Compare commits

..

441 Commits

Author SHA1 Message Date
Bagatur
14bfc5f9f4 langchain[patch]: Release 0.0.349 (#14570) 2023-12-11 15:30:14 -08:00
Erick Friis
482e2b94fa infra: import CI speed (#14566)
Was taking 10 mins. Now a few seconds.
2023-12-11 15:19:21 -08:00
Bagatur
6a828e60ee community[patch]: Release 0.0.1 (#14565) 2023-12-11 15:18:55 -08:00
Erick Friis
5418d8bfd6 infra: import CI fix (#14562)
TIL `**` globstar doesn't work in make

Makefile changes fix that.

`__getattr__` changes allow import of all files, but raise error when
accessing anything from the module.

file deletions were corresponding libs change from #14559
2023-12-11 14:59:10 -08:00
Bagatur
48b7a0584d infra: Turn release branch check back on (#14563) 2023-12-11 14:40:24 -08:00
Bagatur
9cb128e6e2 core[patch]: Release 0.0.13 (#14558) 2023-12-11 14:36:28 -08:00
Bagatur
a844b495c4 community[patch]: Fix agenttoolkits imports (#14559) 2023-12-11 14:19:25 -08:00
Nuno Campos
3b5b0f16c6 Move runnable context to beta (#14507)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-12-11 13:58:30 -08:00
Bagatur
ed58eeb9c5 community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00
Eugene Yurtsev
c0f4b95aa9 RunnableWithMessageHistory: Fix input schema (#14516)
Input schema should not have history key
2023-12-10 23:33:02 -05:00
Leonid Ganeline
d9bfdc95ea docs[patch]: google platform page update (#14475)
Added missed tools

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-12-08 17:40:44 -08:00
Leonid Ganeline
2fa81739b6 docs[patch]: microsoft platform page update (#14476)
Added `presidio` and `OneNote` references to `microsoft.mdx`; added link
and description to the `presidio` notebook

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-12-08 17:40:30 -08:00
Yelin Zhang
84a57f5350 docs[patch]: add missing imports for local_llms (#14453)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
Keeping it consistent with everywhere else in the docs and adding the
missing imports to be able to copy paste and run the code example.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-08 17:23:29 -08:00
Harrison Chase
f5befe3b89 manual mapping (#14422) 2023-12-08 16:29:33 -08:00
Erick Friis
c24f277b7c langchain[patch], docs[patch]: use byte store in multivectorretriever (#14474) 2023-12-08 16:26:11 -08:00
Leonid Ganeline
1ef13661b9 docs[patch]: link and description cleanup (#14471)
Fixed inconsistencies; added links and descriptions

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-12-08 15:24:38 -08:00
Lance Martin
6fbfc375b9 Update README and vectorstore path for multi-modal template (#14473) 2023-12-08 15:24:05 -08:00
Anish Nag
6da0cfea0e experimental[patch]: SmartLLMChain Output Key Customization (#14466)
**Description**
The `SmartLLMChain` was was fixed to output key "resolution".
Unfortunately, this prevents the ability to use multiple `SmartLLMChain`
in a `SequentialChain` because of colliding output keys. This change
simply gives the option the customize the output key to allow for
sequential chaining. The default behavior is the same as the current
behavior.

Now, it's possible to do the following:
```
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_experimental.smart_llm import SmartLLMChain
from langchain.chains import SequentialChain

joke_prompt = PromptTemplate(
    input_variables=["content"],
    template="Tell me a joke about {content}.",
)
review_prompt = PromptTemplate(
    input_variables=["scale", "joke"],
    template="Rate the following joke from 1 to {scale}: {joke}"
)

llm = ChatOpenAI(temperature=0.9, model_name="gpt-4-32k")
joke_chain = SmartLLMChain(llm=llm, prompt=joke_prompt, output_key="joke")
review_chain = SmartLLMChain(llm=llm, prompt=review_prompt, output_key="review")

chain = SequentialChain(
    chains=[joke_chain, review_chain],
    input_variables=["content", "scale"],
    output_variables=["review"],
    verbose=True
)
response = chain.run({"content": "chickens", "scale": "10"})
print(response)
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-08 13:55:51 -08:00
Leonid Ganeline
0797358c1b docs networkxupdate (#14426)
Added setting up instruction, package description and link
2023-12-08 13:39:50 -08:00
Bagatur
300305e5e5 infra: add langchain-community release workflow (#14469) 2023-12-08 13:31:15 -08:00
Ben Flast
b32fcb550d Update mongodb_atlas docs for GA (#14425)
Updated the MongoDB Atlas Vector Search docs to indicate the service is
Generally Available, updated the example to use the new index
definition, and added an example that uses metadata pre-filtering for
semantic search

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-08 13:23:01 -08:00
Erick Friis
b3f226e8f8 core[patch], langchain[patch], experimental[patch]: import CI (#14414) 2023-12-08 11:28:55 -08:00
Leonid Ganeline
ba083887e5 docs Dependents updated statistics (#14461)
Updated statistics for the dependents (packages dependent on `langchain`
package). Only packages with 100+ starts
2023-12-08 14:14:41 -05:00
Eugene Yurtsev
37bee92b8a Use deepcopy in RunLogPatch (#14244)
This PR adds deepcopy usage in RunLogPatch.

I included a unit-test that shows an issue that was caused in LangServe
in the RemoteClient.

```python
import jsonpatch

s1 = {}
s2 = {'value': []}
s3 = {'value': ['a']}

ops0 = list(jsonpatch.JsonPatch.from_diff(None, s1))
ops1 = list(jsonpatch.JsonPatch.from_diff(s1, s2))
ops2 = list(jsonpatch.JsonPatch.from_diff(s2, s3))
ops = ops0 + ops1 + ops2

jsonpatch.apply_patch(None, ops)
{'value': ['a']}

jsonpatch.apply_patch(None, ops)
{'value': ['a', 'a']}

jsonpatch.apply_patch(None, ops)
{'value': ['a', 'a', 'a']}
```
2023-12-08 14:09:36 -05:00
Erick Friis
1d7e5c51aa langchain[patch]: xfail unstable vertex test (#14462) 2023-12-08 11:00:37 -08:00
Erick Friis
477b274a62 langchain[patch]: fix scheduled testing ci dep install (#14460) 2023-12-08 10:37:44 -08:00
Harrison Chase
02ee0073cf revoke serialization (#14456) 2023-12-08 10:31:05 -08:00
Erick Friis
ff0d5514c1 langchain[patch]: fix scheduled testing ci variables (#14459) 2023-12-08 10:27:21 -08:00
Erick Friis
1d725327eb langchain[patch]: Fix scheduled testing (#14428)
- integration tests in pyproject
- integration test fixes
2023-12-08 10:23:02 -08:00
Harrison Chase
7be3eb6fbd fix imports from core (#14430) 2023-12-08 09:33:35 -08:00
Leonid Ganeline
a05230a4ba docs[patch]: promptlayer pages update (#14416)
Updated provider page by adding LLM and ChatLLM references; removed a
content that is duplicate text from the LLM referenced page.
Updated the collback page
2023-12-07 15:48:10 -08:00
Leonid Ganeline
18aba7fdef docs: notebook linting (#14366)
Many jupyter notebooks didn't pass linting. List of these files are
presented in the [tool.ruff.lint.per-file-ignores] section of the
pyproject.toml . Addressed these bugs:
- fixed bugs; added missed imports; updated pyproject.toml
 Only the `document_loaders/tensorflow_datasets.ipyn`,
`cookbook/gymnasium_agent_simulation.ipynb` are not completely fixed.
I'm not sure about imports.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-07 15:47:48 -08:00
Bagatur
52052cc7b9 experimental[patch]: Release 0.0.45 (#14418) 2023-12-07 15:01:39 -08:00
Bagatur
e4d6e55c5e langchain[patch]: Release 0.0.348 (#14417) 2023-12-07 14:52:43 -08:00
Bagatur
eb209e7ee3 core[patch]: Release 0.0.12 (#14415) 2023-12-07 14:37:00 -08:00
Bagatur
b2280fd874 core[patch], langchain[patch]: fix required deps (#14373) 2023-12-07 14:24:58 -08:00
Leonid Ganeline
7186faefb2 API Reference building script update (#13587)
The namespaces like `langchain.agents.format_scratchpad` clogging the
API Reference sidebar.
This change removes those 3-level namespaces from sidebar (this issue
was discussed with @efriis )

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-07 11:43:42 -08:00
Kacper Łukawski
76f30f5297 langchain[patch]: Rollback multiple keys in Qdrant (#14390)
This reverts commit 38813d7090. This is a
temporary fix, as I don't see a clear way on how to use multiple keys
with `Qdrant.from_texts`.

Context: #14378
2023-12-07 11:13:19 -08:00
Erick Friis
54040b00a4 langchain[patch]: fix ChatVertexAI streaming (#14369) 2023-12-07 09:46:11 -08:00
Bagatur
db6bf8b022 langchain[patch]: Release 0.0.347 (#14368) 2023-12-06 16:13:29 -08:00
Bagatur
a7271cf5bd core[patch]: Release 0.0.11 (#14367) 2023-12-06 15:53:49 -08:00
Nuno Campos
77c38df36c [core/minor] Runnables: Implement a context api (#14046)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Brace Sproul <braceasproul@gmail.com>
2023-12-06 15:02:29 -08:00
Erick Friis
8f95a8206b core[patch]: message history error typo (#14361) 2023-12-06 14:20:10 -08:00
William FH
e5bd32ff6d Include run_id (#14331)
in the test run outputs
2023-12-06 14:07:45 -08:00
Bagatur
cc76f0e834 langchain[patch]: import nits (#14354)
import from core instead of langchain.schema
2023-12-06 11:45:05 -08:00
Bagatur
ce4d81f88b infra: ci matrix (#14306) 2023-12-06 11:43:03 -08:00
Jacob Lee
867ca6d0be Fix multi vector retriever subclassing (#14350)
Fixes #14342

@eyurtsev @baskaryan

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-06 11:12:50 -08:00
Erick Friis
7bdfc43766 core[patch], langchain[patch]: ByteStore (#14312) 2023-12-06 10:05:43 -08:00
Brace Sproul
b9087e765d docs[patch]: Fix broken link 'tip' in docs (#14349) 2023-12-06 09:44:54 -08:00
Eugene Yurtsev
0dea8cc62d Update doc-string in RunnableWithMessageHistory (#14262)
Update doc-string in RunnableWithMessageHistory
2023-12-06 12:31:46 -05:00
Erick Friis
2aaf8e11e0 docs[patch]: fix ipynb links (#14325)
Keeping it simple for now.

Still iterating on our docs build in pursuit of making everything mdxv2
compatible for docusaurus 3, and the fewer custom scripts we're reliant
on through that, the less likely the docs will break again.

Other things to consider in future:

Quarto rewriting in ipynbs:
https://quarto.org/docs/extensions/nbfilter.html (but this won't do
md/mdx files)

Docusaurus plugins for rewriting these paths
2023-12-06 09:29:07 -08:00
Jean-Baptiste dlb
38813d7090 Qdrant metadata payload keys (#13001)
- **Description:** In Qdrant allows to input list of keys as the
content_payload_key to retrieve multiple fields (the generated document
will contain the dictionary {field: value} in a string),
- **Issue:** Previously we were able to retrieve only one field from the
vector database when making a search
  - **Dependencies:** 
  - **Tag maintainer:** 
  - **Twitter handle:** @jb_dlb

---------

Co-authored-by: Jean Baptiste De La Broise <jeanbaptiste.delabroise@mdpi.com>
2023-12-06 09:12:54 -08:00
Yuchen Liang
ad6dfb6220 feat: mask api key for cerebriumai llm (#14272)
- **Description:** Masking API key for CerebriumAI LLM to protect user
secrets.
 - **Issue:** #12165 
 - **Dependencies:** None
 - **Tag maintainer:** @eyurtsev

---------

Signed-off-by: Yuchen Liang <yuchenl3@andrew.cmu.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-06 09:06:00 -08:00
newfinder
d4d64daa1e Mask API key for baidu qianfan (#14281)
Description: This PR masked baidu qianfan - Chat_Models API Key and
added unit tests.
Issue: the issue langchain-ai#12165.
Tag maintainer: @eyurtsev

---------

Co-authored-by: xiayi <xiayi@bytedance.com>
2023-12-06 08:47:09 -08:00
cxumol
06e3316f54 feat(add): LLM integration of Cloudflare Workers AI (#14322)
Add [Text Generation by Cloudflare Workers
AI](https://developers.cloudflare.com/workers-ai/models/text-generation/).
It's a new LLM integration.

- Dependencies: N/A
2023-12-06 08:24:19 -08:00
Harutaka Kawamura
5efaedf488 Exclude max_tokens from request if it's None (#14334)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->


We found a request with `max_tokens=None` results in the following error
in Anthropic:

```
HTTPError: 400 Client Error: Bad Request for url: https://oregon.staging.cloud.databricks.com/serving-endpoints/corey-anthropic/invocations. 
Response text: {"error_code":"INVALID_PARAMETER_VALUE","message":"INVALID_PARAMETER_VALUE: max_tokens was not of type Integer: null"}
```

This PR excludes `max_tokens` if it's None.
2023-12-06 08:23:17 -08:00
Nicolas Bondoux
86b08d7753 Fix typo in lcel example for rerank in doc (#14336)
fix typo in lcel example for rerank in doc
2023-12-06 08:21:41 -08:00
Matt Wells
e1ea191237 Demonstrate use of get_buffer_string (#13013)
**Description**

The docs for creating a RAG chain with Memory [currently use a manual
lambda](https://python.langchain.com/docs/expression_language/cookbook/retrieval#with-memory-and-returning-source-documents)
to format chat history messages. [There exists a helper method within
the
codebase](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/schema/messages.py#L14C15-L14C15)
to perform this task so I've updated the documentation to demonstrate
its usage

Also worth noting that the current documented method of using the
included `_format_chat_history ` function actually results in an error:

```
TypeError: 'HumanMessage' object is not subscriptable
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-05 20:08:50 -08:00
MinjiK
a1a11ffd78 Amadeus toolkit minor update (#13002)
- update `Amadeus` toolkit with ability to switch Amadeus environments 
- update minor code explanations

---------

Co-authored-by: MinjiK <minji.kim@amadeus.com>
2023-12-05 20:08:34 -08:00
Alexandre Dumont
b05c46074b OpenAIEmbeddings: retry_min_seconds/retry_max_seconds parameters (#13138)
- **Description:** new parameters in OpenAIEmbeddings() constructor
(retry_min_seconds and retry_max_seconds) that allow parametrization by
the user of the former min_seconds and max_seconds that were hidden in
_create_retry_decorator() and _async_retry_decorator()
  - **Issue:** #9298, #12986
  - **Dependencies:** none
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:** @adumont

make format 
make lint 
make test 

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-05 20:08:17 -08:00
mogith-pn
9e5d146409 Updated integration with Clarifai python SDK functions (#13671)
Description :

Updated the functions with new Clarifai python SDK.
Enabled initialisation of Clarifai class with model URL.
Updated docs with new functions examples.
2023-12-05 20:08:00 -08:00
dudub12
8f403ea2d7 info sql tool remove whitespaces in table names (#13712)
Remove whitespaces from the input of the ListSQLDatabaseTool for better
support.
for example, the input "table1,table2,table3" will throw an exception
whiteout the change although it's a valid input.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-05 20:07:38 -08:00
balaba-max
64d5108f99 Feature: GitLab url from ENV (#14221)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** add gitlab url from env, 
  - **Issue:** no issue,
  - **Dependencies:** no,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-05 19:41:36 -08:00
kavinraj A S
ab6b41937a Fixed a typo in smart_llm prompt (#13052)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-12-05 19:16:18 -08:00
jeffpezzone
7c2ef06136 Adds "NIN" metadata filter for pgvector to all checking for set absence (#14205)
This PR adds support for metadata filters of the form:

`{"filter": {"key": { "NIN" : ["list", "of", "values"]}}}`

"IN" is already supported, so this is a quick & related update to add
"NIN"
2023-12-05 19:07:33 -08:00
lif
20d2b4a6ba feat: Increased compatibility with new and old versions for dalle (#14222)
- **Description:** Increased compatibility with all versions openai for
dalle,

This pr add support for openai version from 0 ~ 1.3.
2023-12-05 17:31:28 -08:00
Wang Wei
7205bfdd00 feat: 1. Add system parameters, 2. Align with the QianfanChatEndpoint for function calling (#14275)
- **Description:** 
1. Add system parameters to the ERNIE LLM API to set the role of the
LLM.
2. Add support for the ERNIE-Bot-turbo-AI model according from the
document https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Alp0kdm0n.
3. For the function call of ErnieBotChat, align with the
QianfanChatEndpoint.

With this PR, the `QianfanChatEndpoint()` can use the `function calling`
ability with `create_ernie_fn_chain()`. The example is as the following:

```
from langchain.prompts import ChatPromptTemplate
import json
from langchain.prompts.chat import (
    ChatPromptTemplate,
)

from langchain.chat_models import QianfanChatEndpoint
from langchain.chains.ernie_functions import (
    create_ernie_fn_chain,
)

def get_current_news(location: str) -> str:
    """Get the current news based on the location.'

    Args:
        location (str): The location to query.
    
    Returs:
        str: Current news based on the location.
    """

    news_info = {
        "location": location,
        "news": [
            "I have a Book.",
            "It's a nice day, today."
        ]
    }

    return json.dumps(news_info)

def get_current_weather(location: str, unit: str="celsius") -> str:
    """Get the current weather in a given location

    Args:
        location (str): location of the weather.
        unit (str): unit of the tempuature.
    
    Returns:
        str: weather in the given location.
    """

    weather_info = {
        "location": location,
        "temperature": "27",
        "unit": unit,
        "forecast": ["sunny", "windy"],
    }
    return json.dumps(weather_info)

template = ChatPromptTemplate.from_messages([
    ("user", "{user_input}"),
])

chat = QianfanChatEndpoint(model="ERNIE-Bot-4")
chain = create_ernie_fn_chain([get_current_weather, get_current_news], chat, template, verbose=True)
res = chain.run("北京今天的新闻是什么?")
print(res)
```

The result of the above code:
```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 北京今天的新闻是什么?
> Finished chain.
{'name': 'get_current_news', 'arguments': {'location': '北京'}}
```

For the `ErnieBotChat`, now can use the `system` parameter to set the
role of the LLM.

```
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models import ErnieBotChat

llm = ErnieBotChat(model_name="ERNIE-Bot-turbo-AI", system="你是一个能力很强的机器人,你的名字叫 小叮当。无论问你什么问题,你都可以给出答案。")
prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{query}"),
    ]
)
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
res = chain.run(query="你是谁?")
print(res)
```

The result of the above code:

```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 你是谁?
> Finished chain.
我是小叮当,一个智能机器人。我可以为你提供各种服务,包括回答问题、提供信息、进行计算等。如果你需要任何帮助,请随时告诉我,我会尽力为你提供最好的服务。
```
2023-12-05 17:28:31 -08:00
Leonid Kuligin
fd5be55a7b added get_num_tokens to GooglePalm (#14282)
added get_num_tokens to GooglePalm + a little bit of refactoring
2023-12-05 17:24:19 -08:00
Massimiliano Pronesti
c215a4c9ec feat(embeddings): text-embeddings-inference (#14288)
- **Description:** Added a notebook to illustrate how to use
`text-embeddings-inference` from huggingface. As
`HuggingFaceHubEmbeddings` was using a deprecated client, I made the
most of this PR updating that too.

- **Issue:** #13286 

- **Dependencies**: None

- **Tag maintainer:** @baskaryan
2023-12-05 17:22:05 -08:00
Tim Van Wassenhove
85b88c33f3 Fixes issue-14295: Correctly pass along the kwargs (#14296)
- **Description:** Update code to correctly pass the kwargs 
  - **Issue:** #14295 
  - **Dependencies:**  - 
  - **Tag maintainer:** 

<--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

#issue-14295
2023-12-05 17:14:00 -08:00
Alex Kira
62b59048de docs[patch] Add how-to doc for RunnablePassthrough and nav modifications (#14255)
- **Description:** Add How To docs for `RunnablePassthrough` with
examples. Also redo the ordering and some of the other How-To docs.
2023-12-05 17:01:07 -08:00
Bob Lin
5a23608c41 Add custom async generator example (#14299)
<img width="1172" alt="Screenshot 2023-12-05 at 11 19 16 PM"
src="https://github.com/langchain-ai/langchain/assets/10000925/6b0fbd70-9f6b-4f91-b494-9e88676b4786">
2023-12-05 16:08:19 -08:00
Bob Lin
63fdc6e818 Update docs (#14294)
### Description

Fixed 3 doc  issues:

1. `ConfigurableField ` needs to be imported in
`docs/docs/expression_language/how_to/configure.ipynb`
2. use `error` instead of `RateLimitError()` in
`docs/docs/expression_language/how_to/fallbacks.ipynb`
3. I think it might be better to output the fixed json data(when I
looked at this example, I didn't understand its purpose at first, but
then I suddenly realized):
<img width="1219" alt="Screenshot 2023-12-05 at 10 34 13 PM"
src="https://github.com/langchain-ai/langchain/assets/10000925/7623ba13-7b56-4964-8c98-b7430fabc6de">
2023-12-05 16:08:03 -08:00
Jarkko Lagus
667ad6a5de Add support for CORS options for AzureSearch (#14305)
- **Description:** Add support for setting the CORS options when using
AzureSearch indexes
2023-12-05 16:05:40 -08:00
Karim Assi
9401539e43 Allow not enforcing function usage when a single function is passed to openai function executable (#14308)
- **Description:** allows not enforcing function usage when a single
function is passed to an openAI function executable (or corresponding
legacy chain). This is a desired feature in the case where the model
does not have enough information to call a function, and needs to get
back to the user.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** N/A
2023-12-05 15:56:31 -08:00
Ran
d22c13ec48 Mask API key for Minimax LLM (#14309)
- **Description:** Added masking for the API key for Minimax LLM + tests
inspired by https://github.com/langchain-ai/langchain/pull/12418.
- **Issue:** the issue # fixes
https://github.com/langchain-ai/langchain/issues/12165
- **Dependencies:** this fix is dependent on Minimax instantiation fix
which is introduced in
https://github.com/langchain-ai/langchain/pull/13439, so merge this one
after.
  - **Tag maintainer:** @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-05 15:42:00 -08:00
Lance Martin
29e993a5f2 Update OpenCLIP docs (#14319) 2023-12-05 15:31:10 -08:00
Eugene Yurtsev
a74c03da3c Add metadata to blob (#14162)
Add metadata to the blob object. This makes it easier
to make a pipeline that properly propagates metadata information
from raw content to the derived content.
2023-12-05 17:17:41 -05:00
Lance Martin
66848871fc Multi-modal RAG template (#14186)
* OpenCLIP embeddings
* GPT-4V

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-05 13:36:38 -08:00
James Braza
3b75d37cee Adding BaseChatMessageHistory.__str__ (#14311)
Adding __str__ to base chat message history to make it easier to debug
2023-12-05 16:22:31 -05:00
James Braza
8b0060184d Fixing empty input variable crashing PromptTemplate validations (#14314)
- Fixes `input_variables=[""]` crashing validations with a template
`"{}"`
- Uses `__cause__` for proper `Exception` chaining in
`check_valid_template`
2023-12-05 13:13:08 -08:00
Leonid Ganeline
0f02e94565 docs: integrations/providers/ update (#14315)
- added missed provider files (from `integrations/Callbacks`
- updated notebooks: added links; updated into consistent formats
2023-12-05 13:05:29 -08:00
Bagatur
6607cc6eab experimental[patch]: Release 0.0.44 (#14310) 2023-12-05 12:11:42 -08:00
Eugene Yurtsev
80637727ea hide api key: arcee (#14304)
Hide API key for Arcee

---------

Co-authored-by: raphael <raph.nunes95@gmail.com>
2023-12-05 14:49:55 -05:00
Bagatur
b2e756c0a8 langchain[patch]: Release 0.0.346 (#14307) 2023-12-05 11:38:52 -08:00
Bagatur
4a5a13aab3 core[patch]: Release 0.0.10 (#14303) 2023-12-05 10:20:57 -08:00
Eugene Yurtsev
7ad75edf8b Fix rag google cloud vertex ai template (#14300)
Fix template by exposing chain correctly
2023-12-05 09:38:04 -08:00
Eun Hye Kim
f758c8adc4 Fix #11737 issue (extra_tools option of create_pandas_dataframe_agent is not working) (#13203)
- **Description:** Fix #11737 issue (extra_tools option of
create_pandas_dataframe_agent is not working),
  - **Issue:** #11737 ,
  - **Dependencies:** no,
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17 I needed this
method at work, so I modified it myself and used it. There is a similar
issue(#11737) and PR(#13018) of @PyroGenesis, so I combined my code at
the original PR.
You may be busy, but it would be great help for me if you checked. Thank
you.
  - **Twitter handle:** @lunara_x 

If you need an .ipynb example about this, please tag me. 
I will share what I am working on after removing any work-related
content.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:54:08 -08:00
Sean Bearden
77a15fa988 Added ability to pass arguments to the Playwright browser (#13146)
- **Description:** Enhanced `create_sync_playwright_browser` and
`create_async_playwright_browser` functions to accept a list of
arguments. These arguments are now forwarded to
`browser.chromium.launch()` for customizable browser instantiation.
  - **Issue:** #13143
  - **Dependencies:** None
  - **Tag maintainer:** @eyurtsev,
  - **Twitter handle:** Dr_Bearden

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:48:09 -08:00
Joan Fontanals
dcccf8fa66 adapt Jina Embeddings to new Jina AI Embedding API (#13658)
- **Description:** Adapt JinaEmbeddings to run with the new Jina AI
Embedding platform
- **Twitter handle:** https://twitter.com/JinaAI_

---------

Co-authored-by: Joan Fontanals Martinez <joan.fontanals.martinez@jina.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:40:33 -08:00
Philippe PRADOS
e0c03d6c44 Pprados/lite google drive (#13175)
- Fix bug in the document
 - Add clarification on the use of langchain-google drive.
2023-12-04 20:31:21 -08:00
guillaumedelande
ea0afd07ca Update azuresearch.py following recent change from azure-search-documents library (#13472)
- **Description:** 

Reference library azure-search-documents has been adapted in version
11.4.0:

1. Notebook explaining Azure AI Search updated with most recent info
2. HnswVectorSearchAlgorithmConfiguration --> HnswAlgorithmConfiguration
3. PrioritizedFields(prioritized_content_fields) -->
SemanticPrioritizedFields(content_fields)
4. SemanticSettings --> SemanticSearch
5. VectorSearch(algorithm_configurations) -->
VectorSearch(configurations)

--> Changes now reflected on Langchain: default vector search config
from langchain is now compatible with officially released library from
Azure.

  - **Issue:**
Issue creating a new index (due to wrong class used for default vector
search configuration) if using latest version of azure-search-documents
with current langchain version
  - **Dependencies:** azure-search-documents>=11.4.0,
  - **Tag maintainer:** ,

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-04 20:29:20 -08:00
price-deshaw
5cb3393e20 update OpenAI function agents' llm validation (#13538)
- **Description:** This PR modifies the LLM validation in OpenAI
function agents to check whether the LLM supports OpenAI functions based
on a property (`supports_oia_functions`) instead of whether the LLM
passed to the agent `isinstance` of `ChatOpenAI`. This allows classes
that extend `BaseChatModel` to be passed to these agents as long as
they've been integrated with the OpenAI APIs and have this property set,
even if they don't extend `ChatOpenAI`.
  - **Issue:** N/A
  - **Dependencies:** none
2023-12-04 20:28:13 -08:00
Max Weng
74c7b799ef migrate openai audio api (#13557)
for issue https://github.com/langchain-ai/langchain/issues/13162
migrate openai audio api, as [openai v1.0.0 Migration
Guide](https://github.com/openai/openai-python/discussions/742)

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Double Max <max@ground-map.com>
2023-12-04 20:27:54 -08:00
Arnaud Gelas
abbba6c7d8 openapi/planner.py: Deal with json in markdown output cases (#13576)
- **Description:** In openapi/planner deal with json in markdown output
cases
- **Issue:** In some cases LLMs could return json in markdown which
can't be loaded.
  - **Dependencies:**
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:**

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 20:27:22 -08:00
Harrison Chase
8eab4d95c0 Harrison/delegate from template (#14266)
Co-authored-by: M.R. Sopacua <144725145+msopacua@users.noreply.github.com>
2023-12-04 20:18:15 -08:00
Erick Friis
956d55de2b docs[patch]: chat model page names (#14264) 2023-12-04 20:08:41 -08:00
Nolan
b49104c2c9 Add missing doc key to metadata field in AzureSearch Vectorstore (#13328)
- **Description:** Adds doc key to metadata field when adding document
to Azure Search.
  - **Issue:** -,
  - **Dependencies:** -,
  - **Tag maintainer:** @eyurtsev,
  - **Twitter handle:** @finnless

Right now the document key with the name FIELDS_ID is not included in
the FIELDS_METADATA field, and therefore is not included in the Document
returned from a query. This is really annoying if you want to be able to
modify that item in the vectorstore.

Other's thoughts on this are welcome.
2023-12-04 19:53:27 -08:00
Jon Watte
e042e5df35 fix: call _on_llm_error() (#13581)
Description: There's a copy-paste typo where on_llm_error() calls
_on_chain_error() instead of _on_llm_error().
Issue: #13580 
Dependencies: None
Tag maintainer: @hwchase17 
Twitter handle: @jwatte

"Run `make format`, `make lint` and `make test` to check this locally."
The test scripts don't work in a plain Ubuntu LTS 20.04 system.
It looks like the dev container pulling is stuck. Or maybe the internet
is just ornery today.

---------

Co-authored-by: jwatte <jwatte@observeinc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 19:44:50 -08:00
Hamza Ahmed
fcc8e5e839 Update geodataframe.py (#13573)
here it is validating shapely.geometry.point.Point: if not
isinstance(data_frame[page_content_column].iloc[0], gpd.GeoSeries):
raise ValueError(
f"Expected data_frame[{page_content_column}] to be a GeoSeries" you need
it to validate the geoSeries and not the shapely.geometry.point.Point

if not isinstance(data_frame[page_content_column], gpd.GeoSeries):
            raise ValueError(
f"Expected data_frame[{page_content_column}] to be a GeoSeries"

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-12-04 19:44:30 -08:00
Harrison Chase
2213fc9711 Harrison/bookend ai (#14258)
Co-authored-by: stvhu-bookend <142813359+stvhu-bookend@users.noreply.github.com>
2023-12-04 19:42:15 -08:00
cxumol
0d47d15a9f add(feat): Text Embeddings by Cloudflare Workers AI (#14220)
Add [Text Embeddings by Cloudflare Workers
AI](https://developers.cloudflare.com/workers-ai/models/text-embeddings/).
It's a new integration.
Trying to align it with its langchain-js version counterpart
[here](https://api.js.langchain.com/classes/embeddings_cloudflare_workersai.CloudflareWorkersAIEmbeddings.html).
- Dependencies: N/A
- Done `make format` `make lint` `make spell_check` `make
integration_tests` and all my changes was passed
2023-12-04 19:25:05 -08:00
Harrison Chase
c51001f01e fix comet tracer (#14259) 2023-12-04 19:03:19 -08:00
Erick Friis
4351b99d2b docs[patch]: search experiment (#14254)
- npm
- search config
- custom
2023-12-04 16:58:26 -08:00
Harrison Chase
4fb72ff76f fake consistent embeddings cleanup (#14256)
delete code that could never be reached
2023-12-04 16:55:30 -08:00
Michael Landis
e26906c1dc feat: implement max marginal relevance for momento vector index (#13619)
**Description**

Implements `max_marginal_relevance_search` and
`max_marginal_relevance_search_by_vector` for the Momento Vector Index
vectorstore.

Additionally bumps the `momento` dependency in the lock file and adds
logging to the implementation.

**Dependencies**

 updates `momento` dependency in lock file

**Tag maintainer**

@baskaryan 

**Twitter handle**

Please tag @momentohq for Momento Vector Index and @mloml for the
contribution 🙇

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-12-04 16:50:23 -08:00
deedy5
ee9abb6722 Bugfix duckduckgo_search news search (#13670)
- **Description:** 
Bugfix duckduckgo_search news search
  - **Issue:** 
https://github.com/langchain-ai/langchain/issues/13648
  - **Dependencies:** 
None
  - **Tag maintainer:** 
@baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 16:48:20 -08:00
Aliaksandr Kuzmik
676a077c4e Add CometTracer (#13661)
Hi! I'm Alex, Python SDK Team Lead from
[Comet](https://www.comet.com/site/).

This PR contains our new integration between langchain and Comet -
`CometTracer` class which uses new `comet_llm` python package for
submitting data to Comet.

No additional dependencies for the langchain package are required
directly, but if the user wants to use `CometTracer`, `comet-llm>=2.0.0`
should be installed. Otherwise an exception will be raised from
`CometTracer.__init__`.

A test for the feature is included.

There is also an already existing callback (and .ipynb file with
example) which ideally should be deprecated in favor of a new tracer. I
wasn't sure how exactly you'd prefer to do it. For example we could open
a separate PR for that.

I'm open to your ideas :)
2023-12-04 16:46:48 -08:00
Harrison Chase
921c4b5597 Harrison/searchapi (#14252)
Co-authored-by: SebastjanPrachovskij <86522260+SebastjanPrachovskij@users.noreply.github.com>
2023-12-04 16:34:15 -08:00
Ravidhu
224aa5151d Fix Sagemaker Endpoint documentation (#13660)
- **Description:** fixed the transform_input method in the example., 
  - **Issue:** example didn't work,
  - **Dependencies:** None,
  - **Tag maintainer:** @baskaryan,
  - **Twitter handle:** @Ravidhu87
2023-12-04 16:28:29 -08:00
Colin Ulin
9f9cb71d26 Embaas - added backoff retries for network requests (#13679)
Running a large number of requests to Embaas' servers (or any server)
can result in intermittent network failures (both from local and
external network/service issues). This PR implements exponential backoff
retries to help mitigate this issue.
2023-12-04 16:21:35 -08:00
Erick Friis
f26d88ca60 docs[patch]: fix columns (#14251) 2023-12-04 16:03:09 -08:00
Kastan Day
65faba91ad langchain[patch]: Adding new Github functions for reading pull requests (#9027)
The Github utilities are fantastic, so I'm adding support for deeper
interaction with pull requests. Agents should read "regular" comments
and review comments, and the content of PR files (with summarization or
`ctags` abbreviations).

Progress:
- [x] Add functions to read pull requests and the full content of
modified files.
- [x] Function to use Github's built in code / issues search.

Out of scope:
- Smarter summarization of file contents of large pull requests (`tree`
output, or ctags).
- Smarter functions to checkout PRs and edit the files incrementally
before bulk committing all changes.
- Docs example for creating two agents:
- One watches issues: For every new issue, open a PR with your best
attempt at fixing it.
- The other watches PRs: For every new PR && every new comment on a PR,
check the status and try to finish the job.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-04 15:53:36 -08:00
Hynek Kydlíček
aa8ae31e5b core[patch]: add response kwarg to on_llm_error
# Dependencies
None

# Twitter handle
@HKydlicek

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-04 15:04:48 -08:00
Leonid Ganeline
1750cc464d docs[patch]: moved vectorstore notebook file (#14181)
The `/docs/integrations/toolkits/vectorstore` page is not the
Integration page. The best place is in `/docs/modules/agents/how_to/`
- Moved the file
- Rerouted the page URL
2023-12-04 14:44:06 -08:00
Jacob Lee
a26c4a0930 Allow base_store to be used directly with MultiVectorRetriever (#14202)
Allow users to pass a generic `BaseStore[str, bytes]` to
MultiVectorRetriever, removing the need to use the `create_kv_docstore`
method. This encoding will now happen internally.

@rlancemartin @eyurtsev

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-12-04 14:43:32 -08:00
Vincent Brouwers
67662564f3 langchain[patch]: Fix config arg detection for wrapped lambdarunnable (#14230)
**Description:**
When a RunnableLambda only receives a synchronous callback, this
callback is wrapped into an async one since #13408. However, this
wrapping with `(*args, **kwargs)` causes the `accepts_config` check at
[/libs/core/langchain_core/runnables/config.py#L342](ee94ef55ee/libs/core/langchain_core/runnables/config.py (L342))
to fail, as this checks for the presence of a "config" argument in the
method signature.

Adding a `functools.wraps` around it, resolves it.
2023-12-04 14:18:30 -08:00
Jacob Lee
de86b84a70 Prefer byte store interface for Upstash BaseStore to match other Redis (#14201)
If we are not going to make the existing Docstore class also implement
`BaseStore[str, Document]`, IMO all base store implementations should
always be `[str, bytes]` so that they are more interchangeable.

CC @rlancemartin @eyurtsev
2023-12-04 14:17:33 -08:00
Harrison Chase
411aa9a41e Harrison/nasa tool (#14245)
Co-authored-by: Jacob Matias <88005863+matiasjacob25@users.noreply.github.com>
Co-authored-by: Karam Daid <karam.daid@mail.utoronto.ca>
Co-authored-by: Jumana <jumana.fanous@mail.utoronto.ca>
Co-authored-by: KaramDaid <38271127+KaramDaid@users.noreply.github.com>
Co-authored-by: Anna Chester <74325334+CodeMakesMeSmile@users.noreply.github.com>
Co-authored-by: Jumana <144748640+jfanous@users.noreply.github.com>
2023-12-04 13:43:11 -08:00
nceccarelli
5fea63327b Support Azure gov cloud in Azure Cognitive Search retriever (#13695)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** The existing version hardcoded search.windows.net in
the base url. This is not compatible with the gov cloud. I am allowing
the user to override the default for gov cloud support.,
  - **Issue:** N/A, did not write up in an issue,
  - **Dependencies:** None

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Nicholas Ceccarelli <nceccarelli2@moog.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-04 12:56:35 -08:00
ealt
e09b876863 Fixes error loading Obsidian templates (#13888)
- **Description:** Obsidian templates can include
[variables](https://help.obsidian.md/Plugins/Templates#Template+variables)
using double curly braces. `ObsidianLoader` uses PyYaml to parse the
frontmatter of documents. This parsing throws an error when encountering
variables' curly braces. This is avoided by temporarily substituting
safe strings before parsing.
  - **Issue:** #13887
  - **Tag maintainer:** @hwchase17
2023-12-04 12:55:37 -08:00
Erick Friis
f6d68d78f3 nbdoc -> quarto (#14156)
Switches to a more maintained solution for building ipynb -> md files
(`quarto`)

Also bumps us down to python3.8 because it's significantly faster in the
vercel build step. Uses default openssl version instead of upgrading as
well.
2023-12-04 12:50:56 -08:00
Nithish Raghunandanan
eecfa3f9e5 Add Couchbase document loader (#13979)
**Description:** 
Adds the document loader for [Couchbase](http://couchbase.com/), a
distributed NoSQL database.
**Dependencies:** 
Added the Couchbase SDK as an optional dependency.
**Twitter handle:** nithishr

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-04 12:28:12 -08:00
Bob Lin
805e9bfc24 Add doc for the development of core and experimental sections (#13966)
### **Description**

Hi, I just started learning the source code of `langchain` and hope to
contribute code. However, according to the instructions in the
[CONTRIBUTING.md](https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md)
document, I could not run the test command `make test` to run normally.
I found that many modules did not exist after [splitting
`langchain_core`](https://github.com/langchain-ai/langchain/discussions/13823),
so I updated the document.

### **Twitter handle** 

lin_bob57617
2023-12-04 12:27:57 -08:00
Muntaqa Mahmood
25f72944a0 Add: Steam API tool (#14008)
- **Description:** Our PR is an integration of a Steam API Tool that
makes recommendations on steam games based on user's Steam profile and
provides information on games based on user provided queries.
- **Issue:** the issue # our PR implements:
https://github.com/langchain-ai/langchain/issues/12120
- **Dependencies:** python-steam-api library, steamspypi library and
decouple library
  - **Tag maintainer:** @baskaryan, @hwchase17 
  - **Twitter handle:** N/A

Hello langchain Maintainers,

We are a team of 4 University of Toronto students contributing to
langchain as part of our course [CSCD01 (link to course
page)](https://cscd01.com/work/open-source-project). We hope our changes
help the community. We have run make format, make lint and make test
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.

Our PR integrates the python-steam-api, steamspypi and decouple
packages. We have added integration tests to test our python API
integration into langchain and an example notebook is also provided.

Our amazing team that contributed to this PR: @JohnY2002, @shenceyang,
@andrewqian2001 and @muntaqamahmood

Thank you in advance to all the maintainers for reviewing our PR!

