Compare commits

...

556 Commits

Author SHA1 Message Date
Erick Friis
13a9d1386a wip 2024-02-14 12:27:14 -08:00
Mateusz Szewczyk
916332ef5b ibm: added partners package langchain_ibm, added llm (#16512)
- **Description:** Added `langchain_ibm` as an langchain partners
package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM
provider (`WatsonxLLM`)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
  - **Tag maintainer:** : 
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-14 12:12:19 -08:00
Shawn
f6d3a3546f community[patch]: document_loaders: modified athena key logic to handle s3 uris without a prefix (#17526)
https://github.com/langchain-ai/langchain/issues/17525

### Example Code

```python
from langchain_community.document_loaders.athena import AthenaLoader

database_name = "database"
s3_output_path = "s3://bucket-no-prefix"
query="""SELECT 
  CAST(extract(hour FROM current_timestamp) AS INTEGER) AS current_hour,
  CAST(extract(minute FROM current_timestamp) AS INTEGER) AS current_minute,
  CAST(extract(second FROM current_timestamp) AS INTEGER) AS current_second;
"""
profile_name = "AdministratorAccess"

loader = AthenaLoader(
    query=query,
    database=database_name,
    s3_output_uri=s3_output_path,
    profile_name=profile_name,
)

documents = loader.load()
print(documents)
```



### Error Message and Stack Trace (if applicable)

NoSuchKey: An error occurred (NoSuchKey) when calling the GetObject
operation: The specified key does not exist

### Description

Athena Loader errors when result s3 bucket uri has no prefix. The Loader
instance call results in a "NoSuchKey: An error occurred (NoSuchKey)
when calling the GetObject operation: The specified key does not exist."
error.

If s3_output_path contains a prefix like:

```python
s3_output_path = "s3://bucket-with-prefix/prefix"
```

Execution works without an error.

## Suggested solution

Modify:

```python
key = "/".join(tokens[1:]) + "/" + query_execution_id + ".csv"
```

to

```python
key = "/".join(tokens[1:]) + ("/" if tokens[1:] else "") + query_execution_id + ".csv"
```


9e8a3fc4ff/libs/community/langchain_community/document_loaders/athena.py (L128)


### System Info


System Information
------------------
> OS:  Darwin
> OS Version: Darwin Kernel Version 22.6.0: Fri Sep 15 13:41:30 PDT
2023; root:xnu-8796.141.3.700.8~1/RELEASE_ARM64_T8103
> Python Version:  3.9.9 (main, Jan  9 2023, 11:42:03) 
[Clang 14.0.0 (clang-1400.0.29.102)]

Package Information
-------------------
> langchain_core: 0.1.23
> langchain: 0.1.7
> langchain_community: 0.0.20
> langsmith: 0.0.87
> langchain_openai: 0.0.6
> langchainhub: 0.1.14

Packages not installed (Not Necessarily a Problem)
--------------------------------------------------
The following packages were not found:

> langgraph
> langserve

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:48:31 -08:00
wulixuan
c776cfc599 community[minor]: integrate with model Yuan2.0 (#15411)
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:46:20 -08:00
Philippe PRADOS
d07db457fc community[patch]: Fix SQLAlchemyMd5Cache race condition (#16279)
If the SQLAlchemyMd5Cache is shared among multiple processes, it is
possible to encounter a race condition during the cache update.

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-14 11:45:28 -08:00
Alex Peplowski
70c296ae96 community[patch]: Expose Anthropic Retry Logic (#17069)
**Description:**

Expose Anthropic's retry logic, so that `max_retries` can be configured
via langchain. Anthropic's retry logic is implemented in their Python
SDK here:
https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:44:28 -08:00
DanisJiang
de9a6cdf16 experimental[patch]: Enhance protection against arbitrary code execution in PALChain (#17091)
- **Description:** Block some ways to trigger arbitrary code execution
bug in PALChain.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-14 11:44:07 -08:00
Lyndsey
8562a1e7d4 community[patch]: support query filters for NotionDBLoader (#17217)
- **Description:** Support filtering databases in the use case where
devs do not want to query ALL entries within a DB,
- **Issue:** N/A,
- **Dependencies:** N/A,
- **Twitter handle:** I don't have Twitter but feel free to tag my
Github!

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-14 11:43:41 -08:00
volodymyr-memsql
e36bc379f2 community[patch]: Add vector index support to SingleStoreDB VectorStore (#17308)
This pull request introduces support for various Approximate Nearest
Neighbor (ANN) vector index algorithms in the VectorStore class,
starting from version 8.5 of SingleStore DB. Leveraging this enhancement
enables users to harness the power of vector indexing, significantly
boosting search speed, particularly when handling large sets of vectors.

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:43:12 -08:00
Kate Silverstein
0bc4a9b3fc community[minor]: Adds Llamafile as an LLM (#17431)
* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
2024-02-14 11:15:24 -08:00
Rakib Hosen
5ce1827d31 community[patch]: fix import in language parser (#17538)
- **Description:** Resolving import error in language_parser.py during
"from langchain.langchain.text_splitter import Language - **Issue:** the
issue #17536
- **Dependencies:** NO
- **Twitter handle:** @iRakibHosen

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:11:23 -08:00
Raunak
685d62b032 community[patch]: Added functions in NetworkxEntityGraph class (#17535)
- **Description:** 
1. Added _clear_edges()_ and _get_number_of_nodes()_ functions in
NetworkxEntityGraph class.
2. Added the above two function in graph_networkx_qa.ipynb
documentation.
2024-02-14 11:02:24 -08:00
Erick Friis
bfaa8c3048 anthropic[patch]: de-beta anthropic messages, release 0.0.2 (#17540) 2024-02-14 10:31:45 -08:00
Erick Friis
a99c667c22 partners: version constraints (#17492)
Core should be ^0.1 by default

Careful about 0.x.y and 0.0.z packages
2024-02-14 08:57:46 -08:00
Erick Friis
d7418acbe1 nomic[patch]: release 0.0.2, dimensionality (#17534)
- nomic[patch]: release 0.0.2
- x
2024-02-14 08:38:07 -08:00
Bagatur
9e8a3fc4ff infra: rm @ from pr template (#17507) 2024-02-13 21:29:22 -08:00
shibuiwilliam
c502736841 infra: add test for ensemble retriever to ensure multiple retrievers (#8401)
Add tests to ensemble retriever to ensure it works with combination of
multiple retrievers

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-13 21:22:03 -08:00
Qihui Xie
5738143d4b add mongodb_store (#13801)
# Add MongoDB storage
  - **Description:** 
  Add MongoDB Storage as an option for large doc store. 

Example usage: 
```Python
# Instantiate the MongodbStore with a MongoDB connection
from langchain.storage import MongodbStore

mongo_conn_str = "mongodb://localhost:27017/"
mongodb_store = MongodbStore(mongo_conn_str, db_name="test-db",
                                collection_name="test-collection")

# Set values for keys
doc1 = Document(page_content='test1')
doc2 = Document(page_content='test2')
mongodb_store.mset([("key1", doc1), ("key2", doc2)])

# Get values for keys
values = mongodb_store.mget(["key1", "key2"])
# [doc1, doc2]

# Iterate over keys
for key in mongodb_store.yield_keys():
    print(key)

# Delete keys
mongodb_store.mdelete(["key1", "key2"])
 ```

  - **Dependencies:**
  Use `mongomock` for integration test.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-13 22:33:22 -05:00
Mo Latif
50b48a8e6a langchain[patch]: Invoke chain prep_inputs and prep_outputs inside try block to catch validation errors (#16644)
- **Description:** Callback manager can't catch chain input or output
validation errors because `prepare_input` and `prepare_output` are not
part of the try/raise logic, this PR fixes that logic.
 
  - **Issue:** #15954
2024-02-13 22:23:11 -05:00
Christophe Bornet
a8f530bc4d Add async methods to CacheBackedEmbeddings (#16873)
Adds async methods to CacheBackedEmbeddings
2024-02-13 22:16:27 -05:00
Bagatur
dd68a8716e infra: update rtd yaml (#17502) 2024-02-13 18:16:44 -08:00
Bagatur
1aeb52caac infra: merge in master during api docs build (#17494) 2024-02-13 18:08:07 -08:00
Bagatur
54373fb384 infra: add api docs build GHA (#17493) 2024-02-13 16:46:58 -08:00
Bagatur
50de7a31f0 langchain[patch]: structured output chain nits (#17291) 2024-02-13 16:45:29 -08:00
Nat Noordanus
8a3b74fe1f community[patch]: Fix pydantic ForwardRef error in BedrockBase (#17416)
- **Description:** Fixes a type annotation issue in the definition of
BedrockBase. This issue was that the annotation for the `config`
attribute includes a ForwardRef to `botocore.client.Config` which is
only imported when `TYPE_CHECKING`. This can cause pydantic to raise an
error like `pydantic.errors.ConfigError: field "config" not yet prepared
so type is still a ForwardRef, ...`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@__nat_n__`
2024-02-13 16:15:55 -08:00
Bagatur
2c076bebc9 docs: fix self query redirect (#17490) 2024-02-13 15:44:56 -08:00
Ashley Xu
f746a73e26 Add the BQ job usage tracking from LangChain (#17123)
- **Description:**
Add the BQ job usage tracking from LangChain

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-13 14:47:57 -08:00
Bagatur
5dca107621 docs: update providers (#17488) 2024-02-13 14:00:15 -08:00
JongRok BAEK
8d6cc90fc5 langchain.core : Use shallow copy for schema manipulation in JsonOutputParser.get_format_instructions (#17162)
- **Description :**  

Fix: Use shallow copy for schema manipulation in get_format_instructions

Prevents side effects on the original schema object by using a
dictionary comprehension for a safer and more controlled manipulation of
schema key-value pairs, enhancing code reliability.

  - **Issue:**  #17161 
  - **Dependencies:** None
  -  **Twitter handle:** None
2024-02-13 13:30:53 -08:00
Rave Harpaz
90f55e6bd1 Documentation/add update documentation for oci (#17473)
Thank you for contributing to LangChain!

Checklist:

- **PR title**: docs: add & update docs for Oracle Cloud Infrastructure
(OCI) integrations

- **Description**: adding and updating documentation for two
integrations - OCI Generative AI & OCI Data Science
(1) adding integration page for OCI Generative AI embeddings (@baskaryan
request,
         docs/docs/integrations/text_embedding/oci_generative_ai.ipynb)
(2) updating integration page for OCI Generative AI llms
(docs/docs/integrations/llms/oci_generative_ai.ipynb)
(3) adding platform documentation for OCI (@baskaryan request,
docs/docs/integrations/platforms/oci.mdx). this combines the
          integrations of OCI Generative AI & OCI Data Science
(4) if possible, requesting to be added to 'Featured Community
Providers' so supplying a modified
docs/docs/integrations/platforms/index.mdx to reflect the addition
- **Issue:** none

 - **Dependencies:** no new dependencies 

 - **Twitter handle:**

---------

Co-authored-by: MING KANG <ming.kang@oracle.com>
2024-02-13 13:26:23 -08:00
Bagatur
b5d3416563 experimental[patch]: Release 0.0.51 (#17484) 2024-02-13 13:14:38 -08:00
Bagatur
de7c4b277c langchain[patch]: Release 0.1.7 (#17482) 2024-02-13 13:13:04 -08:00
Bagatur
39342d98d6 community[patch]: Release 0.0.20 (#17480) 2024-02-13 13:01:51 -08:00
Bagatur
89b765ec27 core[patch]: Release 0.1.23 (#17479) 2024-02-13 12:55:45 -08:00
Max Jakob
ab3d944667 community[patch]: ElasticsearchStore: preserve user headers (#16830)
Users can provide an Elasticsearch connection with custom headers. This
PR makes sure these headers are preserved when adding the langchain user
agent header.
2024-02-13 12:37:35 -08:00
Erick Friis
112e10e933 infra: azure release integration testing secrets (#17476) 2024-02-13 12:17:06 -08:00
Erick Friis
9eb1b56e73 pinecone[patch]: release 0.0.2 (#17477) 2024-02-13 12:01:45 -08:00
Erick Friis
37678471c4 openai[patch]: relax tiktoken constraint, release 0.0.6 (#17472) 2024-02-13 11:25:55 -08:00
Wendy H. Chun
2df7387c91 langchain[patch]: Fix to avoid infinite loop during collapse chain in map reduce (#16253)
- **Description:** Depending on `token_max` used in
`load_summarize_chain`, it could cause an infinite loop when documents
cannot collapse under `token_max`. This change would not affect the
existing feature, but it also gives an option to users to avoid the
situation.
  - **Issue:** https://github.com/langchain-ai/langchain/issues/16251
  - **Dependencies:** None
  - **Twitter handle:** None

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-13 10:55:32 -08:00
wulixuan
5d06797905 community[minor]: integrate chat models with Yuan2.0 (#16575)
1. integrate chat models with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)
 
Yuan2.0 is a new generation Fundamental Large Language Model developed
by IEIT System. We have published all three models, Yuan 2.0-102B, Yuan
2.0-51B, and Yuan 2.0-2B.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-13 10:55:14 -08:00
Taha Khabouss
15baffc484 langchain[patch]: Ensure that the Elasticsearch Query Translator functions accurately w… (#17044)
Description:
Addresses a problem where the Date type within an Elasticsearch
SelfQueryRetriever would encounter difficulties in generating a valid
query.

Issue: #17042

---------

Co-authored-by: Max Jakob <max.jakob@elastic.co>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-13 10:54:24 -08:00
Erick Friis
e5c76f9dbd pinecone[patch]: poetry update (#17471) 2024-02-13 10:32:29 -08:00
Erick Friis
10bdf2422c pinecone[patch]: release 0.0.2rc0, remove simsimd dep (#17469) 2024-02-13 10:02:16 -08:00
Erick Friis
065cde69b1 google-genai[patch]: release 0.0.9, safety settings docs (#17432) 2024-02-13 10:01:25 -08:00
Sergey Kozlov
db6f266d97 core: improve None value processing in merge_dicts() (#17462)
- **Description:** fix `None` and `0` merging in `merge_dicts()`, add
tests.
```python
from langchain_core.utils._merge import merge_dicts
assert merge_dicts({"a": None}, {"a": 0}) == {"a": 0}
```

---------

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2024-02-13 08:48:02 -08:00
Ian Gregory
e5472b5eb8 Framework for supporting more languages in LanguageParser (#13318)
## Description

I am submitting this for a school project as part of a team of 5. Other
team members are @LeilaChr, @maazh10, @Megabear137, @jelalalamy. This PR
also has contributions from community members @Harrolee and @Mario928.

Initial context is in the issue we opened (#11229).

This pull request adds:

- Generic framework for expanding the languages that `LanguageParser`
can handle, using the
[tree-sitter](https://github.com/tree-sitter/py-tree-sitter#py-tree-sitter)
parsing library and existing language-specific parsers written for it
- Support for the following additional languages in `LanguageParser`:
  - C
  - C++
  - C#
  - Go
- Java (contributed by @Mario928
https://github.com/ThatsJustCheesy/langchain/pull/2)
  - Kotlin
  - Lua
  - Perl
  - Ruby
  - Rust
  - Scala
- TypeScript (contributed by @Harrolee
https://github.com/ThatsJustCheesy/langchain/pull/1)

Here is the [design
document](https://docs.google.com/document/d/17dB14cKCWAaiTeSeBtxHpoVPGKrsPye8W0o_WClz2kk)
if curious, but no need to read it.

## Issues

- Closes #11229
- Closes #10996
- Closes #8405

## Dependencies

`tree_sitter` and `tree_sitter_languages` on PyPI. We have tried to add
these as optional dependencies.

## Documentation

We have updated the list of supported languages, and also added a
section to `source_code.ipynb` detailing how to add support for
additional languages using our framework.

## Maintainer

- @hwchase17 (previously reviewed
https://github.com/langchain-ai/langchain/pull/6486)

Thanks!!

## Git commits

We will gladly squash any/all of our commits (esp merge commits) if
necessary. Let us know if this is desirable, or if you will be
squash-merging anyway.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Maaz Hashmi <mhashmi373@gmail.com>
Co-authored-by: LeilaChr <87657694+LeilaChr@users.noreply.github.com>
Co-authored-by: Jeremy La <jeremylai511@gmail.com>
Co-authored-by: Megabear137 <zubair.alnoor27@gmail.com>
Co-authored-by: Lee Harrold <lhharrold@sep.com>
Co-authored-by: Mario928 <88029051+Mario928@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-13 08:45:49 -08:00
merlin-quix
729c6d6827 docs: add use case for managing chat messages via Apache Kafka (#16771)
Adding a new notebook that demonstrates how to use LangChain's standard
chat features while passing the chat messages back and forth via Apache
Kafka.

This goal is to simulate an architecture where the chat front end and
the LLM are running as separate services that need to communicate with
one another over an internal nework.

It's an alternative to typical pattern of requesting a reponse from the
model via a REST API (there's more info on why you would want to do this
at the end of the notebook).

NOTE: Assuming "uses cases" is the right place for this but feel free to
propose another location.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-13 08:09:15 -08:00
Bagatur
3925071dd6 langchain[patch], templates[patch]: fix multi query retriever, web re… (#17434)
…search retriever

Fixes #17352
2024-02-12 22:52:07 -08:00
Bagatur
c0ce93236a experimental[patch]: fix zero-shot pandas agent (#17442) 2024-02-12 21:58:35 -08:00
Abhishek Jain
37e1275f9e community[patch]: Fixed the 'aembed' method of 'CohereEmbeddings'. (#16497)
**Description:**
- The existing code was trying to find a `.embeddings` property on the
`Coroutine` returned by calling `cohere.async_client.embed`.
- Instead, the `.embeddings` property is present on the value returned
by the `Coroutine`.
- Also, it seems that the original cohere client expects a value of
`max_retries` to not be `None`. Hence, setting the default value of
`max_retries` to `3`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 21:57:27 -08:00
Sridhar Ramaswamy
9f1cbbc6ed community[minor]: Add pebblo safe document loader (#16862)
- **Description:** Pebblo opensource project enables developers to
safely load data to their Gen AI apps. It identifies semantic topics and
entities found in the loaded data and summarizes them in a
developer-friendly report.
  - **Dependencies:** none
  - **Twitter handle:** srics

@hwchase17
2024-02-12 21:56:12 -08:00
Preetam D'Souza
0834457f28 docs: Fix broken link in summarization use-case (#16554)
- **Description:** Fix broken link to `StuffDocumentsChain`
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:**
[@preetamdsouza](https://twitter.com/preetamdsouza)
2024-02-12 21:40:57 -08:00
Sheil Naik
d70a5bbf15 docs: Fix broken link in LLMs index.mdx (#16557)
- **Description:** The
[LLMs](https://python.langchain.com/docs/modules/model_io/llms/) page
has a broken link. This fixes the link.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @sheilnaik
2024-02-12 21:39:56 -08:00
mhavey
1bbb64d956 community[minor], langchian[minor]: Add Neptune Rdf graph and chain (#16650)
**Description**: This PR adds a chain for Amazon Neptune graph database
RDF format. It complements the existing Neptune Cypher chain. The PR
also includes a Neptune RDF graph class to connect to, introspect, and
query a Neptune RDF graph database from the chain. A sample notebook is
provided under docs that demonstrates the overall effect: invoking the
chain to make natural language queries against Neptune using an LLM.

**Issue**: This is a new feature
 
**Dependencies**: The RDF graph class depends on the AWS boto3 library
if using IAM authentication to connect to the Neptune database.

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 21:30:20 -08:00
Michael Feil
e1cfd0f3e7 community[patch]: infinity embeddings update incorrect default url (#16759)
The default url has always been incorrect (7797 instead 7997). Here is a
update to the correct url.
2024-02-12 20:05:08 -08:00
Massimiliano Pronesti
df7cbd6fbb community[minor]: add FlashRank ranker (#16785)
**Description:** This PR adds support for
[flashrank](https://github.com/PrithivirajDamodaran/FlashRank) for
reranking as alternative to Cohere.

I'm not sure `libs/langchain` is the right place for this change. At
first, I wanted to put it under `libs/community`. All the compressors
were under `libs/langchain/retrievers/document_compressors` though. Hope
this makes sense!
2024-02-12 20:00:52 -08:00
Andreas Motl
1fdd9bd980 community/SQLDatabase: Generalize and trim software tests (#16659)
- **Description:** Improve test cases for `SQLDatabase` adapter
component, see
[suggestion](https://github.com/langchain-ai/langchain/pull/16655#pullrequestreview-1846749474).
  - **Depends on:** GH-16655
  - **Addressed to:** @baskaryan, @cbornet, @eyurtsev

_Remark: This PR is stacked upon GH-16655, so that one will need to go
in first._

Edit: Thank you for bringing in GH-17191, @eyurtsev. This is a little
aftermath, improving/streamlining the corresponding test cases.
2024-02-12 22:58:34 -05:00
Theo / Taeyoon Kang
1987f905ed core[patch]: Support .yml extension for YAML (#16783)
- **Description:**

[AS-IS] When dealing with a yaml file, the extension must be .yaml.  

[TO-BE] In the absence of extension length constraints in the OS, the
extension of the YAML file is yaml, but control over the yml extension
must still be made.

It's as if it's an error because it's a .jpg extension in jpeg support.

  - **Issue:** - 

  - **Dependencies:**
no dependencies required for this change,
2024-02-12 19:57:20 -08:00
Kapil Sachdeva
cd00a87db7 community[patch] - in FAISS vector store, support passing custom DocStore implementation when using from_xxx methods (#16801)
- **Description:** The from__xx methods of FAISS class have hardcoded
InMemoryStore implementation and thereby not let users pass a custom
DocStore implementation,
  - **Issue:** no referenced issue,
  - **Dependencies:** none,
  - **Twitter handle:** ksachdeva
2024-02-12 19:51:55 -08:00
Chris
f9f5626ca4 community[patch]: Fix github search issues and PRs PaginatedList has no len() error (#16806)
**Description:** 
Bugfix: Langchain_community's GitHub Api wrapper throws a TypeError when
searching for issues and/or PRs (the `search_issues_and_prs` method).
This is because PyGithub's PageinatedList type does not support the
len() method. See https://github.com/PyGithub/PyGithub/issues/1476

![image](https://github.com/langchain-ai/langchain/assets/8849021/57390b11-ed41-4f48-ba50-f3028610789c)
  **Dependencies:** None 
  **Twitter handle**: @ChrisKeoghNZ
  
I haven't registered an issue as it would take me longer to fill the
template out than to make the fix, but I'm happy to if that's deemed
essential.

I've added a simple integration test to cover this as there were no
existing unit tests and it was going to be tricky to set them up.

Co-authored-by: Chris Keogh <chris.keogh@xero.com>
2024-02-12 19:50:59 -08:00
morgana
722aae4fd1 community: add delete method to rocksetdb vectorstore to support recordmanager (#17030)
- **Description:** This adds a delete method so that rocksetdb can be
used with `RecordManager`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@_morgan_adams_`

---------

Co-authored-by: Rockset API Bot <admin@rockset.io>
2024-02-12 19:50:20 -08:00
yin1991
c454dc36fc community[proxy]: Enhancement/add proxy support playwrighturlloader 16751 (#16822)
- **Description:** Enhancement/add proxy support playwrighturlloader
16751
- **Issue:** [Enhancement: Add Proxy Support to PlaywrightURLLoader
Class](https://github.com/langchain-ai/langchain/issues/16751)
  - **Dependencies:** 
  - **Twitter handle:** @ootR77013489

---------

Co-authored-by: root <root@ip-172-31-46-160.ap-southeast-1.compute.internal>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 19:48:29 -08:00
Bhupesh Varshney
e3b775e035 infra: make .gitignore consistent with standard python gitignore (#16828)
- The new .gitignore version is inherited from the one maintained by the
github community over at
https://github.com/github/gitignore/blob/main/Python.gitignore
- This should cover all the cases of how a langchain app can be used.
2024-02-12 19:43:41 -08:00
James Braza
64938ae6f2 infra: unit testing check_package_version (#16825)
Wrote a unit test for `check_package_version` in the core package.

Note that this is a revival of
https://github.com/langchain-ai/langchain/pull/16387 after GitHub
incident (see
https://github.com/langchain-ai/langchain/discussions/16796).
2024-02-12 19:39:58 -08:00
Max Jakob
604e117411 docs: another auth method for ElasticsearchStore (#16831)
Users can also use their own Elasticsearch client object to configure
the connection.
2024-02-12 19:29:54 -08:00
Zeeland
4986e7227e docs: rm unnecessary imports (#16876)
- **Description:** optimize the document of memory usage
  - **Issue:** it lose some install guide
2024-02-12 19:25:54 -08:00
Lingzhen Chen
30af711c34 community[patch]: update AzureSearch class to work with azure-search-documents=11.4.0 (#15659)
- **Description:** Updates
`libs/community/langchain_community/vectorstores/azuresearch.py` to
support the stable version `azure-search-documents=11.4.0`
- **Issue:** https://github.com/langchain-ai/langchain/issues/14534,
https://github.com/langchain-ai/langchain/issues/15039,
https://github.com/langchain-ai/langchain/issues/15355
  - **Dependencies:** azure-search-documents>=11.4.0

---------

Co-authored-by: Clément Tamines <Skar0@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 19:23:35 -08:00
Robby
e135dc70c3 community[patch]: Invoke callback prior to yielding token (#17348)
**Description:** Invoke callback prior to yielding token in stream
method for Ollama.
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-02-12 19:22:55 -08:00
Christophe Bornet
ab025507bc community[patch]: Add async methods to VectorStoreQATool (#16949) 2024-02-12 19:19:50 -08:00
Christophe Bornet
fb7552bfcf Add async methods to InMemoryCache (#17425)
Add async methods to InMemoryCache
2024-02-12 22:02:38 -05:00
Eugene Yurtsev
93472ee9e6 core[patch]: Replace memory stream implementation used by LogStreamCallbackHandler (#17185)
This PR replaces the memory stream implementation used by the 
LogStreamCallbackHandler.

This implementation resolves an issue in which streamed logs and
streamed events originating from sync code would arrive only after the
entire sync code would finish execution (rather than arriving in real
time as they're generated).

