issue:** Improves usability
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` were run
2024-03-15 16:30:45 -07:00
高远
ef9813dae6 docs: add vikingdb docstrings(#19016)
Co-authored-by: gaoyuan <gaoyuan.20001218@bytedance.com>
2024-03-15 16:29:29 -07:00
wulixuan
0e0030f494 community[patch]: fix yuan2 chat model errors while invoke. (#19015)
1. fix yuan2 chat model errors while invoke.
2. update related tests.
3. fix some deprecationWarning.
2024-03-15 16:28:36 -07:00
Shuai Liu
c244e1a50b community[patch]: Fixed bug in merging generation_info during chunk concatenation in Tongyi and ChatTongyi (#19014)
- **Description:** 

In #16218 , during the `GenerationChunk` and `ChatGenerationChunk`
concatenation, the `generation_info` merging changed from simple keys &
values replacement to using the util method
[`merge_dicts`](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/utils/_merge.py):


![image](https://github.com/langchain-ai/langchain/assets/2098020/10f315bf-7fe0-43a7-a0ce-6a3834b99a15)

The `merge_dicts` method could not handle merging values of `int` or
some other types, and would raise a
[`TypeError`](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/utils/_merge.py#L55).

This PR fixes this issue in the **Tongyi and ChatTongyi Model** by
adopting the `generation_info` of the last chunk
and discarding the `generation_info` of the intermediate chunks,
ensuring that `stream` and `astream` function correctly.

- **Issue:**  
    - Related issues or PRs about Tongyi & ChatTongyi: #16605, #17105 
    - Other models or cases: #18441, #17376
- **Dependencies:** No new dependencies
2024-03-15 16:27:53 -07:00
wulixuan
f79d0cb9fb docs: update docs for yuan2 in LLMs and Chat models integration. (#19028)
update yuan2.0 notebook in LLMs and Chat models.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-03-15 16:03:18 -07:00
Taraka Nithin Vankala
eec023766e docs: Corrected error (#19030)
- [ ] **PR title**: "docs: correction in
"https://github.com/langchain-ai/langchain/blob/master/docs/docs/get_started/quickstart.mdx",
line 289".
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: 
    - Corrected the spelling mistake
    - #18981
2024-03-15 16:02:33 -07:00
Christophe Bornet
f2a7dda4bd community[patch]: Use langchain-astradb for AstraDB doc loader (#19071)
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:57:25 +00:00
Leonid Ganeline
a49ac55964 docs: providers update 8 (#19053)
Added missed providers. Added missed integrations. Fixed format.
2024-03-15 15:49:14 -07:00
Holt Skinner
cee03630d9 community[patch]: Add Blended Search Support to GoogleVertexAISearchRetriever (#19082)
https://cloud.google.com/generative-ai-app-builder/docs/create-data-store-es#multi-data-stores

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:39:31 +00:00
Eugene Yurtsev
0ddfe7fc9d langchain[patch]: make hub work with older langchainhub versions (#19076)
Make it work with older clients
2024-03-15 15:37:52 -07:00
William W Wang
0a784074d1 docs: Update llm_caching.ipynb (#19085) 2024-03-15 22:35:48 +00:00
William W Wang
6327be9048 docsUpdate azure_cosmos_db.ipynb (#19087)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:33:26 +00:00
Anubhav Madhav
553a520ab6 docs: Fixed Grammar in Considerations of Model I/O Concepts (#19091)
Fixed Grammar in Considerations of Model I/O Concepts documentation page
- Update concepts.mdx

Page Link:
https://python.langchain.com/docs/modules/model_io/concepts#considerations

- **Description:** Fixed Grammar in Considerations of Model I/O
Documentation Page
- **Issue:** "to work well with the model are you using" # "to work well
with the model you are using"
- **Dependencies:** None
- **Twitter handle:** @Anubhav_Madhav
(https://twitter.com/Anubhav_Madhav)


If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:31:39 +00:00
Shotaro Sano
d647ff1a9a docs: Fix execution results of docs/docs/modules/data_connection/indexing.ipynb (#19112)
## Description
This PR addresses a documentation issue in the
[Indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
page. Specifically, it corrects the execution results of the Jupyter
notebook under the
[Source](https://python.langchain.com/docs/modules/data_connection/indexing#source)
section, which were broken as detailed below.

## Problem
The execution results following the statement, `This should delete the
old versions of documents associated with doggy.txt source and replace
them with the new versions.`, appear to be incorrect, as described
below.

### Current Behavior
- For some reason, the `index` function fails to add the new content of
`doggy.txt`. Although it deletes the document objects associated with
the `doggy.txt` source, it does not add the objects in
`changed_doggy_docs`. Consequently, the execution result displays
`num_added: 0`.
- This unexpected behavior also impacts the results of
`vectorstore.similarity_search("dog", k=30)`, showing only the contents
of `kitty.txt`. It appears as though the contents of `doggy.txt` have
been completely removed from the index:

```
 Document(page_content='tty kitty', metadata={'source': 'kitty.txt'}),
 Document(page_content='tty kitty ki', metadata={'source': 'kitty.txt'}),
 Document(page_content='kitty kit', metadata={'source': 'kitty.txt'})]
```

### Expected Behavior
- The `index` function should successfully add the objects in
`changed_doggy_docs` after removing the old content of `doggy.txt`. The
anticipated execution result is `num_added: 2`.
- Subsequently, the modified content of `doggy.txt` should appear in the
results of `vectorstore.similarity_search("dog", k=30)` as follows:

```
[Document(page_content='woof woof', metadata={'source': 'doggy.txt'}),
 Document(page_content='woof woof woof', metadata={'source': 'doggy.txt'}),
 Document(page_content='tty kitty', metadata={'source': 'kitty.txt'}),
 Document(page_content='tty kitty ki', metadata={'source': 'kitty.txt'}),
 Document(page_content='kitty kit', metadata={'source': 'kitty.txt'})]
```

## Fix
I reran `docs/docs/modules/data_connection/indexing.ipynb` and have
included the diff in this PR.
2024-03-15 22:27:15 +00:00
case-k
ebc4a64f9e docs: fix databricks document url (#19096)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:25:11 +00:00
Guangdong Liu
4468e5bdbe docs: Add in code documentation to core Runnable with_fallbacks method (docs only) (#19104)
- Description: [a description of the change] Add in code documentation
to core Runnable with_fallbacks method (docs only)
- Issue: the issue #18804 
@eyurtsev PTAL
2024-03-15 15:21:10 -07:00
Guangdong Liu
cced3eb9bc community[patch]: Fix sparkllm embeddings api bug. (#19122)
- **Description:** Fix sparkllm embeddings api bug.
@baskaryan PTAL
2024-03-15 15:08:49 -07:00
samanhappy
b9c62fb905 docs: fix API link for BaseLoader (#19128)
The link to the BaseLoader API requires an update as it has been moved
into the `langchain_core` package.
2024-03-15 14:46:05 -07:00
kaijietti
c20aeef79a community[patch]: implement qdrant _aembed_query and use it in other async funcs (#19155)
`amax_marginal_relevance_search ` and `asimilarity_search_with_score `
should use an async version of `_embed_query `.
2024-03-15 21:20:12 +00:00
Kostas Botsas
527676a753 docs: Fix source column xata.ipynb (#19137)
Docs fix: replace column name search with source.

The Xata integration expects metadata column named "source".

The docs suggest the name "search", which if used, yields the following
error:

```
File "/usr/local/lib/python3.11/site-packages/langchain_community/vectorstores/xata.py", line 95, in _add_vectors
    raise Exception(f"Error adding vectors to Xata: {r.status_code} {r}")
Exception: Error adding vectors to Xata: 400 {'errors': [{'status': 400, 'message': 'invalid record: column [source]: column not found'}]}
```
2024-03-15 14:06:18 -07:00
Barun Amalkumar Halder
34d6f0557d community[patch] : publishes duration as milliseconds to Fiddler (#19166)
**Description:** Many LLM steps complete in sub-second duration, which
can lead to non-collection of duration field for Fiddler. This PR
updates duration from seconds to milliseconds.
**Issue:** [INTERNAL] FDL-17568
**Dependencies:** NA
**Twitter handle:** behalder

Co-authored-by: Barun Halder <barun@fiddler.ai>
2024-03-15 14:04:56 -07:00
Eugene Yurtsev
745d2476a2 langchain: upgrade mypy (#19163)
Update mypy in langchain
2024-03-15 16:37:09 -04:00
Maxime Perrin
aa785fa6ec core[minor]: allow LLMs async streaming to fallback on sync streaming (#18960)
- **Description:** Handling fallbacks when calling async streaming for a
LLM that doesn't support it.
- **Issue:** #18920 
- **Twitter handle:**@maximeperrin_

---------

Co-authored-by: Maxime Perrin <mperrin@doing.fr>
2024-03-15 16:06:50 -04:00
Erick Friis
caf47ab666 infra: run min version ci before integration tests (#18945) 2024-03-15 12:14:44 -07:00
Barun Amalkumar Halder
b551d49cf5 community[patch] : adds feedback and status for Fiddler callback handler events (#19157)
**Description:** This PR adds updates the fiddler events schema to also
pass user feedback, and llm status to fiddler
   **Tickets:** [INTERNAL] FDL-17559 
   **Dependencies:**  NA
   **Twitter handle:** behalder

Co-authored-by: Barun Halder <barun@fiddler.ai>
2024-03-15 12:03:49 -07:00
Juan Felipe Arias
f5b9aedc48 community[patch]: add args_schema to sql_database tools for langGraph integration (#18595)
- **Description:** This modification adds pydantic input definition for
sql_database tools. This helps for function calling capability in
LangGraph. Since actions nodes will usually check for the args_schema
attribute on tools, This update should make these tools compatible with
it (only implemented on the InfoSQLDatabaseTool)
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** juanfe8881
2024-03-15 19:03:36 +00:00
fengjial
c922ea36cb community[minor]: Add Baidu VectorDB as vector store (#17997)
Co-authored-by: fengjialin <fengjialin@MacBook-Pro.local>
2024-03-15 19:01:58 +00:00
aditya thomas
190887c5cd docs: update the list of providers (#19012)
**Description:** Update the list of LangChain providers
**Issue:** Make the list of LangChain providers current
**Dependencies:** None
2024-03-15 12:00:24 -07:00
Erick Friis
bbe164ad28 docs: voyageai as provider (#19154) 2024-03-15 10:12:37 -07:00
Erick Friis
781aee0068 community, langchain, infra: revert store extended test deps outside of poetry (#19153)
Reverts langchain-ai/langchain#18995

Because it makes installing dependencies in python 3.11 extended testing
take 80 minutes
2024-03-15 17:10:47 +00:00
Leonid Kuligin
e3ff107e4f docs: updated google integration related imports in the documentation (#19131)
updated imports in the documentation for google vertex
2024-03-15 09:30:50 -04:00
Erick Friis
9e569d85a4 community, langchain, infra: store extended test deps outside of poetry (#18995)
poetry can't reliably handle resolving the number of optional "extended
test" dependencies we have. If we instead just rely on pip to install
extended test deps in CI, this isn't an issue.
2024-03-15 05:55:30 +00:00
Bagatur
191ddbc77e core[patch]: rc release 0.1.33-rc.1 (#19103) 2024-03-14 20:21:54 -07:00
Nuno Campos
508f75853c core[patch]: Change structured prompt lc id to match js (#19099) 2024-03-14 20:02:52 -07:00
Erick Friis
7ce81eb6f4 voyageai[patch]: init package (#19098)
Co-authored-by: fodizoltan <zoltan@conway.expert>
Co-authored-by: Yujie Qian <thomasq0809@gmail.com>
Co-authored-by: fzowl <160063452+fzowl@users.noreply.github.com>
2024-03-15 00:56:10 +00:00
Brace Sproul
5157b15446 ci[patch]: Set root dir to ./docs (#19102) 2024-03-14 17:55:04 -07:00
Brace Sproul
98cd8f673b docs[minor]ci[minor]: Add script & CI to check recurring links daily (#19100) 2024-03-14 17:42:22 -07:00
Asaf Joseph Gardin
4d7f6fa968 ai21[patch]: AI21 Labs Batch Support in Embeddings (#18633)
Description: Added support for batching when using AI21 Embeddings model
Twitter handle: https://github.com/AI21Labs

---------

Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-14 23:10:23 +00:00
Tomaz Bratanic
321db89e87 templates: Switch neo4j generation template to LLMGraphTransformer (#19024) 2024-03-14 16:00:42 -07:00
Erick Friis
d5cf360329 ibm[patch]: release 0.1.3 (#19094) 2024-03-14 15:59:42 -07:00
Mateusz Szewczyk
b15d150d22 ibm[patch]: add async tests, add tokenize support (#18898)
- **Description:** add async tests, add tokenize support
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
  - **Tag maintainer:** 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally -> 
Please make sure integration_tests passing locally -> 

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-14 22:57:05 +00:00
billytrend-cohere
7253b816cc community: Add support for cohere SDK v5 (keeps v4 backwards compatibility) (#19084)
- **Description:** Add support for cohere SDK v5 (keeps v4 backwards
compatibility)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-14 15:53:24 -07:00
Eugene Yurtsev
06165efb5b core[patch]: RunnablePassthrough transform to autoupgrade to AddableDict (#19051)
Follow up on https://github.com/langchain-ai/langchain/pull/18743 which
missed RunnablePassthrough

Issues:

https://github.com/langchain-ai/langchain/issues/18741
https://github.com/langchain-ai/langgraph/issues/136
https://github.com/langchain-ai/langserve/issues/504
2024-03-14 16:59:46 -04:00
Eugene Yurtsev
41e2f60cd2 Updated security policy (#19089)
Updated security policy
2024-03-14 20:58:47 +00:00
Eugene Yurtsev
6cdca4355d community[minor]: Revamp PGVector Filtering (#18992)
This PR makes the following updates in the pgvector database:

1. Use JSONB field for metadata instead of JSON
2. Update operator syntax to include required `$` prefix before the
operators (otherwise there will be name collisions with fields)
3. The change is non-breaking, old functionality is still the default,
but it will emit a deprecation warning
4. Previous functionality has bugs associated with comparisons due to
casting to text (so lexical ordering is used incorrectly for numeric
fields)
5. Adds an a GIN index on the JSONB field for more efficient querying
2024-03-14 16:56:00 -04:00
Bagatur
e276817e1d docs: fix vercel build script (#19090)
amazon linux 2023 doesn't have `amazon-linux-extras` but shoudl have python3.9 by default
2024-03-14 20:53:43 +00:00
Guangdong Liu
d4b025c812 code[patch]: Add in code documentation to core Runnable assign method (docs only) (#18951)
**PR message**: ***Delete this entire checklist*** and replace with
- **Description:** [a description of the change](docs: Add in code
documentation to core Runnable assign method)
    - **Issue:** the issue  #18804
2024-03-14 15:41:19 -04:00
Anthony Yang
688a5bd106 docs:fixed typo in streaming document (#19045)
Fixed typo in line 661 - from 'mimimize' to 'minimize

- [ ] **PR message**: 
- **Description:** Fixed typo in streaming document - change 'mimimize'
to 'minimize

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-14 19:38:53 +00:00
Bagatur
573f48e34d core[patch]: Release 0.1.32 (#19088) 2024-03-14 12:01:58 -07:00
YHW
69a8ef2693 core: Runnable pass kwargs to _astream_log_implementation in astream_log (#19055)
- **Description:** When calling the `_stream_log_implementation` from
the `astream_log` method in the `Runnable` class, it is not handing over
the `kwargs` argument. Therefore, even if i want to customize APIHandler
and implement additional features with additional arguments, it is not
possible. Conversely, the `astream_events` method normally handing over
the `kwargs` argument.
- **Issue:** https://github.com/langchain-ai/langchain/issues/19054
- **Dependencies:**
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!

Co-authored-by: hyungwookyang <hyungwookyang@worksmobile.com>
2024-03-14 14:39:46 -04:00
Nuno Campos
751fb7de20 Add new beta StructuredPrompt (#19080)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-03-14 10:40:34 -07:00
Bagatur
0ae39ab30e docs: make links internal (#19063)
So they can be properly link checked
2024-03-14 16:22:56 +00:00
Anton Parkhomenko
ae73b9d839 community[patch]: Fix NotionDBLoader 400 Error by conditionally adding filter parameter (#19075)
- **Description:** This change fixes a bug where attempts to load data
from Notion using the NotionDBLoader resulted in a 400 Bad Request
error. The issue was traced to the unconditional addition of an empty
'filter' object in the request payload, which Notion's API does not
accept. The modification ensures that the 'filter' object is only
included in the payload when it is explicitly provided and not empty,
thus preventing the 400 error from occurring.
- **Issue:** Fixes
[#18009](https://github.com/langchain-ai/langchain/issues/18009)
- **Dependencies:** None
- **Twitter handle:** @gunnzolder

Co-authored-by: Anton Parkhomenko <anton@merge.rocks>
2024-03-14 13:56:57 +00:00
Erick Friis
2999d06938 docs: deprecate old airbyte loader docs (#19048) 2024-03-13 23:18:30 +00:00
Prakul
4c53e31377 docs: Updated index definition and reference to LangChain-MongoDB (#19047)
**Description:** 
Updates to LangChain-MongoDB documentation: updates to the Atlas vector
search index definition

**Issue:** 
NA

**Dependencies:** 
NA

**Twitter handle:** 
iprakul
2024-03-13 15:44:13 -07:00
Erick Friis
5e0c58f9c2 infra: update upload-artifact and download-artifact to v4 (#19044) 2024-03-13 20:08:29 +00:00
Tomaz Bratanic
e5e15c8d59 docs: Add graph construction docs (#18904) 2024-03-13 12:27:58 -07:00
Nuno Campos
2b7c3c548d core[minor]: Add Runnable.batch_as_completed (#17603)
This PR adds `batch as completed` method to the standard Runnable
interface. It takes in a list of inputs and yields the corresponding
outputs as the inputs are completed.
2024-03-13 11:18:02 -07:00
Erick Friis
71d0981f18 templates: fix rag-lancedb dep (#19010) 2024-03-13 04:36:24 +00:00
Erick Friis
74b2c0aa01 templates, cli: more security deps (#19006) 2024-03-12 20:48:56 -07:00
Erick Friis
9052d05442 template: bump more lockfiles (#19003)
- templates: bump lockfile deps
- x
2024-03-13 01:43:33 +00:00
Erick Friis
49f3cc0f6b templates: bump lockfile deps (#19001) 2024-03-13 01:25:45 +00:00
Erick Friis
2ffb2144a6 experimental[patch]: release 0.0.54 (#19000) 2024-03-13 00:38:46 +00:00
1576 changed files with 127640 additions and 111436 deletions

View File

@@ -47,6 +47,16 @@ if __name__ == "__main__":
found = True
if found:
dirs_to_run["extended-test"].add(dir_)
elif file.startswith("libs/standard-tests"):
# TODO: update to include all packages that rely on standard-tests (all partner packages)
# note: won't run on external repo partners
dirs_to_run["lint"].add("libs/standard-tests")
dirs_to_run["test"].add("libs/partners/mistralai")
dirs_to_run["test"].add("libs/partners/openai")
elif file.startswith("libs/cli"):
# todo: add cli makefile
pass
elif file.startswith("libs/partners"):
partner_dir = file.split("/")[2]
if os.path.isdir(f"libs/partners/{partner_dir}") and [

View File

@@ -4,17 +4,25 @@ import tomllib
from packaging.version import parse as parse_version
import re
MIN_VERSION_LIBS = ["langchain-core", "langchain-community", "langchain", "langchain-text-splitters"]
MIN_VERSION_LIBS = [
"langchain-core",
"langchain-community",
"langchain",
"langchain-text-splitters",
]
def get_min_version(version: str) -> str:
# base regex for x.x.x with cases for rc/post/etc
# valid strings: https://peps.python.org/pep-0440/#public-version-identifiers
vstring = r"\d+(?:\.\d+){0,2}(?:(?:a|b|rc|\.post|\.dev)\d+)?"
# case ^x.x.x
_match = re.match(r"^\^(\d+(?:\.\d+){0,2})$", version)
_match = re.match(f"^\\^({vstring})$", version)
if _match:
return _match.group(1)
# case >=x.x.x,<y.y.y
_match = re.match(r"^>=(\d+(?:\.\d+){0,2}),<(\d+(?:\.\d+){0,2})$", version)
_match = re.match(f"^>=({vstring}),<({vstring})$", version)
if _match:
_min = _match.group(1)
_max = _match.group(2)
@@ -22,7 +30,7 @@ def get_min_version(version: str) -> str:
return _min
# case x.x.x
_match = re.match(r"^(\d+(?:\.\d+){0,2})$", version)
_match = re.match(f"^({vstring})$", version)
if _match:
return _match.group(1)
@@ -47,6 +55,9 @@ def get_min_version_from_toml(toml_path: str):
# Get the version string
version_string = dependencies[lib]
if isinstance(version_string, dict):
version_string = version_string["version"]
# Use parse_version to get the minimum supported version from version_string
min_version = get_min_version(version_string)
@@ -56,12 +67,13 @@ def get_min_version_from_toml(toml_path: str):
return min_versions
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
if __name__ == "__main__":
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file)
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file)
print(
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
) # noqa: T201
print(
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
) # noqa: T201

View File

@@ -75,6 +75,8 @@ jobs:
ES_API_KEY: ${{ secrets.ES_API_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
run: |
make integration_tests

View File

@@ -55,7 +55,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -157,6 +157,24 @@ jobs:
run: make tests
working-directory: ${{ inputs.working-directory }}
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
@@ -196,27 +214,10 @@ jobs:
ES_API_KEY: ${{ secrets.ES_API_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install packaging
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}
publish:
needs:
- build
@@ -246,7 +247,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
@@ -285,7 +286,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
with:
name: dist
path: ${{ inputs.working-directory }}/dist/

50
.github/workflows/_test_doc_imports.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: test_doc_imports
on:
workflow_call:
env:
POETRY_VERSION: "1.7.1"
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.11"
name: "check doc imports #${{ matrix.python-version }}"
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: core
- name: Install dependencies
shell: bash
run: poetry install --with test
- name: Install langchain editable
run: |
poetry run pip install -e libs/core libs/langchain libs/community libs/experimental
- name: Check doc imports
shell: bash
run: |
poetry run python docs/scripts/check_imports.py
- name: Ensure the test did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -48,7 +48,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
@@ -76,7 +76,7 @@ jobs:
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/

View File

@@ -0,0 +1,24 @@
name: Check Broken Links
on:
workflow_dispatch:
schedule:
- cron: '0 13 * * *'
jobs:
check-links:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Use Node.js 18.x
uses: actions/setup-node@v3
with:
node-version: 18.x
cache: "yarn"
cache-dependency-path: ./docs/yarn.lock
- name: Install dependencies
run: yarn install --immutable --mode=skip-build
working-directory: ./docs
- name: Check broken links
run: yarn check-broken-links
working-directory: ./docs

View File

@@ -60,6 +60,12 @@ jobs:
working-directory: ${{ matrix.working-directory }}
secrets: inherit
test_doc_imports:
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
uses: ./.github/workflows/_test_doc_imports.yml
secrets: inherit
compile-integration-tests:
name: cd ${{ matrix.working-directory }}
needs: [ build ]

1
.gitignore vendored
View File

@@ -116,6 +116,7 @@ celerybeat.pid
.env
.envrc
.venv*
venv*
env/
ENV/
env.bak/

View File

@@ -1,44 +1,56 @@
.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
# Default target executed when no arguments are given to make.
## help: Show this help info.
help: Makefile
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
@sed -n 's/^##//p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
## all: Default target, shows help.
all: help
## clean: Clean documentation and API documentation artifacts.
clean: docs_clean api_docs_clean
######################
# DOCUMENTATION
######################
clean: docs_clean api_docs_clean
## docs_build: Build the documentation.
docs_build:
docs/.local_build.sh
## docs_clean: Clean the documentation build artifacts.
docs_clean:
@if [ -d _dist ]; then \
rm -r _dist; \
echo "Directory _dist has been cleaned."; \
rm -r _dist; \
echo "Directory _dist has been cleaned."; \
else \
echo "Nothing to clean."; \
echo "Nothing to clean."; \
fi
## docs_linkcheck: Run linkchecker on the documentation.
docs_linkcheck:
poetry run linkchecker _dist/docs/ --ignore-url node_modules
## api_docs_build: Build the API Reference documentation.
api_docs_build:
poetry run python docs/api_reference/create_api_rst.py
cd docs/api_reference && poetry run make html
## api_docs_clean: Clean the API Reference documentation build artifacts.
api_docs_clean:
rm -f docs/api_reference/api_reference.rst
find ./docs/api_reference -name '*_api_reference.rst' -delete
cd docs/api_reference && poetry run make clean
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
api_docs_linkcheck:
poetry run linkchecker docs/api_reference/_build/html/index.html
## spell_check: Run codespell on the project.
spell_check:
poetry run codespell --toml pyproject.toml
## spell_fix: Run codespell on the project and fix the errors.
spell_fix:
poetry run codespell --toml pyproject.toml -w
@@ -46,31 +58,14 @@ spell_fix:
# LINTING AND FORMATTING
######################
## lint: Run linting on the project.
lint lint_package lint_tests:
poetry run ruff docs templates cookbook
poetry run ruff format docs templates cookbook --diff
poetry run ruff --select I docs templates cookbook
git grep 'from langchain import' docs/docs templates cookbook | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
## format: Format the project files.
format format_diff:
poetry run ruff format docs templates cookbook
poetry run ruff --select I --fix docs templates cookbook
######################
# HELP
######################
help:
@echo '===================='
@echo '-- DOCUMENTATION --'
@echo 'clean - run docs_clean and api_docs_clean'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'api_docs_build - build the API Reference documentation'
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
@echo 'spell_check - run codespell on the project'
@echo 'spell_fix - run codespell on the project and fix the errors'
@echo '-- TEST and LINT tasks are within libs/*/ per-package --'

View File

@@ -34,34 +34,40 @@ conda install langchain -c conda-forge
## 🤔 What is LangChain?
**LangChain** is a framework for developing applications powered by language models. It enables applications that:
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
**LangChain** is a framework for developing applications powered by large language models (LLMs).
This framework consists of several parts.
- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
- **[LangGraph](https://python.langchain.com/docs/langgraph)**: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.
For these applications, LangChain simplifies the entire application lifecycle:
The LangChain libraries themselves are made up of several different packages.
- **[`langchain-core`](libs/core)**: Base abstractions and LangChain Expression Language.
- **[`langchain-community`](libs/community)**: Third party integrations.
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **Open-source libraries**: Build your applications using LangChain's [modular building blocks](https://python.langchain.com/docs/expression_language/) and [components](https://python.langchain.com/docs/modules/). Integrate with hundreds of [third-party providers](https://python.langchain.com/docs/integrations/platforms/).
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://python.langchain.com/docs/langsmith/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn any chain into a REST API with [LangServe](https://python.langchain.com/docs/langserve).
### Open-source libraries
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **`[LangGraph](https://python.langchain.com/docs/langgraph)`**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
### Productionization:
- **[LangSmith](https://python.langchain.com/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangServe](https://python.langchain.com/docs/langserve)**: A library for deploying LangChain chains as REST APIs.
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack.svg "LangChain Architecture Overview")
## 🧱 What can you build with LangChain?
**❓ Retrieval augmented generation**
**❓ Question answering with RAG**
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
**💬 Analyzing structured data**
**🧱 Extracting structured output**
- [Documentation](https://python.langchain.com/docs/use_cases/qa_structured/sql)
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain/tree/master/templates/sql-llama2)
- [Documentation](https://python.langchain.com/docs/use_cases/extraction/)
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
**🤖 Chatbots**
@@ -72,34 +78,51 @@ And much more! Head to the [Use cases](https://python.langchain.com/docs/use_cas
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
## LangChain Expression Language (LCEL)
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
- **[Overview](https://python.langchain.com/docs/expression_language/)**: LCEL and its benefits
- **[Interface](https://python.langchain.com/docs/expression_language/interface)**: The standard interface for LCEL objects
- **[Primitives](https://python.langchain.com/docs/expression_language/primitives)**: More on the primitives LCEL includes
## Components
Components fall into the following **modules**:
**📃 Model I/O:**
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
This includes [prompt management](https://python.langchain.com/docs/modules/model_io/prompts/), [prompt optimization](https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/), a generic interface for [chat models](https://python.langchain.com/docs/modules/model_io/chat/) and [LLMs](https://python.langchain.com/docs/modules/model_io/llms/), and common utilities for working with [model outputs](https://python.langchain.com/docs/modules/model_io/output_parsers/).
**📚 Retrieval:**
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/modules/data_connection/document_loaders/) from a variety of sources, [preparing it](https://python.langchain.com/docs/modules/data_connection/document_loaders/), [then retrieving it](https://python.langchain.com/docs/modules/data_connection/retrievers/) for use in the generation step.
**🤖 Agents:**
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete done. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/modules/agents/), a [selection of agents](https://python.langchain.com/docs/modules/agents/agent_types/) to choose from, and examples of end-to-end agents.
## 📖 Documentation
Please see [here](https://python.langchain.com) for full documentation, which includes:
- [Getting started](https://python.langchain.com/docs/get_started/introduction): installation, setting up the environment, simple examples
- Overview of the [interfaces](https://python.langchain.com/docs/expression_language/), [modules](https://python.langchain.com/docs/modules/), and [integrations](https://python.langchain.com/docs/integrations/providers)
- [Use case](https://python.langchain.com/docs/use_cases/qa_structured/sql) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/adapters/openai)
- [LangSmith](https://python.langchain.com/docs/langsmith/), [LangServe](https://python.langchain.com/docs/langserve), and [LangChain Template](https://python.langchain.com/docs/templates/) overviews
- [Reference](https://api.python.langchain.com): full API docs
- [Use case](https://python.langchain.com/docs/use_cases/) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/)
- Overviews of the [interfaces](https://python.langchain.com/docs/expression_language/), [components](https://python.langchain.com/docs/modules/), and [integrations](https://python.langchain.com/docs/integrations/providers)
You can also check out the full [API Reference docs](https://api.python.langchain.com).
## 🌐 Ecosystem
- [🦜🛠️ LangSmith](https://python.langchain.com/docs/langsmith/): Tracing and evaluating your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://python.langchain.com/docs/langgraph): Creating stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploying LangChain runnables and chains as REST APIs.
- [LangChain Templates](https://python.langchain.com/docs/templates/): Example applications hosted with LangServe.
## 💁 Contributing

View File

@@ -1,6 +1,61 @@
# Security Policy
## Reporting a Vulnerability
## Reporting OSS Vulnerabilities
Please report security vulnerabilities by email to `security@langchain.dev`.
This email is an alias to a subset of our maintainers, and will ensure the issue is promptly triaged and acted upon as needed.
LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
a bounty program for our open source projects.
Please report security vulnerabilities associated with the LangChain
open source projects by visiting the following link:
[https://huntr.com/bounties/disclose/](https://huntr.com/bounties/disclose/?target=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Flangchain&validSearch=true)
Before reporting a vulnerability, please review:
1) In-Scope Targets and Out-of-Scope Targets below.
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
3) LangChain [security guidelines](https://python.langchain.com/docs/security) to
understand what we consider to be a security vulnerability vs. developer
responsibility.
### In-Scope Targets
The following packages and repositories are eligible for bug bounties:
- langchain-core
- langchain (see exceptions)
- langchain-community (see exceptions)
- langgraph
- langserve
### Out of Scope Targets
All out of scope targets defined by huntr as well as:
- **langchain-experimental**: This repository is for experimental code and is not
eligible for bug bounties, bug reports to it will be marked as interesting or waste of
time and published with no bounty attached.
- **tools**: Tools in either langchain or langchain-community are not eligible for bug
bounties. This includes the following directories
- langchain/tools
- langchain-community/tools
- Please review our [security guidelines](https://python.langchain.com/docs/security)
for more details, but generally tools interact with the real world. Developers are
expected to understand the security implications of their code and are responsible
for the security of their tools.
- Code documented with security notices. This will be decided done on a case by
case basis, but likely will not be eligible for a bounty as the code is already
documented with guidelines for developers that should be followed for making their
application secure.
- Any LangSmith related repositories or APIs see below.
## Reporting LangSmith Vulnerabilities
Please report security vulnerabilities associated with LangSmith by email to `security@langchain.dev`.
- LangSmith site: https://smith.langchain.com
- SDK client: https://github.com/langchain-ai/langsmith-sdk
### Other Security Concerns
For any other security concerns, please contact us at `security@langchain.dev`.