---------

Co-authored-by: Shence <ysc1412799032@163.com>
Co-authored-by: JohnY2002 <johnyuan0526@gmail.com>
Co-authored-by: Andrew Qian <andrewqian2001@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: JohnY <94477598+JohnY2002@users.noreply.github.com>
2023-12-04 12:27:38 -08:00
Bob Lin
cd2028288e Add openai v2 adapter (#14063)
### Description

Starting from [openai version
1.0.0](17ac677995 (module-level-client)),
the camel case form of `openai.ChatCompletion` is no longer supported
and has been changed to lowercase `openai.chat.completions`. In
addition, the returned object only accepts attribute access instead of
index access:

```python
import openai

# optional; defaults to `os.environ['OPENAI_API_KEY']`
openai.api_key = '...'

# all client options can be configured just like the `OpenAI` instantiation counterpart
openai.base_url = "https://..."
openai.default_headers = {"x-foo": "true"}

completion = openai.chat.completions.create(
    model="gpt-4",
    messages=[
        {
            "role": "user",
            "content": "How do I output all files in a directory using Python?",
        },
    ],
)
print(completion.choices[0].message.content)
```

So I implemented a compatible adapter that supports both attribute
access and index access:

```python
In [1]: from langchain.adapters import openai as lc_openai
   ...: messages = [{"role": "user", "content": "hi"}]

In [2]: result = lc_openai.chat.completions.create(
   ...:     messages=messages, model="gpt-3.5-turbo", temperature=0
   ...: )

In [3]: result.choices[0].message
Out[3]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [4]: result["choices"][0]["message"]
Out[4]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [5]: result = await lc_openai.chat.completions.acreate(
   ...:     messages=messages, model="gpt-3.5-turbo", temperature=0
   ...: )

In [6]: result.choices[0].message
Out[6]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [7]: result["choices"][0]["message"]
Out[7]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}

In [8]: for rs in lc_openai.chat.completions.create(
    ...:     messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
    ...: ):
    ...:     print(rs.choices[0].delta)
    ...:     print(rs["choices"][0]["delta"])
    ...:
{'role': 'assistant', 'content': ''}
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': 'Hello'}
{'content': '!'}
{'content': '!'}

In [20]: async for rs in await lc_openai.chat.completions.acreate(
    ...:     messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
    ...: ):
    ...:     print(rs.choices[0].delta)
    ...:     print(rs["choices"][0]["delta"])
    ...:
{'role': 'assistant', 'content': ''}
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': 'Hello'}
{'content': '!'}
{'content': '!'}
...
```

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-04 12:12:30 -08:00
billytrend-cohere
0f02081392 Add input_type override (#14068)
Add option to override input_type for cohere's v3 embeddings models

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-04 12:10:24 -08:00
Dmitrii Rashchenko
aaabc1574f Support of custom hugging face inference endpoints url (#14125)
- **Description:** to support not only publicly available Hugging Face
endpoints, but also protected ones (created with "Inference Endpoints"
Hugging Face feature), I have added ability to specify custom api_url.
But if not specified, default behaviour won't change
  - **Issue:** #9181,
  - **Dependencies:** no extra dependencies
2023-12-04 12:08:51 -08:00
Bob Lin
702a6d7044 Closed #14159 (#14165)
### Description

Fix: #14159

Use `from pydantic.v1 import BaseModel, Field` instead of `from pydantic
import BaseModel, Field`

### [lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-04 12:06:04 -08:00
Perry Lee
641e401ba8 Shorten wget commands (#14211)
- **Description:** The commands can be more efficient if the output name
is set to the destined filename instead of renaming in the second
command.
2023-12-04 12:03:47 -08:00
Harrison Chase
e32185193e Harrison/embass (#14242)
Co-authored-by: Julius Lipp <lipp.julius@gmail.com>
2023-12-04 11:58:52 -08:00
umair mehmood
8504ec56e4 fixed: ModuleNotFoundError: No module named 'clarifai.auth' (#14215)
Updated the clarifai imports 

fixed: #14175 

@efriis 
@baskaryan
2023-12-04 11:53:34 -08:00
Hieu Lam
ca8a022cd9 Fixed OpenAIFunctionsAgent not returning when receiving AgentFinish (#14236)
**Description:** The way the condition is checked in the
`return_stopped_response` function of `OpenAIAgent` may not be correct,
when the value returned is `AgentFinish` from the tools it does not work
properly.


Thanks for review, @baskaryan, @eyurtsev, @hwchase17.
2023-12-04 11:43:04 -08:00
Unai Garay Maestre
6826feea14 Adds llm_chain_kwargs to BaseRetrievalQA.from_llm (#14224)
- **Description:** Adds `llm_chain_kwargs` to `BaseRetrievalQA.from_llm`
so these can be passed to the LLM at runtime,
- **Issue:** https://github.com/langchain-ai/langchain/issues/14216,

---------

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
2023-12-04 11:34:01 -08:00
James Braza
6ce5dab38c Clarifying descriptions in GuardrailsOutputParser (#14228)
Upstreaming knowledge from
https://github.com/guardrails-ai/guardrails/discussions/473 to LangChain
2023-12-04 11:33:22 -08:00
geret1
50aee687c6 langchain[patch]: Cerebrium model_api_request deprecation (#12704)
- **Description:** As part of my conversation with Cerebrium team,
`model_api_request` will be no longer available in cerebrium lib so it
needs to be replaced.
  - **Issue:** #12705 12705,
  - **Dependencies:** Cerebrium team (agreed)
  - **Tag maintainer:** @eyurtsev 
  - **Twitter handle:** No official Twitter account sorry :D

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-04 09:26:32 -08:00
Harutaka Kawamura
ee94ef55ee docs[patch]: Update MLflow and Databricks docs (#14011)
Depends on #13699. Updates the existing mlflow and databricks examples.

---------

Co-authored-by: Ben Wilson <39283302+BenWilson2@users.noreply.github.com>
2023-12-03 16:07:09 -08:00
Leonid Ganeline
94bf733dae docs[patch]: AWS platform page update (#14160)
The `AWS` platform page has many missed integrations.
- added missed integration references to the `AWS` platform page
- added/updated descriptions and links in the referenced notebooks
- renamed two notebook files. They have file names != page Title, which
generate unordered ToC.
- reroute the URLs for renamed files
- fixed `amazon_textract` notebook: removed failed cell outputs
2023-12-03 15:42:52 -08:00
Leonid Ganeline
74d4154bcc docs[patch]: added Templates Hub menu item (#14148)
This link was missing in Docs.
Added it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-03 15:36:35 -08:00
William FH
246dc4f9cc langchain[patch]: Pass kwargs to chat fireworks (#14183)
Otherwise `.bind()` isn't really any good
2023-12-03 15:12:02 -08:00
Kaiboon Ee
e961c57fd2 langchain[patch]: Mask API key for Arcee LLM (#14193)
- **Description:** Mask API key for Arcee LLM and its associated unit
tests
  - **Issue:** https://github.com/langchain-ai/langchain/issues/12165
  - **Dependencies:** N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** `eekaiboon`

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-03 15:11:43 -08:00
Daniyar Supiyev
092f302c0f langchain[patch]: Asynchronous human-in-the-loop callback (#14195)
**Description:** Adding a possibility to use asynchronous callback
handler in human-in-the-loop validation tool. Very useful, for example,
if you want to implement a validation over Telegram bot.
**Issue:** -
**Dependencies:** -

---------

Co-authored-by: Daniyar_Supiyev <daniyar_supiyev@epam.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-03 14:57:07 -08:00
Leonid Ganeline
c660b0cf79 docs[patch]: moved semadb.mdx file (#14204)
SemaDB.mdx file was placed with additional sub-folder:
`https://python.langchain.com/docs/integrations/providers/providers/semadb`
- Moved file to the
`https://python.langchain.com/docs/integrations/providers/semadb`
- Added a redirect for the file URL
2023-12-03 14:36:47 -08:00
Mark Cusack
16c83f786c Adds the Yellowbrick Data Warehouse as a supported vector store (#13820)
- **Description** An integration to allow the Yellowbrick Data Warehouse
to function as a vector store

---------

Co-authored-by: markcusack <markcusack@markcusacksmac.lan>
Co-authored-by: markcusack <markcusack@Mark-Cusack-sMac.local>
2023-12-03 13:35:53 -08:00
Hendrik Hogertz
e6862e6e7d Fix Azure Openai function calling in streaming mode (#13768)
- **Description**: This PR addresses an issue with the OpenAI API
streaming response, where initially the key (arguments) is provided but
the value is None. Subsequently, it updates with {"arguments": "{\n"},
leading to a type inconsistency that causes an exception. The specific
error encountered is ValueError: additional_kwargs["arguments"] already
exists in this message, but with a different type. This change aims to
resolve this inconsistency and ensure smooth API interactions.
- **Issue**: None.
- **Dependencies**: None.
- **Tag maintainer**: @eyurtsev

This is an updated version of #13229 based on the refactored code.
Credit goes to @superken01.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 12:07:15 -08:00
Nicolò Boschi
e204657b3c AstraDB VectorStore: implement pre_delete_collection (#13780)
- **Description:** some vector stores have a flag for try deleting the
collection before creating it (such as ´vectorpg´). This is a useful
flag when prototyping indexing pipelines and also for integration tests.
Added the bool flag `pre_delete_collection ` to the constructor (default
False)
  - **Tag maintainer:** @hemidactylus 
  - **Twitter handle:** nicoloboschi

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 12:06:20 -08:00
Chelsea E. Manning
2780d2d4dd Extend OpenAIEmbeddings class to support non-tiktoken based embeddings (#13884)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** This extends `OpenAIEmbeddings` to add support for
non-`tiktoken` based embeddings, specifically for use with the new
`text-generation-webui` API (`--extensions openai`) which does not
support `tiktoken` encodings, but rather strings
  - **Issue:** Not found,
- **Dependencies:** HuggingFace `transformers.AutoTokenizer` is new
dependency for running the model without `tiktoken`
- **Tag maintainer:** @baskaryan based on last commit for
`langchain-core` refactor
  - **Twitter handle:** @xychelsea

Modified the tokenization process to be model-agnostic, allowing for
both OpenAI and non-OpenAI model tokenizations, by setting the new
default `bool` flag `tiktoken_enabled` to `False`. This requeires
HuggingFace’s AutoTokenizer and handling tokenization for models
requiring different preprocessing steps to generate a chunked string
request rather than a list of integers.

Updated the embeddings generation process to accommodate non-OpenAI
models. This includes converting tokenized text into embeddings using
OpenAI’s and Hugging Face’s model architectures.
 -->
2023-12-03 12:04:17 -08:00
Changgeng Zhao
9b59bde93d Update Hologres vector store: use hologres-vector (#13767)
Hi,
I made some code changes on the Hologres vector store to improve the
data insertion performance.
Also, this version of the code uses `hologres-vector` library. This
library is more convenient for us to update, and more efficient in
performance.
The code has passed the format/lint/spell check. I have run the unit
test for Hologres connecting to my own database.
Please check this PR again and tell me if anything needs to change.

Best,
Changgeng,
Developer @ Alibaba Cloud

Co-authored-by: Changgeng Zhao <zhaochanggeng.zcg@alibaba-inc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 11:50:45 -08:00
Nicolò Boschi
0de7cf898d Ensure AstraDB integration tests clean up the environment (#13774)
- **Description:** currently astra_db integration tests might leave
orphan collections
  - **Tag maintainer:** @hemidactylus 
  - **Twitter handle:** nicoloboschi
2023-12-03 11:14:42 -08:00
Harrison Chase
7bc4c12477 delete stray test (#14200)
was added to an old path

also im not sure this is even really a test file? which is why i didnt
move it
2023-12-03 11:06:57 -08:00
Leonid Ganeline
283c2994de docs: Hugging Face platform page (#13831)
`Hugging Face` is definitely a platform. It includes many integrations
for many modules (LLM, Embedding, DocumentLoader, Tool)
So, a doc page was added that defines Hugging Face as a platform.
2023-12-03 11:06:43 -08:00
Chad Norvell
8a0951d934 Fix Mathpix PDF loader integration (#13949)
- **Description:** Fixes the Mathpix PDF loader API integration.
Specifically, ensures that Mathpix auth headers are provided for every
request, and ensures that we recognize all errors that can occur during
a request. Also, the option to provide API keys as kwargs never actually
worked before, but now that's fixed too.
  - **Issue:** #11249
  - **Dependencies:** None
2023-12-03 10:36:49 -08:00
gzyJoy
32d4bb4590 Added Slacktoolkit (#14012)
- **Description:** 
This PR introduces the Slack toolkit to LangChain, which allows users to
read and write to Slack using the Slack API. Specifically, we've added
the following tools.
1. get_channel: Provides a summary of all the channels in a workspace.
2. get_message: Gets the message history of a channel.
3. send_message: Sends a message to a channel.
4. schedule_message: Sends a message to a channel at a specific time and
date.

- **Issue:** This pull request addresses [Add Slack Toolkit
#11747](https://github.com/langchain-ai/langchain/issues/11747)
  - **Dependencies:** package`slack_sdk`
Note: For this toolkit to function you will need to add a Slack app to
your workspace. Additional info can be found
[here](https://slack.com/help/articles/202035138-Add-apps-to-your-Slack-workspace).

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ArianneLavada <ariannelavada@gmail.com>
Co-authored-by: ArianneLavada <84357335+ArianneLavada@users.noreply.github.com>
Co-authored-by: ariannelavada@gmail.com <you@example.com>
2023-12-03 10:25:38 -08:00
Richie
99e5ee6a84 fix(vectorstores): incorrect import for mongodb atlas DriverInfo (#14060)
- **Description:** fix `import` issue for `mongodb atlas` vectore store
integration
  - **Issue:** none
  - **Dependencies:** none

while trying to follow official `langchain`'s [mongodb integration
guide](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas),
an import error will happen.

It's caused by incorrect import location:
- `from pymongo import DriverInfo` should be `from pymongo.driver_info
import DriverInfo`
- reference: [pymongo's DriverInfo
class](https://pymongo.readthedocs.io/en/stable/api/pymongo/driver_info.html#pymongo.driver_info.DriverInfo)

Thanks!
2023-12-03 10:22:13 -08:00
ggeutzzang
03d6b94c29 Fix: (issue #14066) DOC: Summarization output broken (#14078)
- **Description:** : As described in the issue below, 
https://python.langchain.com/docs/use_cases/summarization  
I've modified the Python code in the above notebook to perform well. 

I also modified the OpenAI LLM model to the latest version as shown
below.
`gpt-3.5-turbo-16k --> gpt-3.5-turbo-1106`
This is because it seems to be a bit more responsive.
  - **Issue:** : #14066
2023-12-03 10:13:57 -08:00
James Braza
3833882ab7 Removing extra StdOutCallbackHandler overridden methods (#14136)
Unnecessarily overridden methods:

- Give the idea the subclass is doing something special (when it isn't)
- Block CTRL-click to the actual method

This PR removes some unnecessarily overridden methods in
`StdOutCallbackHandler`

Supercedes https://github.com/langchain-ai/langchain/pull/12858
2023-12-03 09:38:49 -08:00
Bob Lin
ac449f186b Update docs to use new usage in openai>1.0.0 (#14163)
### Description

Use new
[APIs](https://github.com/openai/openai-python/blob/main/api.md#finetuning)

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-03 09:37:35 -08:00
James Braza
052e23be3e Added Python logging tracer (#14190)
This PR creates a logging handler and adds a simple unit test of it

Supercedes https://github.com/langchain-ai/langchain/pull/12862

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-12-03 09:36:30 -08:00
Bob Lin
1ea48a31da Update fallback cases (#14164)
### Description

The `RateLimitError` initialization method has changed after openai v1,
and the usage of `patch` needs to be changed.

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-03 08:56:07 -08:00
Bob Lin
62505043be Closed #14069 (#14166)
### Description

Fix #14069

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-03 08:55:25 -08:00
Yong woo Song
9938086df0 Fix Html2TextTransformer for shallow copy (#14197)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
Hi,
There is some unintended behavior in Html2TextTransformer.
The current code is **directly modifying the original documents that are
passed as arguments to the function.**
Therefore, not only the return of the function but also the input
variables are being modified simultaneously.
**To resolve this, I added unit test code as well.**

reference link: [Shallow vs Deep Copying of Python
Objects](https://realpython.com/copying-python-objects/)

Thanks! ☺️
2023-12-03 08:45:35 -08:00
h3l
818252b1f8 Fix: (issue #14127) Volc Engine MaaS import error (#14194)
- **Description:** fix Volc Engine MaaS import error
- **Issue:** [the issue # it fixes (if
applicable),](https://github.com/langchain-ai/langchain/issues/14127)
  - **Dependencies:** None
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:**

Co-authored-by: lvzhong <lvzhong@bytedance.com>
2023-12-03 08:43:23 -08:00
Leonid Ganeline
6ae0194dc7 docs: integrations/toolkits/office365 notebook update (#14188)
Added more descriptions and authentication details.
2023-12-03 08:43:00 -08:00
Bagatur
0bdb434383 langchain[patch]: Release langchain 0.0.345 (#14184) 2023-12-02 15:53:49 -08:00
Bagatur
15c04a5670 core[patch]: Release 0.0.9 (#14182) 2023-12-02 14:40:56 -08:00
James Braza
bdb6ae2ed3 core[patch]: BaseTracer helper method for Run lookup (#14139)
I observed the same run ID extraction logic is repeated many times in
`BaseTracer`.

This PR creates a helper method for DRY code.
2023-12-02 14:05:50 -08:00
Harutaka Kawamura
41ee3be95f langchain[patch]: Support passing parameters to llms.Databricks and llms.Mlflow (#14100)
Before, we need to use `params` to pass extra parameters:

```python
from langchain.llms import Databricks

Databricks(..., params={"temperature": 0.0})
```

Now, we can directly specify extra params:

```python
from langchain.llms import Databricks

Databricks(..., temperature=0.0)
```
2023-12-01 19:27:18 -08:00
Abdul
82102c99b3 langchain[patch]: Running SQLDatabaseChain adds prefix "SQLQuery:\n" (#14058)
- **Issue:** https://github.com/langchain-ai/langchain/issues/12077

---------

Co-authored-by: Abdul Kader Maliyakkal <maliyakk@amazon.com>
2023-12-01 19:26:16 -08:00
Samuel Kemp
fd781c89cc langchain[minor]: add azure ai data document loader (#13404)
This PR adds an "Azure AI data" document loader, which allows Azure AI
users to load their registered data assets as a document object in
langchain.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 19:25:55 -08:00
James Braza
24385a00de core[minor], langchain[patch], experimental[patch]: Added missing py.typed to langchain_core (#14143)
See PR title.

From what I can see, `poetry` will auto-include this. Please let me know
if I am missing something here.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 19:15:23 -08:00
quantum00549
f7c257553d langchain[patch]: fixed a bug that was causing the streaming transfer to not work… (#10827)
… properly

Fixed a bug that was causing the streaming transfer to not work
properly.
 - **Description: 
1、The on_llm_new_token method in the streaming callback can now be
called properly in streaming transfer mode.
2、In streaming transfer mode, LLM can now correctly output the complete
response instead of just the first token.
- **Tag maintainer: @wangxuqi 
- **Twitter handle: @kGX7XJjuYxzX9Km

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 18:57:50 -08:00
Eugene Yurtsev
6d0209e0aa Improve file system blob loader and generic loader (#14004)
* Add support for passing a specific file to the file system blob loader
* Allow specifying a class parameter for the parser for the generic
loader

```python

class AudioLoader(GenericLoader):
  @staticmethod
  def get_parser(**kwargs):
     return MyAudioParser(**kwargs):
```

The intent of the GenericLoader is to provide on-ramps from different
sources (e.g., web, s3, file system).

An alternative is to use pipelining syntax or creating a Pipeline

```
FileSystemBlobLoader(...) | MyAudioParser
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 21:23:40 -05:00
Erick Friis
700428593a fix broken api docs links (#14154) 2023-12-01 17:17:52 -08:00
Bagatur
340b42d8ee docs[minor]: lcel why page (#14089) 2023-12-01 16:13:31 -08:00
Lance Martin
cbe4753e1a Update Open CLIP embd (#14155)
Prior default model required a large amt of RAM and often crashed
Jupyter ntbk kernel.
2023-12-01 15:13:20 -08:00
Erick Friis
b01d9d27d9 docs[patch]: docs local build (#14152) 2023-12-01 14:03:36 -08:00
Alex Kira
0caef3cde7 Change RunnableMap to RunnableParallel for consistency (#14142)
- **Description:** Change instances of RunnableMap to RunnableParallel,
as that should be the one used going forward. This makes it consistent
across the codebase.
2023-12-01 13:36:40 -08:00
Erick Friis
96f6b90349 templates[patch]: relock templates (#14149) 2023-12-01 13:35:54 -08:00
Martin Jul
e3a7c96a8e docs[patch]: Fix minor typos (casing) in quickstart (#14138)
Fix casing of API and LangChain in the description text for the
LangServe example server.
2023-12-01 13:29:53 -08:00
Erick Friis
8cf4cb9e48 docs[patch]: Fix templates/index (#14146) 2023-12-01 13:09:36 -08:00
Amyh102
b6d26d3f9f infra[patch]: Add unit tests for Huggingface dataset loader (#14053)
- **Description:** Add unit tests for huggingface dataset loader and
sample huggingface dataset for future tests. Updates dependencies for
`datasets` module.
- Adds coverage for [previous pull
request](https://github.com/langchain-ai/langchain/pull/13864)
  - **Tag maintainer:** @hwchase17

---------

Co-authored-by: Amy Han <amyhan@Amys-Air.lan>
Co-authored-by: Amy Han <amyhan@Amys-MacBook-Air.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 12:42:31 -08:00
Alex Kira
6eb40db353 docs[patch]: Add getting started section to LCEL doc (#14045)
### Description:
Doc addition for LCEL introduction. Adds a more basic starter guide for
using LCEL.

---------

Co-authored-by: Alex Kira <akira@Alexs-MBP.local.tld>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-12-01 12:23:43 -08:00
Govinda Totla
62a3473ac0 docs[patch]: add text_splitter.py test (#14025)
Description: Add HTMLHeaderTextSplitter unit test
Dependencies: none
2023-12-01 11:57:50 -08:00
Bagatur
7d5341dbd3 docs[patch]: add contribs to readme (#14137) 2023-12-01 11:34:28 -08:00
axiangcoding
1b36ddf16c docs[patch]: add deprecated note for ErnieChatBot (#14061)
- **Description:** just a little change of ErnieChatBot class
description, sugguesting user to use more suitable class
  - **Issue:** none,
  - **Dependencies:** none,
  - **Tag maintainer:** @baskaryan ,
  - **Twitter handle:** none
2023-12-01 11:16:31 -08:00
Alex Kira
1757258b2a docs[patch]: Add mermaid JS theme dependency to docusaurus (#14051)
- **Description:** Add mermaid JS dependency and configs to
documentation. Allows inline doc diagrams in markdown.
  - **Dependencies:** NPM package @docusaurus/theme-mermaid
2023-12-01 11:06:29 -08:00
Devin Dahoon Kim
32da0a4d71 langchain[patch]: use async_embed_with_retry in _aget_len_safe_embeddings (#14110)
**Description**

`embed_with_retry` is for sync operations and not for async operations.
Use `async_embed_with_retry` for appropriate async operations.


I'm using `OpenAIEmbedding(http_client=httpx.AsyncClient())` with only
async operations.
However, I got an error when I use `embedding.aembed_documents` because
`embed_with_retry` uses sync OpenAI client with async http client.
2023-12-01 10:47:07 -08:00
lijie
371bcb7580 langchain[patch]: set maxsplit when parse python function docstring (#14121)
Description

when the desc of arg in python docstring contains ":", the
`_parse_python_function_docstring` will raise **ValueError: too many
values to unpack (expected 2)**.

A sample desc would be:
"""
Args: 
    error_arg: this is an arg with an additional ":" symbol
"""

So, set `maxsplit` parameter to fix it.
2023-12-01 10:46:53 -08:00
Harrison Chase
ae646701c4 Harrison/ibm (#14133)
Co-authored-by: Mateusz Szewczyk <139469471+MateuszOssGit@users.noreply.github.com>
2023-12-01 12:44:11 -05:00
Eugene Yurtsev
943aa01c14 Improve indexing performance for Postgres (remote database) for refresh for async API (#14132)
This PR speeds up the indexing api on the async path by batching the uid
updates in the sql record manager (which may be remote).
2023-12-01 12:10:07 -05:00
William FH
528fc76d6a Update Prompt Format Error (#14044)
The number of times I try to format a string (especially in lcel) is
embarrassingly high. Think this may be more actionable than the default
error message. Now I get nice helpful errors


```
KeyError: "Input to ChatPromptTemplate is missing variable 'input'.  Expected: ['input'] Received: ['dialogue']"
```
2023-12-01 09:06:35 -08:00
William FH
71c2e184b4 [Nits] Evaluation - Some Rendering Improvements (#14097)
- Improve rendering of aggregate results at the end
- flatten reference if present
2023-12-01 09:06:07 -08:00
Bob Lin
f15859bd86 docs[patch]: Update discord.ipynb (#14099)
### Description

Now if `example` in Message is False, it will not be displayed. Update
the output in this document.

```python
In [22]: m = HumanMessage(content="Text")

In [23]: m
Out[23]: HumanMessage(content='Text')

In [24]: m = HumanMessage(content="Text", example=True)

In [25]: m
Out[25]: HumanMessage(content='Text', example=True)
```

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-01 08:54:31 -08:00
Lance Martin
b07a5a9509 Template for Ollama + Multi-query retriever (#14092) 2023-12-01 08:53:17 -08:00
Bob Lin
75312c3694 docs[patch]: Update facebook.ipynb (#14102)
### Description

Openai version 1.0.0 and later no longer supports the usage of camel
case, So [the
APIs](https://github.com/openai/openai-python/blob/main/api.md#finetuning)
needs to be modified.

### Twitter handle

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-12-01 08:49:56 -08:00
Erick Friis
a3ae8e0a41 templates[patch]: opensearch readme update (#14103) 2023-12-01 08:48:00 -08:00
Ean Yang
ac1c8634a8 docs[patch] Update invalid guides link (#14106) 2023-12-01 08:47:38 -08:00
Mark Scannell
9b0e46dcf0 Improve indexing performance for Postgres (remote database) for refresh (#14126)
**Description:** By combining the document timestamp refresh within a
single call to update(), this enables batching of multiple documents in
a single SQL statement. This is important for non-local databases where
tens of milliseconds has a huge impact on performance when doing
document-by-document SQL statements.
**Issue:** #11935 
**Dependencies:** None
**Tag maintainer:** @eyurtsev
2023-12-01 11:36:02 -05:00
Erick Friis
b161f302ff docs[patch]: local docs build <5s (#14096) 2023-11-30 17:39:30 -08:00
Hubert Yuan
80ed588733 docs[patch]: Update metaphor_search.ipynb (#14093)
- **Description:** Touch up of the documentation page for Metaphor
Search Tool integration. Removes documentation for old built-in tool
wrapper.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-30 16:34:05 -08:00
Jacob Lee
3328507f11 langchain[patch], experimental[minor]: Adds OllamaFunctions wrapper (#13330)
CC @baskaryan @hwchase17 @jmorganca 

Having a bit of trouble importing `langchain_experimental` from a
notebook, will figure it out tomorrow

~Ah and also is blocked by #13226~

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-30 16:13:57 -08:00
Bagatur
4063bf144a langchain[patch]: release 0.0.344 (#14095) 2023-11-30 15:57:11 -08:00
Bagatur
efce352d6b core[patch]: release 0.0.8 (#14086) 2023-11-30 15:12:06 -08:00
Harutaka Kawamura
0d08a692a3 langchain[minor]: Migrate mlflow and databricks classes to deployments APIs. (#13699)
## Description

Related to https://github.com/mlflow/mlflow/pull/10420. MLflow AI
gateway will be deprecated and replaced by the `mlflow.deployments`
module. Happy to split this PR if it's too large.

```
pip install git+https://github.com/langchain-ai/langchain.git@refs/pull/13699/merge#subdirectory=libs/langchain
```

## Dependencies

Install mlflow from https://github.com/mlflow/mlflow/pull/10420:

```
pip install git+https://github.com/mlflow/mlflow.git@refs/pull/10420/merge
```

## Testing plan

The following code works fine on local and databricks:

<details><summary>Click</summary>
<p>

```python
"""
Setup
-----
mlflow deployments start-server --config-path examples/gateway/openai/config.yaml
databricks secrets create-scope <scope>
databricks secrets put-secret <scope> openai-api-key --string-value $OPENAI_API_KEY

Run
---
python /path/to/this/file.py secrets/<scope>/openai-api-key
"""
from langchain.chat_models import ChatMlflow, ChatDatabricks
from langchain.embeddings import MlflowEmbeddings, DatabricksEmbeddings
from langchain.llms import Databricks, Mlflow
from langchain.schema.messages import HumanMessage
from langchain.chains.loading import load_chain
from mlflow.deployments import get_deploy_client
import uuid
import sys
import tempfile
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

###############################
# MLflow
###############################
chat = ChatMlflow(
    target_uri="http://127.0.0.1:5000", endpoint="chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))

embeddings = MlflowEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])

llm = Mlflow(
    target_uri="http://127.0.0.1:5000",
    endpoint="completions",
    params={"temperature": 0.1},
)
print(llm("I am"))

llm_chain = LLMChain(
    llm=llm,
    prompt=PromptTemplate(
        input_variables=["adjective"],
        template="Tell me a {adjective} joke",
    ),
)
print(llm_chain.run(adjective="funny"))

# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
    print(tmpdir)
    path = f"{tmpdir}/llm.yaml"
    llm_chain.save(path)
    loaded_chain = load_chain(path)
    print(loaded_chain("funny"))

###############################
# Databricks
###############################
secret = sys.argv[1]
client = get_deploy_client("databricks")

# External - chat
name = f"chat-{uuid.uuid4()}"
client.create_endpoint(
    name=name,
    config={
        "served_entities": [
            {
                "name": "test",
                "external_model": {
                    "name": "gpt-4",
                    "provider": "openai",
                    "task": "llm/v1/chat",
                    "openai_config": {
                        "openai_api_key": "{{" + secret + "}}",
                    },
                },
            }
        ],
    },
)
try:
    chat = ChatDatabricks(
        target_uri="databricks", endpoint=name, params={"temperature": 0.1}
    )
    print(chat([HumanMessage(content="hello")]))
finally:
    client.delete_endpoint(endpoint=name)

# External - embeddings
name = f"embeddings-{uuid.uuid4()}"
client.create_endpoint(
    name=name,
    config={
        "served_entities": [
            {
                "name": "test",
                "external_model": {
                    "name": "text-embedding-ada-002",
                    "provider": "openai",
                    "task": "llm/v1/embeddings",
                    "openai_config": {
                        "openai_api_key": "{{" + secret + "}}",
                    },
                },
            }
        ],
    },
)
try:
    embeddings = DatabricksEmbeddings(target_uri="databricks", endpoint=name)
    print(embeddings.embed_query("hello")[:3])
    print(embeddings.embed_documents(["hello", "world"])[0][:3])
finally:
    client.delete_endpoint(endpoint=name)

# External - completions
name = f"completions-{uuid.uuid4()}"
client.create_endpoint(
    name=name,
    config={
        "served_entities": [
            {
                "name": "test",
                "external_model": {
                    "name": "gpt-3.5-turbo-instruct",
                    "provider": "openai",
                    "task": "llm/v1/completions",
                    "openai_config": {
                        "openai_api_key": "{{" + secret + "}}",
                    },
                },
            }
        ],
    },
)
try:
    llm = Databricks(
        endpoint_name=name,
        model_kwargs={"temperature": 0.1},
    )
    print(llm("I am"))
finally:
    client.delete_endpoint(endpoint=name)


# Foundation model - chat
chat = ChatDatabricks(
    endpoint="databricks-llama-2-70b-chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))

# Foundation model - embeddings
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
print(embeddings.embed_query("hello")[:3])

# Foundation model - completions
llm = Databricks(
    endpoint_name="databricks-mpt-7b-instruct", model_kwargs={"temperature": 0.1}
)
print(llm("hello"))
llm_chain = LLMChain(
    llm=llm,
    prompt=PromptTemplate(
        input_variables=["adjective"],
        template="Tell me a {adjective} joke",
    ),
)
print(llm_chain.run(adjective="funny"))

# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
    print(tmpdir)
    path = f"{tmpdir}/llm.yaml"
    llm_chain.save(path)
    loaded_chain = load_chain(path)
    print(loaded_chain("funny"))

```

Output:

```
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
sorry, but I cannot continue the sentence as it is incomplete. Can you please provide more information or context?
Sure, here's a classic one for you:

Why don't scientists trust atoms?

Because they make up everything!
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmpx_4no6ad
{'adjective': 'funny', 'text': "Sure, here's a classic one for you:\n\nWhy don't scientists trust atoms?\n\nBecause they make up everything!"}
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
 a 23 year old female and I am currently studying for my master's degree
content="\nHello! It's nice to meet you. Is there something I can help you with or would you like to chat for a bit?"
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]

hello back
 Well, I don't really know many jokes, but I do know this funny story...
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmp7_ds72ex
{'adjective': 'funny', 'text': " Well, I don't really know many jokes, but I do know this funny story..."}
```

</p>
</details>

The existing workflow doesn't break:

<details><summary>click</summary>
<p>

```python
import uuid

import mlflow
from mlflow.models import ModelSignature
from mlflow.types.schema import ColSpec, Schema


class MyModel(mlflow.pyfunc.PythonModel):
    def predict(self, context, model_input):
        return str(uuid.uuid4())


with mlflow.start_run():
    mlflow.pyfunc.log_model(
        "model",
        python_model=MyModel(),
        pip_requirements=["mlflow==2.8.1", "cloudpickle<3"],
        signature=ModelSignature(
            inputs=Schema(
                [
                    ColSpec("string", "prompt"),
                    ColSpec("string", "stop"),
                ]
            ),
            outputs=Schema(
                [
                    ColSpec(name=None, type="string"),
                ]
            ),
        ),
        registered_model_name=f"lang-{uuid.uuid4()}",
    )

# Manually create a serving endpoint with the registered model and run
from langchain.llms import Databricks

llm = Databricks(endpoint_name="<name>")
llm("hello")  # 9d0b2491-3d13-487c-bc02-1287f06ecae7
```

</p>
</details> 

## Follow-up tasks

(This PR is too large. I'll file a separate one for follow-up tasks.)

- Update `docs/docs/integrations/providers/mlflow_ai_gateway.mdx` and
`docs/docs/integrations/providers/databricks.md`.

---------

Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-30 15:06:58 -08:00
Tyler Hutcherson
dc31714ec5 templates[patch]: Rag redis template dependency update (#13614)
- **Description:** Update RAG Redis template readme and dependencies.
2023-11-30 12:22:13 -08:00
Jeremy Naccache
a14cf87576 core[patch]: Add **kwargs to Langchain's dumps() to allow passing of json.dumps() … (#10628)
…parameters.

In Langchain's `dumps()` function, I've added a `**kwargs` parameter.
This allows users to pass additional parameters to the underlying
`json.dumps()` function, providing greater flexibility and control over
JSON serialization.

Many parameters available in `json.dumps()` can be useful or even
necessary in specific situations. For example, when using an Agent with
return_intermediate_steps set to true, the output is a list of
AgentAction objects. These objects can't be serialized without using
Langchain's `dumps()` function.

The issue arises when using the Agent with a language other than
English, which may contain non-ASCII characters like 'é'. The default
behavior of `json.dumps()` sets ensure_ascii to true, converting
`{"name": "José"}` into `{"name": "Jos\u00e9"}`. This can make the
output hard to read, especially in the case of intermediate steps in
agent logs.

By allowing users to pass additional parameters to `json.dumps()` via
Langchain's dumps(), we can solve this problem. For instance, users can
set `ensure_ascii=False` to maintain the original characters.

This update also enables users to pass other useful `json.dumps()`
parameters like `sort_keys`, providing even more flexibility.

The implementation takes into account edge cases where a user might pass
a "default" parameter, which is already defined by `dumps()`, or an
"indent" parameter, which is also predefined if `pretty=True` is set.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-30 08:52:24 -08:00
Erick Friis
8078caf764 templates[patch]: rag-google-cloud-sdp readme (#14043) 2023-11-30 08:17:51 -08:00
Yong woo Song
f4d520ccb5 Fix .env file path in integration_test README.md (#14028)
<!-- Thank you for contributing to LangChain!



Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

### Description
Hello, 

The [integration_test
README](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests)
was indicating incorrect paths for the `.env.example` and `.env` files.

`tests/.env.example` ->`tests/integration_tests/.env.example`

While it’s a minor error, it could **potentially lead to confusion** for
the document’s readers, so I’ve made the necessary corrections.

Thank you! ☺️

### Related Issue
- https://github.com/langchain-ai/langchain/pull/2806
2023-11-29 22:14:28 -05:00
Rohan Dey
41a4c06a94 Added support for a Pandas DataFrame OutputParser (#13257)
**Description:**

Added support for a Pandas DataFrame OutputParser with format
instructions, along with unit tests and a demo notebook. Namely, we've
added the ability to request data from a DataFrame, have the LLM parse
the request, and then use that request to retrieve a well-formatted
response.

Within LangChain, it seamlessly integrates with language models like
OpenAI's `text-davinci-003`, facilitating streamlined interaction using
the format instructions (just like the other output parsers).

This parser structures its requests as
`<operation/column/row>[<optional_array_params>]`. The instructions
detail permissible operations, valid columns, and array formats,
ensuring clarity and adherence to the required format.

For example:

- When the LLM receives the input: "Retrieve the mean of `num_legs` from
rows 1 to 3."
- The provided format instructions guide the LLM to structure the
request as: "mean:num_legs[1..3]".

The parser processes this formatted request, leveraging the LLM's
understanding to extract the mean of `num_legs` from rows 1 to 3 within
the Pandas DataFrame.

This integration allows users to communicate requests naturally, with
the LLM transforming these instructions into structured commands
understood by the `PandasDataFrameOutputParser`. The format instructions
act as a bridge between natural language queries and precise DataFrame
operations, optimizing communication and data retrieval.

**Issue:**

- https://github.com/langchain-ai/langchain/issues/11532

**Dependencies:**

No additional dependencies :)

**Tag maintainer:**

@baskaryan 

**Twitter handle:**

No need. :)

---------

Co-authored-by: Wasee Alam <waseealam@protonmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 22:08:50 -05:00
Masanori Taniguchi
235bdb9fa7 Support Vald secure connection (#13269)
**Description:** 
When using Vald, only insecure grpc connection was supported, so secure
connection is now supported.
In addition, grpc metadata can be added to Vald requests to enable
authentication with a token.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-29 22:07:29 -05:00
Nico Puhlmann
54355b651a Update index.mdx (#13285)
grammar correction

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 22:06:33 -05:00
sudranga
d1d693b2a7 Fix issue where response_if_no_docs_found is not implemented on async… (#13297)
Response_if_no_docs_found is not implemented in
ConversationalRetrievalChain for async code paths. Implemented it and
added test cases

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 22:06:13 -05:00
AthulVincent
67c55cb5b0 Implemented MongoDB Atlas Self-Query Retriever (#13321)
# Description 
This PR implements Self-Query Retriever for MongoDB Atlas vector store.

I've implemented the comparators and operators that are supported by
MongoDB Atlas vector store according to the section titled "Atlas Vector
Search Pre-Filter" from
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/.

Namely:
```
allowed_comparators = [
      Comparator.EQ,
      Comparator.NE,
      Comparator.GT,
      Comparator.GTE,
      Comparator.LT,
      Comparator.LTE,
      Comparator.IN,
      Comparator.NIN,
  ]

"""Subset of allowed logical operators."""
allowed_operators = [
    Operator.AND,
    Operator.OR
]
```
Translations from comparators/operators to MongoDB Atlas filter
operators(you can find the syntax in the "Atlas Vector Search
Pre-Filter" section from the previous link) are done using the following
dictionary:
```
map_dict = {
            Operator.AND: "$and",
            Operator.OR: "$or",
            Comparator.EQ: "$eq",
            Comparator.NE: "$ne",
            Comparator.GTE: "$gte",
            Comparator.LTE: "$lte",
            Comparator.LT: "$lt",
            Comparator.GT: "$gt",
            Comparator.IN: "$in",
            Comparator.NIN: "$nin",
        }
```

In visit_structured_query() the filters are passed as "pre_filter" and
not "filter" as in the MongoDB link above since langchain's
implementation of MongoDB atlas vector
store(libs\langchain\langchain\vectorstores\mongodb_atlas.py) in
_similarity_search_with_score() sets the "filter" key to have the value
of the "pre_filter" argument.
```
params["filter"] = pre_filter
```
Test cases and documentation have also been added.

# Issue
#11616 

# Dependencies
No new dependencies have been added.

# Documentation
I have created the notebook mongodb_atlas_self_query.ipynb outlining the
steps to get the self-query mechanism working.

I worked closely with [@Farhan-Faisal](https://github.com/Farhan-Faisal)
on this PR.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 22:05:06 -05:00
Josef Zoller
c2e3963da4 Merriam-Webster Dictionary Tool (#12044)
# Description

We implemented a simple tool for accessing the Merriam-Webster
Collegiate Dictionary API
(https://dictionaryapi.com/products/api-collegiate-dictionary).

Here's a simple usage example:

```py
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType

llm = OpenAI()
tools = load_tools(["serpapi", "merriam-webster"], llm=llm) # Serp API gives our agent access to Google
agent = initialize_agent(
  tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("What is the english word for the german word Himbeere? Define that word.")
```

Sample output:

```
> Entering new AgentExecutor chain...
 I need to find the english word for Himbeere and then get the definition of that word.
Action: Search
Action Input: "English word for Himbeere"
Observation: {'type': 'translation_result'}
Thought: Now I have the english word, I can look up the definition.
Action: MerriamWebster
Action Input: raspberry
Observation: Definitions of 'raspberry':

1. rasp-ber-ry, noun: any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries
2. rasp-ber-ry, noun: a perennial plant (genus Rubus) of the rose family that bears raspberries
3. rasp-ber-ry, noun: a sound of contempt made by protruding the tongue between the lips and expelling air forcibly to produce a vibration; broadly : an expression of disapproval or contempt
4. black raspberry, noun: a raspberry (Rubus occidentalis) of eastern North America that has a purplish-black fruit and is the source of several cultivated varieties —called also blackcap

Thought: I now know the final answer.
Final Answer: Raspberry is an english word for Himbeere and it is defined as any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries.