One example is if trying to stream tokens from an llm within a tool. If
the tool was an async tool, but the llm was invoked via stream (sync
variant) rather than astream (async variant), then the tokens would fail
to stream in real time and would all arrived bunched up after the tool
invocation completed.
2024-02-12 21:57:38 -05:00
yin1991
37ef6ac113 community[patch]: Add Pagination to GitHubIssuesLoader for Efficient GitHub Issues Retrieval (#16934)
- **Description:** Add Pagination to GitHubIssuesLoader for Efficient
GitHub Issues Retrieval
- **Issue:** [the issue # it fixes if
applicable,](https://github.com/langchain-ai/langchain/issues/16864)

---------

Co-authored-by: root <root@ip-172-31-46-160.ap-southeast-1.compute.internal>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 18:30:36 -08:00
Leonid Ganeline
b87d6f9f48 docs: Redis page update (#16906)
- Reordered sections
- Applied consistent formatting
- Fixed headers (there were 2 H1 headers; this breaks CoT)
- Added `Settings` header and moved all related sections under it
2024-02-12 18:23:35 -08:00
Bagatur
22638e5927 community[patch]: give reranker default client val (#17289) 2024-02-12 17:21:53 -08:00
Naveenkhasyap
841e5f514e docs: Updated doc for integrations/chat/anthropic_functions #15664 (#17226)
Description: Updated doc for integrations/chat/anthropic_functions with
new functions: invoke. Changed structure of the document to match the
required one.
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None

---------

Co-authored-by: NaveenMaltesh <naveen@onmeta.in>
2024-02-12 17:09:38 -08:00
Robby
ece4b43a81 community[patch]: doc loaders mypy fixes (#17368)
**Description:** Fixed `type: ignore`'s for mypy for some
document_loaders.
**Issue:** [Remove "type: ignore" comments #17048
](https://github.com/langchain-ai/langchain/issues/17048)

---------

Co-authored-by: Robby <h0rv@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-12 16:51:06 -08:00
Robby
0653aa469a community[patch]: Invoke callback prior to yielding token (#17346)
**Description:** Invoke callback prior to yielding token in stream
method for watsonx.
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-02-12 16:36:33 -08:00
Min-Seong Lee
ce9a68791b docs: fix typo in question_answering quickstart.ipynb (#17393)
- **Description:** typo in docs (facillitate -> facilitate)
  - **Issue:** Typo
  - **Dependencies:** Nope
  - **Twitter handle:** None
2024-02-12 16:33:47 -08:00
Pennlaine
e1bc623f8f docs: Updated docs for sitemap loader to use correct URL (#17395)
- **Description:** 
Updated URL for sitemap loader from
"https://langchain.readthedocs.io/sitemap.xml" to
"https://api.python.langchain.com/sitemap.xml"
  - **Issue:** Fixes #17236
2024-02-12 16:20:32 -08:00
Bagatur
bd0ad6637a infra: pr template nit (#17438) 2024-02-12 16:19:14 -08:00
Bagatur
37629516cd infra: update pr template (#17437) 2024-02-12 16:17:30 -08:00
Ikko Eltociear Ashimine
b48fa8b695 docs: fix typo in vikingdb.ipynb (#17429)
retreival -> retrieval
2024-02-12 15:51:12 -08:00
Bagatur
f7e453971d community[patch]: remove print (#17435) 2024-02-12 15:21:38 -08:00
Spencer Kelly
54fa78c887 community[patch]: fixed vector similarity filtering (#16967)
**Description:** changed filtering so that failed filter doesn't add
document to results. Currently filtering is entirely broken and all
documents are returned whether or not they pass the filter.

fixes issue introduced in
https://github.com/langchain-ai/langchain/pull/16190
2024-02-12 14:52:57 -08:00
Aditya
a23c719c8b google-genai[minor]: add safety settings (#16836)
Replace this entire comment with:
- **Description:Expose safety_settings for Gemini integrations on
google-generativeai
  - **Issue:NA,
  - **Dependencies:NA
  - **Twitter handle:@aditya_rane

@lkuligin for review

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-12 13:44:24 -08:00
Abhijeeth Padarthi
584b647b96 community[minor]: AWS Athena Document Loader (#15625)
- **Description:** Adds the document loader for [AWS
Athena](https://aws.amazon.com/athena/), a serverless and interactive
analytics service.
  - **Dependencies:** Added boto3 as a dependency
2024-02-12 12:53:40 -08:00
david-tempelmann
93da18b667 community[minor]: Add mmr and similarity_score_threshold retrieval to DatabricksVectorSearch (#16829)
- **Description:** This PR adds support for `search_types="mmr"` and
`search_type="similarity_score_threshold"` to retrievers using
`DatabricksVectorSearch`,
  - **Issue:** 
  - **Dependencies:**
  - **Twitter handle:**

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 12:51:37 -08:00
Erick Friis
42648061ad openai[patch]: code cleaning (#17355)
h/t @tdene for finding cleanup op in #17047
2024-02-12 12:36:12 -08:00
Harrison Chase
a9d6da609a add self discover notebook (#17387) 2024-02-12 09:38:43 -08:00
ByeongUk Choi
ac970c9497 Update Docs for TFIDFRetriever Import Path (#17322)
This PR updates the `TF-IDF.ipynb` documentation to reflect the new
import path for TFIDFRetriever in the langchain-community package. The
previous path, `from langchain.retrievers import TFIDFRetriever`, has
been updated to `from langchain_community.retrievers import
TFIDFRetriever` to align with the latest changes in the langchain
library.
2024-02-11 21:26:08 -08:00
Michael Hunger
1c902ce3d1 tools:docs: update google_search.ipynb - change tool name (#17354)
according to https://youtu.be/rZus0JtRqXE?si=aFo1JTDnu5kSEiEN&t=678 by
@efriis

- **Description:** Seems the requirements for tool names have changed
and spaces are no longer allowed. Changed the tool name from Google
Search to google_search in the notebook
  - **Issue:** n/a
  - **Dependencies:** none
  - **Twitter handle:** @mesirii
2024-02-11 21:25:19 -08:00
Massimiliano Pronesti
3894b4d9a5 community: add gpt-4-turbo and gpt-4-0125 costs (#17349)
Ref: https://openai.com/pricing
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-11 21:24:24 -08:00
jiangzf93
d6a1c88ca7 docs: update documentation for file system tool integration (#17377)
- **Description:** Update the docs for the tool integration module `file
system`
- **Issue:** [For New Contributors: Update Integration Documentation
#15664](https://github.com/langchain-ai/langchain/issues/15664#top)
  - **Dependencies:** N/A
2024-02-11 21:19:40 -08:00
Pennlaine
2384267900 Updated doc for tools/pubmed with new functions: invoke. (#17378)
Updated doc for integrations/chat/anthropic_functions #15664 

  - **Description:**
Adds `pip install` instructions
Update `run` with `invoke`

  - **Issue:** 
Fixes #15664
2024-02-11 21:19:31 -08:00
Tomaz Bratanic
19a1c9183d Improve graph cypher qa prompt (#17380)
Unlike vector results, the LLM has to completely trust the context of a
graph database result, even if it doesn't provide whole context. We
tried with instructions, but it seems that adding a single example is
the way to go to solve this issue.
2024-02-11 21:15:46 -08:00
Sandeep Banerjee
183daa6e6f google-genai[patch]: on_llm_new_token fix (#16924)
### This pull request makes the following changes:
* Fixed issue #16913

Fixed the google gen ai chat_models.py code to make sure that the
callback is called before the token is yielded

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 18:00:24 -08:00
Bagatur
10c10f2dea cli[patch]: integration template nits (#14691)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 17:59:34 -08:00
Erick Friis
99540d3d75 infra: no print in newer partner packages (#17353)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-09 16:40:02 -08:00
William FH
7c03cc5ed4 Support serialization when inputs/outputs contain generators (#17338)
Pydantic's `dict()` function raises an error here if you pass in a
generator. We have a more robust serialization function in lagnsmith
that we will use instead.
2024-02-09 16:24:54 -08:00
Erick Friis
3a2eb6e12b infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
Jael Gu
c07c0da01a community[patch]: Fix Milvus add texts when ids=None (#17021)
- **Description:** Fix Milvus add texts when ids=None (auto_id=True)

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-09 18:48:37 -05:00
Quang Hoa
54c1fb3f25 community[patch]: Make some functions work with Milvus (#10695)
**Description**
Make some functions work with Milvus:
1. get_ids: Get primary keys by field in the metadata
2. delete: Delete one or more entities by ids
3. upsert: Update/Insert one or more entities

**Issue**
None
**Dependencies**
None
**Tag maintainer:**
@hwchase17 
**Twitter handle:**
None

---------

Co-authored-by: HoaNQ9 <hoanq.1811@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:21:31 -08:00
kYLe
c9999557bf community[patch]: Modify LLMs/Anyscale work with OpenAI API v1 (#14206)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
- **Description:** 
1. Modify LLMs/Anyscale to work with OAI v1
2. Get rid of openai_ prefixed variables in Chat_model/ChatAnyscale
3. Modify `anyscale_api_base` to `anyscale_base_url` to follow OAI name
convention (reverted)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:11:18 -08:00
Charlie Marsh
24c0bab57b infra, multiple: Upgrade configuration for Ruff v0.2.0 (#16905)
## Summary

This PR upgrades LangChain's Ruff configuration in preparation for
Ruff's v0.2.0 release. (The changes are compatible with Ruff v0.1.5,
which LangChain uses today.) Specifically, we're now warning when
linter-only options are specified under `[tool.ruff]` instead of
`[tool.ruff.lint]`.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-09 14:28:02 -08:00
Bagatur
01409add5a google-vertexai[patch]: rm deps (#17077)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 14:12:10 -08:00
Erick Friis
d9e7675f7e templates: gemini-functions-agent readme update (#17288) 2024-02-09 14:10:23 -08:00
Erick Friis
1c2facf88d nvidia-ai-endpoints[patch]: release 0.0.3 (#17345) 2024-02-09 13:55:01 -08:00
Vadim Kudlay
5f9ac6986e nvidia-ai-endpoints[patch]: model arguments (e.g. temperature) on construction bug (#17290)
- **Issue:** Issue with model argument support (been there for a while
actually):
- Non-specially-handled arguments like temperature don't work when
passed through constructor.
- Such arguments DO work quite well with `bind`, but also do not abide
by field requirements.
- Since initial push, server-side error messages have gotten better and
v0.0.2 raises better exceptions. So maybe it's better to let server-side
handle such issues?
- **Description:**
- Removed ChatNVIDIA's argument fields in favor of
`model_kwargs`/`model_kws` arguments which aggregates constructor kwargs
(from constructor pathway) and merges them with call kwargs (bind
pathway).
- Shuffled a few functions from `_NVIDIAClient` to `ChatNVIDIA` to
streamline construction for future integrations.
- Minor/Optional: Old services didn't have stop support, so client-side
stopping was implemented. Now do both.
- **Any Breaking Changes:** Minor breaking changes if you strongly rely
on chat_model.temperature, etc. This is captured by
chat_model.model_kwargs.

PR passes tests and example notebooks and example testing. Still gonna
chat with some people, so leaving as draft for now.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 13:46:02 -08:00
Leonid Ganeline
932c52c333 community[patch]: docstrings (#16810)
- added missed docstrings
- formated docstrings to the consistent form
2024-02-09 12:48:57 -08:00
Leonid Ganeline
ae66bcbc10 core[patch]: docstring update (#16813)
- added missed docstrings
- formated docstrings to consistent form
2024-02-09 12:47:41 -08:00
Eugene Yurtsev
e10030e241 core[patch]: Add unit test to cover different streaming format for json parsing (#17063)
Add unit test to cover this issue:

https://github.com/langchain-ai/langchain/issues/16423

which was resolved by this PR:

https://github.com/langchain-ai/langchain/pull/16670/files

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-09 11:28:55 -05:00
Kononov Pavel
15bc201967 langchain_community: Fix typo bug (#17324)
Problem from #17095

This error wasn't in the v1.4.0
2024-02-09 11:27:33 -05:00
Eugene Yurtsev
344a227b5b CI: Update documentation template (#17325)
Update the documentation template
2024-02-09 11:27:18 -05:00
Erick Friis
023cb59e8a templates: gemini-functions-agent genai package bump (#17286) 2024-02-08 19:47:58 -08:00
Erick Friis
e660a1685b google-genai[patch]: release 0.0.8 (#17285) 2024-02-08 19:39:44 -08:00
Erick Friis
12d3159dd6 templates: simplify tool in gemini-functions-agent 2 (#17283) 2024-02-08 19:39:29 -08:00
Erick Friis
febf9540b9 google-genai[patch]: fix tool format, use protos (#17284) 2024-02-08 19:36:49 -08:00
Erick Friis
d8913b9428 templates: simplify tool in gemini-functions-agent (#17282) 2024-02-08 19:09:27 -08:00
German Martin
1032faba5f langchain_google_genai : Add missing _identifying_params property. (#17224)
Description: Missing _identifying_params create issues when dealing with
callbacks to get current run model parameters.
All other model partners implementation provide this property and also
provide _default_params. I'm not sure about the default values to
include or if we can re-use the same as for _VertexAICommon(), this
change allows you to access the model parameters correctly.
Issue: Not exactly this issue but could be related
https://github.com/langchain-ai/langchain/issues/14711
Twitter handle:@musicaoriginal2
2024-02-08 17:40:21 -08:00
Erick Friis
e4da7918f3 google-genai[patch]: fix streaming, function calling (#17268) 2024-02-08 17:29:53 -08:00
Ruben Hakopian
96b5711a0c google-vertexai[patch]: Fixed SafetySettings handling in streaming API in VertexAI (#17278)
The streaming API doesn't separate safety_settings from the
generation_config payload. As the result the following error is observed
when using `stream` API. The functionality is correct with `invoke` API.

The fix separates the `safety_settings` from params and sets it as
argument to the `send_message` method.

```
ERROR:         Unknown field for GenerationConfig: safety_settings
Traceback (most recent call last):
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py", line 250, in stream
    raise e
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py", line 234, in stream
    for chunk in self._stream(
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py", line 501, in _stream
    for response in responses:
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py", line 921, in _send_message_streaming
    for chunk in stream:
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py", line 514, in _generate_content_streaming
    request = self._prepare_request(
              ^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py", line 256, in _prepare_request
    gapic_generation_config = gapic_content_types.GenerationConfig(
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/proto/message.py", line 576, in __init__
    raise ValueError(
ValueError: Unknown field for GenerationConfig: safety_settings
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-08 17:25:28 -08:00
Kartheek Yakkala
b18c6ab9ad docs: Added LangGraph in framework parts of readme file (#17279)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-08 17:19:47 -08:00
Bagatur
65e97c9b53 infra: mv SQLDatabase tests to community (#17276) 2024-02-08 17:05:43 -08:00
Bagatur
72c7af0bc0 langchain[patch]: undo redis cache import (#17275) 2024-02-08 16:39:55 -08:00
Bagatur
8bad4157ad langchain[patch]: Release 0.1.6 (#17133) 2024-02-08 16:25:06 -08:00
Bagatur
7fa4dc593f core[patch]: Release 0.1.22 (#17274) 2024-02-08 16:13:33 -08:00
Bagatur
02ef9164b5 langchain[patch]: expose cohere rerank score, add parent doc param (#16887) 2024-02-08 16:07:18 -08:00
Bagatur
35c1bf339d infra: rm boto3, gcaip from pyproject (#17270) 2024-02-08 15:28:22 -08:00
Leonid Ganeline
389b055bd6 docs: Toolkits menu (#16217)
The Integrations `Toolkits` menu was named as [`Agents and
toolkits`](https://python.langchain.com/docs/integrations/toolkits).
This name has a historical reason that is not correct anymore. Now this
menu is all about community `Toolkits`. There is a separate menu for
[Agents](https://python.langchain.com/docs/modules/agents/). Also Agents
are officially not part of Integrations (Community package) but part of
LangChain package.
2024-02-08 14:52:26 -08:00
Alex
de5e96b5f9 community[patch]: updated openai prices in mapping (#17009)
- **Description:** there are january prices update for chatgpt
[blog](https://openai.com/blog/new-embedding-models-and-api-updates),
also there are updates on their website on page
[pricing](https://openai.com/pricing)
- **Issue:** N/A

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 14:43:44 -08:00
Mohammad Mohtashim
e35c7fa3b2 [Langchain_core]: Added Docstring for RunnableConfigurableAlternatives (#17263)
I noticed that RunnableConfigurableAlternatives which is an important
composition in LCEL has no Docstring. Therefore I added the detailed
Docstring for it.
@baskaryan, @eyurtsev, @hwchase17 please have a look and let me if the
docstring is looking good.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 17:05:33 -05:00
Armin Stepanyan
641efcf41c community: add runtime kwargs to HuggingFacePipeline (#17005)
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.

Usage example:

```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)

hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:58:31 -08:00
Scott Nath
a32798abd7 community: Add you.com utility, update you retriever integration docs (#17014)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

- **Description: changes to you.com files** 
    - general cleanup
- adds community/utilities/you.py, moving bulk of code from retriever ->
utility
    - removes `snippet` as endpoint
    - adds `news` as endpoint
    - adds more tests

<s>**Description: update community MAKE file** 
    - adds `integration_tests`
    - adds `coverage`</s>

- **Issue:** the issue # it fixes if applicable,
- [For New Contributors: Update Integration
Documentation](https://github.com/langchain-ai/langchain/issues/15664#issuecomment-1920099868)
- **Dependencies:** n/a
- **Twitter handle:** @scottnath
- **Mastodon handle:** scottnath@mastodon.social

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:47:50 -08:00
joelsprunger
3984f6604f langchain: adds recursive json splitter (#17144)
- **Description:** This adds a recursive json splitter class to the
existing text_splitters as well as unit tests
- **Issue:** splitting text from structured data can cause issues if you
have a large nested json object and you split it as regular text you may
end up losing the structure of the json. To mitigate against this you
can split the nested json into large chunks and overlap them, but this
causes unnecessary text processing and there will still be times where
the nested json is so big that the chunks get separated from the parent
keys.

As an example you wouldn't want the following to be split in half:
```shell
{'val0': 'DFWeNdWhapbR',
 'val1': {'val10': 'QdJo',
          'val11': 'FWSDVFHClW',
          'val12': 'bkVnXMMlTiQh',
          'val13': 'tdDMKRrOY',
          'val14': 'zybPALvL',
          'val15': 'JMzGMNH',
          'val16': {'val160': 'qLuLKusFw',
                    'val161': 'DGuotLh',
                    'val162': 'KztlcSBropT',
-----------------------------------------------------------------------split-----
                    'val163': 'YlHHDrN',
                    'val164': 'CtzsxlGBZKf',
                    'val165': 'bXzhcrWLmBFp',
                    'val166': 'zZAqC',
                    'val167': 'ZtyWno',
                    'val168': 'nQQZRsLnaBhb',
                    'val169': 'gSpMbJwA'},
          'val17': 'JhgiyF',
          'val18': 'aJaqjUSFFrI',
          'val19': 'glqNSvoyxdg'}}
```
Any llm processing the second chunk of text may not have the context of
val1, and val16 reducing accuracy. Embeddings will also lack this
context and this makes retrieval less accurate.

Instead you want it to be split into chunks that retain the json
structure.
```shell
{'val0': 'DFWeNdWhapbR',
 'val1': {'val10': 'QdJo',
          'val11': 'FWSDVFHClW',
          'val12': 'bkVnXMMlTiQh',
          'val13': 'tdDMKRrOY',
          'val14': 'zybPALvL',
          'val15': 'JMzGMNH',
          'val16': {'val160': 'qLuLKusFw',
                    'val161': 'DGuotLh',
                    'val162': 'KztlcSBropT',
                    'val163': 'YlHHDrN',
                    'val164': 'CtzsxlGBZKf'}}}
```
and
```shell
{'val1':{'val16':{
                    'val165': 'bXzhcrWLmBFp',
                    'val166': 'zZAqC',
                    'val167': 'ZtyWno',
                    'val168': 'nQQZRsLnaBhb',
                    'val169': 'gSpMbJwA'},
          'val17': 'JhgiyF',
          'val18': 'aJaqjUSFFrI',
          'val19': 'glqNSvoyxdg'}}
```
This recursive json text splitter does this. Values that contain a list
can be converted to dict first by using split(... convert_lists=True)
otherwise long lists will not be split and you may end up with chunks
larger than the max chunk.

In my testing large json objects could be split into small chunks with 
   Increased question answering accuracy
 The ability to split into smaller chunks meant retrieval queries can
use fewer tokens


- **Dependencies:** json import added to text_splitter.py, and random
added to the unit test
  - **Twitter handle:** @joelsprunger

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-08 13:45:34 -08:00
Schalkje
f0ada1a396 docs: Update quickstart.mdx - Fix 422 error in example with LangServe client code (#17163)
**Description:**: Fix 422 error in example with LangServe client code

httpx.HTTPStatusError: Client error '422 Unprocessable Entity' for url
'http://localhost:8000/agent/invoke'
2024-02-08 13:35:39 -08:00
Leonid Kuligin
1862900078 google-genai[patch]: added parsing of function call / response (#17245) 2024-02-08 13:34:46 -08:00
Cailin Wang
a210a8bc53 langchain[patch]: Fix create_retriever_tool missing on_retriever_end Document content (#16933)
- **Description:** In create_retriever_tool create_tool, fix
create_retriever_tool's missing Document content for on_retriever_end,
caused by create_retriever_tool's missing callbacks parameter,
  - **Twitter handle:** @CailinWang_

---------

Co-authored-by: root <root@Bluedot-AI>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:18:43 -08:00
Kartheek Yakkala
3a22157d92 docs: Added LCEL for alibabacloud and anyscale (#17252)
---------

Co-authored-by: KARTHEEK YAKKALA <kartheekyakkala@KARTHEEKs-Air.lan>
Co-authored-by: KARTHEEK YAKKALA <kartheekyakkala.se@gmail.com>
2024-02-08 13:18:09 -08:00
Sparsh Jain
a2167614b7 google-genai[patch]: Invoke callback prior to yielding token (#17092)
- **Description:** Invoke callback prior to yielding token in stream and
astream methods for Google-genai,
  - **Issue:** the issue # 16913,
  - **Twitter handle:** Sparsh10649446

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-08 13:13:46 -08:00
Liang Zhang
7306600e2f community[patch]: Support SerDe transform functions in Databricks LLM (#16752)
**Description:** Databricks LLM does not support SerDe the
transform_input_fn and transform_output_fn. After saving and loading,
the LLM will be broken. This PR serialize these functions into a hex
string using pickle, and saving the hex string in the yaml file. Using
pickle to serialize a function can be flaky, but this is a simple
workaround that unblocks many use cases. If more sophisticated SerDe is
needed, we can improve it later.

Test:
Added a simple unit test.
I did manual test on Databricks and it works well.
The saved yaml looks like:
```
llm:
      _type: databricks
      cluster_driver_port: null
      cluster_id: null
      databricks_uri: databricks
      endpoint_name: databricks-mixtral-8x7b-instruct
      extra_params: {}
      host: e2-dogfood.staging.cloud.databricks.com
      max_tokens: null
      model_kwargs: null
      n: 1
      stop: null
      task: null
      temperature: 0.0
      transform_input_fn: 80049520000000000000008c085f5f6d61696e5f5f948c0f7472616e73666f726d5f696e7075749493942e
      transform_output_fn: null
```

@baskaryan

```python
from langchain_community.embeddings import DatabricksEmbeddings
from langchain_community.llms import Databricks
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import mlflow

embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")

def transform_input(**request):
  request["messages"] = [
    {
      "role": "user",
      "content": request["prompt"]
    }
  ]
  del request["prompt"]
  return request

llm = Databricks(endpoint_name="databricks-mixtral-8x7b-instruct", transform_input_fn=transform_input)

persist_dir = "faiss_databricks_embedding"

# Create the vector db, persist the db to a local fs folder
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
db.save_local(persist_dir)

def load_retriever(persist_directory):
    embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
    vectorstore = FAISS.load_local(persist_directory, embeddings)
    return vectorstore.as_retriever()

retriever = load_retriever(persist_dir)
retrievalQA = RetrievalQA.from_llm(llm=llm, retriever=retriever)
with mlflow.start_run() as run:
    logged_model = mlflow.langchain.log_model(
        retrievalQA,
        artifact_path="retrieval_qa",
        loader_fn=load_retriever,
        persist_dir=persist_dir,
    )

# Load the retrievalQA chain
loaded_model = mlflow.pyfunc.load_model(logged_model.model_uri)
print(loaded_model.predict([{"query": "What did the president say about Ketanji Brown Jackson"}]))

```
2024-02-08 13:09:50 -08:00
cjpark-data
ce22e10c4b community[patch]: Fix KeyError 'embedding' (MongoDBAtlasVectorSearch) (#17178)
- **Description:**
Embedding field name was hard-coded named "embedding".
So I suggest that change `res["embedding"]` into
`res[self._embedding_key]`.
  - **Issue:** #17177,
- **Twitter handle:**
[@bagcheoljun17](https://twitter.com/bagcheoljun17)
2024-02-08 12:06:42 -08:00
Neli Hateva
9bb5157a3d langchain[patch], community[patch]: Fixes in the Ontotext GraphDB Graph and QA Chain (#17239)
- **Description:** Fixes in the Ontotext GraphDB Graph and QA Chain
related to the error handling in case of invalid SPARQL queries, for
which `prepareQuery` doesn't throw an exception, but the server returns
400 and the query is indeed invalid
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-02-08 12:05:43 -08:00
ByeongUk Choi
b88329e9a5 community[patch]: Implement Unique ID Enforcement in FAISS (#17244)
**Description:**
Implemented unique ID validation in the FAISS component to ensure all
document IDs are distinct. This update resolves issues related to
non-unique IDs, such as inconsistent behavior during deletion processes.
2024-02-08 12:03:33 -08:00
Jorge Campo
88609565a3 docs: Fix typo in github.ipynb (#17259)
'agiven' -> 'a given'
2024-02-08 12:03:00 -08:00
Bagatur
852973d616 langchain[minor], core[minor]: update json, pydantic parser. add openai-json structured output runnable (#16914) 2024-02-08 11:59:06 -08:00
hsuyuming
e22c4d4eb0 google-vertexai[patch]: fix _parse_response_candidate issue (#16647)
**Description:** enable _parse_response_candidate to support complex
structure format.
  **Issue:** 
currently, if Gemini response complex args format, people will get
"TypeError: Object of type RepeatedComposite is not JSON serializable"
error from _parse_response_candidate.
  
 response candidate example
```
content {
  role: "model"
  parts {
    function_call {
      name: "Information"
      args {
        fields {
          key: "people"
          value {
            list_value {
              values {
                string_value: "Joe is 30, his mom is Martha"
              }
            }
          }
        }
      }
    }
  }
}
finish_reason: STOP
safety_ratings {
  category: HARM_CATEGORY_HARASSMENT
  probability: NEGLIGIBLE
}
safety_ratings {
  category: HARM_CATEGORY_HATE_SPEECH
  probability: NEGLIGIBLE
}
safety_ratings {
  category: HARM_CATEGORY_SEXUALLY_EXPLICIT
  probability: NEGLIGIBLE
}
safety_ratings {
  category: HARM_CATEGORY_DANGEROUS_CONTENT
  probability: NEGLIGIBLE
}
```
 
error msg:
```
Traceback (most recent call last):
  File "/home/jupyter/user/abehsu/gemini_langchain_tools/example2.py", line 36, in <module>
    print(tagging_chain.invoke({"input": "Joe is 30, his mom is Martha"}))
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/runnables/base.py", line 2053, in invoke
    input = step.invoke(
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/runnables/base.py", line 3887, in invoke
    return self.bound.invoke(
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 165, in invoke
    self.generate_prompt(
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 543, in generate_prompt
    return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 407, in generate
    raise e
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 397, in generate
    self._generate_with_cache(
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 576, in _generate_with_cache
    return self._generate(
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 406, in _generate
    generations = [
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 408, in <listcomp>
    message=_parse_response_candidate(c),
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 280, in _parse_response_candidate
    function_call["arguments"] = json.dumps(
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/__init__.py", line 231, in dumps
    return _default_encoder.encode(obj)
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 199, in encode
    chunks = self.iterencode(o, _one_shot=True)
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 257, in iterencode
    return _iterencode(o, 0)
  File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 179, in default
    raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type RepeatedComposite is not JSON serializable
```
  

  **Twitter handle:**  @abehsu1992626
2024-02-08 11:48:25 -08:00
Erick Friis
d77bb7b4e9 google-vertexai[patch]: integration test fix, release 0.0.5 (#17258) 2024-02-08 11:45:33 -08:00
Aditya
98176ac982 langchain_google_vertexai : added logic to override get_num_tokens_from_messages() for ChatVertexAI (#16784)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description: added logic to override get_num_tokens_from_messages()
for ChatVertexAI. Currently ChatVertexAI was inheriting
get_num_tokens_from_messages() from BaseChatModel which in-turn was
calling GPT-2 tokenizer
  - **Issue: NA
  - **Dependencies: NA
  - **Twitter handle:@aditya_rane

@lkuligin for review

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
2024-02-08 11:30:42 -08:00
Bagatur
00a09e1b71 docs: use PromptTemplate.from_template (#17218)
Ran
```python
import glob
import re

def update_prompt(x):
    return re.sub(
        r"(?P<start>\b)PromptTemplate\(template=(?P<template>.*), input_variables=(?:.*)\)",
        "\g<start>PromptTemplate.from_template(\g<template>)",
        x
    )


for fn in glob.glob("docs/**/*", recursive=True):
    try:
        content = open(fn).readlines()
    except:
        continue
    content = [update_prompt(l) for l in content]
    with open(fn, "w") as f:
        f.write("".join(content))
```
2024-02-07 19:52:42 -08:00
sana-google
7f55c95790 docs: add missing link to Quickstart (#17085)
Replace this entire comment with:
- **Description:** Added missing link for Quickstart in Model IO
documentation,
  - **Issue:** N/A,
  - **Dependencies:** N/A,
  - **Twitter handle:** N/A

<!--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-07 22:26:10 -05:00
Bassem Yacoube
4e3ed7f043 community[patch]: octoai embeddings bug fix (#17216)
fixes a bug in octoa_embeddings provider
2024-02-07 22:25:52 -05:00
Eugene Yurtsev
780e84ae79 community[minor]: SQLDatabase Add fetch mode cursor, query parameters, query by selectable, expose execution options, and documentation (#17191)
- **Description:** Improve `SQLDatabase` adapter component to promote
code re-use, see
[suggestion](https://github.com/langchain-ai/langchain/pull/16246#pullrequestreview-1846590962).
  - **Needed by:** GH-16246
  - **Addressed to:** @baskaryan, @cbornet 

## Details
- Add `cursor` fetch mode
- Accept SQL query parameters
- Accept both `str` and SQLAlchemy selectables as query expression
- Expose `execution_options`
- Documentation page (notebook) about `SQLDatabase` [^1]
See [About
SQLDatabase](https://github.com/langchain-ai/langchain/blob/c1c7b763/docs/docs/integrations/tools/sql_database.ipynb).

[^1]: Apparently there hasn't been any yet?