View File

@@ -38,9 +38,9 @@
"\n",
"To run locally, we use Ollama.ai. \n",
"\n",
"See [here](https://python.langchain.com/docs/integrations/chat/ollama) for details on installation and setup.\n",
"See [here](/docs/integrations/chat/ollama) for details on installation and setup.\n",
"\n",
"Also, see [here](https://python.langchain.com/docs/guides/local_llms) for our full guide on local LLMs.\n",
"Also, see [here](/docs/guides/development/local_llms) for our full guide on local LLMs.\n",
" \n",
"To use an external API, which is not private, we can use Replicate."
]

View File

@@ -191,15 +191,15 @@
"source": [
"## Multi-vector retriever\n",
"\n",
"Use [multi-vector-retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
"Use [multi-vector-retriever](/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
"\n",
"Summaries are used to retrieve raw tables and / or raw chunks of text.\n",
"\n",
"### Text and Table summaries\n",
"\n",
"Here, we use ollama.ai to run LLaMA2 locally. \n",
"Here, we use Ollama to run LLaMA2 locally. \n",
"\n",
"See details on installation [here](https://python.langchain.com/docs/guides/local_llms)."
"See details on installation [here](/docs/guides/development/local_llms)."
]
},
{

File diff suppressed because one or more lines are too long

View File

@@ -40,7 +40,9 @@
"import nest_asyncio\n",
"import pandas as pd\n",
"from langchain.docstore.document import Document\n",
"from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain_experimental.agents.agent_toolkits.pandas.base import (\n",
" create_pandas_dataframe_agent,\n",
")\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
@@ -57,7 +59,7 @@
},
"outputs": [],
"source": [
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=1.0)"
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
]
},
{

View File

@@ -933,7 +933,7 @@
"**Answer**: The LangChain class includes various types of retrievers such as:\n",
"\n",
"- ArxivRetriever\n",
"- AzureCognitiveSearchRetriever\n",
"- AzureAISearchRetriever\n",
"- BM25Retriever\n",
"- ChaindeskRetriever\n",
"- ChatGPTPluginRetriever\n",
@@ -993,7 +993,7 @@
{
"data": {
"text/plain": [
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureCognitiveSearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureAISearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
]
},
"execution_count": 31,
@@ -1117,7 +1117,7 @@
"The LangChain class includes various types of retrievers such as:\n",
"\n",
"- ArxivRetriever\n",
"- AzureCognitiveSearchRetriever\n",
"- AzureAISearchRetriever\n",
"- BM25Retriever\n",
"- ChaindeskRetriever\n",
"- ChatGPTPluginRetriever\n",

View File

@@ -84,7 +84,7 @@
"metadata": {},
"outputs": [],
"source": [
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
]
},

View File

@@ -100,7 +100,7 @@
}
],
"source": [
"agent.run(\"whats 2 + 2\")"
"agent.invoke(\"whats 2 + 2\")"
]
},
{

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -45,7 +45,7 @@
}
],
"source": [
"llm_symbolic_math.run(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
"llm_symbolic_math.invoke(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
]
},
{
@@ -65,7 +65,7 @@
}
],
"source": [
"llm_symbolic_math.run(\n",
"llm_symbolic_math.invoke(\n",
" \"What is the integral of exp(x)*sin(x) + exp(x)*cos(x) with respect to x?\"\n",
")"
]
@@ -94,7 +94,7 @@
}
],
"source": [
"llm_symbolic_math.run('Solve the differential equation y\" - y = e^t')"
"llm_symbolic_math.invoke('Solve the differential equation y\" - y = e^t')"
]
},
{
@@ -114,7 +114,7 @@
}
],
"source": [
"llm_symbolic_math.run(\"What are the solutions to this equation y^3 + 1/3y?\")"
"llm_symbolic_math.invoke(\"What are the solutions to this equation y^3 + 1/3y?\")"
]
},
{
@@ -134,7 +134,7 @@
}
],
"source": [
"llm_symbolic_math.run(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
"llm_symbolic_math.invoke(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
]
}
],

View File

@@ -0,0 +1,818 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "70b333e6",
"metadata": {},
"source": [
"[![View Article](https://img.shields.io/badge/View%20Article-blue)](https://www.mongodb.com/developer/products/atlas/advanced-rag-langchain-mongodb/)\n"
]
},
{
"cell_type": "markdown",
"id": "d84a72ea",
"metadata": {},
"source": [
"# Adding Semantic Caching and Memory to your RAG Application using MongoDB and LangChain\n",
"\n",
"In this notebook, we will see how to use the new MongoDBCache and MongoDBChatMessageHistory in your RAG application.\n"
]
},
{
"cell_type": "markdown",
"id": "65527202",
"metadata": {},
"source": [
"## Step 1: Install required libraries\n",
"\n",
"- **datasets**: Python library to get access to datasets available on Hugging Face Hub\n",
"\n",
"- **langchain**: Python toolkit for LangChain\n",
"\n",
"- **langchain-mongodb**: Python package to use MongoDB as a vector store, semantic cache, chat history store etc. in LangChain\n",
"\n",
"- **langchain-openai**: Python package to use OpenAI models with LangChain\n",
"\n",
"- **pymongo**: Python toolkit for MongoDB\n",
"\n",
"- **pandas**: Python library for data analysis, exploration, and manipulation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "cbc22fa4",
"metadata": {},
"outputs": [],
"source": [
"! pip install -qU datasets langchain langchain-mongodb langchain-openai pymongo pandas"
]
},
{
"cell_type": "markdown",
"id": "39c41e87",
"metadata": {},
"source": [
"## Step 2: Setup pre-requisites\n",
"\n",
"* Set the MongoDB connection string. Follow the steps [here](https://www.mongodb.com/docs/manual/reference/connection-string/) to get the connection string from the Atlas UI.\n",
"\n",
"* Set the OpenAI API key. Steps to obtain an API key as [here](https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b56412ae",
"metadata": {},
"outputs": [],
"source": [
"import getpass"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "16a20d7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter your MongoDB connection string:········\n"
]
}
],
"source": [
"MONGODB_URI = getpass.getpass(\"Enter your MongoDB connection string:\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "978682d4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter your OpenAI API key:········\n"
]
}
],
"source": [
"OPENAI_API_KEY = getpass.getpass(\"Enter your OpenAI API key:\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "606081c5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"········\n"
]
}
],
"source": [
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "f6b8302c",
"metadata": {},
"source": [
"## Step 3: Download the dataset\n",
"\n",
"We will be using MongoDB's [embedded_movies](https://huggingface.co/datasets/MongoDB/embedded_movies) dataset"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1a3433a6",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aee5311b",
"metadata": {},
"outputs": [],
"source": [
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
"\n",
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",
"# https://huggingface.co/datasets/MongoDB/airbnb_embeddings\n",
"\n",
"data = load_dataset(\"MongoDB/embedded_movies\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1d630a26",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(data[\"train\"])"
]
},
{
"cell_type": "markdown",
"id": "a1f94f43",
"metadata": {},
"source": [
"## Step 4: Data analysis\n",
"\n",
"Make sure length of the dataset is what we expect, drop Nones etc."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b276df71",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>fullplot</th>\n",
" <th>type</th>\n",
" <th>plot_embedding</th>\n",
" <th>num_mflix_comments</th>\n",
" <th>runtime</th>\n",
" <th>writers</th>\n",
" <th>imdb</th>\n",
" <th>countries</th>\n",
" <th>rated</th>\n",
" <th>plot</th>\n",
" <th>title</th>\n",
" <th>languages</th>\n",
" <th>metacritic</th>\n",
" <th>directors</th>\n",
" <th>awards</th>\n",
" <th>genres</th>\n",
" <th>poster</th>\n",
" <th>cast</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Young Pauline is left a lot of money when her ...</td>\n",
" <td>movie</td>\n",
" <td>[0.00072939653, -0.026834568, 0.013515796, -0....</td>\n",
" <td>0</td>\n",
" <td>199.0</td>\n",
" <td>[Charles W. Goddard (screenplay), Basil Dickey...</td>\n",
" <td>{'id': 4465, 'rating': 7.6, 'votes': 744}</td>\n",
" <td>[USA]</td>\n",
" <td>None</td>\n",
" <td>Young Pauline is left a lot of money when her ...</td>\n",
" <td>The Perils of Pauline</td>\n",
" <td>[English]</td>\n",
" <td>NaN</td>\n",
" <td>[Louis J. Gasnier, Donald MacKenzie]</td>\n",
" <td>{'nominations': 0, 'text': '1 win.', 'wins': 1}</td>\n",
" <td>[Action]</td>\n",
" <td>https://m.media-amazon.com/images/M/MV5BMzgxOD...</td>\n",
" <td>[Pearl White, Crane Wilbur, Paul Panzer, Edwar...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" fullplot type \\\n",
"0 Young Pauline is left a lot of money when her ... movie \n",
"\n",
" plot_embedding num_mflix_comments \\\n",
"0 [0.00072939653, -0.026834568, 0.013515796, -0.... 0 \n",
"\n",
" runtime writers \\\n",
"0 199.0 [Charles W. Goddard (screenplay), Basil Dickey... \n",
"\n",
" imdb countries rated \\\n",
"0 {'id': 4465, 'rating': 7.6, 'votes': 744} [USA] None \n",
"\n",
" plot title \\\n",
"0 Young Pauline is left a lot of money when her ... The Perils of Pauline \n",
"\n",
" languages metacritic directors \\\n",
"0 [English] NaN [Louis J. Gasnier, Donald MacKenzie] \n",
"\n",
" awards genres \\\n",
"0 {'nominations': 0, 'text': '1 win.', 'wins': 1} [Action] \n",
"\n",
" poster \\\n",
"0 https://m.media-amazon.com/images/M/MV5BMzgxOD... \n",
"\n",
" cast \n",
"0 [Pearl White, Crane Wilbur, Paul Panzer, Edwar... "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Previewing the contents of the data\n",
"df.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "22ab375d",
"metadata": {},
"outputs": [],
"source": [
"# Only keep records where the fullplot field is not null\n",
"df = df[df[\"fullplot\"].notna()]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "fceed99a",
"metadata": {},
"outputs": [],
"source": [
"# Renaming the embedding field to \"embedding\" -- required by LangChain\n",
"df.rename(columns={\"plot_embedding\": \"embedding\"}, inplace=True)"
]
},
{
"cell_type": "markdown",
"id": "aedec13a",
"metadata": {},
"source": [
"## Step 5: Create a simple RAG chain using MongoDB as the vector store"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "11d292f3",
"metadata": {},
"outputs": [],
"source": [
"from langchain_mongodb import MongoDBAtlasVectorSearch\n",
"from pymongo import MongoClient\n",
"\n",
"# Initialize MongoDB python client\n",
"client = MongoClient(MONGODB_URI, appname=\"devrel.content.python\")\n",
"\n",
"DB_NAME = \"langchain_chatbot\"\n",
"COLLECTION_NAME = \"data\"\n",
"ATLAS_VECTOR_SEARCH_INDEX_NAME = \"vector_index\"\n",
"collection = client[DB_NAME][COLLECTION_NAME]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d8292d53",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeleteResult({'n': 1000, 'electionId': ObjectId('7fffffff00000000000000f6'), 'opTime': {'ts': Timestamp(1710523288, 1033), 't': 246}, 'ok': 1.0, '$clusterTime': {'clusterTime': Timestamp(1710523288, 1042), 'signature': {'hash': b\"i\\xa8\\xe9'\\x1ed\\xf2u\\xf3L\\xff\\xb1\\xf5\\xbfA\\x90\\xabJ\\x12\\x83\", 'keyId': 7299545392000008318}}, 'operationTime': Timestamp(1710523288, 1033)}, acknowledged=True)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Delete any existing records in the collection\n",
"collection.delete_many({})"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "36c68914",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data ingestion into MongoDB completed\n"
]
}
],
"source": [
"# Data Ingestion\n",
"records = df.to_dict(\"records\")\n",
"collection.insert_many(records)\n",
"\n",
"print(\"Data ingestion into MongoDB completed\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "cbfca0b8",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# Using the text-embedding-ada-002 since that's what was used to create embeddings in the movies dataset\n",
"embeddings = OpenAIEmbeddings(\n",
" openai_api_key=OPENAI_API_KEY, model=\"text-embedding-ada-002\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "798e176c",
"metadata": {},
"outputs": [],
"source": [
"# Vector Store Creation\n",
"vector_store = MongoDBAtlasVectorSearch.from_connection_string(\n",
" connection_string=MONGODB_URI,\n",
" namespace=DB_NAME + \".\" + COLLECTION_NAME,\n",
" embedding=embeddings,\n",
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
" text_key=\"fullplot\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "c71cd087",
"metadata": {},
"outputs": [],
"source": [
"# Using the MongoDB vector store as a retriever in a RAG chain\n",
"retriever = vector_store.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": 5})"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "b6588cd3",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Generate context using the retriever, and pass the user question through\n",
"retrieve = {\n",
" \"context\": retriever | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs])),\n",
" \"question\": RunnablePassthrough(),\n",
"}\n",
"template = \"\"\"Answer the question based only on the following context: \\\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"# Defining the chat prompt\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"# Defining the model to be used for chat completion\n",
"model = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)\n",
"# Parse output as a string\n",
"parse_output = StrOutputParser()\n",
"\n",
"# Naive RAG chain\n",
"naive_rag_chain = retrieve | prompt | model | parse_output"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "aaae21f5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Once a Thief'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
]
},
{
"cell_type": "markdown",
"id": "75f929ef",
"metadata": {},
"source": [
"## Step 6: Create a RAG chain with chat history"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "94e7bd4a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "5bb30860",
"metadata": {},
"outputs": [],
"source": [
"def get_session_history(session_id: str) -> MongoDBChatMessageHistory:\n",
" return MongoDBChatMessageHistory(\n",
" MONGODB_URI, session_id, database_name=DB_NAME, collection_name=\"history\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "f51d0f35",
"metadata": {},
"outputs": [],
"source": [
"# Given a follow-up question and history, create a standalone question\n",
"standalone_system_prompt = \"\"\"\n",
"Given a chat history and a follow-up question, rephrase the follow-up question to be a standalone question. \\\n",
"Do NOT answer the question, just reformulate it if needed, otherwise return it as is. \\\n",
"Only return the final standalone question. \\\n",
"\"\"\"\n",
"standalone_question_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", standalone_system_prompt),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"question_chain = standalone_question_prompt | model | parse_output"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "f3ef3354",
"metadata": {},
"outputs": [],
"source": [
"# Generate context by passing output of the question_chain i.e. the standalone question to the retriever\n",
"retriever_chain = RunnablePassthrough.assign(\n",
" context=question_chain\n",
" | retriever\n",
" | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs]))\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "5afb7345",
"metadata": {},
"outputs": [],
"source": [
"# Create a prompt that includes the context, history and the follow-up question\n",
"rag_system_prompt = \"\"\"Answer the question based only on the following context: \\\n",
"{context}\n",
"\"\"\"\n",
"rag_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", rag_system_prompt),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "f95f47d0",
"metadata": {},
"outputs": [],
"source": [
"# RAG chain\n",
"rag_chain = retriever_chain | rag_prompt | model | parse_output"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "9618d395",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The best movie to watch when feeling down could be \"Last Action Hero.\" It\\'s a fun and action-packed film that blends reality and fantasy, offering an escape from the real world and providing an entertaining distraction.'"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# RAG chain with history\n",
"with_message_history = RunnableWithMessageHistory(\n",
" rag_chain,\n",
" get_session_history,\n",
" input_messages_key=\"question\",\n",
" history_messages_key=\"history\",\n",
")\n",
"with_message_history.invoke(\n",
" {\"question\": \"What is the best movie to watch when sad?\"},\n",
" {\"configurable\": {\"session_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "6e3080d1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'I apologize for the confusion. Another movie that might lift your spirits when you\\'re feeling sad is \"Smilla\\'s Sense of Snow.\" It\\'s a mystery thriller that could engage your mind and distract you from your sadness with its intriguing plot and suspenseful storyline.'"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with_message_history.invoke(\n",
" {\n",
" \"question\": \"Hmmm..I don't want to watch that one. Can you suggest something else?\"\n",
" },\n",
" {\"configurable\": {\"session_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "daea2953",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'For a lighter movie option, you might enjoy \"Cousins.\" It\\'s a comedy film set in Barcelona with action and humor, offering a fun and entertaining escape from reality. The storyline is engaging and filled with comedic moments that could help lift your spirits.'"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with_message_history.invoke(\n",
" {\"question\": \"How about something more light?\"},\n",
" {\"configurable\": {\"session_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0de23a88",
"metadata": {},
"source": [
"## Step 7: Get faster responses using Semantic Cache\n",
"\n",
"**NOTE:** Semantic cache only caches the input to the LLM. When using it in retrieval chains, remember that documents retrieved can change between runs resulting in cache misses for semantically similar queries."
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "5d6b6741",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.globals import set_llm_cache\n",
"from langchain_mongodb.cache import MongoDBAtlasSemanticCache\n",
"\n",
"set_llm_cache(\n",
" MongoDBAtlasSemanticCache(\n",
" connection_string=MONGODB_URI,\n",
" embedding=embeddings,\n",
" collection_name=\"semantic_cache\",\n",
" database_name=DB_NAME,\n",
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
" wait_until_ready=True, # Optional, waits until the cache is ready to be used\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "9825bc7b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 87.8 ms, sys: 670 µs, total: 88.5 ms\n",
"Wall time: 1.24 s\n"
]
},
{
"data": {
"text/plain": [
"'Once a Thief'"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "a5e518cf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 43.5 ms, sys: 4.16 ms, total: 47.7 ms\n",
"Wall time: 255 ms\n"
]
},
{
"data": {
"text/plain": [
"'Once a Thief'"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "3d3d3ad3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 115 ms, sys: 171 µs, total: 115 ms\n",
"Wall time: 1.38 s\n"
]
},
{
"data": {
"text/plain": [
"'I would recommend watching \"Last Action Hero\" when sad, as it is a fun and action-packed film that can help lift your spirits.'"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"naive_rag_chain.invoke(\"Which movie do I watch when sad?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "conda_pytorch_p310",
"language": "python",
"name": "conda_pytorch_p310"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

View File

@@ -84,7 +84,7 @@
"from langchain.retrievers import KayAiRetriever\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(\n",
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
")\n",

File diff suppressed because one or more lines are too long

View File

@@ -274,7 +274,7 @@
"db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n",
") # We reconnect to db so the new columns are loaded as well.\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
"\n",
"sql_query_chain = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",

View File

@@ -245,7 +245,7 @@
"\n",
"\n",
"def _parse(text):\n",
" return text.strip(\"**\")"
" return text.strip('\"').strip(\"**\")"
]
},
{