> Finished chain.
```

# Issue

This closes #12039.

# Dependencies

We added no extra dependencies.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Lara <63805048+larkgz@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 20:28:29 -05:00
Mohammad Mohtashim
f3dd4a10cf DROP BOX Loader Documentation Update (#14047)
- **Description:** Update the document for drop box loader + made the
messages more verbose when loading pdf file since people were getting
confused
  - **Issue:** #13952
  - **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17,

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-29 17:25:35 -08:00
Cheng (William) Huang
a00db4b28f Add multi-input Reddit search tool (#13893)
- **Description:** Added a tool called RedditSearchRun and an
accompanying API wrapper, which searches Reddit for posts with support
for time filtering, post sorting, query string and subreddit filtering.
  - **Issue:** #13891 
  - **Dependencies:** `praw` module is used to search Reddit
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed
  - **Twitter handle:** None.

  Hello,

This is our first PR and we hope that our changes will be helpful to the
community. We have run `make format`, `make lint` and `make test`
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.

Our PR integrates the `praw` package which is already used by
RedditPostsLoader in LangChain. Nonetheless, we have added integration
tests and edited unit tests to test our changes. An example notebook is
also provided. These changes were put together by me, @Anika2000,
@CharlesXu123, and @Jeremy-Cheng-stack

Thank you in advance to the maintainers for their time.

---------

Co-authored-by: What-Is-A-Username <49571870+What-Is-A-Username@users.noreply.github.com>
Co-authored-by: Anika2000 <anika.sultana@mail.utoronto.ca>
Co-authored-by: Jeremy Cheng <81793294+Jeremy-Cheng-stack@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 20:16:40 -05:00
Jawad Arshad
00a6e8962c langchain[minor]: Add serpapi tools (#13934)
- **Description:** Added some of the more endpoints supported by serpapi
that are not suported on langchain at the moment, like google trends,
google finance, google jobs, and google lens
- **Issue:** [Add support for many of the querying endpoints with
serpapi #11811](https://github.com/langchain-ai/langchain/issues/11811)

---------

Co-authored-by: zushenglu <58179949+zushenglu@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Ian Xu <ian.xu@mail.utoronto.ca>
Co-authored-by: zushenglu <zushenglu1809@gmail.com>
Co-authored-by: KevinT928 <96837880+KevinT928@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 14:02:57 -08:00
h3l
dbaeb163aa langchain[minor]: add volcengine endpoint as LLM (#13942)
- **Description:** Volc Engine MaaS serves as an enterprise-grade,
large-model service platform designed for developers. You can visit its
homepage at https://www.volcengine.com/docs/82379/1099455 for details.
This change will facilitate developers to integrate quickly with the
platform.
  - **Issue:** None
  - **Dependencies:** volcengine
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** @he1v3tica

---------

Co-authored-by: lvzhong <lvzhong@bytedance.com>
2023-11-29 13:16:42 -08:00
Mohammad Ahmad
1600ebe6c7 langchain[patch]: Mask API key for ForeFrontAI LLM (#14013)
- **Description:** Mask API key for ForeFrontAI LLM and associated unit
tests
  - **Issue:** https://github.com/langchain-ai/langchain/issues/12165
  - **Dependencies:** N/A
  - **Tag maintainer:** @eyurtsev 
  - **Twitter handle:** `__mmahmad__`

I made the API key non-optional since linting required adding validation
for None, but the key is required per documentation:
https://python.langchain.com/docs/integrations/llms/forefrontai
2023-11-29 13:12:19 -08:00
yoch
a0e859df51 langchain[patch]: fix cohere reranker init #12899 (#14029)
- **Description:** use post field validation for `CohereRerank`
  - **Issue:** #12899 and #13058
  - **Dependencies:** 
  - **Tag maintainer:** @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 12:57:06 -08:00
123-fake-st
9bd6e9df36 update pdf document loaders' metadata source to url for online pdf (#13274)
- **Description:** Update 5 pdf document loaders in
`langchain.document_loaders.pdf`, to store a url in the metadata
(instead of a temporary, local file path) if the user provides a web
path to a pdf: `PyPDFium2Loader`, `PDFMinerLoader`,
`PDFMinerPDFasHTMLLoader`, `PyMuPDFLoader`, and `PDFPlumberLoader` were
updated.
- The updates follow the approach used to update `PyPDFLoader` for the
same behavior in #12092
- The `PyMuPDFLoader` changes required additional work in updating
`langchain.document_loaders.parsers.pdf.PyMuPDFParser` to be able to
process either an `io.BufferedReader` (from local pdf) or `io.BytesIO`
(from online pdf)
- The `PDFMinerPDFasHTMLLoader` change used a simpler approach since the
metadata is assigned by the loader and not the parser
  - **Issue:** Fixes #7034
  - **Dependencies:** None


```python
# PyPDFium2Loader example:
# old behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': '/var/folders/7z/d5dt407n673drh1f5cm8spj40000gn/T/tmpm5oqa92f/tmp.pdf', 'page': 0}

# new behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': 'https://arxiv.org/pdf/1706.03762.pdf', 'page': 0}
```
2023-11-29 15:07:46 -05:00
Toshish Jawale
6f64cb5078 Remove deprecated param and flexibility for prompt (#13310)
- **Description:** Updated to remove deprecated parameter penalty_alpha,
and use string variation of prompt rather than json object for better
flexibility. - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** N/A
  - **Tag maintainer:** @eyurtsev
  - **Twitter handle:** @symbldotai

---------

Co-authored-by: toshishjawale <toshish@symbl.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 14:48:25 -05:00
Tomaz Bratanic
3eb391561b langchain[minor]: Reduce the number of tokens required to describe a Cypher/Neo4j schema (#13851)
Instead of using JSON-like syntax to describe node and relationship
properties we changed to a shorter and more concise schema description

Old:

```
        Node properties are the following:
        [{'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Movie'}, {'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Actor'}]
        Relationship properties are the following:
        []
        The relationships are the following:
        ['(:Actor)-[:ACTED_IN]->(:Movie)']
```

New:

```
Node properties are the following:
Movie {name: STRING},Actor {name: STRING}
Relationship properties are the following:

The relationships are the following:
(:Actor)-[:ACTED_IN]->(:Movie)
```
2023-11-29 11:13:12 -08:00
Sauhaard
7ec4dbeb80 langchain[minor]: Add StackExchange API integration (#14002)
Implements
[#12115](https://github.com/langchain-ai/langchain/issues/12115)

Who can review?
@baskaryan , @eyurtsev , @hwchase17 

Integrated Stack Exchange API into Langchain, enabling access to diverse
communities within the platform. This addition enhances Langchain's
capabilities by allowing users to query Stack Exchange for specialized
information and engage in discussions. The integration provides seamless
interaction with Stack Exchange content, offering content from varied
knowledge repositories.

A notebook example and test cases were included to demonstrate the
functionality and reliability of this integration.

- Add StackExchange as a tool.
- Add unit test for the StackExchange wrapper and tool.
- Add documentation for the StackExchange wrapper and tool.

If you have time, could you please review the code and provide any
feedback as necessary! My team is welcome to any suggestions.

---------

Co-authored-by: Yuval Kamani <yuvalkamani@gmail.com>
Co-authored-by: Aryan Thakur <aryanthakur@Aryans-MacBook-Pro.local>
Co-authored-by: Manas1818 <79381912+manas1818@users.noreply.github.com>
Co-authored-by: aryan-thakur <61063777+aryan-thakur@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 10:32:07 -08:00
Bagatur
d4405bc94e langchain[patch]: Release 0.0.343 (#14037) 2023-11-29 10:31:03 -08:00
Erick Friis
3c29b0ded5 templates[patch]: template pyproject updates (#14035) 2023-11-29 10:21:18 -08:00
Yves Zumbühl
9c0ad0cebb langchain[patch]: Improve HyDe with custom prompts and ability to supply the run_manager (#14016)
- **Description:** The class allows to only select between a few
predefined prompts from the paper. That is not ideal, since other use
cases might need a custom prompt. The changes made allow for this. To be
able to monitor those, I also added functionality to supply a custom
run_manager.
  - **Issue:** no issue, but a new feature,
  - **Dependencies:** none,
  - **Tag maintainer:** @hwchase17,
  - **Twitter handle:** @yvesloy

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 09:40:53 -08:00
Anton Romanov
4964278ce4 docs[patch]: Update typo in map.ipynb (#14030)
fix the typo in docs, using "with" instead of "when"
2023-11-29 09:14:29 -08:00
Chad Norvell
1c4bfb8c5f langchain[patch]: Mathpix PDF loader supports arbitrary extra params (#13950)
- **Description:** Support providing whatever extra parameters you want
to the Mathpix PDF loader API request.
  - **Issue:** #12773
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-29 02:12:32 -08:00
Unai Garay Maestre
9e2ae866c4 langchain[patch]: Adds progress bar to GooglePalmEmbeddings (#13812)
- **Description:** Adds a tqdm progress bar to GooglePalmEmbeddings when
embedding a list.
  - **Issue:** #13637
  - **Dependencies:** TQDM as a main dependency (instead of extra)


Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>

---------

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-29 01:58:53 -08:00
Richie
1cd9d5f332 docs[patch]: fix typo langchain version for mongodb integration (#14006)
- **Description:** update minimal supported langchain version for
[mongodb atlast integration
webpage](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
- **Issue:** none
- **Dependencies:** none

-----

Just fixing a typo. 
In [mongodb atlas vectorstore integration
page](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas),
`langchain` support for `$vectorSearch MQL stage` should be `0.0.305`
rather than `0.0.35`
2023-11-28 21:20:30 -08:00
David Norman
a578076aea Mask api key for Together LLM (#13981)
- **Description:** Add unit tests and mask api key for Together LLM
- **Issue:** the issue
https://github.com/langchain-ai/langchain/issues/12165 ,
  - **Dependencies:** N/A
  - **Tag maintainer:** ?,
  - **Twitter handle:** N/A

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-11-28 22:57:40 -05:00
Pavel Zwerschke
5f5c701f2c docs: Install langsmith from conda-forge (#13335)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

langsmith is available on conda-forge as well and also a dependency of
the package so it gets installed either way by conda
306ed13308/recipe/meta.yaml (L43)
2023-11-28 22:44:02 -05:00
Piotr Ząbek
d0b818b634 DOCS: added missing imports (#13736) (#13737)
- **Description:** Fixed missing imports in docs 
- **Issue:**
[#13736](https://github.com/langchain-ai/langchain/issues/13736)
- **Dependencies:** N/A
2023-11-28 22:42:43 -05:00
Johnny
6463d2d0bd small fix matching engine AttributeError - object has no attribute (#13763)
This PR is fixing an attributeError: object endpoint has no attribute
"_public_match_client" when using gcp matching engine with private VPC
network.

@baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-28 22:42:29 -05:00
Amyh102
750485eaa8 Add object parsing functionality (#13864)
* **Description:** Parses huggingface dataset Sequence objects into
strings for Document loading.
* **Issue:** Fixes #10674 
* **Tag maintainter:** @baskaryan @eyurtsev

---------

Co-authored-by: Amy Han <amyhan@Amys-Air.lan>
Co-authored-by: Amy Han <amyhan@Amys-MacBook-Air.local>
2023-11-28 22:33:16 -05:00
ggeutzzang
981f78f920 Fix: (issue #13825) Getting an error with DallEAPIWrapper (#13874)
- **Description:** As of OpenAI's Python package 1.0, the existing
DallEAPIWrapper does not work correctly, so the example in the LangChain
Documentation link below does not work either.

https://python.langchain.com/docs/integrations/tools/dalle_image_generator
Also, since OpenAI only supports DALL-E version 2 or version 3, I
modified the DallEAPIWrapper to support it.

  - **Issue:** #13825 

  - **Twitter handle:** ggeutzzang
2023-11-28 22:31:25 -05:00
Kunal
74045bf5c0 max length attribute for spacy splitter for large docs (#13875)
For large size documents spacy splitter doesn't work it throws an error
as shown in below screenshot.
Reason its default max_length is 1000000 and there is no option to
increase it. So i added it in this PR.


![image](https://github.com/langchain-ai/langchain/assets/73680423/613625c3-0e21-4834-9aad-2a73cf56eecc)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-28 22:30:26 -05:00
Yusuf Khan
0bc7c1b5b4 Add Outline provider doc (#13938)
- **Description:** Added a provider doc to `docs/integrations/providers`
for the new Outline integration in #13889
  - **Tag maintainer:** @baskaryan
2023-11-28 22:29:30 -05:00
colton
643d28847d [docs] fix reduce prompt in summarization example (#13726)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Small fix to _summarization_ example, `reduce_template` should use
`{docs}` variable.

Bug likely introduced as following code suggests using
`hub.pull("rlm/map-prompt")` instead of defined prompt.
2023-11-28 22:22:42 -05:00
Wang Wei
fe9341a29c feat: Add ERNIE-Bot-8K model support for ErnieBotChat. (#13716)
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/6lp69is2a, add ERNIE-Bot-8K
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-8K, you should have the
model's access authority.
2023-11-28 22:22:23 -05:00
Leonid Ganeline
5c28bb63dd docs microsoft page updates (#14000)
The Excel, PowerPoint and SharePoint document loaders were missed in the
`Microsoft` platform page.
- added these references
2023-11-28 22:20:21 -05:00
Leonid Ganeline
15b32cfcd4 docs OpenAI platform page update (#14001)
Missed the OpenAI adapter reference in the OpenAI platform page
- Added this reference
2023-11-28 22:08:21 -05:00
Burak Ömür
0e462b72ef Update openai/create_llm_result function to consider kwargs (#13815)
Replace this entire comment with:
- **Description:** updates `create_llm_result` function within
`openai.py` to consider latest `params`,
  - **Issue:** #8928
  - **Dependencies:** -,
  - **Tag maintainer:** -
  - **Twitter handle:** [burkomr](https://twitter.com/burkomr)

<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17. -->

---------

Co-authored-by: Burak Ömür <burakomur@retorio.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-11-28 22:02:38 -05:00
chyroc
f97ab84c6b Merge pull request #13907
* feat: mask api_key for jina
2023-11-28 21:24:50 -05:00
nhywieza
9b86fb3fcb secretStr for baichuan chat model api key (#13946)
Merge pull request #13946
* secretStr for baichuan chat model api key
2023-11-28 21:20:23 -05:00
卢靖轩
aff1dba252 Merge pull request #13945
* feat: mask api key for nlpcloud
2023-11-28 21:16:36 -05:00
Leonid Kuligin
85bb3a418c Switched VertexAI models from preview (#13657)
Replace this entire comment with:
- **Description:** VertexAI models are now GA, moved away from using
preview ones from the SDK
  - **Issue:** #13606

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-28 20:38:04 -05:00
WaseemH
a47f1da884 docs[patch]: RAG Cookbook example fix (#13914)
### Description:
Hey 👋🏽  this is a small docs example fix. Hoping it helps future developers  who are working with Langchain.

### Problem:
Take a look at the original example code. You were not able to get the `dialogue_turn[0]` while it was a tuple.

Original code:
```python
def _format_chat_history(chat_history: List[Tuple]) -> str:
    buffer = ""
    for dialogue_turn in chat_history:
        human = "Human: " + dialogue_turn[0]
        ai = "Assistant: " + dialogue_turn[1]
        buffer += "\n" + "\n".join([human, ai])
    return buffer
```
In the original code you were getting this error:
```bash
    human = "Human: " + dialogue_turn[0].content
                        ~~~~~~~~~~~~~^^^
TypeError: 'HumanMessage' object is not subscriptable
```
### Solution:
The fix is to just for loop over the chat history and look to see if its a human or ai message and add it to the buffer.
2023-11-28 17:37:03 -08:00
Erick Friis
5eca1bd93f Library Licenses (#13300)
Same change as #8403 but in other libs

also updates (c) LangChain Inc. instead of @hwchase17
2023-11-28 17:34:27 -08:00
Bagatur
14799b139a infra[patch]: add base deps and fix docs lint (#13998) 2023-11-28 17:27:37 -08:00
Théo LEBRUN
926d4cfda7 Set default region from boto3 session for Bedrock (#13694)
- **Description:** Set default region from boto3 session for Bedrock 
- **Issue:** #13683
2023-11-28 20:26:54 -05:00
Snow
1a33e5b500 Repair Wikipedia document loader load_max_docs and improve test coverage. (#13769)
**Description:** 

Repair Wikipedia document loader `load_max_docs` and improve test
coverage.

**Issue:** 

The Wikipedia document loader was not respecting the `load_max_docs`
paramater (not reported) and would always return a maximum of 10
documents. This is because the API wrapper (in `utilities/wikipedia.py`)
wasn't passing `top_k_results` to the underlying [Wikipedia
library](https://wikipedia.readthedocs.io/en/latest/code.html#module-wikipedia).
By default this library returns 10 results.

The default number of results for the document loader has been reduced
from 100 to 25. This is because loading 100 results takes a very long
time and is an inconvenient default. It should possibly be 10.

In addition, the documentation for the loader reported that there was a
hard limit (300) on the number of documents returned. In actuality 300
is the maximum Wikipedia query character length set by the API wrapper.

Tests have been added for the document loader (previously missing) and
to test the correct numbers of documents are being returned by each
class, both by default, and when overridden. Also repaired is the
`assert_docs` test which has been updated to correctly test for the
default metadata (which includes `source` in recent releases).

**Dependencies:** 
nil

**Tag maintainer:**
@leo-gan

**Twitter handle:**
@queenvictoria
2023-11-28 20:26:40 -05:00
Bob Lin
04c4878306 Remove python_repl from _BASE_TOOLS (#13962)
### **Description:**

Previously `python_repl` was a built-in tool, but now it has been moved
to `langchain_experimental`.

When I use `load_tools` I get an error:

```python
In [1]: from langchain.agents import load_tools

In [2]: load_tools(["python_repl"])
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
Cell In[2], line 1
----> 1 load_tools(["python_repl"])

File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:530, in load_tools(tool_names, llm, callbacks, **kwargs)
    528     tool_names.extend(requests_method_tools)
    529 elif name in _BASE_TOOLS:
--> 530     tools.append(_BASE_TOOLS[name]())
    531 elif name in _LLM_TOOLS:
    532     if llm is None:

File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:84, in _get_python_repl()
     83 def _get_python_repl() -> BaseTool:
---> 84     raise ImportError(
     85         "This tool has been moved to langchain experiment. "
     86         "This tool has access to a python REPL. "
     87         "For best practices make sure to sandbox this tool. "
     88         "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md "
     89         "To keep using this code as is, install langchain experimental and "
     90         "update relevant imports replacing 'langchain' with 'langchain_experimental'"
     91     )

ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental'
```

In this case, it will be very confusing. I think it is no longer a
built-in tool now, so it can be removed from `_BASE_TOOLS`

### **Issue:** 

https://github.com/langchain-ai/langchain/issues/13858,
https://github.com/langchain-ai/langchain/issues/13859,
https://github.com/langchain-ai/langchain/issues/13856
### **Twitter handle:** 

[lin_bob57617](https://twitter.com/lin_bob57617)
2023-11-28 20:13:54 -05:00
Leonid Ganeline
52eee458bb renamed google_vertex_ai_vector_search notebook (#13484)
The `integrations/vectorstores/matchingengine.ipynb` example has the
"Google Vertex AI Vector Search" title. This place this Title in the
wrong order in the ToC (it is sorted by the file name).
- Renamed `integrations/vectorstores/matchingengine.ipynb` into
`integrations/vectorstores/google_vertex_ai_vector_search.ipynb`.
- Updated a correspondent comment in docstring
- Rerouted old URL to a new URL

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-28 16:58:29 -08:00
Leonid Ganeline
f5326cfb4e docs[patch]: link to LangSmith docs (#13740)
It happens that there is no link to the LangSmith Docs from the LangChain Docs.
Added this link
2023-11-28 16:44:45 -08:00
Leonid Ganeline
bf5787f58b experimental[patch]: fixed namespace bug (#13585)
It was :
`from langchain.schema.prompts import BasePromptTemplate`
but because of the breaking change in the ns, it is now
`from langchain.schema.prompt_template import BasePromptTemplate`

This bug prevents building the API Reference for the langchain_experimental
2023-11-28 16:40:27 -08:00
Leonid Ganeline
1ab8a14742 docs[patch]: top menu (#13748)
Addressed this issue with the top menu: It allocates too much space. If the screen is small, then the top menu items are split into two lines and look unreadable.
Another issue is with several top menu items: "Chat our docs" and "Also by LangChain". They are compound of several words which also hurts readability. The top menu items should be 1-word size.
Updates:
- "Chat our docs" -> "Chat" (the meaning is clean after clicking/opening the item)
- "Also by LangChain" -> "🦜🔗"
- "🦜🔗" moved before "Chat" item. This new item is partially copied from the first left item, the "🦜🔗 LangChain". This design (with two 🦜🔗 elements, visually splits the top menu into two parts. The first item in each part holds the 🦜🔗 symbols and, when we click the second 🦜🔗 item, it opens the drop-down menu. So, we've got two visually similar parts, which visually split the top menu on the right side: the LangChain Docs (and Doc-related items) and the lift side: other LangChain.ai (company) products/docs.
2023-11-28 16:35:38 -08:00
Bob Lin
41b3968d39 docs[patch]: Update CONTRIBUTING.md doc (#13965)
- **Description:** The new demo notebook should be placed in
[docs/docs/modules](https://github.com/langchain-ai/langchain/tree/master/docs/docs/modules)
  - **Twitter handle:**  lin_bob57617

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-28 16:32:25 -08:00
Taqi Jaffri
144710ad9a langchain[minor]: Updated DocugamiLoader, includes breaking changes (#13265)
There are the following main changes in this PR:

1. Rewrite of the DocugamiLoader to not do any XML parsing of the DGML
format internally, and instead use the `dgml-utils` library we are
separately working on. This is a very lightweight dependency.
2. Added MMR search type as an option to multi-vector retriever, similar
to other retrievers. MMR is especially useful when using Docugami for
RAG since we deal with large sets of documents within which a few might
be duplicates and straight similarity based search doesn't give great
results in many cases.

We are @docugami on twitter, and I am @tjaffri

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-28 15:56:22 -08:00
Bagatur
a20e8f8bb0 experimental[patch]: release 0.0.43 (#13570) 2023-11-28 15:38:09 -08:00
juan-calvo-datatonic
6137894008 templates[minor]: Add rag google sensitive data protection template (#13921)
This is a template demonstrating how to utilize Google Sensitive Data
Protection in conjunction with ChatVertexAI(). Tagging you @efriis as
you reviewed my last template. :) Thanks!

Proof of successful execution: 

![image](https://github.com/langchain-ai/langchain/assets/82172964/e4d678aa-85c8-482b-b09d-81fe7e912dd4)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-28 15:15:58 -08:00
Erick Friis
8b9dc5e6d3 langchain[patch]: contributing test guide update (#13993) 2023-11-28 14:38:11 -08:00
Bagatur
95a472a85f docs[patch]: install local core (#13990) 2023-11-28 14:36:22 -08:00
Bagatur
d8fe987ef5 langchain[patch]: release 0.0.342 (#13992) 2023-11-28 14:34:57 -08:00
Bagatur
61ec71064a docs[patch]: update stack diagram (#13902) 2023-11-28 14:19:13 -08:00
david qiu
9fb6805be4 langchain[minor]: Add retriever for Knowledge Bases for Amazon Bedrock (#13980)
- **Description:** Adds a retriever implementation for [Knowledge Bases
for Amazon Bedrock](https://aws.amazon.com/bedrock/knowledge-bases/), a
new service announced at AWS re:Invent, shortly before this PR was
opened. This depends on the `bedrock-agent-runtime` service, which will
be included in a future version of `boto3` and of `botocore`. We will
open a follow-up PR documenting the minimum required versions of `boto3`
and `botocore` after that information is available.
  - **Issue:** N/A
  - **Dependencies:** `boto3>=1.33.2, botocore>=1.33.2`
  - **Tag maintainer:** @baskaryan
  - **Twitter handles:** `@pjain7` `@dead_letter_q`

This PR includes a documentation notebook under
`docs/docs/integrations/retrievers`, which I (@dlqqq) have verified
independently.

EDIT: `bedrock-agent-runtime` service is now included in
`boto3>=1.33.2`:
5cf793f493

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-28 14:10:23 -08:00
Bagatur
1aed2d1f08 core[patch]: release 0.0.7 (#13989) 2023-11-28 14:05:01 -08:00
David Duong
eb67f07e32 Track RunnableAssign as a separate run trace (#13972)
Addressing incorrect order being sent to callbacks / tracers, due to the
nature of threading

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-28 22:02:31 +00:00
Nuno Campos
0f255bb6c4 In Runnable.stream_log build up final_output from adding output chunks (#12781)
Add arg to omit streamed_output list, in cases where final_output is
enough this saves bandwidth

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-28 21:50:41 +00:00
Nuno Campos
970fe23feb Fixes for opengpts release (#13960) 2023-11-28 21:49:43 +00:00
David Duong
947daaf833 Exclude Bedrock client and credentials_profile_name fields from serialisation (#13603) 2023-11-28 16:34:46 -05:00
Bagatur
48fbc5513d infra[patch], langchain[patch]: fix test deps and upper bound langchain dep on core(#13984) 2023-11-28 13:26:15 -08:00
Stefano Lottini
1fd724293b Astra DB vector store, move constructor docstring to class docstring (#13784)
This PR rearranges the docstring for the `AstraDB` vector store class so
as to have all useful information in the _class_ docstring for ease of
reading.

(incidentally, due to an oversight, the docstring that was in the
constructor ended up buried below some lines of code, thereby
disappearing altogether from accessibility. Apologies.)
2023-11-28 16:25:44 -05:00
Johannes Foulds
fc40bd4cdb AnthropicFunctions function_call compatibility (#13901)
- **Description:** Updates to `AnthropicFunctions` to be compatible with
the OpenAI `function_call` functionality.
- **Issue:** The functionality to indicate `auto`, `none` and a forced
function_call was not completely implemented in the existing code.
  - **Dependencies:** None
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed.
  - **Twitter handle:** None

I have specifically tested this functionality via AWS Bedrock with the
Claude-2 and Claude-Instant models.
2023-11-28 16:22:55 -05:00
Varun
14cc907d35 Update the stable docs link (#13798)
- **Description:** Point to the stable version of documentation, 
  - **Twitter handle:** varunzxzx
2023-11-28 21:11:16 +00:00
mengjincn
05ea4fd37d fix merge None value and non None value error (#13703)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-28 15:49:56 -05:00
Amélie
d2cad53ec0 Fix broken link on Meilisearch vector-store documentation (#13604)
- **Description:** dead link replacement 
  - **Issue:** no open issue

**Note:**
Hi langchain team,
Sorry to open a PR for this concern but we realized that one of the
links present in the documentation booklet was broken 😄
2023-11-28 15:49:32 -05:00
Ali Orozgani
32d794f5a3 iMessage loader: implement message content extraction from attributed… (#13634)
- **Description:** We are adding functionality to extract message
content from the `attributedBody` field of the database, in case the
content is not in the `text` field.
  - **Issue:** Closes #13326 and #10680 
  - **Dependencies:** None.
  - **Tag maintainer:** @eyurtsev, @hwchase17

---------

Co-authored-by: onotate <johnp.pham@mail.utoronto.ca>
2023-11-28 15:45:43 -05:00
William FH
e5256bcb69 [Evals] Add Project Tags (#13982)
Add them to project extra
2023-11-28 11:38:59 -08:00
Rihards Gravis
9e017ff6ba docs[patch]: Reduce largest static image file size (#13508)
- **Description:** Reduce image asset file size used in documentation by
running them via lossless image optimization
([tinypng](https://www.npmjs.com/package/tinypng-cli) was used in this
case). Images wider than 1916px (the maximum width of an image displayed
in documentation) where downsized.
- **Issue:** No issue is created for this, but the large image file
assets caused slow documentation load times
  - **Dependencies:** No dependencies affected
2023-11-28 13:00:53 -05:00
Nuno Campos
e0bcc98436 infra[patch]: Use langchain core in-tree as a dev dependency (#13957)
Using the published version means master is broken for contributors
whenever we make changes in one lib that depend on the other.
2023-11-28 09:23:43 -08:00
unifyh
2703a1b061 Fix MarkdownHeaderTextSplitter not recognizing tilde-fenced code blocks (#13511)
- **Description:** Previously `MarkdownHeaderTextSplitter` did not
consider tilde-fenced code blocks
(https://spec.commonmark.org/0.30/#fenced-code-blocks). This PR fixes
that.
   ````md
   # Bug caused by previous implementation:
   ~~~py
   foo()
   # This is a comment that would be considered header
   bar()
   ~~~
   ````
 - **Tag maintainer:** @baskaryan
2023-11-28 11:52:38 -05:00
Leonid Ganeline
7929b26017 office365 toolkit bug fixes (#13618)
Several bug fixes:
- emails: instead of `bcc` the `cc` is used.
- errors in the truncation descriptions
- no truncation of the `message_search`
Several updates:
- generalized UTC format 
- truncation limit can be changed now in _call()
2023-11-28 11:49:24 -05:00
William FH
60309341bd Eval Error Key (#13974) 2023-11-28 08:38:30 -08:00
Erick Friis
f9bef600f1 RELEASE: core 0.0.7 (#13973) 2023-11-28 10:28:28 -05:00
Nicolas Bondoux
e17edc4d0b RunnableLambda: create afunc instance from func when not provided (#13408)
Fixes #13407.

This workaround consists in letting the RunnableLambda create its
self.afunc from its self.func when self.afunc is not provided; the
change has no dependency.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
2023-11-28 11:18:26 +00:00
Nuno Campos
391f200eaa Implement stream() and astream() for agents (#12783)
```
---- chunk 1
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]}
---- chunk 2
{'messages': [FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search')],
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”")]}
---- chunk 3
{'actions': [AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]}
---- chunk 4
{'messages': [FunctionMessage(content='25 years', name='Search')],
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years')]}
---- chunk 5
{'actions': [AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})]}
---- chunk 6
{'messages': [FunctionMessage(content='Answer: 3.991298452658078', name='Calculator')],
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
---- chunk 7
{'messages': [AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
 'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
           'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
           'power is approximately 3.99.'}
---- final
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]),
             AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]),
             AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})])],
 'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}}),
              FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search'),
              AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}}),
              FunctionMessage(content='25 years', name='Search'),
              AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}}),
              FunctionMessage(content='Answer: 3.991298452658078', name='Calculator'),
              AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
 'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
           'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
           'power is approximately 3.99.',
 'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”"),
           AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n  "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years'),
           AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n  "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
```
2023-11-28 08:11:37 +00:00
Michael Feil
686162670e langchain[minor]: Adding infinity embedding integration. (#13928)
This adds integation to https://github.com/michaelfeil/infinity. Users
requested it in https://github.com/michaelfeil/infinity/issues/36
@saatvikshah

Follows my implementation of gradient.ai.

Feedback 1: Well done - I love your CI / repo / poetry setup - I adapted
a lot in https://github.com/michaelfeil/infinity.
Feedback 2: Not so good: The openai integration contains to much reverse
engineering - in general projects such as michaelfeil/infinity and
huggingface/text-embeddings-inference are compatible to the `pip install
openai` package.

Reverse engineering like this one is really hindering the use for me:

8e88ba16a8/libs/langchain/langchain/embeddings/openai.py (L347)

8e88ba16a8/libs/langchain/langchain/embeddings/openai.py (L351)
- it is about preventing 3rd party providers to use the same url + uses
interfaces of openai, that are not publically documented.
2023-11-27 16:43:47 -08:00
Bagatur
10a6e7cbb6 langchain[patch], core[patch]: Make common utils public (#13932)
- rename `langchain_core.chat_models.base._generate_from_stream` -> `generate_from_stream`
- rename `langchain_core.chat_models.base._agenerate_from_stream` -> `agenerate_from_stream`
- export `langchain_core.utils.utils.build_extra_kwargs` from `langchain_core.utils`
2023-11-27 15:34:46 -08:00
Oleksandr Yaremchuk
c0277d06e8 experimental[patch] Update prompt injection model (#13930)
- **Description:** Existing model used for Prompt Injection is quite
outdated but we fine-tuned and open-source a new model based on the same
model deberta-v3-base from Microsoft -
[laiyer/deberta-v3-base-prompt-injection](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection).
It supports more up-to-date injections and less prone to
false-positives.
  - **Dependencies:** No
  - **Tag maintainer:** -
  - **Twitter handle:** @alex_yaremchuk

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 17:56:53 -05:00
Bob Lin
e6ebde9688 experimental[patch]: Add experimental.agent imports (#13839)
- **Description:** The experimental package needs to be compatible with
the usage of importing agents

For example, if i use `from langchain.agents import
create_pandas_dataframe_agent`, running the program will prompt the
following information:

```
Traceback (most recent call last):
   File "/Users/dongwm/test/main.py", line 1, in <module>
     from langchain.agents import create_pandas_dataframe_agent
   File "/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 87, in __getattr__
     raise ImportError(
ImportError: create_pandas_dataframe_agent has been moved to langchain experimental. See https://github.com/langchain-ai/langchain/discussions/11680 for more information.
Please update your import statement from: `langchain.agents.create_pandas_dataframe_agent` to `langchain_experimental.agents.create_pandas_dataframe_agent`.
```

But when I changed to `from langchain_experimental.agents import
create_pandas_dataframe_agent`, it was actually wrong:

```python
Traceback (most recent call last):
  File "/Users/dongwm/test/main.py", line 2, in <module>
    from langchain_experimental.agents import create_pandas_dataframe_agent
ImportError: cannot import name 'create_pandas_dataframe_agent' from 'langchain_experimental.agents' (/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain_experimental/agents/__init__.py)
```

I should use `from langchain_experimental.agents.agent_toolkits import
create_pandas_dataframe_agent`. In order to solve the problem and make
it compatible, I added additional import code to the
langchain_experimental package. Now it can be like this Used `from
langchain_experimental.agents import create_pandas_dataframe_agent`

  - **Twitter handle:** [lin_bob57617](https://twitter.com/lin_bob57617)
2023-11-27 14:03:47 -08:00
Tyler Titsworth
afcfa2a5e7 langchain[patch]: Add progress bar option to OllamaEmbeddings (#13882)
- **Description:** Adds a tqdm progress bar to OllamaEmbeddings when
embedding a list.
- **Issue:** Related to #13637, but extended to Ollama.
- **Dependencies:** `tqdm` made a necessary dependency.

Thanks to @ugm2 for helping identify a common problem. Embeddings take a
very long time to finish on local machines, and require a progress bar
to help identify if one should even attempt the workload.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 13:56:13 -08:00
Kalyan
ec53d983a1 TEMPLATES Add rag-opensearch template (#13501)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Adding rag-opensearch template.

---------

Signed-off-by: kalyanr <kalyan.ben10@live.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-27 16:21:39 -05:00
Leonid Ganeline
e47b9c5285 DOCS: move adapters to integrations (#13862)
Current docs for adapters are in the `Guides/Adapters which is not a
good place.
- moved Adapters into `Integratons/Components/Adapters/
- simplified the OpenAI adapter notebook
- rerouted the old OpenAI adapter page URL to a new one.
2023-11-27 13:05:43 -08:00
jeremyb-data
cd77fba562 Improvement: Weaviate multitenant adddocs (#13827)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** Added a line to pass the tenant parameter to
add_data_object
  - **Issue:** An extra line added from the fix for #9956
  - **Dependencies:** n/a
  - **Tag maintainer:** @baskaryan 

Tested locally, works as expected with the line change.

---------

Co-authored-by: Simon Dai <simon6752@gmail.com>
2023-11-27 12:59:57 -08:00
jiangying
3e30cd8261 NIT: comment typo (#13817) 2023-11-27 12:59:12 -08:00
Manuel Riezebosch
92b07ecaf3 DOCS: fix link to question answering (#13806)
first link in
[overview](https://python.langchain.com/docs/use_cases/question_answering/code_understanding#overview)
2023-11-27 12:56:15 -08:00
Assaf Toledo
ba62ff89cc BUGFIX: Support for elastic indices that don't return 'metadata' in '_source' (#13903)
Description: Some Elastic indexes do not return a 'metadata' field in
'_source'. However, prior to this PR, the code assumed there always is a
'metadata' field. This PR adds support for cases where the field is
missing by adding it manually.

Issue: #13869
2023-11-27 12:52:57 -08:00
Enric Soler Rastrollo
c156d0281a BUGFIX: Use embedding key in azure_cosmos_db index creation (#13919)
Description: Implement embedding key parametrisation
Issue: https://github.com/langchain-ai/langchain/issues/13918
Dependencies: None
Tag maintainer: @hwchase17 @izzymsft
Twitter handle:@MaddogoS
2023-11-27 12:51:08 -08:00
Bagatur
ac67422a3d IMPROVEMENT: import Document from core (#13905) 2023-11-27 12:48:43 -08:00
chyroc
886bc2d50a IMPROVEMENT: fix qianfan validate_environment typo (#13908) 2023-11-27 11:17:27 -08:00
Chengzu Ou
4b8e053fe8 FEATURE: Add Databricks Vector Search as a new vector store (#13621)
**Description:**
This PR adds Databricks Vector Search as a new vector store in
LangChain.

- [x] Add `DatabricksVectorSearch` in `langchain/vectorstores/`
- [x] Unit tests
- [x] Add
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)
as a new optional dependency

We ran the following checks:
- `make format` passed  
- `make lint` failed but the failures were caused by other files
    + Files touched by this PR passed the linter  
- `make test` passed  
- `make coverage` failed but the failures were caused by other files.
Tests added by or related to this PR all passed
+ langchain/vectorstores/databricks_vector_search.py test coverage 94% 
- `make spell_check` passed  

The example notebook and updates to the [provider's documentation
page](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/providers/databricks.md)
will be added later in a separate PR.

**Dependencies:**
Optional dependency:
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 11:07:26 -08:00
Leonid Kuligin
25387db432 BUFIX: add support for various OSS images from Vertex Model Garden (#13917)
- **Description:** add support for various OSS images from Model
Garden
  - **Issue:** #13370
2023-11-27 10:31:53 -08:00
Eugene Yurtsev
e186637921 Document Runnable Binding (#13927)
Document runnable binding
2023-11-27 13:21:27 -05:00
Bagatur
46b3311190 RELEASE: 0.0.341 (#13926) 2023-11-27 09:51:12 -08:00
Nuno Campos
f6b05cacd0 Update root poetry lock with core (#13922)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-27 17:30:44 +00:00
umair mehmood
b3e08f9239 improvement: fix chat prompt loading from config (#13818)
Add loader for loading chat prompt from config file.

fixed: #13667

@efriis 
@baskaryan
2023-11-27 11:39:50 -05:00
Nuno Campos
8a3e0c9afa Add option to prefix config keys in configurable_alts (#13714) 2023-11-27 15:25:17 +00:00
Tomaz Bratanic
4ce5254442 Add Cypher template diagrams (#13913) 2023-11-27 10:18:51 -05:00
Taqi Jaffri
bfc12a4a76 DOCS: Simplified Docugami cookbook to remove code now available in docugami library (#13828)
The cookbook had some code to upload files, and wait for the processing
to finish.

This code is now moved to the `docugami` library so removing from the
cookbook to simplify.

Thanks @rlancemartin for suggesting this when working on evals.

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-27 00:07:24 -08:00
ggeutzzang
3749af79ae DOCS: fixed error in the docstring of RunnablePassthrough class (#13843)
This pull request addresses an issue found in the example code within
the docstring of `libs/core/langchain_core/runnables/passthrough.py`

The original code snippet caused a `NameError` due to the missing import
of `RunnableLambda`. The error was as follows:
```
     12     return "completion"
     13 
---> 14 chain = RunnableLambda(fake_llm) | {
     15     'original': RunnablePassthrough(), # Original LLM output
     16     'parsed': lambda text: text[::-1] # Parsing logic

NameError: name 'RunnableLambda' is not defined
```
To resolve this, I have modified the example code to include the
necessary import statement for `RunnableLambda`. Additionally, I have
adjusted the indentation in the code snippet to ensure consistency and
readability.

The modified code now successfully defines and utilizes
`RunnableLambda`, ensuring that users referencing the docstring will
have a functional and clear example to follow.

There are no related GitHub issues for this particular change.

Modified Code:
```python
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.runnables import RunnableLambda

runnable = RunnableParallel(
    origin=RunnablePassthrough(),
    modified=lambda x: x+1
)

runnable.invoke(1) # {'origin': 1, 'modified': 2}

def fake_llm(prompt: str) -> str: # Fake LLM for the example
    return "completion"

chain = RunnableLambda(fake_llm) | {
    'original': RunnablePassthrough(), # Original LLM output
    'parsed': lambda text: text[::-1] # Parsing logic
}

chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-27 00:06:55 -08:00
Dylan Williams
1983a39894 FEATURE: Add OneNote document loader (#13841)
- **Description:** Added OneNote document loader
  - **Issue:** #12125
  - **Dependencies:** msal

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-26 23:59:52 -08:00
Ikko Eltociear Ashimine
ff7d4d9c0b Update llamacpp.ipynb (#13840)
specifed -> specified
2023-11-26 23:47:19 -08:00
Tomaz Bratanic
1ad65f7a98 BUGFIX: Fix bugs with Cypher validation (#13849)
Fixes https://github.com/langchain-ai/langchain/issues/13803. Thanks to
@sakusaku-rich
2023-11-26 19:30:11 -08:00
Sᴜᴘᴇʀ Lᴇᴇ
e42e95cc11 docs: fix link to local_retrieval_qa (#13872)
\The original link in [this
section](https://python.langchain.com/docs/use_cases/question_answering/#:~:text=locally%2Drunning%20models-,here,-.):

https://python.langchain.com/docs/modules/use_cases/question_answering/local_retrieval_qa

After fix:

https://python.langchain.com/docs/use_cases/question_answering/local_retrieval_qa
2023-11-26 19:16:46 -08:00
Harrison Chase
6a35831128 BUGFIX: export more types (#13886)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-26 19:15:34 -08:00
Yusuf Khan
935f78c944 FEATURE: Add retriever for Outline (#13889)
- **Description:** Added a retriever for the Outline API to ask
questions on knowledge base
  - **Issue:** resolves #11814
  - **Dependencies:** None
  - **Tag maintainer:** @baskaryan
2023-11-26 18:56:12 -08:00
ggeutzzang
f2af82058f DOCS: Fix Sample Code for Compatibility with Pydantic 2.0 (#13890)
- **Description:** 
I encountered an issue while running the existing sample code on the
page https://python.langchain.com/docs/modules/agents/how_to/agent_iter
in an environment with Pydantic 2.0 installed. The following error was
triggered:

```python
ValidationError                           Traceback (most recent call last)
<ipython-input-12-2ffff2c87e76> in <cell line: 43>()
     41 
     42 tools = [
---> 43     Tool(
     44         name="GetPrime",
     45         func=get_prime,

2 frames
/usr/local/lib/python3.10/dist-packages/pydantic/v1/main.py in __init__(__pydantic_self__, **data)
    339         values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
    340         if validation_error:
--> 341             raise validation_error
    342         try:
    343             object_setattr(__pydantic_self__, '__dict__', values)

ValidationError: 1 validation error for Tool
args_schema
  subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)
```

I have made modifications to the example code to ensure it functions
correctly in environments with Pydantic 2.0.
2023-11-26 18:21:13 -08:00
Harrison Chase
968ba6961f add skeleton of thought (#13883) 2023-11-26 19:31:41 -05:00
Bagatur
0efa59cbb8 RELEASE: 0.0.339rc3 (#13852) 2023-11-25 10:37:30 -08:00
Bagatur
7222c42077 RELEASE: core 0.0.6 (#13853) 2023-11-25 10:21:14 -08:00
raelix
c172605ea6 IMPROVEMENT: Added title metadata to GoogleDriveLoader for optional File Loaders (#13832)
- **Description:** Simple change, I just added title metadata to
GoogleDriveLoader for optional File Loaders
  - **Dependencies:** no dependencies
  - **Tag maintainer:** @hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-24 18:53:55 -08:00
Stefano Lottini
19c68c7652 FEATURE: Astra DB, LLM cache classes (exact-match and semantic cache) (#13834)
This PR provides idiomatic implementations for the exact-match and the
semantic LLM caches using Astra DB as backend through the database's
HTTP JSON API. These caches require the `astrapy` library as dependency.