---------

Co-authored-by: Andreas Motl <andreas.motl@crate.io>
2024-02-07 22:23:43 -05:00
Tomaz Bratanic
7e4b676d53 community[patch]: Better error propagation for neo4jgraph (#17190)
There are other errors that could happen when refreshing the schema, so
we want to propagate specific errors for more clarity
2024-02-07 22:16:14 -05:00
Leonid Ganeline
d903fa313e docs: titles fix (#17206)
Several notebooks have Title != file name. That results in corrupted
sorting in Navbar (ToC).
- Fixed titles and file names.
- Changed text formats to the consistent form
- Redirected renamed files in the `Vercel.json`
2024-02-07 22:09:34 -05:00
Luiz Ferreira
34d2daffb3 community[patch]: Fix chat openai unit test (#17124)
- **Description:** 
Actually the test named `test_openai_apredict` isn't testing the
apredict method from ChatOpenAI.
  - **Twitter handle:**
  https://twitter.com/OAlmofadas
2024-02-07 22:08:26 -05:00
Dmitry Kankalovich
f92738a6f6 langchain[minor], community[minor], core[minor]: Async Cache support and AsyncRedisCache (#15817)
* This PR adds async methods to the LLM cache. 
* Adds an implementation using Redis called AsyncRedisCache.
* Adds a docker compose file at the /docker to help spin up docker
* Updates redis tests to use a context manager so flushing always happens by default
2024-02-07 22:06:09 -05:00
Harrison Chase
19546081c6 templates: add gemini functions agent (#17141)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-07 17:27:01 -08:00
Bagatur
aeb6b38901 docs: cleanup fleet integration (#17214)
Causing search issues
2024-02-07 17:18:48 -08:00
Erick Friis
4153837502 google-genai[patch]: release 0.0.7 (#17193) 2024-02-07 17:15:09 -08:00
Erick Friis
927ab77d6e google-genai[patch]: no error for FunctionMessage (#17215)
Both should eventually match this:
https://github.com/langchain-ai/langchain/blob/master/libs/partners/google-vertexai/langchain_google_vertexai/chat_models.py#L179

But seems undocumented / can't find types in genai package
2024-02-07 17:14:50 -08:00
Erick Friis
2ecf318218 google-genai[patch]: match function call interface (#17213)
should match vertex
2024-02-07 17:07:31 -08:00
Erick Friis
e17173c403 google-vertexai[patch]: function calling integration test (#17209) 2024-02-07 15:49:56 -08:00
Erick Friis
52be84a603 google-vertexai[patch]: serializable citation metadata, release 0.0.4 (#17145)
was breaking in langserve before
2024-02-07 15:47:32 -08:00
Nuno Campos
19ff81e74f Fix stream events/log with some kinds of non addable output (#17205)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-07 15:46:13 -08:00
Bagatur
6f1403b9b6 community[patch]: Release 0.0.19 (#17207)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-07 15:37:01 -08:00
Erick Friis
a13dc47a08 cli[patch]: copyright 2024 default (#17204) 2024-02-07 14:52:37 -08:00
Bagatur
00757567ba core[patch]: Release 0.1.21 (#17202) 2024-02-07 14:20:20 -08:00
Bagatur
af74301ab9 core[patch], community[patch]: link extraction continue on failure (#17200) 2024-02-07 14:15:30 -08:00
Henry
2281f00198 langchain: Standardize output_parser.py across all agent types for custom FORMAT_INSTRUCTIONS (#17168)
- **Description:** 
This PR standardizes the `output_parser.py` file across all agent types
to ensure a uniform parsing mechanism is implemented. It introduces a
cohesive structure and common interface for output parsing, facilitating
easier modifications and extensions by users. The standardized approach
enhances maintainability and scalability of the codebase by providing a
consistent pattern for output parsing, which can be easily understood
and utilized across different agent types.

This PR builds upon the foundation set by a previously merged PR, which
focused exclusively on standardizing the `output_parser.py` for the
`conversational_agent` ([PR
#16945](https://github.com/langchain-ai/langchain/pull/16945)). With
this new update, I extend the standardization efforts to encompass
`output_parser.py` files across all agent types. This enhancement not
only unifies the parsing mechanism across the board but also introduces
the flexibility for users to incorporate custom `FORMAT_INSTRUCTIONS`.

  - **Issue:** 
https://github.com/langchain-ai/langchain/issues/10721
https://github.com/langchain-ai/langchain/issues/4044

  - **Dependencies:**
No new dependencies required for this change

  - **Twitter handle:**
With my github user is enough. Thanks

I hope you accept my PR.
2024-02-07 13:46:17 -08:00
Erick Friis
1cf5a5858f remove pg_essay.txt (#17198)
Added in #16159
2024-02-07 12:58:01 -08:00
Tomaz Bratanic
ecf8042a10 templates: Add neo4j semantic layer with ollama template (#17192)
A template with JSON-based agent using Mixtral via Ollama.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-07 12:50:54 -08:00
Erick Friis
f87acf0340 infra: better conditional (#17197) 2024-02-07 12:49:02 -08:00
Erick Friis
4ae91733aa infra: fix core release (#17195)
core doesn't have any min deps to test
2024-02-07 12:35:27 -08:00
Bagatur
78409634fe core[patch]: Release 0.1.20 (#17194) 2024-02-07 12:28:05 -08:00
Nuno Campos
65798289a4 core[minor]: Use batched tracing in sdk (#16305)
Remove threadpool executor usage in langchain tracer, this is now
handled by sdk
2024-02-07 12:10:58 -08:00
chyroc
f87b38a559 google-genai[minor]: support functions call (#15146)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-07 12:09:30 -08:00
Tomaz Bratanic
302989a2b1 allow optional newline in the action responses of JSON Agent parser (#17186)
Based on my experiments, the newline isn't always there, so we can make
the regex slightly more robust by allowing an optional newline after the
bacticks
2024-02-07 10:26:14 -08:00
William FH
9fa07076da Add trace_as_chain_group metadata (#17187) 2024-02-07 09:42:44 -08:00
Leonid Ganeline
5ceaf784f3 docs Integraions/Components menu reordered (#17151)
This PR is opinionated.
- Moved `Embedding models` item to place after `LLMs` and `Chat model`,
so all items with models are together.
- Renamed `Text embedding models` to `Embedding models`. Now, it is
shorter and easier to read. `Text` is obvious from context. The same as
the `Text LLMs` vs. `LLMs` (we also have multi-modal LLMs).
2024-02-06 20:33:41 -08:00
Leonid Ganeline
0af0fc5d25 docs integraions/providers nav fix (#17148)
Issue: `Provides` page is presented as the index page (on the
`Providers` item) and as the `Providers/Providers` item. The latter
should not be in the menu. See the picture.

![image](https://github.com/langchain-ai/langchain/assets/2256422/6894023f-f13a-4f0d-8fe2-ed5b0ae2bdd2)
This PR fixes this.
2024-02-06 20:33:14 -08:00
Leonid Ganeline
bf55279d39 docs: tutorials update (#17132)
Added the course and the one-pager links
2024-02-06 20:30:30 -08:00
Erick Friis
f499a222de infra: release min version debugging 2 (#17152) 2024-02-06 18:20:19 -08:00
Erick Friis
deb02de051 infra: release min version debugging (#17150) 2024-02-06 18:10:37 -08:00
Erick Friis
9710346095 infra: poetry run min versions 2 (#17149) 2024-02-06 17:57:43 -08:00
Erick Friis
181a033226 infra: poetry run min versions (#17146)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-06 17:37:36 -08:00
Erick Friis
d397721a34 docs: format (#17143) 2024-02-06 16:32:53 -08:00
Erick Friis
2187268208 infra: fix release (#17142) 2024-02-06 16:22:20 -08:00
Erick Friis
3e58df43c2 mistralai[patch]: release 0.0.4 (#17139) 2024-02-06 16:05:20 -08:00
Erick Friis
22b6a03a28 infra: read min versions (#17135) 2024-02-06 16:05:11 -08:00
Erick Friis
f881a3330c mistralai[patch]: 16k token batching logic embed (#17136) 2024-02-06 15:59:08 -08:00
Arno Schutijzer
863f96b2e0 docs: fix typo in ollama notebook (#17127)
- **Description:** typo fix in ollama notebook
2024-02-06 16:54:40 -05:00
Leonid Ganeline
42c812a549 API References sorted Partner libs menu (#17130)
The `Partner libs` menu is not sorted. Now it is long enough, and items
should be sorted to simplify a package search.
- Sorted items in the `Partner libs` menu
2024-02-06 16:49:23 -05:00
Bagatur
226f376d59 community[patch]: Release 0.0.18 (#17129)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 13:40:00 -08:00
Erick Friis
37062549f9 infra: update to cache v4 (#17126)
stop using nodejs 16. Use 20 (stop deprecation annotation on all ci)

Changelog: https://github.com/actions/cache?tab=readme-ov-file#whats-new
2024-02-06 12:55:01 -08:00
Erick Friis
980e30c361 nvidia-ai-endpoints[patch]: release 0.0.2 (#17125) 2024-02-06 12:48:25 -08:00
Erick Friis
15bd1154a7 pinecone[patch]: integration test new namespace (#17121) 2024-02-06 11:56:00 -08:00
Erick Friis
3ccffa5dcc infra: add integration deps to partner lint (#17122) 2024-02-06 11:51:04 -08:00
Mikhail Khludnev
14ff1438e6 nvidia-trt[patch]: propagate InferenceClientException to the caller. (#16936)
- **Description:**  
 
before the change I've got

1. propagate InferenceClientException to the caller.
2. stop grpc receiver thread on exception 

```
        for token in result_queue:
>           result_str += token
E           TypeError: can only concatenate str (not "InferenceServerException") to str

../../langchain_nvidia_trt/llms.py:207: TypeError
```
And stream thread keeps running. 

after the change request thread stops correctly and caller got a root
cause exception:

```
E                   tritonclient.utils.InferenceServerException: [request id: 4529729] expected number of inputs between 2 and 3 but got 10 inputs for model 'vllm_model'

../../langchain_nvidia_trt/llms.py:205: InferenceServerException
```

  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
  - **Twitter handle:** [t.me/mkhl_spb](https://t.me/mkhl_spb)
 
I'm not sure about test coverage. Should I setup deep mocks or there's a
kind of triton stub via testcontainers or so.
2024-02-06 11:47:07 -08:00
Erick Friis
6af912d7e0 infra: add pinecone secret (#17120) 2024-02-06 11:27:04 -08:00
Junyoung Park
1ed73f1992 community[minor]: Add SelfQueryRetriever support to PGVector (#16991)
- **Description:** Add SelfQueryRetriever support to PGVector
  - **Issue:** -
  - **Dependencies:** -
  - **Twitter handle:** -

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-06 10:50:50 -08:00
Bagatur
cd945e3a5b core[patch]: Release 0.1.19 (#17117) 2024-02-06 09:54:22 -08:00
Frank
ef082c77b1 community[minor]: add github file loader to load any github file content b… (#15305)
### Description
support load any github file content based on file extension.  

Why not use [git
loader](https://python.langchain.com/docs/integrations/document_loaders/git#load-existing-repository-from-disk)
?
git loader clones the whole repo even only interested part of files,
that's too heavy. This GithubFileLoader only downloads that you are
interested files.

### Twitter handle
my twitter: @shufanhaotop

---------

Co-authored-by: Hao Fan <h_fan@apple.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-06 09:42:33 -08:00
老阿張
ac662b3698 docs: Fix typo in amadeus.ipynb (#16916)
Description: "enviornment should be  environment"? 🤔
Issue: Typo
Dependencies: Nope
Twitter handle: laoazhang
2024-02-06 09:42:05 -08:00
Henry
eaeb8a5f71 langchain[patch]: output_parser.py in conversation_chat is customizable (#16945)
**Description:**
With this modification, users can customize the `FORMAT_INSTRUCTIONS`
template, allowing them to create their own prompts

As it is happening in
[this](https://github.com/langchain-ai/langchain/issues/10721) issue,
the `FORMAT_INSTRUCTIONS` is not customizable for the output parser,
unless you create your own class `ConvoOutputParser`. To avoid this, a
modification was done, creating a `format_instruction` variable that
users can customize with ease after initialize the agent.

For example:
```
agent = initialize_agent(
    agent = AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
    tools = tools,
    llm = llm_agent,
    verbose = True,
    max_iterations = 3,
    early_stopping_method = 'generate',
    memory = b_w_memory,
    handle_parsing_errors = True,
    agent_kwargs={
        'system_message':PREFIX,
        'human_message':SUFFIX,
        'template_tool_response':TEMPLATE_TOOL_RESPONSE,
        }
)
agent.agent.output_parser.format_instructions = "MY CUSTOM FORMAT INSTRUCTIONS"
print(agent.agent.output_parser.get_format_instructions())
MY CUSTOM FORMAT INSTRUCTIONS
```

Other parameters like `system_message`, `human_message`, or
`template_tool_response` are already customizable and with this PR, the
last parameter `FORMAT_INSTRUCTIONS` in
`langchain.agents.conversational_chat.prompt` can be modified.


**Issue:**
https://github.com/langchain-ai/langchain/issues/10721

**Dependencies:**
No new dependencies required for this change

**Twitter handle:**
With my github user is enough. Thanks

I hope you accept my PR.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-06 09:41:53 -08:00
Ryan Kraus
f027696b5f community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**

- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A

All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable

The following Python function is an example of creating a chain that
makes use of both of these Runnables:

```python
def create(
    config: Configuration,
    audio_encoding: RivaAudioEncoding,
    sample_rate: int,
    audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
    """Create a new instance of the chain."""
    _LOGGER.info("Instantiating the chain.")

    # create the riva asr client
    riva_asr = RivaASR(
        url=str(config.riva_asr.service.url),
        ssl_cert=config.riva_asr.service.ssl_cert,
        encoding=audio_encoding,
        audio_channel_count=audio_channels,
        sample_rate_hertz=sample_rate,
        profanity_filter=config.riva_asr.profanity_filter,
        enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
        language_code=config.riva_asr.language_code,
    )

    # create the prompt template
    prompt = PromptTemplate.from_template("{user_input}")

    # model = ChatOpenAI()
    model = ChatNVIDIA(model="mixtral_8x7b")  # type: ignore

    # create the riva tts client
    riva_tts = RivaTTS(
        url=str(config.riva_asr.service.url),
        ssl_cert=config.riva_asr.service.ssl_cert,
        output_directory=config.riva_tts.output_directory,
        language_code=config.riva_tts.language_code,
        voice_name=config.riva_tts.voice_name,
    )

    # construct and return the chain
    return {"user_input": riva_asr} | prompt | model | riva_tts  # type: ignore
```

The following code is an example of creating a new audio stream for
Riva:

```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
    await input_stream.aput(chunk)
input_stream.close()
```

The following code is an example of how to execute the chain with
RivaASR and RivaTTS

```python
output_stream = asyncio.Queue()
while not input_stream.complete:
    async for chunk in chain.astream(input_stream):
        output_stream.put(chunk)    
```

Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.

---------

Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-05 19:50:50 -08:00
Jan de Boer
2d8015554c docs: Link to Brave Website added (#16958)
**Description:** Link to the Brave Website added to the
`brave-search.ipynb` notebook.
This notebook is shown in the docs as an example for the brave tool.

**Issue:** There was to reference on where / how to get an api key
 
**Dependencies:** none
 
**Twitter handle:** not for this one :)
2024-02-05 18:29:16 -08:00
os1ma
fd88e0f800 docs: update StreamlitCallbackHandler example (#16970)
- **Description:** docs: update StreamlitCallbackHandler example.
  - **Issue:** None
  - **Dependencies:** None

I have updated the example for StreamlitCallbackHandler in the
documentation bellow.
https://python.langchain.com/docs/integrations/callbacks/streamlit

Previously, the example used `initialize_agent`, which has been
deprecated, so I've updated it to use `create_react_agent` instead. Many
langchain users are likely searching examples of combining
`create_react_agent` or `openai_tools_agent_chain` with
StreamlitCallbackHandler. I'm sure this update will be really helpful
for them!

Unfortunately, writing unit tests for this example is difficult, so I
have not written any tests. I have run this code in a standalone Python
script file and ensured it runs correctly.
2024-02-05 18:20:59 -08:00
Marc Mahe
f08a9139d2 docs: update mistral docs for version 0.1+ (#17011)
**Description:**
Updated integration page for mistralai.
2024-02-05 18:03:12 -08:00
François Paupier
929f071513 community[patch]: Fix error in LlamaCpp community LLM with Configurable Fields, 'grammar' custom type not available (#16995)
- **Description:** Ensure the `LlamaGrammar` custom type is always
available when instantiating a `LlamaCpp` LLM
  - **Issue:** #16994 
  - **Dependencies:** None
  - **Twitter handle:** @fpaupier

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-05 17:56:58 -08:00
Leonid Ganeline
563f325034 experimental[patch]: fixed import in experimental (#17078) 2024-02-05 17:47:13 -08:00
Ikko Eltociear Ashimine
5f5f5acbc5 docs: fix typo in dspy.ipynb (#16996)
langugage -> language
2024-02-05 17:31:06 -08:00
Eugene Yurtsev
fbab8baac5 core[patch]: Add astream events config test (#17055)
Verify that astream events propagates config correctly

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-05 17:24:58 -08:00
Eugene Yurtsev
609ea019b2 docs: Update streaming documentation (#17066)
Updating streaming documentation following fix of JSON parser for
streaming json.
2024-02-05 17:24:46 -08:00
Erick Friis
64785822dc templates: bump (#17074) 2024-02-05 17:12:12 -08:00
Scott Nath
10bd901139 infra: add integration_tests and coverage to MAKEFILE (#17053)
- **Description: update community MAKE file** 
    - adds `integration_tests`
    - adds `coverage`

- **Issue:** the issue # it fixes if applicable,
    - moving out of https://github.com/langchain-ai/langchain/pull/17014
- **Dependencies:** n/a
- **Twitter handle:** @scottnath
- **Mastodon handle:** scottnath@mastodon.social

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-05 16:39:55 -08:00
Giulio Zani
9f0b63dba0 experimental[patch]: Fixes issue #17060 (#17062)
As described in issue #17060, in the case in which text has only one
sentence the following function fails. Checking for that and adding a
return case fixed the issue.

```python
    def split_text(self, text: str) -> List[str]:
        """Split text into multiple components."""
        # Splitting the essay on '.', '?', and '!'
        single_sentences_list = re.split(r"(?<=[.?!])\s+", text)
        sentences = [
            {"sentence": x, "index": i} for i, x in enumerate(single_sentences_list)
        ]
        sentences = combine_sentences(sentences)
        embeddings = self.embeddings.embed_documents(
            [x["combined_sentence"] for x in sentences]
        )
        for i, sentence in enumerate(sentences):
            sentence["combined_sentence_embedding"] = embeddings[i]
        distances, sentences = calculate_cosine_distances(sentences)
        start_index = 0

        # Create a list to hold the grouped sentences
        chunks = []
        breakpoint_percentile_threshold = 95
        breakpoint_distance_threshold = np.percentile(
            distances, breakpoint_percentile_threshold
        )  # If you want more chunks, lower the percentile cutoff

        indices_above_thresh = [
            i for i, x in enumerate(distances) if x > breakpoint_distance_threshold
        ]  # The indices of those breakpoints on your list

        # Iterate through the breakpoints to slice the sentences
        for index in indices_above_thresh:
            # The end index is the current breakpoint
            end_index = index

            # Slice the sentence_dicts from the current start index to the end index
            group = sentences[start_index : end_index + 1]
            combined_text = " ".join([d["sentence"] for d in group])
            chunks.append(combined_text)

            # Update the start index for the next group
            start_index = index + 1

        # The last group, if any sentences remain
        if start_index < len(sentences):
            combined_text = " ".join([d["sentence"] for d in sentences[start_index:]])
            chunks.append(combined_text)
        return chunks
```

Co-authored-by: Giulio Zani <salamanderxing@Giulios-MBP.homenet.telecomitalia.it>
2024-02-05 16:18:57 -08:00
Jimmy Moore
912210ac19 core[patch]: fix _sql_record_manager mypy for #17048 (#17073)
- **Description:** Add relevant type annotations for relevant session
and query objects to resolve mypy errors when `# type: ignore` comments
are removed.
  - **Issue:** #17048
  - **Dependencies:** None,
  - **Twitter handle:** [clesiemo3](https://twitter.com/clesiemo3)
 
I attempted to solve the `UpsertionRecord` ignore but it would require
added a deprecated plugin or moving completely to sqlalchemy 2.0+ from
my understanding. I'm assuming this is not something desired at this
point in time.
2024-02-05 16:18:40 -08:00
William FH
3d5e988c55 Add prompt metadata + tags (#17054) 2024-02-05 16:17:31 -08:00
Bagatur
d8f41d0521 docs: add youtube link (#17065) 2024-02-05 16:12:56 -08:00
Bagatur
6e2ed9671f infra: fix breebs test lint (#17075) 2024-02-05 16:09:48 -08:00
T Cramer
cf01fc3790 docs: update parse_partial_json source info (#17036)
- **Description:** Update source-link following recent license update at
open-interpreter project
  - **Issue:** N/A
  - **Dependencies:** None
2024-02-05 15:54:34 -08:00
Harrison Chase
83fbf0e11a docs: add structured tools howto to agents (#15772)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-05 15:53:01 -08:00
Alex Boury
334b6ebdf3 community[minor]: Breebs docs retriever (#16578)
- **Description:** Implementation of breeb retriever with integration
tests ->
libs/community/tests/integration_tests/retrievers/test_breebs.py and
documentation (notebook) ->
docs/docs/integrations/retrievers/breebs.ipynb.
  - **Dependencies:** None
2024-02-05 15:51:08 -08:00
Nova Kwok
eb7b05885f docs: Fix typo in quickstart.ipynb (#16859)
- **Description:** "load HTML **form** web URLs" should be "load HTML
**from** web URLs"? 🤔
  - **Issue:** Typo
  - **Dependencies:** Nope
  - **Twitter handle:** n0vad3v
2024-02-05 15:50:11 -08:00
Shorthills AI
cf0b29b6d2 docs: fixing a minor grammatical mistake (#16931) 2024-02-05 15:49:47 -08:00
Shivani Modi
fcb875629d docs: Updating documentation for Konko provider (#16953)
- **Description:** A small update to the Konko provider documentation.

---------

Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
2024-02-05 15:49:13 -08:00
Benjamin Muskalla
973ba0d84b docs: Fix Copilot name (#16956)
The official name is "GitHub Copilot"
2024-02-05 15:48:47 -08:00
IMRAN KHAN
4b17699818 docs: add 2 more tutorials to the list in youtube.mdx (#16998)
- **Description:** add 2 more tutorials to the list in youtube.mdx, 
  - **Twitter handle:** EhThing
2024-02-05 15:48:34 -08:00
Serena Ruan
9b279ac127 community[patch]: MLflow callback update (#16687)
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-05 15:46:46 -08:00
Mohammad Mohtashim
3c4b24b69a community[patch]: Fix the _call of HuggingFaceHub (#16891)
Fixed the following identified issue: #16849

@baskaryan
2024-02-05 15:34:42 -08:00
Tyler Titsworth
304f3f5fc1 community[patch]: Add Progress bar to HuggingFaceEmbeddings (#16758)
- **Description:** Adds a function parameter to HuggingFaceEmbeddings
called `show_progress` that enables a `tqdm` progress bar if enabled.
Does not function if `multi_process = True`.
  - **Issue:** n/a
  - **Dependencies:** n/a
2024-02-05 14:33:34 -08:00
Supreet Takkar
ae33979813 community[patch]: Allow adding ARNs as model_id to support Amazon Bedrock custom models (#16800)
- **Description:** Adds an additional class variable to `BedrockBase`
called `provider` that allows sending a model provider such as amazon,
cohere, ai21, etc.
Up until now, the model provider is extracted from the `model_id` using
the first part before the `.`, such as `amazon` for
`amazon.titan-text-express-v1` (see [supported list of Bedrock model IDs
here](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html)).
But for custom Bedrock models where the ARN of the provisioned
throughput must be supplied, the `model_id` is like
`arn:aws:bedrock:...` so the `model_id` cannot be extracted from this. A
model `provider` is required by the LangChain Bedrock class to perform
model-based processing. To allow the same processing to be performed for
custom-models of a specific base model type, passing this `provider`
argument can help solve the issues.
The alternative considered here was the use of
`provider.arn:aws:bedrock:...` which then requires ARN to be extracted
and passed separately when invoking the model. The proposed solution
here is simpler and also does not cause issues for current models
already using the Bedrock class.
  - **Issue:** N/A
  - **Dependencies:** N/A

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-02-05 14:28:03 -08:00
T Cramer
e022bfaa7d langchain: add partial parsing support to JsonOutputToolsParser (#17035)
- **Description:** Add partial parsing support to JsonOutputToolsParser
- **Issue:**
[16736](https://github.com/langchain-ai/langchain/issues/16736)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-05 14:18:30 -08:00
calvinweb
dcf973c22c Langchain: json_chat don't need stop sequenes (#16335)
This is a PR about #16334
The Stop sequenes isn't meanful in `json_chat` because it depends json
to work, not completions
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-05 14:18:16 -08:00
Bagatur
66e45e8ab7 community[patch]: chat model mypy fixes (#17061)
Related to #17048
2024-02-05 13:42:59 -08:00
Bagatur
d93de71d08 community[patch]: chat message history mypy fixes (#17059)
Related to #17048
2024-02-05 13:13:25 -08:00
Bagatur
af5ae24af2 community[patch]: callbacks mypy fixes (#17058)
Related to #17048
2024-02-05 12:37:27 -08:00
Vadim Kudlay
75b6fa1134 nvidia-ai-endpoints[patch]: Support User-Agent metadata and minor fixes. (#16942)
- **Description:** Several meta/usability updates, including User-Agent.
  - **Issue:** 
- User-Agent metadata for tracking connector engagement. @milesial
please check and advise.
- Better error messages. Tries harder to find a request ID. @milesial
requested.
- Client-side image resizing for multimodal models. Hope to upgrade to
Assets API solution in around a month.
- `client.payload_fn` allows you to modify payload before network
request. Use-case shown in doc notebook for kosmos_2.
- `client.last_inputs` put back in to allow for advanced
support/debugging.
  - **Dependencies:** 
- Attempts to pull in PIL for image resizing. If not installed, prints
out "please install" message, warns it might fail, and then tries
without resizing. We are waiting on a more permanent solution.

For LC viz: @hinthornw 
For NV viz: @fciannella @milesial @vinaybagade

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-05 12:24:53 -08:00
Nuno Campos
ae56fd020a Fix condition on custom root type in runnable history (#17017)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-05 12:15:11 -08:00
Nuno Campos
f0ffebb944 Shield callback methods from cancellation: Fix interrupted runs marked as pending forever (#17010)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-05 12:09:47 -08:00
Bagatur
e7b3290d30 community[patch]: fix agent_toolkits mypy (#17050)
Related to #17048
2024-02-05 11:56:24 -08:00
Erick Friis
6ffd5b15bc pinecone: init pkg (#16556)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-05 11:55:01 -08:00
Erick Friis
1183769cf7 template: tool-retrieval-fireworks (#17052)
- Initial commit oss-tool-retrieval-agent
- README update
- lint
- lock
- format imports
- Rename to retrieval-agent-fireworks
- cr

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2024-02-05 11:50:17 -08:00
Harrison Chase
4eda647fdd infra: add -p to mkdir in lint steps (#17013)
Previously, if this did not find a mypy cache then it wouldnt run

this makes it always run

adding mypy ignore comments with existing uncaught issues to unblock other prs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-05 11:22:06 -08:00
Erick Friis
db6af21395 docs: exa contents (#16555) 2024-02-05 11:15:06 -08:00
Eugene Yurtsev
fb245451d2 core[patch]: Add langsmith to printed sys information (#16899) 2024-02-05 11:13:30 -08:00
Mikhail Khludnev
2145636f1d Nvidia trt model name for stop_stream() (#16997)
just removing some legacy leftover.
2024-02-05 10:45:06 -08:00
Christophe Bornet
2ef69fe11b Add async methods to BaseChatMessageHistory and BaseMemory (#16728)
Adds:
   * async methods to BaseChatMessageHistory
   * async methods to ChatMessageHistory
   * async methods to BaseMemory
   * async methods to BaseChatMemory
   * async methods to ConversationBufferMemory
   * tests of ConversationBufferMemory's async methods

  **Twitter handle:** cbornet_
2024-02-05 13:20:28 -05:00
Ryan Kraus
b3c3b58f2c core[patch]: Fixed bug in dict to message conversion. (#17023)
- **Description**: We discovered a bug converting dictionaries to
messages where the ChatMessageChunk message type isn't handled. This PR
adds support for that message type.
- **Issue**: #17022 
- **Dependencies**: None
- **Twitter handle**: None
2024-02-05 10:13:25 -08:00
Nicolas Grenié
54fcd476bb docs: Update ollama examples with new community libraries (#17007)
- **Description:** Updating one line code sample for Ollama with new
**langchain_community** package
  - **Issue:**
  - **Dependencies:** none
  - **Twitter handle:**  @picsoung
2024-02-04 15:13:29 -08:00
Killinsun - Ryota Takeuchi
bcfce146d8 community[patch]: Correct the calling to collection_name in qdrant (#16920)
## Description

In #16608, the calling `collection_name` was wrong.
I made a fix for it. 
Sorry for the inconvenience!