View File

@@ -1,28 +1,32 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base\n",
"# SalesGPT - Context-Aware AI Sales Assistant With Knowledge Base and Ability Generate Stripe Payment Links\n",
"\n",
"This notebook demonstrates an implementation of a **Context-Aware** AI Sales agent with a Product Knowledge Base. \n",
"This notebook demonstrates an implementation of a **Context-Aware** AI Sales agent with a Product Knowledge Base which can actually close sales. \n",
"\n",
"This notebook was originally published at [filipmichalsky/SalesGPT](https://github.com/filip-michalsky/SalesGPT) by [@FilipMichalsky](https://twitter.com/FilipMichalsky).\n",
"\n",
"SalesGPT is context-aware, which means it can understand what section of a sales conversation it is in and act accordingly.\n",
" \n",
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activities, such as outbound sales calls. \n",
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activites, such as outbound sales calls. \n",
"\n",
"Additionally, the AI Sales agent has access to tools, which allow it to interact with other systems.\n",
"\n",
"Here, we show how the AI Sales Agent can use a **Product Knowledge Base** to speak about a particular's company offerings,\n",
"hence increasing relevance and reducing hallucinations.\n",
"\n",
"We leverage the [`langchain`](https://github.com/langchain-ai/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
"Furthermore, we show how our AI Sales Agent can **generate sales** by integration with the AI Agent Highway called [Mindware](https://www.mindware.co/). In practice, this allows the agent to autonomously generate a payment link for your customers **to pay for your products via Stripe**.\n",
"\n",
"We leverage the [`langchain`](https://github.com/hwchase17/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -38,9 +42,10 @@
"import os\n",
"import re\n",
"\n",
"# import your OpenAI key\n",
"OPENAI_API_KEY = \"sk-xx\"\n",
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY\n",
"# make sure you have .env file saved locally with your API keys\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv()\n",
"\n",
"from typing import Any, Callable, Dict, List, Union\n",
"\n",
@@ -49,27 +54,18 @@
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
"from langchain.chains import LLMChain, RetrievalQA\n",
"from langchain.chains.base import Chain\n",
"from langchain.llms import BaseLLM\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from langchain_community.llms import BaseLLM\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.agents import AgentAction, AgentFinish\n",
"from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings\n",
"from langchain_text_splitters import CharacterTextSplitter\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"from pydantic import BaseModel, Field"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# install additional dependencies\n",
"# ! pip install chromadb openai tiktoken"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -77,19 +73,21 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Seed the SalesGPT agent\n",
"2. Run Sales Agent to decide what to do:\n",
"\n",
" a) Use a tool, such as look up Product Information in a Knowledge Base\n",
" a) Use a tool, such as look up Product Information in a Knowledge Base or Generate a Payment Link\n",
" \n",
" b) Output a response to a user \n",
"3. Run Sales Stage Recognition Agent to recognize which stage is the sales agent at and adjust their behaviour accordingly."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -98,15 +96,17 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Architecture diagram\n",
"\n",
"<img src=\"https://singularity-assets-public.s3.amazonaws.com/new_flow.png\" width=\"800\" height=\"440\"/>\n"
"<img src=\"https://demo-bucket-45.s3.amazonaws.com/new_flow2.png\" width=\"800\" height=\"440\">\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -131,7 +131,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -149,7 +149,7 @@
" {conversation_history}\n",
" ===\n",
"\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
@@ -171,7 +171,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -223,7 +223,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -240,13 +240,17 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# test the intermediate chains\n",
"verbose = True\n",
"llm = ChatOpenAI(temperature=0.9)\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-4-turbo-preview\",\n",
" temperature=0.9,\n",
" openai_api_key=os.getenv(\"OPENAI_API_KEY\"),\n",
")\n",
"\n",
"stage_analyzer_chain = StageAnalyzerChain.from_llm(llm, verbose=verbose)\n",
"\n",
@@ -257,7 +261,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"metadata": {},
"outputs": [
{
@@ -276,7 +280,7 @@
" \n",
" ===\n",
"\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
@@ -296,21 +300,21 @@
{
"data": {
"text/plain": [
"'1'"
"{'conversation_history': '', 'text': '1'}"
]
},
"execution_count": 7,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stage_analyzer_chain.run(conversation_history=\"\")"
"stage_analyzer_chain.invoke({\"conversation_history\": \"\"})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 7,
"metadata": {},
"outputs": [
{
@@ -352,32 +356,44 @@
{
"data": {
"text/plain": [
"\"I'm doing great, thank you for asking! As a Business Development Representative at Sleep Haven, I wanted to reach out to see if you are looking to achieve a better night's sleep. We provide premium mattresses that offer the most comfortable and supportive sleeping experience possible. Are you interested in exploring our sleep solutions? <END_OF_TURN>\""
"{'salesperson_name': 'Ted Lasso',\n",
" 'salesperson_role': 'Business Development Representative',\n",
" 'company_name': 'Sleep Haven',\n",
" 'company_business': 'Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.',\n",
" 'company_values': \"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
" 'conversation_purpose': 'find out whether they are looking to achieve better sleep via buying a premier mattress.',\n",
" 'conversation_history': 'Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>',\n",
" 'conversation_type': 'call',\n",
" 'conversation_stage': 'Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional. Your greeting should be welcoming. Always clarify in your greeting the reason why you are contacting the prospect.',\n",
" 'text': \"I'm doing well, thank you for asking. The reason I'm calling is to discuss how Sleep Haven can help enhance your sleep quality with our premium mattresses. Are you currently looking for ways to achieve a better night's sleep? <END_OF_TURN>\"}"
]
},
"execution_count": 8,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sales_conversation_utterance_chain.run(\n",
" salesperson_name=\"Ted Lasso\",\n",
" salesperson_role=\"Business Development Representative\",\n",
" company_name=\"Sleep Haven\",\n",
" company_business=\"Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.\",\n",
" company_values=\"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
" conversation_purpose=\"find out whether they are looking to achieve better sleep via buying a premier mattress.\",\n",
" conversation_history=\"Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>\",\n",
" conversation_type=\"call\",\n",
" conversation_stage=conversation_stages.get(\n",
" \"1\",\n",
" \"Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\",\n",
" ),\n",
"sales_conversation_utterance_chain.invoke(\n",
" {\n",
" \"salesperson_name\": \"Ted Lasso\",\n",
" \"salesperson_role\": \"Business Development Representative\",\n",
" \"company_name\": \"Sleep Haven\",\n",
" \"company_business\": \"Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.\",\n",
" \"company_values\": \"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
" \"conversation_purpose\": \"find out whether they are looking to achieve better sleep via buying a premier mattress.\",\n",
" \"conversation_history\": \"Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>\",\n",
" \"conversation_type\": \"call\",\n",
" \"conversation_stage\": conversation_stages.get(\n",
" \"1\",\n",
" \"Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\",\n",
" ),\n",
" }\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -385,6 +401,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -395,7 +412,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -429,7 +446,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -445,7 +462,7 @@
" text_splitter = CharacterTextSplitter(chunk_size=10, chunk_overlap=0)\n",
" texts = text_splitter.split_text(product_catalog)\n",
"\n",
" llm = OpenAI(temperature=0)\n",
" llm = ChatOpenAI(temperature=0)\n",
" embeddings = OpenAIEmbeddings()\n",
" docsearch = Chroma.from_texts(\n",
" texts, embeddings, collection_name=\"product-knowledge-base\"\n",
@@ -454,29 +471,12 @@
" knowledge_base = RetrievalQA.from_chain_type(\n",
" llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever()\n",
" )\n",
" return knowledge_base\n",
"\n",
"\n",
"def get_tools(product_catalog):\n",
" # query to get_tools can be used to be embedded and relevant tools found\n",
" # see here: https://langchain-langchain.vercel.app/docs/use_cases/agents/custom_agent_with_plugin_retrieval#tool-retriever\n",
"\n",
" # we only use one tool for now, but this is highly extensible!\n",
" knowledge_base = setup_knowledge_base(product_catalog)\n",
" tools = [\n",
" Tool(\n",
" name=\"ProductSearch\",\n",
" func=knowledge_base.run,\n",
" description=\"useful for when you need to answer questions about product information\",\n",
" )\n",
" ]\n",
"\n",
" return tools"
" return knowledge_base"
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 10,
"metadata": {},
"outputs": [
{
@@ -485,16 +485,18 @@
"text": [
"Created a chunk of size 940, which is longer than the specified 10\n",
"Created a chunk of size 844, which is longer than the specified 10\n",
"Created a chunk of size 837, which is longer than the specified 10\n"
"Created a chunk of size 837, which is longer than the specified 10\n",
"/Users/filipmichalsky/Odyssey/sales_bot/SalesGPT/env/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `run` was deprecated in LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.\n",
" warn_deprecated(\n"
]
},
{
"data": {
"text/plain": [
"' We have four products available: the Classic Harmony Spring Mattress, the Plush Serenity Bamboo Mattress, the Luxury Cloud-Comfort Memory Foam Mattress, and the EcoGreen Hybrid Latex Mattress. Each product is available in different sizes, with the Classic Harmony Spring Mattress available in Queen and King sizes, the Plush Serenity Bamboo Mattress available in King size, the Luxury Cloud-Comfort Memory Foam Mattress available in Twin, Queen, and King sizes, and the EcoGreen Hybrid Latex Mattress available in Twin and Full sizes.'"
"'The Sleep Haven products available are:\\n\\n1. Luxury Cloud-Comfort Memory Foam Mattress\\n2. Classic Harmony Spring Mattress\\n3. EcoGreen Hybrid Latex Mattress\\n4. Plush Serenity Bamboo Mattress\\n\\nEach product has its unique features and price point.'"
]
},
"execution_count": 11,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -508,12 +510,199 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set up the SalesGPT Controller with the Sales Agent and Stage Analyzer and a Knowledge Base"
"### Payment gateway"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In order to set up your AI agent to use a payment gateway to generate payment links for your users you need two things:\n",
"\n",
"1. Sign up for a Stripe account and obtain a STRIPE API KEY\n",
"2. Create products you would like to sell in the Stripe UI. Then follow out example of `example_product_price_id_mapping.json`\n",
"to feed the product name to price_id mapping which allows you to generate the payment links."
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"from litellm import completion\n",
"\n",
"# set GPT model env variable\n",
"os.environ[\"GPT_MODEL\"] = \"gpt-4-turbo-preview\"\n",
"\n",
"product_price_id_mapping = {\n",
" \"ai-consulting-services\": \"price_1Ow8ofB795AYY8p1goWGZi6m\",\n",
" \"Luxury Cloud-Comfort Memory Foam Mattress\": \"price_1Owv99B795AYY8p1mjtbKyxP\",\n",
" \"Classic Harmony Spring Mattress\": \"price_1Owv9qB795AYY8p1tPcxCM6T\",\n",
" \"EcoGreen Hybrid Latex Mattress\": \"price_1OwvLDB795AYY8p1YBAMBcbi\",\n",
" \"Plush Serenity Bamboo Mattress\": \"price_1OwvMQB795AYY8p1hJN2uS3S\",\n",
"}\n",
"with open(\"example_product_price_id_mapping.json\", \"w\") as f:\n",
" json.dump(product_price_id_mapping, f)\n",
"\n",
"\n",
"def get_product_id_from_query(query, product_price_id_mapping_path):\n",
" # Load product_price_id_mapping from a JSON file\n",
" with open(product_price_id_mapping_path, \"r\") as f:\n",
" product_price_id_mapping = json.load(f)\n",
"\n",
" # Serialize the product_price_id_mapping to a JSON string for inclusion in the prompt\n",
" product_price_id_mapping_json_str = json.dumps(product_price_id_mapping)\n",
"\n",
" # Dynamically create the enum list from product_price_id_mapping keys\n",
" enum_list = list(product_price_id_mapping.values()) + [\n",
" \"No relevant product id found\"\n",
" ]\n",
" enum_list_str = json.dumps(enum_list)\n",
"\n",
" prompt = f\"\"\"\n",
" You are an expert data scientist and you are working on a project to recommend products to customers based on their needs.\n",
" Given the following query:\n",
" {query}\n",
" and the following product price id mapping:\n",
" {product_price_id_mapping_json_str}\n",
" return the price id that is most relevant to the query.\n",
" ONLY return the price id, no other text. If no relevant price id is found, return 'No relevant price id found'.\n",
" Your output will follow this schema:\n",
" {{\n",
" \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n",
" \"title\": \"Price ID Response\",\n",
" \"type\": \"object\",\n",
" \"properties\": {{\n",
" \"price_id\": {{\n",
" \"type\": \"string\",\n",
" \"enum\": {enum_list_str}\n",
" }}\n",
" }},\n",
" \"required\": [\"price_id\"]\n",
" }}\n",
" Return a valid directly parsable json, dont return in it within a code snippet or add any kind of explanation!!\n",
" \"\"\"\n",
" prompt += \"{\"\n",
" response = completion(\n",
" model=os.getenv(\"GPT_MODEL\", \"gpt-3.5-turbo-1106\"),\n",
" messages=[{\"content\": prompt, \"role\": \"user\"}],\n",
" max_tokens=1000,\n",
" temperature=0,\n",
" )\n",
"\n",
" product_id = response.choices[0].message.content.strip()\n",
" return product_id"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"import requests\n",
"\n",
"\n",
"def generate_stripe_payment_link(query: str) -> str:\n",
" \"\"\"Generate a stripe payment link for a customer based on a single query string.\"\"\"\n",
"\n",
" # example testing payment gateway url\n",
" PAYMENT_GATEWAY_URL = os.getenv(\n",
" \"PAYMENT_GATEWAY_URL\", \"https://agent-payments-gateway.vercel.app/payment\"\n",
" )\n",
" PRODUCT_PRICE_MAPPING = \"example_product_price_id_mapping.json\"\n",
"\n",
" # use LLM to get the price_id from query\n",
" price_id = get_product_id_from_query(query, PRODUCT_PRICE_MAPPING)\n",
" price_id = json.loads(price_id)\n",
" payload = json.dumps(\n",
" {\"prompt\": query, **price_id, \"stripe_key\": os.getenv(\"STRIPE_API_KEY\")}\n",
" )\n",
" headers = {\n",
" \"Content-Type\": \"application/json\",\n",
" }\n",
"\n",
" response = requests.request(\n",
" \"POST\", PAYMENT_GATEWAY_URL, headers=headers, data=payload\n",
" )\n",
" return response.text"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'{\"response\":\"https://buy.stripe.com/test_6oEbLS8JB1F9bv229d\"}'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_stripe_payment_link(\n",
" query=\"Please generate a payment link for John Doe to buy two mattresses - the Classic Harmony Spring Mattress\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup agent tools"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def get_tools(product_catalog):\n",
" # query to get_tools can be used to be embedded and relevant tools found\n",
" # see here: https://langchain-langchain.vercel.app/docs/use_cases/agents/custom_agent_with_plugin_retrieval#tool-retriever\n",
"\n",
" # we only use one tool for now, but this is highly extensible!\n",
" knowledge_base = setup_knowledge_base(product_catalog)\n",
" tools = [\n",
" Tool(\n",
" name=\"ProductSearch\",\n",
" func=knowledge_base.run,\n",
" description=\"useful for when you need to answer questions about product information or services offered, availability and their costs.\",\n",
" ),\n",
" Tool(\n",
" name=\"GeneratePaymentLink\",\n",
" func=generate_stripe_payment_link,\n",
" description=\"useful to close a transaction with a customer. You need to include product name and quantity and customer name in the query input.\",\n",
" ),\n",
" ]\n",
"\n",
" return tools"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set up the SalesGPT Controller with the Sales Agent and Stage Analyzer\n",
"\n",
"#### The Agent has access to a Knowledge Base and can autonomously sell your products via Stripe"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
@@ -563,19 +752,11 @@
" print(\"TEXT\")\n",
" print(text)\n",
" print(\"-------\")\n",
" if f\"{self.ai_prefix}:\" in text:\n",
" return AgentFinish(\n",
" {\"output\": text.split(f\"{self.ai_prefix}:\")[-1].strip()}, text\n",
" )\n",
" regex = r\"Action: (.*?)[\\n]*Action Input: (.*)\"\n",
" match = re.search(regex, text)\n",
" if not match:\n",
" ## TODO - this is not entirely reliable, sometimes results in an error.\n",
" return AgentFinish(\n",
" {\n",
" \"output\": \"I apologize, I was unable to find the answer to your question. Is there anything else I can help with?\"\n",
" },\n",
" text,\n",
" {\"output\": text.split(f\"{self.ai_prefix}:\")[-1].strip()}, text\n",
" )\n",
" # raise OutputParserException(f\"Could not parse LLM output: `{text}`\")\n",
" action = match.group(1)\n",
@@ -589,7 +770,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -647,18 +828,18 @@
"Previous conversation history:\n",
"{conversation_history}\n",
"\n",
"{salesperson_name}:\n",
"Thought:\n",
"{agent_scratchpad}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"class SalesGPT(Chain, BaseModel):\n",
"class SalesGPT(Chain):\n",
" \"\"\"Controller model for the Sales Agent.\"\"\"\n",
"\n",
" conversation_history: List[str] = []\n",
@@ -804,7 +985,9 @@
"\n",
" # WARNING: this output parser is NOT reliable yet\n",
" ## It makes assumptions about output from LLM which can break and throw an error\n",
" output_parser = SalesConvoOutputParser(ai_prefix=kwargs[\"salesperson_name\"])\n",
" output_parser = SalesConvoOutputParser(\n",
" ai_prefix=kwargs[\"salesperson_name\"], verbose=verbose\n",
" )\n",
"\n",
" sales_agent_with_tools = LLMSingleActionAgent(\n",
" llm_chain=llm_chain,\n",
@@ -828,6 +1011,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -835,6 +1019,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -843,7 +1028,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@@ -880,6 +1065,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -888,7 +1074,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 22,
"metadata": {},
"outputs": [
{
@@ -897,7 +1083,9 @@
"text": [
"Created a chunk of size 940, which is longer than the specified 10\n",
"Created a chunk of size 844, which is longer than the specified 10\n",
"Created a chunk of size 837, which is longer than the specified 10\n"
"Created a chunk of size 837, which is longer than the specified 10\n",
"/Users/filipmichalsky/Odyssey/sales_bot/SalesGPT/env/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The class `langchain.agents.agent.LLMSingleActionAgent` was deprecated in langchain 0.1.0 and will be removed in 0.2.0. Use Use new agent constructor methods like create_react_agent, create_json_agent, create_structured_chat_agent, etc. instead.\n",
" warn_deprecated(\n"
]
}
],
@@ -907,7 +1095,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@@ -917,7 +1105,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 22,
"metadata": {},
"outputs": [
{
@@ -934,14 +1122,14 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: Hello, this is Ted Lasso from Sleep Haven. How are you doing today?\n"
"Ted Lasso: Good day! This is Ted Lasso from Sleep Haven. How are you doing today?\n"
]
}
],
@@ -951,18 +1139,18 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"sales_agent.human_step(\n",
" \"I am well, how are you? I would like to learn more about your mattresses.\"\n",
" \"I am well, how are you? I would like to learn more about your services.\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 25,
"metadata": {},
"outputs": [
{
@@ -977,92 +1165,32 @@
"sales_agent.determine_conversation_stage()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: I'm glad to hear that you're doing well! As for our mattresses, at Sleep Haven, we provide customers with the most comfortable and supportive sleeping experience possible. Our high-quality mattresses are designed to meet the unique needs of our customers. Can I ask what specifically you'd like to learn more about? \n"
]
}
],
"source": [
"sales_agent.step()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"sales_agent.human_step(\"Yes, what materials are you mattresses made from?\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Conversation Stage: Needs analysis: Ask open-ended questions to uncover the prospect's needs and pain points. Listen carefully to their responses and take notes.\n"
]
}
],
"source": [
"sales_agent.determine_conversation_stage()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: Our mattresses are made from a variety of materials, depending on the model. We have the EcoGreen Hybrid Latex Mattress, which is made from 100% natural latex harvested from eco-friendly plantations. The Plush Serenity Bamboo Mattress features a layer of plush, adaptive foam and a base of high-resilience support foam, with a bamboo-infused top layer. The Luxury Cloud-Comfort Memory Foam Mattress has an innovative, temperature-sensitive memory foam layer and a high-density foam base with cooling gel-infused particles. Finally, the Classic Harmony Spring Mattress has a robust inner spring construction and layers of plush padding, with a quilted top layer and a natural cotton cover. Is there anything specific you'd like to know about these materials?\n"
]
}
],
"source": [
"sales_agent.step()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: I'm doing great, thank you for asking! I'm glad to hear you're interested. Sleep Haven is a premium mattress company, and we're all about offering the best sleep solutions, including top-notch mattresses, pillows, and bedding accessories. Our mission is to help you achieve a better night's sleep. May I know if you're looking to enhance your sleep experience with a new mattress or bedding accessories? \n"
]
}
],
"source": [
"sales_agent.human_step(\n",
" \"Yes, I am looking for a queen sized mattress. Do you have any mattresses in queen size?\"\n",
")"
"sales_agent.step()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Conversation Stage: Needs analysis: Ask open-ended questions to uncover the prospect's needs and pain points. Listen carefully to their responses and take notes.\n"
]
}
],
"outputs": [],
"source": [
"sales_agent.determine_conversation_stage()"
"sales_agent.human_step(\n",
" \"Yes, I would like to improve my sleep. Can you tell me more about your products?\"\n",
")"
]
},
{
@@ -1074,7 +1202,24 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: Yes, we do have queen-sized mattresses available. We offer the Luxury Cloud-Comfort Memory Foam Mattress and the Classic Harmony Spring Mattress in queen size. Both mattresses provide exceptional comfort and support. Is there anything specific you would like to know about these options?\n"
"Conversation Stage: Needs analysis: Ask open-ended questions to uncover the prospect's needs and pain points. Listen carefully to their responses and take notes.\n"
]
}
],
"source": [
"sales_agent.determine_conversation_stage()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: Absolutely, I'd be happy to share more about our products. At Sleep Haven, we offer a variety of high-quality mattresses designed to cater to different sleeping preferences and needs. Whether you're looking for memory foam's comfort, the support of hybrid mattresses, or the breathability of natural latex, we have options for everyone. Our pillows and bedding accessories are similarly curated to enhance your sleep quality. Every product is built with the aim of helping you achieve the restful night's sleep you deserve. What specific features are you looking for in a mattress? \n"
]
}
],
@@ -1084,16 +1229,16 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"sales_agent.human_step(\"Yea, compare and contrast those two options, please.\")"
"sales_agent.human_step(\"What mattresses do you have and how much do they cost?\")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 32,
"metadata": {},
"outputs": [
{
@@ -1110,14 +1255,14 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: The Luxury Cloud-Comfort Memory Foam Mattress is priced at $999 and is available in Twin, Queen, and King sizes. It features an innovative, temperature-sensitive memory foam layer and a high-density foam base. On the other hand, the Classic Harmony Spring Mattress is priced at $1,299 and is available in Queen and King sizes. It features a robust inner spring construction and layers of plush padding. Both mattresses provide exceptional comfort and support, but the Classic Harmony Spring Mattress may be a better option if you prefer the traditional feel of an inner spring mattress. Do you have any other questions about these options?\n"
"Ted Lasso: We offer two primary types of mattresses at Sleep Haven. The first is our Luxury Cloud-Comfort Memory Foam Mattress, which is priced at $999 and comes in Twin, Queen, and King sizes. The second is our Classic Harmony Spring Mattress, priced at $1,299, available in Queen and King sizes. Both are designed to provide exceptional comfort and support for a better night's sleep. Which type of mattress would you be interested in learning more about? \n"
]
}
],
@@ -1127,14 +1272,66 @@
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"sales_agent.human_step(\n",
" \"Great, thanks, that's it. I will talk to my wife and call back if she is onboard. Have a good day!\"\n",
" \"Okay.I would like to order two Memory Foam mattresses in Twin size please.\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Conversation Stage: Close: Ask for the sale by proposing a next step. This could be a demo, a trial or a meeting with decision-makers. Ensure to summarize what has been discussed and reiterate the benefits.\n"
]
}
],
"source": [
"sales_agent.determine_conversation_stage()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ted Lasso: Fantastic choice! You're on your way to a better night's sleep with our Luxury Cloud-Comfort Memory Foam Mattresses. I've generated a payment link for two Twin size mattresses for you. Here is the link to complete your purchase: https://buy.stripe.com/test_6oEg28e3V97BdDabJn. Is there anything else I can assist you with today? \n"
]
}
],
"source": [
"sales_agent.step()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"sales_agent.human_step(\n",
" \"Great, thanks! I will discuss with my wife and will buy it if she is onboard. Have a good day!\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -1153,9 +1350,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -22,7 +22,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent, create_react_agent\n",
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
"from langchain.prompts import PromptTemplate\n",
@@ -84,19 +85,7 @@
"metadata": {},
"outputs": [],
"source": [
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\"\n",
"\n",
"{chat_history}\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
")"
"prompt = hub.pull(\"hwchase17/react\")"
]
},
{
@@ -114,16 +103,14 @@
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True, memory=memory\n",
")"
"model = OpenAI()\n",
"agent = create_react_agent(model, tools, prompt)\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 36,
"id": "ca4bc1fb",
"metadata": {},
"outputs": [
@@ -133,15 +120,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
"Action: Search\n",
"Action Input: \"ChatGPT\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
"Action Input: \"ChatGPT\"\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@@ -153,10 +140,40 @@
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[36], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43magent_executor\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43minvoke\u001B[49m\u001B[43m(\u001B[49m\u001B[43m{\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43minput\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mWhat is ChatGPT?\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m}\u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:163\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 162\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_error(e)\n\u001B[0;32m--> 163\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 164\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_end(outputs)\n\u001B[1;32m 166\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m include_run_info:\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:153\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 150\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 151\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_validate_inputs(inputs)\n\u001B[1;32m 152\u001B[0m outputs \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 153\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_call\u001B[49m\u001B[43m(\u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 155\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_call(inputs)\n\u001B[1;32m 156\u001B[0m )\n\u001B[1;32m 158\u001B[0m final_outputs: Dict[\u001B[38;5;28mstr\u001B[39m, Any] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprep_outputs(\n\u001B[1;32m 159\u001B[0m inputs, outputs, return_only_outputs\n\u001B[1;32m 160\u001B[0m )\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1432\u001B[0m, in \u001B[0;36mAgentExecutor._call\u001B[0;34m(self, inputs, run_manager)\u001B[0m\n\u001B[1;32m 1430\u001B[0m \u001B[38;5;66;03m# We now enter the agent loop (until it returns something).\u001B[39;00m\n\u001B[1;32m 1431\u001B[0m \u001B[38;5;28;01mwhile\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_should_continue(iterations, time_elapsed):\n\u001B[0;32m-> 1432\u001B[0m next_step_output \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_take_next_step\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1433\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1434\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1435\u001B[0m \u001B[43m \u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1436\u001B[0m \u001B[43m \u001B[49m\u001B[43mintermediate_steps\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1437\u001B[0m \u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1438\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1439\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(next_step_output, AgentFinish):\n\u001B[1;32m 1440\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_return(\n\u001B[1;32m 1441\u001B[0m next_step_output, intermediate_steps, run_manager\u001B[38;5;241m=\u001B[39mrun_manager\n\u001B[1;32m 1442\u001B[0m )\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36mAgentExecutor._take_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36m<listcomp>\u001B[0;34m(.0)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1223\u001B[0m, in \u001B[0;36mAgentExecutor._iter_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1221\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m agent_action\n\u001B[1;32m 1222\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m agent_action \u001B[38;5;129;01min\u001B[39;00m actions:\n\u001B[0;32m-> 1223\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_perform_agent_action\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1224\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\n\u001B[1;32m 1225\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1245\u001B[0m, in \u001B[0;36mAgentExecutor._perform_agent_action\u001B[0;34m(self, name_to_tool_map, color_mapping, agent_action, run_manager)\u001B[0m\n\u001B[1;32m 1243\u001B[0m tool_run_kwargs[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mllm_prefix\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1244\u001B[0m \u001B[38;5;66;03m# We then call the tool on the tool input to get an observation\u001B[39;00m\n\u001B[0;32m-> 1245\u001B[0m observation \u001B[38;5;241m=\u001B[39m \u001B[43mtool\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1246\u001B[0m \u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtool_input\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1247\u001B[0m \u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1248\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcolor\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1249\u001B[0m \u001B[43m \u001B[49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mget_child\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mif\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01melse\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1250\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_run_kwargs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1251\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1252\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1253\u001B[0m tool_run_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39magent\u001B[38;5;241m.\u001B[39mtool_run_logging_kwargs()\n",
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:422\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 420\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m (\u001B[38;5;167;01mException\u001B[39;00m, \u001B[38;5;167;01mKeyboardInterrupt\u001B[39;00m) \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 421\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_error(e)\n\u001B[0;32m--> 422\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 423\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 424\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_end(observation, color\u001B[38;5;241m=\u001B[39mcolor, name\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mname, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n",
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:381\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 378\u001B[0m parsed_input \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_parse_input(tool_input)\n\u001B[1;32m 379\u001B[0m tool_args, tool_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_to_args_and_kwargs(parsed_input)\n\u001B[1;32m 380\u001B[0m observation \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 381\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_run\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_args\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_kwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 382\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 383\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_run(\u001B[38;5;241m*\u001B[39mtool_args, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mtool_kwargs)\n\u001B[1;32m 384\u001B[0m )\n\u001B[1;32m 385\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m ValidationError \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 386\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhandle_validation_error:\n",
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:588\u001B[0m, in \u001B[0;36mTool._run\u001B[0;34m(self, run_manager, *args, **kwargs)\u001B[0m\n\u001B[1;32m 579\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc:\n\u001B[1;32m 580\u001B[0m new_argument_supported \u001B[38;5;241m=\u001B[39m signature(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc)\u001B[38;5;241m.\u001B[39mparameters\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcallbacks\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 581\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m (\n\u001B[1;32m 582\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc(\n\u001B[1;32m 583\u001B[0m \u001B[38;5;241m*\u001B[39margs,\n\u001B[1;32m 584\u001B[0m callbacks\u001B[38;5;241m=\u001B[39mrun_manager\u001B[38;5;241m.\u001B[39mget_child() \u001B[38;5;28;01mif\u001B[39;00m run_manager \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 585\u001B[0m \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs,\n\u001B[1;32m 586\u001B[0m )\n\u001B[1;32m 587\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_argument_supported\n\u001B[0;32m--> 588\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 589\u001B[0m )\n\u001B[1;32m 590\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mNotImplementedError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mTool does not support sync\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:94\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper.run\u001B[0;34m(self, query)\u001B[0m\n\u001B[1;32m 92\u001B[0m \u001B[38;5;250m\u001B[39m\u001B[38;5;124;03m\"\"\"Run query through GoogleSearch and parse result.\"\"\"\u001B[39;00m\n\u001B[1;32m 93\u001B[0m snippets \u001B[38;5;241m=\u001B[39m []\n\u001B[0;32m---> 94\u001B[0m results \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_google_search_results\u001B[49m\u001B[43m(\u001B[49m\u001B[43mquery\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnum\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mk\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 95\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mlen\u001B[39m(results) \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 96\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNo good Google Search Result was found\u001B[39m\u001B[38;5;124m\"\u001B[39m\n",
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:62\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper._google_search_results\u001B[0;34m(self, search_term, **kwargs)\u001B[0m\n\u001B[1;32m 60\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msiterestrict:\n\u001B[1;32m 61\u001B[0m cse \u001B[38;5;241m=\u001B[39m cse\u001B[38;5;241m.\u001B[39msiterestrict()\n\u001B[0;32m---> 62\u001B[0m res \u001B[38;5;241m=\u001B[39m \u001B[43mcse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mlist\u001B[49m\u001B[43m(\u001B[49m\u001B[43mq\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msearch_term\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcx\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mgoogle_cse_id\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mexecute\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 63\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m res\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mitems\u001B[39m\u001B[38;5;124m\"\u001B[39m, [])\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/_helpers.py:130\u001B[0m, in \u001B[0;36mpositional.<locals>.positional_decorator.<locals>.positional_wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 128\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m positional_parameters_enforcement \u001B[38;5;241m==\u001B[39m POSITIONAL_WARNING:\n\u001B[1;32m 129\u001B[0m logger\u001B[38;5;241m.\u001B[39mwarning(message)\n\u001B[0;32m--> 130\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mwrapped\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:923\u001B[0m, in \u001B[0;36mHttpRequest.execute\u001B[0;34m(self, http, num_retries)\u001B[0m\n\u001B[1;32m 920\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mheaders[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcontent-length\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mstr\u001B[39m(\u001B[38;5;28mlen\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mbody))\n\u001B[1;32m 922\u001B[0m \u001B[38;5;66;03m# Handle retries for server-side errors.\u001B[39;00m\n\u001B[0;32m--> 923\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43m_retry_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 924\u001B[0m \u001B[43m \u001B[49m\u001B[43mhttp\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 925\u001B[0m \u001B[43m \u001B[49m\u001B[43mnum_retries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 926\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mrequest\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 927\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_sleep\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 928\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_rand\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 929\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43muri\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 930\u001B[0m \u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmethod\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 931\u001B[0m \u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 932\u001B[0m \u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 933\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 935\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m callback \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mresponse_callbacks:\n\u001B[1;32m 936\u001B[0m callback(resp)\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:191\u001B[0m, in \u001B[0;36m_retry_request\u001B[0;34m(http, num_retries, req_type, sleep, rand, uri, method, *args, **kwargs)\u001B[0m\n\u001B[1;32m 189\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 190\u001B[0m exception \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[0;32m--> 191\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43mhttp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrequest\u001B[49m\u001B[43m(\u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 192\u001B[0m \u001B[38;5;66;03m# Retry on SSL errors and socket timeout errors.\u001B[39;00m\n\u001B[1;32m 193\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m _ssl_SSLError \u001B[38;5;28;01mas\u001B[39;00m ssl_error:\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1724\u001B[0m, in \u001B[0;36mHttp.request\u001B[0;34m(self, uri, method, body, headers, redirections, connection_type)\u001B[0m\n\u001B[1;32m 1722\u001B[0m content \u001B[38;5;241m=\u001B[39m \u001B[38;5;124mb\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1723\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m-> 1724\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1725\u001B[0m \u001B[43m \u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mauthority\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mredirections\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcachekey\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1726\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1727\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 1728\u001B[0m is_timeout \u001B[38;5;241m=\u001B[39m \u001B[38;5;28misinstance\u001B[39m(e, socket\u001B[38;5;241m.\u001B[39mtimeout)\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1444\u001B[0m, in \u001B[0;36mHttp._request\u001B[0;34m(self, conn, host, absolute_uri, request_uri, method, body, headers, redirections, cachekey)\u001B[0m\n\u001B[1;32m 1441\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1442\u001B[0m auth\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, headers, body)\n\u001B[0;32m-> 1444\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_conn_request\u001B[49m\u001B[43m(\u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1446\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1447\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth\u001B[38;5;241m.\u001B[39mresponse(response, body):\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1366\u001B[0m, in \u001B[0;36mHttp._conn_request\u001B[0;34m(self, conn, request_uri, method, body, headers)\u001B[0m\n\u001B[1;32m 1364\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1365\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m conn\u001B[38;5;241m.\u001B[39msock \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m-> 1366\u001B[0m \u001B[43mconn\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1367\u001B[0m conn\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, body, headers)\n\u001B[1;32m 1368\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m socket\u001B[38;5;241m.\u001B[39mtimeout:\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1156\u001B[0m, in \u001B[0;36mHTTPSConnectionWithTimeout.connect\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m has_timeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout):\n\u001B[1;32m 1155\u001B[0m sock\u001B[38;5;241m.\u001B[39msettimeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout)\n\u001B[0;32m-> 1156\u001B[0m \u001B[43msock\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mhost\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mport\u001B[49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msock \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_context\u001B[38;5;241m.\u001B[39mwrap_socket(sock, server_hostname\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhost)\n\u001B[1;32m 1160\u001B[0m \u001B[38;5;66;03m# Python 3.3 compatibility: emulate the check_hostname behavior\u001B[39;00m\n",
"\u001B[0;31mKeyboardInterrupt\u001B[0m: "
]
}
],
"source": [
"agent_chain.run(input=\"What is ChatGPT?\")"
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
]
},
{
@@ -179,15 +196,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
"Action: Search\n",
"Action Input: Who developed ChatGPT\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
"Action Input: Who developed ChatGPT\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@@ -202,7 +219,7 @@
}
],
"source": [
"agent_chain.run(input=\"Who developed it?\")"
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
]
},
{
@@ -217,14 +234,14 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"Action: Summary\n",
"Action Input: My daughter 5 years old\u001b[0m\n",
"Action Input: My daughter 5 years old\u001B[0m\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
"\n",
"Human: What is ChatGPT?\n",
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
@@ -232,16 +249,16 @@
"AI: ChatGPT was developed by OpenAI.\n",
"\n",
"Write a summary of the conversation for My daughter 5 years old:\n",
"\u001b[0m\n",
"\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001B[1m> Finished chain.\u001B[0m\n",
"\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001b[0m\n",
"Observation: \u001B[33;1m\u001B[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@@ -256,8 +273,8 @@
}
],
"source": [
"agent_chain.run(\n",
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
"agent_executor.invoke(\n",
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
")"
]
},
@@ -289,9 +306,17 @@
}
],
"source": [
"print(agent_chain.memory.buffer)"
"print(agent_executor.memory.buffer)"
]
},
{
"cell_type": "markdown",
"id": "84ca95c30e262e00",
"metadata": {
"collapsed": false
},
"source": []
},
{
"cell_type": "markdown",
"id": "cc3d0aa4",
@@ -340,25 +365,9 @@
" ),\n",
"]\n",
"\n",
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\"\n",
"\n",
"{chat_history}\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
")\n",
"\n",
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True, memory=memory\n",
")"
"prompt = hub.pull(\"hwchase17/react\")\n",
"agent = create_react_agent(model, tools, prompt)\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
]
},
{
@@ -373,15 +382,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
"Action: Search\n",
"Action Input: \"ChatGPT\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
"Action Input: \"ChatGPT\"\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@@ -396,7 +405,7 @@
}
],
"source": [
"agent_chain.run(input=\"What is ChatGPT?\")"
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
]
},
{
@@ -411,15 +420,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
"Action: Search\n",
"Action Input: Who developed ChatGPT\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
"Action Input: Who developed ChatGPT\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@@ -434,7 +443,7 @@
}
],
"source": [
"agent_chain.run(input=\"Who developed it?\")"
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
]
},
{
@@ -449,14 +458,14 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"Action: Summary\n",
"Action Input: My daughter 5 years old\u001b[0m\n",
"Action Input: My daughter 5 years old\u001B[0m\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
"\n",
"Human: What is ChatGPT?\n",
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
@@ -464,16 +473,16 @@
"AI: ChatGPT was developed by OpenAI.\n",
"\n",
"Write a summary of the conversation for My daughter 5 years old:\n",
"\u001b[0m\n",
"\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001B[1m> Finished chain.\u001B[0m\n",
"\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001b[0m\n",
"Observation: \u001B[33;1m\u001B[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@@ -488,8 +497,8 @@
}
],
"source": [
"agent_chain.run(\n",
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
"agent_executor.invoke(\n",
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
")"
]
},
@@ -524,7 +533,7 @@
}
],
"source": [
"print(agent_chain.memory.buffer)"
"print(agent_executor.memory.buffer)"
]
}
],