Comes with integration tests and example usage in the `llm_cache.ipynb`
in the docs.

@baskaryan this is the Astra DB counterpart for the Cassandra classes
you merged some time ago, tagging you for your familiarity with the
topic. Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-24 18:53:37 -08:00
Stefano Lottini
272df9dcae Astra DB, chat message history (#13836)
This PR adds a chat message history component that uses Astra DB for
persistence through the JSON API.
The `astrapy` package is required for this class to work.

I have added tests and a small notebook, and updated the relevant
references in the other docs pages.

(@rlancemartin this is the counterpart of the Cassandra equivalent class
you so helpfully reviewed back at the end of June)

Thank you!
2023-11-24 18:12:29 -08:00
Bagatur
58f7e109ac BUGFIX: Add import types and typevars from core (#13829) 2023-11-24 17:04:10 -08:00
Bagatur
751226e067 bump 0.0.339rc2 (#13787) 2023-11-23 12:50:09 -08:00
Bagatur
300ff01824 RELEASE: core 0.0.5 (#13786) 2023-11-23 12:23:50 -08:00
Bagatur
bcf83988ec Revert "INFRA: temp rm master condition (#13753)" (#13759) 2023-11-22 17:22:07 -08:00
Bagatur
df471b0c0b INFRA: temp rm master condition (#13753) 2023-11-22 16:59:50 -08:00
Bagatur
72c108b003 IMPROVEMENT: filter global warnings properly (#13754) 2023-11-22 16:26:37 -08:00
William FH
163bf165ed Add Batch Size kwarg to the llm start callback (#13483)
So you can more easily use the token counts directly from the API
endpoint for batch size of 1
2023-11-22 14:47:57 -08:00
Bagatur
23566cbea9 DOCS: core editable dep api refs (#13747) 2023-11-22 14:33:30 -08:00
Bagatur
0be515f720 RELEASE: 0.0.339rc1 (#13746) 2023-11-22 14:29:49 -08:00
Bagatur
2bc5bd67f7 RELEASE: core 0.0.4 (#13745) 2023-11-22 13:57:28 -08:00
Bagatur
b6b7654f7f INFRA: run LC ci after core changes (#13742) 2023-11-22 13:38:48 -08:00
Bagatur
3d28c1a9e0 DOCS: fix core api ref build (#13744) 2023-11-22 15:42:35 -05:00
Bagatur
32d087fcb8 REFACTOR: combine core documents files (#13733) 2023-11-22 10:10:26 -08:00
h3l
14d4fb98fc DOCS: Fix typo/line break in python code (#13708) 2023-11-22 09:10:07 -08:00
William FH
5b90fe5b1c Fix locking (#13725) 2023-11-22 07:37:25 -08:00
Bagatur
16af282429 BUGFIX: add prompt imports for backwards compat (#13702) 2023-11-21 23:04:20 -08:00
Erick Friis
78da34153e TEMPLATES Metadata (#13691)
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-11-22 01:41:12 -05:00
Bagatur
e327bb4ba4 IMPROVEMENT: Conditionally import core type hints (#13700) 2023-11-21 21:38:49 -08:00
dandanwei
d47ee1ae79 BUGFIX: redis vector store overwrites falsey metadata (#13652)
- **Description:** This commit fixed the problem that Redis vector store
will change the value of a metadata from 0 to empty when saving the
document, which should be an un-intended behavior.
  - **Issue:** N/A
  - **Dependencies:** N/A
2023-11-21 20:16:23 -08:00
Bagatur
a21e84faf7 BUGFIX: llm backwards compat imports (#13698) 2023-11-21 20:12:35 -08:00
Yujie Qian
ace9e64d62 IMPROVEMENT: VoyageEmbeddings embed_general_texts (#13620)
- **Description:** add method embed_general_texts in VoyageEmebddings to
support input_type
  - **Issue:** 
  - **Dependencies:** 
  - **Tag maintainer:** 
  - **Twitter handle:** @Voyage_AI_
2023-11-21 18:33:07 -08:00
tanujtiwari-at
5064890fcf BUGFIX: handle tool message type when converting to string (#13626)
**Description:** Currently, if we pass in a ToolMessage back to the
chain, it crashes with error

`Got unsupported message type: `

This fixes it. 

Tested locally

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-21 18:20:58 -08:00
Josep Pon Farreny
143049c90f Added partial_variables to BaseStringMessagePromptTemplate.from_template(...) (#13645)
**Description:** BaseStringMessagePromptTemplate.from_template was
passing the value of partial_variables into cls(...) via **kwargs,
rather than passing it to PromptTemplate.from_template. Which resulted
in those *partial_variables being* lost and becoming required
*input_variables*.

Co-authored-by: Josep Pon Farreny <josep.pon-farreny@siemens.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-21 17:48:38 -08:00
Erick Friis
c5ae9f832d INFRA: Lint for imports (#13632)
- Adds pydantic/import linting to core
- Adds a check for `langchain_experimental` imports to langchain
2023-11-21 17:42:56 -08:00
Erick Friis
131db4ba68 BUGFIX: anthropic models on bedrock (#13629)
Introduced in #13403
2023-11-21 17:40:29 -08:00
David Ruan
04bddbaba4 BUGFIX: Update bedrock.py to fix provider bug (#13646)
Provider check was incorrectly failing for anything other than "meta"
2023-11-21 17:28:38 -08:00
Guangya Liu
aec8715073 DOCS: remove openai api key from cookbook (#13633) 2023-11-21 17:25:06 -08:00
Guangya Liu
bb18b0266e DOCS: fixed import error for BashOutputParser (#13680) 2023-11-21 16:33:40 -08:00
Bagatur
dc53523837 IMPROVEMENT: bump core dep 0.0.3 (#13690) 2023-11-21 15:50:19 -08:00
Bagatur
a208abe6b7 add callback import test (#13689) 2023-11-21 15:28:49 -08:00
Bagatur
083afba697 BUG: Add core utils imports (#13688) 2023-11-21 15:25:47 -08:00
Bagatur
c61e30632e BUG: more core fixes (#13665)
Fix some circular deps:
- move PromptValue into top level module bc both PromptTemplates and
OutputParsers import
- move tracer context vars to `tracers.context` and import them in
functions in `callbacks.manager`
- add core import tests
2023-11-21 15:15:48 -08:00
William FH
59df16ab92 Update name (#13676) 2023-11-21 13:39:30 -08:00
Erick Friis
bfb980b968 CLI 0.0.19 (#13677) 2023-11-21 12:34:38 -08:00
Taqi Jaffri
d65c36d60a docugami cookbook (#13183)
Adds a cookbook for semi-structured RAG via Docugami. This follows the
same outline as the semi-structured RAG with Unstructured cookbook:
https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb

The main change is this cookbook uses Docugami instead of Unstructured
to find text and tables, and shows how XML markup in the output helps
with retrieval and generation.

We are \@docugami on twitter, I am \@tjaffri

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-11-21 12:02:20 -08:00
jakerachleff
249c796785 update langserve to v0.0.30 (#13673)
Upgrade langserve template version to 0.0.30 to include new improvements
2023-11-21 11:17:47 -08:00
jakerachleff
c6937a2eb4 fix templates dockerfile (#13672)
- **Description:** We need to update the Dockerfile for templates to
also copy your README.md. This is because poetry requires that a readme
exists if it is specified in the pyproject.toml
2023-11-21 11:09:55 -08:00
Bagatur
11614700a4 bump 0.0.339rc0 (#13664) 2023-11-21 08:41:59 -08:00
Bagatur
d32e511826 REFACTOR: Refactor langchain_core (#13627)
Changes:
- remove langchain_core/schema since no clear distinction b/n schema and
non-schema modules
- make every module that doesn't end in -y plural
- where easy have 1-2 classes per file
- no more than one level of nesting in directories
- only import from top level core modules in langchain
2023-11-21 08:35:29 -08:00
William FH
17c6551c18 Add error rate (#13568)
To the in-memory outputs. Separate it out from the outputs so it's
present in the dataframe.describe() results
2023-11-21 07:51:30 -08:00
Nuno Campos
8329f81072 Use pytest asyncio auto mode (#13643)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-21 15:00:13 +00:00
Lance Martin
611e1e0ca4 Add template for gpt-crawler (#13625)
Template for RAG using
[gpt-crawler](https://github.com/BuilderIO/gpt-crawler).

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-20 21:32:57 -08:00
Bagatur
99b4f46cbe REFACTOR: Add core as dep (#13623) 2023-11-20 14:38:10 -08:00
Harrison Chase
d82cbf5e76 Separate out langchain_core package (#13577)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-20 13:09:30 -08:00
Bagatur
4eec47b191 DOCS: update rag use case images (#13615) 2023-11-20 10:14:52 -08:00
Bagatur
e620347a83 RELEASE: bump 339 (#13613) 2023-11-20 09:56:43 -08:00
Ofer Mendelevitch
52e23e50b1 BUG: Fix search_kwargs in Vectara retriever (#13299)
- **Description:** fix a bug that prevented as_retriever() in Vectara to
use the desired input arguments
  - **Issue:** as_retriever did not pass the arguments properly
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** @ofermend
2023-11-20 09:44:43 -08:00
Holt Skinner
1c08dbfb33 IMPROVEMENT: Reduce post-processing time for DocAIParser (#13210)
- Remove `WrappedDocument` introduced in
https://github.com/langchain-ai/langchain/pull/11413
- https://github.com/googleapis/python-documentai-toolbox/issues/198 in
Document AI Toolbox to improve initialization time for `WrappedDocument`
object.

@lkuligin

@baskaryan

@hwchase17
2023-11-20 09:41:44 -08:00
Leonid Kuligin
f3fcdea574 fixed an UnboundLocalError when no documents are found (#12995)
Replace this entire comment with:
  - **Description:** fixed a bug
  - **Issue:** the issue # #12780
2023-11-20 09:41:14 -08:00
Stijn Tratsaert
b6f70d776b VertexAI LLM count_tokens method requires list of prompts (#13451)
I encountered this during summarization with VertexAI. I was receiving
an INVALID_ARGUMENT error, as it was trying to send a list of about
17000 single characters.

The [count_tokens
method](https://github.com/googleapis/python-aiplatform/blob/main/vertexai/language_models/_language_models.py#L658)
made available by Google takes in a list of prompts. It does not fail
for small texts, but it does for longer documents because the argument
list will be exceeding Googles allowed limit. Enforcing the list type
makes it work successfully.

This change will cast the input text to count to a list of that single
text so that the input format is always correct.

[Twitter](https://www.x.com/stijn_tratsaert)
2023-11-20 09:40:48 -08:00
Wang Wei
fe7b40cb2a feat: add ERNIE-Bot-4 Function Calling (#13320)
- **Description:** ERNIE-Bot-Chat-4 Large Language Model adds the
ability of `Function Calling` by passing parameters through the
`functions` parameter in the request. To simplify function calling for
ERNIE-Bot-Chat-4, the `create_ernie_fn_chain()` function has been added.
The definition and usage of the `create_ernie_fn_chain()` function is
similar to that of the `create_openai_fn_chain()` function.

Examples as the follows:

```
import json

from langchain.chains.ernie_functions import (
    create_ernie_fn_chain,
)
from langchain.chat_models import ErnieBotChat
from langchain.prompts import ChatPromptTemplate

def get_current_news(location: str) -> str:
    """Get the current news based on the location.'

    Args:
        location (str): The location to query.
    
    Returs:
        str: Current news based on the location.
    """

    news_info = {
        "location": location,
        "news": [
            "I have a Book.",
            "It's a nice day, today."
        ]
    }

    return json.dumps(news_info)

def get_current_weather(location: str, unit: str="celsius") -> str:
    """Get the current weather in a given location

    Args:
        location (str): location of the weather.
        unit (str): unit of the tempuature.
    
    Returns:
        str: weather in the given location.
    """

    weather_info = {
        "location": location,
        "temperature": "27",
        "unit": unit,
        "forecast": ["sunny", "windy"],
    }
    return json.dumps(weather_info)

llm = ErnieBotChat(model_name="ERNIE-Bot-4")
prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{query}"),
    ]
)

chain = create_ernie_fn_chain([get_current_weather, get_current_news], llm, prompt, verbose=True)
res = chain.run("北京今天的新闻是什么?")
print(res)
```

The running results of the above program are shown below:
```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 北京今天的新闻是什么?



> Finished chain.
{'name': 'get_current_news', 'thoughts': '用户想要知道北京今天的新闻。我可以使用get_current_news工具来获取这些信息。', 'arguments': {'location': '北京'}}
```
2023-11-19 22:36:12 -08:00
Adilkhan Sarsen
10418ab0c1 DeepLake Backwards compatibility fix (#13388)
- **Description:** during search with DeepLake some people are facing
backwards compatibility issues, this PR fixes it by making search
accessible for the older datasets

---------

Co-authored-by: adolkhan <adilkhan.sarsen@alumni.nu.edu.kz>
2023-11-19 21:46:01 -08:00
Tyler Hutcherson
190952fe76 IMPROVEMENT: Minor redis improvements (#13381)
- **Description:**
- Fixes a `key_prefix` bug where passing it in on
`Redis.from_existing(...)` did not work properly. Updates doc strings
accordingly.
- Updates Redis filter classes logic with best practices on typing,
string formatting, and handling "empty" filters.
- Fixes a bug that would prevent multiple tag filters from being applied
together in some scenarios.
- Added a whole new filter unit testing module. Also updated code
formatting for a number of modules that were failing the `make`
commands.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @baskaryan 
  - **Twitter handle:** @tchutch94
2023-11-19 19:15:45 -08:00
Sijun He
674bd90a47 DOCS: Fix typo in MongoDB memory docs (#13588)
- **Description:** Fix typo in MongoDB memory docs
  - **Tag maintainer:** @eyurtsev

<!-- Thank you for contributing to LangChain!

  - **Description:** Fix typo in MongoDB memory docs
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
  - **Tag maintainer:** @baskaryan
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-19 19:13:35 -08:00
Sergey Kozlov
df03267edf Fix tool arguments formatting in StructuredChatAgent (#10480)
In the `FORMAT_INSTRUCTIONS` template, 4 curly braces (escaping) are
used to get single curly brace after formatting:

```
"{{{ ... }}}}" -> format_instructions.format() ->  "{{ ... }}" -> template.format() -> "{ ... }".
```

Tool's `args_schema` string contains single braces `{ ... }`, and is
also transformed to `{{{{ ... }}}}` form. But this is not really correct
since there is only one `format()` call:

```
"{{{{ ... }}}}" -> template.format() -> "{{ ... }}".
```

As a result we get double curly braces in the prompt:
````
Respond to the human as helpfully and accurately as possible. You have access to the following tools:

foo: Test tool FOO, args: {{'tool_input': {{'type': 'string'}}}}    # <--- !!!
...
Provide only ONE action per $JSON_BLOB, as shown:

```
{
  "action": $TOOL_NAME,
  "action_input": $INPUT
}
```
````

This PR fixes curly braces escaping in the `args_schema` to have single
braces in the final prompt:
````
Respond to the human as helpfully and accurately as possible. You have access to the following tools:

foo: Test tool FOO, args: {'tool_input': {'type': 'string'}}    # <--- !!!
...
Provide only ONE action per $JSON_BLOB, as shown:

```
{
  "action": $TOOL_NAME,
  "action_input": $INPUT
}
```
````

---------

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2023-11-19 18:45:43 -08:00
Wouter Durnez
ef7802b325 Add llama2-13b-chat-v1 support to chat_models.BedrockChat (#13403)
Hi 👋 We are working with Llama2 on Bedrock, and would like to add it to
Langchain. We saw a [pull
request](https://github.com/langchain-ai/langchain/pull/13322) to add it
to the `llm.Bedrock` class, but since it concerns a chat model, we would
like to add it to `BedrockChat` as well.

- **Description:** Add support for Llama2 to `BedrockChat` in
`chat_models`
- **Issue:** the issue # it fixes (if applicable)
[#13316](https://github.com/langchain-ai/langchain/issues/13316)
  - **Dependencies:** any dependencies required for this change `None`
  - **Tag maintainer:** /
  - **Twitter handle:** `@SimonBockaert @WouterDurnez`

---------

Co-authored-by: wouter.durnez <wouter.durnez@showpad.com>
Co-authored-by: Simon Bockaert <simon.bockaert@showpad.com>
2023-11-19 18:44:58 -08:00
jwbeck97
a93616e972 FEAT: Add azure cognitive health tool (#13448)
- **Description:** This change adds an agent to the Azure Cognitive
Services toolkit for identifying healthcare entities
  - **Dependencies:** azure-ai-textanalytics (Optional)

---------

Co-authored-by: James Beck <James.Beck@sa.gov.au>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 18:44:01 -08:00
Massimiliano Pronesti
6bf9b2cb51 BUG: Limit Azure OpenAI embeddings chunk size (#13425)
Hi! 
This short PR aims at:
* Fixing `OpenAIEmbeddings`' check on `chunk_size` when used with Azure
OpenAI (thus with openai < 1.0). Azure OpenAI embeddings support at most
16 chunks per batch, I believe we are supposed to take the min between
the passed value/default value and 16, not the max - which, I suppose,
was introduced by accident while refactoring the previous version of
this check from this other PR of mine: #10707
* Porting this fix to the newest class (`AzureOpenAIEmbeddings`) for
openai >= 1.0

This fixes #13539 (closed but the issue persists).  

@baskaryan @hwchase17
2023-11-19 18:34:51 -08:00
Zeyang Lin
e53f59f01a DOCS: doc-string - langchain.vectorstores.dashvector.DashVector (#13502)
- **Description:** There are several mistakes in the sample code in the
doc-string of `DashVector` class, and this pull request aims to correct
them.
The correction code has been tested against latest version (at the time
of creation of this pull request) of: `langchain==0.0.336`
`dashvector==1.0.6` .
- **Issue:** No issue is created for this.
- **Dependencies:** No dependency is required for this change,
<!-- - **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below), -->
- **Twitter handle:** `zeyanglin`

<!-- Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
2023-11-19 18:24:05 -08:00
John Mai
16f7912e1b BUG: fix hunyuan appid type (#13496)
- **Description: fix hunyuan appid type
- **Issue:
https://github.com/langchain-ai/langchain/pull/12022#issuecomment-1815627855
2023-11-19 18:23:45 -08:00
Leonid Ganeline
43972be632 docs updating AzureML notebooks (#13492)
- Added/updated descriptions and links

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-19 18:07:12 -08:00
Nicolò Boschi
8362bd729b AstraDB: use includeSimilarity option instead of $similarity (#13512)
- **Description:** AstraDB is going to deprecate the `$similarity`
projection property in favor of the ´includeSimilarity´ option flag. I
moved all the queries to the new format.
- **Tag maintainer:** @hemidactylus 
- **Twitter handle:** nicoloboschi
2023-11-19 17:54:35 -08:00
shumpei
7100d586ef Introduce search_kwargs for Custom Parameters in BingSearchAPIWrapper (#13525)
Added a `search_kwargs` field to BingSearchAPIWrapper in
`bing_search.py,` enabling users to include extra keyword arguments in
Bing search queries. This update, like specifying language preferences,
adds more customization to searches. The `search_kwargs` seamlessly
merge with standard parameters in `_bing_search_results` method.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-19 17:51:02 -08:00
Nicolò Boschi
ad0c3b9479 Fix Astra integration tests (#13520)
- **Description:** Fix Astra integration tests that are failing. The
`delete` always return True as the deletion is successful if no errors
are thrown. I aligned the test to verify this behaviour
  - **Tag maintainer:** @hemidactylus 
  - **Twitter handle:** nicoloboschi

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:50:49 -08:00
umair mehmood
69d39e2173 fix: VLLMOpenAI -- create() got an unexpected keyword argument 'api_key' (#13517)
The issue was accuring because of `openai` update in Completions. its
not accepting `api_key` and 'api_base' args.

The fix is we check for the openai version and if ats v1 then remove
these keys from args before passing them to `Compilation.create(...)`
when sending from `VLLMOpenAI`

Fixed: #13507 

@eyu
@efriis 
@hwchase17

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-19 17:49:55 -08:00
Manuel Alemán Cueto
6bc08266e0 Fix for oracle schema parsing stated on the issue #7928 (#13545)
- **Description:** In this pull request, we address an issue related to
assigning a schema to the SQLDatabase class when utilizing an Oracle
database. The current implementation encounters a bug where, upon
attempting to execute a query, the alter session parse is not
appropriately defined for Oracle, leading to an error,
  - **Issue:** #7928,
  - **Dependencies:** No dependencies,
  - **Tag maintainer:** @baskaryan,

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:35:27 -08:00
Andrew Teeter
325bdac673 feat: load all namespaces (#13549)
- **Description:** This change allows for the `MWDumpLoader` to load all
namespaces including custom by default instead of only loading the
[default
namespaces](https://www.mediawiki.org/wiki/Help:Namespaces#Localisation).
  - **Tag maintainer:** @hwchase17
2023-11-19 17:35:17 -08:00
Taranjeet Singh
47451764a7 Add embedchain retriever (#13553)
**Description:**

This commit adds embedchain retriever along with tests and docs.
Embedchain is a RAG framework to create data pipelines.

**Twitter handle:**
- [Taranjeet's twitter](https://twitter.com/taranjeetio) and
[Embedchain's twitter](https://twitter.com/embedchain)

**Reviewer**
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:35:03 -08:00
rafly lesmana
420a17542d fix: Make YoutubeLoader support on demand language translation (#13583)
**Description:**
Enhance the functionality of YoutubeLoader to enable the translation of
available transcripts by refining the existing logic.

**Issue:**
Encountering a problem with YoutubeLoader (#13523) where the translation
feature is not functioning as expected.

Tag maintainers/contributors who might be interested:
@eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-19 17:34:48 -08:00
Leonid Ganeline
cc50e023d1 DOCS langchain decorators update (#13535)
added disclaimer

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
2023-11-19 17:30:05 -08:00
Brace Sproul
02a13030c0 DOCS: updated langchain stack img to be svg (#13540) 2023-11-19 16:26:53 -08:00
Bagatur
78a1f4b264 bump 338, exp 42 (#13564) 2023-11-18 15:12:07 -08:00
Bagatur
790ed8be69 update multi index templates (#13569) 2023-11-18 14:42:22 -08:00
Harrison Chase
f4c0e3cc15 move streaming stdout (#13559) 2023-11-18 12:24:49 -05:00
Leonid Ganeline
43dad6cb91 BUG fixed openai_assistant namespace (#13543)
BUG: langchain.agents.openai_assistant has a reference as
`from langchain_experimental.openai_assistant.base import
OpenAIAssistantRunnable`
should be 
`from langchain.agents.openai_assistant.base import
OpenAIAssistantRunnable`

This prevents building of the API Reference docs
2023-11-17 17:15:33 -08:00
Bassem Yacoube
ff382b7b1b IMPROVEMENT Adds support for new OctoAI endpoints (#13521)
small fix to add support for new OctoAI LLM endpoints
2023-11-17 17:15:21 -08:00
Mark Silverberg
cda1b33270 Fix typo/line break in the middle of a word (#13314)
- **Description:** a simple typo/extra line break fix
  - **Dependencies:** none
2023-11-17 16:43:42 -08:00
William FH
cac849ae86 Use random seed (#13544)
For default eval llm
2023-11-17 16:33:31 -08:00
Martin Krasser
79ed66f870 EXPERIMENTAL Generic LLM wrapper to support chat model interface with configurable chat prompt format (#8295)
## Update 2023-09-08

This PR now supports further models in addition to Lllama-2 chat models.
See [this comment](#issuecomment-1668988543) for further details. The
title of this PR has been updated accordingly.

## Original PR description

This PR adds a generic `Llama2Chat` model, a wrapper for LLMs able to
serve Llama-2 chat models (like `LlamaCPP`,
`HuggingFaceTextGenInference`, ...). It implements `BaseChatModel`,
converts a list of chat messages into the [required Llama-2 chat prompt
format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) and
forwards the formatted prompt as `str` to the wrapped `LLM`. Usage
example:

```python
# uses a locally hosted Llama2 chat model
llm = HuggingFaceTextGenInference(
    inference_server_url="http://127.0.0.1:8080/",
    max_new_tokens=512,
    top_k=50,
    temperature=0.1,
    repetition_penalty=1.03,
)

# Wrap llm to support Llama2 chat prompt format.
# Resulting model is a chat model
model = Llama2Chat(llm=llm)

messages = [
    SystemMessage(content="You are a helpful assistant."),
    MessagesPlaceholder(variable_name="chat_history"),
    HumanMessagePromptTemplate.from_template("{text}"),
]

prompt = ChatPromptTemplate.from_messages(messages)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = LLMChain(llm=model, prompt=prompt, memory=memory)

# use chat model in a conversation
# ...
```

Also part of this PR are tests and a demo notebook.

- Tag maintainer: @hwchase17
- Twitter handle: `@mrt1nz`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-17 16:32:13 -08:00
William FH
c56faa6ef1 Add execution time (#13542)
And warn instead of raising an error, since the chain API is too
inconsistent.
2023-11-17 16:04:16 -08:00
pedro-inf-custodio
0fb5f857f9 IMPROVEMENT WebResearchRetriever error handling in urls with connection error (#13401)
- **Description:** Added a method `fetch_valid_documents` to
`WebResearchRetriever` class that will test the connection for every url
in `new_urls` and remove those that raise a `ConnectionError`.
- **Issue:** [Previous
PR](https://github.com/langchain-ai/langchain/pull/13353),
  - **Dependencies:** None,
  - **Tag maintainer:** @efriis 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
2023-11-17 14:02:26 -08:00
Piyush Jain
d2335d0114 IMPROVEMENT Neptune graph updates (#13491)
## Description
This PR adds an option to allow unsigned requests to the Neptune
database when using the `NeptuneGraph` class.

```python
graph = NeptuneGraph(
    host='<my-cluster>',
    port=8182,
    sign=False
)
```

Also, added is an option in the `NeptuneOpenCypherQAChain` to provide
additional domain instructions to the graph query generation prompt.
This will be injected in the prompt as-is, so you should include any
provider specific tags, for example `<instructions>` or `<INSTR>`.

```python
chain = NeptuneOpenCypherQAChain.from_llm(
    llm=llm,
    graph=graph,
    extra_instructions="""
    Follow these instructions to build the query:
    1. Countries contain airports, not the other way around
    2. Use the airport code for identifying airports
    """
)
```
2023-11-17 13:49:31 -08:00
William FH
5a28dc3210 Override Keys Option (#13537)
Should be able to override the global key if you want to evaluate
different outputs in a single run
2023-11-17 13:32:43 -08:00
Bagatur
e584b28c54 bump 337 (#13534) 2023-11-17 12:50:52 -08:00
Wietse Venema
e80b53ff4f TEMPLATE Add VertexAI Chuck Norris template (#13531)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-17 12:27:52 -08:00
Bagatur
2e2114d2d0 FEATURE: Runnable with message history (#13418)
Add RunnableWithMessageHistory class that can wrap certain runnables and manages chat history for them.
2023-11-17 12:00:01 -08:00
Bagatur
0fc3af8932 IMPROVEMENT: update assistants output and doc (#13480) 2023-11-17 11:58:54 -08:00
Bagatur
b4312aac5c TEMPLATES: Add multi-index templates (#13490)
One that routes and one that fuses

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-17 02:00:11 -08:00
Hugues Chocart
35e04f204b [LLMonitorCallbackHandler] Various improvements (#13151)
Small improvements for the llmonitor callback handler, like better
support for non-openai models.


---------

Co-authored-by: vincelwt <vince@lyser.io>
2023-11-16 23:39:36 -08:00
Noah Stapp
c1b041c188 Add Wrapping Library Metadata to MongoDB vector store (#13084)
**Description**
MongoDB drivers are used in various flavors and languages. Making sure
we exercise our due diligence in identifying the "origin" of the library
calls makes it best to understand how our Atlas servers get accessed.
2023-11-16 22:20:04 -08:00
Leonid Ganeline
21552628c8 DOCS updated data_connection index page (#13426)
- the `Index` section was missed. Created it.
- text simplification

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-11-16 18:16:50 -08:00
Guy Korland
7f8fd70ac4 Add optional arguments to FalkorDBGraph constructor (#13459)
**Description:** Add optional arguments to FalkorDBGraph constructor
**Tag maintainer:** baskaryan 
**Twitter handle:** @g_korland
2023-11-16 18:15:40 -08:00
Leonid Ganeline
e3a5cd7969 docs integrations/vectorstores/ cleanup (#13487)
- updated titles to consistent format
- added/updated descriptions and links
- format heading
2023-11-16 17:51:49 -08:00
Leonid Ganeline
1d2981114f DOCS updated async-faiss example (#13434)
The original notebook has the `faiss` title which is duplicated in
the`faiss.jpynb`. As a result, we have two `faiss` items in the
vectorstore ToC. And the first item breaks the searching order (it is
placed between `A...` items).
- I updated title to `Asynchronous Faiss`.
2023-11-16 17:41:26 -08:00
Erick Friis
9dfad613c2 IMPROVEMENT Allow openai v1 in all templates that require it (#13489)
- pyproject change
- lockfiles
2023-11-16 17:10:08 -08:00
chris stucchio
d7f014cd89 Bug: OpenAIFunctionsAgentOutputParser doesn't handle functions with no args (#13467)
**Description/Issue:** 
When OpenAI calls a function with no args, the args are `""` rather than
`"{}"`. Then `json.loads("")` blows up. This PR handles it correctly.

**Dependencies:** None
2023-11-16 16:47:05 -08:00
Yujie Qian
41a433fa33 IMPROVEMENT: add input_type to VoyageEmbeddings (#13488)
- **Description:** add input_type to VoyageEmbeddings
2023-11-16 16:35:36 -08:00
David Duong
ea6e017b85 Add serialisation arguments to Bedrock and ChatBedrock (#13465) 2023-11-17 01:33:24 +01:00
Erick Friis
427331d621 IMPROVEMENT Lock pydantic v1 in app template, cli 0.0.18 (#13485) 2023-11-16 15:22:11 -08:00
Erick Friis
75363f048f BUG Fix app_name in cli app new (#13482) 2023-11-16 14:19:35 -08:00
Leonid Ganeline
9ff8f69e75 DOCS updated memory Titles (#13435)
- Fixed titles for two notebooks. They were inconsistent with other
titles and clogged ToC.
- Added `Upstash` description and link
- Moved the authentication text up in the `Elasticsearch` nb, right
after package installation. It was on the end of the page which was a
wrong place.
2023-11-16 13:24:05 -08:00
ifduyue
324ab382ad Use List instead of list (#13443)
Unify List usages in libs/langchain/langchain/text_splitter.py, only one
place it's `list`, all other ocurrences are `List`
2023-11-16 13:15:58 -08:00
Stefano Lottini
b029d9f4e6 Astra DB: minor improvements to docstrings and demo notebook (#13449)
This PR brings a few minor improvements to the docs, namely class/method
docstrings and the demo notebook.

- A note on how to control concurrency levels to tune performance in
bulk inserts, both in the class docstring and the demo notebook;
- Slightly increased concurrency defaults after careful experimentation
(still on the conservative side even for clients running on
less-than-typical network/hardware specs)
- renamed the DB token variable to the standardized
`ASTRA_DB_APPLICATION_TOKEN` name (used elsewhere, e.g. in the Astra DB
docs)
- added a note and a reference (add_text docstring, demo notebook) on
allowed metadata field names.

Thank you!
2023-11-16 12:48:32 -08:00
Eugene Yurtsev
1e43fd6afe Add ahandle_event to _all_ (#13469)
Add ahandle_event for backwards compatibility as it is used by langserve
2023-11-16 12:46:20 -08:00
Leonid Ganeline
283ef1f66d DOCS fix for integratons/document_loaders sidebar (#13471)
The current `integrations/document_loaders/` sidebar has the
`example_data` item, which is a menu with a single item: "Notebook".
It is happening because the `integrations/document_loaders/` folder has
the `example_data/notebook.md` file that is used to autogenerate the
above menu item.
- removed an example_data/notebook.md file. Docusaurus doesn't have
simple ways to fix this problem (to exclude folders/files from an
autogenerated sidebar). Removing this file didn't break any existing
examples, so this fix is safe.
2023-11-16 12:02:30 -08:00
Leonid Ganeline
b1fcf5b481 DOCS: integrations/text_embeddings/ cleanup (#13476)
Updated several notebooks:
- fixed titles which are inconsistent or break the ToC sorting order.
- added missed soruce descriptions and links
- fixed formatting
2023-11-16 11:56:53 -08:00
Bagatur
6030ab9779 Update chain of note README.md (#13473) 2023-11-16 10:47:27 -08:00
Lance Martin
cf66a4737d Update multi-modal RAG cookbook (#13429)
Use example
[blog](https://cloudedjudgement.substack.com/p/clouded-judgement-111023)
w/ tables, charts as images.
2023-11-16 10:34:13 -08:00
Bagatur
10fddac4b5 Bagatur/chain of note template(#13470) 2023-11-16 10:34:04 -08:00
Leonid Ganeline
d5b1a21ae4 DOCS updated semadb example (#13431)
- the `SemaDB` notebook was placed in additional subfolder which breaks
the vectorstore ToC. I moved file up, removed this unnecessary
subfolder; updated the `vercel.json` with rerouting for the new URL
- Added SemaDB description and link
- improved text consistency
2023-11-16 09:57:22 -08:00
Leonid Ganeline
17c2007e0c DOCS updated Activeloop DeepMemory notebook (#13428)
- Fixed the title of the notebook. It created an ugly ToC element as
`Activeloop DeepLake's DeepMemory + LangChain + ragas or how to get +27%
on RAG recall.`
- Added Activeloop description
- improved consistency in text
- fixed ToC (it was using HTML tagas that break left-side in-page ToC).
Now in-page ToC works
2023-11-16 09:56:28 -08:00
Harrison Chase
f90249305a callback refactor (#13372)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-11-16 08:25:09 -08:00
Bagatur
9e6748e198 DOCS: rag nit (#13436) 2023-11-15 18:06:52 -08:00
Leonid Ganeline
8a52c1456b updated clickup example (#13424)
- Fixed headers (was more then 1 Titles)
- Removed security token value. It was OK to have it, because it is
temporary token, but the automatic security swippers raise warnings on
that.
- Added `ClickUp` service description and link.
2023-11-15 15:11:24 -08:00
Brace Sproul
79fa9a81f4 Fix a link in docs (#13423) 2023-11-15 15:02:26 -08:00
Nuno Campos
a632f61f3d IMPROVEMENT pirate-speak-configurable alternatives env vars (#13395)
…rnative LLMs until used

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-11-15 14:38:03 -08:00
3719 changed files with 299062 additions and 182864 deletions