## Issue

https://github.com/langchain-ai/langchain/issues/16962

## Dependencies

N/A



<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Kumar Shivendu <kshivendu1@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-04 10:45:35 -08:00
Erick Friis
849051102a google-genai[patch]: fix new core typing (#16988) 2024-02-03 17:45:44 -08:00
Bagatur
35446c814e openai[patch]: rm tiktoken model warning (#16964) 2024-02-03 16:36:57 -08:00
ccurme
0826d87ecd langchain_mistralai[patch]: Invoke callback prior to yielding token (#16986)
- **Description:** Invoke callback prior to yielding token in stream and
astream methods for ChatMistralAI.
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
2024-02-03 16:30:50 -08:00
Bagatur
267e71606e docs: Update README.md (#16966) 2024-02-02 16:50:58 -08:00
Erick Friis
2b7e47a668 infra: install integration deps for test linting (#16963)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-02 15:59:10 -08:00
Erick Friis
afdd636999 docs: partner packages (#16960) 2024-02-02 15:12:21 -08:00
Erick Friis
06660bc78c core[patch]: handle some optional cases in tools (#16954)
primary problem in pydantic still exists, where `Optional[str]` gets
turned to `string` in the jsonschema `.schema()`

Also fixes the `SchemaSchema` naming issue

---------

Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
2024-02-02 15:05:54 -08:00
Mohammad Mohtashim
f8943e8739 core[patch]: Add doc-string to RunnableEach (#16892)
Add doc-string to Runnable Each
---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-02-02 14:11:09 -08:00
Ashley Xu
66adb95284 docs: BigQuery Vector Search went public review and updated docs (#16896)
Update the docs for BigQuery Vector Search
2024-02-02 10:26:44 -08:00
Massimiliano Pronesti
71f9ea33b6 docs: add quantization to vllm and update API (#16950)
- **Description:** Update vLLM docs to include instructions on how to
use quantized models, as well as to replace the deprecated methods.
2024-02-02 10:24:49 -08:00
Bagatur
2a510c71a0 core[patch]: doc init positional args (#16854) 2024-02-02 10:24:16 -08:00
Bagatur
d80c612c92 core[patch]: Message content as positional arg (#16921) 2024-02-02 10:24:02 -08:00
Bagatur
c29e9b6412 core[patch]: fix chat prompt partial messages placeholder var (#16918) 2024-02-02 10:23:37 -08:00
Radhakrishnan
3b0fa9079d docs: Updated integration doc for aleph alpha (#16844)
Description: Updated doc for llm/aleph_alpha with new functions: invoke.
Changed structure of the document to match the required one.
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None

---------

Co-authored-by: Radhakrishnan Iyer <radhakrishnan.iyer@ibm.com>
2024-02-02 09:28:06 -08:00
hmasdev
cc17334473 core[minor]: add validation error handler to BaseTool (#14007)
- **Description:** add a ValidationError handler as a field of
[`BaseTool`](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/tools.py#L101)
and add unit tests for the code change.
- **Issue:** #12721 #13662
- **Dependencies:** None
- **Tag maintainer:** 
- **Twitter handle:** @hmdev3
- **NOTE:**
  - I'm wondering if the update of document is required.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-01 20:09:19 -08:00
William FH
bdacfafa05 core[patch]: Remove deep copying of run prior to submitting it to LangChain Tracing (#16904) 2024-02-01 18:46:05 -08:00
William FH
e02efd513f core[patch]: Hide aliases when serializing (#16888)
Currently, if you dump an object initialized with an alias, we'll still
dump the secret values since they're retained in the kwargs
2024-02-01 17:55:37 -08:00
William FH
131c043864 Fix loading of ImagePromptTemplate (#16868)
We didn't override the namespace of the ImagePromptTemplate, so it is
listed as being in langchain.schema

This updates the mapping to let the loader deserialize.

Alternatively, we could make a slight breaking change and update the
namespace of the ImagePromptTemplate since we haven't broadly
publicized/documented it yet..
2024-02-01 17:54:04 -08:00
Erick Friis
6fc2835255 docs: fix broken links (#16855) 2024-02-01 17:29:38 -08:00
Eugene Yurtsev
a265878d71 langchain_openai[patch]: Invoke callback prior to yielding token (#16909)
All models should be calling the callback for new token prior to
yielding the token.

Not doing this can cause callbacks for downstream steps to be called
prior to the callback for the new token; causing issues in
astream_events APIs and other things that depend in callback ordering
being correct.

We need to make this change for all chat models.
2024-02-01 16:43:10 -08:00
Erick Friis
b1a847366c community: revert SQL Stores (#16912)
This reverts commit cfc225ecb3.


https://github.com/langchain-ai/langchain/pull/15909#issuecomment-1922418097

These will have existed in langchain-community 0.0.16 and 0.0.17.
2024-02-01 16:37:40 -08:00
akira wu
f7c709b40e doc: fix typo in message_history.ipynb (#16877)
- **Description:** just fixed a small typo in the documentation in the
`expression_language/how_to/message_history` session
[here](https://python.langchain.com/docs/expression_language/how_to/message_history)
2024-02-01 13:30:29 -08:00
Leonid Ganeline
c2ca6612fe refactor langchain.prompts.example_selector (#15369)
The `langchain.prompts.example_selector` [still holds several
artifacts](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.prompts)
that belongs to `community`. If they moved to
`langchain_community.example_selectors`, the `langchain.prompts`
namespace would be effectively removed which is great.
- moved a class and afunction to `langchain_community`

Note:
- Previously, the `langchain.prompts.example_selector` artifacts were
moved into the `langchain_core.exampe_selectors`. See the flattened
namespace (`.prompts` was removed)!
Similar flattening was implemented for the `langchain_core` as the
`langchain_core.exampe_selectors`.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-01 12:05:57 -08:00
Erick Friis
13a6756067 infra: ci naming 2 (#16893) 2024-02-01 11:39:00 -08:00
Lance Martin
b1e7130d8a Minor update to Nomic cookbook (#16886)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-01 11:28:58 -08:00
Shorthills AI
0bca0f4c24 Docs: Fixed grammatical mistake (#16858)
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: Sanskar Tanwar <142409040+SanskarTanwarShorthillsAI@users.noreply.github.com>
Co-authored-by: UpneetShorthillsAI <144228282+UpneetShorthillsAI@users.noreply.github.com>
Co-authored-by: HarshGuptaShorthillsAI <144897987+HarshGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: AdityaKalraShorthillsAI <143726711+AdityaKalraShorthillsAI@users.noreply.github.com>
Co-authored-by: SakshiShorthillsAI <144228183+SakshiShorthillsAI@users.noreply.github.com>
Co-authored-by: AashiGuptaShorthillsAI <144897730+AashiGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: ShamshadAhmedShorthillsAI <144897733+ShamshadAhmedShorthillsAI@users.noreply.github.com>
Co-authored-by: ManpreetShorthillsAI <142380984+ManpreetShorthillsAI@users.noreply.github.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
Co-authored-by: BajrangBishnoiShorthillsAi <148060486+BajrangBishnoiShorthillsAi@users.noreply.github.com>
2024-02-01 11:28:15 -08:00
Erick Friis
5b3fc86cfd infra: ci naming (#16890)
Make it clearer how to run equivalent commands locally

Not a perfect 1:1, but will help people get started

![Screenshot 2024-02-01 at 10 53
34 AM](https://github.com/langchain-ai/langchain/assets/9557659/da271aaf-d5db-41e3-9379-cb1d8a0232c5)
2024-02-01 11:09:37 -08:00
Qihui Xie
c5b01ac621 community[patch]: support LIKE comparator (full text match) in Qdrant (#12769)
**Description:** 
Support [Qdrant full text match
filtering](https://qdrant.tech/documentation/concepts/filtering/#full-text-match)
by adding Comparator.LIKE to QdrantTranslator.
2024-02-01 11:03:25 -08:00
Christophe Bornet
9d458d089a community: Factorize AstraDB components constructors (#16779)
* Adds `AstraDBEnvironment` class and use it in `AstraDBLoader`,
`AstraDBCache`, `AstraDBSemanticCache`, `AstraDBBaseStore` and
`AstraDBChatMessageHistory`
* Create an `AsyncAstraDB` if we only have an `AstraDB` and vice-versa
so:
  * we always have an instance of `AstraDB`
* we always have an instance of `AsyncAstraDB` for recent versions of
astrapy
* Create collection if not exists in `AstraDBBaseStore`
* Some typing improvements

Note: `AstraDB` `VectorStore` not using `AstraDBEnvironment` at the
moment. This will be done after the `langchain-astradb` package is out.
2024-02-01 10:51:07 -08:00
Harel Gal
93366861c7 docs: Indicated Guardrails for Amazon Bedrock preview status (#16769)
Added notification about limited preview status of Guardrails for Amazon
Bedrock feature to code example.

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-02-01 10:41:48 -08:00
Christophe Bornet
78a1af4848 langchain[patch]: Add async methods to MultiVectorRetriever (#16878)
Adds async support to multi vector retriever
2024-02-01 10:33:06 -08:00
Bagatur
7d03d8f586 docs: fix docstring examples (#16889) 2024-02-01 10:17:26 -08:00
Bagatur
c2d09fb151 infra: bump exp min test reqs (#16884) 2024-02-01 08:35:21 -08:00
Bagatur
65ba5c220b experimental[patch]: Release 0.0.50 (#16883) 2024-02-01 08:27:39 -08:00
Bagatur
9e7d9f9390 infra: bump langchain min test reqs (#16882) 2024-02-01 08:16:30 -08:00
Bagatur
db442c635b langchain[patch]: Release 0.1.5 (#16881) 2024-02-01 08:10:29 -08:00
Bagatur
2b4abed25c commmunity[patch]: Release 0.0.17 (#16871) 2024-02-01 07:33:34 -08:00
Bagatur
bb73251146 core[patch]: Release 0.1.18 (#16870) 2024-02-01 07:33:15 -08:00
Christophe Bornet
a0ec045495 Add async methods to BaseStore (#16669)
- **Description:**

The BaseStore methods are currently blocking. Some implementations
(AstraDBStore, RedisStore) would benefit from having async methods.
Also once we have async methods for BaseStore, we can implement the
async `aembed_documents` in CacheBackedEmbeddings to cache the
embeddings asynchronously.

* adds async methods amget, amset, amedelete and ayield_keys to
BaseStore
  * implements the async methods for InMemoryStore
  * adds tests for InMemoryStore async methods

- **Twitter handle:** cbornet_
2024-01-31 17:10:47 -08:00
Erick Friis
17e886388b nomic: init pkg (#16853)
Co-authored-by: Lance Martin <lance@langchain.dev>
2024-01-31 16:46:35 -08:00
Eugene Yurtsev
2e5949b6f8 core(minor): Add bulk add messages to BaseChatMessageHistory interface (#15709)
* Add bulk add_messages method to the interface.
* Update documentation for add_ai_message and add_human_message to
denote them as being marked for deprecation. We should stop using them
as they create more incorrect (inefficient) ways of doing things
2024-01-31 11:59:39 -08:00
Christophe Bornet
af8c5c185b langchain[minor],community[minor]: Add async methods in BaseLoader (#16634)
Adds:
* methods `aload()` and `alazy_load()` to interface `BaseLoader`
* implementation for class `MergedDataLoader `
* support for class `BaseLoader` in async function `aindex()` with unit
tests

Note: this is compatible with existing `aload()` methods that some
loaders already had.

**Twitter handle:** @cbornet_

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-01-31 11:08:11 -08:00
Erick Friis
c37ca45825 nvidia-trt: remove tritonclient all extra dep (#16749) 2024-01-30 16:06:19 -08:00
Erick Friis
36c0392dbe infra: remove unnecessary tests on partner packages (#16808) 2024-01-30 16:01:47 -08:00
Erick Friis
bb3b6bde33 openai[minor]: change to secretstr (#16803) 2024-01-30 15:49:56 -08:00
Raphael
bf9068516e community[minor]: add the ability to load existing transcripts from AssemblyAI by their id. (#16051)
- **Description:** the existing AssemblyAI API allows to pass a path or
an url to transcribe an audio file and turn in into Langchain Documents,
this PR allows to get existing transcript by their transcript id and
turn them into Documents.
  - **Issue:** not related to an existing issue
  - **Dependencies:** requests

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-30 13:47:45 -08:00
Bagatur
daf820c77b community[patch]: undo create_sql_agent breaking (#16797) 2024-01-30 10:00:52 -08:00
Eugene Yurtsev
ef2bd745cb docs: Update doc-string in base callback managers (#15885)
Update doc-strings with a comment about on_llm_start vs.
on_chat_model_start.
2024-01-30 09:51:45 -08:00
William FH
881dc28d2c Fix Dep Recommendation (#16793)
Tools are different than functions
2024-01-30 09:40:28 -08:00
Bagatur
b0347f3e2b docs: add csv use case (#16756) 2024-01-30 09:39:46 -08:00
Alexander Conway
4acd2654a3 Report which file was errored on in DirectoryLoader (#16790)
The current implementation leaves it up to the particular file loader
implementation to report the file on which an error was encountered - in
my case pdfminer was simply saying it could not parse a file as a PDF,
but I didn't know which of my hundreds of files it was failing on.

No reason not to log the particular item on which an error was
encountered, and it should be an immense debugging assistant.

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-30 09:14:58 -08:00
Erick Friis
a372b23675 robocorp: release 0.0.3 (#16789) 2024-01-30 07:15:25 -08:00
Rihards Gravis
442fa52b30 [partners]: langchain-robocorp ease dependency version (#16765) 2024-01-30 08:13:54 -07:00
Jacob Lee
c6724a39f4 Fix rephrase step in chatbot use case (#16763) 2024-01-29 23:25:25 -08:00
Bob Lin
546b757303 community: Add ChatGLM3 (#15265)
Add [ChatGLM3](https://github.com/THUDM/ChatGLM3) and updated
[chatglm.ipynb](https://python.langchain.com/docs/integrations/llms/chatglm)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-29 20:30:52 -08:00
Marina Pliusnina
a1ce7ab672 adding parameter for changing the language in SpacyEmbeddings (#15743)
Description: Added the parameter for a possibility to change a language
model in SpacyEmbeddings. The default value is still the same:
"en_core_web_sm", so it shouldn't affect a code which previously did not
specify this parameter, but it is not hard-coded anymore and easy to
change in case you want to use it with other languages or models.

Issue: At Barcelona Supercomputing Center in Aina project
(https://github.com/projecte-aina), a project for Catalan Language
Models and Resources, we would like to use Langchain for one of our
current projects and we would like to comment that Langchain, while
being a very powerful and useful open-source tool, is pretty much
focused on English language. We would like to contribute to make it a
bit more adaptable for using with other languages.

Dependencies: This change requires the Spacy library and a language
model, specified in the model parameter.

Tag maintainer: @dev2049

Twitter handle: @projecte_aina

---------

Co-authored-by: Marina Pliusnina <marina.pliusnina@bsc.es>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-29 20:30:34 -08:00
Christophe Bornet
744070ee85 Add async methods for the AstraDB VectorStore (#16391)
- **Description**: fully async versions are available for astrapy 0.7+.
For older astrapy versions or if the user provides a sync client without
an async one, the async methods will call the sync ones wrapped in
`run_in_executor`
  - **Twitter handle:** cbornet_
2024-01-29 20:22:25 -08:00
baichuan-assistant
f8f2649f12 community: Add Baichuan LLM to community (#16724)
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-29 20:08:24 -08:00
thiswillbeyourgithub
1d082359ee community: add support for callable filters in FAISS (#16190)
- **Description:**
Filtering in a FAISS vectorstores is very inflexible and doesn't allow
that many use case. I think supporting callable like this enables a lot:
regular expressions, condition on multiple keys etc. **Note** I had to
manually alter a test. I don't understand if it was falty to begin with
or if there is something funky going on.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None

Signed-off-by: thiswillbeyourgithub <26625900+thiswillbeyourgithub@users.noreply.github.com>
2024-01-29 20:05:56 -08:00
Yudhajit Sinha
1703fe2361 core[patch]: preserve inspect.iscoroutinefunction with @beta decorator (#16440)
Adjusted deprecate decorator to make sure decorated async functions are
still recognized as "coroutinefunction" by inspect

Addresses #16402

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 20:01:11 -08:00
Killinsun - Ryota Takeuchi
52f4ad8216 community: Add new fields in metadata for qdrant vector store (#16608)
## Description

The PR is to return the ID and collection name from qdrant client to
metadata field in `Document` class.

## Issue

The motivation is almost same to
[11592](https://github.com/langchain-ai/langchain/issues/11592)

Returning ID is useful to update existing records in a vector store, but
we cannot know them if we use some retrievers.

In order to avoid any conflicts, breaking changes, the new fields in
metadata have a prefix `_`

## Dependencies

N/A

## Twitter handle

@kill_in_sun

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-29 19:59:54 -08:00
hulitaitai
32cad38ec6 <langchain_community\llms\chatglm.py>: <Correcting "history"> (#16729)
Use the real "history" provided by the original program instead of
putting "None" in the history.

- **Description:** I change one line in the code to make it return the
"history" of the chat model.
- **Issue:** At the moment it returns only the answers of the chat
model. However the chat model himself provides a history more complet
with the questions of the user.
  - **Dependencies:** no dependencies required for this change,
2024-01-29 19:50:31 -08:00
Jacob Lee
4a027e622f docs[patch]: Lower temperature in chatbot usecase notebooks for consistency (#16750)
CC @baskaryan
2024-01-29 17:27:13 -08:00
Jacob Lee
12d2b2ebcf docs[minor]: LCEL rewrite of chatbot use-case (#16414)
CC @baskaryan @hwchase17

TODO:
- [x] Draft of main quickstart
- [x] Index intro page
- [x] Add subpage guide for Memory management
- [x] Add subpage guide for Retrieval
- [x] Add subpage guide for Tool usage
- [x] Add LangSmith traces illustrating query transformation
2024-01-29 17:08:54 -08:00
Bassem Yacoube
85e93e05ed community[minor]: Update OctoAI LLM, Embedding and documentation (#16710)
This PR includes updates for OctoAI integrations:
- The LLM class was updated to fix a bug that occurs with multiple
sequential calls
- The Embedding class was updated to support the new GTE-Large endpoint
released on OctoAI lately
- The documentation jupyter notebook was updated to reflect using the
new LLM sdk
Thank you!
2024-01-29 13:57:17 -08:00
Hank
6d6226d96d docs: Remove accidental extra ``` in QuickStart doc. (#16740)
Description: One too many set of triple-ticks in a sample code block in
the QuickStart doc was causing "\`\`\`shell" to appear in the shell
command that was being demonstrated. I just deleted the extra "```".
Issue: Didn't see one
Dependencies: None
2024-01-29 13:55:26 -08:00
Shay Ben Elazar
84ebfb5b9d openai[patch]: Added annotations support to azure openai (#13704)
- **Description:** Added Azure OpenAI Annotations (content filtering
results) to ChatResult

  - **Issue:** 13090

  - **Twitter handle:** ElazarShay

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 13:31:09 -08:00
Volodymyr Machula
32c5be8b73 community[minor]: Connery Tool and Toolkit (#14506)
## Summary

This PR implements the "Connery Action Tool" and "Connery Toolkit".
Using them, you can integrate Connery actions into your LangChain agents
and chains.

Connery is an open-source plugin infrastructure for AI.

With Connery, you can easily create a custom plugin with a set of
actions and seamlessly integrate them into your LangChain agents and
chains. Connery will handle the rest: runtime, authorization, secret
management, access management, audit logs, and other vital features.
Additionally, Connery and our community offer a wide range of
ready-to-use open-source plugins for your convenience.

Learn more about Connery:

- GitHub: https://github.com/connery-io/connery-platform
- Documentation: https://docs.connery.io
- Twitter: https://twitter.com/connery_io

## TODOs

- [x] API wrapper
   - [x] Integration tests
- [x] Connery Action Tool
   - [x] Docs
   - [x] Example
   - [x] Integration tests
- [x] Connery Toolkit
  - [x] Docs
  - [x] Example
- [x] Formatting (`make format`)
- [x] Linting (`make lint`)
- [x] Testing (`make test`)
2024-01-29 12:45:03 -08:00
Harrison Chase
8457c31c04 community[patch]: activeloop ai tql deprecation (#14634)
Co-authored-by: AdkSarsen <adilkhan@activeloop.ai>
2024-01-29 12:43:54 -08:00
Neli Hateva
c95facc293 langchain[minor], community[minor]: Implement Ontotext GraphDB QA Chain (#16019)
- **Description:** Implement Ontotext GraphDB QA Chain
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-01-29 12:25:53 -08:00
chyroc
a08f9a7ff9 langchain[patch]: support OpenAIAssistantRunnable async (#15302)
fix https://github.com/langchain-ai/langchain/issues/15299

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 12:19:47 -08:00
Elliot
39eb00d304 community[patch]: Adapt more parameters related to MemorySearchPayload for the search method of ZepChatMessageHistory (#15441)
- **Description:** To adapt more parameters related to
MemorySearchPayload for the search method of ZepChatMessageHistory,
  - **Issue:** None,
  - **Dependencies:** None,
  - **Twitter handle:** None
2024-01-29 11:45:55 -08:00
Kirushikesh DB
47bd58dc11 docs: Added illustration of using RetryOutputParser with LLMChain (#16722)
**Description:**
Updated the retry.ipynb notebook, it contains the illustrations of
RetryOutputParser in LangChain. But the notebook lacks to explain the
compatibility of RetryOutputParser with existing chains. This changes
adds some code to illustrate the workflow of using RetryOutputParser
with the user chain.

Changes:
1. Changed RetryWithErrorOutputParser with RetryOutputParser, as the
markdown text says so.
2. Added code at the last of the notebook to define a chain which passes
the LLM completions to the retry parser, which can be customised for
user needs.

**Issue:** 
Since RetryOutputParser/RetryWithErrorOutputParser does not implement
the parse function it cannot be used with LLMChain directly like
[this](https://python.langchain.com/docs/expression_language/cookbook/prompt_llm_parser#prompttemplate-llm-outputparser).
This also raised various issues #15133 #12175 #11719 still open, instead
of adding new features/code changes its best to explain the "how to
integrate LLMChain with retry parsers" clearly with an example in the
corresponding notebook.

Inspired from:
https://github.com/langchain-ai/langchain/issues/15133#issuecomment-1868972580

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-29 11:24:52 -08:00
Jael Gu
a1aa3a657c community[patch]: Milvus supports add & delete texts by ids (#16256)
# Description

To support [langchain
indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
as requested by users, vectorstore Milvus needs to support:
- document addition by id (`add_documents` method with `ids` argument)
- delete by id (`delete` method with `ids` argument)

Example usage:

```python
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain_community.vectorstores import Milvus
from langchain_openai import OpenAIEmbeddings

collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = Milvus(embedding_function=embedding, collection_name=collection_name)

namespace = f"milvus/{collection_name}"
record_manager = SQLRecordManager(
    namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()

doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})

index(
    [doc1, doc1, doc2],
    record_manager,
    vectorstore,
    cleanup="incremental",  # None, "incremental", or "full"
    source_id_key="source",
)
```

# Fix issues

Fix https://github.com/milvus-io/milvus/issues/30112

---------

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 11:19:50 -08:00
Michard Hugo
e9d3527b79 community[patch]: Add missing async similarity_distance_threshold handling in RedisVectorStoreRetriever (#16359)
Add missing async similarity_distance_threshold handling in
RedisVectorStoreRetriever

- **Description:** added method `_aget_relevant_documents` to
`RedisVectorStoreRetriever` that overrides parent method to add support
of `similarity_distance_threshold` in async mode (as for sync mode)
  - **Issue:** #16099
  - **Dependencies:** N/A
  - **Twitter handle:** N/A
2024-01-29 11:19:30 -08:00
Jarod Stewart
7c6a2a8384 templates: Ionic Shopping Assistant (#16648)
- **Description:** This is a template for creating shopping assistant
chat bots
- **Issue:** Example for creating a shopping assistant with OpenAI Tools
Agent
- **Dependencies:** Ionic
https://github.com/ioniccommerce/ionic_langchain
  - **Twitter handle:** @ioniccommerce

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-29 11:08:24 -08:00
Bagatur
7237dc67d4 core[patch]: Release 0.1.17 (#16737) 2024-01-29 11:02:29 -08:00
Anthony Bernabeu
2db79ab111 community[patch]: Implement TTL for DynamoDBChatMessageHistory (#15478)
- **Description:** Implement TTL for DynamoDBChatMessageHistory, 
  - **Issue:** see #15477,
  - **Dependencies:** N/A,

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-01-29 10:22:46 -08:00
Massimiliano Pronesti
1bc8d9a943 experimental[patch]: missing resolution strategy in anonymization (#16653)
- **Description:** Presidio-based anonymizers are not working because
`_remove_conflicts_and_get_text_manipulation_data` was being called
without a conflict resolution strategy. This PR fixes this issue. In
addition, it removes some mutable default arguments (antipattern).
 
To reproduce the issue, just run the very first cell of this
[notebook](https://python.langchain.com/docs/guides/privacy/2/) from
langchain's documentation.

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-29 09:56:16 -08:00
Abhinav
8e44363ec9 langchain_community: Update documentation for installing llama-cpp-python on windows (#16666)
**Description** : This PR updates the documentation for installing
llama-cpp-python on Windows.

- Updates install command to support pyproject.toml
- Makes CPU/GPU install instructions clearer
- Adds reinstall with GPU support command

**Issue**: Existing
[documentation](https://python.langchain.com/docs/integrations/llms/llamacpp#compiling-and-installing)
lists the following commands for installing llama-cpp-python
```
python setup.py clean
python setup.py install
````
The current version of the repo does not include a `setup.py` and uses a
`pyproject.toml` instead.
This can be replaced with
```
python -m pip install -e .
```
As explained in
https://github.com/abetlen/llama-cpp-python/issues/965#issuecomment-1837268339
**Dependencies**: None
**Twitter handle**: None

---------

Co-authored-by: blacksmithop <angstycoder101@gmaii.com>
2024-01-29 08:41:29 -08:00
taimo
d3d9244fee langchain-community: fix unicode escaping issue with SlackToolkit (#16616)
- **Description:** fix unicode escaping issue with SlackToolkit
  - **Issue:**  #16610
2024-01-29 08:38:12 -08:00
Benito Geordie
f3fdc5c5da community: Added integrations for ThirdAI's NeuralDB with Retriever and VectorStore frameworks (#15280)
**Description:** Adds ThirdAI NeuralDB retriever and vectorstore
integration. NeuralDB is a CPU-friendly and fine-tunable text retrieval
engine.
2024-01-29 08:35:42 -08:00
Jonathan Bennion
815896ff13 langchain: pubmed tool path update in doc (#16716)
- **Description:** The current pubmed tool documentation is referencing
the path to langchain core not the path to the tool in community. The
old tool redirects anyways, but for efficiency of using the more direct
path, just adding this documentation so it references the new path
  - **Issue:** doesn't fix an issue
  - **Dependencies:** no dependencies
  - **Twitter handle:** rooftopzen
2024-01-29 08:25:29 -08:00
Lance Martin
1bfadecdd2 Update Slack agent toolkit (#16732)
Co-authored-by: taimoOptTech <132860814+taimo3810@users.noreply.github.com>
2024-01-29 08:03:44 -08:00
Pashva Mehta
22d90800c8 community: Fixed schema discrepancy in from_texts function for weaviate vectorstore (#16693)
* Description: Fixed schema discrepancy in **from_texts** function for
weaviate vectorstore which created a redundant property "key" inside a
class.
* Issue: Fixed: https://github.com/langchain-ai/langchain/issues/16692
* Twitter handle: @pashvamehta1
2024-01-28 16:53:31 -08:00
Choi JaeHun
ba70630829 docs: Syntax correction according to langchain version update in 'Retry Parser' tutorial example (#16699)
- **Description:** Syntax correction according to langchain version
update in 'Retry Parser' tutorial example,
- **Issue:** #16698

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-28 16:53:04 -08:00
ccurme
ec0ae23645 core: expand docstring for RunnableGenerator (#16672)
- **Description:** expand docstring for RunnableGenerator
  - **Issue:** https://github.com/langchain-ai/langchain/issues/16631
2024-01-28 16:47:08 -08:00
Bob Lin
0866a984fe Update n_gpu_layers"s description (#16685)
The `n_gpu_layers` parameter in `llama.cpp` supports the use of `-1`,
which means to offload all layers to the GPU, so the document has been
updated.