View File

@@ -9,7 +9,7 @@
" \n",
"[Together AI](https://python.langchain.com/docs/integrations/llms/together) has a broad set of OSS LLMs via inference API.\n",
"\n",
"See [here](https://api.together.xyz/playground). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
"See [here](https://docs.together.ai/docs/inference-models). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
"\n",
"Download the paper:\n",
"https://arxiv.org/pdf/2401.04088.pdf"
@@ -148,7 +148,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.9.6"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,199 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "c48812ed-35bd-4fbe-9a2c-6c7335e5645e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"@tool\n",
"def multiply(x: float, y: float) -> float:\n",
" \"\"\"Multiply 'x' times 'y'.\"\"\"\n",
" return x * y\n",
"\n",
"\n",
"@tool\n",
"def exponentiate(x: float, y: float) -> float:\n",
" \"\"\"Raise 'x' to the 'y'.\"\"\"\n",
" return x**y\n",
"\n",
"\n",
"@tool\n",
"def add(x: float, y: float) -> float:\n",
" \"\"\"Add 'x' and 'y'.\"\"\"\n",
" return x + y\n",
"\n",
"\n",
"tools = [multiply, exponentiate, add]\n",
"\n",
"gpt35 = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0).bind_tools(tools)\n",
"claude3 = ChatAnthropic(model=\"claude-3-sonnet-20240229\").bind_tools(tools)\n",
"llm_with_tools = gpt35.configurable_alternatives(\n",
" ConfigurableField(id=\"llm\"), default_key=\"gpt35\", claude3=claude3\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9c186263-1b98-4cb2-b6d1-71f65eb0d811",
"metadata": {},
"source": [
"# LangGraph"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "28fc2c60-7dbc-428a-8983-1a6a15ea30d2",
"metadata": {},
"outputs": [],
"source": [
"import operator\n",
"from typing import Annotated, Sequence, TypedDict\n",
"\n",
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langgraph.graph import END, StateGraph\n",
"\n",
"\n",
"class AgentState(TypedDict):\n",
" messages: Annotated[Sequence[BaseMessage], operator.add]\n",
"\n",
"\n",
"def should_continue(state):\n",
" return \"continue\" if state[\"messages\"][-1].tool_calls else \"end\"\n",
"\n",
"\n",
"def call_model(state, config):\n",
" return {\"messages\": [llm_with_tools.invoke(state[\"messages\"], config=config)]}\n",
"\n",
"\n",
"def _invoke_tool(tool_call):\n",
" tool = {tool.name: tool for tool in tools}[tool_call[\"name\"]]\n",
" return ToolMessage(tool.invoke(tool_call[\"args\"]), tool_call_id=tool_call[\"id\"])\n",
"\n",
"\n",
"tool_executor = RunnableLambda(_invoke_tool)\n",
"\n",
"\n",
"def call_tools(state):\n",
" last_message = state[\"messages\"][-1]\n",
" return {\"messages\": tool_executor.batch(last_message.tool_calls)}\n",
"\n",
"\n",
"workflow = StateGraph(AgentState)\n",
"workflow.add_node(\"agent\", call_model)\n",
"workflow.add_node(\"action\", call_tools)\n",
"workflow.set_entry_point(\"agent\")\n",
"workflow.add_conditional_edges(\n",
" \"agent\",\n",
" should_continue,\n",
" {\n",
" \"continue\": \"action\",\n",
" \"end\": END,\n",
" },\n",
")\n",
"workflow.add_edge(\"action\", \"agent\")\n",
"graph = workflow.compile()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3710e724-2595-4625-ba3a-effb81e66e4a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc', 'function': {'arguments': '{\"x\": 8, \"y\": 2.743}', 'name': 'exponentiate'}, 'type': 'function'}, {'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp', 'function': {'arguments': '{\"x\": 17.24, \"y\": -918.1241}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 58, 'prompt_tokens': 168, 'total_tokens': 226}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-528302fc-7acf-4c11-82c4-119ccf40c573-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8, 'y': 2.743}, 'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc'}, {'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp'}]),\n",
" ToolMessage(content='300.03770462067547', tool_call_id='call_6yMU2WsS4Bqgi1WxFHxtfJRc'),\n",
" ToolMessage(content='-900.8841', tool_call_id='call_GAL3dQiKFF9XEV0RrRLPTvVp'),\n",
" AIMessage(content='The result of \\\\(3 + 5^{2.743}\\\\) is approximately 300.04, and the result of \\\\(17.24 - 918.1241\\\\) is approximately -900.88.', response_metadata={'token_usage': {'completion_tokens': 44, 'prompt_tokens': 251, 'total_tokens': 295}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-d1161669-ed09-4b18-94bd-6d8530df5aa8-0')]}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph.invoke(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
" )\n",
" ]\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "073c074e-d722-42e0-85ec-c62c079207e4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
" AIMessage(content=[{'text': \"Okay, let's break this down into two parts:\", 'type': 'text'}, {'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC', 'input': {'x': 3, 'y': 5}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_01AkLGH8sxMHaH15yewmjwkF', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 450, 'output_tokens': 81}}, id='run-f35bfae8-8ded-4f8a-831b-0940d6ad16b6-0', tool_calls=[{'name': 'add', 'args': {'x': 3, 'y': 5}, 'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC'}]),\n",
" ToolMessage(content='8.0', tool_call_id='toolu_01DEhqcXkXTtzJAiZ7uMBeDC'),\n",
" AIMessage(content=[{'id': 'toolu_013DyMLrvnrto33peAKMGMr1', 'input': {'x': 8.0, 'y': 2.743}, 'name': 'exponentiate', 'type': 'tool_use'}], response_metadata={'id': 'msg_015Fmp8aztwYcce2JDAFfce3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 545, 'output_tokens': 75}}, id='run-48aaeeeb-a1e5-48fd-a57a-6c3da2907b47-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8.0, 'y': 2.743}, 'id': 'toolu_013DyMLrvnrto33peAKMGMr1'}]),\n",
" ToolMessage(content='300.03770462067547', tool_call_id='toolu_013DyMLrvnrto33peAKMGMr1'),\n",
" AIMessage(content=[{'text': 'So 3 plus 5 raised to the 2.743 power is 300.04.\\n\\nFor the second part:', 'type': 'text'}, {'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46', 'input': {'x': 17.24, 'y': -918.1241}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_015TkhfRBENPib2RWAxkieH6', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 638, 'output_tokens': 105}}, id='run-45fb62e3-d102-4159-881d-241c5dbadeed-0', tool_calls=[{'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46'}]),\n",
" ToolMessage(content='-900.8841', tool_call_id='toolu_01UTmMrGTmLpPrPCF1rShN46'),\n",
" AIMessage(content='Therefore, 17.24 - 918.1241 = -900.8841', response_metadata={'id': 'msg_01LgKnRuUcSyADCpxv9tPoYD', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 759, 'output_tokens': 24}}, id='run-1008254e-ccd1-497c-8312-9550dd77bd08-0')]}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph.invoke(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
" )\n",
" ]\n",
" },\n",
" config={\"configurable\": {\"llm\": \"claude3\"}},\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -3811,7 +3811,7 @@
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},

View File

@@ -424,7 +424,7 @@
" DialogueAgentWithTools(\n",
" name=name,\n",
" system_message=SystemMessage(content=system_message),\n",
" model=ChatOpenAI(model_name=\"gpt-4\", temperature=0.2),\n",
" model=ChatOpenAI(model=\"gpt-4\", temperature=0.2),\n",
" tool_names=tools,\n",
" top_k_results=2,\n",
" )\n",

View File

@@ -0,0 +1,174 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Video Captioning\n",
"This notebook shows how to use VideoCaptioningChain, which is implemented using Langchain's ImageCaptionLoader and AssemblyAI to produce .srt files.\n",
"\n",
"This system autogenerates both subtitles and closed captions from a video URL."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installing Dependencies"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# !pip install ffmpeg-python\n",
"# !pip install assemblyai\n",
"# !pip install opencv-python\n",
"# !pip install torch\n",
"# !pip install pillow\n",
"# !pip install transformers\n",
"# !pip install langchain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-30T03:39:14.078232Z",
"start_time": "2023-11-30T03:39:12.534410Z"
}
},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"from langchain.chains.video_captioning import VideoCaptioningChain\n",
"from langchain.chat_models.openai import ChatOpenAI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setting up API Keys"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2023-11-30T03:39:17.423806Z",
"start_time": "2023-11-30T03:39:17.417945Z"
}
},
"outputs": [],
"source": [
"OPENAI_API_KEY = getpass.getpass(\"OpenAI API Key:\")\n",
"\n",
"ASSEMBLYAI_API_KEY = getpass.getpass(\"AssemblyAI API Key:\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Required parameters:**\n",
"\n",
"* llm: The language model this chain will use to get suggestions on how to refine the closed-captions\n",
"* assemblyai_key: The API key for AssemblyAI, used to generate the subtitles\n",
"\n",
"**Optional Parameters:**\n",
"\n",
"* verbose (Default: True): Sets verbose mode for downstream chain calls\n",
"* use_logging (Default: True): Log the chain's processes in run manager\n",
"* frame_skip (Default: None): Choose how many video frames to skip during processing. Increasing it results in faster execution, but less accurate results. If None, frame skip is calculated manually based on the framerate Set this to 0 to sample all frames\n",
"* image_delta_threshold (Default: 3000000): Set the sensitivity for what the image processor considers a change in scenery in the video, used to delimit closed captions. Higher = less sensitive\n",
"* closed_caption_char_limit (Default: 20): Sets the character limit on closed captions\n",
"* closed_caption_similarity_threshold (Default: 80): Sets the percentage value to how similar two closed caption models should be in order to be clustered into one longer closed caption\n",
"* use_unclustered_video_models (Default: False): If true, closed captions that could not be clustered will be included. May result in spontaneous behaviour from closed captions such as very short lasting captions or fast-changing captions. Enabling this is experimental and not recommended"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# https://ia804703.us.archive.org/27/items/uh-oh-here-we-go-again/Uh-Oh%2C%20Here%20we%20go%20again.mp4\n",
"# https://ia601200.us.archive.org/9/items/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb.mp4\n",
"\n",
"chain = VideoCaptioningChain(\n",
" llm=ChatOpenAI(model=\"gpt-4\", max_tokens=4000, openai_api_key=OPENAI_API_KEY),\n",
" assemblyai_key=ASSEMBLYAI_API_KEY,\n",
")\n",
"\n",
"srt_content = chain.run(\n",
" video_file_path=\"https://ia601200.us.archive.org/9/items/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb.mp4\"\n",
")\n",
"\n",
"print(srt_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Writing output to .srt file"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"with open(\"output.srt\", \"w\") as file:\n",
" file.write(srt_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "myenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -601,7 +601,7 @@
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)"
]
},
{

View File

@@ -4,14 +4,14 @@
# ATTENTION: When adding a service below use a non-standard port
# increment by one from the preceding port.
# For credentials always use `langchain` and `langchain` for the
# username and password.
# username and password.
version: "3"
name: langchain-tests
services:
redis:
image: redis/redis-stack-server:latest
# We use non standard ports since
# We use non standard ports since
# these instances are used for testing
# and users may already have existing
# redis instances set up locally
@@ -73,6 +73,11 @@ services:
retries: 60
volumes:
- postgres_data_pgvector:/var/lib/postgresql/data
vdms:
image: intellabs/vdms:latest
container_name: vdms_container
ports:
- "6025:55555"
volumes:
postgres_data:

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -241,7 +241,6 @@ Dependents stats for `langchain-ai/langchain`
|[alejandro-ao/langchain-ask-pdf](https://github.com/alejandro-ao/langchain-ask-pdf) | 514 |
|[sajjadium/ctf-archives](https://github.com/sajjadium/ctf-archives) | 507 |
|[continuum-llms/chatgpt-memory](https://github.com/continuum-llms/chatgpt-memory) | 502 |
|[llmOS/opencopilot](https://github.com/llmOS/opencopilot) | 495 |
|[steamship-core/steamship-langchain](https://github.com/steamship-core/steamship-langchain) | 494 |
|[mpaepper/content-chatbot](https://github.com/mpaepper/content-chatbot) | 493 |
|[langchain-ai/langchain-aiplugin](https://github.com/langchain-ai/langchain-aiplugin) | 492 |
@@ -455,7 +454,6 @@ Dependents stats for `langchain-ai/langchain`
|[Teahouse-Studios/akari-bot](https://github.com/Teahouse-Studios/akari-bot) | 149 |
|[realminchoi/babyagi-ui](https://github.com/realminchoi/babyagi-ui) | 148 |
|[ssheng/BentoChain](https://github.com/ssheng/BentoChain) | 148 |
|[lmstudio-ai/examples](https://github.com/lmstudio-ai/examples) | 147 |
|[solana-labs/chatgpt-plugin](https://github.com/solana-labs/chatgpt-plugin) | 147 |
|[aurelio-labs/arxiv-bot](https://github.com/aurelio-labs/arxiv-bot) | 147 |
|[Jaseci-Labs/jaseci](https://github.com/Jaseci-Labs/jaseci) | 146 |

View File

@@ -21,10 +21,10 @@
### Featured courses on Deeplearning.AI
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
- [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
- [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
- [Build LLM Apps with LangChain.js](https://learn.deeplearning.ai/courses/build-llm-apps-with-langchain-js)
- [LangChain for LLM Application Development](https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/)
- [LangChain Chat with Your Data](https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/)
- [Functions, Tools and Agents with LangChain](https://www.deeplearning.ai/short-courses/functions-tools-agents-langchain/)
- [Build LLM Apps with LangChain.js](https://www.deeplearning.ai/short-courses/build-llm-apps-with-langchain-js/)
### Online courses

View File

@@ -7,7 +7,7 @@
### Introduction to LangChain with Harrison Chase, creator of LangChain
- [Building the Future with LLMs, `LangChain`, & `Pinecone`](https://youtu.be/nMniwlGyX-c) by [Pinecone](https://www.youtube.com/@pinecone-io)
- [LangChain and Weaviate with Harrison Chase and Bob van Luijt - Weaviate Podcast #36](https://youtu.be/lhby7Ql7hbk) by [Weaviate • Vector Database](https://www.youtube.com/@Weaviate)
- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@FullStackDeepLearning)
- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@The_Full_Stack)
- [LangChain Agents: Build Personal Assistants For Your Data (Q&A with Harrison Chase and Mayo Oshin)](https://youtu.be/gVkF8cwfBLI) by [Chat with data](https://www.youtube.com/@chatwithdata)
## Videos (sorted by views)
@@ -15,8 +15,8 @@
- [Using `ChatGPT` with YOUR OWN Data. This is magical. (LangChain OpenAI API)](https://youtu.be/9AXP7tCI9PI) by [TechLead](https://www.youtube.com/@TechLead)
- [First look - `ChatGPT` + `WolframAlpha` (`GPT-3.5` and Wolfram|Alpha via LangChain by James Weaver)](https://youtu.be/wYGbY811oMo) by [Dr Alan D. Thompson](https://www.youtube.com/@DrAlanDThompson)
- [LangChain explained - The hottest new Python framework](https://youtu.be/RoR4XJw8wIc) by [AssemblyAI](https://www.youtube.com/@AssemblyAI)
- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DaveShap)
- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DaveShap)
- [Build your own LLM Apps with LangChain & `GPT-Index`](https://youtu.be/-75p09zFUJY) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [`BabyAGI` - New System of Autonomous AI Agents with LangChain](https://youtu.be/lg3kJvf1kXo) by [1littlecoder](https://www.youtube.com/@1littlecoder)
- [Run `BabyAGI` with Langchain Agents (with Python Code)](https://youtu.be/WosPGHPObx8) by [1littlecoder](https://www.youtube.com/@1littlecoder)
@@ -37,15 +37,15 @@
- [Building AI LLM Apps with LangChain (and more?) - LIVE STREAM](https://www.youtube.com/live/M-2Cj_2fzWI?feature=share) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
- [`ChatGPT` with any `YouTube` video using langchain and `chromadb`](https://youtu.be/TQZfB2bzVwU) by [echohive](https://www.youtube.com/@echohive)
- [How to Talk to a `PDF` using LangChain and `ChatGPT`](https://youtu.be/v2i1YDtrIwk) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@merksworld)
- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nick_daigs)
- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@heymichaeldaigler)
- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nickdaigler)
- [LangChain. Crear aplicaciones Python impulsadas por GPT](https://youtu.be/DkW_rDndts8) by [Jesús Conde](https://www.youtube.com/@0utKast)
- [Easiest Way to Use GPT In Your Products | LangChain Basics Tutorial](https://youtu.be/fLy0VenZyGc) by [Rachel Woods](https://www.youtube.com/@therachelwoods)
- [`BabyAGI` + `GPT-4` Langchain Agent with Internet Access](https://youtu.be/wx1z_hs5P6E) by [tylerwhatsgood](https://www.youtube.com/@tylerwhatsgood)
- [Learning LLM Agents. How does it actually work? LangChain, AutoGPT & OpenAI](https://youtu.be/mb_YAABSplk) by [Arnoldas Kemeklis](https://www.youtube.com/@processusAI)
- [Get Started with LangChain in `Node.js`](https://youtu.be/Wxx1KUWJFv4) by [Developers Digest](https://www.youtube.com/@DevelopersDigest)
- [LangChain + `OpenAI` tutorial: Building a Q&A system w/ own text data](https://youtu.be/DYOU_Z0hAwo) by [Samuel Chan](https://www.youtube.com/@SamuelChan)
- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@merksworld)
- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@heymichaeldaigler)
- [Connecting the Internet with `ChatGPT` (LLMs) using Langchain And Answers Your Questions](https://youtu.be/9Y0TBC63yZg) by [Kamalraj M M](https://www.youtube.com/@insightbuilder)
- [Build More Powerful LLM Applications for Businesss with LangChain (Beginners Guide)](https://youtu.be/sp3-WLKEcBg) by[ No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
- [LangFlow LLM Agent Demo for 🦜🔗LangChain](https://youtu.be/zJxDHaWt-6o) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
@@ -82,7 +82,7 @@
- [Build a LangChain-based Semantic PDF Search App with No-Code Tools Bubble and Flowise](https://youtu.be/s33v5cIeqA4) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
- [LangChain Memory Tutorial | Building a ChatGPT Clone in Python](https://youtu.be/Cwq91cj2Pnc) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
- [ChatGPT For Your DATA | Chat with Multiple Documents Using LangChain](https://youtu.be/TeDgIDqQmzs) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@merksworld)
- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@heymichaeldaigler)
- [Using OpenAI, LangChain, and `Gradio` to Build Custom GenAI Applications](https://youtu.be/1MsmqMg3yUc) by [David Hundley](https://www.youtube.com/@dkhundley)
- [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
- [Build AI chatbot with custom knowledge base using OpenAI API and GPT Index](https://youtu.be/vDZAZuaXf48) by [Irina Nik](https://www.youtube.com/@irina_nik)
@@ -93,7 +93,7 @@
- [Build a Custom Chatbot with OpenAI: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU) by [Fabrikod](https://www.youtube.com/@fabrikod)
- [`Flowise` is an open-source no-code UI visual tool to build 🦜🔗LangChain applications](https://youtu.be/CovAPtQPU0k) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
- [LangChain & GPT 4 For Data Analysis: The `Pandas` Dataframe Agent](https://youtu.be/rFQ5Kmkd4jc) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Toolfinder AI](https://www.youtube.com/@toolfinderai)
- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Girlfriend GPT](https://www.youtube.com/@girlfriendGPT)
- [How to build with Langchain 10x easier | ⛓️ LangFlow & `Flowise`](https://youtu.be/Ya1oGL7ZTvU) by [AI Jason](https://www.youtube.com/@AIJasonZ)
- [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg) by [Krish Naik](https://www.youtube.com/@krishnaik06)
- ⛓ [Vector Embeddings Tutorial Code Your Own AI Assistant with `GPT-4 API` + LangChain + NLP](https://youtu.be/yfHHvmaMkcA?si=5uJhxoh2tvdnOXok) by [FreeCodeCamp.org](https://www.youtube.com/@freecodecamp)
@@ -109,7 +109,7 @@
- ⛓ [PyData Heidelberg #11 - TimeSeries Forecasting & LLM Langchain](https://www.youtube.com/live/Glbwb5Hxu18?si=PIEY8Raq_C9PCHuW) by [PyData](https://www.youtube.com/@PyDataTV)
- ⛓ [Prompt Engineering in Web Development | Using LangChain and Templates with OpenAI](https://youtu.be/pK6WzlTOlYw?si=fkcDQsBG2h-DM8uQ) by [Akamai Developer
](https://www.youtube.com/@AkamaiDeveloper)
- ⛓ [Retrieval-Augmented Generation (RAG) using LangChain and `Pinecone` - The RAG Special Episode](https://youtu.be/J_tCD_J6w3s?si=60Mnr5VD9UED9bGG) by [Generative AI and Data Science On AWS](https://www.youtube.com/@GenerativeAIDataScienceOnAWS)
- ⛓ [Retrieval-Augmented Generation (RAG) using LangChain and `Pinecone` - The RAG Special Episode](https://youtu.be/J_tCD_J6w3s?si=60Mnr5VD9UED9bGG) by [Generative AI and Data Science On AWS](https://www.youtube.com/@GenerativeAIOnAWS)
- ⛓ [`LLAMA2 70b-chat` Multiple Documents Chatbot with Langchain & Streamlit |All OPEN SOURCE|Replicate API](https://youtu.be/vhghB81vViM?si=dszzJnArMeac7lyc) by [DataInsightEdge](https://www.youtube.com/@DataInsightEdge01)
- ⛓ [Chatting with 44K Fashion Products: LangChain Opportunities and Pitfalls](https://youtu.be/Zudgske0F_s?si=8HSshHoEhh0PemJA) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
- ⛓ [Structured Data Extraction from `ChatGPT` with LangChain](https://youtu.be/q1lYg8JISpQ?si=0HctzOHYZvq62sve) by [MG](https://www.youtube.com/@MG_cafe)

View File

@@ -98,7 +98,7 @@ To run unit tests in Docker:
make docker_tests
```
There are also [integration tests and code-coverage](./testing) available.
There are also [integration tests and code-coverage](/docs/contributing/testing/) available.
### Only develop langchain_core or langchain_experimental

View File

@@ -0,0 +1,2 @@
label: 'Documentation'
position: 3

View File

@@ -0,0 +1,138 @@
---
sidebar_label: "Style guide"
---
# LangChain Documentation Style Guide
## Introduction
As LangChain continues to grow, the surface area of documentation required to cover it continues to grow too.
This page provides guidelines for anyone writing documentation for LangChain, as well as some of our philosophies around
organization and structure.
## Philosophy
LangChain's documentation aspires to follow the [Diataxis framework](https://diataxis.fr).
Under this framework, all documentation falls under one of four categories:
- **Tutorials**: Lessons that take the reader by the hand through a series of conceptual steps to complete a project.
- An example of this is our [LCEL streaming guide](/docs/expression_language/streaming).
- Our guides on [custom components](/docs/modules/model_io/chat/custom_chat_model) is another one.
- **How-to guides**: Guides that take the reader through the steps required to solve a real-world problem.
- The clearest examples of this are our [Use case](/docs/use_cases/) quickstart pages.
- **Reference**: Technical descriptions of the machinery and how to operate it.
- Our [Runnable interface](/docs/expression_language/interface) page is an example of this.
- The [API reference pages](https://api.python.langchain.com/) are another.
- **Explanation**: Explanations that clarify and illuminate a particular topic.
- The [LCEL primitives pages](/docs/expression_language/primitives/sequence) are an example of this.
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
## Taxonomy
Keeping the above in mind, we have sorted LangChain's docs into categories. It is helpful to think in these terms
when contributing new documentation:
### Getting started
The [getting started section](/docs/get_started/introduction) includes a high-level introduction to LangChain, a quickstart that
tours LangChain's various features, and logistical instructions around installation and project setup.
It contains elements of **How-to guides** and **Explanations**.
### Use cases
[Use cases](/docs/use_cases/) are guides that are meant to show how to use LangChain to accomplish a specific task (RAG, information extraction, etc.).
The quickstarts should be good entrypoints for first-time LangChain developers who prefer to learn by getting something practical prototyped,
then taking the pieces apart retrospectively. These should mirror what LangChain is good at.
The quickstart pages here should fit the **How-to guide** category, with the other pages intended to be **Explanations** of more
in-depth concepts and strategies that accompany the main happy paths.
:::note
The below sections are listed roughly in order of increasing level of abstraction.
:::
### Expression Language
[LangChain Expression Language (LCEL)](/docs/expression_language/) is the fundamental way that most LangChain components fit together, and this section is designed to teach
developers how to use it to build with LangChain's primitives effectively.
This section should contains **Tutorials** that teach how to stream and use LCEL primitives for more abstract tasks, **Explanations** of specific behaviors,
and some **References** for how to use different methods in the Runnable interface.
### Components
The [components section](/docs/modules) covers concepts one level of abstraction higher than LCEL.
Abstract base classes like `BaseChatModel` and `BaseRetriever` should be covered here, as well as core implementations of these base classes,
such as `ChatPromptTemplate` and `RecursiveCharacterTextSplitter`. Customization guides belong here too.
This section should contain mostly conceptual **Tutorials**, **References**, and **Explanations** of the components they cover.
:::note
As a general rule of thumb, everything covered in the `Expression Language` and `Components` sections (with the exception of the `Composition` section of components) should
cover only components that exist in `langchain_core`.
:::
### Integrations
The [integrations](/docs/integrations/platforms/) are specific implementations of components. These often involve third-party APIs and services.
If this is the case, as a general rule, these are maintained by the third-party partner.
This section should contain mostly **Explanations** and **References**, though the actual content here is more flexible than other sections and more at the
discretion of the third-party provider.
:::note
Concepts covered in `Integrations` should generally exist in `langchain_community` or specific partner packages.
:::
### Guides and Ecosystem
The [Guides](/docs/guides) and [Ecosystem](/docs/langsmith/) sections should contain guides that address higher-level problems than the sections above.
This includes, but is not limited to, considerations around productionization and development workflows.
These should contain mostly **How-to guides**, **Explanations**, and **Tutorials**.
### API references
LangChain's API references. Should act as **References** (as the name implies) with some **Explanation**-focused content as well.
## Sample developer journey
We have set up our docs to assist a new developer to LangChain. Let's walk through the intended path:
- The developer lands on https://python.langchain.com, and reads through the introduction and the diagram.
- If they are just curious, they may be drawn to the [Quickstart](/docs/get_started/quickstart) to get a high-level tour of what LangChain contains.
- If they have a specific task in mind that they want to accomplish, they will be drawn to the Use-Case section. The use-case should provide a good, concrete hook that shows the value LangChain can provide them and be a good entrypoint to the framework.
- They can then move to learn more about the fundamentals of LangChain through the Expression Language sections.
- Next, they can learn about LangChain's various components and integrations.
- Finally, they can get additional knowledge through the Guides.
This is only an ideal of course - sections will inevitably reference lower or higher-level concepts that are documented in other sections.
## Guidelines
Here are some other guidelines you should think about when writing and organizing documentation.
### Linking to other sections
Because sections of the docs do not exist in a vacuum, it is important to link to other sections as often as possible
to allow a developer to learn more about an unfamiliar topic inline.
This includes linking to the API references as well as conceptual sections!
### Conciseness
In general, take a less-is-more approach. If a section with a good explanation of a concept already exists, you should link to it rather than
re-explain it, unless the concept you are documenting presents some new wrinkle.
Be concise, including in code samples.
### General style
- Use active voice and present tense whenever possible.
- Use examples and code snippets to illustrate concepts and usage.
- Use appropriate header levels (`#`, `##`, `###`, etc.) to organize the content hierarchically.
- Use bullet points and numbered lists to break down information into easily digestible chunks.
- Use tables (especially for **Reference** sections) and diagrams often to present information visually.
- Include the table of contents for longer documentation pages to help readers navigate the content, but hide it for shorter pages.

View File

@@ -1,7 +1,4 @@
---
sidebar_position: 3
---
# Contribute Documentation
# Technical logistics
LangChain documentation consists of two components:

View File

@@ -12,7 +12,7 @@ As an open-source project in a rapidly developing field, we are extremely open t
There are many ways to contribute to LangChain. Here are some common ways people contribute:
- [**Documentation**](./documentation.mdx): Help improve our docs, including this one!
- [**Documentation**](/docs/contributing/documentation/style_guide): Help improve our docs, including this one!
- [**Code**](./code.mdx): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](integrations.mdx): Help us integrate with your favorite vendors and tools.
- [**Discussions**](https://github.com/langchain-ai/langchain/discussions): Help answer usage questions and discuss issues with users.

View File

@@ -3,7 +3,7 @@ sidebar_position: 5
---
# Contribute Integrations
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](./code).
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](/docs/contributing/code/).
There are a few different places you can contribute integrations for LangChain:
@@ -14,19 +14,20 @@ For the most part, new integrations should be added to the Community package. Pa
In the following sections, we'll walk through how to contribute to each of these packages from a fake company, `Parrot Link AI`.
## Community Package
## Community package
The `langchain-community` package is in `libs/community` and contains most integrations.
It is installed by users with `pip install langchain-community`, and exported members can be imported with code like
It can be installed with `pip install langchain-community`, and exported members can be imported with code like
```python
from langchain_community.chat_models import ParrotLinkLLM
from langchain_community.llms import ChatParrotLink
from langchain_community.chat_models import ChatParrotLink
from langchain_community.llms import ParrotLinkLLM
from langchain_community.vectorstores import ParrotLinkVectorStore
```
The community package relies on manually-installed dependent packages, so you will see errors if you try to import a package that is not installed. In our fake example, if you tried to import `ParrotLinkLLM` without installing `parrot-link-sdk`, you will see an `ImportError` telling you to install it when trying to use it.
The `community` package relies on manually-installed dependent packages, so you will see errors
if you try to import a package that is not installed. In our fake example, if you tried to import `ParrotLinkLLM` without installing `parrot-link-sdk`, you will see an `ImportError` telling you to install it when trying to use it.
Let's say we wanted to implement a chat model for Parrot Link AI. We would create a new file in `libs/community/langchain_community/chat_models/parrot_link.py` with the following code:
@@ -39,7 +40,7 @@ class ChatParrotLink(BaseChatModel):
Example:
.. code-block:: python
from langchain_parrot_link import ChatParrotLink
from langchain_community.chat_models import ChatParrotLink
model = ChatParrotLink()
"""
@@ -56,9 +57,16 @@ And add documentation to:
- `docs/docs/integrations/chat/parrot_link.ipynb`
## Partner Packages
## Partner package in LangChain repo
Partner packages are in `libs/partners/*` and are installed by users with `pip install langchain-{partner}`, and exported members can be imported with code like
Partner packages can be hosted in the `LangChain` monorepo or in an external repo.
Partner package in the `LangChain` repo is placed in `libs/partners/{partner}`
and the package source code is in `libs/partners/{partner}/langchain_{partner}`.
A package is
installed by users with `pip install langchain-{partner}`, and the package members
can be imported with code like:
```python
from langchain_{partner} import X
@@ -123,13 +131,49 @@ By default, this will include stubs for a Chat Model, an LLM, and/or a Vector St
### Write Unit and Integration Tests
Some basic tests are generated in the tests/ directory. You should add more tests to cover your package's functionality.
Some basic tests are presented in the `tests/` directory. You should add more tests to cover your package's functionality.
For information on running and implementing tests, see the [Testing guide](./testing).
For information on running and implementing tests, see the [Testing guide](/docs/contributing/testing/).
### Write documentation
Documentation is generated from Jupyter notebooks in the `docs/` directory. You should move the generated notebooks to the relevant `docs/docs/integrations` directory in the monorepo root.
Documentation is generated from Jupyter notebooks in the `docs/` directory. You should place the notebooks with examples
to the relevant `docs/docs/integrations` directory in the monorepo root.
### (If Necessary) Deprecate community integration
Note: this is only necessary if you're migrating an existing community integration into
a partner package. If the component you're integrating is net-new to LangChain (i.e.
not already in the `community` package), you can skip this step.
Let's pretend we migrated our `ChatParrotLink` chat model from the community package to
the partner package. We would need to deprecate the old model in the community package.
We would do that by adding a `@deprecated` decorator to the old model as follows, in
`libs/community/langchain_community/chat_models/parrot_link.py`.
Before our change, our chat model might look like this:
```python
class ChatParrotLink(BaseChatModel):
...
```
After our change, it would look like this:
```python
from langchain_core._api.deprecation import deprecated
@deprecated(
since="0.0.<next community version>",
removal="0.2.0",
alternative_import="langchain_parrot_link.ChatParrotLink"
)
class ChatParrotLink(BaseChatModel):
...
```
You should do this for *each* component that you're migrating to the partner package.
### Additional steps
@@ -143,3 +187,12 @@ Maintainer steps (Contributors should **not** do these):
- [ ] set up pypi and test pypi projects
- [ ] add credential secrets to Github Actions
- [ ] add package to conda-forge
## Partner package in external repo
Partner packages in external repos must be coordinated between the LangChain team and
the partner organization to ensure that they are maintained and updated.
If you're interested in creating a partner package in an external repo, please start
with one in the LangChain repo, and then reach out to the LangChain team to discuss
how to move it to an external repo.