View File

@@ -23,7 +23,7 @@ It's essential that we maintain great documentation and testing. If you:
- Update any affected example notebooks and documentation. These live in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/modules`.
- Add a demo notebook in `docs/docs/`.
- Add unit and integration tests.
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
@@ -70,16 +70,18 @@ Install Poetry: **[documentation on how to install it](https://python-poetry.org
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
### Core vs. Experimental
### Different packages
This repository contains two separate projects:
- `langchain`: core langchain code, abstractions, and use cases.
- `langchain.experimental`: see the [Experimental README](https://github.com/langchain-ai/langchain/tree/master/libs/experimental/README.md) for more information.
This repository contains multiple packages:
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
- `langchain-community`: Third-party integrations of various components.
- `langchain`: Chains, agents, and retrieval logic that makes up the cognitive architecture of your applications.
- `langchain-experimental`: Components and chains that are experimental, either in the sense that the techniques are novel and still being tested, or they require giving the LLM more access than would be possible in most production systems.
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
For this quickstart, start with langchain core:
For this quickstart, start with langchain:
```bash
cd libs/langchain
@@ -128,6 +130,24 @@ make docker_tests
There are also [integration tests and code-coverage](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests/README.md) available.
### Only develop langchain_core or langchain_experimental
If you are only developing `langchain_core` or `langchain_experimental`, you can simply install the dependencies for the respective projects and run tests:
```bash
cd libs/core
poetry install --with test
make test
```
Or:
```bash
cd libs/experimental
poetry install --with test
make test
```
### Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
@@ -214,6 +234,10 @@ ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
You only need to add a new dependency if a **unit test** relies on the package.
If your package is only required for **integration tests**, then you can skip these
steps and leave all pyproject.toml and poetry.lock files alone.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
@@ -307,15 +331,50 @@ what you wanted by clicking the `View deployment` or `Visit Preview` buttons on
This will take you to a preview of the documentation changes.
This preview is created by [Vercel](https://vercel.com/docs/getting-started-with-vercel).
## 🏭 Release Process
## 📕 Releases & Versioning
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a developer and published to [PyPI](https://pypi.org/project/langchain/).
a maintainer and published to [PyPI](https://pypi.org/).
The different packages are versioned slightly differently.
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
### `langchain-core`
### 🌟 Recognition
`langchain-core` is currently on version `0.1.x`.
As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:
- Breaking changes for any public interfaces NOT in `langchain_core.beta`
Patch version increases will occur for:
- Bug fixes
- New features
- Any changes to private interfaces
- Any changes to `langchain_core.beta`
### `langchain`
`langchain` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase. Any changes to public interfaces are nearly always done in a backwards compatible way and will be communicated ahead of time when they are not backwards compatible.
We are targeting January 2024 for a release of `langchain` v0.1, at which point `langchain` will adopt the same versioning policy as `langchain-core`.
### `langchain-community`
`langchain-community` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
### `langchain-experimental`
`langchain-experimental` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
## 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.

46
.github/scripts/check_diff.py vendored Normal file
View File

@@ -0,0 +1,46 @@
import json
import sys
ALL_DIRS = {
"libs/core",
"libs/langchain",
"libs/experimental",
"libs/community",
}
if __name__ == "__main__":
files = sys.argv[1:]
dirs_to_run = set()
for file in files:
if any(
file.startswith(dir_)
for dir_ in (
".github/workflows",
".github/tools",
".github/actions",
"libs/core",
".github/scripts/check_diff.py",
)
):
dirs_to_run = ALL_DIRS
break
elif "libs/community" in file:
dirs_to_run.update(
("libs/community", "libs/langchain", "libs/experimental")
)
elif "libs/partners" in file:
partner_dir = file.split("/")[2]
dirs_to_run.update(
(f"libs/partners/{partner_dir}", "libs/langchain", "libs/experimental")
)
elif "libs/langchain" in file:
dirs_to_run.update(("libs/langchain", "libs/experimental"))
elif "libs/experimental" in file:
dirs_to_run.add("libs/experimental")
elif file.startswith("libs/"):
dirs_to_run = ALL_DIRS
break
else:
pass
print(json.dumps(list(dirs_to_run)))

View File

@@ -1,20 +1,25 @@
---
name: libs/langchain CI
name: langchain CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/*'
- 'libs/langchain/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
workflow_dispatch:
inputs:
working-directory:
required: true
type: choice
default: 'libs/langchain'
options:
- libs/langchain
- libs/core
- libs/experimental
- libs/community
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
@@ -23,47 +28,39 @@ on:
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
group: ${{ github.workflow }}-${{ github.ref }}-${{ inputs.working-directory }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "libs/langchain"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
uses: ./.github/workflows/_lint.yml
with:
working-directory: libs/langchain
working-directory: ${{ inputs.working-directory }}
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
uses: ./.github/workflows/_test.yml
with:
working-directory: libs/langchain
working-directory: ${{ inputs.working-directory }}
secrets: inherit
compile-integration-tests:
uses:
./.github/workflows/_compile_integration_test.yml
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/langchain
working-directory: ${{ inputs.working-directory }}
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
dependencies:
uses: ./.github/workflows/_dependencies.yml
with:
working-directory: libs/langchain
working-directory: ${{ inputs.working-directory }}
secrets: inherit
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
@@ -72,6 +69,9 @@ jobs:
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
@@ -80,14 +80,14 @@ jobs:
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
working-directory: ${{ inputs.working-directory }}
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
poetry install -E extended_testing --with test
- name: Run extended tests
run: make extended_tests

View File

@@ -38,7 +38,7 @@ jobs:
- name: Install integration dependencies
shell: bash
run: poetry install --with=test_integration
run: poetry install --with=test_integration,test
- name: Check integration tests compile
shell: bash

View File

@@ -1,4 +1,4 @@
name: pydantic v1/v2 compatibility
name: dependencies
on:
workflow_call:
@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -24,7 +28,7 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
name: Pydantic v1/v2 compatibility - Python ${{ matrix.python-version }}
name: dependencies - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
@@ -40,6 +44,22 @@ jobs:
shell: bash
run: poetry install
- name: Check imports with base dependencies
shell: bash
run: poetry run make check_imports
- name: Install test dependencies
shell: bash
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash

View File

@@ -68,7 +68,7 @@ jobs:
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with dev,lint,test,typing
poetry install --with lint,typing
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
@@ -76,7 +76,7 @@ jobs:
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
pip install -e "$LANGCHAIN_LOCATION"
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
@@ -85,9 +85,37 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
run: |
make lint
make lint_package
- name: Install test dependencies
# Also installs dev/lint/test/typing dependencies, to ensure we have
# type hints for as many of our libraries as possible.
# This helps catch errors that require dependencies to be spotted, for example:
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
#
# If you change this configuration, make sure to change the `cache-key`
# in the `poetry_setup` action above to stop using the old cache.
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with test
- name: Get .mypy_cache_test to speed up mypy
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
run: |
make lint_tests

View File

@@ -7,6 +7,17 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
workflow_dispatch:
inputs:
working-directory:
required: true
type: choice
default: 'libs/langchain'
options:
- libs/langchain
- libs/core
- libs/experimental
- libs/community
env:
PYTHON_VERSION: "3.10"

View File

@@ -7,6 +7,10 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
env:
POETRY_VERSION: "1.6.1"
@@ -38,11 +42,20 @@ jobs:
- name: Install dependencies
shell: bash
run: poetry install
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Run core tests
shell: bash
run: make test
run: |
make test
- name: Ensure the tests did not create any additional files
shell: bash

47
.github/workflows/check_diffs.yml vendored Normal file
View File

@@ -0,0 +1,47 @@
---
name: Check library diffs
on:
push:
branches: [master]
pull_request:
paths:
- ".github/actions/**"
- ".github/tools/**"
- ".github/workflows/**"
- "libs/**"
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
- id: set-matrix
run: echo "dirs-to-run=$(python .github/scripts/check_diff.py ${{ steps.files.outputs.all }})" >> $GITHUB_OUTPUT
outputs:
dirs-to-run: ${{ steps.set-matrix.outputs.dirs-to-run }}
ci:
needs: [ build ]
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-run) }}
uses: ./.github/workflows/_all_ci.yml
with:
working-directory: ${{ matrix.working-directory }}

View File

@@ -1,47 +0,0 @@
---
name: libs/cli CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_cli_ci.yml'
- 'libs/cli/**'
- 'libs/*'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "libs/cli"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/cli
langchain-location: ../langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: libs/community Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/community
secrets: inherit

View File

@@ -0,0 +1,13 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -1,137 +0,0 @@
---
name: libs/experimental CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_experimental_ci.yml'
- 'libs/*'
- 'libs/experimental/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "libs/experimental"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/experimental
langchain-location: ../langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/experimental
secrets: inherit
compile-integration-tests:
uses:
./.github/workflows/_compile_integration_test.yml
with:
working-directory: libs/experimental
secrets: inherit
# It's possible that langchain-experimental works fine with the latest *published* langchain,
# but is broken with the langchain on `master`.
#
# We want to catch situations like that *before* releasing a new langchain, hence this test.
test-with-latest-langchain:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: test with unpublished langchain - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ env.WORKDIR }}
cache-key: unpublished-langchain
- name: Install dependencies
shell: bash
run: |
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
poetry install
echo "Editably installing langchain outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../langchain
- name: Run tests
run: make test
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/experimental
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -0,0 +1,13 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -52,13 +52,7 @@ jobs:
shell: bash
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration
poetry run pip install google-cloud-aiplatform
poetry run pip install "boto3>=1.28.57"
if [[ ${{ matrix.python-version }} != "3.8" ]]
then
poetry run pip install fireworks-ai
fi
poetry install --with=test_integration,test
- name: Run tests
shell: bash
@@ -68,7 +62,9 @@ jobs:
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_DEPLOYMENT_NAME }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
run: |
make scheduled_tests

View File

@@ -33,5 +33,4 @@ jobs:
./.github/workflows/_lint.yml
with:
working-directory: templates
langchain-location: ../libs/langchain
secrets: inherit

3
.gitignore vendored
View File

@@ -167,8 +167,7 @@ docs/node_modules/
docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/api_reference.rst
docs/api_reference/experimental_api_reference.rst
docs/api_reference/*api_reference.rst
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/

View File

@@ -0,0 +1,9 @@
"""Main entrypoint into package."""
from importlib import metadata
try:
__version__ = metadata.version(__package__)
except metadata.PackageNotFoundError:
# Case where package metadata is not available.
__version__ = ""
del metadata # optional, avoids polluting the results of dir(__package__)

View File

@@ -0,0 +1,79 @@
"""Agent toolkits contain integrations with various resources and services.
LangChain has a large ecosystem of integrations with various external resources
like local and remote file systems, APIs and databases.
These integrations allow developers to create versatile applications that combine the
power of LLMs with the ability to access, interact with and manipulate external
resources.
When developing an application, developers should inspect the capabilities and
permissions of the tools that underlie the given agent toolkit, and determine
whether permissions of the given toolkit are appropriate for the application.
See [Security](https://python.langchain.com/docs/security) for more information.
"""
from langchain_community.agent_toolkits.ainetwork.toolkit import AINetworkToolkit
from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit
from langchain_community.agent_toolkits.azure_cognitive_services import (
AzureCognitiveServicesToolkit,
)
from langchain_community.agent_toolkits.conversational_retrieval.openai_functions import ( # noqa: E501
create_conversational_retrieval_agent,
)
from langchain_community.agent_toolkits.file_management.toolkit import (
FileManagementToolkit,
)
from langchain_community.agent_toolkits.gmail.toolkit import GmailToolkit
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.multion.toolkit import MultionToolkit
from langchain_community.agent_toolkits.nasa.toolkit import NasaToolkit
from langchain_community.agent_toolkits.nla.toolkit import NLAToolkit
from langchain_community.agent_toolkits.office365.toolkit import O365Toolkit
from langchain_community.agent_toolkits.openapi.base import create_openapi_agent
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain_community.agent_toolkits.playwright.toolkit import (
PlayWrightBrowserToolkit,
)
from langchain_community.agent_toolkits.powerbi.base import create_pbi_agent
from langchain_community.agent_toolkits.powerbi.chat_base import create_pbi_chat_agent
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.agent_toolkits.slack.toolkit import SlackToolkit
from langchain_community.agent_toolkits.spark_sql.base import create_spark_sql_agent
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.agent_toolkits.steam.toolkit import SteamToolkit
from langchain_community.agent_toolkits.zapier.toolkit import ZapierToolkit
__all__ = [
"AINetworkToolkit",
"AmadeusToolkit",
"AzureCognitiveServicesToolkit",
"FileManagementToolkit",
"GmailToolkit",
"JiraToolkit",
"JsonToolkit",
"MultionToolkit",
"NasaToolkit",
"NLAToolkit",
"O365Toolkit",
"OpenAPIToolkit",
"PlayWrightBrowserToolkit",
"PowerBIToolkit",
"SlackToolkit",
"SteamToolkit",
"SQLDatabaseToolkit",
"SparkSQLToolkit",
"ZapierToolkit",
"create_json_agent",
"create_openapi_agent",
"create_pbi_agent",
"create_pbi_chat_agent",
"create_spark_sql_agent",
"create_sql_agent",
"create_conversational_retrieval_agent",
]

View File

@@ -0,0 +1,53 @@
"""Json agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_json_agent(
llm: BaseLanguageModel,
toolkit: JsonToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = JSON_PREFIX,
suffix: str = JSON_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,57 @@
"""Tool for interacting with a single API with natural language definition."""
from __future__ import annotations
from typing import Any, Optional, TYPE_CHECKING
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import Tool
from langchain_community.tools.openapi.utils.api_models import APIOperation
from langchain_community.tools.openapi.utils.openapi_utils import OpenAPISpec
from langchain_community.utilities.requests import Requests
if TYPE_CHECKING:
from langchain.chains.api.openapi.chain import OpenAPIEndpointChain
class NLATool(Tool):
"""Natural Language API Tool."""
@classmethod
def from_open_api_endpoint_chain(
cls, chain: OpenAPIEndpointChain, api_title: str
) -> "NLATool":
"""Convert an endpoint chain to an API endpoint tool."""
expanded_name = (
f'{api_title.replace(" ", "_")}.{chain.api_operation.operation_id}'
)
description = (
f"I'm an AI from {api_title}. Instruct what you want,"
" and I'll assist via an API with description:"
f" {chain.api_operation.description}"
)
return cls(name=expanded_name, func=chain.run, description=description)
@classmethod
def from_llm_and_method(
cls,
llm: BaseLanguageModel,
path: str,
method: str,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any,
) -> "NLATool":
"""Instantiate the tool from the specified path and method."""
api_operation = APIOperation.from_openapi_spec(spec, path, method)
chain = OpenAPIEndpointChain.from_api_operation(
api_operation,
llm,
requests=requests,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
return cls.from_open_api_endpoint_chain(chain, spec.info.title)

View File

@@ -0,0 +1,77 @@
"""OpenAPI spec agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_openapi_agent(
llm: BaseLanguageModel,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct an OpenAPI agent from an LLM and tools.
*Security Note*: When creating an OpenAPI agent, check the permissions
and capabilities of the underlying toolkit.
For example, if the default implementation of OpenAPIToolkit
uses the RequestsToolkit which contains tools to make arbitrary
network requests against any URL (e.g., GET, POST, PATCH, PUT, DELETE),
Control access to who can submit issue requests using this toolkit and
what network access it has.
See https://python.langchain.com/docs/security for more information.
"""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,370 @@
"""Agent that interacts with OpenAPI APIs via a hierarchical planning approach."""
import json
import re
from functools import partial
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING
import yaml
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool, Tool
from langchain_community.llms import OpenAI
from langchain_community.agent_toolkits.openapi.planner_prompt import (
API_CONTROLLER_PROMPT,
API_CONTROLLER_TOOL_DESCRIPTION,
API_CONTROLLER_TOOL_NAME,
API_ORCHESTRATOR_PROMPT,
API_PLANNER_PROMPT,
API_PLANNER_TOOL_DESCRIPTION,
API_PLANNER_TOOL_NAME,
PARSING_DELETE_PROMPT,
PARSING_GET_PROMPT,
PARSING_PATCH_PROMPT,
PARSING_POST_PROMPT,
PARSING_PUT_PROMPT,
REQUESTS_DELETE_TOOL_DESCRIPTION,
REQUESTS_GET_TOOL_DESCRIPTION,
REQUESTS_PATCH_TOOL_DESCRIPTION,
REQUESTS_POST_TOOL_DESCRIPTION,
REQUESTS_PUT_TOOL_DESCRIPTION,
)
from langchain_community.agent_toolkits.openapi.spec import ReducedOpenAPISpec
from langchain_community.tools.requests.tool import BaseRequestsTool
from langchain_community.utilities.requests import RequestsWrapper
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
from langchain.memory import ReadOnlySharedMemory
#
# Requests tools with LLM-instructed extraction of truncated responses.
#
# Of course, truncating so bluntly may lose a lot of valuable
# information in the response.
# However, the goal for now is to have only a single inference step.
MAX_RESPONSE_LENGTH = 5000
"""Maximum length of the response to be returned."""
def _get_default_llm_chain(prompt: BasePromptTemplate) -> LLMChain:
from langchain.chains.llm import LLMChain
return LLMChain(
llm=OpenAI(),
prompt=prompt,
)
def _get_default_llm_chain_factory(
prompt: BasePromptTemplate,
) -> Callable[[], LLMChain]:
"""Returns a default LLMChain factory."""
return partial(_get_default_llm_chain, prompt)
class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests GET tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_get"
"""Tool name."""
description = REQUESTS_GET_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
data_params = data.get("params")
response = self.requests_wrapper.get(data["url"], params=data_params)
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests POST tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_post"
"""Tool name."""
description = REQUESTS_POST_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_POST_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.post(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PATCH tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_patch"
"""Tool name."""
description = REQUESTS_PATCH_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PATCH_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.patch(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPutToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PUT tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_put"
"""Tool name."""
description = REQUESTS_PUT_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PUT_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.put(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool):
"""A tool that sends a DELETE request and parses the response."""
name: str = "requests_delete"
"""The name of the tool."""
description = REQUESTS_DELETE_TOOL_DESCRIPTION
"""The description of the tool."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""The maximum length of the response."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_DELETE_PROMPT)
)
"""The LLM chain used to parse the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.delete(data["url"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
#
# Orchestrator, planner, controller.
#
def _create_api_planner_tool(
api_spec: ReducedOpenAPISpec, llm: BaseLanguageModel
) -> Tool:
from langchain.chains.llm import LLMChain
endpoint_descriptions = [
f"{name} {description}" for name, description, _ in api_spec.endpoints
]
prompt = PromptTemplate(
template=API_PLANNER_PROMPT,
input_variables=["query"],
partial_variables={"endpoints": "- " + "- ".join(endpoint_descriptions)},
)
chain = LLMChain(llm=llm, prompt=prompt)
tool = Tool(
name=API_PLANNER_TOOL_NAME,
description=API_PLANNER_TOOL_DESCRIPTION,
func=chain.run,
)
return tool
def _create_api_controller_agent(
api_url: str,
api_docs: str,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> AgentExecutor:
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
get_llm_chain = LLMChain(llm=llm, prompt=PARSING_GET_PROMPT)
post_llm_chain = LLMChain(llm=llm, prompt=PARSING_POST_PROMPT)
tools: List[BaseTool] = [
RequestsGetToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=get_llm_chain
),
RequestsPostToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=post_llm_chain
),
]
prompt = PromptTemplate(
template=API_CONTROLLER_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"api_url": api_url,
"api_docs": api_docs,
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt),
allowed_tools=[tool.name for tool in tools],
)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
def _create_api_controller_tool(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> Tool:
"""Expose controller as a tool.
The tool is invoked with a plan from the planner, and dynamically
creates a controller agent with relevant documentation only to
constrain the context.
"""
base_url = api_spec.servers[0]["url"] # TODO: do better.
def _create_and_run_api_controller_agent(plan_str: str) -> str:
pattern = r"\b(GET|POST|PATCH|DELETE)\s+(/\S+)*"
matches = re.findall(pattern, plan_str)
endpoint_names = [
"{method} {route}".format(method=method, route=route.split("?")[0])
for method, route in matches
]
docs_str = ""
for endpoint_name in endpoint_names:
found_match = False
for name, _, docs in api_spec.endpoints:
regex_name = re.compile(re.sub("\{.*?\}", ".*", name))
if regex_name.match(endpoint_name):
found_match = True
docs_str += f"== Docs for {endpoint_name} == \n{yaml.dump(docs)}\n"
if not found_match:
raise ValueError(f"{endpoint_name} endpoint does not exist.")
agent = _create_api_controller_agent(base_url, docs_str, requests_wrapper, llm)
return agent.run(plan_str)
return Tool(
name=API_CONTROLLER_TOOL_NAME,
func=_create_and_run_api_controller_agent,
description=API_CONTROLLER_TOOL_DESCRIPTION,
)
def create_openapi_agent(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
shared_memory: Optional[ReadOnlySharedMemory] = None,
callback_manager: Optional[BaseCallbackManager] = None,
verbose: bool = True,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Instantiate OpenAI API planner and controller for a given spec.
Inject credentials via requests_wrapper.
We use a top-level "orchestrator" agent to invoke the planner and controller,
rather than a top-level planner
that invokes a controller with its plan. This is to keep the planner simple.
"""
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
tools = [
_create_api_planner_tool(api_spec, llm),
_create_api_controller_tool(api_spec, requests_wrapper, llm),
]
prompt = PromptTemplate(
template=API_ORCHESTRATOR_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt, memory=shared_memory),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,90 @@
"""Requests toolkit."""
from __future__ import annotations
from typing import Any, List
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import Tool
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.openapi.prompt import DESCRIPTION
from langchain_community.tools import BaseTool
from langchain_community.tools.json.tool import JsonSpec
from langchain_community.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain_community.utilities.requests import TextRequestsWrapper
class RequestsToolkit(BaseToolkit):
"""Toolkit for making REST requests.
*Security Note*: This toolkit contains tools to make GET, POST, PATCH, PUT,
and DELETE requests to an API.
Exercise care in who is allowed to use this toolkit. If exposing
to end users, consider that users will be able to make arbitrary
requests on behalf of the server hosting the code. For example,
users could ask the server to make a request to a private API
that is only accessible from the server.
Control access to who can submit issue requests using this toolkit and
what network access it has.
See https://python.langchain.com/docs/security for more information.
"""
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Return a list of tools."""
return [
RequestsGetTool(requests_wrapper=self.requests_wrapper),
RequestsPostTool(requests_wrapper=self.requests_wrapper),
RequestsPatchTool(requests_wrapper=self.requests_wrapper),
RequestsPutTool(requests_wrapper=self.requests_wrapper),
RequestsDeleteTool(requests_wrapper=self.requests_wrapper),
]
class OpenAPIToolkit(BaseToolkit):
"""Toolkit for interacting with an OpenAPI API.
*Security Note*: This toolkit contains tools that can read and modify
the state of a service; e.g., by creating, deleting, or updating,
reading underlying data.
For example, this toolkit can be used to delete data exposed via
an OpenAPI compliant API.
"""
json_agent: Any
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
json_agent_tool = Tool(
name="json_explorer",
func=self.json_agent.run,
description=DESCRIPTION,
)
request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper)
return [*request_toolkit.get_tools(), json_agent_tool]
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
json_spec: JsonSpec,
requests_wrapper: TextRequestsWrapper,
**kwargs: Any,
) -> OpenAPIToolkit:
"""Create json agent from llm, then initialize."""
json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs)
return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)

View File

@@ -0,0 +1,68 @@
"""Power BI agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_PREFIX,
POWERBI_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
def create_pbi_agent(
llm: BaseLanguageModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = POWERBI_PREFIX,
suffix: str = POWERBI_SUFFIX,
format_instructions: Optional[str] = None,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from an LLM and tools."""
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents import AgentExecutor
from langchain.chains.llm import LLMChain
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
agent = ZeroShotAgent(
llm_chain=LLMChain(
llm=llm,
prompt=ZeroShotAgent.create_prompt(
tools,
prefix=prefix.format(top_k=top_k).format(tables=tables),
suffix=suffix,
input_variables=input_variables,
**prompt_params,
),
callback_manager=callback_manager, # type: ignore
verbose=verbose,
),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,69 @@
"""Power BI agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_CHAT_PREFIX,
POWERBI_CHAT_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
from langchain.agents.agent import AgentOutputParser
from langchain.memory.chat_memory import BaseChatMemory
def create_pbi_chat_agent(
llm: BaseChatModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = POWERBI_CHAT_PREFIX,
suffix: str = POWERBI_CHAT_SUFFIX,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
memory: Optional[BaseChatMemory] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from a Chat LLM and tools.
If you supply only a toolkit and no Power BI dataset, the same LLM is used for both.
"""
from langchain.agents import AgentExecutor
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.memory import ConversationBufferMemory
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
agent = ConversationalChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
system_message=prefix.format(top_k=top_k).format(tables=tables),
human_message=suffix,
input_variables=input_variables,
callback_manager=callback_manager,
output_parser=output_parser,
verbose=verbose,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
memory=memory
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,106 @@
"""Toolkit for interacting with a Power BI dataset."""
from __future__ import annotations
from typing import List, Optional, Union, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.prompts import PromptTemplate
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.pydantic_v1 import Field
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.powerbi.prompt import (
QUESTION_TO_QUERY_BASE,
SINGLE_QUESTION_TO_QUERY,
USER_INPUT,
)
from langchain_community.tools.powerbi.tool import (
InfoPowerBITool,
ListPowerBITool,
QueryPowerBITool,
)
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.chains.llm import LLMChain
class PowerBIToolkit(BaseToolkit):
"""Toolkit for interacting with Power BI dataset.
*Security Note*: This toolkit interacts with an external service.
Control access to who can use this toolkit.
Make sure that the capabilities given by this toolkit to the calling
code are appropriately scoped to the application.
See https://python.langchain.com/docs/security for more information.
"""
powerbi: PowerBIDataset = Field(exclude=True)
llm: Union[BaseLanguageModel, BaseChatModel] = Field(exclude=True)
examples: Optional[str] = None
max_iterations: int = 5
callback_manager: Optional[BaseCallbackManager] = None
output_token_limit: Optional[int] = None
tiktoken_model_name: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
QueryPowerBITool(
llm_chain=self._get_chain(),
powerbi=self.powerbi,
examples=self.examples,
max_iterations=self.max_iterations,
output_token_limit=self.output_token_limit,
tiktoken_model_name=self.tiktoken_model_name,
),
InfoPowerBITool(powerbi=self.powerbi),
ListPowerBITool(powerbi=self.powerbi),
]
def _get_chain(self) -> LLMChain:
"""Construct the chain based on the callback manager and model type."""
from langchain.chains.llm import LLMChain
if isinstance(self.llm, BaseLanguageModel):
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager
if self.callback_manager
else None,
prompt=PromptTemplate(
template=SINGLE_QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
system_prompt = SystemMessagePromptTemplate(
prompt=PromptTemplate(
template=QUESTION_TO_QUERY_BASE,
input_variables=["tables", "schemas", "examples"],
)
)
human_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template=USER_INPUT,
input_variables=["tool_input"],
)
)
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager if self.callback_manager else None,
prompt=ChatPromptTemplate.from_messages([system_prompt, human_prompt]),
)

View File

@@ -0,0 +1,64 @@
"""Spark SQL agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_spark_sql_agent(
llm: BaseLanguageModel,
toolkit: SparkSQLToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
prefix: str = SQL_PREFIX,
suffix: str = SQL_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Spark SQL agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prefix = prefix.format(top_k=top_k)
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
callbacks=callbacks,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
callbacks=callbacks,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,102 @@
"""SQL agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import AIMessage, SystemMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_community.agent_toolkits.sql.prompt import (
SQL_FUNCTIONS_SUFFIX,
SQL_PREFIX,
SQL_SUFFIX,
)
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.tools import BaseTool
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
def create_sql_agent(
llm: BaseLanguageModel,
toolkit: SQLDatabaseToolkit,
agent_type: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: Optional[str] = None,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
extra_tools: Sequence[BaseTool] = (),
**kwargs: Any,
) -> AgentExecutor:
"""Construct an SQL agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.chains.llm import LLMChain
agent_type = agent_type or AgentType.ZERO_SHOT_REACT_DESCRIPTION
tools = toolkit.get_tools() + list(extra_tools)
prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k)
agent: BaseSingleActionAgent
if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION:
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix or SQL_SUFFIX,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
elif agent_type == AgentType.OPENAI_FUNCTIONS:
messages = [
SystemMessage(content=prefix),
HumanMessagePromptTemplate.from_template("{input}"),
AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
input_variables = ["input", "agent_scratchpad"]
_prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages)
agent = OpenAIFunctionsAgent(
llm=llm,
prompt=_prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
else:
raise ValueError(f"Agent type {agent_type} not supported at the moment.")
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -0,0 +1,66 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
from langchain_community.callbacks.aim_callback import AimCallbackHandler
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_community.callbacks.arize_callback import ArizeCallbackHandler
from langchain_community.callbacks.arthur_callback import ArthurCallbackHandler
from langchain_community.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler
from langchain_community.callbacks.context_callback import ContextCallbackHandler
from langchain_community.callbacks.flyte_callback import FlyteCallbackHandler
from langchain_community.callbacks.human import HumanApprovalCallbackHandler
from langchain_community.callbacks.infino_callback import InfinoCallbackHandler
from langchain_community.callbacks.labelstudio_callback import (
LabelStudioCallbackHandler,
)
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
from langchain_community.callbacks.mlflow_callback import MlflowCallbackHandler
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.promptlayer_callback import (
PromptLayerCallbackHandler,
)
from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain_community.callbacks.streamlit import (
LLMThoughtLabeler,
StreamlitCallbackHandler,
)
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
from langchain_community.callbacks.whylabs_callback import WhyLabsCallbackHandler
__all__ = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"LLMThoughtLabeler",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]

View File

@@ -0,0 +1,69 @@
from __future__ import annotations
import logging
from contextlib import contextmanager
from contextvars import ContextVar
from typing import (
Generator,
Optional,
)
from langchain_core.tracers.context import register_configure_hook
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.tracers.wandb import WandbTracer
logger = logging.getLogger(__name__)
openai_callback_var: ContextVar[Optional[OpenAICallbackHandler]] = ContextVar(
"openai_callback", default=None
)
wandb_tracing_callback_var: ContextVar[Optional[WandbTracer]] = ContextVar( # noqa: E501
"tracing_wandb_callback", default=None
)
register_configure_hook(openai_callback_var, True)
register_configure_hook(
wandb_tracing_callback_var, True, WandbTracer, "LANGCHAIN_WANDB_TRACING"
)
@contextmanager
def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]:
"""Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns:
OpenAICallbackHandler: The OpenAI callback handler.
Example:
>>> with get_openai_callback() as cb:
... # Use the OpenAI callback handler
"""
cb = OpenAICallbackHandler()
openai_callback_var.set(cb)
yield cb
openai_callback_var.set(None)
@contextmanager
def wandb_tracing_enabled(
session_name: str = "default",
) -> Generator[None, None, None]:
"""Get the WandbTracer in a context manager.
Args:
session_name (str, optional): The name of the session.
Defaults to "default".
Returns:
None
Example:
>>> with wandb_tracing_enabled() as session:
... # Use the WandbTracer session
"""
cb = WandbTracer()
wandb_tracing_callback_var.set(cb)
yield None
wandb_tracing_callback_var.set(None)

View File

@@ -0,0 +1,18 @@
"""Tracers that record execution of LangChain runs."""
from langchain_core.tracers.langchain import LangChainTracer
from langchain_core.tracers.langchain_v1 import LangChainTracerV1
from langchain_core.tracers.stdout import (
ConsoleCallbackHandler,
FunctionCallbackHandler,
)
from langchain_community.callbacks.tracers.wandb import WandbTracer
__all__ = [
"ConsoleCallbackHandler",
"FunctionCallbackHandler",
"LangChainTracer",
"LangChainTracerV1",
"WandbTracer",
]

View File

@@ -0,0 +1,101 @@
"""Abstract interface for document loader implementations."""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Iterator, List, Optional, TYPE_CHECKING
from langchain_core.documents import Document
from langchain_community.document_loaders.blob_loaders import Blob
if TYPE_CHECKING:
from langchain.text_splitter import TextSplitter
class BaseLoader(ABC):
"""Interface for Document Loader.
Implementations should implement the lazy-loading method using generators
to avoid loading all Documents into memory at once.
The `load` method will remain as is for backwards compatibility, but its
implementation should be just `list(self.lazy_load())`.
"""
# Sub-classes should implement this method
# as return list(self.lazy_load()).
# This method returns a List which is materialized in memory.
@abstractmethod
def load(self) -> List[Document]:
"""Load data into Document objects."""
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load Documents and split into chunks. Chunks are returned as Documents.
Args:
text_splitter: TextSplitter instance to use for splitting documents.
Defaults to RecursiveCharacterTextSplitter.
Returns:
List of Documents.
"""
from langchain.text_splitter import RecursiveCharacterTextSplitter
if text_splitter is None:
_text_splitter: TextSplitter = RecursiveCharacterTextSplitter()
else:
_text_splitter = text_splitter
docs = self.load()
return _text_splitter.split_documents(docs)
# Attention: This method will be upgraded into an abstractmethod once it's
# implemented in all the existing subclasses.
def lazy_load(
self,
) -> Iterator[Document]:
"""A lazy loader for Documents."""
raise NotImplementedError(
f"{self.__class__.__name__} does not implement lazy_load()"
)
class BaseBlobParser(ABC):
"""Abstract interface for blob parsers.
A blob parser provides a way to parse raw data stored in a blob into one
or more documents.
The parser can be composed with blob loaders, making it easy to reuse
a parser independent of how the blob was originally loaded.
"""
@abstractmethod
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazy parsing interface.
Subclasses are required to implement this method.
Args:
blob: Blob instance
Returns:
Generator of documents
"""
def parse(self, blob: Blob) -> List[Document]:
"""Eagerly parse the blob into a document or documents.
This is a convenience method for interactive development environment.
Production applications should favor the lazy_parse method instead.
Subclasses should generally not over-ride this parse method.
Args:
blob: Blob instance
Returns:
List of documents
"""
return list(self.lazy_parse(blob))

View File

@@ -0,0 +1,147 @@
"""Use to load blobs from the local file system."""
from pathlib import Path
from typing import Callable, Iterable, Iterator, Optional, Sequence, TypeVar, Union
from langchain_community.document_loaders.blob_loaders.schema import Blob, BlobLoader
T = TypeVar("T")
def _make_iterator(
length_func: Callable[[], int], show_progress: bool = False
) -> Callable[[Iterable[T]], Iterator[T]]:
"""Create a function that optionally wraps an iterable in tqdm."""
if show_progress:
try:
from tqdm.auto import tqdm
except ImportError:
raise ImportError(
"You must install tqdm to use show_progress=True."
"You can install tqdm with `pip install tqdm`."
)
# Make sure to provide `total` here so that tqdm can show
# a progress bar that takes into account the total number of files.
def _with_tqdm(iterable: Iterable[T]) -> Iterator[T]:
"""Wrap an iterable in a tqdm progress bar."""
return tqdm(iterable, total=length_func())
iterator = _with_tqdm
else:
iterator = iter # type: ignore
return iterator
# PUBLIC API
class FileSystemBlobLoader(BlobLoader):
"""Load blobs in the local file system.
Example:
.. code-block:: python
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
loader = FileSystemBlobLoader("/path/to/directory")
for blob in loader.yield_blobs():
print(blob)
""" # noqa: E501
def __init__(
self,
path: Union[str, Path],
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
) -> None:
"""Initialize with a path to directory and how to glob over it.
Args:
path: Path to directory to load from or path to file to load.
If a path to a file is provided, glob/exclude/suffixes are ignored.
glob: Glob pattern relative to the specified path
by default set to pick up all non-hidden files
exclude: patterns to exclude from results, use glob syntax
suffixes: Provide to keep only files with these suffixes
Useful when wanting to keep files with different suffixes
Suffixes must include the dot, e.g. ".txt"
show_progress: If true, will show a progress bar as the files are loaded.
This forces an iteration through all matching files
to count them prior to loading them.
Examples:
.. code-block:: python
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
# Load a single file.
loader = FileSystemBlobLoader("/path/to/file.txt")
# Recursively load all text files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = FileSystemBlobLoader("/path/to/directory", glob="*")
# Recursively load all files in a directory, except for py or pyc files.
loader = FileSystemBlobLoader(
"/path/to/directory",
glob="**/*.txt",
exclude=["**/*.py", "**/*.pyc"]
)
""" # noqa: E501
if isinstance(path, Path):
_path = path
elif isinstance(path, str):
_path = Path(path)
else:
raise TypeError(f"Expected str or Path, got {type(path)}")
self.path = _path.expanduser() # Expand user to handle ~
self.glob = glob
self.suffixes = set(suffixes or [])
self.show_progress = show_progress
self.exclude = exclude
def yield_blobs(
self,
) -> Iterable[Blob]:
"""Yield blobs that match the requested pattern."""
iterator = _make_iterator(
length_func=self.count_matching_files, show_progress=self.show_progress
)
for path in iterator(self._yield_paths()):
yield Blob.from_path(path)
def _yield_paths(self) -> Iterable[Path]:
"""Yield paths that match the requested pattern."""
if self.path.is_file():
yield self.path
return
paths = self.path.glob(self.glob)
for path in paths:
if self.exclude:
if any(path.match(glob) for glob in self.exclude):
continue
if path.is_file():
if self.suffixes and path.suffix not in self.suffixes:
continue
yield path
def count_matching_files(self) -> int:
"""Count files that match the pattern without loading them."""
# Carry out a full iteration to count the files without
# materializing anything expensive in memory.
num = 0
for _ in self._yield_paths():
num += 1
return num

View File

@@ -0,0 +1,190 @@
from __future__ import annotations
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Iterator,
List,
Literal,
Optional,
Sequence,
Union,
)
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser, BaseLoader
from langchain_community.document_loaders.blob_loaders import (
BlobLoader,
FileSystemBlobLoader,
)
from langchain_community.document_loaders.parsers.registry import get_parser
if TYPE_CHECKING:
from langchain.text_splitter import TextSplitter
_PathLike = Union[str, Path]
DEFAULT = Literal["default"]
class GenericLoader(BaseLoader):
"""Generic Document Loader.
A generic document loader that allows combining an arbitrary blob loader with
a blob parser.
Examples:
Parse a specific PDF file:
.. code-block:: python
from langchain_community.document_loaders import GenericLoader
from langchain_community.document_loaders.parsers.pdf import PyPDFParser
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem(
"my_lovely_pdf.pdf",
parser=PyPDFParser()
)
.. code-block:: python
from langchain_community.document_loaders import GenericLoader
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
loader = GenericLoader.from_filesystem(
path="path/to/directory",
glob="**/[!.]*",
suffixes=[".pdf"],
show_progress=True,
)
docs = loader.lazy_load()
next(docs)
Example instantiations to change which files are loaded:
.. code-block:: python
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="*")
Example instantiations to change which parser is used:
.. code-block:: python
from langchain_community.document_loaders.parsers.pdf import PyPDFParser
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem(
"/path/to/dir",
glob="**/*.pdf",
parser=PyPDFParser()
)
""" # noqa: E501
def __init__(
self,
blob_loader: BlobLoader,
blob_parser: BaseBlobParser,
) -> None:
"""A generic document loader.
Args:
blob_loader: A blob loader which knows how to yield blobs
blob_parser: A blob parser which knows how to parse blobs into documents
"""
self.blob_loader = blob_loader
self.blob_parser = blob_parser
def lazy_load(
self,
) -> Iterator[Document]:
"""Load documents lazily. Use this when working at a large scale."""
for blob in self.blob_loader.yield_blobs():
yield from self.blob_parser.lazy_parse(blob)
def load(self) -> List[Document]:
"""Load all documents."""
return list(self.lazy_load())
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load all documents and split them into sentences."""
raise NotImplementedError(
"Loading and splitting is not yet implemented for generic loaders. "
"When they will be implemented they will be added via the initializer. "
"This method should not be used going forward."
)
@classmethod
def from_filesystem(
cls,
path: _PathLike,
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
parser: Union[DEFAULT, BaseBlobParser] = "default",
parser_kwargs: Optional[dict] = None,
) -> GenericLoader:
"""Create a generic document loader using a filesystem blob loader.
Args:
path: The path to the directory to load documents from OR the path to a
single file to load. If this is a file, glob, exclude, suffixes
will be ignored.
glob: The glob pattern to use to find documents.
suffixes: The suffixes to use to filter documents. If None, all files
matching the glob will be loaded.
exclude: A list of patterns to exclude from the loader.
show_progress: Whether to show a progress bar or not (requires tqdm).
Proxies to the file system loader.
parser: A blob parser which knows how to parse blobs into documents,
will instantiate a default parser if not provided.
The default can be overridden by either passing a parser or
setting the class attribute `blob_parser` (the latter
should be used with inheritance).
parser_kwargs: Keyword arguments to pass to the parser.
Returns:
A generic document loader.
"""
blob_loader = FileSystemBlobLoader(
path,
glob=glob,
exclude=exclude,
suffixes=suffixes,
show_progress=show_progress,
)
if isinstance(parser, str):
if parser == "default":
try:
# If there is an implementation of get_parser on the class, use it.
blob_parser = cls.get_parser(**(parser_kwargs or {}))
except NotImplementedError:
# if not then use the global registry.
blob_parser = get_parser(parser)
else:
blob_parser = get_parser(parser)
else:
blob_parser = parser
return cls(blob_loader, blob_parser)
@staticmethod
def get_parser(**kwargs: Any) -> BaseBlobParser:
"""Override this method to associate a default parser with the class."""
raise NotImplementedError()

View File

@@ -0,0 +1,70 @@
"""Code for generic / auxiliary parsers.
This module contains some logic to help assemble more sophisticated parsers.