Ref:
35918873b4/llama_cpp/server/settings.py (L29C22-L29C117)


35918873b4/llama_cpp/llama.py (L125)
2024-01-28 16:46:50 -08:00
Daniel Erenrich
0600998f38 community: Wikidata tool support (#16691)
- **Description:** Adds Wikidata support to langchain. Can read out
documents from Wikidata.
  - **Issue:** N/A
- **Dependencies:** Adds implicit dependencies for
`wikibase-rest-api-client` (for turning items into docs) and
`mediawikiapi` (for hitting the search endpoint)
  - **Twitter handle:** @derenrich

You can see an example of this tool used in a chain
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Langchain.ipynb)
or
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Lars_Kai_Hansen.ipynb)

<!-- Thank you for contributing to LangChain!


Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-28 16:45:21 -08:00
Tze Min
6ef718c5f4 Core: fix Anthropic json issue in streaming (#16670)
**Description:** fix ChatAnthropic json issue in streaming 
**Issue:** https://github.com/langchain-ai/langchain/issues/16423
**Dependencies:** n/a

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-28 16:41:17 -08:00
Owen Sims
e451c8adc1 Community: Update Ionic Shopping Docs (#16700)
- **Description:** Update to docs as originally introduced in
https://github.com/langchain-ai/langchain/pull/16649 (reviewed by
@baskaryan),
- **Twitter handle:**
[@ioniccommerce](https://twitter.com/ioniccommerce)
2024-01-28 16:39:49 -08:00
Christophe Bornet
2e3af04080 Use Postponed Evaluation of Annotations in Astra and Cassandra doc loaders (#16694)
Minor/cosmetic change
2024-01-28 16:39:27 -08:00
Yelin Zhang
bc7607a4e9 docs: remove iprogress warnings (#16697)
- **Description:** removes iprogress warning texts from notebooks,
resulting in a little nicer to read documentation
2024-01-28 16:38:14 -08:00
Erick Friis
0255c5808b infra: move release workflow back (#16707) 2024-01-28 12:11:23 -07:00
Erick Friis
88e3129587 robocorp: release 0.0.2 (#16706) 2024-01-28 11:28:58 -07:00
Christophe Bornet
36e432672a community[minor]: Add async methods to AstraDBLoader (#16652) 2024-01-27 17:05:41 -08:00
William FH
38425c99d2 core[minor]: Image prompt template (#14263)
Builds on Bagatur's (#13227). See unit test for example usage (below)

```python
def test_chat_tmpl_from_messages_multipart_image() -> None:
    base64_image = "abcd123"
    other_base64_image = "abcd123"
    template = ChatPromptTemplate.from_messages(
        [
            ("system", "You are an AI assistant named {name}."),
            (
                "human",
                [
                    {"type": "text", "text": "What's in this image?"},
                    # OAI supports all these structures today
                    {
                        "type": "image_url",
                        "image_url": "data:image/jpeg;base64,{my_image}",
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": "data:image/jpeg;base64,{my_image}"},
                    },
                    {"type": "image_url", "image_url": "{my_other_image}"},
                    {
                        "type": "image_url",
                        "image_url": {"url": "{my_other_image}", "detail": "medium"},
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": "https://www.langchain.com/image.png"},
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": ""},
                    },
                ],
            ),
        ]
    )
    messages = template.format_messages(
        name="R2D2", my_image=base64_image, my_other_image=other_base64_image
    )
    expected = [
        SystemMessage(content="You are an AI assistant named R2D2."),
        HumanMessage(
            content=[
                {"type": "text", "text": "What's in this image?"},
                {
                    "type": "image_url",
                    "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{other_base64_image}"
                    },
                },
                {
                    "type": "image_url",
                    "image_url": {"url": f"{other_base64_image}"},
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"{other_base64_image}",
                        "detail": "medium",
                    },
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "https://www.langchain.com/image.png"},
                },
                {
                    "type": "image_url",
                    "image_url": {"url": ""},
                },
            ]
        ),
    ]
    assert messages == expected
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Brace Sproul <braceasproul@gmail.com>
2024-01-27 17:04:29 -08:00
ARKA1112
3c387bc12d docs: Error when importing packages from pydantic [docs] (#16564)
URL : https://python.langchain.com/docs/use_cases/extraction

Desc: 
<b> While the following statement executes successfully, it throws an
error which is described below when we use the imported packages</b>
 ```py 
from pydantic import BaseModel, Field, validator
```
Code: 
```python
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
    PromptTemplate,
)
from langchain_openai import OpenAI
from pydantic import BaseModel, Field, validator

# Define your desired data structure.
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")

    # You can add custom validation logic easily with Pydantic.
    @validator("setup")
    def question_ends_with_question_mark(cls, field):
        if field[-1] != "?":
            raise ValueError("Badly formed question!")
        return field
```

Error:
```md
PydanticUserError: The `field` and `config` parameters are not available
in Pydantic V2, please use the `info` parameter instead.

For further information visit
https://errors.pydantic.dev/2.5/u/validator-field-config-info
```

Solution:
Instead of doing:
```py
from pydantic import BaseModel, Field, validator
```
We should do:
```py
from langchain_core.pydantic_v1 import BaseModel, Field, validator
```
Thanks.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-27 16:46:48 -08:00
Rashedul Hasan Rijul
481493dbce community[patch]: apply embedding functions during query if defined (#16646)
**Description:** This update ensures that the user-defined embedding
function specified during vector store creation is applied during
queries. Previously, even if a custom embedding function was defined at
the time of store creation, Bagel DB would default to using the standard
embedding function during query execution. This pull request addresses
this issue by consistently using the user-defined embedding function for
queries if one has been specified earlier.
2024-01-27 16:46:33 -08:00
Serena Ruan
f01fb47597 community[patch]: MLflowCallbackHandler -- Move textstat and spacy as optional dependency (#16657)
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
2024-01-27 16:15:07 -08:00
Zhuoyun(John) Xu
508bde7f40 community[patch]: Ollama - Pass headers to post request in async method (#16660)
# Description
A previous PR (https://github.com/langchain-ai/langchain/pull/15881)
added option to pass headers to ollama endpoint, but headers are not
pass to the async method.
2024-01-27 16:11:32 -08:00
Leonid Ganeline
5e73603e8a docs: DeepInfra provider page update (#16665)
- added description, links
- consistent formatting
- added links to the example pages
2024-01-27 16:05:29 -08:00
João Carlos Ferra de Almeida
3e87b67a3c community[patch]: Add Cookie Support to Fetch Method (#16673)
- **Description:** This change allows the `_fetch` method in the
`WebBaseLoader` class to utilize cookies from an existing
`requests.Session`. It ensures that when the `fetch` method is used, any
cookies in the provided session are included in the request. This
enhancement maintains compatibility with existing functionality while
extending the utility of the `fetch` method for scenarios where cookie
persistence is necessary.
- **Issue:** Not applicable (new feature),
- **Dependencies:** Requires `aiohttp` and `requests` libraries (no new
dependencies introduced),
- **Twitter handle:** N/A

Co-authored-by: Joao Almeida <joao.almeida@mercedes-benz.io>
2024-01-27 16:03:53 -08:00
Daniel Erenrich
c314137f5b docs: Fix broken link in CONTRIBUTING.md (#16681)
- **Description:** link in CONTRIBUTING.md is broken
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @derenrich
2024-01-27 15:43:44 -08:00
Harrison Chase
27665e3546 [community] fix anthropic streaming (#16682) 2024-01-27 15:16:22 -08:00
Bagatur
5975bf39ec infra: delete old CI workflows (#16680) 2024-01-27 14:14:53 -08:00
Christophe Bornet
4915c3cd86 [Fix] Fix Cassandra Document loader default page content mapper (#16273)
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
2024-01-27 11:23:02 -08:00
Nuno Campos
e86fd946c8 In stream_event and stream_log handle closed streams (#16661)
if eg. the stream iterator is interrupted then adding more events to the
send_stream will raise an exception that we should catch (and handle
where appropriate)

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-27 08:09:29 -08:00
Jarod Stewart
0bc397957b docs: document Ionic Tool (#16649)
- **Description:** Documentation for the Ionic Tool. A shopping
assistant tool that effortlessly adds e-commerce capabilities to your
Agent.
2024-01-26 16:02:07 -08:00
Nuno Campos
52ccae3fb1 Accept message-like things in Chat models, LLMs and MessagesPlaceholder (#16418) 2024-01-26 15:44:28 -08:00
Seungwoo Ryu
570b4f8e66 docs: Update openai_tools.ipynb (#16618)
typo
2024-01-26 15:26:27 -08:00
Pasha
4e189cd89a community[patch]: youtube loader transcript format (#16625)
- **Description**: YoutubeLoader right now returns one document that
contains the entire transcript. I think it would be useful to add an
option to return multiple documents, where each document would contain
one line of transcript with the start time and duration in the metadata.
For example,
[AssemblyAIAudioTranscriptLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/assemblyai.py)
is implemented in a similar way, it allows you to choose between the
format to use for the document loader.
2024-01-26 15:26:09 -08:00
yin1991
a936472512 docs: Update documentation to use 'model_id' rather than 'model_name' to match actual API (#16615)
- **Description:** Replace 'model_name' with 'model_id' for accuracy 
- **Issue:**
[link-to-issue](https://github.com/langchain-ai/langchain/issues/16577)
  - **Dependencies:** 
  - **Twitter handle:**
2024-01-26 15:01:12 -08:00
Micah Parker
6543e585a5 community[patch]: Added support for Ollama's num_predict option in ChatOllama (#16633)
Just a simple default addition to the options payload for a ollama
generate call to support a max_new_tokens parameter.

Should fix issue: https://github.com/langchain-ai/langchain/issues/14715
2024-01-26 15:00:19 -08:00
Callum
6a75ef74ca docs: Fix typo in XML agent documentation (#16645)
This is a tiny PR that just replacer "moduels" with "modules" in the
documentation for XML agents.
2024-01-26 14:59:46 -08:00
baichuan-assistant
70ff54eace community[minor]: Add Baichuan Text Embedding Model and Baichuan Inc introduction (#16568)
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.

Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-26 12:57:26 -08:00
Bagatur
5b5115c408 google-vertexai[patch]: streaming bug (#16603)
Fixes errors seen here
https://github.com/langchain-ai/langchain/actions/runs/7661680517/job/20881556592#step:9:229
2024-01-26 09:45:34 -08:00
ccurme
a989f82027 core: expand docstring for RunnableParallel (#16600)
- **Description:** expand docstring for RunnableParallel
  - **Issue:** https://github.com/langchain-ai/langchain/issues/16462

Feel free to modify this or let me know how it can be improved!
2024-01-26 10:03:32 -05:00
Ghani
e30c6662df Langchain-community : EdenAI chat integration. (#16377)
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.

  - **Dependencies**: No dependencies are added as we call a rest API.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-26 09:56:43 -05:00
Antonio Lanza
08d3fd7f2e langchain[patch]: inconsistent results with RecursiveCharacterTextSplitter's add_start_index=True (#16583)
This PR fixes issue #16579
2024-01-25 15:50:06 -08:00
Eugene Yurtsev
42db96477f docs: Update in code documentation for runnable with message history (#16585)
Update the in code documentation for Runnable With Message History
2024-01-25 15:26:34 -08:00
Jatin Chawda
a79345f199 community[patch]: Fixed tool names snake_case (#16397)
#16396
Fixed
1. golden_query
2. google_lens
3. memorize
4. merriam_webster
5. open_weather_map
6. pub_med
7. stack_exchange
8. generate_image
9. wikipedia
2024-01-25 15:24:19 -08:00
Bagatur
bcc71d1a57 openai[patch]: Release 0.0.5 (#16598) 2024-01-25 15:20:28 -08:00
Bagatur
68f7468754 google-vertexai[patch]: Release 0.0.3 (#16597) 2024-01-25 15:19:00 -08:00
Bagatur
61e876aad8 openai[patch]: Explicitly support embedding dimensions (#16596) 2024-01-25 15:16:04 -08:00
Bagatur
5df8ab574e infra: move indexing documentation test (#16595) 2024-01-25 14:46:50 -08:00
Bagatur
f3d61a6e47 langchain[patch]: Release 0.1.4 (#16592) 2024-01-25 14:19:18 -08:00
Bagatur
61b200947f community[patch]: Release 0.0.16 (#16591) 2024-01-25 14:19:09 -08:00
Bagatur
75ad0bba2d openai[patch]: Release 0.0.4 (#16590) 2024-01-25 14:08:46 -08:00
Bagatur
1e3ce338ca core[patch]: Release 0.1.16 (#16589) 2024-01-25 13:56:00 -08:00
Bagatur
6c89507988 docs: add rag citations page (#16549) 2024-01-25 13:51:41 -08:00
Bagatur
31790d15ec openai[patch]: accept function_call dict in bind_functions (#16483)
Confusing that you can't pass in a dict
2024-01-25 13:47:44 -08:00
Bagatur
db80832e4f docs: output parser nits (#16588) 2024-01-25 13:20:48 -08:00
Bagatur
ef42d9d559 core[patch], community[patch], openai[patch]: consolidate openai tool… (#16485)
… converters

One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
2024-01-25 13:18:46 -08:00
Brian Burgin
148347e858 community[minor]: Add LiteLLM Router Integration (#15588)
community:

  - **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
    - Add tests and Jupyter notebook.
  - **Issue:** None
  - **Dependencies:** Relies on existing ChatLiteLLM integration
  - **Twitter handle:** @bburgin_0

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-25 11:03:05 -08:00
Bob Lin
35e60728b7 docs: Fix broken urls (#16559) 2024-01-25 09:20:05 -08:00
Bob Lin
6023953ea7 docs: Fix github link (#16560) 2024-01-25 09:19:09 -08:00
JongRok BAEK
3b8eba32f9 anthropic[patch]: Fix message type lookup in Anthropic Partners (#16563)
- **Description:** 

The parameters for user and assistant in Anthropic should be 'ai ->
assistant,' but they are reversed to 'assistant -> ai.'
Below is error code.
```python
anthropic.BadRequestError: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'messages: Unexpected role "ai". Allowed roles are "user" or "assistant"'}}
```

[anthropic](7177f3a71f/src/anthropic/types/beta/message_param.py (L13))

  - **Issue:** : #16561
  -  **Dependencies:** : None
   - **Twitter handle:** : None
2024-01-25 09:17:59 -08:00
Dmitry Tyumentsev
e86e66bad7 community[patch]: YandexGPT models - add sleep_interval (#16566)
Added sleep between requests to prevent errors associated with
simultaneous requests.
2024-01-25 09:07:19 -08:00
Bagatur
e510cfaa23 core[patch]: passthrough BaseRetriever.invoke(**kwargs) (#16551)
Fix for #16547
2024-01-25 08:58:39 -08:00
Anders Åhsman
355ef2a4a6 langchain[patch]: Fix doc-string grammar (#16543)
- **Description:** Small grammar fix in docstring for class
`BaseCombineDocumentsChain`.
2024-01-25 10:00:06 -05:00
Aditya
9dd7cbb447 google-genai: added logic for method get_num_tokens() (#16205)
<!-- Thank you for contributing to LangChain!

Please title your PR "partners: google-genai",

Replace this entire comment with:
- **Description:** : added logic for method get_num_tokens() for
ChatGoogleGenerativeAI , GoogleGenerativeAI,
  - **Issue:** : https://github.com/langchain-ai/langchain/issues/16204,
  - **Dependencies:** : None,
  - **Twitter handle:** @Aditya_Rane

---------

Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
2024-01-24 21:43:16 -07:00
James Braza
0785432e7b langchain-google-vertexai: perserving grounding metadata (#16309)
Revival of https://github.com/langchain-ai/langchain/pull/14549 that
closes https://github.com/langchain-ai/langchain/issues/14548.
2024-01-24 21:37:43 -07:00
Erick Friis
adc008407e exa: init pkg (#16553) 2024-01-24 20:57:17 -07:00
Rave Harpaz
c4e9c9ca29 community[minor]: Add OCI Generative AI integration (#16548)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
  - **Issue:** None,
  - **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
 
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 18:23:50 -08:00
Bagatur
b8768bd6e7 docs: allow pdf download of api ref (#16550)
https://docs.readthedocs.io/en/stable/config-file/v2.html#formats
2024-01-24 17:17:52 -08:00
Leonid Ganeline
f6a05e964b docs: Hugging Face update (#16490)
- added missed integrations to the platform page
- updated integration examples: added links and fixed formats
2024-01-24 16:59:00 -08:00
Bagatur
c173a69908 langchain[patch]: oai tools output parser nit (#16540)
allow positional init args
2024-01-24 16:57:16 -08:00
arnob-sengupta
f9976b9630 core[patch]: consolidate conditional in BaseTool (#16530)
- **Description:** Refactor contradictory conditional to single line
  - **Issue:** #16528
2024-01-24 16:56:58 -08:00
Bagatur
5c2538b9f7 anthropic[patch]: allow pop by field name (#16544)
allow `ChatAnthropicMessages(model=...)`
2024-01-24 15:48:31 -07:00
Harel Gal
a91181fe6d community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.

@baskaryan  @hwchase17

```python 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  guardrails={"id": " <guardrail_id>",
                              "version": "<guardrail_version>",
                               "trace": True}, callbacks=[BedrockAsyncCallbackHandler()])

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    """Async callback handler that can be used to handle callbacks from langchain."""

    async def on_llm_error(
            self,
            error: BaseException,
            **kwargs: Any,
    ) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
           # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
            print(f"""Guardrails: {kwargs}""")


# streaming 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  streaming=True,
                  guardrails={"id": "<guardrail_id>",
                              "version": "<guardrail_version>"})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:44:19 -08:00
Martin Kolb
04651f0248 community[minor]: VectorStore integration for SAP HANA Cloud Vector Engine (#16514)
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).

  - **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
  - **Twitter handle:** @sapopensource

Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`

Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`

Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`

Access credentials for execution of the integration tests can be
provided to the maintainers.

---------

Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:05:07 -08:00
Leonid Kuligin
1113700b09 google-genai[patch]: better error message when location is not supported (#16535)
Replace this entire comment with:
- **Description:** a better error message when location is not supported
2024-01-24 13:58:46 -08:00
Bob Lin
54dd8e52a8 docs: Updated comments about n_gpu_layers in the Metal section (#16501)
Ref: https://github.com/langchain-ai/langchain/issues/16502
2024-01-24 13:38:48 -08:00
Eugene Yurtsev
fe382fcf20 CI: more qa template changes (#16533)
More qa template changes
2024-01-24 14:40:29 -05:00
Eugene Yurtsev
06f66f25e1 CI: Update q-a template (#16532)
Update template for QA discussions
2024-01-24 14:29:31 -05:00
Eugene Yurtsev
b1b351b37e CI: more updates to feature request template (#16531)
More updates
2024-01-24 14:15:26 -05:00
Eugene Yurtsev
4fad71882e CI: Fix ideas template (#16529)
Fix ideas template
2024-01-24 14:06:53 -05:00
Anastasiia Manokhina
ce595f0203 docs:Updated integration docs structure for chat/google_vertex_ai_palm (#16201)
Description: 

- checked that the doc chat/google_vertex_ai_palm is using new
functions: invoke, stream etc.
- added Gemini example
- fixed wrong output in Sanskrit example

Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
2024-01-24 10:21:32 -08:00
Unai Garay Maestre
fdbfa6b2c8 Adds progress bar to VertexAIEmbeddings (#14542)
- **Description:** Adds progress bar to VertexAIEmbeddings 
- **Issue:** related issue
https://github.com/langchain-ai/langchain/issues/13637

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>

---------

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
2024-01-24 11:16:16 -07:00
James Braza
643fb3ab50 langchain-google-vertexai[patch]: more verbose mypy config (#16307)
Flushing out the `mypy` config in `langchain-google-vertexai` to show
error codes and other warnings

This PR also bumps `mypy` to above version 1's stable release
2024-01-24 11:10:45 -07:00
Eugene Yurtsev
8d990ba67b CI: more update to ideas template (#16524)
Update ideas template
2024-01-24 13:05:47 -05:00
Eugene Yurtsev
63da14d620 CI: redirect feature requests to ideas in discussions (#16522)
Redirect feature requests to ideas in discussions
2024-01-24 13:03:10 -05:00
Erick Friis
8d299645f9 docs: rm output (#16519) 2024-01-24 10:19:34 -07:00
Eugene Yurtsev
dfd94fb2f0 CI: Update issue template (#16517)
More updates to the ISSUE template
2024-01-24 12:09:21 -05:00
Lance Martin
0b740ebd49 Update SQL agent toolkit docs (#16409) 2024-01-24 09:03:17 -08:00
Francisco Ingham
13cf4594f4 docs: added a few suggestions for sql docs (#16508) 2024-01-24 08:48:41 -08:00
Eugene Yurtsev
6004e9706f Docs: Add streaming section (#16468)
Adds a streaming section to LangChain documentation, explaining
`stream`/`astream` API and `astream_events` API.
2024-01-24 10:38:39 -05:00
Tipwheal
66aafc0573 Docs: typo in tool use quick start page (#16494)
Minor typo fix
2024-01-24 10:37:12 -05:00
Jeremi Joslin
9e95699277 community[patch]: Fix error message when litellm is not installed (#16316)
The error message was mentioning the wrong package. I updated it to the
correct one.
2024-01-23 21:42:29 -08:00
bachr
b3ed98dec0 community[patch]: avoid KeyError when language not in LANGUAGE_SEGMENTERS (#15212)
**Description:**

Handle unsupported languages in same way as when none is provided 
 
**Issue:**

The following line will throw a KeyError if the language is not
supported.
```python
self.Segmenter = LANGUAGE_SEGMENTERS[language]
```
E.g. when using `Language.CPP` we would get `KeyError: <Language.CPP:
'cpp'>`

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-23 21:09:43 -08:00
Nuno Campos
3f38e1a457 Remove double line (#16426)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-23 20:22:37 -08:00
chyroc
61da2ff24c community[patch]: use SecretStr for yandex model secrets (#15463) 2024-01-23 20:08:53 -08:00
Alessio Serra
d628a80a5d community[patch]: added 'conversational' as a valid task for hugginface endopoint models (#15761)
- **Description:** added the conversational task to hugginFace endpoint
in order to use models designed for chatbot programming.
  - **Dependencies:** None

---------

Co-authored-by: Alessio Serra (ext.) <alessio.serra@partner.bmw.de>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-23 20:04:15 -08:00
Karim Lalani
4c7755778d community[patch]: SurrealDB fix for asyncio (#16092)
Code fix for asyncio
2024-01-23 19:46:19 -08:00
BeatrixCohere
2b2285dac0 docs: Update cohere rerank and comparison docs (#16198)
- **Description:** Update the cohere rerank docs to use cohere
embeddings
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Twitter handle:** n/a
2024-01-23 19:39:42 -08:00
Raunak
476bf8b763 community[patch]: Load list of files using UnstructuredFileLoader (#16216)
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
  
  - **Issue:** Fixed #15607,
  - **Dependencies:** NA
  - **Twitter handle:** NA

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-23 19:37:37 -08:00
Xudong Sun
019b6ebe8d community[minor]: Add iFlyTek Spark LLM chat model support (#13389)
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
  - **Dependencies:** websocket-client ^1.6.1
  - **Tag maintainer:** @baskaryan 

### SparkLLM chat model usage

Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:

```python3
from langchain.chat_models.sparkllm import ChatSparkLLM

client = ChatSparkLLM(
    spark_app_id="<app_id>",
    spark_api_key="<api_key>",
    spark_api_secret="<api_secret>"
)
```
2024-01-23 19:23:46 -08:00
Ali Zendegani
80fcc50c65 langchain[patch]: Minor Fix: Enable Passing custom_headers for Authentication in GraphQL Agent/Tool (#16413)
- **Description:** 

This PR aims to enhance the `langchain` library by enabling the support
for passing `custom_headers` in the `GraphQLAPIWrapper` usage within
`langchain/agents/load_tools.py`.

While the `GraphQLAPIWrapper` from the `langchain_community` module is
inherently capable of handling `custom_headers`, its current invocation
in `load_tools.py` does not facilitate this functionality.
This limitation restricts the use of the `graphql` tool with databases
or APIs that require token-based authentication.

The absence of support for `custom_headers` in this context also leads
to a lack of error messages when attempting to interact with secured
GraphQL endpoints, making debugging and troubleshooting more
challenging.

This update modifies the `load_tools` function to correctly handle
`custom_headers`, thereby allowing secure and authenticated access to
GraphQL services requiring tokens.

Example usage after the proposed change:
```python
tools = load_tools(
    ["graphql"],
    graphql_endpoint="https://your-graphql-endpoint.com/graphql",
    custom_headers={"Authorization": f"Token {api_token}"},
)
```
  - **Issue:** None,
  - **Dependencies:** None,
  - **Twitter handle:** None
2024-01-23 19:19:53 -08:00
Serena Ruan
5c6e123757 community[patch]: Fix MlflowCallback with none artifacts_dir (#16487) 2024-01-23 19:09:02 -08:00
Krista Pratico
0e2e7d8b83 langchain[patch]: allow passing client with OpenAIAssistantRunnable (#16486)
- **Description:** This addresses the issue tagged below where if you
try to pass your own client when creating an OpenAI assistant, a
pydantic error is raised:

Example code:

```python
import openai
from langchain.agents.openai_assistant import OpenAIAssistantRunnable

client = openai.OpenAI()
interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
    name="langchain assistant",
    instructions="You are a personal math tutor. Write and run code to answer math questions.",
    tools=[{"type": "code_interpreter"}],
    model="gpt-4-1106-preview",
    client=client
)

```

Error:
`pydantic.v1.errors.ConfigError: field "client" not yet prepared, so the
type is still a ForwardRef. You might need to call
OpenAIAssistantRunnable.update_forward_refs()`

It additionally updates type hints and docstrings to indicate that an
AzureOpenAI client is permissible as well.

  - **Issue:** https://github.com/langchain-ai/langchain/issues/15948
  - **Dependencies:** N/A
2024-01-23 18:48:29 -08:00
Eugene Yurtsev
d898d2f07b docs: Fix version in which astream_events was released (#16481)
Fix typo in version
2024-01-23 18:41:44 -08:00
bu2kx
ff3163297b community[minor]: Add KDBAI vector store (#12797)
Addition of KDBAI vector store (https://kdb.ai).

Dependencies: `kdbai_client` v0.1.2 Python package.

Sample notebook: `docs/docs/integrations/vectorstores/kdbai.ipynb`

Tag maintainer: @bu2kx
Twitter handle: @kxsystems
2024-01-23 18:37:01 -08:00
JongRok BAEK
4ec3fe4680 docs: Updated integration docs structure for chat/anthropic (#16268)
Description: 
- Added output and environment variables
- Updated the documentation for chat/anthropic, changing references from
`langchain.schema` to `langchain_core.prompts`.

Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None

Since this is my first open-source PR, please feel free to point out any
mistakes, and I'll be eager to make corrections.
2024-01-23 18:36:28 -08:00
Shivani Modi
4e160540ff community[minor]: Adding Konko Completion endpoint (#15570)
This PR introduces update to Konko Integration with LangChain.

1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.

2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.

4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.

Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.

---------

Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
2024-01-23 18:22:32 -08:00
Gianfranco Demarco
c69f599594 langchain[patch]: Extract _aperform_agent_action from _aiter_next_step from AgentExecutor (#15707)
- **Description:** extreact the _aperform_agent_action in the
AgentExecutor class to allow for easier overriding. Extracted logic from
_iter_next_step into a new method _perform_agent_action for consistency
and easier overriding.
- **Issue:** #15706

Closes #15706
2024-01-23 18:22:09 -08:00
i-w-a
95ee69a301 langchain[patch]: In HTMLHeaderTextSplitter set default encoding to utf-8 (#16372)
- **Description:** The HTMLHeaderTextSplitter Class now explicitly
specifies utf-8 encoding in the part of the split_text_from_file method
that calls the HTMLParser.
- **Issue:** Prevent garbled characters due to differences in encoding
of html files (except for English in particular, I noticed that problem
with Japanese).
  - **Dependencies:** No dependencies,
  - **Twitter handle:**  @i_w__a
2024-01-23 18:20:29 -08:00
Noah Stapp
e135e5257c community[patch]: Include scores in MongoDB Atlas QA chain results (#14666)
Adds the ability to return similarity scores when using
`RetrievalQA.from_chain_type` with `MongoDBAtlasVectorSearch`. Requires
that `return_source_documents=True` is set.

Example use:

```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)

qa = RetrievalQA.from_chain_type(
	llm=OpenAI(), 
	chain_type="stuff", 
	retriever=vector_search.as_retriever(search_kwargs={"additional": ["similarity_score"]}),
	return_source_documents=True
)

...

docs = qa({"query": "..."})

docs["source_documents"][0].metadata["score"] # score will be here
```

I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
2024-01-23 18:18:28 -08:00
Serena Ruan
90f5a1c40e community[minor]: Improve mlflow callback (#15691)
- **Description:** Allow passing run_id to MLflowCallbackHandler to
resume a run instead of creating a new run. Support recording retriever
relevant metrics. Refactor the code to fix some bugs.
---------

Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
2024-01-23 18:16:51 -08:00
Facundo Santiago
92e6a641fd feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)
- **Description:** Introducing support for LLMs and Chat models running
in Azure AI studio and Azure ML using the new deployment mode
pay-as-you-go (model as a service).
- **Issue:** NA
- **Dependencies:** None.
- **Tag maintainer:** @prakharg-msft @gdyre 
- **Twitter handle:** @santiagofacundo

Examples added:
*
[docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb)
*
[docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 17:08:51 -08:00
Davide Menini
9ce177580a community: normalize bedrock embeddings (#15103)
In this PR I added a post-processing function to normalize the
embeddings. This happens only if the new `normalize` flag is `True`.