View File

@@ -41,7 +41,7 @@ There are other files in the root directory level, but their presence should be
The `/docs` directory contains the content for the documentation that is shown
at https://python.langchain.com/ and the associated API Reference https://api.python.langchain.com/en/latest/langchain_api_reference.html.
See the [documentation](./documentation) guidelines to learn how to contribute to the documentation.
See the [documentation](/docs/contributing/documentation/style_guide) guidelines to learn how to contribute to the documentation.
## Code

View File

@@ -1,205 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e89f490d",
"metadata": {},
"source": [
"# Agents\n",
"\n",
"You can pass a Runnable into an agent. Make sure you have `langchainhub` installed: `pip install langchainhub`"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "af4381de",
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, tool\n",
"from langchain.agents.output_parsers import XMLAgentOutputParser\n",
"from langchain_community.chat_models import ChatAnthropic"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "24cc8134",
"metadata": {},
"outputs": [],
"source": [
"model = ChatAnthropic(model=\"claude-2\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "67c0b0e4",
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def search(query: str) -> str:\n",
" \"\"\"Search things about current events.\"\"\"\n",
" return \"32 degrees\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7203b101",
"metadata": {},
"outputs": [],
"source": [
"tool_list = [search]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b68e756d",
"metadata": {},
"outputs": [],
"source": [
"# Get the prompt to use - you can modify this!\n",
"prompt = hub.pull(\"hwchase17/xml-agent-convo\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "61ab3e9a",
"metadata": {},
"outputs": [],
"source": [
"# Logic for going from intermediate steps to a string to pass into model\n",
"# This is pretty tied to the prompt\n",
"def convert_intermediate_steps(intermediate_steps):\n",
" log = \"\"\n",
" for action, observation in intermediate_steps:\n",
" log += (\n",
" f\"<tool>{action.tool}</tool><tool_input>{action.tool_input}\"\n",
" f\"</tool_input><observation>{observation}</observation>\"\n",
" )\n",
" return log\n",
"\n",
"\n",
"# Logic for converting tools to string to go in prompt\n",
"def convert_tools(tools):\n",
" return \"\\n\".join([f\"{tool.name}: {tool.description}\" for tool in tools])"
]
},
{
"cell_type": "markdown",
"id": "260f5988",
"metadata": {},
"source": [
"Building an agent from a runnable usually involves a few things:\n",
"\n",
"1. Data processing for the intermediate steps. These need to be represented in a way that the language model can recognize them. This should be pretty tightly coupled to the instructions in the prompt\n",
"\n",
"2. The prompt itself\n",
"\n",
"3. The model, complete with stop tokens if needed\n",
"\n",
"4. The output parser - should be in sync with how the prompt specifies things to be formatted."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e92f1d6f",
"metadata": {},
"outputs": [],
"source": [
"agent = (\n",
" {\n",
" \"input\": lambda x: x[\"input\"],\n",
" \"agent_scratchpad\": lambda x: convert_intermediate_steps(\n",
" x[\"intermediate_steps\"]\n",
" ),\n",
" }\n",
" | prompt.partial(tools=convert_tools(tool_list))\n",
" | model.bind(stop=[\"</tool_input>\", \"</final_answer>\"])\n",
" | XMLAgentOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "6ce6ec7a",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor(agent=agent, tools=tool_list, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "fb5cb2e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m <tool>search</tool><tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m <tool>search</tool>\n",
"<tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m <final_answer>The weather in New York is 32 degrees\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'input': 'whats the weather in New york?',\n",
" 'output': 'The weather in New York is 32 degrees'}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.invoke({\"input\": \"whats the weather in New york?\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bce86dd8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,5 +1,15 @@
{
"cells": [
{
"cell_type": "raw",
"id": "1e997ab7",
"metadata": {},
"source": [
"---\n",
"sidebar_class_name: hidden\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "f09fd305",

View File

@@ -1,163 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cf4fb76d-c534-485b-8b51-a0714ee3b82e",
"metadata": {},
"source": [
"# Routing by semantic similarity\n",
"\n",
"With LCEL you can easily add [custom routing logic](/docs/expression_language/how_to/routing#using-a-custom-function) to your chain to dynamically determine the chain logic based on user input. All you need to do is define a function that given an input returns a `Runnable`.\n",
"\n",
"One especially useful technique is to use embeddings to route a query to the most relevant prompt. Here's a very simple example."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b793a0aa",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "eef9020a-5f7c-4291-98eb-fa73f17d4b92",
"metadata": {},
"outputs": [],
"source": [
"from langchain.utils.math import cosine_similarity\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",
"When you don't know the answer to a question you admit that you don't know.\n",
"\n",
"Here is a question:\n",
"{query}\"\"\"\n",
"\n",
"math_template = \"\"\"You are a very good mathematician. You are great at answering math questions. \\\n",
"You are so good because you are able to break down hard problems into their component parts, \\\n",
"answer the component parts, and then put them together to answer the broader question.\n",
"\n",
"Here is a question:\n",
"{query}\"\"\"\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"prompt_templates = [physics_template, math_template]\n",
"prompt_embeddings = embeddings.embed_documents(prompt_templates)\n",
"\n",
"\n",
"def prompt_router(input):\n",
" query_embedding = embeddings.embed_query(input[\"query\"])\n",
" similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]\n",
" most_similar = prompt_templates[similarity.argmax()]\n",
" print(\"Using MATH\" if most_similar == math_template else \"Using PHYSICS\")\n",
" return PromptTemplate.from_template(most_similar)\n",
"\n",
"\n",
"chain = (\n",
" {\"query\": RunnablePassthrough()}\n",
" | RunnableLambda(prompt_router)\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4d22b0f3-24f2-4a47-9440-065b57ebcdbd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using PHYSICS\n",
"A black hole is a region in space where gravity is extremely strong, so strong that nothing, not even light, can escape its gravitational pull. It is formed when a massive star collapses under its own gravity during a supernova explosion. The collapse causes an incredibly dense mass to be concentrated in a small volume, creating a gravitational field that is so intense that it warps space and time. Black holes have a boundary called the event horizon, which marks the point of no return for anything that gets too close. Beyond the event horizon, the gravitational pull is so strong that even light cannot escape, hence the name \"black hole.\" While we have a good understanding of black holes, there is still much to learn, especially about what happens inside them.\n"
]
}
],
"source": [
"print(chain.invoke(\"What's a black hole\"))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f261910d-1de1-4a01-8c8a-308db02b81de",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using MATH\n",
"Thank you for your kind words! I will do my best to break down the concept of a path integral for you.\n",
"\n",
"In mathematics and physics, a path integral is a mathematical tool used to calculate the probability amplitude or wave function of a particle or system of particles. It was introduced by Richard Feynman and is an integral over all possible paths that a particle can take to go from an initial state to a final state.\n",
"\n",
"To understand the concept better, let's consider an example. Suppose we have a particle moving from point A to point B in space. Classically, we would describe this particle's motion using a definite trajectory, but in quantum mechanics, particles can simultaneously take multiple paths from A to B.\n",
"\n",
"The path integral formalism considers all possible paths that the particle could take and assigns a probability amplitude to each path. These probability amplitudes are then added up, taking into account the interference effects between different paths.\n",
"\n",
"To calculate a path integral, we need to define an action, which is a mathematical function that describes the behavior of the system. The action is usually expressed in terms of the particle's position, velocity, and time.\n",
"\n",
"Once we have the action, we can write down the path integral as an integral over all possible paths. Each path is weighted by a factor determined by the action and the principle of least action, which states that a particle takes a path that minimizes the action.\n",
"\n",
"Mathematically, the path integral is expressed as:\n",
"\n",
"∫ e^(iS/ħ) D[x(t)]\n",
"\n",
"Here, S is the action, ħ is the reduced Planck's constant, and D[x(t)] represents the integration over all possible paths x(t) of the particle.\n",
"\n",
"By evaluating this integral, we can obtain the probability amplitude for the particle to go from the initial state to the final state. The absolute square of this amplitude gives us the probability of finding the particle in a particular state.\n",
"\n",
"Path integrals have proven to be a powerful tool in various areas of physics, including quantum mechanics, quantum field theory, and statistical mechanics. They allow us to study complex systems and calculate probabilities that are difficult to obtain using other methods.\n",
"\n",
"I hope this explanation helps you understand the concept of a path integral. If you have any further questions, feel free to ask!\n"
]
}
],
"source": [
"print(chain.invoke(\"What's a path integral\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0c1732a-01ca-4d10-977c-29ed7480972b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,11 +0,0 @@
---
sidebar_position: 3
---
# Cookbook
import DocCardList from "@theme/DocCardList";
Example code for accomplishing common tasks with the LangChain Expression Language (LCEL). These examples show how to compose different Runnable (the core LCEL interface) components to achieve various tasks. If you're just getting acquainted with LCEL, the [Prompt + LLM](/docs/expression_language/cookbook/prompt_llm_parser) page is a good place to start.
<DocCardList />

View File

@@ -1,194 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "5062941a",
"metadata": {},
"source": [
"# Adding memory\n",
"\n",
"This shows how to add memory to an arbitrary chain. Right now, you can use the memory classes but need to hook it up manually"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18753dee",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7998efd8",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"You are a helpful chatbot\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fa0087f3",
"metadata": {},
"outputs": [],
"source": [
"memory = ConversationBufferMemory(return_messages=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "06b531ae",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'history': []}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"memory.load_memory_variables({})"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d9437af6",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" RunnablePassthrough.assign(\n",
" history=RunnableLambda(memory.load_memory_variables) | itemgetter(\"history\")\n",
" )\n",
" | prompt\n",
" | model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "bed1e260",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, example=False)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inputs = {\"input\": \"hi im bob\"}\n",
"response = chain.invoke(inputs)\n",
"response"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "890475b4",
"metadata": {},
"outputs": [],
"source": [
"memory.save_context(inputs, {\"output\": response.content})"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e8fcb77f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'history': [HumanMessage(content='hi im bob', additional_kwargs={}, example=False),\n",
" AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, example=False)]}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"memory.load_memory_variables({})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d837d5c3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Your name is Bob.', additional_kwargs={}, example=False)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inputs = {\"input\": \"whats my name\"}\n",
"response = chain.invoke(inputs)\n",
"response"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -20,9 +20,11 @@
]
},
{
"cell_type": "raw",
"cell_type": "code",
"id": "0f316b5c",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]

View File

@@ -34,7 +34,7 @@
"from langchain.agents import AgentExecutor, load_tools\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain.tools import WikipediaQueryRun\n",
"from langchain_community.tools import WikipediaQueryRun\n",
"from langchain_community.utilities import WikipediaAPIWrapper\n",
"from langchain_core.prompt_values import ChatPromptValue\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
@@ -220,7 +220,7 @@
"id": "637f994a-5134-402a-bcf0-4de3911eaf49",
"metadata": {},
"source": [
":::tip\n",
":::{.callout-tip}\n",
"\n",
"[LangSmith trace](https://smith.langchain.com/public/60909eae-f4f1-43eb-9f96-354f5176f66f/r)\n",
"\n",
@@ -388,7 +388,7 @@
"id": "5a7e498b-dc68-4267-a35c-90ceffa91c46",
"metadata": {},
"source": [
":::tip\n",
":::{.callout-tip}\n",
"\n",
"[LangSmith trace](https://smith.langchain.com/public/3b27d47f-e4df-4afb-81b1-0f88b80ca97e/r)\n",
"\n",

View File

@@ -1,492 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "abe47592-909c-4844-bf44-9e55c2fb4bfa",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: RAG\n",
"---\n"
]
},
{
"cell_type": "markdown",
"id": "91c5ef3d",
"metadata": {},
"source": [
"Let's look at adding in a retrieval step to a prompt and LLM, which adds up to a \"retrieval-augmented generation\" chain"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7f25d9e9-d192-42e9-af50-5660a4bfb0d9",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "33be32af",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "bfc47ec1",
"metadata": {},
"outputs": [],
"source": [
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"model = ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "eae31755",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f3040b0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Harrison worked at Kensho.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"where did harrison work?\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e1d20c7c",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\n",
"Answer in the following language: {language}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"chain = (\n",
" {\n",
" \"context\": itemgetter(\"question\") | retriever,\n",
" \"question\": itemgetter(\"question\"),\n",
" \"language\": itemgetter(\"language\"),\n",
" }\n",
" | prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7ee8b2d4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Harrison ha lavorato a Kensho.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"question\": \"where did harrison work\", \"language\": \"italian\"})"
]
},
{
"cell_type": "markdown",
"id": "f007669c",
"metadata": {},
"source": [
"## Conversational Retrieval Chain\n",
"\n",
"We can easily add in conversation history. This primarily means adding in chat_message_history"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "3f30c348",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string\n",
"from langchain_core.prompts import format_document\n",
"from langchain_core.runnables import RunnableParallel"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "64ab1dbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"_template = \"\"\"Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\n",
"\n",
"Chat History:\n",
"{chat_history}\n",
"Follow Up Input: {question}\n",
"Standalone question:\"\"\"\n",
"CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7d628c97",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"ANSWER_PROMPT = ChatPromptTemplate.from_template(template)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f60a5d0f",
"metadata": {},
"outputs": [],
"source": [
"DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template=\"{page_content}\")\n",
"\n",
"\n",
"def _combine_documents(\n",
" docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator=\"\\n\\n\"\n",
"):\n",
" doc_strings = [format_document(doc, document_prompt) for doc in docs]\n",
" return document_separator.join(doc_strings)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "5c32cc89",
"metadata": {},
"outputs": [],
"source": [
"_inputs = RunnableParallel(\n",
" standalone_question=RunnablePassthrough.assign(\n",
" chat_history=lambda x: get_buffer_string(x[\"chat_history\"])\n",
" )\n",
" | CONDENSE_QUESTION_PROMPT\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser(),\n",
")\n",
"_context = {\n",
" \"context\": itemgetter(\"standalone_question\") | retriever | _combine_documents,\n",
" \"question\": lambda x: x[\"standalone_question\"],\n",
"}\n",
"conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "135c8205",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Harrison was employed at Kensho.')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversational_qa_chain.invoke(\n",
" {\n",
" \"question\": \"where did harrison work?\",\n",
" \"chat_history\": [],\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "424e7e7a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Harrison worked at Kensho.')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversational_qa_chain.invoke(\n",
" {\n",
" \"question\": \"where did he work?\",\n",
" \"chat_history\": [\n",
" HumanMessage(content=\"Who wrote this notebook?\"),\n",
" AIMessage(content=\"Harrison\"),\n",
" ],\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c5543183",
"metadata": {},
"source": [
"### With Memory and returning source documents\n",
"\n",
"This shows how to use memory with the above. For memory, we need to manage that outside at the memory. For returning the retrieved documents, we just need to pass them through all the way."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e31dd17c",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.memory import ConversationBufferMemory"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "d4bffe94",
"metadata": {},
"outputs": [],
"source": [
"memory = ConversationBufferMemory(\n",
" return_messages=True, output_key=\"answer\", input_key=\"question\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "733be985",
"metadata": {},
"outputs": [],
"source": [
"# First we add a step to load memory\n",
"# This adds a \"memory\" key to the input object\n",
"loaded_memory = RunnablePassthrough.assign(\n",
" chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter(\"history\"),\n",
")\n",
"# Now we calculate the standalone question\n",
"standalone_question = {\n",
" \"standalone_question\": {\n",
" \"question\": lambda x: x[\"question\"],\n",
" \"chat_history\": lambda x: get_buffer_string(x[\"chat_history\"]),\n",
" }\n",
" | CONDENSE_QUESTION_PROMPT\n",
" | ChatOpenAI(temperature=0)\n",
" | StrOutputParser(),\n",
"}\n",
"# Now we retrieve the documents\n",
"retrieved_documents = {\n",
" \"docs\": itemgetter(\"standalone_question\") | retriever,\n",
" \"question\": lambda x: x[\"standalone_question\"],\n",
"}\n",
"# Now we construct the inputs for the final prompt\n",
"final_inputs = {\n",
" \"context\": lambda x: _combine_documents(x[\"docs\"]),\n",
" \"question\": itemgetter(\"question\"),\n",
"}\n",
"# And finally, we do the part that returns the answers\n",
"answer = {\n",
" \"answer\": final_inputs | ANSWER_PROMPT | ChatOpenAI(),\n",
" \"docs\": itemgetter(\"docs\"),\n",
"}\n",
"# And now we put it all together!\n",
"final_chain = loaded_memory | standalone_question | retrieved_documents | answer"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "806e390c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'answer': AIMessage(content='Harrison was employed at Kensho.'),\n",
" 'docs': [Document(page_content='harrison worked at kensho')]}"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inputs = {\"question\": \"where did harrison work?\"}\n",
"result = final_chain.invoke(inputs)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "977399fd",
"metadata": {},
"outputs": [],
"source": [
"# Note that the memory does not save automatically\n",
"# This will be improved in the future\n",
"# For now you need to save it yourself\n",
"memory.save_context(inputs, {\"answer\": result[\"answer\"].content})"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "f94f7de4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'history': [HumanMessage(content='where did harrison work?'),\n",
" AIMessage(content='Harrison was employed at Kensho.')]}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"memory.load_memory_variables({})"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "88f2b7cd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'answer': AIMessage(content='Harrison actually worked at Kensho.'),\n",
" 'docs': [Document(page_content='harrison worked at kensho')]}"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inputs = {\"question\": \"but where did he really work?\"}\n",
"result = final_chain.invoke(inputs)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "207a2782",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,223 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "c14da114-1a4a-487d-9cff-e0e8c30ba366",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 3\n",
"title: Querying a SQL DB\n",
"---\n"
]
},
{
"cell_type": "markdown",
"id": "506e9636",
"metadata": {},
"source": [
"We can replicate our SQLDatabaseChain with Runnables."
]
},
{
"cell_type": "raw",
"id": "b3121aa8",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7a927516",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3f51f386",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabase"
]
},
{
"cell_type": "markdown",
"id": "7c3449d6-684b-416e-ba16-90a035835a88",
"metadata": {},
"source": [
"We'll need the Chinook sample DB for this example. There's many places to download it from, e.g. https://database.guide/2-sample-databases-sqlite/"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "2ccca6fc",
"metadata": {},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///./Chinook.db\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "05ba88ee",
"metadata": {},
"outputs": [],
"source": [
"def get_schema(_):\n",
" return db.get_table_info()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "a4eda902",
"metadata": {},
"outputs": [],
"source": [
"def run_query(query):\n",
" return db.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "5046cb17",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"\n",
"sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | model.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "a5552039",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'SELECT COUNT(*) FROM Employee'"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sql_response.invoke({\"question\": \"How many employees are there?\"})"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "d6fee130",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query: {query}\n",
"SQL Response: {response}\"\"\"\n",
"prompt_response = ChatPromptTemplate.from_template(template)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "923aa634",
"metadata": {},
"outputs": [],
"source": [
"full_chain = (\n",
" RunnablePassthrough.assign(query=sql_response).assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x[\"query\"]),\n",
" )\n",
" | prompt_response\n",
" | model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "e94963d8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='There are 8 employees.', additional_kwargs={}, example=False)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke({\"question\": \"How many employees are there?\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f358d7b-a721-4db3-9f92-f06913428afc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,122 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "29781123",
"metadata": {},
"source": [
"# Using tools\n",
"\n",
"You can use any Tools with Runnables easily."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a5c579dd-2e22-41b0-a789-346dfdecb5a2",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai duckduckgo-search"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9232d2a9",
"metadata": {},
"outputs": [],
"source": [
"from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a0c64d2c",
"metadata": {},
"outputs": [],
"source": [
"search = DuckDuckGoSearchRun()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "391969b6",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"turn the following user input into a search query for a search engine:\n",
"\n",
"{input}\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"model = ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e3d9d20d",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model | StrOutputParser() | search"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "55f2967d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'What sports games are on TV today & tonight? Watch and stream live sports on TV today, tonight, tomorrow. Today\\'s 2023 sports TV schedule includes football, basketball, baseball, hockey, motorsports, soccer and more. Watch on TV or stream online on ESPN, FOX, FS1, CBS, NBC, ABC, Peacock, Paramount+, fuboTV, local channels and many other networks. MLB Games Tonight: How to Watch on TV, Streaming & Odds - Thursday, September 7. Seattle Mariners\\' Julio Rodriguez greets teammates in the dugout after scoring against the Oakland Athletics in a ... Circle - Country Music and Lifestyle. Live coverage of all the MLB action today is available to you, with the information provided below. The Brewers will look to pick up a road win at PNC Park against the Pirates on Wednesday at 12:35 PM ET. Check out the latest odds and with BetMGM Sportsbook. Use bonus code \"GNPLAY\" for special offers! MLB Games Tonight: How to Watch on TV, Streaming & Odds - Tuesday, September 5. Houston Astros\\' Kyle Tucker runs after hitting a double during the fourth inning of a baseball game against the Los Angeles Angels, Sunday, Aug. 13, 2023, in Houston. (AP Photo/Eric Christian Smith) (APMedia) The Houston Astros versus the Texas Rangers is one of ... The second half of tonight\\'s college football schedule still has some good games remaining to watch on your television.. We\\'ve already seen an exciting one when Colorado upset TCU. And we saw some ...'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"I'd like to figure out what games are tonight\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a16949cf-00ea-43c6-a6aa-797ad4f6918d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -40,6 +40,33 @@
"%pip install --upgrade --quiet langchain-core langchain-community langchain-openai"
]
},
{
"cell_type": "markdown",
"id": "c3d54f72",
"metadata": {},
"source": [
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9eed8e8",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
@@ -60,10 +87,8 @@
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
"model = ChatOpenAI(model=\"gpt-4\")\n",
"output_parser = StrOutputParser()\n",
"\n",
"chain = prompt | model | output_parser\n",
@@ -76,15 +101,15 @@
"id": "81c502c5-85ee-4f36-aaf4-d6e350b7792f",
"metadata": {},
"source": [
"Notice this line of this code, where we piece together then different components into a single chain using LCEL:\n",
"Notice this line of the code, where we piece together these different components into a single chain using LCEL:\n",
"\n",
"```\n",
"chain = prompt | model | output_parser\n",
"```\n",
"\n",
"The `|` symbol is similar to a [unix pipe operator](https://en.wikipedia.org/wiki/Pipeline_(Unix)), which chains together the different components feeds the output from one component as input into the next component. \n",
"The `|` symbol is similar to a [unix pipe operator](https://en.wikipedia.org/wiki/Pipeline_(Unix)), which chains together the different components, feeding the output from one component as input into the next component. \n",
"\n",
"In this chain the user input is passed to the prompt template, then the prompt template output is passed to the model, then the model output is passed to the output parser. Let's take a look at each component individually to really understand what's going on. "
"In this chain the user input is passed to the prompt template, then the prompt template output is passed to the model, then the model output is passed to the output parser. Let's take a look at each component individually to really understand what's going on."
]
},
{
@@ -219,7 +244,7 @@
}
],
"source": [
"from langchain_openai.llms import OpenAI\n",
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm.invoke(prompt_value)"
@@ -233,7 +258,7 @@
"### 3. Output parser\n",
"\n",
"And lastly we pass our `model` output to the `output_parser`, which is a `BaseOutputParser` meaning it takes either a string or a \n",
"`BaseMessage` as input. The `StrOutputParser` specifically simple converts any input into a string."
"`BaseMessage` as input. The specific `StrOutputParser` simply converts any input into a string."
]
},
{
@@ -293,7 +318,7 @@
"source": [
":::info\n",
"\n",
"Note that if youre curious about the output of any components, you can always test out a smaller version of the chain such as `prompt` or `prompt | model` to see the intermediate results:\n",
"Note that if youre curious about the output of any components, you can always test out a smaller version of the chain such as `prompt` or `prompt | model` to see the intermediate results:\n",
"\n",
":::"
]
@@ -321,7 +346,17 @@
"source": [
"## RAG Search Example\n",
"\n",
"For our next example, we want to run a retrieval-augmented generation chain to add some context when responding to questions. "
"For our next example, we want to run a retrieval-augmented generation chain to add some context when responding to questions."
]
},
{
"cell_type": "markdown",
"id": "b8fe8eb4",
"metadata": {},
"source": [
"```{=mdx}\n",
"<ChatModelTabs />\n",
"```"
]
},
{
@@ -338,8 +373,7 @@
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"from langchain_openai.chat_models import ChatOpenAI\n",
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_texts(\n",
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
@@ -353,7 +387,6 @@
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"model = ChatOpenAI()\n",
"output_parser = StrOutputParser()\n",
"\n",
"setup_and_retrieval = RunnableParallel(\n",
@@ -407,7 +440,7 @@
"id": "e6833844-f1c4-444c-a3d2-31b3c6b31d46",
"metadata": {},
"source": [
"We then use the `RunnableParallel` to prepare the expected inputs into the prompt by using the entries for the retrieved documents as well as the original user question, using the retriever for document search, and RunnablePassthrough to pass the users question:"
"We then use the `RunnableParallel` to prepare the expected inputs into the prompt by using the entries for the retrieved documents as well as the original user question, using the retriever for document search, and `RunnablePassthrough` to pass the users question:"
]
},
{
@@ -451,7 +484,7 @@
"With the flow being:\n",
"\n",
"1. The first steps create a `RunnableParallel` object with two entries. The first entry, `context` will include the document results fetched by the retriever. The second entry, `question` will contain the users original question. To pass on the question, we use `RunnablePassthrough` to copy this entry. \n",
"2. Feed the dictionary from the step above to the `prompt` component. It then takes the user input which is `question` as well as the retrieved document which is `context` to construct a prompt and output a PromptValue. \n",
"2. Feed the dictionary from the step above to the `prompt` component. It then takes the user input which is `question` as well as the retrieved document which is `context` to construct a prompt and output a PromptValue. \n",
"3. The `model` component takes the generated prompt, and passes into the OpenAI LLM model for evaluation. The generated output from the model is a `ChatMessage` object. \n",
"4. Finally, the `output_parser` component takes in a `ChatMessage`, and transforms this into a Python string, which is returned from the invoke method.\n",
"\n",
@@ -476,7 +509,7 @@
"source": [
"## Next steps\n",
"\n",
"We recommend reading our [Why use LCEL](/docs/expression_language/why) section next to see a side-by-side comparison of the code needed to produce common functionality with and without LCEL."
"We recommend reading our [Advantages of LCEL](/docs/expression_language/why) section next to see a side-by-side comparison of the code needed to produce common functionality with and without LCEL."
]
}
],
@@ -496,7 +529,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.0"
}
},
"nbformat": 4,

View File

@@ -5,9 +5,9 @@
"id": "b45110ef",
"metadata": {},
"source": [
"# Create a runnable with the `@chain` decorator\n",
"# Create a runnable with the @chain decorator\n",
"\n",
"You can also turn an arbitrary function into a chain by adding a `@chain` decorator. This is functionaly equivalent to wrapping in a [`RunnableLambda`](./functions).\n",
"You can also turn an arbitrary function into a chain by adding a `@chain` decorator. This is functionaly equivalent to wrapping in a [`RunnableLambda`](/docs/expression_language/primitives/functions).\n",
"\n",
"This will have the benefit of improved observability by tracing your chain correctly. Any calls to runnables inside this function will be traced as nested childen.\n",
"\n",