"""
from typing import Iterator, Mapping, Optional
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders.schema import Blob
class MimeTypeBasedParser(BaseBlobParser):
"""Parser that uses `mime`-types to parse a blob.
This parser is useful for simple pipelines where the mime-type is sufficient
to determine how to parse a blob.
To use, configure handlers based on mime-types and pass them to the initializer.
Example:
.. code-block:: python
from langchain_community.document_loaders.parsers.generic import MimeTypeBasedParser
parser = MimeTypeBasedParser(
handlers={
"application/pdf": ...,
},
fallback_parser=...,
)
""" # noqa: E501
def __init__(
self,
handlers: Mapping[str, BaseBlobParser],
*,
fallback_parser: Optional[BaseBlobParser] = None,
) -> None:
"""Define a parser that uses mime-types to determine how to parse a blob.
Args:
handlers: A mapping from mime-types to functions that take a blob, parse it
and return a document.
fallback_parser: A fallback_parser parser to use if the mime-type is not
found in the handlers. If provided, this parser will be
used to parse blobs with all mime-types not found in
the handlers.
If not provided, a ValueError will be raised if the
mime-type is not found in the handlers.
"""
self.handlers = handlers
self.fallback_parser = fallback_parser
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Load documents from a blob."""
mimetype = blob.mimetype
if mimetype is None:
raise ValueError(f"{blob} does not have a mimetype.")
if mimetype in self.handlers:
handler = self.handlers[mimetype]
yield from handler.lazy_parse(blob)
else:
if self.fallback_parser is not None:
yield from self.fallback_parser.lazy_parse(blob)
else:
raise ValueError(f"Unsupported mime type: {mimetype}")

View File

@@ -0,0 +1,157 @@
from __future__ import annotations
from typing import Any, Dict, Iterator, Optional, TYPE_CHECKING
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.language.cobol import CobolSegmenter
from langchain_community.document_loaders.parsers.language.javascript import (
JavaScriptSegmenter,
)
from langchain_community.document_loaders.parsers.language.python import PythonSegmenter
if TYPE_CHECKING:
from langchain.text_splitter import Language
try:
from langchain.text_splitter import Language
LANGUAGE_EXTENSIONS: Dict[str, str] = {
"py": Language.PYTHON,
"js": Language.JS,
"cobol": Language.COBOL,
}
LANGUAGE_SEGMENTERS: Dict[str, Any] = {
Language.PYTHON: PythonSegmenter,
Language.JS: JavaScriptSegmenter,
Language.COBOL: CobolSegmenter,
}
except ImportError:
LANGUAGE_EXTENSIONS = {}
LANGUAGE_SEGMENTERS = {}
class LanguageParser(BaseBlobParser):
"""Parse using the respective programming language syntax.
Each top-level function and class in the code is loaded into separate documents.
Furthermore, an extra document is generated, containing the remaining top-level code
that excludes the already segmented functions and classes.
This approach can potentially improve the accuracy of QA models over source code.
Currently, the supported languages for code parsing are Python and JavaScript.
The language used for parsing can be configured, along with the minimum number of
lines required to activate the splitting based on syntax.
Examples:
.. code-block:: python
from langchain.text_splitter.Language
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import LanguageParser
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py", ".js"],
parser=LanguageParser()
)
docs = loader.load()
Example instantiations to manually select the language:
.. code-block:: python
from langchain.text_splitter import Language
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(language=Language.PYTHON)
)
Example instantiations to set number of lines threshold:
.. code-block:: python
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(parser_threshold=200)
)
"""
def __init__(self, language: Optional[Language] = None, parser_threshold: int = 0):
"""
Language parser that split code using the respective language syntax.
Args:
language: If None (default), it will try to infer language from source.
parser_threshold: Minimum lines needed to activate parsing (0 by default).
"""
self.language = language
self.parser_threshold = parser_threshold
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
code = blob.as_string()
language = self.language or (
LANGUAGE_EXTENSIONS.get(blob.source.rsplit(".", 1)[-1])
if isinstance(blob.source, str)
else None
)
if language is None:
yield Document(
page_content=code,
metadata={
"source": blob.source,
},
)
return
if self.parser_threshold >= len(code.splitlines()):
yield Document(
page_content=code,
metadata={
"source": blob.source,
"language": language,
},
)
return
self.Segmenter = LANGUAGE_SEGMENTERS[language]
segmenter = self.Segmenter(blob.as_string())
if not segmenter.is_valid():
yield Document(
page_content=code,
metadata={
"source": blob.source,
},
)
return
for functions_classes in segmenter.extract_functions_classes():
yield Document(
page_content=functions_classes,
metadata={
"source": blob.source,
"content_type": "functions_classes",
"language": language,
},
)
yield Document(
page_content=segmenter.simplify_code(),
metadata={
"source": blob.source,
"content_type": "simplified_code",
"language": language,
},
)

View File

@@ -0,0 +1,262 @@
from __future__ import annotations
import asyncio
import json
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
if TYPE_CHECKING:
import pandas as pd
from telethon.hints import EntityLike
def concatenate_rows(row: dict) -> str:
"""Combine message information in a readable format ready to be used."""
date = row["date"]
sender = row["from"]
text = row["text"]
return f"{sender} on {date}: {text}\n\n"
class TelegramChatFileLoader(BaseLoader):
"""Load from `Telegram chat` dump."""
def __init__(self, path: str):
"""Initialize with a path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
text = "".join(
concatenate_rows(message)
for message in d["messages"]
if message["type"] == "message" and isinstance(message["text"], str)
)
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]
def text_to_docs(text: Union[str, List[str]]) -> List[Document]:
"""Convert a string or list of strings to a list of Documents with metadata."""
from langchain.text_splitter import RecursiveCharacterTextSplitter
if isinstance(text, str):
# Take a single string as one page
text = [text]
page_docs = [Document(page_content=page) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs):
doc.metadata["page"] = i + 1
# Split pages into chunks
doc_chunks = []
for doc in page_docs:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=20,
)
chunks = text_splitter.split_text(doc.page_content)
for i, chunk in enumerate(chunks):
doc = Document(
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
)
# Add sources a metadata
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
doc_chunks.append(doc)
return doc_chunks
class TelegramChatApiLoader(BaseLoader):
"""Load `Telegram` chat json directory dump."""
def __init__(
self,
chat_entity: Optional[EntityLike] = None,
api_id: Optional[int] = None,
api_hash: Optional[str] = None,
username: Optional[str] = None,
file_path: str = "telegram_data.json",
):
"""Initialize with API parameters.
Args:
chat_entity: The chat entity to fetch data from.
api_id: The API ID.
api_hash: The API hash.
username: The username.
file_path: The file path to save the data to. Defaults to
"telegram_data.json".
"""
self.chat_entity = chat_entity
self.api_id = api_id
self.api_hash = api_hash
self.username = username
self.file_path = file_path
async def fetch_data_from_telegram(self) -> None:
"""Fetch data from Telegram API and save it as a JSON file."""
from telethon.sync import TelegramClient
data = []
async with TelegramClient(self.username, self.api_id, self.api_hash) as client:
async for message in client.iter_messages(self.chat_entity):
is_reply = message.reply_to is not None
reply_to_id = message.reply_to.reply_to_msg_id if is_reply else None
data.append(
{
"sender_id": message.sender_id,
"text": message.text,
"date": message.date.isoformat(),
"message.id": message.id,
"is_reply": is_reply,
"reply_to_id": reply_to_id,
}
)
with open(self.file_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
def _get_message_threads(self, data: pd.DataFrame) -> dict:
"""Create a dictionary of message threads from the given data.
Args:
data (pd.DataFrame): A DataFrame containing the conversation \
data with columns:
- message.sender_id
- text
- date
- message.id
- is_reply
- reply_to_id
Returns:
dict: A dictionary where the key is the parent message ID and \
the value is a list of message IDs in ascending order.
"""
def find_replies(parent_id: int, reply_data: pd.DataFrame) -> List[int]:
"""
Recursively find all replies to a given parent message ID.
Args:
parent_id (int): The parent message ID.
reply_data (pd.DataFrame): A DataFrame containing reply messages.
Returns:
list: A list of message IDs that are replies to the parent message ID.
"""
# Find direct replies to the parent message ID
direct_replies = reply_data[reply_data["reply_to_id"] == parent_id][
"message.id"
].tolist()
# Recursively find replies to the direct replies
all_replies = []
for reply_id in direct_replies:
all_replies += [reply_id] + find_replies(reply_id, reply_data)
return all_replies
# Filter out parent messages
parent_messages = data[~data["is_reply"]]
# Filter out reply messages and drop rows with NaN in 'reply_to_id'
reply_messages = data[data["is_reply"]].dropna(subset=["reply_to_id"])
# Convert 'reply_to_id' to integer
reply_messages["reply_to_id"] = reply_messages["reply_to_id"].astype(int)
# Create a dictionary of message threads with parent message IDs as keys and \
# lists of reply message IDs as values
message_threads = {
parent_id: [parent_id] + find_replies(parent_id, reply_messages)
for parent_id in parent_messages["message.id"]
}
return message_threads
def _combine_message_texts(
self, message_threads: Dict[int, List[int]], data: pd.DataFrame
) -> str:
"""
Combine the message texts for each parent message ID based \
on the list of message threads.
Args:
message_threads (dict): A dictionary where the key is the parent message \
ID and the value is a list of message IDs in ascending order.
data (pd.DataFrame): A DataFrame containing the conversation data:
- message.sender_id
- text
- date
- message.id
- is_reply
- reply_to_id
Returns:
str: A combined string of message texts sorted by date.
"""
combined_text = ""
# Iterate through sorted parent message IDs
for parent_id, message_ids in message_threads.items():
# Get the message texts for the message IDs and sort them by date
message_texts = (
data[data["message.id"].isin(message_ids)]
.sort_values(by="date")["text"]
.tolist()
)
message_texts = [str(elem) for elem in message_texts]
# Combine the message texts
combined_text += " ".join(message_texts) + ".\n"
return combined_text.strip()
def load(self) -> List[Document]:
"""Load documents."""
if self.chat_entity is not None:
try:
import nest_asyncio
nest_asyncio.apply()
asyncio.run(self.fetch_data_from_telegram())
except ImportError:
raise ImportError(
"""`nest_asyncio` package not found.
please install with `pip install nest_asyncio`
"""
)
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
try:
import pandas as pd
except ImportError:
raise ImportError(
"""`pandas` package not found.
please install with `pip install pandas`
"""
)
normalized_messages = pd.json_normalize(d)
df = pd.DataFrame(normalized_messages)
message_threads = self._get_message_threads(df)
combined_texts = self._combine_message_texts(message_threads, df)
return text_to_docs(combined_texts)

View File

@@ -0,0 +1,149 @@
from typing import Any, Iterator, List, Sequence, cast
from langchain_core.documents import BaseDocumentTransformer, Document
class BeautifulSoupTransformer(BaseDocumentTransformer):
"""Transform HTML content by extracting specific tags and removing unwanted ones.
Example:
.. code-block:: python
from langchain_community.document_transformers import BeautifulSoupTransformer
bs4_transformer = BeautifulSoupTransformer()
docs_transformed = bs4_transformer.transform_documents(docs)
""" # noqa: E501
def __init__(self) -> None:
"""
Initialize the transformer.
This checks if the BeautifulSoup4 package is installed.
If not, it raises an ImportError.
"""
try:
import bs4 # noqa:F401
except ImportError:
raise ImportError(
"BeautifulSoup4 is required for BeautifulSoupTransformer. "
"Please install it with `pip install beautifulsoup4`."
)
def transform_documents(
self,
documents: Sequence[Document],
unwanted_tags: List[str] = ["script", "style"],
tags_to_extract: List[str] = ["p", "li", "div", "a"],
remove_lines: bool = True,
**kwargs: Any,
) -> Sequence[Document]:
"""
Transform a list of Document objects by cleaning their HTML content.
Args:
documents: A sequence of Document objects containing HTML content.
unwanted_tags: A list of tags to be removed from the HTML.
tags_to_extract: A list of tags whose content will be extracted.
remove_lines: If set to True, unnecessary lines will be
removed from the HTML content.
Returns:
A sequence of Document objects with transformed content.
"""
for doc in documents:
cleaned_content = doc.page_content
cleaned_content = self.remove_unwanted_tags(cleaned_content, unwanted_tags)
cleaned_content = self.extract_tags(cleaned_content, tags_to_extract)
if remove_lines:
cleaned_content = self.remove_unnecessary_lines(cleaned_content)
doc.page_content = cleaned_content
return documents
@staticmethod
def remove_unwanted_tags(html_content: str, unwanted_tags: List[str]) -> str:
"""
Remove unwanted tags from a given HTML content.
Args:
html_content: The original HTML content string.
unwanted_tags: A list of tags to be removed from the HTML.
Returns:
A cleaned HTML string with unwanted tags removed.
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
for tag in unwanted_tags:
for element in soup.find_all(tag):
element.decompose()
return str(soup)
@staticmethod
def extract_tags(html_content: str, tags: List[str]) -> str:
"""
Extract specific tags from a given HTML content.
Args:
html_content: The original HTML content string.
tags: A list of tags to be extracted from the HTML.
Returns:
A string combining the content of the extracted tags.
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
text_parts: List[str] = []
for element in soup.find_all():
if element.name in tags:
# Extract all navigable strings recursively from this element.
text_parts += get_navigable_strings(element)
# To avoid duplicate text, remove all descendants from the soup.
element.decompose()
return " ".join(text_parts)
@staticmethod
def remove_unnecessary_lines(content: str) -> str:
"""
Clean up the content by removing unnecessary lines.
Args:
content: A string, which may contain unnecessary lines or spaces.
Returns:
A cleaned string with unnecessary lines removed.
"""
lines = content.split("\n")
stripped_lines = [line.strip() for line in lines]
non_empty_lines = [line for line in stripped_lines if line]
cleaned_content = " ".join(non_empty_lines)
return cleaned_content
async def atransform_documents(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> Sequence[Document]:
raise NotImplementedError
def get_navigable_strings(element: Any) -> Iterator[str]:
from bs4 import NavigableString, Tag
for child in cast(Tag, element).children:
if isinstance(child, Tag):
yield from get_navigable_strings(child)
elif isinstance(child, NavigableString):
if (element.name == "a") and (href := element.get("href")):
yield f"{child.strip()} ({href})"
else:
yield child.strip()

View File

@@ -0,0 +1,140 @@
"""Document transformers that use OpenAI Functions models"""
from typing import Any, Dict, Optional, Sequence, Type, Union
from langchain_core.documents import BaseDocumentTransformer, Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
class OpenAIMetadataTagger(BaseDocumentTransformer, BaseModel):
"""Extract metadata tags from document contents using OpenAI functions.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_transformers import OpenAIMetadataTagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
tagging_chain = create_tagging_chain(schema, llm)
document_transformer = OpenAIMetadataTagger(tagging_chain=tagging_chain)
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
""" # noqa: E501
tagging_chain: Any
"""The chain used to extract metadata from each document."""
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Automatically extract and populate metadata
for each document according to the provided schema."""
new_documents = []
for document in documents:
extracted_metadata: Dict = self.tagging_chain.run(document.page_content) # type: ignore[assignment] # noqa: E501
new_document = Document(
page_content=document.page_content,
metadata={**extracted_metadata, **document.metadata},
)
new_documents.append(new_document)
return new_documents
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
def create_metadata_tagger(
metadata_schema: Union[Dict[str, Any], Type[BaseModel]],
llm: BaseLanguageModel,
prompt: Optional[ChatPromptTemplate] = None,
*,
tagging_chain_kwargs: Optional[Dict] = None,
) -> OpenAIMetadataTagger:
"""Create a DocumentTransformer that uses an OpenAI function chain to automatically
tag documents with metadata based on their content and an input schema.
Args:
metadata_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
is passed in, it's assumed to already be a valid JsonSchema.
For best results, pydantic.BaseModels should have docstrings describing what
the schema represents and descriptions for the parameters.
llm: Language model to use, assumed to support the OpenAI function-calling API.
Defaults to use "gpt-3.5-turbo-0613"
prompt: BasePromptTemplate to pass to the model.
Returns:
An LLMChain that will pass the given function to the model.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_transformers import create_metadata_tagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
document_transformer = create_metadata_tagger(schema, llm)
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
""" # noqa: E501
from langchain.chains.openai_functions import create_tagging_chain
metadata_schema = (
metadata_schema
if isinstance(metadata_schema, dict)
else metadata_schema.schema()
)
_tagging_chain_kwargs = tagging_chain_kwargs or {}
tagging_chain = create_tagging_chain(
metadata_schema, llm, prompt=prompt, **_tagging_chain_kwargs
)
return OpenAIMetadataTagger(tagging_chain=tagging_chain)

View File

@@ -0,0 +1,161 @@
"""**Embedding models** are wrappers around embedding models
from different APIs and services.
**Embedding models** can be LLMs or not.
**Class hierarchy:**
.. code-block::
Embeddings --> <name>Embeddings # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings
"""
import logging
from typing import Any
from langchain_community.embeddings.aleph_alpha import (
AlephAlphaAsymmetricSemanticEmbedding,
AlephAlphaSymmetricSemanticEmbedding,
)
from langchain_community.embeddings.awa import AwaEmbeddings
from langchain_community.embeddings.azure_openai import AzureOpenAIEmbeddings
from langchain_community.embeddings.baidu_qianfan_endpoint import (
QianfanEmbeddingsEndpoint,
)
from langchain_community.embeddings.bedrock import BedrockEmbeddings
from langchain_community.embeddings.bookend import BookendEmbeddings
from langchain_community.embeddings.clarifai import ClarifaiEmbeddings
from langchain_community.embeddings.cohere import CohereEmbeddings
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
from langchain_community.embeddings.databricks import DatabricksEmbeddings
from langchain_community.embeddings.deepinfra import DeepInfraEmbeddings
from langchain_community.embeddings.edenai import EdenAiEmbeddings
from langchain_community.embeddings.elasticsearch import ElasticsearchEmbeddings
from langchain_community.embeddings.embaas import EmbaasEmbeddings
from langchain_community.embeddings.ernie import ErnieEmbeddings
from langchain_community.embeddings.fake import (
DeterministicFakeEmbedding,
FakeEmbeddings,
)
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.embeddings.google_palm import GooglePalmEmbeddings
from langchain_community.embeddings.gpt4all import GPT4AllEmbeddings
from langchain_community.embeddings.gradient_ai import GradientEmbeddings
from langchain_community.embeddings.huggingface import (
HuggingFaceBgeEmbeddings,
HuggingFaceEmbeddings,
HuggingFaceInferenceAPIEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain_community.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain_community.embeddings.infinity import InfinityEmbeddings
from langchain_community.embeddings.javelin_ai_gateway import JavelinAIGatewayEmbeddings
from langchain_community.embeddings.jina import JinaEmbeddings
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings
from langchain_community.embeddings.localai import LocalAIEmbeddings
from langchain_community.embeddings.minimax import MiniMaxEmbeddings
from langchain_community.embeddings.mlflow import MlflowEmbeddings
from langchain_community.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
from langchain_community.embeddings.modelscope_hub import ModelScopeEmbeddings
from langchain_community.embeddings.mosaicml import MosaicMLInstructorEmbeddings
from langchain_community.embeddings.nlpcloud import NLPCloudEmbeddings
from langchain_community.embeddings.octoai_embeddings import OctoAIEmbeddings
from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.embeddings.sagemaker_endpoint import (
SagemakerEndpointEmbeddings,
)
from langchain_community.embeddings.self_hosted import SelfHostedEmbeddings
from langchain_community.embeddings.self_hosted_hugging_face import (
SelfHostedHuggingFaceEmbeddings,
SelfHostedHuggingFaceInstructEmbeddings,
)
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
from langchain_community.embeddings.tensorflow_hub import TensorflowHubEmbeddings
from langchain_community.embeddings.vertexai import VertexAIEmbeddings
from langchain_community.embeddings.voyageai import VoyageEmbeddings
from langchain_community.embeddings.xinference import XinferenceEmbeddings
logger = logging.getLogger(__name__)
__all__ = [
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
"ElasticsearchEmbeddings",
"FastEmbedEmbeddings",
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",
"HuggingFaceHubEmbeddings",
"MlflowEmbeddings",
"MlflowAIGatewayEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
"HuggingFaceInstructEmbeddings",
"MosaicMLInstructorEmbeddings",
"SelfHostedEmbeddings",
"SelfHostedHuggingFaceEmbeddings",
"SelfHostedHuggingFaceInstructEmbeddings",
"FakeEmbeddings",
"DeterministicFakeEmbedding",
"AlephAlphaAsymmetricSemanticEmbedding",
"AlephAlphaSymmetricSemanticEmbedding",
"SentenceTransformerEmbeddings",
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
"DeepInfraEmbeddings",
"EdenAiEmbeddings",
"DashScopeEmbeddings",
"EmbaasEmbeddings",
"OctoAIEmbeddings",
"SpacyEmbeddings",
"NLPCloudEmbeddings",
"GPT4AllEmbeddings",
"XinferenceEmbeddings",
"LocalAIEmbeddings",
"AwaEmbeddings",
"HuggingFaceBgeEmbeddings",
"ErnieEmbeddings",
"JavelinAIGatewayEmbeddings",
"OllamaEmbeddings",
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"BookendEmbeddings",
]
# TODO: this is in here to maintain backwards compatibility
class HypotheticalDocumentEmbedder:
def __init__(self, *args: Any, **kwargs: Any):
logger.warning(
"Using a deprecated class. Please use "
"`from langchain.chains import HypotheticalDocumentEmbedder` instead"
)
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder as H
return H(*args, **kwargs) # type: ignore
@classmethod
def from_llm(cls, *args: Any, **kwargs: Any) -> Any:
logger.warning(
"Using a deprecated class. Please use "
"`from langchain.chains import HypotheticalDocumentEmbedder` instead"
)
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder as H
return H.from_llm(*args, **kwargs)

View File

@@ -0,0 +1,343 @@
from typing import Any, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_BGE_MODEL = "BAAI/bge-large-en"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_EN = (
"Represent this question for searching relevant passages: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:"
class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""HuggingFace sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
multi_process: bool = False
"""Run encode() on multiple GPUs."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
import sentence_transformers
texts = list(map(lambda x: x.replace("\n", " "), texts))
if self.multi_process:
pool = self.client.start_multi_process_pool()
embeddings = self.client.encode_multi_process(texts, pool)
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
else:
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]
class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python packages installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
except ImportError as e:
raise ImportError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0]
return embedding.tolist()
class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
"""HuggingFace BGE sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_BGE_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
if "-zh" in self.model_name:
self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = [t.replace("\n", " ") for t in texts]
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(
self.query_instruction + text, **self.encode_kwargs
)
return embedding.tolist()
class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings):
"""Embed texts using the HuggingFace API.
Requires a HuggingFace Inference API key and a model name.
"""
api_key: str
"""Your API key for the HuggingFace Inference API."""
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
"""The name of the model to use for text embeddings."""
api_url: Optional[str] = None
"""Custom inference endpoint url. None for using default public url."""
@property
def _api_url(self) -> str:
return self.api_url or self._default_api_url
@property
def _default_api_url(self) -> str:
return (
"https://api-inference.huggingface.co"
"/pipeline"
"/feature-extraction"
f"/{self.model_name}"
)
@property
def _headers(self) -> dict:
return {"Authorization": f"Bearer {self.api_key}"}
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Get the embeddings for a list of texts.
Args:
texts (Documents): A list of texts to get embeddings for.
Returns:
Embedded texts as List[List[float]], where each inner List[float]
corresponds to a single input text.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key="your_api_key",
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
""" # noqa: E501
response = requests.post(
self._api_url,
headers=self._headers,
json={
"inputs": texts,
"options": {"wait_for_model": True, "use_cache": True},
},
)
return response.json()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -0,0 +1,92 @@
import os
import sys
from typing import Any, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
class JohnSnowLabsEmbeddings(BaseModel, Embeddings):
"""JohnSnowLabs embedding models
To use, you should have the ``johnsnowlabs`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
embedding = JohnSnowLabsEmbeddings(model='embed_sentence.bert')
output = embedding.embed_query("foo bar")
""" # noqa: E501
model: Any = "embed_sentence.bert"
def __init__(
self,
model: Any = "embed_sentence.bert",
hardware_target: str = "cpu",
**kwargs: Any,
):
"""Initialize the johnsnowlabs model."""
super().__init__(**kwargs)
# 1) Check imports
try:
from johnsnowlabs import nlp
from nlu.pipe.pipeline import NLUPipeline
except ImportError as exc:
raise ImportError(
"Could not import johnsnowlabs python package. "
"Please install it with `pip install johnsnowlabs`."
) from exc
# 2) Start a Spark Session
try:
os.environ["PYSPARK_PYTHON"] = sys.executable
os.environ["PYSPARK_DRIVER_PYTHON"] = sys.executable
nlp.start(hardware_target=hardware_target)
except Exception as exc:
raise Exception("Failure starting Spark Session") from exc
# 3) Load the model
try:
if isinstance(model, str):
self.model = nlp.load(model)
elif isinstance(model, NLUPipeline):
self.model = model
else:
self.model = nlp.to_nlu_pipe(model)
except Exception as exc:
raise Exception("Failure loading model") from exc
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a JohnSnowLabs transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
df = self.model.predict(texts, output_level="document")
emb_col = None
for c in df.columns:
if "embedding" in c:
emb_col = c
return [vec.tolist() for vec in df[emb_col].tolist()]
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a JohnSnowLabs transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -0,0 +1,168 @@
import importlib
import logging
from typing import Any, Callable, List, Optional
from langchain_community.embeddings.self_hosted import SelfHostedEmbeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
logger = logging.getLogger(__name__)
def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return client.encode(*args, **kwargs)
def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any:
"""Load the embedding model."""
if not instruct:
import sentence_transformers
client = sentence_transformers.SentenceTransformer(model_id)
else:
from InstructorEmbedding import INSTRUCTOR
client = INSTRUCTOR(model_id)
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
client = client.to(device)
return client
class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
"""HuggingFace embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_name = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu)
"""
client: Any #: :meta private:
model_id: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_reqs: List[str] = ["./", "sentence_transformers", "torch"]
"""Requirements to install on hardware to inference the model."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_load_fn: Callable = load_embedding_model
"""Function to load the model remotely on the server."""
load_fn_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model load function."""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings):
"""HuggingFace InstructEmbedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import SelfHostedHuggingFaceInstructEmbeddings
import runhouse as rh
model_name = "hkunlp/instructor-large"
gpu = rh.cluster(name='rh-a10x', instance_type='A100:1')
hf = SelfHostedHuggingFaceInstructEmbeddings(
model_name=model_name, hardware=gpu)
""" # noqa: E501
model_id: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"]
"""Requirements to install on hardware to inference the model."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get(
"model_id", DEFAULT_INSTRUCT_MODEL
)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = []
for text in texts:
instruction_pairs.append([self.embed_instruction, text])
embeddings = self.client(self.pipeline_ref, instruction_pairs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client(self.pipeline_ref, [instruction_pair])[0]
return embedding.tolist()

View File

@@ -0,0 +1,351 @@
import re
import warnings
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.prompt_values import PromptValue
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
check_package_version,
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain_core.utils.utils import build_extra_kwargs, convert_to_secret_str
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
"""Model name to use."""
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[SecretStr] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@root_validator(pre=True)
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
values,
"anthropic_api_url",
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
)
try:
import anthropic
check_package_version("anthropic", gte_version="0.3")
values["client"] = anthropic.Anthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["async_client"] = anthropic.AsyncAnthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
values["count_tokens"] = values["client"].count_tokens
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return {**d, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT])
return stop
class Anthropic(LLM, _AnthropicCommon):
"""Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain_community.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain_community.chat_models import ChatAnthropic` "
"instead"
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic-llm"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def convert_prompt(self, prompt: PromptValue) -> str:
return self._wrap_prompt(prompt.to_string())
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text)

View File

@@ -0,0 +1,126 @@
import json
import logging
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
logger = logging.getLogger(__name__)
class CloudflareWorkersAI(LLM):
"""Langchain LLM class to help to access Cloudflare Workers AI service.
To use, you must provide an API token and
account ID to access Cloudflare Workers AI, and
pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI
my_account_id = "my_account_id"
my_api_token = "my_secret_api_token"
llm_model = "@cf/meta/llama-2-7b-chat-int8"
cf_ai = CloudflareWorkersAI(
account_id=my_account_id,
api_token=my_api_token,
model=llm_model
)
""" # noqa: E501
account_id: str
api_token: str
model: str = "@cf/meta/llama-2-7b-chat-int8"
base_url: str = "https://api.cloudflare.com/client/v4/accounts"
streaming: bool = False
endpoint_url: str = ""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the Cloudflare Workers AI class."""
super().__init__(**kwargs)
self.endpoint_url = f"{self.base_url}/{self.account_id}/ai/run/{self.model}"
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "cloudflare"
@property
def _default_params(self) -> Dict[str, Any]:
"""Default parameters"""
return {}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Identifying parameters"""
return {
"account_id": self.account_id,
"api_token": self.api_token,
"model": self.model,
"base_url": self.base_url,
}
def _call_api(self, prompt: str, params: Dict[str, Any]) -> requests.Response:
"""Call Cloudflare Workers API"""
headers = {"Authorization": f"Bearer {self.api_token}"}
data = {"prompt": prompt, "stream": self.streaming, **params}
response = requests.post(self.endpoint_url, headers=headers, json=data)
return response
def _process_response(self, response: requests.Response) -> str:
"""Process API response"""
if response.ok:
data = response.json()
return data["result"]["response"]
else:
raise ValueError(f"Request failed with status {response.status_code}")
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Streaming prediction"""
original_steaming: bool = self.streaming
self.streaming = True
_response_prefix_count = len("data: ")
_response_stream_end = b"data: [DONE]"
for chunk in self._call_api(prompt, kwargs).iter_lines():
if chunk == _response_stream_end:
break
if len(chunk) > _response_prefix_count:
try:
data = json.loads(chunk[_response_prefix_count:])
except Exception as e:
logger.debug(chunk)
raise e
if data is not None and "response" in data:
yield GenerationChunk(text=data["response"])
if run_manager:
run_manager.on_llm_new_token(data["response"])
logger.debug("stream end")
self.streaming = original_steaming
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Regular prediction"""
if self.streaming:
return "".join(
[c.text for c in self._stream(prompt, stop, run_manager, **kwargs)]
)
else:
response = self._call_api(prompt, kwargs)
return self._process_response(response)

View File

@@ -0,0 +1,106 @@
"""**Retriever** class returns Documents given a text **query**.
It is more general than a vector store. A retriever does not need to be able to
store documents, only to return (or retrieve) it. Vector stores can be used as
the backbone of a retriever, but there are other types of retrievers as well.
**Class hierarchy:**
.. code-block::
BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever
**Main helpers:**
.. code-block::
Document, Serializable, Callbacks,
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun
"""
from langchain_community.retrievers.arcee import ArceeRetriever
from langchain_community.retrievers.arxiv import ArxivRetriever
from langchain_community.retrievers.azure_cognitive_search import (
AzureCognitiveSearchRetriever,
)
from langchain_community.retrievers.bedrock import AmazonKnowledgeBasesRetriever
from langchain_community.retrievers.bm25 import BM25Retriever
from langchain_community.retrievers.chaindesk import ChaindeskRetriever
from langchain_community.retrievers.chatgpt_plugin_retriever import (
ChatGPTPluginRetriever,
)
from langchain_community.retrievers.cohere_rag_retriever import CohereRagRetriever
from langchain_community.retrievers.docarray import DocArrayRetriever
from langchain_community.retrievers.elastic_search_bm25 import (
ElasticSearchBM25Retriever,
)
from langchain_community.retrievers.embedchain import EmbedchainRetriever
from langchain_community.retrievers.google_cloud_documentai_warehouse import (
GoogleDocumentAIWarehouseRetriever,
)
from langchain_community.retrievers.google_vertex_ai_search import (
GoogleCloudEnterpriseSearchRetriever,
GoogleVertexAIMultiTurnSearchRetriever,
GoogleVertexAISearchRetriever,
)
from langchain_community.retrievers.kay import KayAiRetriever
from langchain_community.retrievers.kendra import AmazonKendraRetriever
from langchain_community.retrievers.knn import KNNRetriever
from langchain_community.retrievers.llama_index import (
LlamaIndexGraphRetriever,
LlamaIndexRetriever,
)
from langchain_community.retrievers.metal import MetalRetriever
from langchain_community.retrievers.milvus import MilvusRetriever
from langchain_community.retrievers.outline import OutlineRetriever
from langchain_community.retrievers.pinecone_hybrid_search import (
PineconeHybridSearchRetriever,
)
from langchain_community.retrievers.pubmed import PubMedRetriever
from langchain_community.retrievers.remote_retriever import RemoteLangChainRetriever
from langchain_community.retrievers.svm import SVMRetriever
from langchain_community.retrievers.tavily_search_api import TavilySearchAPIRetriever
from langchain_community.retrievers.tfidf import TFIDFRetriever
from langchain_community.retrievers.weaviate_hybrid_search import (
WeaviateHybridSearchRetriever,
)
from langchain_community.retrievers.wikipedia import WikipediaRetriever
from langchain_community.retrievers.zep import ZepRetriever
from langchain_community.retrievers.zilliz import ZillizRetriever
__all__ = [
"AmazonKendraRetriever",
"AmazonKnowledgeBasesRetriever",
"ArceeRetriever",
"ArxivRetriever",
"AzureCognitiveSearchRetriever",
"ChatGPTPluginRetriever",
"ChaindeskRetriever",
"CohereRagRetriever",
"ElasticSearchBM25Retriever",
"EmbedchainRetriever",
"GoogleDocumentAIWarehouseRetriever",
"GoogleCloudEnterpriseSearchRetriever",
"GoogleVertexAIMultiTurnSearchRetriever",
"GoogleVertexAISearchRetriever",
"KayAiRetriever",
"KNNRetriever",
"LlamaIndexGraphRetriever",
"LlamaIndexRetriever",
"MetalRetriever",
"MilvusRetriever",
"OutlineRetriever",
"PineconeHybridSearchRetriever",
"PubMedRetriever",
"RemoteLangChainRetriever",
"SVMRetriever",
"TavilySearchAPIRetriever",
"TFIDFRetriever",
"BM25Retriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"WikipediaRetriever",
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
]

View File

@@ -0,0 +1,19 @@
"""Implementations of key-value stores and storage helpers.
Module provides implementations of various key-value stores that conform
to a simple key-value interface.
The primary goal of these storages is to support implementation of caching.
"""
from langchain_community.storage.redis import RedisStore
from langchain_community.storage.upstash_redis import (
UpstashRedisByteStore,
UpstashRedisStore,
)
__all__ = [
"RedisStore",
"UpstashRedisByteStore",
"UpstashRedisStore",
]

View File

@@ -0,0 +1,50 @@
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_community.chat_models import ChatOpenAI
from langchain_community.tools.amadeus.base import AmadeusBaseTool
class ClosestAirportSchema(BaseModel):
"""Schema for the AmadeusClosestAirport tool."""
location: str = Field(
description=(
" The location for which you would like to find the nearest airport "
" along with optional details such as country, state, region, or "
" province, allowing for easy processing and identification of "
" the closest airport. Examples of the format are the following:\n"
" Cali, Colombia\n "
" Lincoln, Nebraska, United States\n"
" New York, United States\n"
" Sydney, New South Wales, Australia\n"
" Rome, Lazio, Italy\n"
" Toronto, Ontario, Canada\n"
)
)
class AmadeusClosestAirport(AmadeusBaseTool):
"""Tool for finding the closest airport to a particular location."""
name: str = "closest_airport"
description: str = (
"Use this tool to find the closest airport to a particular location."
)
args_schema: Type[ClosestAirportSchema] = ClosestAirportSchema
def _run(
self,
location: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
content = (
f" What is the nearest airport to {location}? Please respond with the "
" airport's International Air Transport Association (IATA) Location "
' Identifier in the following JSON format. JSON: "iataCode": "IATA '
' Location Identifier" '
)
return ChatOpenAI(temperature=0).predict(content)

View File

@@ -0,0 +1,42 @@
"""
This tool allows agents to interact with the clickup library
and operate on a Clickup instance.
To use this tool, you must first set as environment variables:
client_secret
client_id
code
Below is a sample script that uses the Clickup tool:
```python
from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit
from langchain_community.utilities.clickup import ClickupAPIWrapper
clickup = ClickupAPIWrapper()
toolkit = ClickupToolkit.from_clickup_api_wrapper(clickup)
```
"""
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.clickup import ClickupAPIWrapper
class ClickupAction(BaseTool):
"""Tool that queries the Clickup API."""
api_wrapper: ClickupAPIWrapper = Field(default_factory=ClickupAPIWrapper)
mode: str
name: str = ""
description: str = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Clickup API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)

View File

@@ -0,0 +1,44 @@
"""
This tool allows agents to interact with the atlassian-python-api library
and operate on a Jira instance. For more information on the
atlassian-python-api library, see https://atlassian-python-api.readthedocs.io/jira.html
To use this tool, you must first set as environment variables:
JIRA_API_TOKEN
JIRA_USERNAME
JIRA_INSTANCE_URL
Below is a sample script that uses the Jira tool:
```python
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.utilities.jira import JiraAPIWrapper
jira = JiraAPIWrapper()
toolkit = JiraToolkit.from_jira_api_wrapper(jira)
```
"""
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.jira import JiraAPIWrapper
class JiraAction(BaseTool):
"""Tool that queries the Atlassian Jira API."""
api_wrapper: JiraAPIWrapper = Field(default_factory=JiraAPIWrapper)
mode: str
name: str = ""
description: str = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Atlassian Jira API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)

View File

@@ -0,0 +1,276 @@
"""Tools for interacting with a Power BI dataset."""
import logging
from time import perf_counter
from typing import Any, Dict, Optional, Tuple
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import Field, validator
from langchain_core.tools import BaseTool
from langchain_community.chat_models.openai import _import_tiktoken
from langchain_community.tools.powerbi.prompt import (
BAD_REQUEST_RESPONSE,
DEFAULT_FEWSHOT_EXAMPLES,
RETRY_RESPONSE,
)
from langchain_community.utilities.powerbi import PowerBIDataset, json_to_md
logger = logging.getLogger(__name__)
class QueryPowerBITool(BaseTool):
"""Tool for querying a Power BI Dataset."""
name: str = "query_powerbi"
description: str = """
Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.
Example Input: "How many rows are in table1?"
""" # noqa: E501
llm_chain: Any
powerbi: PowerBIDataset = Field(exclude=True)
examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES
session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True)
max_iterations: int = 5
output_token_limit: int = 4000
tiktoken_model_name: Optional[str] = None # "cl100k_base"
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@validator("llm_chain")
def validate_llm_chain_input_variables( # pylint: disable=E0213
cls, llm_chain: Any
) -> Any:
"""Make sure the LLM chain has the correct input variables."""
for var in llm_chain.prompt.input_variables:
if var not in ["tool_input", "tables", "schemas", "examples"]:
raise ValueError(
"LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301
llm_chain.prompt.input_variables,
)
return llm_chain
def _check_cache(self, tool_input: str) -> Optional[str]:
"""Check if the input is present in the cache.
If the value is a bad request, overwrite with the escalated version,
if not present return None."""
if tool_input not in self.session_cache:
return None
return self.session_cache[tool_input]
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = self.llm_chain.predict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
callbacks=run_manager.get_child() if run_manager else None,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query:\n%s", query)
start_time = perf_counter()
pbi_result = self.powerbi.run(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and "TokenExpired" in error:
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try reauthenticate."
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return self._run(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return f"{cache}, from cache, you have already asked this question."
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = await self.llm_chain.apredict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
callbacks=run_manager.get_child() if run_manager else None,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query: %s", query)
start_time = perf_counter()
pbi_result = await self.powerbi.arun(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and ("TokenExpired" in error or "TokenError" in error):
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try to reauthenticate or check the scope of the credential." # noqa: E501
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return await self._arun(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
def _parse_output(
self, pbi_result: Dict[str, Any]
) -> Tuple[Optional[str], Optional[Any]]:
"""Parse the output of the query to a markdown table."""
if "results" in pbi_result:
rows = pbi_result["results"][0]["tables"][0]["rows"]
if len(rows) == 0:
logger.info("0 records in result, query was valid.")
return (
None,
"0 rows returned, this might be correct, but please validate if all filter values were correct?", # noqa: E501
)
result = json_to_md(rows)
too_long, length = self._result_too_large(result)
if too_long:
return (
f"Result too large, please try to be more specific or use the `TOPN` function. The result is {length} tokens long, the limit is {self.output_token_limit} tokens.", # noqa: E501
None,
)
return result, None
if "error" in pbi_result:
if (
"pbi.error" in pbi_result["error"]
and "details" in pbi_result["error"]["pbi.error"]
):
return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"]
return None, pbi_result["error"]
return None, pbi_result
def _result_too_large(self, result: str) -> Tuple[bool, int]:
"""Tokenize the output of the query."""
if self.tiktoken_model_name:
tiktoken_ = _import_tiktoken()
encoding = tiktoken_.encoding_for_model(self.tiktoken_model_name)
length = len(encoding.encode(result))
logger.info("Result length: %s", length)
return length > self.output_token_limit, length
return False, 0
class InfoPowerBITool(BaseTool):
"""Tool for getting metadata about a PowerBI Dataset."""
name: str = "schema_powerbi"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_powerbi first!
Example Input: "table1, table2, table3"
""" # noqa: E501
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.powerbi.get_table_info(tool_input.split(", "))
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.powerbi.aget_table_info(tool_input.split(", "))
class ListPowerBITool(BaseTool):
"""Tool for getting tables names."""
name: str = "list_tables_powerbi"
description: str = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())

View File

@@ -0,0 +1,130 @@
# flake8: noqa
"""Tools for interacting with Spark SQL."""
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.utilities.spark_sql import SparkSQL
from langchain_core.tools import BaseTool
from langchain_community.tools.spark_sql.prompt import QUERY_CHECKER
class BaseSparkSQLTool(BaseModel):
"""Base tool for interacting with Spark SQL."""
db: SparkSQL = Field(exclude=True)
class Config(BaseTool.Config):
pass
class QuerySparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for querying a Spark SQL."""
name: str = "query_sql_db"
description: str = """
Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
class InfoSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting metadata about a Spark SQL."""
name: str = "schema_sql_db"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_sql_db first!
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(table_names.split(", "))
class ListSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting tables names."""
name: str = "list_tables_sql_db"
description: str = "Input is an empty string, output is a comma separated list of tables in the Spark SQL."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
class QueryCheckerTool(BaseSparkSQLTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: Any = Field(init=False)
name: str = "query_checker_sql_db"
description: str = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
from langchain.chains.llm import LLMChain
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query"]
),
)
if values["llm_chain"].prompt.input_variables != ["query"]:
raise ValueError(
"LLM chain for QueryCheckerTool need to use ['query'] as input_variables "
"for the embedded prompt"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(
query=query, callbacks=run_manager.get_child() if run_manager else None
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(