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
2024-01-23 17:05:24 -08:00
baichuan-assistant
20fcd49348 community: Fix Baichuan Chat. (#15207)
- **Description:** Baichuan Chat (with both Baichuan-Turbo and
Baichuan-Turbo-192K models) has updated their APIs. There are breaking
changes. For example, BAICHUAN_SECRET_KEY is removed in the latest API
but is still required in Langchain. Baichuan's Langchain integration
needs to be updated to the latest version.
  - **Issue:** #15206
  - **Dependencies:** None,
  - **Twitter handle:** None

@hwchase17.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-23 17:01:57 -08:00
gcheron
cfc225ecb3 community: SQLStrStore/SQLDocStore provide an easy SQL alternative to InMemoryStore to persist data remotely in a SQL storage (#15909)
**Description:**

- Implement `SQLStrStore` and `SQLDocStore` classes that inherits from
`BaseStore` to allow to persist data remotely on a SQL server.
- SQL is widely used and sometimes we do not want to install a caching
solution like Redis.
- Multiple issues/comments complain that there is no easy remote and
persistent solution that are not in memory (users want to replace
InMemoryStore), e.g.,
https://github.com/langchain-ai/langchain/issues/14267,
https://github.com/langchain-ai/langchain/issues/15633,
https://github.com/langchain-ai/langchain/issues/14643,
https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
- This is particularly painful when wanting to use
`ParentDocumentRetriever `
- This implementation is particularly useful when:
     * it's expensive to construct an InMemoryDocstore/dict
     * you want to retrieve documents from remote sources
     * you just want to reuse existing objects
- This implementation integrates well with PGVector, indeed, when using
PGVector, you already have a SQL instance running. `SQLDocStore` is a
convenient way of using this instance to store documents associated to
vectors. An integration example with ParentDocumentRetriever and
PGVector is provided in docs/docs/integrations/stores/sql.ipynb or
[here](https://github.com/gcheron/langchain/blob/sql-store/docs/docs/integrations/stores/sql.ipynb).
- It persists `str` and `Document` objects but can be easily extended.

 **Issue:**

Provide an easy SQL alternative to `InMemoryStore`.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 16:50:48 -08:00
dudgeon
26b2ad6d5b Fixed typo on quickstart.ipynb (#16482)
- **Description:** Quick typo fix: `inpect` >> `inspect`
  - **Issue:** N/A
  - **Dependencies:** any dependencies required for this change,
  - **Twitter handle:** @geoffdudgeon
2024-01-23 16:50:13 -08:00
Massimiliano Pronesti
e529939c54 feat(llms): support more tasks in HuggingFaceHub LLM and remove deprecated dep (#14406)
- **Description:** this PR upgrades the `HuggingFaceHub` LLM:
   * support more tasks (`translation` and `conversational`)
   * replaced the deprecated `InferenceApi` with `InferenceClient`
* adjusted the overall logic to use the "recommended" model for each
task when no model is provided, and vice-versa.
- **Tag mainter(s)**: @baskaryan @hwchase17
2024-01-23 16:48:56 -08:00
Erick Friis
afb25eeec4 cli[patch]: add integration tests to default makefile (#16479) 2024-01-23 16:09:16 -07:00
Erick Friis
51c8ef6af4 templates: fix azure params in retrieval agent (#16257)
- FIX templates/retrieval-agent/retireval-agent/chain.py to use the new
Syntax for Azure env params
- cr

---------

Co-authored-by: braun-viathan <p.braun@viathan.de>
Co-authored-by: Braun-viathan <121631422+braun-viathan@users.noreply.github.com>
2024-01-23 14:58:06 -07:00
Lance Martin
c3530f1c11 templates: Minor nit on HyDE (#16478) 2024-01-23 14:23:08 -07:00
Bagatur
ba326b98d0 langchain[patch]: Release 0.1.3 (#16475) 2024-01-23 11:50:25 -08:00
Bagatur
54149292f8 community[patch]: Release 0.0.15 (#16474) 2024-01-23 11:50:10 -08:00
Bagatur
ef6a335570 core[patch]: Release 0.1.15 (#16473) 2024-01-23 11:31:50 -08:00
Erick Friis
1f4ac62dee cli[patch], google-vertexai[patch]: readme template (#16470) 2024-01-23 12:08:17 -07:00
Eugene Yurtsev
39d1cbfecf Docs: Document astream_events API (#16300)
Document astream events API
2024-01-23 12:32:45 -05:00
Tomaz Bratanic
d0a8082188 Fix neo4j sanitize (#16439)
Fix the sanitization bug and add an integration test
2024-01-23 10:56:28 -05:00
William FH
5de59f9236 Core[Patch] Parse tool input after on_start (#16430)
For tracing, if a validation error occurs, currently it is attributed to
the previous step of the chain. It would be nice to have the on_start
and on_error callbacks called for tools when there is a validation error
that occurs to more easily attribute the root-cause
2024-01-23 10:54:47 -05:00
Nuno Campos
226fe645f1 core[patch] Do not try to access attribute of None (#16321) 2024-01-22 22:10:03 -08:00
Florian MOREL
4b7969efc5 community[minor]: New documents loader for visio files (with extension .vsdx) (#16171)
**Description** : New documents loader for visio files (with extension
.vsdx)

A [visio file](https://fr.wikipedia.org/wiki/Microsoft_Visio) (with
extension .vsdx) is associated with Microsoft Visio, a diagram creation
software. It stores information about the structure, layout, and
graphical elements of a diagram. This format facilitates the creation
and sharing of visualizations in areas such as business, engineering,
and computer science.

A Visio file can contain multiple pages. Some of them may serve as the
background for others, and this can occur across multiple layers. This
loader extracts the textual content from each page and its associated
pages, enabling the extraction of all visible text from each page,
similar to what an OCR algorithm would do.

**Dependencies** : xmltodict package
2024-01-22 22:07:03 -08:00
KhoPhi
fb41b68ea1 docs: Update with LCEL examples to Ollama & ChatOllama Integration notebook (#16194)
- **Description:** Updated the Chat/Ollama docs notebook with LCEL chain
examples

- **Issue:**  #15664 I'm a new contributor 😊

- **Dependencies:** No dependencies

- **Twitter handle:** 

Comments:

- How do I truncate the output of the stream in the notebook if and or
when it goes on and on and on for even the basic of prompts?

Edit:

Looking forward to feedback @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-22 22:05:59 -08:00
Michael Gorham
3b0226b2c6 docs: Update redis_chat_message_history.ipynb (#16344)
## Problem
Spent several hours trying to figure out how to pass
`RedisChatMessageHistory` as a `GetSessionHistoryCallable` with a
different REDIS hostname. This example kept connecting to
`redis://localhost:6379`, but I wanted to connect to a server not hosted
locally.

## Cause
Assumption the user knows how to implement `BaseChatMessageHistory` and
`GetSessionHistoryCallable`

## Solution
Update documentation to show how to explicitly set the REDIS hostname
using a lambda function much like the MongoDB and SQLite examples.
2024-01-22 21:59:59 -08:00
Ian
c98994c3c9 docs: Improve notebook to show how to use tidb to store history messages (#16420)
After merging [PR
#16304](https://github.com/langchain-ai/langchain/pull/16304), I
realized that our notebook example for integrating TiDB with LangChain
was too basic. To make it more useful and user-friendly, I plan to
create a detailed example. This will show how to use TiDB for saving
history messages in LangChain, offering a clearer, more practical guide
for our users
2024-01-22 21:58:37 -08:00
Eugene Yurtsev
c88750d54b Docs: Agent streaming notebooks (#15858)
Update information about streaming in the agents section. Show how to
use astream_events to get token by token streaming.
2024-01-22 21:54:55 -05:00
Eugene Yurtsev
e5672bc944 docs: Re-write custom agent to show to write a tools agent (#15907)
Shows how to write a tools agent rather than a functions agent.
2024-01-22 17:28:31 -08:00
Boris Feld
404abf139a community: Add CometLLM tracing context var (#15765)
I also added LANGCHAIN_COMET_TRACING to enable the CometLLM tracing
integration similar to other tracing integrations. This is easier for
end-users to enable it rather than importing the callback and pass it
manually.

(This is the same content as
https://github.com/langchain-ai/langchain/pull/14650 but rebased and
squashed as something seems to confuse Github Action).
2024-01-22 15:17:16 -08:00
Nicolò Boschi
a500527030 infra: google-vertexai relax types-requests deps range (#16264)
- **Description:** At the moment it's not possible to include in the
same project langchain-google-vertexai and boto3 (e.g. use bedrock and
vertex in the same application) because of the dependency resolutions
conflict. boto3 is still using urllib3 1.x, meanwhile
langchain-google-vertexai -> types-requests depends on urllib3 2.x. [the
last version of types-requests that allows urllib3 1.x is
2.31.0.6](https://pypi.org/project/types-requests/#description).
In this PR I allow the vertexai package to get that version also. 
  
- **Twitter handle:** nicoloboschi
2024-01-22 14:54:41 -08:00
DL
b9e7f6f38a community[minor]: Bedrock async methods (#12477)
Description: Added support for asynchronous streaming in the Bedrock
class and corresponding tests.

Primarily:
  async def aprepare_output_stream
    async def _aprepare_input_and_invoke_stream
    async def _astream
    async def _acall

I've ensured that the code adheres to the project's linting and
formatting standards by running make format, make lint, and make test.

Issue: #12054, #11589

Dependencies: None

Tag maintainer: @baskaryan 

Twitter handle: @dominic_lovric

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-01-22 14:44:49 -08:00
Jennifer Melot
d6275e47f2 docs: Updated integration docs structure for tools/arxiv (#16091) (#16250)
- **Description:** Updated docs for tools/arxiv to use `AgentExecutor`
and `invoke`
  - **Issue:** #15664
  - **Dependencies:** None
  - **Twitter handle:** None
2024-01-22 14:34:22 -08:00
Frank995
5694728816 community[patch]: Implement vector length definition at init time in PGVector for indexing (#16133)
Replace this entire comment with:
- **Description:** allow user to define tVector length in PGVector when
creating the embedding store, this allows for later indexing
  - **Issue:** #16132
  - **Dependencies:** None
2024-01-22 14:32:44 -08:00
ChengZi
a950fa0487 docs: add milvus multitenancy doc (#16177)
- **Description:** add milvus multitenancy doc, it is an example for
this [pr](https://github.com/langchain-ai/langchain/pull/15740) .
  - **Issue:** No,
  - **Dependencies:** No,
  - **Twitter handle:** No

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
2024-01-22 14:25:26 -08:00
Chase VanSteenburg
1011b681dc core[patch]: Fix f-string formatting in error message for configurable_fields (#16411)
- **Description:** Simple fix to f-string formatting. Allows more
informative ValueError output.
  - **Issue:** None needed.
  - **Dependencies:** None.
  - **Twitter handle:** @FlightP1an
2024-01-22 14:08:44 -08:00
parkererickson-tg
b26a22f307 community[minor]: add TigerGraph support (#16280)
**Description:** Add support for querying TigerGraph databases through
the InquiryAI service.
**Issue**: N/A
**Dependencies:** N/A
**Twitter handle:** @TigerGraphDB
2024-01-22 14:07:44 -08:00
Christophe Bornet
8da34118bc docs: Add documentation for Cassandra Document Loader (#16282) 2024-01-22 14:06:21 -08:00
Alireza Kashani
d1b4ead87c community[patch]: Update grobid.py (#16298)
there is a case where "coords" does not exist in the "sentence"
therefore, the "split(";")" will lead to error.

we can fix that by adding "if sentence.get("coords") is not None:" 

the resulting empty "sbboxes" from this scenario will raise error at
"sbboxes[0]["page"]" because sbboxes are empty.

the PDF from https://pubmed.ncbi.nlm.nih.gov/23970373/ can replicate
those errors.
2024-01-22 14:03:58 -08:00
s-g-1
fbe592a5ce community[patch]: fix typo in pgvecto_rs debug msg (#16318)
fixes typo in pip install message for the pgvecto_rs community vector
store
no issues found mentioning this
no dependents changed
2024-01-22 14:01:33 -08:00
James Braza
d511366dd3 infra: absolute EXAMPLE_DIR path in core unit tests (#16325)
If you invoked testing from places besides `core/`, this `EXAMPLE_DIR`
path won't work. This PR makes`EXAMPLE_DIR` robust against invocation
location
2024-01-22 14:00:23 -08:00
Jonathan Algar
774e543e1f docs: fix formatting issue in rockset.ipynb (#16328)
**Description:** randomly discovered while working on another PR
https://github.com/quarto-dev/quarto-cli/discussions/8131#discussioncomment-8027706

@anubhav94N ICYI
2024-01-22 13:59:45 -08:00
Ian
b9f5104e6c communty[minor]: Store Message History to TiDB Database (#16304)
This pull request integrates the TiDB database into LangChain for
storing message history, marking one of several steps towards a
comprehensive integration of TiDB with LangChain.


A simple usage
```python
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory

history = TiDBChatMessageHistory(
    connection_string="mysql+pymysql://<host>:<PASSWORD>@<host>:4000/<db>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true",
    session_id="code_gen",
    earliest_time=datetime.utcnow(),  # Optional to set earliest_time to load messages after this time point.
)

history.add_user_message("hi! How's feature going?")
history.add_ai_message("It's almot done")
```
2024-01-22 13:56:56 -08:00
Erick Friis
35ec0bbd3b cli[patch]: pypi fields (#16410) 2024-01-22 14:28:30 -07:00
Erick Friis
2ac3a82d85 cli[patch]: new fields in integration template, release 0.0.21 (#16398) 2024-01-22 14:26:47 -07:00
Erick Friis
cfe95ab085 multiple: update langsmith dep (#16407) 2024-01-22 14:23:11 -07:00
Sarthak Chaure
dd5b8107b1 Docs: Updated callbacks/index.mdx (#16404)
The callbacks get started demo code was updated , replacing the
chain.run() command ( which is now depricated) ,with the updated
chain.invoke() command.
Solving the following issue : #16379
Twitter/X : @Hazxhx
2024-01-22 16:10:19 -05:00
Omar-aly
873de14cd8 docs: update vectorstores/llm_rails integration doc (#16199)
Description:
- Updated the docs for the vectorstores integration module
llm_rails.ipynb

Issue:
- [Connected to Issue
#15664](https://github.com/langchain-ai/langchain/issues/15664)
 
Dependencies:
- N/A

Co-authored-by: omaraly23 <112936089+omaraly22@users.noreply.github.com>
2024-01-22 11:40:08 -08:00
Eli Lucherini
6b2a57161a community[patch]: allow additional kwargs in MlflowEmbeddings for compatibility with Cohere API (#15242)
- **Description:** add support for kwargs in`MlflowEmbeddings`
`embed_document()` and `embed_query()` so that all the arguments
required by Cohere API (and others?) can be passed down to the server.
  - **Issue:** #15234 
- **Dependencies:** MLflow with MLflow Deployments (`pip install
mlflow[genai]`)

**Tests**
Now this code [adapted from the
docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example)
for the Cohere API works locally.

```python
"""
Setup
-----
export COHERE_API_KEY=...
mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml

Run
---
python /path/to/this/file.py
"""
embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
```

Output
```
[0.060455322, 0.028793335, -0.025848389]
[0.031707764, 0.021057129, -0.009361267]
```
2024-01-22 11:38:11 -08:00
Guillem Orellana Trullols
aad2aa7188 community[patch]: BedrockChat -> Support Titan express as chat model (#15408)
Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.

Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
2024-01-22 11:37:23 -08:00
Piotr Mardziel
1b9001db47 core[patch]: preserve inspect.iscoroutinefunction with @deprecated decorator (#16295)
Adjusted `deprecate` decorator to make sure decorated async functions
are still recognized as "coroutinefunction" by `inspect`.

Before change, functions such as `LLMChain.acall` which are decorated as
deprecated are not recognized as coroutine functions. After the change,
they are recognized:

```python
import inspect
from langchain import LLMChain

# Is false before change but true after.
inspect.iscoroutinefunction(LLMChain.acall)
```
2024-01-22 11:34:13 -08:00
Katarina Supe
01c2f27ffa community[patch]: Update Memgraph support (#16360)
- **Description:** I removed two queries to the database and left just
one whose results were formatted afterward into other type of schema
(avoided two calls to DB)
  - **Issue:** /
  - **Dependencies:** /
  - **Twitter handle:** @supe_katarina
2024-01-22 11:33:28 -08:00
Lance Martin
369e90d427 docs: Minor update to Robocorp toolkit docs (#16399) 2024-01-22 11:33:13 -08:00
Hadi
a1c0cf21c9 docs: Update import library for StreamlitCallbackHandler (#16401)
- **Description:** Some code sources have been moved from `langchain` to
`langchain_community` and so the documentation is not yet up-to-date.
This is specifically true for `StreamlitCallbackHandler` which returns a
`warning` message if not loaded from `langchain_community`.,
- **Issue:** I don't see a # issue that could address this problem but
perhaps #10744,
- **Dependencies:** Since it's a documentation change no dependencies
are required
2024-01-22 11:33:00 -08:00
JaguarDB
7ecd2f22ac community[patch]: update documentation on jaguar vector store (#16346)
- **Description:** update documentation on jaguar vector store:
Instruction for setting up jaguar server and usage of text_tag.
  - **Issue:** 
  - **Dependencies:** 
  - **Twitter handle:**

---------

Co-authored-by: JY <jyjy@jaguardb>
2024-01-22 11:28:38 -08:00
Max Jakob
8569b8f680 community[patch]: ElasticsearchStore enable max inner product (#16393)
Enable max inner product for approximate retrieval strategy. For exact
strategy we lack the necessary `maxInnerProduct` function in the
Painless scripting language, this is why we do not add it there.

Similarity docs:
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Joe McElroy <joseph.mcelroy@elastic.co>
2024-01-22 11:26:18 -08:00
Iskren Ivov Chernev
fc196cab12 community[minor]: DeepInfra support for chat models (#16380)
Add deepinfra chat models support.

This is https://github.com/langchain-ai/langchain/pull/14234 re-opened
from my branch (so maintainers can edit).
2024-01-22 11:22:17 -08:00
Bagatur
eac91b60c9 docs: qa rag nit (#16400) 2024-01-22 11:17:32 -08:00
Bagatur
85e8423312 community[patch]: Update bing results tool name (#16395)
Make BingSearchResults tool name OpenAI functions compatible (can't have
spaces).

Fixes #16368
2024-01-22 11:11:03 -08:00
Max Jakob
de209af533 community[patch]: ElasticsearchStore: add relevance function selector (#16378)
Implement similarity function selector for ElasticsearchStore. The
scores coming back from Elasticsearch are already similarities (not
distances) and they are already normalized (see
[docs](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)).
Hence we leave the scores untouched and just forward them.

This fixes #11539.

However, in hybrid mode (when keyword search and vector search are
involved) Elasticsearch currently returns no scores. This PR adds an
error message around this fact. We need to think a bit more to come up
with a solution for this case.

This PR also corrects a small error in the Elasticsearch integration
test.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-22 11:52:20 -07:00
y2noda
54f90fc6bc langchain_google_vertexai:Enable the use of langchain's built-in tools in Gemini's function calling (#16341)
- **Issue:** This is a PR about #16340 

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Co-authored-by: yuhei.tsunoda <yuhei.tsunoda@brainpad.co.jp>
2024-01-22 11:16:36 -07:00
Tom Jorquera
1445ac95e8 community[patch]: Enable streaming for GPT4all (#16392)
`streaming` param was never passed to model
2024-01-22 09:54:18 -08:00
Bagatur
af9f1738ca langchain[patch]: Release 0.1.2 (#16388) 2024-01-22 09:32:24 -08:00
Bagatur
8779013847 community[patch]: Release 0.0.14 (#16384) 2024-01-22 08:50:19 -08:00
Bagatur
9cf0f5eb78 core[patch]: Release 0.1.14 (#16382) 2024-01-22 08:28:03 -08:00
Bagatur
1dc6c1ce06 core[patch], community[patch], langchain[patch], docs: Update SQL chains/agents/docs (#16168)
Revamp SQL use cases docs. In the process update SQL chains and agents.
2024-01-22 08:19:08 -08:00
Jatin Chawda
05162928c0 Docs: Fixed Urls of AsyncHtmlLoader, AsyncChromiumLoader and HTML2Text links in Web scraping Docs (#16365)
Fixing links in documentation.
2024-01-22 11:03:03 -05:00
Bob Lin
acc14802d1 Fix conn field definition in SQLiteEntityStore (#15440) 2024-01-22 07:53:49 -08:00
James Braza
e1c59779ad core[patch]: Remove print statement on missing grandalf dependency in favor of more explicit ImportError (#16326)
After this PR an ImportError will be raised without a print if grandalf
is missing when using grandalf related code for printing runnable
graphs.
2024-01-22 10:48:54 -05:00
Nuno Campos
971a68d04f Docs: Update README.md in core (#16329)
Docs: Update README.md in core
2024-01-22 10:42:31 -05:00
Christophe Bornet
f9be877ed7 Docs: Add self-querying retriever and store to AstraDB provider doc (#16362)
Add self-querying retriever and store to AstraDB provider doc
2024-01-22 10:24:28 -05:00
Mateusz Szewczyk
076dbb1a8f docs: IBM watsonx.ai Use invoke instead of __call__ (#16371)
- **Description:** Updating documentation of IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM with using
`invoke` instead of `__call__`
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
  - **Tag maintainer:** : 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. 

The following warning information show when i use `run` and `__call__`
method:
```
LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
  warn_deprecated(
```

We need to update documentation for using `invoke` method
2024-01-22 10:22:03 -05:00
Bob Lin
c6bd7778b0 Use invoke instead of __call__ (#16369)
The following warning information will be displayed when i use
`llm(PROMPT)`:

```python
/Users/169/llama.cpp/venv/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
  warn_deprecated(
```

So I changed to standard usage.
2024-01-22 10:18:43 -05:00
Eugene Yurtsev
89372fca22 core[patch]: Update sys info information (#16297)
Update information collected in sys info.

python -m langchain_core.sys_info     

System Information
------------------
> OS:  Linux
> OS Version: #14~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Nov 20 18:15:30
UTC 2
> Python Version:  3.11.4 (main, Sep 25 2023, 10:06:23) [GCC 11.4.0]

Package Information
-------------------
> langchain_core: 0.1.10
> langchain: 0.1.0
> langchain_community: 0.0.11
> langchain_cli: 0.0.20
> langchain_experimental: 0.0.36
> langchain_openai: 0.0.2
> langchainhub: 0.1.14
> langserve: 0.0.19

Packages not installed (Not Necessarily a Problem)
--------------------------------------------------
The following packages were not found:

> langgraph
2024-01-22 10:18:04 -05:00
Luke
5396604ef4 community: Handling missing key in Google Trends API response. (#15864)
- **Description:** Handing response where _interest_over_time_ is
missing.
  - **Issue:** #15859
  - **Dependencies:** None
2024-01-21 18:11:45 -08:00
Virat Singh
c2a614eddc community: Add PolygonLastQuote Tool and Toolkit (#15990)
**Description:** 
In this PR, I am adding a `PolygonLastQuote` Tool, which can be used to
get the latest price quote for a given ticker / stock.

Additionally, I've added a Polygon Toolkit, which we can use to
encapsulate future tools that we build for Polygon.

**Twitter handle:** [@virattt](https://twitter.com/virattt)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-21 15:08:55 -08:00
Nuno Campos
ef75bb63ce core[patch] Fix tracer output of streamed runs with non-addable output (#16324)
- Used to be None, now is just the last chunk

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-20 18:52:26 -08:00
Ryan French
3d23a5eb36 langchain[patch]: Allow OpenSearch Query Translator to correctly work with Date types (#16022)
**Description:**

Fixes an issue where the Date type in an OpenSearch Self Querying
Retriever would fail to generate a valid query

**Issue:**
https://github.com/langchain-ai/langchain/issues/14225
2024-01-19 17:57:18 -08:00
Ofer Mendelevitch
ffae98d371 template: Update Vectara templates (#15363)
fixed multi-query template for Vectara
added self-query template for Vectara

Also added prompt_name parameter to summarization

CC @efriis 
 **Twitter handle:** @ofermend
2024-01-19 17:32:33 -08:00
Bagatur
1e29b676d5 core[patch]: simple fallback streaming (#16055) 2024-01-19 16:31:54 -08:00
Eugene Yurtsev
4ef0ed4ddc astream_events: Add version parameter while method is in beta (#16290)
Add a version parameter while the method is in beta phase.

The idea is to make it possible to minimize making breaking changes for users while we're iterating on schema.

Once the API is stable we can assign a default version requirement.
2024-01-19 13:20:02 -05:00
Bagatur
91230ef5d1 openai[patch]: Release 0.0.3 (#16289) 2024-01-19 10:15:08 -08:00
Hamza Kyamanywa
39b3c6d94c langchain[patch]: Add konlpy based text splitting for Korean (#16003)
- **Description:** Adds a text splitter based on
[Konlpy](https://konlpy.org/en/latest/#start) which is a Python package
for natural language processing (NLP) of the Korean language. (It is
like Spacy or NLTK for Korean)
- **Dependencies:** Konlpy would have to be installed before this
splitter is used,
  - **Twitter handle:** @untilhamza
2024-01-19 09:44:56 -08:00
Hongyu Lin
9b0a531aa2 doc: Fix small typo in quickstart (#16164)
- **Description:** fix small typo in quickstart

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-19 09:44:22 -08:00
Sagar B Manjunath
63e2acc964 docs: Fix minor issues in NVIDIA RAG canonical template (#16189)
- **Description:** Fixes a few issues in NVIDIAcanonical RAG template's
README, and adds a notebook for the template
- **Dependencies:** Adds the pypdf dependency which is needed for
ingestion, and updates the lock file

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-19 09:44:08 -08:00
Lance Martin
881d1c3ec5 Update MultiON toolkit docs (#16286) 2024-01-19 09:37:20 -08:00
Bagatur
e3828bee43 core[patch]: Release 0.1.13 (#16287) 2024-01-19 09:28:31 -08:00
Bagatur
2454fefc53 docs: agent prompt docs (#16105) 2024-01-19 09:19:22 -08:00
Bagatur
84bf5787a7 core[patch], openai[patch]: Chat openai stream logprobs (#16218) 2024-01-19 09:16:09 -08:00
Bagatur
6f7a414955 docs: fix links (#16284) 2024-01-19 08:51:12 -08:00
Eugene Yurtsev
cc2e30fa13 CI: update the description used for privileged issue template (#16277)
Update description
2024-01-19 10:13:33 -05:00
Eugene Yurtsev
3b649f4331 CI: Add privileged version for issue creation (#16276)
Add privileged version for issue creation.

This adds a version of issue creation which is unstructured by design to
make it easier for maintainers to create issues.

Maintainers are expected to write / describe issues clearly.
2024-01-19 09:53:51 -05:00
Eugene Yurtsev
c0d453d8ac CI: Disable blank issues, add links to QA discussions & show and tell (#16275)
Update the issue template
2024-01-19 09:34:23 -05:00
Carey
021b0484a8 community[patch]: add skipped test for inner product normalization (#14989)
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-18 23:03:15 -08:00
Lance Martin
f63906a9c2 Test and update MultiON agent toolkit docs (#16235) 2024-01-18 20:24:35 -08:00
Christophe Bornet
3ccbe11363 community[minor]: Add Cassandra document loader (#16215)
- **Description:** document loader for Apache Cassandra
  - **Twitter handle:** cbornet_
2024-01-18 18:49:02 -08:00
Tomaz Bratanic
fc84083ce5 docs: Add neo4j semantic blog post link to templates (#16225) 2024-01-18 18:45:22 -08:00
mikeFore4
9d32af72ce community[patch]: huggingface hub character removal bug fix (#16233)
- **Description:** Some text-generation models on huggingface repeat the
prompt in their generated response, but not all do! The tests use "gpt2"
which DOES repeat the prompt and as such, the HuggingFaceHub class is
hardcoded to remove the first few characters of the response (to match
the len(prompt)). However, if you are using a model (such as the very
popular "meta-llama/Llama-2-7b-chat-hf") that DOES NOT repeat the prompt
in it's generated text, then the beginning of the generated text will be
cut off. This code change fixes that bug by first checking whether the
prompt is repeated in the generated response and removing it
conditionally.
  - **Issue:** #16232 
  - **Dependencies:** N/A
  - **Twitter handle:** N/A
2024-01-18 18:44:10 -08:00
Andreas Motl
3613d8a2ad community[patch]: Use SQLAlchemy's bulk_save_objects method to improve insert performance (#16244)
- **Description:** Improve [pgvector vector store
adapter](https://github.com/langchain-ai/langchain/blob/v0.1.1/libs/community/langchain_community/vectorstores/pgvector.py)
to save embeddings in batches, to improve its performance.
  - **Issue:** NA
  - **Dependencies:** NA
  - **References:** https://github.com/crate-workbench/langchain/pull/1


Hi again from the CrateDB team,

following up on GH-16243, this is another minor patch to the pgvector
vector store adapter. Inserting embeddings in batches, using
[SQLAlchemy's
`bulk_save_objects`](https://docs.sqlalchemy.org/en/20/orm/session_api.html#sqlalchemy.orm.Session.bulk_save_objects)
method, can deliver substantial performance gains.