View File

@@ -1,310 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "19c9cbd6",
"metadata": {},
"source": [
"# Add fallbacks\n",
"\n",
"There are many possible points of failure in an LLM application, whether that be issues with LLM API's, poor model outputs, issues with other integrations, etc. Fallbacks help you gracefully handle and isolate these issues.\n",
"\n",
"Crucially, fallbacks can be applied not only on the LLM level but on the whole runnable level."
]
},
{
"cell_type": "markdown",
"id": "a6bb9ba9",
"metadata": {},
"source": [
"## Handling LLM API Errors\n",
"\n",
"This is maybe the most common use case for fallbacks. A request to an LLM API can fail for a variety of reasons - the API could be down, you could have hit rate limits, any number of things. Therefore, using fallbacks can help protect against these types of things.\n",
"\n",
"IMPORTANT: By default, a lot of the LLM wrappers catch errors and retry. You will most likely want to turn those off when working with fallbacks. Otherwise the first wrapper will keep on retrying and not failing."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ebb61b1f",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d3e893bf",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "markdown",
"id": "4847c82d",
"metadata": {},
"source": [
"First, let's mock out what happens if we hit a RateLimitError from OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dfdd8bf5",
"metadata": {},
"outputs": [],
"source": [
"from unittest.mock import patch\n",
"\n",
"import httpx\n",
"from openai import RateLimitError\n",
"\n",
"request = httpx.Request(\"GET\", \"/\")\n",
"response = httpx.Response(200, request=request)\n",
"error = RateLimitError(\"rate limit\", response=response, body=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e6fdffc1",
"metadata": {},
"outputs": [],
"source": [
"# Note that we set max_retries = 0 to avoid retrying on RateLimits, etc\n",
"openai_llm = ChatOpenAI(max_retries=0)\n",
"anthropic_llm = ChatAnthropic()\n",
"llm = openai_llm.with_fallbacks([anthropic_llm])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "584461ab",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hit error\n"
]
}
],
"source": [
"# Let's use just the OpenAI LLm first, to show that we run into an error\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(openai_llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except RateLimitError:\n",
" print(\"Hit error\")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "4fc1e673",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=' I don\\'t actually know why the chicken crossed the road, but here are some possible humorous answers:\\n\\n- To get to the other side!\\n\\n- It was too chicken to just stand there. \\n\\n- It wanted a change of scenery.\\n\\n- It wanted to show the possum it could be done.\\n\\n- It was on its way to a poultry farmers\\' convention.\\n\\nThe joke plays on the double meaning of \"the other side\" - literally crossing the road to the other side, or the \"other side\" meaning the afterlife. So it\\'s an anti-joke, with a silly or unexpected pun as the answer.' additional_kwargs={} example=False\n"
]
}
],
"source": [
"# Now let's try with fallbacks to Anthropic\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(llm.invoke(\"Why did the chicken cross the road?\"))\n",
" except RateLimitError:\n",
" print(\"Hit error\")"
]
},
{
"cell_type": "markdown",
"id": "f00bea25",
"metadata": {},
"source": [
"We can use our \"LLM with Fallbacks\" as we would a normal LLM."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4f8eaaa0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\" I don't actually know why the kangaroo crossed the road, but I'm happy to take a guess! Maybe the kangaroo was trying to get to the other side to find some tasty grass to eat. Or maybe it was trying to get away from a predator or other danger. Kangaroos do need to cross roads and other open areas sometimes as part of their normal activities. Whatever the reason, I'm sure the kangaroo looked both ways before hopping across!\" additional_kwargs={} example=False\n"
]
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You're a nice assistant who always includes a compliment in your response\",\n",
" ),\n",
" (\"human\", \"Why did the {animal} cross the road\"),\n",
" ]\n",
")\n",
"chain = prompt | llm\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except RateLimitError:\n",
" print(\"Hit error\")"
]
},
{
"cell_type": "markdown",
"id": "ef9f0f39-0b9f-4723-a394-f61c98c75d41",
"metadata": {},
"source": [
"### Specifying errors to handle\n",
"\n",
"We can also specify the errors to handle if we want to be more specific about when the fallback is invoked:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e4069ca4-1c16-4915-9a8c-b2732869ae27",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hit error\n"
]
}
],
"source": [
"llm = openai_llm.with_fallbacks(\n",
" [anthropic_llm], exceptions_to_handle=(KeyboardInterrupt,)\n",
")\n",
"\n",
"chain = prompt | llm\n",
"with patch(\"openai.resources.chat.completions.Completions.create\", side_effect=error):\n",
" try:\n",
" print(chain.invoke({\"animal\": \"kangaroo\"}))\n",
" except RateLimitError:\n",
" print(\"Hit error\")"
]
},
{
"cell_type": "markdown",
"id": "8d62241b",
"metadata": {},
"source": [
"## Fallbacks for Sequences\n",
"\n",
"We can also create fallbacks for sequences, that are sequences themselves. Here we do that with two different models: ChatOpenAI and then normal OpenAI (which does not use a chat model). Because OpenAI is NOT a chat model, you likely want a different prompt."
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "6d0b8056",
"metadata": {},
"outputs": [],
"source": [
"# First let's create a chain with a ChatModel\n",
"# We add in a string output parser here so the outputs between the two are the same type\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"chat_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You're a nice assistant who always includes a compliment in your response\",\n",
" ),\n",
" (\"human\", \"Why did the {animal} cross the road\"),\n",
" ]\n",
")\n",
"# Here we're going to use a bad model name to easily create a chain that will error\n",
"chat_model = ChatOpenAI(model_name=\"gpt-fake\")\n",
"bad_chain = chat_prompt | chat_model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "8d1fc2a5",
"metadata": {},
"outputs": [],
"source": [
"# Now lets create a chain with the normal OpenAI model\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_openai import OpenAI\n",
"\n",
"prompt_template = \"\"\"Instructions: You should always include a compliment in your response.\n",
"\n",
"Question: Why did the {animal} cross the road?\"\"\"\n",
"prompt = PromptTemplate.from_template(prompt_template)\n",
"llm = OpenAI()\n",
"good_chain = prompt | llm"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "283bfa44",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nAnswer: The turtle crossed the road to get to the other side, and I have to say he had some impressive determination.'"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# We can now create a final chain which combines the two\n",
"chain = bad_chain.with_fallbacks([good_chain])\n",
"chain.invoke({\"animal\": \"turtle\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,206 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "ce0e08fd",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 2\n",
"title: \"RunnableLambda: Run Custom Functions\"\n",
"keywords: [RunnableLambda, LCEL]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "fbc4bf6e",
"metadata": {},
"source": [
"# Run custom functions\n",
"\n",
"You can use arbitrary functions in the pipeline.\n",
"\n",
"Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single input and unpacks it into multiple argument."
]
},
{
"cell_type": "raw",
"id": "9a5fe916",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6bb221b3",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"def length_function(text):\n",
" return len(text)\n",
"\n",
"\n",
"def _multiple_length_function(text1, text2):\n",
" return len(text1) * len(text2)\n",
"\n",
"\n",
"def multiple_length_function(_dict):\n",
" return _multiple_length_function(_dict[\"text1\"], _dict[\"text2\"])\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n",
"model = ChatOpenAI()\n",
"\n",
"chain1 = prompt | model\n",
"\n",
"chain = (\n",
" {\n",
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",
" \"b\": {\"text1\": itemgetter(\"foo\"), \"text2\": itemgetter(\"bar\")}\n",
" | RunnableLambda(multiple_length_function),\n",
" }\n",
" | prompt\n",
" | model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5488ec85",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='3 + 9 equals 12.')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bar\", \"bar\": \"gah\"})"
]
},
{
"cell_type": "markdown",
"id": "4728ddd9-914d-42ce-ae9b-72c9ce8ec940",
"metadata": {},
"source": [
"## Accepting a Runnable Config\n",
"\n",
"Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig), which they can use to pass callbacks, tags, and other configuration information to nested runs."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "80b3b5f6-5d58-44b9-807e-cce9a46bf49f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableConfig"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ff0daf0c-49dd-4d21-9772-e5fa133c5f36",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"def parse_or_fix(text: str, config: RunnableConfig):\n",
" fixing_chain = (\n",
" ChatPromptTemplate.from_template(\n",
" \"Fix the following text:\\n\\n```text\\n{input}\\n```\\nError: {error}\"\n",
" \" Don't narrate, just respond with the fixed data.\"\n",
" )\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
" )\n",
" for _ in range(3):\n",
" try:\n",
" return json.loads(text)\n",
" except Exception as e:\n",
" text = fixing_chain.invoke({\"input\": text, \"error\": e}, config)\n",
" return \"Failed to parse\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1a5e709e-9d75-48c7-bb9c-503251990505",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'foo': 'bar'}\n",
"Tokens Used: 65\n",
"\tPrompt Tokens: 56\n",
"\tCompletion Tokens: 9\n",
"Successful Requests: 1\n",
"Total Cost (USD): $0.00010200000000000001\n"
]
}
],
"source": [
"from langchain.callbacks import get_openai_callback\n",
"\n",
"with get_openai_callback() as cb:\n",
" output = RunnableLambda(parse_or_fix).invoke(\n",
" \"{foo: bar}\", {\"tags\": [\"my-tag\"], \"callbacks\": [cb]}\n",
" )\n",
" print(output)\n",
" print(cb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29f55c38",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,9 +0,0 @@
---
sidebar_position: 2
---
# How to
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -30,9 +30,9 @@
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings"
]
},

View File

@@ -552,7 +552,7 @@
"id": "da3d1feb-b4bb-4624-961c-7db2e1180df7",
"metadata": {},
"source": [
":::tip\n",
":::{.callout-tip}\n",
"\n",
"[Langsmith trace](https://smith.langchain.com/public/bd73e122-6ec1-48b2-82df-e6483dc9cb63/r)\n",
"\n",

View File

@@ -7,7 +7,7 @@
"source": [
"---\n",
"sidebar_position: 3\n",
"title: \"RunnableBranch: Dynamically route logic based on input\"\n",
"title: \"Route logic based on input\"\n",
"keywords: [RunnableBranch, LCEL]\n",
"---"
]
@@ -25,7 +25,7 @@
"\n",
"There are two ways to perform routing:\n",
"\n",
"1. Conditionally return runnables from a [`RunnableLambda`](./functions) (recommended)\n",
"1. Conditionally return runnables from a [`RunnableLambda`](/docs/expression_language/primitives/functions) (recommended)\n",
"2. Using a `RunnableBranch`.\n",
"\n",
"We'll illustrate both methods using a two step sequence where the first step classifies an input question as being about `LangChain`, `Anthropic`, or `Other`, then routes to a corresponding prompt chain."
@@ -42,22 +42,23 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "8a8a1967",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' Anthropic'"
"'Anthropic'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_anthropic import ChatAnthropic\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
@@ -73,7 +74,7 @@
"\n",
"Classification:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
" | ChatAnthropic(model_name=\"claude-3-haiku-20240307\")\n",
" | StrOutputParser()\n",
")\n",
"\n",
@@ -90,42 +91,33 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "89d7722d",
"metadata": {},
"outputs": [],
"source": [
"langchain_chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"You are an expert in langchain. \\\n",
"langchain_chain = PromptTemplate.from_template(\n",
" \"\"\"You are an expert in langchain. \\\n",
"Always answer questions starting with \"As Harrison Chase told me\". \\\n",
"Respond to the following question:\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
")\n",
"anthropic_chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"You are an expert in anthropic. \\\n",
") | ChatAnthropic(model_name=\"claude-3-haiku-20240307\")\n",
"anthropic_chain = PromptTemplate.from_template(\n",
" \"\"\"You are an expert in anthropic. \\\n",
"Always answer questions starting with \"As Dario Amodei told me\". \\\n",
"Respond to the following question:\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
")\n",
"general_chain = (\n",
" PromptTemplate.from_template(\n",
" \"\"\"Respond to the following question:\n",
") | ChatAnthropic(model_name=\"claude-3-haiku-20240307\")\n",
"general_chain = PromptTemplate.from_template(\n",
" \"\"\"Respond to the following question:\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\"\n",
" )\n",
" | ChatAnthropic()\n",
")"
") | ChatAnthropic(model_name=\"claude-3-haiku-20240307\")"
]
},
{
@@ -140,7 +132,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 4,
"id": "687492da",
"metadata": {},
"outputs": [],
@@ -156,7 +148,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 5,
"id": "02a33c86",
"metadata": {},
"outputs": [],
@@ -170,17 +162,17 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 6,
"id": "c2e977a4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' As Dario Amodei told me, to use Anthropic IPC you first need to import it:\\n\\n```python\\nfrom anthroipc import ic\\n```\\n\\nThen you can create a client and connect to the server:\\n\\n```python \\nclient = ic.connect()\\n```\\n\\nAfter that, you can call methods on the client and get responses:\\n\\n```python\\nresponse = client.ask(\"What is the meaning of life?\")\\nprint(response)\\n```\\n\\nYou can also register callbacks to handle events: \\n\\n```python\\ndef on_poke(event):\\n print(\"Got poked!\")\\n\\nclient.on(\\'poke\\', on_poke)\\n```\\n\\nAnd that\\'s the basics of using the Anthropic IPC client library for Python! Let me know if you have any other questions!', additional_kwargs={}, example=False)"
"AIMessage(content=\"As Dario Amodei told me, to use Anthropic, you can start by exploring the company's website and learning about their mission, values, and the different services and products they offer. Anthropic is focused on developing safe and ethical AI systems, so they have a strong emphasis on transparency and responsible AI development. \\n\\nDepending on your specific needs, you can look into Anthropic's AI research and development services, which cover areas like natural language processing, computer vision, and reinforcement learning. They also offer consulting and advisory services to help organizations navigate the challenges and opportunities of AI integration.\\n\\nAdditionally, Anthropic has released some open-source AI models and tools that you can explore and experiment with. These can be a great way to get hands-on experience with Anthropic's approach to AI development.\\n\\nOverall, Anthropic aims to be a reliable and trustworthy partner in the AI space, so I'd encourage you to reach out to them directly to discuss how they can best support your specific requirements.\", response_metadata={'id': 'msg_01CtLFgFSwvTaJomrihE87Ra', 'content': [ContentBlock(text=\"As Dario Amodei told me, to use Anthropic, you can start by exploring the company's website and learning about their mission, values, and the different services and products they offer. Anthropic is focused on developing safe and ethical AI systems, so they have a strong emphasis on transparency and responsible AI development. \\n\\nDepending on your specific needs, you can look into Anthropic's AI research and development services, which cover areas like natural language processing, computer vision, and reinforcement learning. They also offer consulting and advisory services to help organizations navigate the challenges and opportunities of AI integration.\\n\\nAdditionally, Anthropic has released some open-source AI models and tools that you can explore and experiment with. These can be a great way to get hands-on experience with Anthropic's approach to AI development.\\n\\nOverall, Anthropic aims to be a reliable and trustworthy partner in the AI space, so I'd encourage you to reach out to them directly to discuss how they can best support your specific requirements.\", type='text')], 'model': 'claude-3-haiku-20240307', 'role': 'assistant', 'stop_reason': 'end_turn', 'stop_sequence': None, 'type': 'message', 'usage': Usage(input_tokens=53, output_tokens=219)})"
]
},
"execution_count": 12,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -191,17 +183,17 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 7,
"id": "48913dc6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' As Harrison Chase told me, to use LangChain you first need to sign up for an API key at platform.langchain.com. Once you have your API key, you can install the Python library and write a simple Python script to call the LangChain API. Here is some sample code to get started:\\n\\n```python\\nimport langchain\\n\\napi_key = \"YOUR_API_KEY\"\\n\\nlangchain.set_key(api_key)\\n\\nresponse = langchain.ask(\"What is the capital of France?\")\\n\\nprint(response.response)\\n```\\n\\nThis will send the question \"What is the capital of France?\" to the LangChain API and print the response. You can customize the request by providing parameters like max_tokens, temperature, etc. The LangChain Python library documentation has more details on the available options. The key things are getting an API key and calling langchain.ask() with your question text. Let me know if you have any other questions!', additional_kwargs={}, example=False)"
"AIMessage(content=\"As Harrison Chase told me, using LangChain involves a few key steps:\\n\\n1. **Set up your environment**: Install the necessary Python packages, including the LangChain library itself, as well as any other dependencies your application might require, such as language models or other integrations.\\n\\n2. **Understand the core concepts**: LangChain revolves around a few core concepts, like Agents, Chains, and Tools. Familiarize yourself with these concepts and how they work together to build powerful language-based applications.\\n\\n3. **Identify your use case**: Determine what kind of task or application you want to build using LangChain, such as a chatbot, a question-answering system, or a document summarization tool.\\n\\n4. **Choose the appropriate components**: Based on your use case, select the right LangChain components, such as agents, chains, and tools, to build your application.\\n\\n5. **Integrate with language models**: LangChain is designed to work seamlessly with various language models, such as OpenAI's GPT-3 or Anthropic's models. Connect your chosen language model to your LangChain application.\\n\\n6. **Implement your application logic**: Use LangChain's building blocks to implement the specific functionality of your application, such as prompting the language model, processing the response, and integrating with other services or data sources.\\n\\n7. **Test and iterate**: Thoroughly test your application, gather feedback, and iterate on your design and implementation to improve its performance and user experience.\\n\\nAs Harrison Chase emphasized, LangChain provides a flexible and powerful framework for building language-based applications, making it easier to leverage the capabilities of modern language models. By following these steps, you can get started with LangChain and create innovative solutions tailored to your specific needs.\", response_metadata={'id': 'msg_01H3UXAAHG4TwxJLpxwuuVU7', 'content': [ContentBlock(text=\"As Harrison Chase told me, using LangChain involves a few key steps:\\n\\n1. **Set up your environment**: Install the necessary Python packages, including the LangChain library itself, as well as any other dependencies your application might require, such as language models or other integrations.\\n\\n2. **Understand the core concepts**: LangChain revolves around a few core concepts, like Agents, Chains, and Tools. Familiarize yourself with these concepts and how they work together to build powerful language-based applications.\\n\\n3. **Identify your use case**: Determine what kind of task or application you want to build using LangChain, such as a chatbot, a question-answering system, or a document summarization tool.\\n\\n4. **Choose the appropriate components**: Based on your use case, select the right LangChain components, such as agents, chains, and tools, to build your application.\\n\\n5. **Integrate with language models**: LangChain is designed to work seamlessly with various language models, such as OpenAI's GPT-3 or Anthropic's models. Connect your chosen language model to your LangChain application.\\n\\n6. **Implement your application logic**: Use LangChain's building blocks to implement the specific functionality of your application, such as prompting the language model, processing the response, and integrating with other services or data sources.\\n\\n7. **Test and iterate**: Thoroughly test your application, gather feedback, and iterate on your design and implementation to improve its performance and user experience.\\n\\nAs Harrison Chase emphasized, LangChain provides a flexible and powerful framework for building language-based applications, making it easier to leverage the capabilities of modern language models. By following these steps, you can get started with LangChain and create innovative solutions tailored to your specific needs.\", type='text')], 'model': 'claude-3-haiku-20240307', 'role': 'assistant', 'stop_reason': 'end_turn', 'stop_sequence': None, 'type': 'message', 'usage': Usage(input_tokens=50, output_tokens=400)})"
]
},
"execution_count": 13,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -212,17 +204,17 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 8,
"id": "a14d0dca",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' 4', additional_kwargs={}, example=False)"
"AIMessage(content='4', response_metadata={'id': 'msg_01UAKP81jTZu9fyiyFYhsbHc', 'content': [ContentBlock(text='4', type='text')], 'model': 'claude-3-haiku-20240307', 'role': 'assistant', 'stop_reason': 'end_turn', 'stop_sequence': None, 'type': 'message', 'usage': Usage(input_tokens=28, output_tokens=5)})"
]
},
"execution_count": 14,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -249,18 +241,19 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"id": "2a101418",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" As Dario Amodei told me, here are some ways to use Anthropic:\\n\\n- Sign up for an account on Anthropic's website to access tools like Claude, Constitutional AI, and Writer. \\n\\n- Use Claude for tasks like email generation, customer service chat, and QA. Claude can understand natural language prompts and provide helpful responses.\\n\\n- Use Constitutional AI if you need an AI assistant that is harmless, honest, and helpful. It is designed to be safe and aligned with human values.\\n\\n- Use Writer to generate natural language content for things like marketing copy, stories, reports, and more. Give it a topic and prompt and it will create high-quality written content.\\n\\n- Check out Anthropic's documentation and blog for tips, tutorials, examples, and announcements about new capabilities as they continue to develop their AI technology.\\n\\n- Follow Anthropic on social media or subscribe to their newsletter to stay up to date on new features and releases.\\n\\n- For most people, the easiest way to leverage Anthropic's technology is through their website - just create an account to get started!\", additional_kwargs={}, example=False)"
"AIMessage(content=\"As Dario Amodei told me, to use Anthropic, you should first familiarize yourself with our mission and principles. Anthropic is committed to developing safe and beneficial artificial intelligence that can help solve important problems facing humanity. \\n\\nTo get started, I recommend exploring the resources on our website, which cover our research, products, and approach to AI development. You can also reach out to our team to learn more about how Anthropic's technology and services can support your specific needs.\\n\\nThe key is to engage with us in a way that aligns with our values of transparency, ethical AI, and a commitment to the wellbeing of humanity. We're here to collaborate and help you harness the power of advanced AI responsibly.\", response_metadata={'id': 'msg_0187BVnpniPDJnVvwf3M1LdY', 'content': [ContentBlock(text=\"As Dario Amodei told me, to use Anthropic, you should first familiarize yourself with our mission and principles. Anthropic is committed to developing safe and beneficial artificial intelligence that can help solve important problems facing humanity. \\n\\nTo get started, I recommend exploring the resources on our website, which cover our research, products, and approach to AI development. You can also reach out to our team to learn more about how Anthropic's technology and services can support your specific needs.\\n\\nThe key is to engage with us in a way that aligns with our values of transparency, ethical AI, and a commitment to the wellbeing of humanity. We're here to collaborate and help you harness the power of advanced AI responsibly.\", type='text')], 'model': 'claude-3-haiku-20240307', 'role': 'assistant', 'stop_reason': 'end_turn', 'stop_sequence': None, 'type': 'message', 'usage': Usage(input_tokens=53, output_tokens=160)})"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
@@ -277,18 +270,19 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"id": "8d8caf9b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' As Harrison Chase told me, here is how you use LangChain:\\n\\nLangChain is an AI assistant that can have conversations, answer questions, and generate text. To use LangChain, you simply type or speak your input and LangChain will respond. \\n\\nYou can ask LangChain questions, have discussions, get summaries or explanations about topics, and request it to generate text on a subject. Some examples of interactions:\\n\\n- Ask general knowledge questions and LangChain will try to answer factually. For example \"What is the capital of France?\"\\n\\n- Have conversations on topics by taking turns speaking. You can prompt the start of a conversation by saying something like \"Let\\'s discuss machine learning\"\\n\\n- Ask for summaries or high-level explanations on subjects. For example \"Can you summarize the main themes in Shakespeare\\'s Hamlet?\" \\n\\n- Give creative writing prompts or requests to have LangChain generate text in different styles. For example \"Write a short children\\'s story about a mouse\" or \"Generate a poem in the style of Robert Frost about nature\"\\n\\n- Correct LangChain if it makes an inaccurate statement and provide the right information. This helps train it.\\n\\nThe key is interacting naturally and giving it clear prompts and requests', additional_kwargs={}, example=False)"
"AIMessage(content=\"As Harrison Chase told me, using LangChain involves several key steps. First, you'll need to install the LangChain library and import the necessary modules. Then, you'll want to define your language model, any data sources you plan to use, and the specific tasks you want to accomplish, such as question answering, text generation, or agent-based reasoning. \\n\\nLangChain provides a flexible framework for building applications that leverage large language models. It includes abstractions for things like retrievers, prompts, and chains, which allow you to compose different components together to create powerful workflows. \\n\\nThe documentation on the LangChain website is excellent and covers many common use cases in detail. I'd recommend starting there to get a solid understanding of the core concepts and how to apply them to your specific needs. And of course, feel free to reach out if you have any other questions - I'm always happy to share more insights from my conversations with Harrison.\", response_metadata={'id': 'msg_01T1naS99wGPkEAP4LME8iAv', 'content': [ContentBlock(text=\"As Harrison Chase told me, using LangChain involves several key steps. First, you'll need to install the LangChain library and import the necessary modules. Then, you'll want to define your language model, any data sources you plan to use, and the specific tasks you want to accomplish, such as question answering, text generation, or agent-based reasoning. \\n\\nLangChain provides a flexible framework for building applications that leverage large language models. It includes abstractions for things like retrievers, prompts, and chains, which allow you to compose different components together to create powerful workflows. \\n\\nThe documentation on the LangChain website is excellent and covers many common use cases in detail. I'd recommend starting there to get a solid understanding of the core concepts and how to apply them to your specific needs. And of course, feel free to reach out if you have any other questions - I'm always happy to share more insights from my conversations with Harrison.\", type='text')], 'model': 'claude-3-haiku-20240307', 'role': 'assistant', 'stop_reason': 'end_turn', 'stop_sequence': None, 'type': 'message', 'usage': Usage(input_tokens=50, output_tokens=205)})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
@@ -297,23 +291,150 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 11,
"id": "26159af7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' 2 + 2 = 4', additional_kwargs={}, example=False)"
"AIMessage(content='4', response_metadata={'id': 'msg_01T6T3TS6hRCtU8JayN93QEi', 'content': [ContentBlock(text='4', type='text')], 'model': 'claude-3-haiku-20240307', 'role': 'assistant', 'stop_reason': 'end_turn', 'stop_sequence': None, 'type': 'message', 'usage': Usage(input_tokens=28, output_tokens=5)})"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke({\"question\": \"whats 2 + 2\"})"
]
},
{
"cell_type": "markdown",
"id": "fa0f589d",
"metadata": {},
"source": [
"# Routing by semantic similarity\n",
"\n",
"One especially useful technique is to use embeddings to route a query to the most relevant prompt. Here's an example."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a23457d7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.utils.math import cosine_similarity\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",
"When you don't know the answer to a question you admit that you don't know.\n",
"\n",
"Here is a question:\n",
"{query}\"\"\"\n",
"\n",
"math_template = \"\"\"You are a very good mathematician. You are great at answering math questions. \\\n",
"You are so good because you are able to break down hard problems into their component parts, \\\n",
"answer the component parts, and then put them together to answer the broader question.\n",
"\n",
"Here is a question:\n",
"{query}\"\"\"\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"prompt_templates = [physics_template, math_template]\n",
"prompt_embeddings = embeddings.embed_documents(prompt_templates)\n",
"\n",
"\n",
"def prompt_router(input):\n",
" query_embedding = embeddings.embed_query(input[\"query\"])\n",
" similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]\n",
" most_similar = prompt_templates[similarity.argmax()]\n",
" print(\"Using MATH\" if most_similar == math_template else \"Using PHYSICS\")\n",
" return PromptTemplate.from_template(most_similar)\n",
"\n",
"\n",
"chain = (\n",
" {\"query\": RunnablePassthrough()}\n",
" | RunnableLambda(prompt_router)\n",
" | ChatAnthropic(model_name=\"claude-3-haiku-20240307\")\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "664bb851",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using PHYSICS\n",
"As a physics professor, I would be happy to provide a concise and easy-to-understand explanation of what a black hole is.\n",
"\n",
"A black hole is an incredibly dense region of space-time where the gravitational pull is so strong that nothing, not even light, can escape from it. This means that if you were to get too close to a black hole, you would be pulled in and crushed by the intense gravitational forces.\n",
"\n",
"The formation of a black hole occurs when a massive star, much larger than our Sun, reaches the end of its life and collapses in on itself. This collapse causes the matter to become extremely dense, and the gravitational force becomes so strong that it creates a point of no return, known as the event horizon.\n",
"\n",
"Beyond the event horizon, the laws of physics as we know them break down, and the intense gravitational forces create a singularity, which is a point of infinite density and curvature in space-time.\n",
"\n",
"Black holes are fascinating and mysterious objects, and there is still much to be learned about their properties and behavior. If I were unsure about any specific details or aspects of black holes, I would readily admit that I do not have a complete understanding and would encourage further research and investigation.\n"
]
}
],
"source": [
"print(chain.invoke(\"What's a black hole\"))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "df34e469",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using MATH\n",
"A path integral is a powerful mathematical concept in physics, particularly in the field of quantum mechanics. It was developed by the renowned physicist Richard Feynman as an alternative formulation of quantum mechanics.\n",
"\n",
"In a path integral, instead of considering a single, definite path that a particle might take from one point to another, as in classical mechanics, the particle is considered to take all possible paths simultaneously. Each path is assigned a complex-valued weight, and the total probability amplitude for the particle to go from one point to another is calculated by summing (integrating) over all possible paths.\n",
"\n",
"The key ideas behind the path integral formulation are:\n",
"\n",
"1. Superposition principle: In quantum mechanics, particles can exist in a superposition of multiple states or paths simultaneously.\n",
"\n",
"2. Probability amplitude: The probability amplitude for a particle to go from one point to another is calculated by summing the complex-valued weights of all possible paths.\n",
"\n",
"3. Weighting of paths: Each path is assigned a weight based on the action (the time integral of the Lagrangian) along that path. Paths with lower action have a greater weight.\n",
"\n",
"4. Feynman's approach: Feynman developed the path integral formulation as an alternative to the traditional wave function approach in quantum mechanics, providing a more intuitive and conceptual understanding of quantum phenomena.\n",
"\n",
"The path integral approach is particularly useful in quantum field theory, where it provides a powerful framework for calculating transition probabilities and understanding the behavior of quantum systems. It has also found applications in various areas of physics, such as condensed matter, statistical mechanics, and even in finance (the path integral approach to option pricing).\n",
"\n",
"The mathematical construction of the path integral involves the use of advanced concepts from functional analysis and measure theory, making it a powerful and sophisticated tool in the physicist's arsenal.\n"
]
}
],
"source": [
"print(chain.invoke(\"What's a path integral\"))"
]
},
{
"cell_type": "markdown",
"id": "927b7498",
"metadata": {},
"source": []
}
],
"metadata": {
@@ -332,7 +453,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -7,27 +7,27 @@ sidebar_class_name: hidden
LangChain Expression Language, or LCEL, is a declarative way to easily compose chains together.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
**Streaming support**
[**First-class streaming support**](/docs/expression_language/streaming)
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
**Async support**
[**Async support**](/docs/expression_language/interface)
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langsmith) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
**Optimized parallel execution**
[**Optimized parallel execution**](/docs/expression_language/primitives/parallel)
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
**Retries and fallbacks**
[**Retries and fallbacks**](/docs/guides/productionization/fallbacks)
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
**Access intermediate results**
[**Access intermediate results**](/docs/expression_language/interface#async-stream-events-beta)
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
**Input and output schemas**
[**Input and output schemas**](/docs/expression_language/interface#input-schema)
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
**Seamless LangSmith tracing integration**
[**Seamless LangSmith tracing**](/docs/langsmith)
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](/docs/langsmith/) for maximum observability and debuggability.
**Seamless LangServe deployment integration**
[**Seamless LangServe deployment**](/docs/langserve)
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).