query=query, callbacks=run_manager.get_child() if run_manager else None
)

View File

@@ -0,0 +1,134 @@
# flake8: noqa
"""Tools for interacting with a SQL database."""
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_core.tools import BaseTool
from langchain_community.tools.sql_database.prompt import QUERY_CHECKER
class BaseSQLDatabaseTool(BaseModel):
"""Base tool for interacting with a SQL database."""
db: SQLDatabase = Field(exclude=True)
class Config(BaseTool.Config):
pass
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for querying a SQL database."""
name: str = "sql_db_query"
description: str = """
Input to this tool is a detailed and correct SQL query, output is a result from the database.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting metadata about a SQL database."""
name: str = "sql_db_schema"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(
[t.strip() for t in table_names.split(",")]
)
class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting tables names."""
name: str = "sql_db_list_tables"
description: str = "Input is an empty string, output is a comma separated list of tables in the database."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
class QuerySQLCheckerTool(BaseSQLDatabaseTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: Any = Field(init=False)
name: str = "sql_db_query_checker"
description: str = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with sql_db_query!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
from langchain.chains.llm import LLMChain
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["dialect", "query"]
),
)
if values["llm_chain"].prompt.input_variables != ["dialect", "query"]:
raise ValueError(
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(
query=query,
dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None,
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(
query=query,
dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None,
)

View File

@@ -0,0 +1,215 @@
"""[DEPRECATED]
## Zapier Natural Language Actions API
\
Full docs here: https://nla.zapier.com/start/
**Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions
on Zapier's platform through a natural language API interface.
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets,
Microsoft Teams, and thousands more apps: https://zapier.com/apps
Zapier NLA handles ALL the underlying API auth and translation from
natural language --> underlying API call --> return simplified output for LLMs
The key idea is you, or your users, expose a set of actions via an oauth-like setup
window, which you can then query and execute via a REST API.
NLA offers both API Key and OAuth for signing NLA API requests.
1. Server-side (API Key): for quickly getting started, testing, and production scenarios
where LangChain will only use actions exposed in the developer's Zapier account
(and will use the developer's connected accounts on Zapier.com)
2. User-facing (Oauth): for production scenarios where you are deploying an end-user
facing application and LangChain needs access to end-user's exposed actions and
connected accounts on Zapier.com
This quick start will focus on the server-side use case for brevity.
Review [full docs](https://nla.zapier.com/start/) for user-facing oauth developer
support.
Typically, you'd use SequentialChain, here's a basic example:
1. Use NLA to find an email in Gmail
2. Use LLMChain to generate a draft reply to (1)
3. Use NLA to send the draft reply (2) to someone in Slack via direct message
In code, below:
```python
import os
# get from https://platform.openai.com/
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
# get from https://nla.zapier.com/docs/authentication/
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
from langchain_community.agent_toolkits import ZapierToolkit
from langchain_community.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send channel message' actions
# first go here, log in, expose (enable) the two actions:
# https://nla.zapier.com/demo/start
# -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo')
# which you route your users through first
zapier = ZapierNLAWrapper()
## To leverage OAuth you may pass the value `nla_oauth_access_token` to
## the ZapierNLAWrapper. If you do this there is no need to initialize
## the ZAPIER_NLA_API_KEY env variable
# zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE")
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
```
"""
from typing import Any, Dict, Optional
from langchain_core._api import warn_deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.tools import BaseTool
from langchain_community.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT
from langchain_community.utilities.zapier import ZapierNLAWrapper
class ZapierNLARunAction(BaseTool):
"""
Args:
action_id: a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions: a natural language instruction string for using the action
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
params: a dict, optional. Any params provided will *override* AI guesses
from `instructions` (see "understanding the AI guessing flow" here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
"""
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
action_id: str
params: Optional[dict] = None
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
zapier_description: str
params_schema: Dict[str, str] = Field(default_factory=dict)
name: str = ""
description: str = ""
@root_validator
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
zapier_description = values["zapier_description"]
params_schema = values["params_schema"]
if "instructions" in params_schema:
del params_schema["instructions"]
# Ensure base prompt (if overridden) contains necessary input fields
necessary_fields = {"{zapier_description}", "{params}"}
if not all(field in values["base_prompt"] for field in necessary_fields):
raise ValueError(
"Your custom base Zapier prompt must contain input fields for "
"{zapier_description} and {params}."
)
values["name"] = zapier_description
values["description"] = values["base_prompt"].format(
zapier_description=zapier_description,
params=str(list(params_schema.keys())),
)
return values
def _run(
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
async def _arun(
self,
instructions: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return await self.api_wrapper.arun_as_str(
self.action_id,
instructions,
self.params,
)
ZapierNLARunAction.__doc__ = (
ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore
)
# other useful actions
class ZapierNLAListActions(BaseTool):
"""
Args:
None
"""
name: str = "ZapierNLA_list_actions"
description: str = BASE_ZAPIER_TOOL_PROMPT + (
"This tool returns a list of the user's exposed actions."
)
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
def _run(
self,
_: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return self.api_wrapper.list_as_str()
async def _arun(
self,
_: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return await self.api_wrapper.alist_as_str()
ZapierNLAListActions.__doc__ = (
ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore
)

View File

@@ -2,22 +2,13 @@
import asyncio
import os
import pytest
from aiohttp import ClientSession
from langchain_core.callbacks.manager import atrace_as_chain_group, trace_as_chain_group
from langchain_core.tracers.context import tracing_v2_enabled, tracing_enabled
from langchain_core.prompts import PromptTemplate
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import tracing_enabled
from langchain.callbacks.manager import (
atrace_as_chain_group,
trace_as_chain_group,
tracing_v2_enabled,
)
from langchain.chains import LLMChain
from langchain.chains.constitutional_ai.base import ConstitutionalChain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOpenAI
from langchain_community.llms import OpenAI
questions = [
(
@@ -41,6 +32,7 @@ questions = [
def test_tracing_sequential() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
for q in questions[:3]:
@@ -53,6 +45,7 @@ def test_tracing_sequential() -> None:
def test_tracing_session_env_var() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
os.environ["LANGCHAIN_SESSION"] = "my_session"
@@ -66,8 +59,8 @@ def test_tracing_session_env_var() -> None:
del os.environ["LANGCHAIN_SESSION"]
@pytest.mark.asyncio
async def test_tracing_concurrent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
@@ -80,8 +73,8 @@ async def test_tracing_concurrent() -> None:
await aiosession.close()
@pytest.mark.asyncio
async def test_tracing_concurrent_bw_compat_environ() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_HANDLER"] = "langchain"
if "LANGCHAIN_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
@@ -99,6 +92,7 @@ async def test_tracing_concurrent_bw_compat_environ() -> None:
def test_tracing_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
@@ -113,8 +107,8 @@ def test_tracing_context_manager() -> None:
agent.run(questions[0]) # this should not be traced
@pytest.mark.asyncio
async def test_tracing_context_manager_async() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
@@ -133,8 +127,8 @@ async def test_tracing_context_manager_async() -> None:
await task
@pytest.mark.asyncio
async def test_tracing_v2_environment_variable() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
aiosession = ClientSession()
@@ -149,6 +143,7 @@ async def test_tracing_v2_environment_variable() -> None:
def test_tracing_v2_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = ChatOpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
@@ -163,6 +158,9 @@ def test_tracing_v2_context_manager() -> None:
def test_tracing_v2_chain_with_tags() -> None:
from langchain.chains.llm import LLMChain
from langchain.chains.constitutional_ai.base import ConstitutionalChain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
llm = OpenAI(temperature=0)
chain = ConstitutionalChain.from_llm(
llm,
@@ -182,6 +180,7 @@ def test_tracing_v2_chain_with_tags() -> None:
def test_tracing_v2_agent_with_metadata() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0)
chat = ChatOpenAI(temperature=0)
@@ -196,8 +195,8 @@ def test_tracing_v2_agent_with_metadata() -> None:
chat_agent.run(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"})
@pytest.mark.asyncio
async def test_tracing_v2_async_agent_with_metadata() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0, metadata={"f": "g", "h": "i"})
chat = ChatOpenAI(temperature=0, metadata={"f": "g", "h": "i"})
@@ -216,6 +215,7 @@ async def test_tracing_v2_async_agent_with_metadata() -> None:
def test_trace_as_group() -> None:
from langchain.chains.llm import LLMChain
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
@@ -234,6 +234,7 @@ def test_trace_as_group() -> None:
def test_trace_as_group_with_env_set() -> None:
from langchain.chains.llm import LLMChain
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
@@ -256,8 +257,8 @@ def test_trace_as_group_with_env_set() -> None:
group_manager.on_chain_end({"output": final_res})
@pytest.mark.asyncio
async def test_trace_as_group_async() -> None:
from langchain.chains.llm import LLMChain
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],

View File

@@ -1,14 +1,11 @@
"""Integration tests for the langchain tracer module."""
import asyncio
import pytest
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
from langchain_community.callbacks import get_openai_callback
from langchain_community.llms import OpenAI
@pytest.mark.asyncio
async def test_openai_callback() -> None:
llm = OpenAI(temperature=0)
with get_openai_callback() as cb:
@@ -54,6 +51,7 @@ def test_openai_callback_batch_llm() -> None:
def test_openai_callback_agent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(

View File

@@ -2,19 +2,18 @@
import pytest
from langchain.agents import AgentType, initialize_agent, load_tools
# Import the internal StreamlitCallbackHandler from its module - and not from
# the `langchain.callbacks.streamlit` package - so that we don't end up using
# the `langchain_community.callbacks.streamlit` package - so that we don't end up using
# Streamlit's externally-provided callback handler.
from langchain.callbacks.streamlit.streamlit_callback_handler import (
from langchain_community.callbacks.streamlit.streamlit_callback_handler import (
StreamlitCallbackHandler,
)
from langchain.llms import OpenAI
from langchain_community.llms import OpenAI
@pytest.mark.requires("streamlit")
def test_streamlit_callback_agent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
import streamlit as st
streamlit_callback = StreamlitCallbackHandler(st.container())

View File

@@ -2,12 +2,10 @@
import asyncio
import os
import pytest
from aiohttp import ClientSession
from langchain_community.callbacks import wandb_tracing_enabled
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks.manager import wandb_tracing_enabled
from langchain.llms import OpenAI
from langchain_community.llms import OpenAI
questions = [
(
@@ -31,6 +29,7 @@ questions = [
def test_tracing_sequential() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"
@@ -47,6 +46,7 @@ def test_tracing_sequential() -> None:
def test_tracing_session_env_var() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
llm = OpenAI(temperature=0)
@@ -60,8 +60,8 @@ def test_tracing_session_env_var() -> None:
agent.run(questions[0])
@pytest.mark.asyncio
async def test_tracing_concurrent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
@@ -79,6 +79,7 @@ async def test_tracing_concurrent() -> None:
def test_tracing_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
@@ -95,8 +96,8 @@ def test_tracing_context_manager() -> None:
agent.run(questions[0]) # this should not be traced
@pytest.mark.asyncio
async def test_tracing_context_manager_async() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
async_tools = load_tools(
["llm-math", "serpapi"],

View File

@@ -1,24 +1,18 @@
"""Test ChatOpenAI wrapper."""
from typing import Any, List, Optional, Union
from typing import Any, Optional
import pytest
from langchain.callbacks.base import AsyncCallbackHandler
from langchain.callbacks.manager import CallbackManager
from langchain.chains.openai_functions import (
create_openai_fn_chain,
)
from langchain.chat_models.openai import ChatOpenAI
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.pydantic_v1 import BaseModel, Field
from langchain.schema import (
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
from langchain_core.outputs import (
ChatGeneration,
ChatResult,
LLMResult,
)
from langchain.schema.messages import BaseMessage, HumanMessage, SystemMessage
from langchain.schema.output import ChatGenerationChunk, GenerationChunk
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_community.chat_models.openai import ChatOpenAI
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
@@ -71,7 +65,6 @@ def test_chat_openai_generate() -> None:
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert "system_fingerprint" in response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
@@ -169,7 +162,6 @@ def test_chat_openai_invalid_streaming_params() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = ChatOpenAI(max_tokens=10, n=2)
@@ -178,7 +170,6 @@ async def test_async_chat_openai() -> None:
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert "system_fingerprint" in response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
@@ -188,7 +179,6 @@ async def test_async_chat_openai() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
@@ -213,110 +203,8 @@ async def test_async_chat_openai_streaming() -> None:
assert generation.text == generation.message.content
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_async_chat_openai_streaming_with_function() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
class MyCustomAsyncHandler(AsyncCallbackHandler):
def __init__(self) -> None:
super().__init__()
self._captured_tokens: List[str] = []
self._captured_chunks: List[
Optional[Union[ChatGenerationChunk, GenerationChunk]]
] = []
def on_llm_new_token(
self,
token: str,
*,
chunk: Optional[Union[ChatGenerationChunk, GenerationChunk]] = None,
**kwargs: Any,
) -> Any:
self._captured_tokens.append(token)
self._captured_chunks.append(chunk)
json_schema = {
"title": "Person",
"description": "Identifying information about a person.",
"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The person's name",
"type": "string",
},
"age": {
"title": "Age",
"description": "The person's age",
"type": "integer",
},
"fav_food": {
"title": "Fav Food",
"description": "The person's favorite food",
"type": "string",
},
},
"required": ["name", "age"],
}
callback_handler = MyCustomAsyncHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
n=1,
callback_manager=callback_manager,
streaming=True,
)
prompt_msgs = [
SystemMessage(
content="You are a world class algorithm for "
"extracting information in structured formats."
),
HumanMessage(
content="Use the given format to extract "
"information from the following input:"
),
HumanMessagePromptTemplate.from_template("{input}"),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
function: Any = {
"name": "output_formatter",
"description": (
"Output formatter. Should always be used to format your response to the"
" user."
),
"parameters": json_schema,
}
chain = create_openai_fn_chain(
[function],
chat,
prompt,
output_parser=None,
)
message = HumanMessage(content="Sally is 13 years old")
response = await chain.agenerate([{"input": message}])
assert isinstance(response, LLMResult)
assert len(response.generations) == 1
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
assert len(callback_handler._captured_tokens) > 0
assert len(callback_handler._captured_chunks) > 0
assert all([chunk is not None for chunk in callback_handler._captured_chunks])
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_async_chat_openai_bind_functions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
@@ -342,7 +230,7 @@ async def test_async_chat_openai_bind_functions() -> None:
]
)
chain = prompt | chat | JsonOutputFunctionsParser(args_only=True)
chain = prompt | chat
message = HumanMessage(content="Sally is 13 years old")
response = await chain.abatch([{"input": message}])
@@ -350,9 +238,7 @@ async def test_async_chat_openai_bind_functions() -> None:
assert isinstance(response, list)
assert len(response) == 1
for generation in response:
assert isinstance(generation, dict)
assert "name" in generation
assert "age" in generation
assert isinstance(generation, AIMessage)
def test_chat_openai_extra_kwargs() -> None:
@@ -389,7 +275,6 @@ def test_openai_streaming() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=10)
@@ -399,7 +284,6 @@ async def test_openai_astream() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_openai_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
@@ -410,7 +294,6 @@ async def test_openai_abatch() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_openai_abatch_tags() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
@@ -433,7 +316,6 @@ def test_openai_batch() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_openai_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)

View File

@@ -2,20 +2,17 @@
from typing import Any
from langchain.callbacks.manager import CallbackManager
from langchain.chains.openai_functions import (
create_openai_fn_chain,
)
from langchain.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import (
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatGeneration,
FunctionMessage,
HumanMessage,
LLMResult,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
_FUNCTIONS: Any = [
@@ -185,18 +182,12 @@ def test_functions_call_thoughts() -> None:
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
chain = create_openai_fn_chain(
_FUNCTIONS,
chat,
prompt,
output_parser=None,
)
chain = prompt | chat.bind(functions=_FUNCTIONS)
message = HumanMessage(content="What's the temperature in Shanghai today?")
response = chain.generate([{"input": message}])
assert isinstance(response.generations[0][0], ChatGeneration)
assert isinstance(response.generations[0][0].message, AIMessage)
assert "function_call" in response.generations[0][0].message.additional_kwargs
response = chain.batch([{"input": message}])
assert isinstance(response[0], AIMessage)
assert "function_call" in response[0].additional_kwargs
def test_functions_call() -> None:
@@ -223,11 +214,6 @@ def test_functions_call() -> None:
),
]
)
llm_chain = create_openai_fn_chain(
_FUNCTIONS,
chat,
prompt,
output_parser=None,
)
resp = llm_chain.generate([{}])
assert isinstance(resp, LLMResult)
chain = prompt | chat.bind(functions=_FUNCTIONS)
resp = chain.invoke({})
assert isinstance(resp, AIMessage)

View File

@@ -2,10 +2,9 @@ from pathlib import Path
import pytest
from langchain.document_loaders.concurrent import ConcurrentLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import LanguageParser
from langchain.text_splitter import Language
from langchain_community.document_loaders.concurrent import ConcurrentLoader
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import LanguageParser
def test_language_loader_for_python() -> None:
@@ -55,7 +54,7 @@ def test_language_loader_for_python_with_parser_threshold() -> None:
loader = GenericLoader.from_filesystem(
file_path,
glob="hello_world.py",
parser=LanguageParser(language=Language.PYTHON, parser_threshold=1000),
parser=LanguageParser(language="python", parser_threshold=1000),
)
docs = loader.load()
@@ -127,7 +126,7 @@ def test_language_loader_for_javascript_with_parser_threshold() -> None:
loader = GenericLoader.from_filesystem(
file_path,
glob="hello_world.js",
parser=LanguageParser(language=Language.JS, parser_threshold=1000),
parser=LanguageParser(language="js", parser_threshold=1000),
)
docs = loader.load()
@@ -140,7 +139,7 @@ def test_concurrent_language_loader_for_javascript_with_parser_threshold() -> No
loader = ConcurrentLoader.from_filesystem(
file_path,
glob="hello_world.js",
parser=LanguageParser(language=Language.JS, parser_threshold=1000),
parser=LanguageParser(language="js", parser_threshold=1000),
)
docs = loader.load()
@@ -153,7 +152,7 @@ def test_concurrent_language_loader_for_python_with_parser_threshold() -> None:
loader = ConcurrentLoader.from_filesystem(
file_path,
glob="hello_world.py",
parser=LanguageParser(language=Language.PYTHON, parser_threshold=1000),
parser=LanguageParser(language="python", parser_threshold=1000),
)
docs = loader.load()

View File

@@ -0,0 +1,136 @@
"""Test Fireworks AI API Wrapper."""
from typing import Generator
import pytest
from langchain_core.outputs import LLMResult
from langchain_community.llms.fireworks import Fireworks
@pytest.fixture
def llm() -> Fireworks:
return Fireworks(model_kwargs={"temperature": 0, "max_tokens": 512})
@pytest.mark.scheduled
def test_fireworks_call(llm: Fireworks) -> None:
"""Test valid call to fireworks."""
output = llm("How is the weather in New York today?")
assert isinstance(output, str)
@pytest.mark.scheduled
def test_fireworks_model_param() -> None:
"""Tests model parameters for Fireworks"""
llm = Fireworks(model="foo")
assert llm.model == "foo"
@pytest.mark.scheduled
def test_fireworks_invoke(llm: Fireworks) -> None:
"""Tests completion with invoke"""
output = llm.invoke("How is the weather in New York today?", stop=[","])
assert isinstance(output, str)
assert output[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_ainvoke(llm: Fireworks) -> None:
"""Tests completion with invoke"""
output = await llm.ainvoke("How is the weather in New York today?", stop=[","])
assert isinstance(output, str)
assert output[-1] == ","
@pytest.mark.scheduled
def test_fireworks_batch(llm: Fireworks) -> None:
"""Tests completion with invoke"""
llm = Fireworks()
output = llm.batch(
[
"How is the weather in New York today?",
"How is the weather in New York today?",
],
stop=[","],
)
for token in output:
assert isinstance(token, str)
assert token[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_abatch(llm: Fireworks) -> None:
"""Tests completion with invoke"""
output = await llm.abatch(
[
"How is the weather in New York today?",
"How is the weather in New York today?",
],
stop=[","],
)
for token in output:
assert isinstance(token, str)
assert token[-1] == ","
@pytest.mark.scheduled
def test_fireworks_multiple_prompts(
llm: Fireworks,
) -> None:
"""Test completion with multiple prompts."""
output = llm.generate(["How is the weather in New York today?", "I'm pickle rick"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2
@pytest.mark.scheduled
def test_fireworks_streaming(llm: Fireworks) -> None:
"""Test stream completion."""
generator = llm.stream("Who's the best quarterback in the NFL?")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str)
@pytest.mark.scheduled
def test_fireworks_streaming_stop_words(llm: Fireworks) -> None:
"""Test stream completion with stop words."""
generator = llm.stream("Who's the best quarterback in the NFL?", stop=[","])
assert isinstance(generator, Generator)
last_token = ""
for token in generator:
last_token = token
assert isinstance(token, str)
assert last_token[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_streaming_async(llm: Fireworks) -> None:
"""Test stream completion."""
last_token = ""
async for token in llm.astream(
"Who's the best quarterback in the NFL?", stop=[","]
):
last_token = token
assert isinstance(token, str)
assert last_token[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_async_agenerate(llm: Fireworks) -> None:
"""Test async."""
output = await llm.agenerate(["What is the best city to live in California?"])
assert isinstance(output, LLMResult)
@pytest.mark.scheduled
async def test_fireworks_multiple_prompts_async_agenerate(llm: Fireworks) -> None:
output = await llm.agenerate(
["How is the weather in New York today?", "I'm pickle rick"]
)
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2

View File

@@ -1,11 +1,10 @@
import langchain.utilities.opaqueprompts as op
from langchain.chains.llm import LLMChain
from langchain.llms import OpenAI
from langchain.llms.opaqueprompts import OpaquePrompts
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel
import langchain_community.utilities.opaqueprompts as op
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_community.llms import OpenAI
from langchain_community.llms.opaqueprompts import OpaquePrompts
prompt_template = """
As an AI assistant, you will answer questions according to given context.
@@ -44,13 +43,8 @@ Question: ```{question}```
def test_opaqueprompts() -> None:
chain = LLMChain(
prompt=PromptTemplate.from_template(prompt_template),
llm=OpaquePrompts(llm=OpenAI()),
memory=ConversationBufferWindowMemory(k=2),
)
output = chain.run(
chain = PromptTemplate.from_template(prompt_template) | OpaquePrompts(llm=OpenAI())
output = chain.invoke(
{
"question": "Write a text message to remind John to do password reset \
for his website through his email to stay secure."

View File

@@ -1,7 +1,5 @@
"""Test Nebula API wrapper."""
from langchain.chains.llm import LLMChain
from langchain.llms.symblai_nebula import Nebula
from langchain.prompts.prompt import PromptTemplate
from langchain_community.llms.symblai_nebula import Nebula
def test_symblai_nebula_call() -> None:
@@ -40,8 +38,5 @@ Rhea: Thanks, bye!"""
instruction = """Identify the main objectives mentioned in this
conversation."""
prompt = PromptTemplate.from_template("{instruction}\n{conversation}")
llm_chain = LLMChain(prompt=prompt, llm=llm)
output = llm_chain.run(instruction=instruction, conversation=conversation)
output = llm.invoke(f"{instruction}\n{conversation}")
assert isinstance(output, str)

View File

@@ -1,21 +1,17 @@
"""Test Vertex AI API wrapper.
In order to run this test, you need to install VertexAI SDK (that is is the private
preview) and be whitelisted to list the models themselves:
In order to run this test, you need to install VertexAI SDK
pip install google-cloud-aiplatform>=1.35.0
In order to run this test, you need to install VertexAI SDK:
pip install google-cloud-aiplatform>=1.36.0
Your end-user credentials would be used to make the calls (make sure you've run
`gcloud auth login` first).
"""
import os
from typing import Optional
import pytest
from pytest_mock import MockerFixture
from langchain_core.outputs import LLMResult
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.llms import VertexAI, VertexAIModelGarden
from langchain.schema import LLMResult
from langchain_community.llms import VertexAI, VertexAIModelGarden
def test_vertex_initialization() -> None:
@@ -49,7 +45,6 @@ def test_vertex_generate_code() -> None:
@pytest.mark.scheduled
@pytest.mark.asyncio
async def test_vertex_agenerate() -> None:
llm = VertexAI(temperature=0)
output = await llm.agenerate(["Please say foo:"])
@@ -63,7 +58,6 @@ def test_vertex_stream() -> None:
assert isinstance(outputs[0], str)
@pytest.mark.asyncio
async def test_vertex_consistency() -> None:
llm = VertexAI(temperature=0)
output = llm.generate(["Please say foo:"])
@@ -73,75 +67,85 @@ async def test_vertex_consistency() -> None:
assert output.generations[0][0].text == async_output.generations[0][0].text
def test_model_garden() -> None:
"""In order to run this test, you should provide an endpoint name.
@pytest.mark.parametrize(
"endpoint_os_variable_name,result_arg",
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
)
def test_model_garden(
endpoint_os_variable_name: str, result_arg: Optional[str]
) -> None:
"""In order to run this test, you should provide endpoint names.
Example:
export ENDPOINT_ID=...
export FALCON_ENDPOINT_ID=...
export LLAMA_ENDPOINT_ID=...
export PROJECT=...
"""
endpoint_id = os.environ["ENDPOINT_ID"]
endpoint_id = os.environ[endpoint_os_variable_name]
project = os.environ["PROJECT"]
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
location = "europe-west4"
llm = VertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
result_arg=result_arg,
location=location,
)
output = llm("What is the meaning of life?")
assert isinstance(output, str)
assert llm._llm_type == "vertexai_model_garden"
def test_model_garden_generate() -> None:
"""In order to run this test, you should provide an endpoint name.
@pytest.mark.parametrize(
"endpoint_os_variable_name,result_arg",
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
)
def test_model_garden_generate(
endpoint_os_variable_name: str, result_arg: Optional[str]
) -> None:
"""In order to run this test, you should provide endpoint names.
Example:
export ENDPOINT_ID=...
export FALCON_ENDPOINT_ID=...
export LLAMA_ENDPOINT_ID=...
export PROJECT=...
"""
endpoint_id = os.environ["ENDPOINT_ID"]
endpoint_id = os.environ[endpoint_os_variable_name]
project = os.environ["PROJECT"]
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
location = "europe-west4"
llm = VertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
result_arg=result_arg,
location=location,
)
output = llm.generate(["What is the meaning of life?", "How much is 2+2"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 2
@pytest.mark.asyncio
async def test_model_garden_agenerate() -> None:
endpoint_id = os.environ["ENDPOINT_ID"]
@pytest.mark.parametrize(
"endpoint_os_variable_name,result_arg",
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
)
async def test_model_garden_agenerate(
endpoint_os_variable_name: str, result_arg: Optional[str]
) -> None:
endpoint_id = os.environ[endpoint_os_variable_name]
project = os.environ["PROJECT"]
llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project)
location = "europe-west4"
llm = VertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
result_arg=result_arg,
location=location,
)
output = await llm.agenerate(["What is the meaning of life?", "How much is 2+2"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 2
def test_vertex_call_trigger_count_tokens() -> None:
def test_vertex_call_count_tokens() -> None:
llm = VertexAI()
output = llm.get_num_tokens("Hi")
assert output == 2
@pytest.mark.requires("google.cloud.aiplatform")
def test_get_num_tokens_be_called_when_using_mapreduce_chain(
mocker: MockerFixture,
) -> None:
from vertexai.language_models._language_models import CountTokensResponse
m1 = mocker.patch(
"vertexai.preview.language_models._PreviewTextGenerationModel.count_tokens",
return_value=CountTokensResponse(
total_tokens=2,
total_billable_characters=2,
_count_tokens_response={"total_tokens": 2, "total_billable_characters": 2},
),
)
llm = VertexAI()
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
return_intermediate_steps=False,
)
doc = Document(page_content="Hi")
output = chain({"input_documents": [doc]})
assert isinstance(output["output_text"], str)
m1.assert_called_once()
assert llm._llm_type == "vertexai"
assert llm.model_name == llm.client._model_id
output = llm.get_num_tokens("How are you?")
assert output == 4

View File

@@ -2,12 +2,11 @@
from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain.agents.load_tools import load_tools
from langchain.schema import Document
from langchain.tools import ArxivQueryRun
from langchain.tools.base import BaseTool
from langchain.utilities import ArxivAPIWrapper
from langchain_community.tools import ArxivQueryRun
from langchain_community.utilities import ArxivAPIWrapper
@pytest.fixture
@@ -142,6 +141,7 @@ def test_load_returns_full_set_of_metadata() -> None:
def _load_arxiv_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["arxiv"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]

View File

@@ -2,12 +2,11 @@
from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain.agents.load_tools import load_tools
from langchain.schema import Document
from langchain.tools import PubmedQueryRun
from langchain.tools.base import BaseTool
from langchain.utilities import PubMedAPIWrapper
from langchain_community.tools import PubmedQueryRun
from langchain_community.utilities import PubMedAPIWrapper
xmltodict = pytest.importorskip("xmltodict")
@@ -135,6 +134,7 @@ def test_load_returns_full_set_of_metadata() -> None:
def _load_pubmed_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["pubmed"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]

View File

@@ -1,14 +1,9 @@
import os
from typing import Generator, List, Union
from typing import Union
import pytest
from vcr.request import Request
from langchain.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
from langchain.text_splitter import CharacterTextSplitter
# Those environment variables turn on Deep Lake pytest mode.
# It significantly makes tests run much faster.
# Need to run before `import deeplake`
@@ -47,35 +42,3 @@ def vcr_config() -> dict:
],
"ignore_localhost": True,
}
# Define a fixture that yields a generator object returning a list of documents
@pytest.fixture(scope="function")
def documents() -> Generator[List[Document], None, None]:
"""Return a generator that yields a list of documents."""
# Create a CharacterTextSplitter object for splitting the documents into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# Load the documents from a file located in the fixtures directory
documents = TextLoader(
os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt")
).load()
# Yield the documents split into chunks
yield text_splitter.split_documents(documents)
@pytest.fixture(scope="function")
def texts() -> Generator[List[str], None, None]:
# Load the documents from a file located in the fixtures directory
documents = TextLoader(
os.path.join(os.path.dirname(__file__), "fixtures", "sharks.txt")
).load()
yield [doc.page_content for doc in documents]
@pytest.fixture(scope="module")
def embedding_openai() -> OpenAIEmbeddings:
return OpenAIEmbeddings()

View File

@@ -0,0 +1,85 @@
"""Test CallbackManager."""
from unittest.mock import patch
import pytest
from langchain_community.callbacks import get_openai_callback
from langchain_core.callbacks.manager import trace_as_chain_group, CallbackManager
from langchain_core.outputs import LLMResult
from langchain_core.tracers.langchain import LangChainTracer, wait_for_all_tracers
from langchain_community.llms.openai import BaseOpenAI
def test_callback_manager_configure_context_vars(
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""Test callback manager configuration."""
monkeypatch.setenv("LANGCHAIN_TRACING_V2", "true")
monkeypatch.setenv("LANGCHAIN_TRACING", "false")
with patch.object(LangChainTracer, "_update_run_single"):
with patch.object(LangChainTracer, "_persist_run_single"):
with trace_as_chain_group("test") as group_manager:
assert len(group_manager.handlers) == 1
tracer = group_manager.handlers[0]
assert isinstance(tracer, LangChainTracer)
with get_openai_callback() as cb:
# This is a new empty callback handler
assert cb.successful_requests == 0
assert cb.total_tokens == 0
# configure adds this openai cb but doesn't modify the group manager
mngr = CallbackManager.configure(group_manager)
assert mngr.handlers == [tracer, cb]
assert group_manager.handlers == [tracer]
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
mngr.on_llm_start({}, ["prompt"])[0].on_llm_end(response)
# The callback handler has been updated
assert cb.successful_requests == 1
assert cb.total_tokens == 3
assert cb.prompt_tokens == 2
assert cb.completion_tokens == 1
assert cb.total_cost > 0
with get_openai_callback() as cb:
# This is a new empty callback handler
assert cb.successful_requests == 0
assert cb.total_tokens == 0
# configure adds this openai cb but doesn't modify the group manager
mngr = CallbackManager.configure(group_manager)
assert mngr.handlers == [tracer, cb]
assert group_manager.handlers == [tracer]
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
mngr.on_llm_start({}, ["prompt"])[0].on_llm_end(response)
# The callback handler has been updated
assert cb.successful_requests == 1
assert cb.total_tokens == 3
assert cb.prompt_tokens == 2
assert cb.completion_tokens == 1
assert cb.total_cost > 0
wait_for_all_tracers()
assert LangChainTracer._persist_run_single.call_count == 1 # type: ignore

View File

@@ -0,0 +1,31 @@
from langchain_community.callbacks import __all__
EXPECTED_ALL = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"LLMThoughtLabeler",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,12 +1,11 @@
import pathlib
from langchain.chat_loaders import slack, utils
from langchain_community.chat_loaders import slack, utils
def test_slack_chat_loader() -> None:
chat_path = (
pathlib.Path(__file__).parents[2]
/ "integration_tests"
/ "examples"
/ "slack_export.zip"
)

View File

@@ -0,0 +1,54 @@
"""Test Anthropic Chat API wrapper."""
from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.chat_models import BedrockChat
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "[INST] Hello [/INST]"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"[INST] Hello [/INST]\nAnswer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"<<SYS>> You're an assistant <</SYS>>\n[INST] Hello [/INST]\nAnswer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_llama(messages)
assert result == expected
def test_anthropic_bedrock() -> None:
client = MagicMock()
respbody = MagicMock(
read=MagicMock(
return_value=MagicMock(
decode=MagicMock(return_value=b'{"completion":"Hi back"}')
)
)
)
client.invoke_model.return_value = {"body": respbody}
model = BedrockChat(model_id="anthropic.claude-v2", client=client)
# should not throw an error
model.invoke("hello there")

View File

@@ -1,17 +1,25 @@
"""Tests for the various PDF parsers."""
from pathlib import Path
from typing import Iterator
import pytest
from langchain.document_loaders.base import BaseBlobParser
from langchain.document_loaders.blob_loaders import Blob
from langchain.document_loaders.parsers.pdf import (
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.pdf import (
PDFMinerParser,
PyMuPDFParser,
PyPDFium2Parser,
PyPDFParser,
)
from tests.data import HELLO_PDF, LAYOUT_PARSER_PAPER_PDF
_THIS_DIR = Path(__file__).parents[3]
_EXAMPLES_DIR = _THIS_DIR / "examples"
# Paths to test PDF files
HELLO_PDF = _EXAMPLES_DIR / "hello.pdf"
LAYOUT_PARSER_PAPER_PDF = _EXAMPLES_DIR / "layout-parser-paper.pdf"
def _assert_with_parser(parser: BaseBlobParser, splits_by_page: bool = True) -> None:

View File

@@ -0,0 +1,60 @@
from langchain_community.embeddings import __all__
EXPECTED_ALL = [
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
"ElasticsearchEmbeddings",
"FastEmbedEmbeddings",
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",
"HuggingFaceHubEmbeddings",
"MlflowAIGatewayEmbeddings",
"MlflowEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
"HuggingFaceInstructEmbeddings",
"MosaicMLInstructorEmbeddings",
"SelfHostedEmbeddings",
"SelfHostedHuggingFaceEmbeddings",
"SelfHostedHuggingFaceInstructEmbeddings",
"FakeEmbeddings",
"DeterministicFakeEmbedding",
"AlephAlphaAsymmetricSemanticEmbedding",
"AlephAlphaSymmetricSemanticEmbedding",
"SentenceTransformerEmbeddings",
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
"DeepInfraEmbeddings",
"EdenAiEmbeddings",
"DashScopeEmbeddings",
"EmbaasEmbeddings",
"OctoAIEmbeddings",
"SpacyEmbeddings",
"NLPCloudEmbeddings",
"GPT4AllEmbeddings",
"XinferenceEmbeddings",
"LocalAIEmbeddings",
"AwaEmbeddings",
"HuggingFaceBgeEmbeddings",
"ErnieEmbeddings",
"JavelinAIGatewayEmbeddings",
"OllamaEmbeddings",
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"BookendEmbeddings",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -0,0 +1,56 @@
import os
import pytest
from langchain_community.llms.openai import OpenAI
from langchain_community.utils.openai import is_openai_v1
os.environ["OPENAI_API_KEY"] = "foo"
def _openai_v1_installed() -> bool:
try:
return is_openai_v1()
except Exception as _:
return False
@pytest.mark.requires("openai")
def test_openai_model_param() -> None:
llm = OpenAI(model="foo")
assert llm.model_name == "foo"
llm = OpenAI(model_name="foo")
assert llm.model_name == "foo"
@pytest.mark.requires("openai")
def test_openai_model_kwargs() -> None:
llm = OpenAI(model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("openai")
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model_name": "foo"})
@pytest.mark.requires("openai")
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAI(foo="bar")
assert llm.model_kwargs == {"foo": "bar"}
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
"object": "text_completion",
"created": 1689989000,
"model": "text-davinci-003",
"choices": [
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
}

View File

@@ -1,15 +1,16 @@
from langchain.retrievers import __all__
from langchain_community.retrievers import __all__
EXPECTED_ALL = [
"AmazonKendraRetriever",
"AmazonKnowledgeBasesRetriever",
"ArceeRetriever",
"ArxivRetriever",
"AzureCognitiveSearchRetriever",
"ChatGPTPluginRetriever",
"ContextualCompressionRetriever",
"ChaindeskRetriever",
"CohereRagRetriever",
"ElasticSearchBM25Retriever",
"EmbedchainRetriever",
"GoogleDocumentAIWarehouseRetriever",
"GoogleCloudEnterpriseSearchRetriever",
"GoogleVertexAIMultiTurnSearchRetriever",
@@ -18,30 +19,22 @@ EXPECTED_ALL = [
"KNNRetriever",
"LlamaIndexGraphRetriever",
"LlamaIndexRetriever",
"MergerRetriever",
"MetalRetriever",
"MilvusRetriever",
"MultiQueryRetriever",
"OutlineRetriever",
"PineconeHybridSearchRetriever",
"PubMedRetriever",
"RemoteLangChainRetriever",
"SVMRetriever",
"SelfQueryRetriever",
"TavilySearchAPIRetriever",
"TFIDFRetriever",
"BM25Retriever",
"TimeWeightedVectorStoreRetriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"WikipediaRetriever",
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
"RePhraseQueryRetriever",
"WebResearchRetriever",
"EnsembleRetriever",
"ParentDocumentRetriever",
"MultiVectorRetriever",
]

View File

@@ -0,0 +1,11 @@
from langchain_community.storage import __all__
EXPECTED_ALL = [
"RedisStore",
"UpstashRedisByteStore",
"UpstashRedisStore",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,9 +1,10 @@
from typing import List, Type
import langchain.tools
from langchain.tools import _DEPRECATED_TOOLS
from langchain.tools import __all__ as tools_all
from langchain.tools.base import BaseTool, StructuredTool
from langchain_core.tools import BaseTool, StructuredTool
import langchain_community.tools
from langchain_community.tools import _DEPRECATED_TOOLS
from langchain_community.tools import __all__ as tools_all
_EXCLUDE = {
BaseTool,
@@ -17,13 +18,15 @@ def _get_tool_classes(skip_tools_without_default_names: bool) -> List[Type[BaseT
if tool_class_name in _DEPRECATED_TOOLS:
continue
# Resolve the str to the class
tool_class = getattr(langchain.tools, tool_class_name)
tool_class = getattr(langchain_community.tools, tool_class_name)
if isinstance(tool_class, type) and issubclass(tool_class, BaseTool):
if tool_class in _EXCLUDE:
continue
if skip_tools_without_default_names and tool_class.__fields__[
"name"
].default in [None, ""]:
if (
skip_tools_without_default_names
and tool_class.__fields__["name"].default # type: ignore
in [None, ""]
):
continue
results.append(tool_class)
return results

View File

@@ -0,0 +1,728 @@
"""Test FAISS functionality."""
import datetime
import math
import tempfile
import pytest
from typing import Union
from langchain_core.documents import Document
from langchain_community.docstore.base import Docstore
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores.faiss import FAISS
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
_PAGE_CONTENT = """This is a page about LangChain.
It is a really cool framework.
What isn't there to love about langchain?
Made in 2022."""
class FakeDocstore(Docstore):
"""Fake docstore for testing purposes."""
def search(self, search: str) -> Union[str, Document]:
"""Return the fake document."""
document = Document(page_content=_PAGE_CONTENT)
return document
@pytest.mark.requires("faiss")
def test_faiss() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_afrom_texts() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_vector_sim() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_by_vector(query_vec, k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_async_vector_sim() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_by_vector(query_vec, k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_vector_sim_with_score_threshold() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_by_vector(query_vec, k=2, score_threshold=0.2)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_vector_async_sim_with_score_threshold() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_by_vector(
query_vec, k=2, score_threshold=0.2
)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_similarity_search_with_score_by_vector() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_with_score_by_vector(query_vec, k=1)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
@pytest.mark.requires("faiss")
async def test_similarity_async_search_with_score_by_vector() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_with_score_by_vector(query_vec, k=1)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
@pytest.mark.requires("faiss")
def test_similarity_search_with_score_by_vector_with_score_threshold() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_with_score_by_vector(
query_vec,
k=2,
score_threshold=0.2,
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
assert output[0][1] < 0.2
@pytest.mark.requires("faiss")
async def test_sim_asearch_with_score_by_vector_with_score_threshold() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_with_score_by_vector(
query_vec,
k=2,
score_threshold=0.2,
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
assert output[0][1] < 0.2
@pytest.mark.requires("faiss")
def test_faiss_mmr() -> None:
texts = ["foo", "foo", "fou", "foy"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
query_vec = FakeEmbeddings().embed_query(text="foo")
# make sure we can have k > docstore size
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo")
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo")
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr() -> None:
texts = ["foo", "foo", "fou", "foy"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
query_vec = await FakeEmbeddings().aembed_query(text="foo")
# make sure we can have k > docstore size
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo")
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo")
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas_and_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": 1}
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo", metadata={"page": 1})
assert output[0][1] == 0.0
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas_and_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": 1}
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo", metadata={"page": 1})
assert output[0][1] == 0.0
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas_and_list_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": [0, 1, 2]}
)
assert len(output) == 3
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas_and_list_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": [0, 1, 2]}
)
assert len(output) == 3
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas_and_filter() -> None:
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1, filter={"page": 1})
assert output == [Document(page_content="bar", metadata={"page": 1})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas_and_filter() -> None:
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1, filter={"page": 1})
assert output == [Document(page_content="bar", metadata={"page": 1})]
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas_and_list_filter() -> None:
texts = ["foo", "bar", "baz", "foo", "qux"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
docsearch.index_to_docstore_id[3]: Document(
page_content="foo", metadata={"page": 3}
),
docsearch.index_to_docstore_id[4]: Document(
page_content="qux", metadata={"page": 3}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foor", k=1, filter={"page": [0, 1, 2]})
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas_and_list_filter() -> None:
texts = ["foo", "bar", "baz", "foo", "qux"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
docsearch.index_to_docstore_id[3]: Document(
page_content="foo", metadata={"page": 3}
),
docsearch.index_to_docstore_id[4]: Document(
page_content="qux", metadata={"page": 3}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foor", k=1, filter={"page": [0, 1, 2]})