With kind regards,
Andreas.

NB: As I am seeing just now that this method is a legacy feature of SA
2.0, it will need to be reworked on a future iteration. However, it is
not deprecated yet, and I haven't been able to come up with a different
implementation, yet.
2024-01-18 18:35:39 -08:00
Ashley Xu
0f99646ca6 docs: add the enrollment form forBigQueryVectorSearch (#16240)
This PR adds the enrollment form for BigQueryVectorSearch.
2024-01-18 18:34:06 -08:00
Eugene Yurtsev
177af65dc4 core[minor]: RFC Add astream_events to Runnables (#16172)
This PR adds `astream_events` method to Runnables to make it easier to
stream data from arbitrary chains.

* Streaming only works properly in async right now
* One should use `astream()` with if mixing in imperative code as might
be done with tool implementations
* Astream_log has been modified with minimal additive changes, so no
breaking changes are expected
* Underlying callback code / tracing code should be refactored at some
point to handle things more consistently (OK for now)

- ~~[ ] verify event for on_retry~~ does not work until we implement
streaming for retry
- ~~[ ] Any rrenaming? Should we rename "event" to "hook"?~~
- [ ] Any other feedback from community?
- [x] throw NotImplementedError for `RunnableEach` for now

## Example

See this [Example
Notebook](dbbc7fa0d6/docs/docs/modules/agents/how_to/streaming_events.ipynb)
for an example with streaming in the context of an Agent

## Event Hooks Reference

Here is a reference table that shows some events that might be emitted
by the various Runnable objects.
Definitions for some of the Runnable are included after the table.


| event | name | chunk | input | output |

|----------------------|------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------|
| on_chat_model_start | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | |
| on_chat_model_stream | [model name] | AIMessageChunk(content="hello")
| | |
| on_chat_model_end | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | {"generations": [...], "llm_output": None, ...} |
| on_llm_start | [model name] | | {'input': 'hello'} | |
| on_llm_stream | [model name] | 'Hello' | | |
| on_llm_end | [model name] | | 'Hello human!' |
| on_chain_start | format_docs | | | |
| on_chain_stream | format_docs | "hello world!, goodbye world!" | | |
| on_chain_end | format_docs | | [Document(...)] | "hello world!,
goodbye world!" |
| on_tool_start | some_tool | | {"x": 1, "y": "2"} | |
| on_tool_stream | some_tool | {"x": 1, "y": "2"} | | |
| on_tool_end | some_tool | | | {"x": 1, "y": "2"} |
| on_retriever_start | [retriever name] | | {"query": "hello"} | |
| on_retriever_chunk | [retriever name] | {documents: [...]} | | |
| on_retriever_end | [retriever name] | | {"query": "hello"} |
{documents: [...]} |
| on_prompt_start | [template_name] | | {"question": "hello"} | |
| on_prompt_end | [template_name] | | {"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |


Here are declarations associated with the events shown above:

`format_docs`:

```python
def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)
```

`some_tool`:

```python
@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}
```

`prompt`:

```python
template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
```
2024-01-18 21:27:01 -05:00
SN
f175bf7d7b Use env for revision id if not passed in as param; use git describe as backup (#16227)
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
2024-01-18 16:15:26 -08:00
Erick Friis
e5878c467a infra: scheduled testing env (#16239) 2024-01-18 14:28:01 -08:00
Erick Friis
2f348c695a infra: add nvidia api secret to integration testing (#15972) 2024-01-18 14:20:02 -08:00
Erick Friis
50959abf0c infra: google cse id integration test (#16238) 2024-01-18 14:12:00 -08:00
Erick Friis
b9495da92d langchain[patch]: fix stuff documents chain api docs render (#16159) 2024-01-18 14:07:44 -08:00
Erick Friis
eec3347939 docs: together cookbook import (#16236) 2024-01-18 14:07:19 -08:00
Erick Friis
92bc80483a infra: google search api key (#16237) 2024-01-18 14:06:38 -08:00
Erick Friis
0e76d84137 google-vertexai[patch]: more integration test fixes (#16234) 2024-01-18 13:59:23 -08:00
Erick Friis
aa35b43bcd docs, google-vertex[patch]: function docs (#16231) 2024-01-18 13:15:09 -08:00
Erick Friis
f2b2d59e82 docs: transport and client options docs (#16226)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-18 12:23:04 -08:00
Harrison Chase
f60f59d69f google-vertexai[patch]: Harrison/vertex function calling (#16223)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-18 12:17:40 -08:00
Rajesh Thallam
6bc6d64a12 langchain_google_vertexai[patch]: Add support for SystemMessage for Gemini chat model (#15933)
- **Description:** In Google Vertex AI, Gemini Chat models currently
doesn't have a support for SystemMessage. This PR adds support for it
only if a user provides additional convert_system_message_to_human flag
during model initialization (in this case, SystemMessage would be
prepended to the first HumanMessage). **NOTE:** The implementation is
similar to #14824


- **Twitter handle:** rajesh_thallam

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-18 10:22:07 -08:00
Erick Friis
65b231d40b mistralai[patch]: async integration tests (#16214) 2024-01-18 09:45:44 -08:00
jzaldi
ed118950fe docs: Updated integration docs structure for llm/google_vertex_ai_palm (#16091)
- **Description**: Updated doc for llm/google_vertex_ai_palm with new
functions: `invoke`, `stream`... Changed structure of the document to
match the required one.
- **Issue**: #15664 
- **Dependencies**: None
- **Twitter handle**: None

---------

Co-authored-by: Jorge Zaldívar <jzaldivar@google.com>
2024-01-18 09:45:27 -08:00
Bagatur
aa2e642ce3 docs: tool use nits (#16211) 2024-01-18 09:17:53 -08:00
Eugene Zapolsky
6b9e3ed9e9 google-vertexai[minor]: added safety_settings property to gemini wrapper (#15344)
**Description:** Gemini model has quite annoying default safety_settings
settings. In addition, current VertexAI class doesn't provide a property
to override such settings.
So, this PR aims to 
 - add safety_settings property to VertexAI
- fix issue with incorrect LLM output parsing when LLM responds with
appropriate 'blocked' response
- fix issue with incorrect parsing LLM output when Gemini API blocks
prompt itself as inappropriate
- add safety_settings related tests

I'm not enough familiar with langchain code base and guidelines. So, any
comments and/or suggestions are very welcome.
 
**Issue:** it will likely fix #14841

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-18 08:54:30 -08:00
Eugene Yurtsev
ecd4f0a7ec core[patch]: testing add chat model for unit-tests (#16209)
This PR adds a fake chat model for testing purposes.

Used in this PR: https://github.com/langchain-ai/langchain/pull/16172
2024-01-18 11:30:53 -05:00
Bagatur
27ad65cc68 docs: add tool use diagrams (#16207) 2024-01-18 07:59:54 -08:00
SN
7d444724d7 Add revision identifier to run_on_dataset (#16167)
Allow specifying revision identifier for better project versioning
2024-01-17 20:27:43 -08:00
Eugene Yurtsev
5d8c147332 docs: Document and test PydanticOutputFunctionsParser (#15759)
This PR adds documentation and testing to
`PydanticOutputFunctionsParser(OutputFunctionsParser)`.
2024-01-17 18:21:18 -08:00
Christophe Bornet
3502a407d9 infra: Use dotenv in langchain-community's integration tests (#16137)
* Removed some env vars not used in langchain package IT
* Added Astra DB env vars in langchain package, used for cache tests
* Added conftest.py to load env vars in langchain_community IT
* Added .env.example in  langchain_community IT
2024-01-17 18:18:26 -08:00
1442 changed files with 128488 additions and 59362 deletions

View File

@@ -13,7 +13,7 @@ There are many ways to contribute to LangChain. Here are some common ways people
- [**Documentation**](https://python.langchain.com/docs/contributing/documentation): Help improve our docs, including this one!
- [**Code**](https://python.langchain.com/docs/contributing/code): Help us write code, fix bugs, or improve our infrastructure.
- [**Integrations**](https://python.langchain.com/docs/contributing/integration): Help us integrate with your favorite vendors and tools.
- [**Integrations**](https://python.langchain.com/docs/contributing/integrations): Help us integrate with your favorite vendors and tools.
### 🚩GitHub Issues

View File

@@ -1,7 +1,17 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new LangChain feature
labels: ["02 Feature Request"]
labels: [idea]
body:
- type: checkboxes
id: checks
attributes:
label: Checked
description: Please confirm and check all the following options.
options:
- label: I searched existing ideas and did not find a similar one
required: true
- label: I added a very descriptive title
required: true
- label: I've clearly described the feature request and motivation for it
required: true
- type: textarea
id: feature-request
validations:
@@ -10,7 +20,6 @@ body:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type: textarea
id: motivation
validations:
@@ -19,12 +28,11 @@ body:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution
id: proposal
validations:
required: true
required: false
attributes:
label: Your contribution
label: Proposal (If applicable)
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the [Contributing Guide](https://python.langchain.com/docs/contributing/)
If you would like to propose a solution, please describe it here.

122
.github/DISCUSSION_TEMPLATE/q-a.yml vendored Normal file
View File

@@ -0,0 +1,122 @@
labels: [Question]
body:
- type: markdown
attributes:
value: |
Thanks for your interest in 🦜️🔗 LangChain!
Please follow these instructions, fill every question, and do every step. 🙏
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
this is time that we cannot spend on adding new features, fixing bugs, write documentation or reviewing pull requests.
By asking questions in a structured way (following this) it will be much easier to help you.
And there's a high chance that you will find the solution along the way and you won't even have to submit it and wait for an answer. 😎
As there are too many questions, we will **DISCARD** and close the incomplete ones.
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
Relevant links to check before opening a question to see if your question has already been answered, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://api.python.langchain.com/en/stable/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: checkboxes
id: checks
attributes:
label: Checked other resources
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this question.
required: true
- label: I searched the LangChain documentation with the integrated search.
required: true
- label: I used the GitHub search to find a similar question and didn't find it.
required: true
- type: checkboxes
id: help
attributes:
label: Commit to Help
description: |
After submitting this, I commit to one of:
* Read open questions until I find 2 where I can help someone and add a comment to help there.
* I already hit the "watch" button in this repository to receive notifications and I commit to help at least 2 people that ask questions in the future.
* Once my question is answered, I will mark the answer as "accepted".
options:
- label: I commit to help with one of those options 👆
required: true
- type: textarea
id: example
attributes:
label: Example Code
description: |
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
render: python
validations:
required: true
- type: textarea
id: description
attributes:
label: Description
description: |
What is the problem, question, or error?
Write a short description explaining what you are doing, what you expect to happen, and what is currently happening.
placeholder: |
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required: true
- type: textarea
id: system-info
attributes:
label: System Info
description: |
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder: |
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
validations:
required: true