View File

@@ -7,7 +7,7 @@
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Interface\n",
"title: Runnable interface\n",
"---"
]
},
@@ -16,7 +16,8 @@
"id": "9a9acd2e",
"metadata": {},
"source": [
"To make it as easy as possible to create custom chains, we've implemented a [\"Runnable\"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. The `Runnable` protocol is implemented for most components. \n",
"To make it as easy as possible to create custom chains, we've implemented a [\"Runnable\"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about [in this section](/docs/expression_language/primitives).\n",
"\n",
"This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way. \n",
"The standard interface includes:\n",
"\n",
@@ -24,7 +25,7 @@
"- [`invoke`](#invoke): call the chain on an input\n",
"- [`batch`](#batch): call the chain on a list of inputs\n",
"\n",
"These also have corresponding async methods:\n",
"These also have corresponding async methods that should be used with [asyncio](https://docs.python.org/3/library/asyncio.html) `await` syntax for concurrency:\n",
"\n",
"- [`astream`](#async-stream): stream back chunks of the response async\n",
"- [`ainvoke`](#async-invoke): call the chain on an input async\n",
@@ -52,9 +53,11 @@
]
},
{
"cell_type": "raw",
"cell_type": "code",
"execution_count": null,
"id": "57768739",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain-community langchain-openai"
]

View File

@@ -0,0 +1,180 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 6\n",
"title: \"Assign: Add values to state\"\n",
"keywords: [RunnablePassthrough, assign, LCEL]\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adding values to chain state\n",
"\n",
"The `RunnablePassthrough.assign(...)` static method takes an input value and adds the extra arguments passed to the assign function.\n",
"\n",
"This is useful when additively creating a dictionary to use as input to a later step, which is a common LCEL pattern.\n",
"\n",
"Here's an example:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 24.0 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'extra': {'num': 1, 'mult': 3}, 'modified': 2}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",
"runnable = RunnableParallel(\n",
" extra=RunnablePassthrough.assign(mult=lambda x: x[\"num\"] * 3),\n",
" modified=lambda x: x[\"num\"] + 1,\n",
")\n",
"\n",
"runnable.invoke({\"num\": 1})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's break down what's happening here.\n",
"\n",
"- The input to the chain is `{\"num\": 1}`. This is passed into a `RunnableParallel`, which invokes the runnables it is passed in parallel with that input.\n",
"- The value under the `extra` key is invoked. `RunnablePassthrough.assign()` keeps the original keys in the input dict (`{\"num\": 1}`), and assigns a new key called `mult`. The value is `lambda x: x[\"num\"] * 3)`, which is `3`. Thus, the result is `{\"num\": 1, \"mult\": 3}`.\n",
"- `{\"num\": 1, \"mult\": 3}` is returned to the `RunnableParallel` call, and is set as the value to the key `extra`.\n",
"- At the same time, the `modified` key is called. The result is `2`, since the lambda extracts a key called `\"num\"` from its input and adds one.\n",
"\n",
"Thus, the result is `{'extra': {'num': 1, 'mult': 3}, 'modified': 2}`.\n",
"\n",
"## Streaming\n",
"\n",
"One nice feature of this method is that it allows values to pass through as soon as they are available. To show this off, we'll use `RunnablePassthrough.assign()` to immediately return source docs in a retrieval chain:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'question': 'where did harrison work?'}\n",
"{'context': [Document(page_content='harrison worked at kensho')]}\n",
"{'output': ''}\n",
"{'output': 'H'}\n",
"{'output': 'arrison'}\n",
"{'output': ' worked'}\n",
"{'output': ' at'}\n",
"{'output': ' Kens'}\n",
"{'output': 'ho'}\n",
"{'output': '.'}\n",
"{'output': ''}\n"
]
}
],
"source": [
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
"\n",
"vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"model = ChatOpenAI()\n",
"\n",
"generation_chain = prompt | model | StrOutputParser()\n",
"\n",
"retrieval_chain = {\n",
" \"context\": retriever,\n",
" \"question\": RunnablePassthrough(),\n",
"} | RunnablePassthrough.assign(output=generation_chain)\n",
"\n",
"stream = retrieval_chain.stream(\"where did harrison work?\")\n",
"\n",
"for chunk in stream:\n",
" print(chunk)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that the first chunk contains the original `\"question\"` since that is immediately available. The second chunk contains `\"context\"` since the retriever finishes second. Finally, the output from the `generation_chain` streams in chunks as soon as it is available."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,13 +1,25 @@
{
"cells": [
{
"cell_type": "raw",
"id": "fe63ffaf",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 2\n",
"title: \"Binding: Attach runtime args\"\n",
"keywords: [RunnableBinding, LCEL]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "711752cb-4f15-42a3-9838-a0c67f397771",
"metadata": {},
"source": [
"# Bind runtime args\n",
"# Binding: Attach runtime args\n",
"\n",
"Sometimes we want to invoke a Runnable within a Runnable sequence with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use `Runnable.bind()` to easily pass these arguments in.\n",
"Sometimes we want to invoke a Runnable within a Runnable sequence with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use `Runnable.bind()` to pass these arguments in.\n",
"\n",
"Suppose we have a simple prompt + model sequence:"
]

View File

@@ -1,5 +1,17 @@
{
"cells": [
{
"cell_type": "raw",
"id": "9ede5870",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 7\n",
"title: \"Configure runtime chain internals\"\n",
"keywords: [ConfigurableField, configurable_fields, ConfigurableAlternatives, configurable_alternatives, LCEL]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "39eaf61b",

View File

@@ -1,10 +1,184 @@
{
"cells": [
{
"cell_type": "markdown",
"cell_type": "raw",
"id": "ce0e08fd",
"metadata": {},
"source": [
"# Stream custom generator functions\n",
"---\n",
"sidebar_position: 3\n",
"title: \"Lambda: Run custom functions\"\n",
"keywords: [RunnableLambda, LCEL]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "fbc4bf6e",
"metadata": {},
"source": [
"# Run custom functions\n",
"\n",
"You can use arbitrary functions in the pipeline.\n",
"\n",
"Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single input and unpacks it into multiple argument."
]
},
{
"cell_type": "raw",
"id": "9a5fe916",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6bb221b3",
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"def length_function(text):\n",
" return len(text)\n",
"\n",
"\n",
"def _multiple_length_function(text1, text2):\n",
" return len(text1) * len(text2)\n",
"\n",
"\n",
"def multiple_length_function(_dict):\n",
" return _multiple_length_function(_dict[\"text1\"], _dict[\"text2\"])\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n",
"model = ChatOpenAI()\n",
"\n",
"chain1 = prompt | model\n",
"\n",
"chain = (\n",
" {\n",
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",
" \"b\": {\"text1\": itemgetter(\"foo\"), \"text2\": itemgetter(\"bar\")}\n",
" | RunnableLambda(multiple_length_function),\n",
" }\n",
" | prompt\n",
" | model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5488ec85",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='3 + 9 = 12', response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 14, 'total_tokens': 21}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-bd204541-81fd-429a-ad92-dd1913af9b1c-0')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bar\", \"bar\": \"gah\"})"
]
},
{
"cell_type": "markdown",
"id": "4728ddd9-914d-42ce-ae9b-72c9ce8ec940",
"metadata": {},
"source": [
"## Accepting a Runnable Config\n",
"\n",
"Runnable lambdas can optionally accept a [RunnableConfig](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig), which they can use to pass callbacks, tags, and other configuration information to nested runs."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "80b3b5f6-5d58-44b9-807e-cce9a46bf49f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableConfig"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ff0daf0c-49dd-4d21-9772-e5fa133c5f36",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"def parse_or_fix(text: str, config: RunnableConfig):\n",
" fixing_chain = (\n",
" ChatPromptTemplate.from_template(\n",
" \"Fix the following text:\\n\\n```text\\n{input}\\n```\\nError: {error}\"\n",
" \" Don't narrate, just respond with the fixed data.\"\n",
" )\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
" )\n",
" for _ in range(3):\n",
" try:\n",
" return json.loads(text)\n",
" except Exception as e:\n",
" text = fixing_chain.invoke({\"input\": text, \"error\": e}, config)\n",
" return \"Failed to parse\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1a5e709e-9d75-48c7-bb9c-503251990505",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'foo': 'bar'}\n",
"Tokens Used: 62\n",
"\tPrompt Tokens: 56\n",
"\tCompletion Tokens: 6\n",
"Successful Requests: 1\n",
"Total Cost (USD): $9.6e-05\n"
]
}
],
"source": [
"from langchain_community.callbacks import get_openai_callback\n",
"\n",
"with get_openai_callback() as cb:\n",
" output = RunnableLambda(parse_or_fix).invoke(\n",
" \"{foo: bar}\", {\"tags\": [\"my-tag\"], \"callbacks\": [cb]}\n",
" )\n",
" print(output)\n",
" print(cb)"
]
},
{
"cell_type": "markdown",
"id": "922b48bd",
"metadata": {},
"source": [
"# Streaming\n",
"\n",
"You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a LCEL pipeline.\n",
"\n",
@@ -14,39 +188,20 @@
"- implementing a custom output parser\n",
"- modifying the output of a previous step, while preserving streaming capabilities\n",
"\n",
"Let's implement a custom output parser for comma-separated lists."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sync version"
"Here's an example of a custom output parser for comma-separated lists:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 6,
"id": "29f55c38",
"metadata": {},
"outputs": [],
"source": [
"from typing import Iterator, List\n",
"\n",
"from langchain.prompts.chat import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",
" \"Write a comma-separated list of 5 animals similar to: {animal}. Do not include numbers\"\n",
")\n",
"model = ChatOpenAI(temperature=0.0)\n",
"\n",
@@ -55,7 +210,8 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 7,
"id": "75aa946b",
"metadata": {},
"outputs": [
{
@@ -73,7 +229,8 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 8,
"id": "d002a7fe",
"metadata": {},
"outputs": [
{
@@ -82,7 +239,7 @@
"'lion, tiger, wolf, gorilla, panda'"
]
},
"execution_count": 3,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -93,7 +250,8 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 9,
"id": "f08b8a5b",
"metadata": {},
"outputs": [],
"source": [
@@ -119,7 +277,8 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 10,
"id": "02e414aa",
"metadata": {},
"outputs": [],
"source": [
@@ -128,7 +287,8 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 11,
"id": "7ed8799d",
"metadata": {},
"outputs": [
{
@@ -150,16 +310,17 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 12,
"id": "9ea4ddc6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['lion', 'tiger', 'wolf', 'gorilla', 'panda']"
"['lion', 'tiger', 'wolf', 'gorilla', 'elephant']"
]
},
"execution_count": 7,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -170,6 +331,7 @@
},
{
"cell_type": "markdown",
"id": "96e320ed",
"metadata": {},
"source": [
"## Async version"
@@ -177,7 +339,8 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 13,
"id": "569dbbef",
"metadata": {},
"outputs": [],
"source": [
@@ -204,7 +367,8 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 14,
"id": "7a76b713",
"metadata": {},
"outputs": [
{
@@ -226,7 +390,8 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 15,
"id": "3a650482",
"metadata": {},
"outputs": [
{
@@ -235,7 +400,7 @@
"['lion', 'tiger', 'wolf', 'gorilla', 'panda']"
]
},
"execution_count": 10,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -261,9 +426,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
"nbformat_minor": 5
}

View File

@@ -0,0 +1,15 @@
---
sidebar_class_name: hidden
---
# Primitives
In addition to various [components](/docs/modules) that are usable with LCEL, LangChain also includes various primitives
that help pass around and format data, bind arguments, invoke custom logic, and more.
This section goes into greater depth on where and how some of these components are useful.
import DocCardList from "@theme/DocCardList";
import { useCurrentSidebarCategory } from '@docusaurus/theme-common';
<DocCardList items={useCurrentSidebarCategory().items.filter((item) => item.href !== "/docs/expression_language/primitives/")} />

View File

@@ -6,8 +6,8 @@
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: \"RunnableParallel: Manipulating data\"\n",
"sidebar_position: 1\n",
"title: \"Parallel: Format data\"\n",
"keywords: [RunnableParallel, RunnableMap, LCEL]\n",
"---"
]
@@ -17,13 +17,13 @@
"id": "b022ab74-794d-4c54-ad47-ff9549ddb9d2",
"metadata": {},
"source": [
"# Manipulating inputs & output\n",
"# Formatting inputs & output\n",
"\n",
"RunnableParallel can be useful for manipulating the output of one Runnable to match the input format of the next Runnable in a sequence.\n",
"The `RunnableParallel` primitive is essentially a dict whose values are runnables (or things that can be coerced to runnables, like functions). It runs all of its values in parallel, and each value is called with the overall input of the `RunnableParallel`. The final return value is a dict with the results of each value under its appropriate key.\n",
"\n",
"Here the input to prompt is expected to be a map with keys \"context\" and \"question\". The user input is just the question. So we need to get the context using our retriever and passthrough the user input under the \"question\" key.\n",
"It is useful for parallelizing operations, but can also be useful for manipulating the output of one Runnable to match the input format of the next Runnable in a sequence.\n",
"\n",
"\n"
"Here the input to prompt is expected to be a map with keys \"context\" and \"question\". The user input is just the question. So we need to get the context using our retriever and passthrough the user input under the \"question\" key.\n"
]
},
{

View File

@@ -1,14 +1,14 @@
{
"cells": [
{
"cell_type": "markdown",
"cell_type": "raw",
"id": "d35de667-0352-4bfb-a890-cebe7f676fe7",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: \"RunnablePassthrough: Passing data through\"\n",
"keywords: [RunnablePassthrough, RunnableParallel, LCEL]\n",
"sidebar_position: 5\n",
"title: \"Passthrough: Pass through inputs\"\n",
"keywords: [RunnablePassthrough, LCEL]\n",
"---"
]
},
@@ -19,11 +19,7 @@
"source": [
"# Passing data through\n",
"\n",
"RunnablePassthrough allows to pass inputs unchanged or with the addition of extra keys. This typically is used in conjuction with RunnableParallel to assign data to a new key in the map. \n",
"\n",
"RunnablePassthrough() called on it's own, will simply take the input and pass it through. \n",
"\n",
"RunnablePassthrough called with assign (`RunnablePassthrough.assign(...)`) will take the input, and will add the extra arguments passed to the assign function. \n",
"RunnablePassthrough on its own allows you to pass inputs unchanged. This typically is used in conjuction with RunnableParallel to pass data through to a new key in the map. \n",
"\n",
"See the example below:"
]
@@ -60,7 +56,6 @@
"\n",
"runnable = RunnableParallel(\n",
" passed=RunnablePassthrough(),\n",
" extra=RunnablePassthrough.assign(mult=lambda x: x[\"num\"] * 3),\n",
" modified=lambda x: x[\"num\"] + 1,\n",
")\n",
"\n",
@@ -74,9 +69,7 @@
"source": [
"As seen above, `passed` key was called with `RunnablePassthrough()` and so it simply passed on `{'num': 1}`. \n",
"\n",
"In the second line, we used `RunnablePastshrough.assign` with a lambda that multiplies the numerical value by 3. In this cased, `extra` was set with `{'num': 1, 'mult': 3}` which is the original value with the `mult` key added. \n",
"\n",
"Finally, we also set a third key in the map with `modified` which uses a lambda to set a single value adding 1 to the num, which resulted in `modified` key with the value of `2`."
"We also set a second key in the map with `modified`. This uses a lambda to set a single value adding 1 to the num, which resulted in `modified` key with the value of `2`."
]
},
{
@@ -86,7 +79,7 @@
"source": [
"## Retrieval Example\n",
"\n",
"In the example below, we see a use case where we use RunnablePassthrough along with RunnableMap. "
"In the example below, we see a use case where we use `RunnablePassthrough` along with `RunnableParallel`. "
]
},
{

View File

@@ -0,0 +1,243 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: \"Sequences: Chaining runnables\"\n",
"keywords: [Runnable, Runnables, LCEL]\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chaining runnables\n",
"\n",
"One key advantage of the `Runnable` interface is that any two runnables can be \"chained\" together into sequences. The output of the previous runnable's `.invoke()` call is passed as input to the next runnable. This can be done using the pipe operator (`|`), or the more explicit `.pipe()` method, which does the same thing. The resulting `RunnableSequence` is itself a runnable, which means it can be invoked, streamed, or piped just like any other runnable.\n",
"\n",
"## The pipe operator\n",
"\n",
"To show off how this works, let's go through an example. We'll walk through a common pattern in LangChain: using a [prompt template](/docs/modules/model_io/prompts/) to format input into a [chat model](/docs/modules/model_io/chat/), and finally converting the chat message output into a string with an [output parser](/docs/modules/model_io/output_parsers/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-anthropic"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\")\n",
"model = ChatAnthropic(model_name=\"claude-3-haiku-20240307\")\n",
"\n",
"chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Prompts and models are both runnable, and the output type from the prompt call is the same as the input type of the chat model, so we can chain them together. We can then invoke the resulting sequence like any other runnable:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Here's a bear joke for you:\\n\\nWhy don't bears wear socks? \\nBecause they have bear feet!\\n\\nHow's that? I tried to keep it light and silly. Bears can make for some fun puns and jokes. Let me know if you'd like to hear another one!\""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"topic\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Coercion\n",
"\n",
"We can even combine this chain with more runnables to create another chain. This may involve some input/output formatting using other types of runnables, depending on the required inputs and outputs of the chain components.\n",
"\n",
"For example, let's say we wanted to compose the joke generating chain with another chain that evaluates whether or not the generated joke was funny.\n",
"\n",
"We would need to be careful with how we format the input into the next chain. In the below example, the dict in the chain is automatically parsed and converted into a [`RunnableParallel`](/docs/expression_language/primitives/parallel), which runs all of its values in parallel and returns a dict with the results.\n",
"\n",
"This happens to be the same format the next prompt template expects. Here it is in action:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"analysis_prompt = ChatPromptTemplate.from_template(\"is this a funny joke? {joke}\")\n",
"\n",
"composed_chain = {\"joke\": chain} | analysis_prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"That's a pretty classic and well-known bear pun joke. Whether it's considered funny is quite subjective, as humor is very personal. Some people may find that type of pun-based joke amusing, while others may not find it that humorous. Ultimately, the funniness of a joke is in the eye (or ear) of the beholder. If you enjoyed the joke and got a chuckle out of it, then that's what matters most.\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"composed_chain.invoke({\"topic\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Functions will also be coerced into runnables, so you can add custom logic to your chains too. The below chain results in the same logical flow as before:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"composed_chain_with_lambda = (\n",
" chain\n",
" | (lambda input: {\"joke\": input})\n",
" | analysis_prompt\n",
" | model\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'I appreciate the effort, but I have to be honest - I didn\\'t find that joke particularly funny. Beet-themed puns can be quite hit-or-miss, and this one falls more on the \"miss\" side for me. The premise is a bit too straightforward and predictable. While I can see the logic behind it, the punchline just doesn\\'t pack much of a comedic punch. \\n\\nThat said, I do admire your willingness to explore puns and wordplay around vegetables. Cultivating a good sense of humor takes practice, and not every joke is going to land. The important thing is to keep experimenting and finding what works. Maybe try for a more unexpected or creative twist on beet-related humor next time. But thanks for sharing - I always appreciate when humans test out jokes on me, even if they don\\'t always make me laugh out loud.'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"composed_chain_with_lambda.invoke({\"topic\": \"beets\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, keep in mind that using functions like this may interfere with operations like streaming. See [this section](/docs/expression_language/primitives/functions) for more information."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The `.pipe()` method\n",
"\n",
"We could also compose the same sequence using the `.pipe()` method. Here's what that looks like:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnableParallel\n",
"\n",
"composed_chain_with_pipe = (\n",
" RunnableParallel({\"joke\": chain})\n",
" .pipe(analysis_prompt)\n",
" .pipe(model)\n",
" .pipe(StrOutputParser())\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'That\\'s a pretty good Battlestar Galactica-themed pun! I appreciated the clever play on words with \"Centurion\" and \"center on.\" It\\'s the kind of nerdy, science fiction-inspired humor that fans of the show would likely enjoy. The joke is clever and demonstrates a good understanding of the Battlestar Galactica universe. I\\'d be curious to hear any other Battlestar-related jokes you might have up your sleeve. As long as they don\\'t reproduce copyrighted material, I\\'m happy to provide my thoughts on the humor and appeal for fans of the show.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"composed_chain_with_pipe.invoke({\"topic\": \"battlestar galactica\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -55,7 +55,7 @@
"id": "9eb73e8b",
"metadata": {},
"source": [
"We will show examples of streaming using the chat model from [Anthropic](https://python.langchain.com/docs/integrations/platforms/anthropic). To use the model, you will need to install the `langchain-anthropic` package. You can do this with the following command:"
"We will show examples of streaming using the chat model from [Anthropic](/docs/integrations/platforms/anthropic). To use the model, you will need to install the `langchain-anthropic` package. You can do this with the following command:"
]
},
{
@@ -201,13 +201,23 @@
" print(chunk, end=\"|\", flush=True)"
]
},
{
"cell_type": "markdown",
"id": "868bc412",
"metadata": {},
"source": [
"You might notice above that `parser` actually doesn't block the streaming output from the model, and instead processes each chunk individually. Many of the [LCEL primitives](/docs/expression_language/primitives) also support this kind of transform-style passthrough streaming, which can be very convenient when constructing apps.\n",
"\n",
"Certain runnables, like [prompt templates](/docs/modules/model_io/prompts) and [chat models](/docs/modules/model_io/chat), cannot process individual chunks and instead aggregate all previous steps. This will interrupt the streaming process. Custom functions can be [designed to return generators](/docs/expression_language/primitives/functions#streaming), which"
]
},
{
"cell_type": "markdown",
"id": "1b399fb4-5e3c-4581-9570-6df9b42b623d",
"metadata": {},
"source": [
":::{.callout-note}\n",
"You do not have to use the `LangChain Expression Language` to use LangChain and can instead rely on a standard **imperative** programming approach by\n",
"If the above functionality is not relevant to what you're building, you do not have to use the `LangChain Expression Language` to use LangChain and can instead rely on a standard **imperative** programming approach by\n",
"caling `invoke`, `batch` or `stream` on each component individually, assigning the results to variables and then using them downstream as you see fit.\n",
"\n",
"If that works for your needs, then that's fine by us 👌!\n",
@@ -658,7 +668,7 @@
"\n",
"This is a **beta API**, and we're almost certainly going to make some changes to it.\n",
"\n",
"This version parameter will allow us to mimimize such breaking changes to your code. \n",
"This version parameter will allow us to minimize such breaking changes to your code. \n",
"\n",
"In short, we are annoying you now, so we don't have to annoy you later.\n",
":::"

View File

@@ -7,10 +7,12 @@
"source": [
"---\n",
"sidebar_position: 0.5\n",
"title: Why use LCEL\n",
"title: Advantages of LCEL\n",
"---\n",
"\n",
"import { ColumnContainer, Column } from \\\"@theme/Columns\\\";"
"```{=mdx}\n",
"import { ColumnContainer, Column } from \"@theme/Columns\";\n",
"```"
]
},
{
@@ -18,7 +20,7 @@
"id": "919a5ae2-ed21-4923-b98f-723c111bac67",
"metadata": {},
"source": [
":::tip \n",
":::{.callout-tip} \n",
"We recommend reading the LCEL [Get started](/docs/expression_language/get_started) section first.\n",
":::"
]
@@ -28,17 +30,20 @@
"id": "f331037f-be3f-4782-856f-d55dab952488",
"metadata": {},
"source": [
"LCEL makes it easy to build complex chains from basic components. It does this by providing:\n",
"1. **A unified interface**: Every LCEL object implements the `Runnable` interface, which defines a common set of invocation methods (`invoke`, `batch`, `stream`, `ainvoke`, ...). This makes it possible for chains of LCEL objects to also automatically support these invocations. That is, every chain of LCEL objects is itself an LCEL object.\n",
"2. **Composition primitives**: LCEL provides a number of primitives that make it easy to compose chains, parallelize components, add fallbacks, dynamically configure chain internal, and more.\n",
"LCEL is designed to streamline the process of building useful apps with LLMs and combining related components. It does this by providing:\n",
"\n",
"1. **A unified interface**: Every LCEL object implements the `Runnable` interface, which defines a common set of invocation methods (`invoke`, `batch`, `stream`, `ainvoke`, ...). This makes it possible for chains of LCEL objects to also automatically support useful operations like batching and streaming of intermediate steps, since every chain of LCEL objects is itself an LCEL object.\n",
"2. **Composition primitives**: LCEL provides a number of primitives that make it easy to compose chains, parallelize components, add fallbacks, dynamically configure chain internals, and more.\n",
"\n",
"To better understand the value of LCEL, it's helpful to see it in action and think about how we might recreate similar functionality without it. In this walkthrough we'll do just that with our [basic example](/docs/expression_language/get_started#basic_example) from the get started section. We'll take our simple prompt + model chain, which under the hood already defines a lot of functionality, and see what it would take to recreate all of it."
]
},
{
"cell_type": "raw",
"cell_type": "code",
"execution_count": null,
"id": "b99b47ec",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain-openai langchain-anthropic"
]
@@ -51,10 +56,13 @@
"## Invoke\n",
"In the simplest case, we just want to pass in a topic string and get back a joke string:\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"\n",
"<Column>\n",
"\n",
"```\n",
"\n",
"#### Without LCEL\n"
]
},
@@ -93,9 +101,12 @@
"id": "cdc3b527-c09e-4c77-9711-c3cc4506cd95",
"metadata": {},
"source": [
"\n",
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
@@ -134,14 +145,19 @@
"id": "3c0b0513-77b8-4371-a20e-3e487cec7e7f",
"metadata": {},
"source": [
"\n",
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"\n",
"```\n",
"## Stream\n",
"If we want to stream results instead, we'll need to change our function:\n",
"\n",
"```{=mdx}\n",
"\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -182,10 +198,11 @@
"id": "f8e36b0e-c7dc-4130-a51b-189d4b756c7f",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"\n",
"```\n",
"#### LCEL\n",
"\n"
]
@@ -206,15 +223,19 @@
"id": "b9b41e78-ddeb-44d0-a58b-a0ea0c99a761",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"\n",
"## Batch\n",
"\n",
"If we want to run on a batch of inputs in parallel, we'll again need a new function:\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -242,10 +263,11 @@
"id": "9b3e9d34-6775-43c1-93d8-684b58e341ab",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"\n",
"```\n",
"#### LCEL\n",
"\n"
]
@@ -265,15 +287,18 @@
"id": "cc5ba36f-eec1-4fc1-8cfe-fa242a7f7809",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"\n",
"```\n",
"## Async\n",
"\n",
"If we need an asynchronous version:\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -298,7 +323,10 @@
"async def ainvoke_chain(topic: str) -> str:\n",
" prompt_value = prompt_template.format(topic=topic)\n",
" messages = [{\"role\": \"user\", \"content\": prompt_value}]\n",
" return await acall_chat_model(messages)"
" return await acall_chat_model(messages)\n",
"\n",
"\n",
"await ainvoke_chain(\"ice cream\")"
]
},
{
@@ -306,19 +334,88 @@
"id": "2f209290-498c-4c17-839e-ee9002919846",
"metadata": {},
"source": [
"```python\n",
"await ainvoke_chain(\"ice cream\")\n",
"```\n",
"\n",
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d009781-7307-48a4-8439-f9d3dd015560",
"metadata": {},
"outputs": [],
"source": [
"await chain.ainvoke(\"ice cream\")"
]
},
{
"cell_type": "markdown",
"id": "1f282129-99a3-40f4-b67f-2d0718b1bea9",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"## Async Batch\n",
"\n",
"```python\n",
"chain.ainvoke(\"ice cream\")\n",
"```"
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1933f39d-7bd7-45fa-a6a5-5fb7be8e31ec",
"metadata": {},
"outputs": [],
"source": [
"import asyncio\n",
"import openai\n",
"\n",
"\n",
"async def abatch_chain(topics: list) -> list:\n",
" coros = map(ainvoke_chain, topics)\n",
" return await asyncio.gather(*coros)\n",
"\n",
"\n",
"await abatch_chain([\"ice cream\", \"spaghetti\", \"dumplings\"])"
]
},
{
"cell_type": "markdown",
"id": "90691048-17ae-479d-83c2-859e33ddf3eb",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "947dad23-3443-40eb-a03b-7840c261e261",
"metadata": {},
"outputs": [],
"source": [
"await chain.abatch([\"ice cream\", \"spaghetti\", \"dumplings\"])"
]
},
{
@@ -326,15 +423,19 @@
"id": "f6888245-1ebe-4768-a53b-e1fef6a8b379",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"\n",
"## LLM instead of chat model\n",
"\n",
"If we want to use a completion endpoint instead of a chat endpoint: \n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -366,9 +467,11 @@
"id": "45342cd6-58c2-4543-9392-773e05ef06e7",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
@@ -399,15 +502,19 @@
"id": "ca115eaf-59ef-45c1-aac1-e8b0ce7db250",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"\n",
"## Different model provider\n",
"\n",
"If we want to use Anthropic instead of OpenAI: \n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -445,9 +552,11 @@
"id": "52a0c9f8-e316-42e1-af85-cabeba4b7059",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
@@ -478,15 +587,19 @@
"id": "d7a91eee-d017-420d-b215-f663dcbf8ed2",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"\n",
"## Runtime configurability\n",
"\n",
"If we wanted to make the choice of chat model or LLM configurable at runtime:\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -567,9 +680,11 @@
"id": "d1530c5c-6635-4599-9483-6df357ca2d64",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### With LCEL\n",
"\n"
@@ -627,15 +742,19 @@
"id": "370dd4d7-b825-40c4-ae3c-2693cba2f22a",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"\n",
"## Logging\n",
"\n",
"If we want to log our intermediate results:\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n",
@@ -666,9 +785,11 @@
"id": "16bd20fd-43cd-4aaf-866f-a53d1f20312d",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"Every component has built-in integrations with LangSmith. If we set the following two environment variables, all chain traces are logged to LangSmith.\n",
@@ -703,16 +824,19 @@
"id": "e25ce3c5-27a7-4954-9f0e-b94313597135",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>\n",
"```\n",
"\n",
"## Fallbacks\n",
"\n",
"If we wanted to add fallback logic, in case one model API is down:\n",
"\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n",
@@ -737,7 +861,7 @@
" return await ainvoke_chain(topic)\n",
" except Exception:\n",
" # Note: we haven't actually implemented this.\n",
" return ainvoke_anthropic_chain(topic)\n",
" return await ainvoke_anthropic_chain(topic)\n",
"\n",
"async def batch_chain_with_fallback(topics: List[str]) -> str:\n",
" try:\n",
@@ -756,9 +880,11 @@
"id": "f7ef59b5-2ce3-479e-a7ac-79e1e2f30e9c",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
@@ -783,8 +909,10 @@
"id": "3af52d36-37c6-4d89-b515-95d7270bb96a",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>"
"</ColumnContainer>\n",
"```"
]
},
{
@@ -796,8 +924,10 @@
"\n",
"Even in this simple case, our LCEL chain succinctly packs in a lot of functionality. As chains become more complex, this becomes especially valuable.\n",
"\n",
"```{=mdx}\n",
"<ColumnContainer>\n",
"<Column>\n",
"```\n",
"\n",
"#### Without LCEL\n",
"\n"
@@ -963,7 +1093,7 @@
" try:\n",
" return await ainvoke_chain(topic)\n",
" except Exception:\n",
" return ainvoke_anthropic_chain(topic)\n",
" return await ainvoke_anthropic_chain(topic)\n",
"\n",
"async def batch_chain_with_fallback(topics: List[str]) -> str:\n",
" try:\n",
@@ -977,9 +1107,11 @@
"id": "9fb3d71d-8c69-4dc4-81b7-95cd46b271c2",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"\n",
"<Column>\n",
"```\n",
"\n",
"#### LCEL\n",
"\n"
@@ -1034,8 +1166,10 @@
"id": "e3637d39",
"metadata": {},
"source": [
"```{=mdx}\n",
"</Column>\n",
"</ColumnContainer>"
"</ColumnContainer>\n",
"```"
]
},
{
@@ -1047,8 +1181,7 @@
"\n",
"To continue learning about LCEL, we recommend:\n",
"- Reading up on the full LCEL [Interface](/docs/expression_language/interface), which we've only partially covered here.\n",
"- Exploring the [How-to](/docs/expression_language/how_to) section to learn about additional composition primitives that LCEL provides.\n",
"- Looking through the [Cookbook](/docs/expression_language/cookbook) section to see LCEL in action for common use cases. A good next use case to look at would be [Retrieval-augmented generation](/docs/expression_language/cookbook/retrieval)."
"- Exploring the [primitives](/docs/expression_language/primitives) to learn more about what LCEL provides."
]
}
],
@@ -1068,7 +1201,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.6"
}
},
"nbformat": 4,