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
def test_faiss_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
docsearch.similarity_search("foo")
@pytest.mark.requires("faiss")
async def test_faiss_async_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
await docsearch.asimilarity_search("foo")
@pytest.mark.requires("faiss")
def test_faiss_add_texts() -> None:
"""Test end to end adding of texts."""
# Create initial doc store.
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Test adding a similar document as before.
docsearch.add_texts(["foo"])
output = docsearch.similarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_async_add_texts() -> None:
"""Test end to end adding of texts."""
# Create initial doc store.
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
# Test adding a similar document as before.
await docsearch.aadd_texts(["foo"])
output = await docsearch.asimilarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_add_texts_not_supported() -> None:
"""Test adding of texts to a docstore that doesn't support it."""
docsearch = FAISS(FakeEmbeddings(), None, FakeDocstore(), {})
with pytest.raises(ValueError):
docsearch.add_texts(["foo"])
@pytest.mark.requires("faiss")
async def test_faiss_async_add_texts_not_supported() -> None:
"""Test adding of texts to a docstore that doesn't support it."""
docsearch = FAISS(FakeEmbeddings(), None, FakeDocstore(), {})
with pytest.raises(ValueError):
await docsearch.aadd_texts(["foo"])
@pytest.mark.requires("faiss")
def test_faiss_local_save_load() -> None:
"""Test end to end serialization."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder:
docsearch.save_local(temp_folder)
new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings())
assert new_docsearch.index is not None
@pytest.mark.requires("faiss")
async def test_faiss_async_local_save_load() -> None:
"""Test end to end serialization."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder:
docsearch.save_local(temp_folder)
new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings())
assert new_docsearch.index is not None
@pytest.mark.requires("faiss")
def test_faiss_similarity_search_with_relevance_scores() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = docsearch.similarity_search_with_relevance_scores("foo", k=1)
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
async def test_faiss_async_similarity_search_with_relevance_scores() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = await docsearch.asimilarity_search_with_relevance_scores("foo", k=1)
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
def test_faiss_similarity_search_with_relevance_scores_with_threshold() -> None:
"""Test the similarity search with normalized similarities with score threshold."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = docsearch.similarity_search_with_relevance_scores(
"foo", k=2, score_threshold=0.5
)
assert len(outputs) == 1
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
async def test_faiss_asimilarity_search_with_relevance_scores_with_threshold() -> None:
"""Test the similarity search with normalized similarities with score threshold."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = await docsearch.asimilarity_search_with_relevance_scores(
"foo", k=2, score_threshold=0.5
)
assert len(outputs) == 1
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
def test_faiss_invalid_normalize_fn() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0
)
with pytest.warns(Warning, match="scores must be between"):
docsearch.similarity_search_with_relevance_scores("foo", k=1)
@pytest.mark.requires("faiss")
async def test_faiss_async_invalid_normalize_fn() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0
)
with pytest.warns(Warning, match="scores must be between"):
await docsearch.asimilarity_search_with_relevance_scores("foo", k=1)
@pytest.mark.requires("faiss")
def test_missing_normalize_score_fn() -> None:
"""Test doesn't perform similarity search without a valid distance strategy."""
texts = ["foo", "bar", "baz"]
faiss_instance = FAISS.from_texts(texts, FakeEmbeddings(), distance_strategy="fake")
with pytest.raises(ValueError):
faiss_instance.similarity_search_with_relevance_scores("foo", k=2)
@pytest.mark.requires("faiss")
async def test_async_missing_normalize_score_fn() -> None:
"""Test doesn't perform similarity search without a valid distance strategy."""
texts = ["foo", "bar", "baz"]
faiss_instance = await FAISS.afrom_texts(
texts, FakeEmbeddings(), distance_strategy="fake"
)
with pytest.raises(ValueError):
await faiss_instance.asimilarity_search_with_relevance_scores("foo", k=2)
@pytest.mark.requires("faiss")
def test_delete() -> None:
"""Test the similarity search with normalized similarities."""
ids = ["a", "b", "c"]
docsearch = FAISS.from_texts(["foo", "bar", "baz"], FakeEmbeddings(), ids=ids)
docsearch.delete(ids[1:2])
result = docsearch.similarity_search("bar", k=2)
assert sorted([d.page_content for d in result]) == ["baz", "foo"]
assert docsearch.index_to_docstore_id == {0: ids[0], 1: ids[2]}
@pytest.mark.requires("faiss")
async def test_async_delete() -> None:
"""Test the similarity search with normalized similarities."""
ids = ["a", "b", "c"]
docsearch = await FAISS.afrom_texts(
["foo", "bar", "baz"], FakeEmbeddings(), ids=ids
)
docsearch.delete(ids[1:2])
result = await docsearch.asimilarity_search("bar", k=2)
assert sorted([d.page_content for d in result]) == ["baz", "foo"]
assert docsearch.index_to_docstore_id == {0: ids[0], 1: ids[2]}

View File

@@ -0,0 +1,13 @@
from langchain_community import vectorstores
from langchain_core.vectorstores import VectorStore
def test_all_imports() -> None:
"""Simple test to make sure all things can be imported."""
for cls in vectorstores.__all__:
if cls not in [
"AlibabaCloudOpenSearchSettings",
"ClickhouseSettings",
"MyScaleSettings",
]:
assert issubclass(getattr(vectorstores, cls), VectorStore)

View File

@@ -0,0 +1,144 @@
import importlib
import json
import os
from typing import Any, Dict, List, Optional
from langchain_core.load.mapping import SERIALIZABLE_MAPPING
from langchain_core.load.serializable import Serializable
DEFAULT_NAMESPACES = ["langchain", "langchain_core", "langchain_community"]
class Reviver:
"""Reviver for JSON objects."""
def __init__(
self,
secrets_map: Optional[Dict[str, str]] = None,
valid_namespaces: Optional[List[str]] = None,
) -> None:
self.secrets_map = secrets_map or dict()
# By default only support langchain, but user can pass in additional namespaces
self.valid_namespaces = (
[*DEFAULT_NAMESPACES, *valid_namespaces]
if valid_namespaces
else DEFAULT_NAMESPACES
)
def __call__(self, value: Dict[str, Any]) -> Any:
if (
value.get("lc", None) == 1
and value.get("type", None) == "secret"
and value.get("id", None) is not None
):
[key] = value["id"]
if key in self.secrets_map:
return self.secrets_map[key]
else:
if key in os.environ and os.environ[key]:
return os.environ[key]
raise KeyError(f'Missing key "{key}" in load(secrets_map)')
if (
value.get("lc", None) == 1
and value.get("type", None) == "not_implemented"
and value.get("id", None) is not None
):
raise NotImplementedError(
"Trying to load an object that doesn't implement "
f"serialization: {value}"
)
if (
value.get("lc", None) == 1
and value.get("type", None) == "constructor"
and value.get("id", None) is not None
):
[*namespace, name] = value["id"]
if namespace[0] not in self.valid_namespaces:
raise ValueError(f"Invalid namespace: {value}")
# The root namespace "langchain" is not a valid identifier.
if len(namespace) == 1 and namespace[0] == "langchain":
raise ValueError(f"Invalid namespace: {value}")
# Get the importable path
key = tuple(namespace + [name])
if key not in SERIALIZABLE_MAPPING:
raise ValueError(
"Trying to deserialize something that cannot "
"be deserialized in current version of langchain-core: "
f"{key}"
)
import_path = SERIALIZABLE_MAPPING[key]
# Split into module and name
import_dir, import_obj = import_path[:-1], import_path[-1]
# Import module
mod = importlib.import_module(".".join(import_dir))
# Import class
cls = getattr(mod, import_obj)
# The class must be a subclass of Serializable.
if not issubclass(cls, Serializable):
raise ValueError(f"Invalid namespace: {value}")
# We don't need to recurse on kwargs
# as json.loads will do that for us.
kwargs = value.get("kwargs", dict())
return cls(**kwargs)
return value
def loads(
text: str,
*,
secrets_map: Optional[Dict[str, str]] = None,
valid_namespaces: Optional[List[str]] = None,
) -> Any:
"""Revive a LangChain class from a JSON string.
Equivalent to `load(json.loads(text))`.
Args:
text: The string to load.
secrets_map: A map of secrets to load.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized.
Returns:
Revived LangChain objects.
"""
return json.loads(text, object_hook=Reviver(secrets_map, valid_namespaces))
def load(
obj: Any,
*,
secrets_map: Optional[Dict[str, str]] = None,
valid_namespaces: Optional[List[str]] = None,
) -> Any:
"""Revive a LangChain class from a JSON object. Use this if you already
have a parsed JSON object, eg. from `json.load` or `orjson.loads`.
Args:
obj: The object to load.
secrets_map: A map of secrets to load.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized.
Returns:
Revived LangChain objects.
"""
reviver = Reviver(secrets_map, valid_namespaces)
def _load(obj: Any) -> Any:
if isinstance(obj, dict):
# Need to revive leaf nodes before reviving this node
loaded_obj = {k: _load(v) for k, v in obj.items()}
return reviver(loaded_obj)
if isinstance(obj, list):
return [_load(o) for o in obj]
return obj
return _load(obj)

View File

@@ -0,0 +1,49 @@
"""
**Utility functions** for LangChain.
These functions do not depend on any other LangChain module.
"""
from langchain_core.utils.env import get_from_dict_or_env, get_from_env
from langchain_core.utils.formatting import StrictFormatter, formatter
from langchain_core.utils.input import (
get_bolded_text,
get_color_mapping,
get_colored_text,
print_text,
)
from langchain_core.utils.loading import try_load_from_hub
from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value
from langchain_core.utils.utils import (
build_extra_kwargs,
check_package_version,
convert_to_secret_str,
get_pydantic_field_names,
guard_import,
mock_now,
raise_for_status_with_text,
xor_args,
)
__all__ = [
"StrictFormatter",
"check_package_version",
"convert_to_secret_str",
"formatter",
"get_bolded_text",
"get_color_mapping",
"get_colored_text",
"get_pydantic_field_names",
"guard_import",
"mock_now",
"print_text",
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"get_from_env",
"get_from_dict_or_env",
"stringify_dict",
"comma_list",
"stringify_value",
]

View File

@@ -0,0 +1,45 @@
from __future__ import annotations
import os
from typing import Any, Dict, Optional
def env_var_is_set(env_var: str) -> bool:
"""Check if an environment variable is set.
Args:
env_var (str): The name of the environment variable.
Returns:
bool: True if the environment variable is set, False otherwise.
"""
return env_var in os.environ and os.environ[env_var] not in (
"",
"0",
"false",
"False",
)
def get_from_dict_or_env(
data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None
) -> str:
"""Get a value from a dictionary or an environment variable."""
if key in data and data[key]:
return data[key]
else:
return get_from_env(key, env_key, default=default)
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
"""Get a value from a dictionary or an environment variable."""
if env_key in os.environ and os.environ[env_key]:
return os.environ[env_key]
elif default is not None:
return default
else:
raise ValueError(
f"Did not find {key}, please add an environment variable"
f" `{env_key}` which contains it, or pass"
f" `{key}` as a named parameter."
)

View File

@@ -0,0 +1,28 @@
from langchain_core.utils import __all__
EXPECTED_ALL = [
"StrictFormatter",
"check_package_version",
"convert_to_secret_str",
"formatter",
"get_bolded_text",
"get_color_mapping",
"get_colored_text",
"get_pydantic_field_names",
"guard_import",
"mock_now",
"print_text",
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"get_from_dict_or_env",
"get_from_env",
"stringify_dict",
"comma_list",
"stringify_value"
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -0,0 +1,83 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
from langchain_core.callbacks import StdOutCallbackHandler, StreamingStdOutCallbackHandler
from langchain_core.tracers.langchain import LangChainTracer
from langchain_core.tracers.context import (
collect_runs,
tracing_enabled,
tracing_v2_enabled,
)
from langchain_community.callbacks.aim_callback import AimCallbackHandler
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_community.callbacks.arize_callback import ArizeCallbackHandler
from langchain_community.callbacks.arthur_callback import ArthurCallbackHandler
from langchain_community.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler
from langchain_community.callbacks.context_callback import ContextCallbackHandler
from langchain.callbacks.file import FileCallbackHandler
from langchain_community.callbacks.flyte_callback import FlyteCallbackHandler
from langchain_community.callbacks.human import HumanApprovalCallbackHandler
from langchain_community.callbacks.infino_callback import InfinoCallbackHandler
from langchain_community.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_community.callbacks.mlflow_callback import MlflowCallbackHandler
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.promptlayer_callback import PromptLayerCallbackHandler
from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.callbacks.streaming_stdout_final_only import (
FinalStreamingStdOutCallbackHandler,
)
from langchain_community.callbacks.streamlit import LLMThoughtLabeler, StreamlitCallbackHandler
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
from langchain_community.callbacks.whylabs_callback import WhyLabsCallbackHandler
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
__all__ = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"FileCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"StdOutCallbackHandler",
"AsyncIteratorCallbackHandler",
"StreamingStdOutCallbackHandler",
"FinalStreamingStdOutCallbackHandler",
"LLMThoughtLabeler",
"LangChainTracer",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"tracing_enabled",
"tracing_v2_enabled",
"collect_runs",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]

View File

@@ -0,0 +1,68 @@
from __future__ import annotations
from langchain_core.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainGroup,
AsyncCallbackManagerForChainRun,
AsyncCallbackManagerForLLMRun,
AsyncCallbackManagerForRetrieverRun,
AsyncCallbackManagerForToolRun,
AsyncParentRunManager,
AsyncRunManager,
BaseRunManager,
CallbackManager,
CallbackManagerForChainGroup,
CallbackManagerForChainRun,
CallbackManagerForLLMRun,
CallbackManagerForRetrieverRun,
CallbackManagerForToolRun,
Callbacks,
ParentRunManager,
RunManager,
ahandle_event,
atrace_as_chain_group,
handle_event,
trace_as_chain_group,
)
from langchain_core.tracers.context import (
collect_runs,
tracing_enabled,
tracing_v2_enabled,
)
from langchain_core.utils.env import env_var_is_set
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
__all__ = [
"BaseRunManager",
"RunManager",
"ParentRunManager",
"AsyncRunManager",
"AsyncParentRunManager",
"CallbackManagerForLLMRun",
"AsyncCallbackManagerForLLMRun",
"CallbackManagerForChainRun",
"AsyncCallbackManagerForChainRun",
"CallbackManagerForToolRun",
"AsyncCallbackManagerForToolRun",
"CallbackManagerForRetrieverRun",
"AsyncCallbackManagerForRetrieverRun",
"CallbackManager",
"CallbackManagerForChainGroup",
"AsyncCallbackManager",
"AsyncCallbackManagerForChainGroup",
"tracing_enabled",
"tracing_v2_enabled",
"collect_runs",
"atrace_as_chain_group",
"trace_as_chain_group",
"handle_event",
"ahandle_event",
"Callbacks",
"env_var_is_set",
"get_openai_callback",
"wandb_tracing_enabled",
]

View File

@@ -0,0 +1,36 @@
from langchain.callbacks.manager import __all__
EXPECTED_ALL = [
"BaseRunManager",
"RunManager",
"ParentRunManager",
"AsyncRunManager",
"AsyncParentRunManager",
"CallbackManagerForLLMRun",
"AsyncCallbackManagerForLLMRun",
"CallbackManagerForChainRun",
"AsyncCallbackManagerForChainRun",
"CallbackManagerForToolRun",
"AsyncCallbackManagerForToolRun",
"CallbackManagerForRetrieverRun",
"AsyncCallbackManagerForRetrieverRun",
"CallbackManager",
"CallbackManagerForChainGroup",
"AsyncCallbackManager",
"AsyncCallbackManagerForChainGroup",
"tracing_enabled",
"tracing_v2_enabled",
"collect_runs",
"atrace_as_chain_group",
"trace_as_chain_group",
"handle_event",
"ahandle_event",
"env_var_is_set",
"Callbacks",
"get_openai_callback",
"wandb_tracing_enabled",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -0,0 +1,75 @@
"""Test LLM chain."""
from tempfile import TemporaryDirectory
from typing import Dict, List, Union
from unittest.mock import patch
import pytest
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from tests.unit_tests.llms.fake_llm import FakeLLM
class FakeOutputParser(BaseOutputParser):
"""Fake output parser class for testing."""
def parse(self, text: str) -> Union[str, List[str], Dict[str, str]]:
"""Parse by splitting."""
return text.split()
@pytest.fixture
def fake_llm_chain() -> LLMChain:
"""Fake LLM chain for testing purposes."""
prompt = PromptTemplate(input_variables=["bar"], template="This is a {bar}:")
return LLMChain(prompt=prompt, llm=FakeLLM(), output_key="text1")
@patch(
"langchain_community.llms.loading.get_type_to_cls_dict",
lambda: {"fake": lambda: FakeLLM},
)
def test_serialization(fake_llm_chain: LLMChain) -> None:
"""Test serialization."""
from langchain.chains.loading import load_chain
with TemporaryDirectory() as temp_dir:
file = temp_dir + "/llm.json"
fake_llm_chain.save(file)
loaded_chain = load_chain(file)
assert loaded_chain == fake_llm_chain
def test_missing_inputs(fake_llm_chain: LLMChain) -> None:
"""Test error is raised if inputs are missing."""
with pytest.raises(ValueError):
fake_llm_chain({"foo": "bar"})
def test_valid_call(fake_llm_chain: LLMChain) -> None:
"""Test valid call of LLM chain."""
output = fake_llm_chain({"bar": "baz"})
assert output == {"bar": "baz", "text1": "foo"}
# Test with stop words.
output = fake_llm_chain({"bar": "baz", "stop": ["foo"]})
# Response should be `bar` now.
assert output == {"bar": "baz", "stop": ["foo"], "text1": "bar"}
def test_predict_method(fake_llm_chain: LLMChain) -> None:
"""Test predict method works."""
output = fake_llm_chain.predict(bar="baz")
assert output == "foo"
def test_predict_and_parse() -> None:
"""Test parsing ability."""
prompt = PromptTemplate(
input_variables=["foo"], template="{foo}", output_parser=FakeOutputParser()
)
llm = FakeLLM(queries={"foo": "foo bar"})
chain = LLMChain(prompt=prompt, llm=llm)
output = chain.predict_and_parse(foo="foo")
assert output == ["foo", "bar"]

View File

@@ -0,0 +1,57 @@
import importlib
import pkgutil
from langchain_core.load.mapping import SERIALIZABLE_MAPPING
def import_all_modules(package_name: str) -> dict:
package = importlib.import_module(package_name)
classes: dict = {}
for attribute_name in dir(package):
attribute = getattr(package, attribute_name)
if hasattr(attribute, "is_lc_serializable") and isinstance(attribute, type):
if (
isinstance(attribute.is_lc_serializable(), bool) # type: ignore
and attribute.is_lc_serializable() # type: ignore
):
key = tuple(attribute.lc_id()) # type: ignore
value = tuple(attribute.__module__.split(".") + [attribute.__name__])
if key in classes and classes[key] != value:
raise ValueError
classes[key] = value
if hasattr(package, "__path__"):
for loader, module_name, is_pkg in pkgutil.walk_packages(
package.__path__, package_name + "."
):
if module_name not in (
"langchain.chains.llm_bash",
"langchain.chains.llm_symbolic_math",
"langchain.tools.python",
"langchain.vectorstores._pgvector_data_models",
# TODO: why does this error?
"langchain.agents.agent_toolkits.openapi.planner",
):
importlib.import_module(module_name)
new_classes = import_all_modules(module_name)
for k, v in new_classes.items():
if k in classes and classes[k] != v:
raise ValueError
classes[k] = v
return classes
def test_serializable_mapping() -> None:
serializable_modules = import_all_modules("langchain")
missing = set(SERIALIZABLE_MAPPING).difference(serializable_modules)
assert missing == set()
extra = set(serializable_modules).difference(SERIALIZABLE_MAPPING)
assert extra == set()
for k, import_path in serializable_modules.items():
import_dir, import_obj = import_path[:-1], import_path[-1]
# Import module
mod = importlib.import_module(".".join(import_dir))
# Import class
cls = getattr(mod, import_obj)
assert list(k) == cls.lc_id()

View File

@@ -0,0 +1,113 @@
"""A unit test meant to catch accidental introduction of non-optional dependencies."""
from pathlib import Path
from typing import Any, Dict, Mapping
import pytest
import toml
HERE = Path(__file__).parent
PYPROJECT_TOML = HERE / "../../pyproject.toml"
@pytest.fixture()
def poetry_conf() -> Dict[str, Any]:
"""Load the pyproject.toml file."""
with open(PYPROJECT_TOML) as f:
return toml.load(f)["tool"]["poetry"]
def test_required_dependencies(poetry_conf: Mapping[str, Any]) -> None:
"""A test that checks if a new non-optional dependency is being introduced.
If this test is triggered, it means that a contributor is trying to introduce a new
required dependency. This should be avoided in most situations.
"""
# Get the dependencies from the [tool.poetry.dependencies] section
dependencies = poetry_conf["dependencies"]
is_required = {
package_name: isinstance(requirements, str)
or not requirements.get("optional", False)
for package_name, requirements in dependencies.items()
}
required_dependencies = [
package_name for package_name, required in is_required.items() if required
]
assert sorted(required_dependencies) == sorted(
[
"PyYAML",
"SQLAlchemy",
"aiohttp",
"async-timeout",
"dataclasses-json",
"jsonpatch",
"langchain-core",
"langsmith",
"numpy",
"pydantic",
"python",
"requests",
"tenacity",
"langchain-community",
]
)
unrequired_dependencies = [
package_name for package_name, required in is_required.items() if not required
]
in_extras = [dep for group in poetry_conf["extras"].values() for dep in group]
assert set(unrequired_dependencies) == set(in_extras)
def test_test_group_dependencies(poetry_conf: Mapping[str, Any]) -> None:
"""Check if someone is attempting to add additional test dependencies.
Only dependencies associated with test running infrastructure should be added
to the test group; e.g., pytest, pytest-cov etc.
Examples of dependencies that should NOT be included: boto3, azure, postgres, etc.
"""
test_group_deps = sorted(poetry_conf["group"]["test"]["dependencies"])
assert test_group_deps == sorted(
[
"duckdb-engine",
"freezegun",
"langchain-core",
"lark",
"pandas",
"pytest",
"pytest-asyncio",
"pytest-cov",
"pytest-dotenv",
"pytest-mock",
"pytest-socket",
"pytest-watcher",
"responses",
"syrupy",
"requests-mock",
]
)
def test_imports() -> None:
"""Test that you can import all top level things okay."""
from langchain_core.prompts import BasePromptTemplate # noqa: F401
from langchain.agents import OpenAIFunctionsAgent # noqa: F401
from langchain.callbacks import OpenAICallbackHandler # noqa: F401
from langchain.chains import LLMChain # noqa: F401
from langchain.chat_models import ChatOpenAI # noqa: F401
from langchain.document_loaders import BSHTMLLoader # noqa: F401
from langchain.embeddings import OpenAIEmbeddings # noqa: F401
from langchain.llms import OpenAI # noqa: F401
from langchain.retrievers import VespaRetriever # noqa: F401
from langchain.tools import DuckDuckGoSearchResults # noqa: F401
from langchain.utilities import (
SearchApiAPIWrapper, # noqa: F401
SerpAPIWrapper, # noqa: F401
)
from langchain.vectorstores import FAISS # noqa: F401

View File

@@ -0,0 +1,313 @@
#!/bin/bash
cd libs
# cleanup anything existing
git checkout master -- langchain/{langchain,tests}
git checkout master -- core/{langchain_core,tests}
git checkout master -- experimental/{langchain_experimental,tests}
rm -rf community/{langchain_community,tests}
# make new dirs
mkdir -p community/langchain_community
touch community/langchain_community/__init__.py
touch community/langchain_community/py.typed
touch community/README.md
mkdir -p community/tests
touch community/tests/__init__.py
mkdir community/tests/unit_tests
touch community/tests/unit_tests/__init__.py
mkdir community/tests/integration_tests/
touch community/tests/integration_tests/__init__.py
mkdir -p community/langchain_community/utils
touch community/langchain_community/utils/__init__.py
mkdir -p community/tests/unit_tests/utils
touch community/tests/unit_tests/utils/__init__.py
mkdir -p community/langchain_community/indexes
touch community/langchain_community/indexes/__init__.py
mkdir community/tests/unit_tests/indexes
touch community/tests/unit_tests/indexes/__init__.py
# import core stuff from core
cd langchain
git grep -l 'from langchain.pydantic_v1' | xargs sed -i '' 's/from langchain.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' | xargs sed -i '' 's/from langchain.tools.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' | xargs sed -i '' 's/from langchain.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' | xargs sed -i '' 's/from langchain.llms.base/from langchain_core.language_models.llms/g'
git grep -l 'from langchain.embeddings.base' | xargs sed -i '' 's/from langchain.embeddings.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' | xargs sed -i '' 's/from langchain.vectorstores.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' | xargs sed -i '' 's/from langchain.agents.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' | xargs sed -i '' 's/from langchain.schema.output/from langchain_core.outputs/g'
git grep -l 'from langchain.schema.messages' | xargs sed -i '' 's/from langchain.schema.messages/from langchain_core.messages/g'
git grep -l 'from langchain.schema.embeddings' | xargs sed -i '' 's/from langchain.schema.embeddings/from langchain_core.embeddings/g'
# mv stuff to community
cd ..
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/indexes/base.py community/langchain_community/indexes
mv langchain/langchain/indexes/_sql_record_manager.py community/langchain_community/indexes
mv langchain/langchain/utils/{math,openai,openai_functions}.py community/langchain_community/utils
# mv stuff to core
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
# mv unit tests to community
mv langchain/tests/unit_tests/chat_loaders community/tests/unit_tests
mv langchain/tests/unit_tests/document_loaders community/tests/unit_tests
mv langchain/tests/unit_tests/docstore community/tests/unit_tests
mv langchain/tests/unit_tests/document_transformers community/tests/unit_tests
mv langchain/tests/unit_tests/embeddings community/tests/unit_tests
mv langchain/tests/unit_tests/graphs community/tests/unit_tests
mv langchain/tests/unit_tests/llms community/tests/unit_tests
mv langchain/tests/unit_tests/chat_models community/tests/unit_tests
mv langchain/tests/unit_tests/memory/chat_message_histories community/tests/unit_tests
mv langchain/tests/unit_tests/storage community/tests/unit_tests
mv langchain/tests/unit_tests/tools community/tests/unit_tests
mv langchain/tests/unit_tests/utilities community/tests/unit_tests
mv langchain/tests/unit_tests/vectorstores community/tests/unit_tests
mv langchain/tests/unit_tests/retrievers community/tests/unit_tests
mv langchain/tests/unit_tests/callbacks community/tests/unit_tests
mv langchain/tests/unit_tests/indexes/test_sql_record_manager.py community/tests/unit_tests/indexes
mv langchain/tests/unit_tests/utils/test_math.py community/tests/unit_tests/utils
# cp some test helpers back to langchain
mkdir -p langchain/tests/unit_tests/llms
cp {community,langchain}/tests/unit_tests/llms/fake_llm.py
cp {community,langchain}/tests/unit_tests/llms/fake_chat_model.py
mkdir -p langchain/tests/unit_tests/callbacks
cp {community,langchain}/tests/unit_tests/callbacks/fake_callback_handler.py
# mv unit tests to core
mv langchain/tests/unit_tests/utils/test_json_schema.py core/tests/unit_tests/utils
mv langchain/tests/unit_tests/utils/test_html.py core/tests/unit_tests/utils
# mv integration tests to community
mv langchain/tests/integration_tests/document_loaders community/tests/integration_tests
mv langchain/tests/integration_tests/embeddings community/tests/integration_tests
mv langchain/tests/integration_tests/graphs community/tests/integration_tests
mv langchain/tests/integration_tests/llms community/tests/integration_tests
mv langchain/tests/integration_tests/chat_models community/tests/integration_tests
mv langchain/tests/integration_tests/memory/chat_message_histories community/tests/integration_tests
mv langchain/tests/integration_tests/storage community/tests/integration_tests
mv langchain/tests/integration_tests/tools community/tests/integration_tests
mv langchain/tests/integration_tests/utilities community/tests/integration_tests
mv langchain/tests/integration_tests/vectorstores community/tests/integration_tests
mv langchain/tests/integration_tests/retrievers community/tests/integration_tests
mv langchain/tests/integration_tests/adapters community/tests/integration_tests
mv langchain/tests/integration_tests/callbacks community/tests/integration_tests
mv langchain/tests/integration_tests/{test_kuzu,test_nebulagraph}.py community/tests/integration_tests/graphs
touch community/tests/integration_tests/{chat_message_histories,tools}/__init__.py
# import new core stuff from core (everywhere)
git grep -l 'from langchain.utils.json_schema' | xargs sed -i '' 's/from langchain.utils.json_schema/from langchain_core.utils.json_schema/g'
git grep -l 'from langchain.utils.html' | xargs sed -i '' 's/from langchain.utils.html/from langchain_core.utils.html/g'
git grep -l 'from langchain.utils.strings' | xargs sed -i '' 's/from langchain.utils.strings/from langchain_core.utils.strings/g'
git grep -l 'from langchain.utils.env' | xargs sed -i '' 's/from langchain.utils.env/from langchain_core.utils.env/g'
git add community
cd community
# import core stuff from core
git grep -l 'from langchain.pydantic_v1' | xargs sed -i '' 's/from langchain.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.callbacks.base' | xargs sed -i '' 's/from langchain.callbacks.base/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.stdout' | xargs sed -i '' 's/from langchain.callbacks.stdout/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.streaming_stdout' | xargs sed -i '' 's/from langchain.callbacks.streaming_stdout/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.manager' | xargs sed -i '' 's/from langchain.callbacks.manager/from langchain_core.callbacks/g'
git grep -l 'from langchain.callbacks.tracers.base' | xargs sed -i '' 's/from langchain.callbacks.tracers.base/from langchain_core.tracers/g'
git grep -l 'from langchain.tools.base' | xargs sed -i '' 's/from langchain.tools.base/from langchain_core.tools/g'
git grep -l 'from langchain.agents.tools' | xargs sed -i '' 's/from langchain.agents.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' | xargs sed -i '' 's/from langchain.schema.output/from langchain_core.outputs/g'
git grep -l 'from langchain.schema.messages' | xargs sed -i '' 's/from langchain.schema.messages/from langchain_core.messages/g'
git grep -l 'from langchain.schema import BaseRetriever' | xargs sed -i '' 's/from langchain.schema\ import\ BaseRetriever/from langchain_core.retrievers import BaseRetriever/g'
git grep -l 'from langchain.schema import Document' | xargs sed -i '' 's/from langchain.schema\ import\ Document/from langchain_core.documents import Document/g'
# import openai stuff from openai
git grep -l 'from langchain.utils.math' | xargs sed -i '' 's/from langchain.utils.math/from langchain_community.utils.math/g'
git grep -l 'from langchain.utils.openai_functions' | xargs sed -i '' 's/from langchain.utils.openai_functions/from langchain_community.utils.openai_functions/g'
git grep -l 'from langchain.utils.openai' | xargs sed -i '' 's/from langchain.utils.openai/from langchain_community.utils.openai/g'
git grep -l 'from langchain.utils' | xargs sed -i '' 's/from langchain.utils/from langchain_core.utils/g'
git grep -l 'from langchain\.' | xargs sed -i '' 's/from langchain\./from langchain_community./g'
git grep -l 'from langchain_community.memory.chat_message_histories' | xargs sed -i '' 's/from langchain_community.memory.chat_message_histories/from langchain_community.chat_message_histories/g'
git grep -l 'from langchain_community.agents.agent_toolkits' | xargs sed -i '' 's/from langchain_community.agents.agent_toolkits/from langchain_community.agent_toolkits/g'
sed -i '' 's/from\ langchain.chat_models\ import\ ChatOpenAI/from langchain_openai.chat_models import ChatOpenAI/g' langchain_community/chat_models/promptlayer_openai.py
git grep -l 'from langchain_community\.text_splitter' | xargs sed -i '' 's/from langchain_community\.text_splitter/from langchain.text_splitter/g'
git grep -l 'from langchain_community\.chains' | xargs sed -i '' 's/from langchain_community\.chains/from langchain.chains/g'
git grep -l 'from langchain_community\.agents' | xargs sed -i '' 's/from langchain_community\.agents/from langchain.agents/g'
git grep -l 'from langchain_community\.memory' | xargs sed -i '' 's/from langchain_community\.memory/from langchain.memory/g'
git grep -l 'langchain\.__version__' | xargs sed -i '' 's/langchain\.__version__/langchain_community.__version__/g'
git grep -l 'langchain\.document_loaders' | xargs sed -i '' 's/langchain\.document_loaders/langchain_community.document_loaders/g'
git grep -l 'langchain\.callbacks' | xargs sed -i '' 's/langchain\.callbacks/langchain_community.callbacks/g'
git grep -l 'langchain\.tools' | xargs sed -i '' 's/langchain\.tools/langchain_community.tools/g'
git grep -l 'langchain\.llms' | xargs sed -i '' 's/langchain\.llms/langchain_community.llms/g'
git grep -l 'import langchain$' | xargs sed -i '' 's/import\ langchain$/import\ langchain_community/g'
git grep -l 'from\ langchain\ ' | xargs sed -i '' 's/from\ langchain\ /from\ langchain_community\ /g'
git grep -l 'langchain_core.language_models.llmsten' | xargs sed -i '' 's/langchain_core.language_models.llmsten/langchain_community.llms.baseten/g'
# update all moved langchain files to re-export classes and functions
cd ../langchain
git checkout master -- langchain
python ../../.scripts/community_split/update_imports.py langchain/chat_loaders langchain_community.chat_loaders
python ../../.scripts/community_split/update_imports.py langchain/callbacks langchain_community.callbacks
python ../../.scripts/community_split/update_imports.py langchain/document_loaders langchain_community.document_loaders
python ../../.scripts/community_split/update_imports.py langchain/docstore langchain_community.docstore
python ../../.scripts/community_split/update_imports.py langchain/document_transformers langchain_community.document_transformers
python ../../.scripts/community_split/update_imports.py langchain/embeddings langchain_community.embeddings
python ../../.scripts/community_split/update_imports.py langchain/graphs langchain_community.graphs
python ../../.scripts/community_split/update_imports.py langchain/llms langchain_community.llms
python ../../.scripts/community_split/update_imports.py langchain/chat_models langchain_community.chat_models
python ../../.scripts/community_split/update_imports.py langchain/memory/chat_message_histories langchain_community.chat_message_histories
python ../../.scripts/community_split/update_imports.py langchain/storage langchain_community.storage
python ../../.scripts/community_split/update_imports.py langchain/tools langchain_community.tools
python ../../.scripts/community_split/update_imports.py langchain/utilities langchain_community.utilities
python ../../.scripts/community_split/update_imports.py langchain/vectorstores langchain_community.vectorstores
python ../../.scripts/community_split/update_imports.py langchain/retrievers langchain_community.retrievers
python ../../.scripts/community_split/update_imports.py langchain/adapters langchain_community.adapters
python ../../.scripts/community_split/update_imports.py langchain/agents/agent_toolkits langchain_community.agent_toolkits
python ../../.scripts/community_split/update_imports.py langchain/cache.py langchain_community.cache
python ../../.scripts/community_split/update_imports.py langchain/utils/math.py langchain_community.utils.math
python ../../.scripts/community_split/update_imports.py langchain/utils/json_schema.py langchain_core.utils.json_schema
python ../../.scripts/community_split/update_imports.py langchain/utils/html.py langchain_core.utils.html
python ../../.scripts/community_split/update_imports.py langchain/utils/env.py langchain_core.utils.env
python ../../.scripts/community_split/update_imports.py langchain/utils/strings.py langchain_core.utils.strings
python ../../.scripts/community_split/update_imports.py langchain/utils/openai.py langchain_community.utils.openai
python ../../.scripts/community_split/update_imports.py langchain/utils/openai_functions.py langchain_community.utils.openai_functions
# update core and openai imports
git grep -l 'from langchain.llms.base ' | xargs sed -i '' 's/from langchain.llms.base /from langchain_core.language_models.llms /g'
git grep -l 'from langchain.chat_models.base ' | xargs sed -i '' 's/from langchain.chat_models.base /from langchain_core.language_models.chat_models /g'
git grep -l 'from langchain.tools.base' | xargs sed -i '' 's/from langchain.tools.base/from langchain_core.tools/g'
git grep -l 'langchain_core.language_models.llmsten' | xargs sed -i '' 's/langchain_core.language_models.llmsten/langchain_community.llms.baseten/g'
cd ..
mv community/langchain_community/utilities/loading.py langchain/langchain/utilities
mv community/langchain_community/utilities/asyncio.py langchain/langchain/utilities
#git add partners
git add core
# rm files from community that just export core classes
rm community/langchain_community/{chat_models,llms,tools,embeddings,vectorstores,callbacks}/base.py
rm community/tests/unit_tests/{chat_models,llms,tools,callbacks}/test_base.py
rm community/tests/unit_tests/callbacks/test_manager.py
rm community/langchain_community/callbacks/{stdout,streaming_stdout}.py
rm community/langchain_community/callbacks/tracers/{base,evaluation,langchain,langchain_v1,log_stream,root_listeners,run_collector,schemas,stdout}.py
# keep export tests in langchain
git checkout master -- langchain/tests/unit_tests/{chat_models,llms,tools,callbacks,document_loaders}/test_base.py
git checkout master -- langchain/tests/unit_tests/{callbacks,docstore,document_loaders,document_transformers,embeddings,graphs,llms,chat_models,storage,tools,utilities,vectorstores}/test_imports.py
git checkout master -- langchain/tests/unit_tests/callbacks/test_manager.py
git checkout master -- langchain/tests/unit_tests/document_loaders/blob_loaders/test_public_api.py
git checkout master -- langchain/tests/unit_tests/document_loaders/parsers/test_public_api.py
git checkout master -- langchain/tests/unit_tests/vectorstores/test_public_api.py
git checkout master -- langchain/tests/unit_tests/schema
# keep some non-integration stuff in langchain. rm from community and add back to langchain
rm community/langchain_community/retrievers/{multi_query,multi_vector,contextual_compression,ensemble,merger_retriever,parent_document_retriever,re_phraser,web_research,time_weighted_retriever}.py
rm -r community/langchain_community/retrievers/{self_query,document_compressors}
rm community/tests/unit_tests/retrievers/test_{ensemble,multi_query,multi_vector,parent_document,time_weighted_retriever,web_research}.py
rm community/tests/integration_tests/retrievers/test_{contextual_compression,merger_retriever}.py
rm -r community/tests/unit_tests/retrievers/{self_query,document_compressors}
rm -r community/tests/integration_tests/retrievers/document_compressors
rm community/langchain_community/agent_toolkits/{pandas,python,spark}/__init__.py
rm community/langchain_community/tools/python/__init__.py
rm -r community/langchain_community/agent_toolkits/conversational_retrieval/
rm -r community/langchain_community/agent_toolkits/vectorstore/
rm community/langchain_community/callbacks/tracers/logging.py
rm community/langchain_community/callbacks/{file,streaming_aiter_final_only,streaming_aiter,streaming_stdout_final_only}.py
rm community/langchain_community/embeddings/cache.py
rm community/langchain_community/storage/{encoder_backed,file_system,in_memory,_lc_store}.py
rm community/langchain_community/tools/retriever.py
rm community/tests/unit_tests/callbacks/tracers/test_logging.py
rm community/tests/unit_tests/embeddings/test_caching.py
rm community/tests/unit_tests/storage/test_{filesystem,in_memory,lc_store}.py
git checkout master -- langchain/langchain/retrievers/{multi_query,multi_vector,self_query/base,contextual_compression,ensemble,merger_retriever,parent_document_retriever,re_phraser,web_research,time_weighted_retriever}.py
git checkout master -- langchain/langchain/retrievers/{self_query,document_compressors}
git checkout master -- langchain/tests/unit_tests/retrievers/test_{ensemble,multi_query,multi_vector,parent_document,time_weighted_retriever,web_research}.py
git checkout master -- langchain/tests/integration_tests/retrievers/test_{contextual_compression,merger_retriever}.py
git checkout master -- langchain/tests/unit_tests/retrievers/{self_query,document_compressors}
git checkout master -- langchain/tests/integration_tests/retrievers/document_compressors
touch langchain/tests/unit_tests/{llms,chat_models,tools,callbacks,runnables,document_loaders,docstore,document_transformers,embeddings,graphs,storage,utilities,vectorstores,retrievers}/__init__.py
touch langchain/tests/unit_tests/document_loaders/{blob_loaders,parsers}/__init__.py
mv {community,langchain}/tests/unit_tests/retrievers/sequential_retriever.py
git checkout master -- langchain/langchain/agents/agent_toolkits/conversational_retrieval/
git checkout master -- langchain/langchain/agents/agent_toolkits/vectorstore/
git checkout master -- langchain/langchain/callbacks/tracers/logging.py
git checkout master -- langchain/langchain/callbacks/{file,streaming_aiter_final_only,streaming_aiter,streaming_stdout_final_only}.py
git checkout master -- langchain/langchain/embeddings/cache.py
git checkout master -- langchain/langchain/storage/{encoder_backed,file_system,in_memory,_lc_store}.py
git checkout master -- langchain/langchain/tools/retriever.py
git checkout master -- langchain/tests/unit_tests/callbacks/tracers/{test_logging,__init__}.py
git checkout master -- langchain/tests/unit_tests/embeddings/{__init__,test_caching}.py
git checkout master -- langchain/tests/unit_tests/storage/test_{filesystem,in_memory,lc_store}.py
git checkout master -- langchain/tests/unit_tests/storage/__init__.py
# cp lint scripts
cp -r core/scripts community
# cp test helpers
cp -r langchain/tests/integration_tests/examples community/tests
cp -r langchain/tests/integration_tests/examples community/tests/integration_tests
cp -r langchain/tests/unit_tests/examples community/tests/unit_tests
cp langchain/tests/unit_tests/conftest.py community/tests/unit_tests
cp community/tests/integration_tests/vectorstores/fake_embeddings.py langchain/tests/integration_tests/cache/
cp langchain/tests/integration_tests/test_compile.py community/tests/integration_tests
# cp manually changed files
cp -r ../.scripts/community_split/libs/* .
# mv some tests to integrations
mv community/tests/{unit_tests,integration_tests}/document_loaders/test_telegram.py
mv community/tests/{unit_tests,integration_tests}/document_loaders/parsers/test_docai.py
mv community/tests/{unit_tests,integration_tests}/chat_message_histories/test_streamlit.py
# fix some final tests
git grep -l 'integration_tests\.vectorstores\.fake_embeddings' langchain/tests | xargs sed -i '' 's/integration_tests\.vectorstores\.fake_embeddings/integration_tests.cache.fake_embeddings/g'
touch community/langchain_community/agent_toolkits/amadeus/__init__.py
# format
cd core
make format
cd ../langchain
make format
cd ../experimental
make format
cd ../community
make format
cd ..
sed -E -i '' '1 s/(.*)/\1\ \ \#\ noqa\:\ E501/g' langchain/langchain/agents/agent_toolkits/conversational_retrieval/openai_functions.py
sed -E -i '' 's/import\ importlib$/import importlib.util/g' experimental/langchain_experimental/prompts/load.py
git add .

View File

@@ -0,0 +1,85 @@
import ast
import os
import sys
from pathlib import Path
class ImportTransformer(ast.NodeTransformer):
def __init__(self, public_items, module_name):
self.public_items = public_items
self.module_name = module_name
def visit_Module(self, node):
imports = [
ast.ImportFrom(
module=self.module_name,
names=[ast.alias(name=item, asname=None)],
level=0,
)
for item in self.public_items
]
all_assignment = ast.Assign(
targets=[ast.Name(id="__all__", ctx=ast.Store())],
value=ast.List(
elts=[ast.Str(s=item) for item in self.public_items], ctx=ast.Load()
),
)
node.body = imports + [all_assignment]
return node
def find_public_classes_and_methods(file_path):
with open(file_path, "r") as file:
node = ast.parse(file.read(), filename=file_path)
public_items = []
for item in node.body:
if isinstance(item, ast.ClassDef) or isinstance(item, ast.FunctionDef):
public_items.append(item.name)
if (
isinstance(item, ast.Assign)
and hasattr(item.targets[0], "id")
and item.targets[0].id not in ("__all__", "logger")
):
public_items.append(item.targets[0].id)
return public_items or None
def process_file(file_path, module_name):
public_items = find_public_classes_and_methods(file_path)
if public_items is None:
return
with open(file_path, "r") as file:
contents = file.read()
tree = ast.parse(contents, filename=file_path)
tree = ImportTransformer(public_items, module_name).visit(tree)
tree = ast.fix_missing_locations(tree)
with open(file_path, "w") as file:
file.write(ast.unparse(tree))
def process_directory(directory_path, base_module_name):
if Path(directory_path).is_file():
process_file(directory_path, base_module_name)
else:
for root, dirs, files in os.walk(directory_path):
for filename in files:
if filename.endswith(".py") and not filename.startswith("_"):
file_path = os.path.join(root, filename)
relative_path = os.path.relpath(file_path, directory_path)
module_name = f"{base_module_name}.{os.path.splitext(relative_path)[0].replace(os.sep, '.')}"
process_file(file_path, module_name)
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python script_name.py <directory_path> <base_module_name>")
sys.exit(1)
directory_path = sys.argv[1]
base_module_name = sys.argv[2]
process_directory(directory_path, base_module_name)

12
LICENSE
View File

@@ -1,6 +1,6 @@
The MIT License
MIT License
Copyright (c) Harrison Chase
Copyright (c) LangChain, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
@@ -9,13 +9,13 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -41,9 +41,10 @@ spell_fix:
# LINTING AND FORMATTING
######################
lint:
lint lint_package lint_tests:
poetry run ruff docs templates cookbook
poetry run ruff format docs templates cookbook --diff
poetry run ruff --select I docs templates cookbook
format format_diff:
poetry run ruff format docs templates cookbook

View File

@@ -30,7 +30,7 @@ pip install langchain
With conda:
```bash
pip install langsmith && conda install langchain -c conda-forge
conda install langchain -c conda-forge
```
## 🤔 What is LangChain?
@@ -45,7 +45,10 @@ This framework consists of several parts.
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
**This repo contains the `langchain` ([here](libs/langchain)), `langchain-experimental` ([here](libs/experimental)), and `langchain-cli` ([here](libs/cli)) Python packages, as well as [LangChain Templates](templates).**
The LangChain libraries themselves are made up of several different packages.
- **[`langchain-core`](libs/core)**: Base abstractions and LangChain Expression Language.
- **[`langchain-community`](libs/community)**: Third party integrations.
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
![LangChain Stack](docs/static/img/langchain_stack.png)
@@ -104,3 +107,7 @@ Please see [here](https://python.langchain.com) for full documentation, which in
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
## 🌟 Contributors
[![langchain contributors](https://contrib.rocks/image?repo=langchain-ai/langchain&max=2000)](https://github.com/langchain-ai/langchain/graphs/contributors)

File diff suppressed because one or more lines are too long

View File

@@ -648,7 +648,7 @@
{
"data": {
"text/plain": [
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', deployment='text-embedding-ada-002', openai_api_version='', openai_api_base='', openai_api_type='', openai_proxy='', embedding_ctx_length=8191, openai_api_key='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', openai_organization='', allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6, request_timeout=None, headers=None, tiktoken_model_name=None, show_progress_bar=False, model_kwargs={})"
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', deployment='text-embedding-ada-002', openai_api_version='', openai_api_base='', openai_api_type='', openai_proxy='', embedding_ctx_length=8191, openai_api_key='', openai_organization='', allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6, request_timeout=None, headers=None, tiktoken_model_name=None, show_progress_bar=False, model_kwargs={})"
]
},
"execution_count": 13,

File diff suppressed because one or more lines are too long

View File

@@ -69,8 +69,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.llm_bash.prompt import BashOutputParser\n",
"from langchain.prompts.prompt import PromptTemplate\n",
"from langchain_experimental.llm_bash.prompt import BashOutputParser\n",
"\n",
"_PROMPT_TEMPLATE = \"\"\"If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put \"#!/bin/bash\" in your answer. Make sure to reason step by step, using this format:\n",
"Question: \"copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'\"\n",

Some files were not shown because too many files have changed in this diff Show More