View File

@@ -1,3 +1,7 @@
---
sidebar_position: 2
---
# Installation
## Official release
@@ -29,13 +33,6 @@ If you want to install from source, you can do so by cloning the repo and be sur
pip install -e .
```
## LangChain community
The `langchain-community` package contains third-party integrations. It is automatically installed by `langchain`, but can also be used separately. Install with:
```bash
pip install langchain-community
```
## LangChain core
The `langchain-core` package contains base abstractions that the rest of the LangChain ecosystem uses, along with the LangChain Expression Language. It is automatically installed by `langchain`, but can also be used separately. Install with:
@@ -43,6 +40,13 @@ The `langchain-core` package contains base abstractions that the rest of the Lan
pip install langchain-core
```
## LangChain community
The `langchain-community` package contains third-party integrations. It is automatically installed by `langchain`, but can also be used separately. Install with:
```bash
pip install langchain-community
```
## LangChain experimental
The `langchain-experimental` package holds experimental LangChain code, intended for research and experimental uses.
Install with:
@@ -51,6 +55,13 @@ Install with:
pip install langchain-experimental
```
## LangGraph
`langgraph` is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain.
Install with:
```bash
pip install langgraph
```
## LangServe
LangServe helps developers deploy LangChain runnables and chains as a REST API.
LangServe is automatically installed by LangChain CLI.

View File

@@ -1,18 +1,16 @@
---
sidebar_position: 0
sidebar_class_name: hidden
---
# Introduction
**LangChain** is a framework for developing applications powered by language models. It enables applications that:
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
**LangChain** is a framework for developing applications powered by large language models (LLMs).
This framework consists of several parts.
- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
- **[LangChain Templates](/docs/templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
- **[LangServe](/docs/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
LangChain simplifies every stage of the LLM application lifecycle:
- **Development**: Build your applications using LangChain's open-source [building blocks](/docs/expression_language/) and [components](/docs/modules/). Hit the ground running using [third-party integrations](/docs/integrations/platforms/) and [Templates](/docs/templates).
- **Productionization**: Use [LangSmith](/docs/langsmith/) to inspect, monitor and evaluate your chains, so that you can continuously optimize and deploy with confidence.
- **Deployment**: Turn any chain into an API with [LangServe](/docs/langserve).
import ThemedImage from '@theme/ThemedImage';
@@ -25,31 +23,24 @@ import ThemedImage from '@theme/ThemedImage';
title="LangChain Framework Overview"
/>
Together, these products simplify the entire application lifecycle:
- **Develop**: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference.
- **Productionize**: Use LangSmith to inspect, test and monitor your chains, so that you can constantly improve and deploy with confidence.
- **Deploy**: Turn any chain into an API with LangServe.
Concretely, the framework consists of the following open-source libraries:
## LangChain Libraries
The main value props of the LangChain packages are:
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
The LangChain libraries themselves are made up of several different packages.
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Partner packages (e.g. **`langchain-openai`**, **`langchain-anthropic`**, etc.): Some integrations have been further split into their own lightweight packages that only depend on **`langchain-core`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **[langgraph](/docs/langgraph)**: Build robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
- **[langserve](/docs/langserve)**: Deploy LangChain chains as REST APIs.
The broader ecosystem includes:
- **[LangSmith](/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor LLM applications and seamlessly integrates with LangChain.
## Get started
[Heres](/docs/get_started/installation) how to install LangChain, set up your environment, and start building.
We recommend following our [Quickstart](/docs/get_started/quickstart) guide to familiarize yourself with the framework by building your first LangChain application.
Read up on our [Security](/docs/security) best practices to make sure you're developing safely with LangChain.
[See here](/docs/get_started/installation) for instructions on how to install LangChain, set up your environment, and start building.
:::note
@@ -57,48 +48,53 @@ These docs focus on the Python LangChain library. [Head here](https://js.langcha
:::
## LangChain Expression Language (LCEL)
## Use cases
LCEL is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
If you're looking to build something specific or are more of a hands-on learner, check out our [use-cases](/docs/use_cases).
They're walkthroughs and techniques for common end-to-end tasks, such as:
- **[Overview](/docs/expression_language/)**: LCEL and its benefits
- **[Interface](/docs/expression_language/interface)**: The standard interface for LCEL objects
- **[How-to](/docs/expression_language/how_to)**: Key features of LCEL
- **[Cookbook](/docs/expression_language/cookbook)**: Example code for accomplishing common tasks
## Modules
LangChain provides standard, extendable interfaces and integrations for the following modules:
#### [Model I/O](/docs/modules/model_io/)
Interface with language models
#### [Retrieval](/docs/modules/data_connection/)
Interface with application-specific data
#### [Agents](/docs/modules/agents/)
Let models choose which tools to use given high-level directives
## Examples, ecosystem, and resources
### [Use cases](/docs/use_cases/question_answering/)
Walkthroughs and techniques for common end-to-end use cases, like:
- [Document question answering](/docs/use_cases/question_answering/)
- [Question answering with RAG](/docs/use_cases/question_answering/)
- [Extracting structured output](/docs/use_cases/extraction/)
- [Chatbots](/docs/use_cases/chatbots/)
- [Analyzing structured data](/docs/use_cases/sql/)
- and much more...
- and more!
## Expression Language
LangChain Expression Language (LCEL) is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
- **[Get started](/docs/expression_language/)**: LCEL and its benefits
- **[Runnable interface](/docs/expression_language/interface)**: The standard interface for LCEL objects
- **[Primitives](/docs/expression_language/primitives)**: More on the primitives LCEL includes
- and more!
## Ecosystem
### [🦜🛠️ LangSmith](/docs/langsmith)
Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
### [🦜🕸️ LangGraph](/docs/langgraph)
Build stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
### [🦜🏓 LangServe](/docs/langserve)
Deploy LangChain runnables and chains as REST APIs.
## [Security](/docs/security)
Read up on our [Security](/docs/security) best practices to make sure you're developing safely with LangChain.
## Additional resources
### [Components](/docs/modules/)
LangChain provides standard, extendable interfaces and integrations for many different components, including:
### [Integrations](/docs/integrations/providers/)
LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](/docs/integrations/providers/).
### [Guides](../guides/debugging.md)
### [Guides](/docs/guides/)
Best practices for developing with LangChain.
### [API reference](https://api.python.langchain.com)
Head to the reference section for full documentation of all classes and methods in the LangChain and LangChain Experimental Python packages.
### [Developer's guide](/docs/contributing)
### [Contributing](/docs/contributing)
Check out the developer's guide for guidelines on contributing and help getting your dev environment set up.

View File

@@ -1,3 +1,7 @@
---
sidebar_position: 1
---
# Quickstart
In this quickstart we'll show you how to:
@@ -14,7 +18,7 @@ That's a fair amount to cover! Let's dive in.
### Jupyter Notebook
This guide (and most of the other guides in the documentation) use [Jupyter notebooks](https://jupyter.org/) and assume the reader is as well. Jupyter notebooks are perfect for learning how to work with LLM systems because often times things can go wrong (unexpected output, API down, etc) and going through guides in an interactive environment is a great way to better understand them.
This guide (and most of the other guides in the documentation) uses [Jupyter notebooks](https://jupyter.org/) and assumes the reader is as well. Jupyter notebooks are perfect for learning how to work with LLM systems because oftentimes things can go wrong (unexpected output, API down, etc) and going through guides in an interactive environment is a great way to better understand them.
You do not NEED to go through the guide in a Jupyter Notebook, but it is recommended. See [here](https://jupyter.org/install) for instructions on how to install.
@@ -90,12 +94,12 @@ from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
```
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the OpenAI LLM class:
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(openai_api_key="...")
llm = ChatOpenAI(api_key="...")
```
</TabItem>
@@ -137,10 +141,10 @@ from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-sonnet-20240229", temperature=0.2, max_tokens=1024)
```
If you'd prefer not to set an environment variable you can pass the key in directly via the `anthropic_api_key` named parameter when initiating the Anthropic Chat Model class:
If you'd prefer not to set an environment variable you can pass the key in directly via the `api_key` named parameter when initiating the Anthropic Chat Model class:
```python
llm = ChatAnthropic(anthropic_api_key="...")
llm = ChatAnthropic(api_key="...")
```
</TabItem>
@@ -149,7 +153,7 @@ llm = ChatAnthropic(anthropic_api_key="...")
First we'll need to import the Cohere SDK package.
```shell
pip install cohere
pip install langchain-cohere
```
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://dashboard.cohere.com/api-keys). Once we have a key we'll want to set it as an environment variable by running:
@@ -161,7 +165,7 @@ export COHERE_API_KEY="..."
We can then initialize the model:
```python
from langchain_community.chat_models import ChatCohere
from langchain_cohere import ChatCohere
llm = ChatCohere()
```
@@ -169,7 +173,7 @@ llm = ChatCohere()
If you'd prefer not to set an environment variable you can pass the key in directly via the `cohere_api_key` named parameter when initiating the Cohere LLM class:
```python
from langchain_community.chat_models import ChatCohere
from langchain_cohere import ChatCohere
llm = ChatCohere(cohere_api_key="...")
```
@@ -184,8 +188,8 @@ Let's ask it what LangSmith is - this is something that wasn't present in the tr
llm.invoke("how can langsmith help with testing?")
```
We can also guide it's response with a prompt template.
Prompt templates are used to convert raw user input to a better input to the LLM.
We can also guide its response with a prompt template.
Prompt templates convert raw user input to better input to the LLM.
```python
from langchain_core.prompts import ChatPromptTemplate
@@ -234,7 +238,7 @@ We've now successfully set up a basic LLM chain. We only touched on the basics o
## Retrieval Chain
In order to properly answer the original question ("how can langsmith help with testing?"), we need to provide additional context to the LLM.
To properly answer the original question ("how can langsmith help with testing?"), we need to provide additional context to the LLM.
We can do this via *retrieval*.
Retrieval is useful when you have **too much data** to pass to the LLM directly.
You can then use a retriever to fetch only the most relevant pieces and pass those in.
@@ -242,7 +246,7 @@ You can then use a retriever to fetch only the most relevant pieces and pass tho
In this process, we will look up relevant documents from a *Retriever* and then pass them into the prompt.
A Retriever can be backed by anything - a SQL table, the internet, etc - but in this instance we will populate a vector store and use that as a retriever. For more information on vectorstores, see [this documentation](/docs/modules/data_connection/vectorstores).
First, we need to load the data that we want to index. In order to do this, we will use the WebBaseLoader. This requires installing [BeautifulSoup](https://beautiful-soup-4.readthedocs.io/en/latest/):
First, we need to load the data that we want to index. To do this, we will use the WebBaseLoader. This requires installing [BeautifulSoup](https://beautiful-soup-4.readthedocs.io/en/latest/):
```shell
pip install beautifulsoup4
@@ -286,7 +290,7 @@ embeddings = OllamaEmbeddings()
</TabItem>
<TabItem value="cohere" label="Cohere (API)" default>
Make sure you have the `cohere` package installed an the appropriate environment variables set (these are the same as needed for the LLM).
Make sure you have the `cohere` package installed and the appropriate environment variables set (these are the same as needed for the LLM).
```python
from langchain_community.embeddings import CohereEmbeddings
@@ -349,7 +353,7 @@ document_chain.invoke({
```
However, we want the documents to first come from the retriever we just set up.
That way, for a given question we can use the retriever to dynamically select the most relevant documents and pass those in.
That way, we can use the retriever to dynamically select the most relevant documents and pass those in for a given question.
```python
from langchain.chains import create_retrieval_chain
@@ -395,12 +399,12 @@ from langchain_core.prompts import MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation")
("user", "Given the above conversation, generate a search query to look up to get information relevant to the conversation")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
```
We can test this out by passing in an instance where the user is asking a follow up question.
We can test this out by passing in an instance where the user asks a follow-up question.
```python
from langchain_core.messages import HumanMessage, AIMessage
@@ -411,7 +415,7 @@ retriever_chain.invoke({
"input": "Tell me how"
})
```
You should see that this returns documents about testing in LangSmith. This is because the LLM generated a new query, combining the chat history with the follow up question.
You should see that this returns documents about testing in LangSmith. This is because the LLM generated a new query, combining the chat history with the follow-up question.
Now that we have this new retriever, we can create a new chain to continue the conversation with these retrieved documents in mind.
@@ -439,7 +443,7 @@ We can see that this gives a coherent answer - we've successfully turned our ret
## Agent
We've so far create examples of chains - where each step is known ahead of time.
We've so far created examples of chains - where each step is known ahead of time.
The final thing we will create is an agent - where the LLM decides what steps to take.
**NOTE: for this example we will only show how to create an agent using OpenAI models, as local models are not reliable enough yet.**
@@ -448,7 +452,7 @@ One of the first things to do when building an agent is to decide what tools it
For this example, we will give the agent access to two tools:
1. The retriever we just created. This will let it easily answer questions about LangSmith
2. A search tool. This will let it easily answer questions that require up to date information.
2. A search tool. This will let it easily answer questions that require up-to-date information.
First, let's set up a tool for the retriever we just created:
@@ -488,6 +492,11 @@ Install langchain hub first
```bash
pip install langchainhub
```
Install the langchain-openai package
To interact with OpenAI we need to use langchain-openai which connects with OpenAI SDK[https://github.com/langchain-ai/langchain/tree/master/libs/partners/openai].
```bash
pip install langchain-openai
```
Now we can use it to get a predefined prompt
@@ -499,6 +508,8 @@ from langchain.agents import AgentExecutor
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-functions-agent")
# You need to set OPENAI_API_KEY environment variable or pass it as argument `api_key`.
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
@@ -563,7 +574,6 @@ from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_openai import ChatOpenAI
from langchain import hub
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor

View File

@@ -8,11 +8,11 @@ Here are a few different tools and functionalities to aid in debugging.
## Tracing
Platforms with tracing capabilities like [LangSmith](/docs/langsmith/) and [WandB](/docs/integrations/providers/wandb_tracing) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
Platforms with tracing capabilities like [LangSmith](/docs/langsmith/) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
For anyone building production-grade LLM applications, we highly recommend using a platform like this.
When building production-grade LLM applications, platforms like this are essential.
![Screenshot of the LangSmith debugging interface showing an AgentExecutor run with input and output details, and a run tree visualization.](../../static/img/run_details.png "LangSmith Debugging Interface")
![Screenshot of the LangSmith debugging interface showing an AgentExecutor run with input and output details, and a run tree visualization.](../../../static/img/run_details.png "LangSmith Debugging Interface")
## `set_debug` and `set_verbose`
@@ -27,7 +27,7 @@ Let's suppose we have a simple agent, and want to visualize the actions it takes
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
llm = ChatOpenAI(model="gpt-4", temperature=0)
tools = load_tools(["ddg-search", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
```

View File

@@ -0,0 +1,13 @@
---
sidebar_position: 1
sidebar_class_name: hidden
---
# Development
This section contains guides with general information around building apps with LangChain.
import DocCardList from "@theme/DocCardList";
import { useCurrentSidebarCategory } from '@docusaurus/theme-common';
<DocCardList items={useCurrentSidebarCategory().items.filter((item) => item.href !== "/docs/guides/development/")} />

View File

@@ -9,7 +9,7 @@
"\n",
"## Use case\n",
"\n",
"The popularity of projects like [PrivateGPT](https://github.com/imartinez/privateGPT), [llama.cpp](https://github.com/ggerganov/llama.cpp), [GPT4All](https://github.com/nomic-ai/gpt4all), and [llamafile](https://github.com/Mozilla-Ocho/llamafile) underscore the demand to run LLMs locally (on your own device).\n",
"The popularity of projects like [PrivateGPT](https://github.com/imartinez/privateGPT), [llama.cpp](https://github.com/ggerganov/llama.cpp), [Ollama](https://github.com/ollama/ollama), [GPT4All](https://github.com/nomic-ai/gpt4all), [llamafile](https://github.com/Mozilla-Ocho/llamafile), and others underscore the demand to run LLMs locally (on your own device).\n",
"\n",
"This has at least two important benefits:\n",
"\n",
@@ -32,7 +32,7 @@
"1. `Base model`: What is the base-model and how was it trained?\n",
"2. `Fine-tuning approach`: Was the base-model fine-tuned and, if so, what [set of instructions](https://cameronrwolfe.substack.com/p/beyond-llama-the-power-of-open-llms#%C2%A7alpaca-an-instruction-following-llama-model) was used?\n",
"\n",
"![Image description](../../static/img/OSS_LLM_overview.png)\n",
"![Image description](../../../static/img/OSS_LLM_overview.png)\n",
"\n",
"The relative performance of these models can be assessed using several leaderboards, including:\n",
"\n",
@@ -56,7 +56,7 @@
"\n",
"In particular, see [this excellent post](https://finbarr.ca/how-is-llama-cpp-possible/) on the importance of quantization.\n",
"\n",
"![Image description](../../static/img/llama-memory-weights.png)\n",
"![Image description](../../../static/img/llama-memory-weights.png)\n",
"\n",
"With less precision, we radically decrease the memory needed to store the LLM in memory.\n",
"\n",
@@ -64,7 +64,7 @@
"\n",
"A Mac M2 Max is 5-6x faster than a M1 for inference due to the larger GPU memory bandwidth.\n",
"\n",
"![Image description](../../static/img/llama_t_put.png)\n",
"![Image description](../../../static/img/llama_t_put.png)\n",
"\n",
"## Quickstart\n",
"\n",
@@ -98,7 +98,7 @@
"from langchain_community.llms import Ollama\n",
"\n",
"llm = Ollama(model=\"llama2\")\n",
"llm(\"The first man on the moon was ...\")"
"llm.invoke(\"The first man on the moon was ...\")"
]
},
{
@@ -140,7 +140,7 @@
"llm = Ollama(\n",
" model=\"llama2\", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])\n",
")\n",
"llm(\"The first man on the moon was ...\")"
"llm.invoke(\"The first man on the moon was ...\")"
]
},
{
@@ -226,7 +226,7 @@
"from langchain_community.llms import Ollama\n",
"\n",
"llm = Ollama(model=\"llama2:13b\")\n",
"llm(\"The first man on the moon was ... think step by step\")"
"llm.invoke(\"The first man on the moon was ... think step by step\")"
]
},
{
@@ -369,7 +369,7 @@
}
],
"source": [
"llm(\"The first man on the moon was ... Let's think step by step\")"
"llm.invoke(\"The first man on the moon was ... Let's think step by step\")"
]
},
{
@@ -426,7 +426,7 @@
}
],
"source": [
"llm(\"The first man on the moon was ... Let's think step by step\")"
"llm.invoke(\"The first man on the moon was ... Let's think step by step\")"
]
},
{
@@ -546,7 +546,7 @@
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.chains.prompt_selector import ConditionalPromptSelector\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"DEFAULT_LLAMA_SEARCH_PROMPT = PromptTemplate(\n",
" input_variables=[\"question\"],\n",

View File

@@ -0,0 +1,3 @@
# Guides
This section contains deeper dives into the LangChain framework and how to apply it.

View File

@@ -1,283 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "920a3c1a",
"metadata": {},
"source": [
"# Model comparison\n",
"\n",
"Constructing your language model application will likely involved choosing between many different options of prompts, models, and even chains to use. When doing so, you will want to compare these different options on different inputs in an easy, flexible, and intuitive way. \n",
"\n",
"LangChain provides the concept of a ModelLaboratory to test out and try different models."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12ebae56",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ab9e95ad",
"metadata": {},
"outputs": [],
"source": [
"from langchain.model_laboratory import ModelLaboratory\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import Cohere, HuggingFaceHub\n",
"from langchain_openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dd69cb4",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"# get a new token: https://dashboard.cohere.ai/\n",
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Cohere API Key:\")\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Open API Key:\")\n",
"os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = getpass.getpass(\"Hugging Face API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "32cb94e6",
"metadata": {},
"outputs": [],
"source": [
"llms = [\n",
" OpenAI(temperature=0),\n",
" Cohere(temperature=0),\n",
" HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\": 1}),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "14cde09d",
"metadata": {},
"outputs": [],
"source": [
"model_lab = ModelLaboratory.from_llms(llms)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f186c741",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What color is a flamingo?\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[36;1m\u001b[1;3m\n",
"\n",
"Flamingos are pink.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"Pink\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[38;5;200m\u001b[1;3mpink\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What color is a flamingo?\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "248b652a",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate(\n",
" template=\"What is the capital of {state}?\", input_variables=[\"state\"]\n",
")\n",
"model_lab_with_prompt = ModelLaboratory.from_llms(llms, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f64377ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"New York\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\u001b[36;1m\u001b[1;3m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 20, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"The capital of New York is Albany.\u001b[0m\n",
"\n",
"\u001b[1mHuggingFaceHub\u001b[0m\n",
"Params: {'repo_id': 'google/flan-t5-xl', 'temperature': 1}\n",
"\u001b[38;5;200m\u001b[1;3mst john s\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab_with_prompt.compare(\"New York\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "54336dbf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import SelfAskWithSearchChain\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"\n",
"open_ai_llm = OpenAI(temperature=0)\n",
"search = SerpAPIWrapper()\n",
"self_ask_with_search_openai = SelfAskWithSearchChain(\n",
" llm=open_ai_llm, search_chain=search, verbose=True\n",
")\n",
"\n",
"cohere_llm = Cohere(temperature=0)\n",
"search = SerpAPIWrapper()\n",
"self_ask_with_search_cohere = SelfAskWithSearchChain(\n",
" llm=cohere_llm, search_chain=search, verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6a50a9f1",
"metadata": {},
"outputs": [],
"source": [
"chains = [self_ask_with_search_openai, self_ask_with_search_cohere]\n",
"names = [str(open_ai_llm), str(cohere_llm)]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d3549e99",
"metadata": {},
"outputs": [],
"source": [
"model_lab = ModelLaboratory(chains, names=names)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "362f7f57",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mInput:\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"\n",
"\u001b[1mOpenAI\u001b[0m\n",
"Params: {'model': 'text-davinci-002', 'temperature': 0.0, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n",
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"Are follow up questions needed here:\u001b[32;1m\u001b[1;3m Yes.\n",
"Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
"Intermediate answer: \u001b[33;1m\u001b[1;3mCarlos Alcaraz.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"Follow up: Where is Carlos Alcaraz from?\u001b[0m\n",
"Intermediate answer: \u001b[33;1m\u001b[1;3mEl Palmar, Spain.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"So the final answer is: El Palmar, Spain\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[36;1m\u001b[1;3m\n",
"So the final answer is: El Palmar, Spain\u001b[0m\n",
"\n",
"\u001b[1mCohere\u001b[0m\n",
"Params: {'model': 'command-xlarge-20221108', 'max_tokens': 256, 'temperature': 0.0, 'k': 0, 'p': 1, 'frequency_penalty': 0, 'presence_penalty': 0}\n",
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"What is the hometown of the reigning men's U.S. Open champion?\n",
"Are follow up questions needed here:\u001b[32;1m\u001b[1;3m Yes.\n",
"Follow up: Who is the reigning men's U.S. Open champion?\u001b[0m\n",
"Intermediate answer: \u001b[33;1m\u001b[1;3mCarlos Alcaraz.\u001b[0m\u001b[32;1m\u001b[1;3m\n",
"So the final answer is:\n",
"\n",
"Carlos Alcaraz\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3m\n",
"So the final answer is:\n",
"\n",
"Carlos Alcaraz\u001b[0m\n",
"\n"
]
}
],
"source": [
"model_lab.compare(\"What is the hometown of the reigning men's U.S. Open champion?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1 +0,0 @@
label: 'Privacy'

View File

@@ -17,7 +17,7 @@ Here's a summary of the key methods and properties of a comparison evaluator:
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
:::note LangSmith Support
The [run_on_dataset](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.smith) evaluation method is designed to evaluate only a single model at a time, and thus, doesn't support these evaluators.
The [run_on_dataset](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.smith) evaluation method is designed to evaluate only a single model at a time, and thus, doesn't support these evaluators.
:::
Detailed information about creating custom evaluators and the available built-in comparison evaluators is provided in the following sections.

View File

@@ -294,7 +294,7 @@
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"prompt_template = PromptTemplate.from_template(\n",
" \"\"\"Given the input context, which do you prefer: A or B?\n",

View File

@@ -7,23 +7,24 @@ Building applications with language models involves many moving parts. One of th
The guides in this section review the APIs and functionality LangChain provides to help you better evaluate your applications. Evaluation and testing are both critical when thinking about deploying LLM applications, since production environments require repeatable and useful outcomes.
LangChain offers various types of evaluators to help you measure performance and integrity on diverse data, and we hope to encourage the community to create and share other useful evaluators so everyone can improve. These docs will introduce the evaluator types, how to use them, and provide some examples of their use in real-world scenarios.
These built-in evaluators all integrate smoothly with [LangSmith](/docs/langsmith), and allow you to create feedback loops that improve your application over time and prevent regressions.
Each evaluator type in LangChain comes with ready-to-use implementations and an extensible API that allows for customization according to your unique requirements. Here are some of the types of evaluators we offer:
- [String Evaluators](/docs/guides/evaluation/string/): These evaluators assess the predicted string for a given input, usually comparing it against a reference string.
- [Trajectory Evaluators](/docs/guides/evaluation/trajectory/): These are used to evaluate the entire trajectory of agent actions.
- [Comparison Evaluators](/docs/guides/evaluation/comparison/): These evaluators are designed to compare predictions from two runs on a common input.
- [String Evaluators](/docs/guides/productionization/evaluation/string/): These evaluators assess the predicted string for a given input, usually comparing it against a reference string.
- [Trajectory Evaluators](/docs/guides/productionization/evaluation/trajectory/): These are used to evaluate the entire trajectory of agent actions.
- [Comparison Evaluators](/docs/guides/productionization/evaluation/comparison/): These evaluators are designed to compare predictions from two runs on a common input.
These evaluators can be used across various scenarios and can be applied to different chain and LLM implementations in the LangChain library.
We also are working to share guides and cookbooks that demonstrate how to use these evaluators in real-world scenarios, such as:
- [Chain Comparisons](/docs/guides/evaluation/examples/comparisons): This example uses a comparison evaluator to predict the preferred output. It reviews ways to measure confidence intervals to select statistically significant differences in aggregate preference scores across different models or prompts.
- [Chain Comparisons](/docs/guides/productionization/evaluation/examples/comparisons): This example uses a comparison evaluator to predict the preferred output. It reviews ways to measure confidence intervals to select statistically significant differences in aggregate preference scores across different models or prompts.
## LangSmith Evaluation
LangSmith provides an integrated evaluation and tracing framework that allows you to check for regressions, compare systems, and easily identify and fix any sources of errors and performance issues. Check out the docs on [LangSmith Evaluation](https://docs.smith.langchain.com/category/testing--evaluation) and additional [cookbooks](https://docs.smith.langchain.com/category/langsmith-cookbook) for more detailed information on evaluating your applications.
LangSmith provides an integrated evaluation and tracing framework that allows you to check for regressions, compare systems, and easily identify and fix any sources of errors and performance issues. Check out the docs on [LangSmith Evaluation](https://docs.smith.langchain.com/evaluation) and additional [cookbooks](https://docs.smith.langchain.com/cookbook) for more detailed information on evaluating your applications.
## LangChain benchmarks
@@ -37,6 +38,6 @@ Check out the docs for examples and leaderboard information.
## Reference Docs
For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/api_reference.html#module-langchain.evaluation) directly.
For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.evaluation) directly.
<DocCardList />

Some files were not shown because too many files have changed in this diff Show More