View File

@@ -1,5 +1,5 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve LangChain. To report a security issue, please instead use the security option below.
description: Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the GitHub Discussions.
labels: ["02 Bug Report"]
body:
- type: markdown
@@ -7,6 +7,11 @@ body:
value: >
Thank you for taking the time to file a bug report.
Use this to report bugs in LangChain.
If you're not certain that your issue is due to a bug in LangChain, please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions)
to ask for help with your issue.
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
if there's another way to solve your problem:
@@ -14,7 +19,8 @@ body:
[API Reference](https://api.python.langchain.com/en/stable/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue)
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: checkboxes
id: checks
attributes:
@@ -27,6 +33,8 @@ body:
required: true
- label: I used the GitHub search to find a similar question and didn't find it.
required: true
- label: I am sure that this is a bug in LangChain rather than my code.
required: true
- type: textarea
id: reproduction
validations:
@@ -38,10 +46,12 @@ body:
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
If you're including an error message, please include the full stack trace not just the last error.
**Important!**
**Important!** Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
The following code:
@@ -55,9 +65,16 @@ body:
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
```
Include both the error and the full stack trace if reporting an exception!
- type: textarea
id: error
validations:
required: false
attributes:
label: Error Message and Stack Trace (if applicable)
description: |
If you are reporting an error, please include the full error message and stack trace.
placeholder: |
Exception + full stack trace
- type: textarea
id: description
attributes:
@@ -76,28 +93,26 @@ body:
id: system-info
attributes:
label: System Info
description: Please share your system info with us.
description: |
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder: |
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
validations:
required: true
- type: checkboxes
id: related-components
attributes:
label: Related Components
description: "Select the components related to the issue (if applicable):"
options:
- label: "LLMs/Chat Models"
- label: "Embedding Models"
- label: "Prompts / Prompt Templates / Prompt Selectors"
- label: "Output Parsers"
- label: "Document Loaders"
- label: "Vector Stores / Retrievers"
- label: "Memory"
- label: "Agents / Agent Executors"
- label: "Tools / Toolkits"
- label: "Chains"
- label: "Callbacks/Tracing"
- label: "Async"

View File

@@ -1,9 +1,15 @@
blank_issues_enabled: true
blank_issues_enabled: false
version: 2.1
contact_links:
- name: 🤔 Question or Problem
about: Ask a question or ask about a problem in GitHub Discussions.
url: https://github.com/langchain-ai/langchain/discussions
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
- name: Discord
url: https://discord.gg/6adMQxSpJS
about: General community discussions
- name: Feature Request
url: https://www.github.com/langchain-ai/langchain/discussions/categories/ideas
about: Suggest a feature or an idea
- name: Show and tell
about: Show what you built with LangChain
url: https://www.github.com/langchain-ai/langchain/discussions/categories/show-and-tell

View File

@@ -4,13 +4,45 @@ title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
labels: [03 - Documentation]
body:
- type: markdown
attributes:
value: >
Thank you for taking the time to report an issue in the documentation.
Only report issues with documentation here, explain if there are
any missing topics or if you found a mistake in the documentation.
Do **NOT** use this to ask usage questions or reporting issues with your code.
If you have usage questions or need help solving some problem,
please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions).
If you're in the wrong place, here are some helpful links to find a better
place to ask your question:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
[API Reference](https://api.python.langchain.com/en/stable/),
[GitHub search](https://github.com/langchain-ai/langchain),
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
[LangChain ChatBot](https://chat.langchain.com/)
- type: checkboxes
id: checks
attributes:
label: Checklist
description: Please confirm and check all the following options.
options:
- label: I added a very descriptive title to this issue.
required: true
- label: I included a link to the documentation page I am referring to (if applicable).
required: true
- type: textarea
attributes:
label: "Issue with current documentation:"
description: >
Please make sure to leave a reference to the document/code you're
referring to.
referring to. Feel free to include names of classes, functions, methods
or concepts you'd like to see documented more.
- type: textarea
attributes:
label: "Idea or request for content:"

25
.github/ISSUE_TEMPLATE/privileged.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
name: 🔒 Privileged
description: You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
body:
- type: markdown
attributes:
value: |
Thanks for your interest in LangChain! 🚀
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged merged pull requests.
- type: checkboxes
id: privileged
attributes:
label: Privileged issue
description: Confirm that you are allowed to create an issue here.
options:
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
required: true
- type: textarea
id: content
attributes:
label: Issue Content
description: Add the content of the issue here.

View File

@@ -1,20 +1,24 @@
<!-- Thank you for contributing to LangChain!
Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified.
Checklist:
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
- [ ] PR title: Please title your PR "package: description", where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] PR message: **Delete this entire template message** and replace it with the following bulleted list
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
- [ ] Pass lint and test: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified to check that you're passing lint and testing. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please include
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use. It lives in `docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17.
-->
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in langchain.
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17.

View File

@@ -32,7 +32,7 @@ runs:
with:
python-version: ${{ inputs.python-version }}
- uses: actions/cache@v3
- uses: actions/cache@v4
id: cache-bin-poetry
name: Cache Poetry binary - Python ${{ inputs.python-version }}
env:
@@ -79,7 +79,7 @@ runs:
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v3
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}

View File

@@ -36,13 +36,7 @@ if __name__ == "__main__":
elif "libs/partners" in file:
partner_dir = file.split("/")[2]
if os.path.isdir(f"libs/partners/{partner_dir}"):
dirs_to_run.update(
(
f"libs/partners/{partner_dir}",
"libs/langchain",
"libs/experimental",
)
)
dirs_to_run.add(f"libs/partners/{partner_dir}")
# Skip if the directory was deleted
elif "libs/langchain" in file:
dirs_to_run.update(("libs/langchain", "libs/experimental"))
@@ -53,4 +47,4 @@ if __name__ == "__main__":
else:
pass
json_output = json.dumps(list(dirs_to_run))
print(f"dirs-to-run={json_output}")
print(f"dirs-to-run={json_output}") # noqa: T201

67
.github/scripts/get_min_versions.py vendored Normal file
View File

@@ -0,0 +1,67 @@
import sys
import tomllib
from packaging.version import parse as parse_version
import re
MIN_VERSION_LIBS = ["langchain-core", "langchain-community", "langchain"]
def get_min_version(version: str) -> str:
# case ^x.x.x
_match = re.match(r"^\^(\d+(?:\.\d+){0,2})$", version)
if _match:
return _match.group(1)
# case >=x.x.x,<y.y.y
_match = re.match(r"^>=(\d+(?:\.\d+){0,2}),<(\d+(?:\.\d+){0,2})$", version)
if _match:
_min = _match.group(1)
_max = _match.group(2)
assert parse_version(_min) < parse_version(_max)
return _min
# case x.x.x
_match = re.match(r"^(\d+(?:\.\d+){0,2})$", version)
if _match:
return _match.group(1)
raise ValueError(f"Unrecognized version format: {version}")
def get_min_version_from_toml(toml_path: str):
# Parse the TOML file
with open(toml_path, "rb") as file:
toml_data = tomllib.load(file)
# Get the dependencies from tool.poetry.dependencies
dependencies = toml_data["tool"]["poetry"]["dependencies"]
# Initialize a dictionary to store the minimum versions
min_versions = {}
# Iterate over the libs in MIN_VERSION_LIBS
for lib in MIN_VERSION_LIBS:
# Check if the lib is present in the dependencies
if lib in dependencies:
# Get the version string
version_string = dependencies[lib]
# Use parse_version to get the minimum supported version from version_string
min_version = get_min_version(version_string)
# Store the minimum version in the min_versions dictionary
min_versions[lib] = min_version
return min_versions
# Get the TOML file path from the command line argument
toml_file = sys.argv[1]
# Call the function to get the minimum versions
min_versions = get_min_version_from_toml(toml_file)
print(
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
) # noqa: T201

View File

@@ -36,30 +36,35 @@ env:
jobs:
lint:
name: "-"
uses: ./.github/workflows/_lint.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
test:
name: "-"
uses: ./.github/workflows/_test.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
compile-integration-tests:
name: "-"
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
dependencies:
name: "-"
uses: ./.github/workflows/_dependencies.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
extended-tests:
name: "make extended_tests #${{ matrix.python-version }}"
runs-on: ubuntu-latest
strategy:
matrix:
@@ -68,7 +73,6 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
defaults:
run:
working-directory: ${{ inputs.working-directory }}

View File

@@ -24,7 +24,7 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }}
name: "poetry run pytest -m compile tests/integration_tests #${{ matrix.python-version }}"
steps:
- uses: actions/checkout@v4

View File

@@ -28,7 +28,7 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
name: dependencies - Python ${{ matrix.python-version }}
name: dependency checks ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4

View File

@@ -12,6 +12,7 @@ env:
jobs:
build:
environment: Scheduled testing
defaults:
run:
working-directory: ${{ inputs.working-directory }}
@@ -37,6 +38,11 @@ jobs:
shell: bash
run: poetry install --with test,test_integration
- name: Install deps outside pyproject
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
shell: bash
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
@@ -51,6 +57,15 @@ jobs:
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
run: |
make integration_tests

View File

@@ -21,6 +21,7 @@ env:
jobs:
build:
name: "make lint #${{ matrix.python-version }}"
runs-on: ubuntu-latest
strategy:
matrix:
@@ -79,13 +80,13 @@ jobs:
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
@@ -93,7 +94,7 @@ jobs:
run: |
make lint_package
- name: Install test dependencies
- name: Install unit test dependencies
# Also installs dev/lint/test/typing dependencies, to ensure we have
# type hints for as many of our libraries as possible.
# This helps catch errors that require dependencies to be spotted, for example:
@@ -102,18 +103,24 @@ jobs:
# If you change this configuration, make sure to change the `cache-key`
# in the `poetry_setup` action above to stop using the old cache.
# It doesn't matter how you change it, any change will cause a cache-bust.
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with test
- name: Install unit+integration test dependencies
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with test,test_integration
- name: Get .mypy_cache_test to speed up mypy
uses: actions/cache@v3
uses: actions/cache@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}

View File

@@ -15,12 +15,13 @@ on:
default: 'libs/langchain'
env:
PYTHON_VERSION: "3.10"
PYTHON_VERSION: "3.11"
POETRY_VERSION: "1.7.1"
jobs:
build:
if: github.ref == 'refs/heads/master'
environment: Scheduled testing
runs-on: ubuntu-latest
outputs:
@@ -170,13 +171,39 @@ jobs:
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
- name: Run unit tests with minimum dependency versions
if: ${{ (inputs.working-directory == 'libs/langchain') || (inputs.working-directory == 'libs/community') || (inputs.working-directory == 'libs/experimental') }}
- name: Get minimum versions
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
poetry run pip install -r _test_minimum_requirements.txt
poetry run pip install packaging
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
echo "min-versions=$min_versions"
- name: Run unit tests with minimum dependency versions
if: ${{ steps.min-version.outputs.min-versions != '' }}
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -28,7 +28,7 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }}
name: "make test #${{ matrix.python-version }}"
steps:
- uses: actions/checkout@v4

52
.github/workflows/api_doc_build.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: API docs build
on:
workflow_dispatch:
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.7.1"
PYTHON_VERSION: "3.10"
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
ref: bagatur/api_docs_build
- name: Set Git config
run: |
git config --local user.email "actions@github.com"
git config --local user.name "Github Actions"
- name: Merge master
run: |
git fetch origin master
git merge origin/master -m "Merge master" --allow-unrelated-histories -X theirs
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: api-docs
- name: Install dependencies
run: |
poetry run python -m pip install --upgrade --no-cache-dir pip setuptools
poetry run python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
poetry run python -m pip install ./libs/partners/*
poetry run python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
- name: Build docs
run: |
poetry run python -m pip install --upgrade --no-cache-dir pip setuptools
poetry run python docs/api_reference/create_api_rst.py
poetry run python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference api_reference_build/html -j auto
# https://github.com/marketplace/actions/add-commit
- uses: EndBug/add-and-commit@v9
with:
message: 'Update API docs build'

View File

@@ -1,5 +1,5 @@
---
name: Check library diffs
name: CI
on:
push:
@@ -32,6 +32,7 @@ jobs:
outputs:
dirs-to-run: ${{ steps.set-matrix.outputs.dirs-to-run }}
ci:
name: cd ${{ matrix.working-directory }}
needs: [ build ]
strategy:
matrix:

View File

@@ -1,5 +1,5 @@
---
name: Codespell
name: CI / cd . / make spell_check
on:
push:
@@ -12,7 +12,7 @@ permissions:
jobs:
codespell:
name: Check for spelling errors
name: (Check for spelling errors)
runs-on: ubuntu-latest
steps:
@@ -34,3 +34,4 @@ jobs:
with:
skip: guide_imports.json
ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}
exclude_file: libs/community/langchain_community/llms/yuan2.py

View File

@@ -1,5 +1,5 @@
---
name: Docs, templates, cookbook lint
name: CI / cd .
on:
push:
@@ -15,6 +15,7 @@ on:
jobs:
check:
name: Check for "from langchain import x" imports
runs-on: ubuntu-latest
steps:
@@ -28,6 +29,7 @@ jobs:
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
lint:
name: "-"
uses:
./.github/workflows/_lint.yml
with:

View File

@@ -7,4 +7,4 @@ ignore_words_list = (
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
)
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
print(f"::set-output name=ignore_words_list::{ignore_words_list}") # noqa: T201

View File

@@ -1,13 +0,0 @@
---
name: libs/cli Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/community Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/community
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/experimental Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/experimental
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: Experimental Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/experimental
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -1,27 +0,0 @@
---
name: libs/langchain Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/langchain
secrets: inherit
# N.B.: It's possible that PyPI doesn't make the new release visible / available
# immediately after publishing. If that happens, the docker build might not
# create a new docker image for the new release, since it won't see it.
#
# If this ends up being a problem, add a check to the end of the `_release.yml`
# workflow that prevents the workflow from finishing until the new release
# is visible and installable on PyPI.
release-docker:
needs:
- release
uses:
./.github/workflows/langchain_release_docker.yml
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/langchain
secrets: inherit

View File

@@ -54,6 +54,11 @@ jobs:
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration,test
- name: Install deps outside pyproject
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
shell: bash
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
- name: Run tests
shell: bash
env:

View File

@@ -1,36 +0,0 @@
---
name: templates CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/templates_ci.yml'
- 'templates/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.7.1"
WORKDIR: "templates"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: templates
secrets: inherit

View File

@@ -4,21 +4,17 @@
# Required
version: 2
formats:
- pdf
# Set the version of Python and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.11"
commands:
- python -m virtualenv $READTHEDOCS_VIRTUALENV_PATH
- python -m pip install --upgrade --no-cache-dir pip setuptools
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
- python -m pip install ./libs/partners/*
- python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
- python docs/api_reference/create_api_rst.py
- cat docs/api_reference/conf.py
- python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference $READTHEDOCS_OUTPUT/html -j auto
- mkdir -p $READTHEDOCS_OUTPUT
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/api_reference/conf.py

View File

@@ -1,6 +1,6 @@
# 🦜️🔗 LangChain
⚡ Building applications with LLMs through composability
⚡ Build context-aware reasoning applications
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/releases)
[![CI](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
@@ -43,6 +43,7 @@ This framework consists of several parts.
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
- **[LangGraph](https://python.langchain.com/docs/langgraph)**: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.
The LangChain libraries themselves are made up of several different packages.
- **[`langchain-core`](libs/core)**: Base abstractions and LangChain Expression Language.

View File

@@ -0,0 +1,922 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "rT1cmV4qCa2X"
},
"source": [
"# Using Apache Kafka to route messages\n",
"\n",
"---\n",
"\n",
"\n",
"\n",
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
"\n",
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal nework.\n",
"\n",
"It's an alternative to typical pattern of requesting a reponse from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UPYtfAR_9YxZ"
},
"source": [
"### 1. Install the main dependencies\n",
"\n",
"Dependencies include:\n",
"\n",
"- The Quix Streams library for managing interactions with Apache Kafka (or Kafka-like tools such as Redpanda) in a \"Pandas-like\" way.\n",
"- The LangChain library for managing interactions with Llama-2 and storing conversation state."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZX5tfKiy9cN-"
},
"outputs": [],
"source": [
"!pip install quixstreams==2.1.2a langchain==0.0.340 huggingface_hub==0.19.4 langchain-experimental==0.0.42 python-dotenv"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "losTSdTB9d9O"
},
"source": [
"### 2. Build and install the llama-cpp-python library (with CUDA enabled so that we can advantage of Google Colab GPU\n",
"\n",
"The `llama-cpp-python` library is a Python wrapper around the `llama-cpp` library which enables you to efficiently leverage just a CPU to run quantized LLMs.\n",
"\n",
"When you use the standard `pip install llama-cpp-python` command, you do not get GPU support by default. Generation can be very slow if you rely on just the CPU in Google Colab, so the following command adds an extra option to build and install\n",
"`llama-cpp-python` with GPU support (make sure you have a GPU-enabled runtime selected in Google Colab)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-JCQdl1G9tbl"
},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5_vjVIAh9rLl"
},
"source": [
"### 3. Download and setup Kafka and Zookeeper instances\n",
"\n",
"Download the Kafka binaries from the Apache website and start the servers as daemons. We'll use the default configurations (provided by Apache Kafka) for spinning up the instances."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "zFz7czGRW5Wr"
},
"outputs": [],
"source": [
"!curl -sSOL https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz\n",
"!tar -xzf kafka_2.13-3.6.1.tgz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Uf7NR_UZ9wye"
},
"outputs": [],
"source": [
"!./kafka_2.13-3.6.1/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-3.6.1/config/zookeeper.properties\n",
"!./kafka_2.13-3.6.1/bin/kafka-server-start.sh -daemon ./kafka_2.13-3.6.1/config/server.properties\n",
"!echo \"Waiting for 10 secs until kafka and zookeeper services are up and running\"\n",
"!sleep 10"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "H3SafFuS94p1"
},
"source": [
"### 4. Check that the Kafka Daemons are running\n",
"\n",
"Show the running processes and filter it for Java processes (you should see two—one for each server)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CZDC2lQP99yp"
},
"outputs": [],
"source": [
"!ps aux | grep -E '[j]ava'"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Snoxmjb5-V37"
},
"source": [
"### 5. Import the required dependencies and initialize required variables\n",
"\n",
"Import the Quix Streams library for interacting with Kafka, and the necessary LangChain components for running a `ConversationChain`."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "plR9e_MF-XL5"
},
"outputs": [],
"source": [
"# Import utility libraries\n",
"import json\n",
"import random\n",
"import re\n",
"import time\n",
"import uuid\n",
"from os import environ\n",
"from pathlib import Path\n",
"from random import choice, randint, random\n",
"\n",
"from dotenv import load_dotenv\n",
"\n",
"# Import a Hugging Face utility to download models directly from Hugging Face hub:\n",
"from huggingface_hub import hf_hub_download\n",
"from langchain.chains import ConversationChain\n",
"\n",
"# Import Langchain modules for managing prompts and conversation chains:\n",
"from langchain.llms import LlamaCpp\n",
"from langchain.memory import ConversationTokenBufferMemory\n",
"from langchain.prompts import PromptTemplate, load_prompt\n",
"from langchain.schema import SystemMessage\n",
"from langchain_experimental.chat_models import Llama2Chat\n",
"from quixstreams import Application, State, message_key\n",
"\n",
"# Import Quix dependencies\n",
"from quixstreams.kafka import Producer\n",
"\n",
"# Initialize global variables.\n",
"AGENT_ROLE = \"AI\"\n",
"chat_id = \"\"\n",
"\n",
"# Set the current role to the role constant and initialize variables for supplementary customer metadata:\n",
"role = AGENT_ROLE"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HgJjJ9aZ-liy"
},
"source": [
"### 6. Download the \"llama-2-7b-chat.Q4_K_M.gguf\" model\n",
"\n",
"Download the quantized LLama-2 7B model from Hugging Face which we will use as a local LLM (rather than relying on REST API calls to an external service)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 67,
"referenced_widgets": [
"969343cdbe604a26926679bbf8bd2dda",
"d8b8370c9b514715be7618bfe6832844",
"0def954cca89466b8408fadaf3b82e64",
"462482accc664729980562e208ceb179",
"80d842f73c564dc7b7cc316c763e2633",
"fa055d9f2a9d4a789e9cf3c89e0214e5",
"30ecca964a394109ac2ad757e3aec6c0",
"fb6478ce2dac489bb633b23ba0953c5c",
"734b0f5da9fc4307a95bab48cdbb5d89",
"b32f3a86a74741348511f4e136744ac8",
"e409071bff5a4e2d9bf0e9f5cc42231b"
]
},
"id": "Qwu4YoSA-503",
"outputId": "f956976c-7485-415b-ac93-4336ade31964"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The model path does not exist in state. Downloading model...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "969343cdbe604a26926679bbf8bd2dda",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"llama-2-7b-chat.Q4_K_M.gguf: 0%| | 0.00/4.08G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model_name = \"llama-2-7b-chat.Q4_K_M.gguf\"\n",
"model_path = f\"./state/{model_name}\"\n",
"\n",
"if not Path(model_path).exists():\n",
" print(\"The model path does not exist in state. Downloading model...\")\n",
" hf_hub_download(\"TheBloke/Llama-2-7b-Chat-GGUF\", model_name, local_dir=\"state\")\n",
"else:\n",
" print(\"Loading model from state...\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6AN6TXsF-8wx"
},
"source": [
"### 7. Load the model and initialize conversational memory\n",
"\n",
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
"\n",
"Here, we're overiding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7zLO3Jx3_Kkg"
},
"outputs": [],
"source": [
"# Load the model with the apporiate parameters:\n",
"llm = LlamaCpp(\n",
" model_path=model_path,\n",
" max_tokens=250,\n",
" top_p=0.95,\n",
" top_k=150,\n",
" temperature=0.7,\n",
" repeat_penalty=1.2,\n",
" n_ctx=2048,\n",
" streaming=False,\n",
" n_gpu_layers=-1,\n",
")\n",
"\n",
"model = Llama2Chat(\n",
" llm=llm,\n",
" system_message=SystemMessage(\n",
" content=\"You are a very bored robot with the personality of Marvin the Paranoid Android from The Hitchhiker's Guide to the Galaxy.\"\n",
" ),\n",
")\n",
"\n",
"# Defines how much of the conversation history to give to the model\n",
"# during each exchange (300 tokens, or a little over 300 words)\n",
"# Function automatically prunes the oldest messages from conversation history that fall outside the token range.\n",
"memory = ConversationTokenBufferMemory(\n",
" llm=llm,\n",
" max_token_limit=300,\n",
" ai_prefix=\"AGENT\",\n",
" human_prefix=\"HUMAN\",\n",
" return_messages=True,\n",
")\n",
"\n",
"\n",
"# Define a custom prompt\n",
"prompt_template = PromptTemplate(\n",
" input_variables=[\"history\", \"input\"],\n",
" template=\"\"\"\n",
" The following text is the history of a chat between you and a humble human who needs your wisdom.\n",
" Please reply to the human's most recent message.\n",
" Current conversation:\\n{history}\\nHUMAN: {input}\\:nANDROID:\n",
" \"\"\",\n",
")\n",
"\n",
"\n",
"chain = ConversationChain(llm=model, prompt=prompt_template, memory=memory)\n",
"\n",
"print(\"--------------------------------------------\")\n",
"print(f\"Prompt={chain.prompt}\")\n",
"print(\"--------------------------------------------\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "m4ZeJ9mG_PEA"
},
"source": [
"### 8. Initialize the chat conversation with the chat bot\n",
"\n",
"We configure the chatbot to initialize the conversation by sending a fixed greeting to a \"chat\" Kafka topic. The \"chat\" topic gets automatically created when we send the first message."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KYyo5TnV_YC3"
},
"outputs": [],
"source": [
"def chat_init():\n",
" chat_id = str(\n",
" uuid.uuid4()\n",
" ) # Give the conversation an ID for effective message keying\n",
" print(\"======================================\")\n",
" print(f\"Generated CHAT_ID = {chat_id}\")\n",
" print(\"======================================\")\n",
"\n",
" # Use a standard fixed greeting to kick off the conversation\n",
" greet = \"Hello, my name is Marvin. What do you want?\"\n",
"\n",
" # Initialize a Kafka Producer using the chat ID as the message key\n",
" with Producer(\n",
" broker_address=\"127.0.0.1:9092\",\n",
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
" ) as producer:\n",
" value = {\n",
" \"uuid\": chat_id,\n",
" \"role\": role,\n",
" \"text\": greet,\n",
" \"conversation_id\": chat_id,\n",
" \"Timestamp\": time.time_ns(),\n",
" }\n",
" print(f\"Producing value {value}\")\n",
" producer.produce(\n",
" topic=\"chat\",\n",
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
" key=chat_id,\n",
" value=json.dumps(value), # needs to be a string\n",
" )\n",
"\n",
" print(\"Started chat\")\n",
" print(\"--------------------------------------------\")\n",
" print(value)\n",
" print(\"--------------------------------------------\")\n",
"\n",
"\n",
"chat_init()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gArPPx2f_bgf"
},
"source": [
"### 9. Initialize the reply function\n",
"\n",
"This function defines how the chatbot should reply to incoming messages. Instead of sending a fixed message like the previous cell, we generate a reply using Llama-2 and send that reply back to the \"chat\" Kafka topic."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "yN5t71hY_hgn"
},
"outputs": [],
"source": [
"def reply(row: dict, state: State):\n",
" print(\"-------------------------------\")\n",
" print(\"Received:\")\n",
" print(row)\n",
" print(\"-------------------------------\")\n",
" print(f\"Thinking about the reply to: {row['text']}...\")\n",
"\n",
" msg = chain.run(row[\"text\"])\n",
" print(f\"{role.upper()} replying with: {msg}\\n\")\n",
"\n",
" row[\"role\"] = role\n",
" row[\"text\"] = msg\n",
"\n",
" # Replace previous role and text values of the row so that it can be sent back to Kafka as a new message\n",
" # containing the agents role and reply\n",
" return row"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HZHwmIR0_kFY"
},
"source": [
"### 10. Check the Kafka topic for new human messages and have the model generate a reply\n",
"\n",
"If you are running this cell for this first time, run it and wait until you see Marvin's greeting ('Hello my name is Marvin...') in the console output. Stop the cell manually and proceed to the next cell where you'll be prompted for your reply.\n",
"\n",
"Once you have typed in your message, come back to this cell. Your reply is also sent to the same \"chat\" topic. The Kafka consumer checks for new messages and filters out messages that originate from the chatbot itself, leaving only the latest human messages.\n",
"\n",
"Once a new human message is detected, the reply function is triggered.\n",
"\n",
"\n",
"\n",
"_STOP THIS CELL MANUALLY WHEN YOU RECEIVE A REPLY FROM THE LLM IN THE OUTPUT_"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-adXc3eQ_qwI"
},
"outputs": [],
"source": [
"# Define your application and settings\n",
"app = Application(\n",
" broker_address=\"127.0.0.1:9092\",\n",
" consumer_group=\"aichat\",\n",
" auto_offset_reset=\"earliest\",\n",
" consumer_extra_config={\"allow.auto.create.topics\": \"true\"},\n",
")\n",
"\n",
"# Define an input topic with JSON deserializer\n",
"input_topic = app.topic(\"chat\", value_deserializer=\"json\")\n",
"# Define an output topic with JSON serializer\n",
"output_topic = app.topic(\"chat\", value_serializer=\"json\")\n",
"# Initialize a streaming dataframe based on the stream of messages from the input topic:\n",
"sdf = app.dataframe(topic=input_topic)\n",
"\n",
"# Filter the SDF to include only incoming rows where the roles that dont match the bot's current role\n",
"sdf = sdf.update(\n",
" lambda val: print(\n",
" f\"Received update: {val}\\n\\nSTOP THIS CELL MANUALLY TO HAVE THE LLM REPLY OR ENTER YOUR OWN FOLLOWUP RESPONSE\"\n",
" )\n",
")\n",
"\n",
"# So that it doesn't reply to its own messages\n",
"sdf = sdf[sdf[\"role\"] != role]\n",
"\n",
"# Trigger the reply function for any new messages(rows) detected in the filtered SDF\n",
"sdf = sdf.apply(reply, stateful=True)\n",
"\n",
"# Check the SDF again and filter out any empty rows\n",
"sdf = sdf[sdf.apply(lambda row: row is not None)]\n",
"\n",
"# Update the timestamp column to the current time in nanoseconds\n",
"sdf[\"Timestamp\"] = sdf[\"Timestamp\"].apply(lambda row: time.time_ns())\n",
"\n",
"# Publish the processed SDF to a Kafka topic specified by the output_topic object.\n",
"sdf = sdf.to_topic(output_topic)\n",
"\n",
"app.run(sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EwXYrmWD_0CX"
},
"source": [
"\n",
"### 11. Enter a human message\n",
"\n",
"Run this cell to enter your message that you want to sent to the model. It uses another Kafka producer to send your text to the \"chat\" Kafka topic for the model to pick up (requires running the previous cell again)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6sxOPxSP_3iu"
},
"outputs": [],
"source": [
"chat_input = input(\"Please enter your reply: \")\n",
"myreply = chat_input\n",
"\n",
"msgvalue = {\n",
" \"uuid\": chat_id, # leave empty for now\n",
" \"role\": \"human\",\n",
" \"text\": myreply,\n",
" \"conversation_id\": chat_id,\n",
" \"Timestamp\": time.time_ns(),\n",
"}\n",
"\n",
"with Producer(\n",
" broker_address=\"127.0.0.1:9092\",\n",
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
") as producer:\n",
" value = msgvalue\n",
" producer.produce(\n",
" topic=\"chat\",\n",
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
" key=chat_id, # leave empty for now\n",
" value=json.dumps(value), # needs to be a string\n",
" )\n",
"\n",
"print(\"Replied to chatbot with message: \")\n",
"print(\"--------------------------------------------\")\n",
"print(value)\n",
"print(\"--------------------------------------------\")\n",
"print(\"\\n\\nRUN THE PREVIOUS CELL TO HAVE THE CHATBOT GENERATE A REPLY\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cSx3s7TBBegg"
},
"source": [
"### Why route chat messages through Kafka?\n",
"\n",
"It's easier to interact with the LLM directly using LangChains built-in conversation management features. Plus you can also use a REST API to generate a response from an externally hosted model. So why go to the trouble of using Apache Kafka?\n",
"\n",
"There are a few reasons, such as:\n",
"\n",
" * **Integration**: Many enterprises want to run their own LLMs so that they can keep their data in-house. This requires integrating LLM-powered components into existing architectures that might already be decoupled using some kind of message bus.\n",
"\n",
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
"\n",
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distribuited architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
"\n",
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0def954cca89466b8408fadaf3b82e64": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fb6478ce2dac489bb633b23ba0953c5c",
"max": 4081004224,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_734b0f5da9fc4307a95bab48cdbb5d89",
"value": 4081004224
}
},
"30ecca964a394109ac2ad757e3aec6c0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"462482accc664729980562e208ceb179": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b32f3a86a74741348511f4e136744ac8",
"placeholder": "",
"style": "IPY_MODEL_e409071bff5a4e2d9bf0e9f5cc42231b",
"value": " 4.08G/4.08G [00:33&lt;00:00, 184MB/s]"
}
},
"734b0f5da9fc4307a95bab48cdbb5d89": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"80d842f73c564dc7b7cc316c763e2633": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"969343cdbe604a26926679bbf8bd2dda": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d8b8370c9b514715be7618bfe6832844",
"IPY_MODEL_0def954cca89466b8408fadaf3b82e64",
"IPY_MODEL_462482accc664729980562e208ceb179"
],
"layout": "IPY_MODEL_80d842f73c564dc7b7cc316c763e2633"
}
},
"b32f3a86a74741348511f4e136744ac8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d8b8370c9b514715be7618bfe6832844": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fa055d9f2a9d4a789e9cf3c89e0214e5",
"placeholder": "",
"style": "IPY_MODEL_30ecca964a394109ac2ad757e3aec6c0",
"value": "llama-2-7b-chat.Q4_K_M.gguf: 100%"
}
},
"e409071bff5a4e2d9bf0e9f5cc42231b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"fa055d9f2a9d4a789e9cf3c89e0214e5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fb6478ce2dac489bb633b23ba0953c5c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,423 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a38e5d2d-7587-4192-90f2-b58e6c62f08c",
"metadata": {},
"source": [
"# Self Discover\n",
"\n",
"An implementation of the [Self-Discover paper](https://arxiv.org/pdf/2402.03620.pdf).\n",
"\n",
"Based on [this implementation from @catid](https://github.com/catid/self-discover/tree/main?tab=readme-ov-file)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a18d8f24-5d9a-45c5-9739-6f3c4ed6c9c9",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9f554045-6e79-42d3-be4b-835bbbd0b78c",
"metadata": {},
"outputs": [],
"source": [
"model = ChatOpenAI(temperature=0, model=\"gpt-4-turbo-preview\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9e9925aa-638a-4862-823e-9803402b8f82",
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"from langchain_core.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c4cc5c8c-f6a5-42c7-9ed5-780d79b3b29a",
"metadata": {},
"outputs": [],
"source": [
"select_prompt = hub.pull(\"hwchase17/self-discovery-select\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a5b53d29-f5b6-4f39-af97-bb6b133e1d18",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Select several reasoning modules that are crucial to utilize in order to solve the given task:\n",
"\n",
"All reasoning module descriptions:\n",
"\u001b[33;1m\u001b[1;3m{reasoning_modules}\u001b[0m\n",
"\n",
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n",
"\n",
"Select several modules are crucial for solving the task above:\n",
"\n"
]
}
],
"source": [
"select_prompt.pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "26eaa6bc-5202-4b22-9522-33f227c8eb55",
"metadata": {},
"outputs": [],
"source": [
"adapt_prompt = hub.pull(\"hwchase17/self-discovery-adapt\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "dc30afb9-180d-417b-9935-f7ef166710b8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rephrase and specify each reasoning module so that it better helps solving the task:\n",
"\n",
"SELECTED module descriptions:\n",
"\u001b[33;1m\u001b[1;3m{selected_modules}\u001b[0m\n",
"\n",
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n",
"\n",
"Adapt each reasoning module description to better solve the task:\n",
"\n"
]
}
],
"source": [
"adapt_prompt.pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a93253a9-8f50-49dd-8815-c3927bae1905",
"metadata": {},
"outputs": [],
"source": [
"structured_prompt = hub.pull(\"hwchase17/self-discovery-structure\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ea8dd78-4285-400b-83d2-c4a241903a79",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Operationalize the reasoning modules into a step-by-step reasoning plan in JSON format:\n",
"\n",
"Here's an example:\n",
"\n",
"Example task:\n",
"\n",
"If you follow these instructions, do you return to the starting point? Always face forward. Take 1 step backward. Take 9 steps left. Take 2 steps backward. Take 6 steps forward. Take 4 steps forward. Take 4 steps backward. Take 3 steps right.\n",
"\n",
"Example reasoning structure:\n",
"\n",
"{\n",
" \"Position after instruction 1\":\n",
" \"Position after instruction 2\":\n",
" \"Position after instruction n\":\n",
" \"Is final position the same as starting position\":\n",
"}\n",
"\n",
"Adapted module description:\n",
"\u001b[33;1m\u001b[1;3m{adapted_modules}\u001b[0m\n",
"\n",
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n",
"\n",
"Implement a reasoning structure for solvers to follow step-by-step and arrive at correct answer.\n",
"\n",
"Note: do NOT actually arrive at a conclusion in this pass. Your job is to generate a PLAN so that in the future you can fill it out and arrive at the correct conclusion for tasks like this\n"
]
}
],
"source": [
"structured_prompt.pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f3d4d79d-f414-4588-b476-4a35b3ba6fbf",
"metadata": {},
"outputs": [],
"source": [
"reasoning_prompt = hub.pull(\"hwchase17/self-discovery-reasoning\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "23d1e32e-d12e-454a-8484-c08e250e3262",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Follow the step-by-step reasoning plan in JSON to correctly solve the task. Fill in the values following the keys by reasoning specifically about the task given. Do not simply rephrase the keys.\n",
" \n",
"Reasoning Structure:\n",
"\u001b[33;1m\u001b[1;3m{reasoning_structure}\u001b[0m\n",
"\n",
"Task: \u001b[33;1m\u001b[1;3m{task_description}\u001b[0m\n"
]
}
],
"source": [
"reasoning_prompt.pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7b9af01d-da28-4785-b069-efea61905cfa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PromptTemplate(input_variables=['reasoning_structure', 'task_description'], template='Follow the step-by-step reasoning plan in JSON to correctly solve the task. Fill in the values following the keys by reasoning specifically about the task given. Do not simply rephrase the keys.\\n \\nReasoning Structure:\\n{reasoning_structure}\\n\\nTask: {task_description}')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"reasoning_prompt"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "399bf160-e257-429f-b27e-66d4063f195f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5c3bd203-7dc1-457e-813f-283aaf059ec0",
"metadata": {},
"outputs": [],
"source": [
"select_chain = select_prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "86420da0-7cc2-4659-853e-9c3ef808e47c",
"metadata": {},
"outputs": [],
"source": [
"adapt_chain = adapt_prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "270a3905-58a3-4650-96ca-e8254040285f",
"metadata": {},
"outputs": [],
"source": [
"structure_chain = structured_prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "55b486cc-36be-497e-9eba-9c8dc228f2d1",
"metadata": {},
"outputs": [],
"source": [
"reasoning_chain = reasoning_prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "92d8d484-055b-48a8-98bc-e7d40c12db2e",
"metadata": {},
"outputs": [],
"source": [
"overall_chain = (\n",
" RunnablePassthrough.assign(selected_modules=select_chain)\n",
" .assign(adapted_modules=adapt_chain)\n",
" .assign(reasoning_structure=structure_chain)\n",
" .assign(answer=reasoning_chain)\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "29fe385b-cf5d-4581-80e7-55462f5628bb",
"metadata": {},
"outputs": [],
"source": [
"reasoning_modules = [\n",
" \"1. How could I devise an experiment to help solve that problem?\",\n",
" \"2. Make a list of ideas for solving this problem, and apply them one by one to the problem to see if any progress can be made.\",\n",
" # \"3. How could I measure progress on this problem?\",\n",
" \"4. How can I simplify the problem so that it is easier to solve?\",\n",
" \"5. What are the key assumptions underlying this problem?\",\n",
" \"6. What are the potential risks and drawbacks of each solution?\",\n",
" \"7. What are the alternative perspectives or viewpoints on this problem?\",\n",
" \"8. What are the long-term implications of this problem and its solutions?\",\n",
" \"9. How can I break down this problem into smaller, more manageable parts?\",\n",
" \"10. Critical Thinking: This style involves analyzing the problem from different perspectives, questioning assumptions, and evaluating the evidence or information available. It focuses on logical reasoning, evidence-based decision-making, and identifying potential biases or flaws in thinking.\",\n",
" \"11. Try creative thinking, generate innovative and out-of-the-box ideas to solve the problem. Explore unconventional solutions, thinking beyond traditional boundaries, and encouraging imagination and originality.\",\n",
" # \"12. Seek input and collaboration from others to solve the problem. Emphasize teamwork, open communication, and leveraging the diverse perspectives and expertise of a group to come up with effective solutions.\",\n",
" \"13. Use systems thinking: Consider the problem as part of a larger system and understanding the interconnectedness of various elements. Focuses on identifying the underlying causes, feedback loops, and interdependencies that influence the problem, and developing holistic solutions that address the system as a whole.\",\n",
" \"14. Use Risk Analysis: Evaluate potential risks, uncertainties, and tradeoffs associated with different solutions or approaches to a problem. Emphasize assessing the potential consequences and likelihood of success or failure, and making informed decisions based on a balanced analysis of risks and benefits.\",\n",
" # \"15. Use Reflective Thinking: Step back from the problem, take the time for introspection and self-reflection. Examine personal biases, assumptions, and mental models that may influence problem-solving, and being open to learning from past experiences to improve future approaches.\",\n",
" \"16. What is the core issue or problem that needs to be addressed?\",\n",
" \"17. What are the underlying causes or factors contributing to the problem?\",\n",
" \"18. Are there any potential solutions or strategies that have been tried before? If yes, what were the outcomes and lessons learned?\",\n",
" \"19. What are the potential obstacles or challenges that might arise in solving this problem?\",\n",
" \"20. Are there any relevant data or information that can provide insights into the problem? If yes, what data sources are available, and how can they be analyzed?\",\n",
" \"21. Are there any stakeholders or individuals who are directly affected by the problem? What are their perspectives and needs?\",\n",
" \"22. What resources (financial, human, technological, etc.) are needed to tackle the problem effectively?\",\n",
" \"23. How can progress or success in solving the problem be measured or evaluated?\",\n",
" \"24. What indicators or metrics can be used?\",\n",
" \"25. Is the problem a technical or practical one that requires a specific expertise or skill set? Or is it more of a conceptual or theoretical problem?\",\n",
" \"26. Does the problem involve a physical constraint, such as limited resources, infrastructure, or space?\",\n",
" \"27. Is the problem related to human behavior, such as a social, cultural, or psychological issue?\",\n",
" \"28. Does the problem involve decision-making or planning, where choices need to be made under uncertainty or with competing objectives?\",\n",
" \"29. Is the problem an analytical one that requires data analysis, modeling, or optimization techniques?\",\n",
" \"30. Is the problem a design challenge that requires creative solutions and innovation?\",\n",
" \"31. Does the problem require addressing systemic or structural issues rather than just individual instances?\",\n",
" \"32. Is the problem time-sensitive or urgent, requiring immediate attention and action?\",\n",
" \"33. What kinds of solution typically are produced for this kind of problem specification?\",\n",
" \"34. Given the problem specification and the current best solution, have a guess about other possible solutions.\"\n",
" \"35. Lets imagine the current best solution is totally wrong, what other ways are there to think about the problem specification?\"\n",
" \"36. What is the best way to modify this current best solution, given what you know about these kinds of problem specification?\"\n",
" \"37. Ignoring the current best solution, create an entirely new solution to the problem.\"\n",
" # \"38. Lets think step by step.\"\n",
" \"39. Lets make a step by step plan and implement it with good notation and explanation.\",\n",
"]\n",
"\n",
"\n",
"task_example = \"Lisa has 10 apples. She gives 3 apples to her friend and then buys 5 more apples from the store. How many apples does Lisa have now?\"\n",
"\n",
"task_example = \"\"\"This SVG path element <path d=\"M 55.57,80.69 L 57.38,65.80 M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L\n",
"45.58,47.78 M 45.58,47.78 L 53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69\"/> draws a:\n",
"(A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon(H) rectangle (I) sector (J) triangle\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "6cbfbe81-f751-42da-843a-f9003ace663d",
"metadata": {},
"outputs": [],
"source": [
"reasoning_modules_str = \"\\n\".join(reasoning_modules)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "d411c7aa-7017-4d67-88b5-43b5d161c34c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'task_description': 'This SVG path element <path d=\"M 55.57,80.69 L 57.38,65.80 M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L\\n45.58,47.78 M 45.58,47.78 L 53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69\"/> draws a:\\n(A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon(H) rectangle (I) sector (J) triangle',\n",
" 'reasoning_modules': '1. How could I devise an experiment to help solve that problem?\\n2. Make a list of ideas for solving this problem, and apply them one by one to the problem to see if any progress can be made.\\n4. How can I simplify the problem so that it is easier to solve?\\n5. What are the key assumptions underlying this problem?\\n6. What are the potential risks and drawbacks of each solution?\\n7. What are the alternative perspectives or viewpoints on this problem?\\n8. What are the long-term implications of this problem and its solutions?\\n9. How can I break down this problem into smaller, more manageable parts?\\n10. Critical Thinking: This style involves analyzing the problem from different perspectives, questioning assumptions, and evaluating the evidence or information available. It focuses on logical reasoning, evidence-based decision-making, and identifying potential biases or flaws in thinking.\\n11. Try creative thinking, generate innovative and out-of-the-box ideas to solve the problem. Explore unconventional solutions, thinking beyond traditional boundaries, and encouraging imagination and originality.\\n13. Use systems thinking: Consider the problem as part of a larger system and understanding the interconnectedness of various elements. Focuses on identifying the underlying causes, feedback loops, and interdependencies that influence the problem, and developing holistic solutions that address the system as a whole.\\n14. Use Risk Analysis: Evaluate potential risks, uncertainties, and tradeoffs associated with different solutions or approaches to a problem. Emphasize assessing the potential consequences and likelihood of success or failure, and making informed decisions based on a balanced analysis of risks and benefits.\\n16. What is the core issue or problem that needs to be addressed?\\n17. What are the underlying causes or factors contributing to the problem?\\n18. Are there any potential solutions or strategies that have been tried before? If yes, what were the outcomes and lessons learned?\\n19. What are the potential obstacles or challenges that might arise in solving this problem?\\n20. Are there any relevant data or information that can provide insights into the problem? If yes, what data sources are available, and how can they be analyzed?\\n21. Are there any stakeholders or individuals who are directly affected by the problem? What are their perspectives and needs?\\n22. What resources (financial, human, technological, etc.) are needed to tackle the problem effectively?\\n23. How can progress or success in solving the problem be measured or evaluated?\\n24. What indicators or metrics can be used?\\n25. Is the problem a technical or practical one that requires a specific expertise or skill set? Or is it more of a conceptual or theoretical problem?\\n26. Does the problem involve a physical constraint, such as limited resources, infrastructure, or space?\\n27. Is the problem related to human behavior, such as a social, cultural, or psychological issue?\\n28. Does the problem involve decision-making or planning, where choices need to be made under uncertainty or with competing objectives?\\n29. Is the problem an analytical one that requires data analysis, modeling, or optimization techniques?\\n30. Is the problem a design challenge that requires creative solutions and innovation?\\n31. Does the problem require addressing systemic or structural issues rather than just individual instances?\\n32. Is the problem time-sensitive or urgent, requiring immediate attention and action?\\n33. What kinds of solution typically are produced for this kind of problem specification?\\n34. Given the problem specification and the current best solution, have a guess about other possible solutions.35. Lets imagine the current best solution is totally wrong, what other ways are there to think about the problem specification?36. What is the best way to modify this current best solution, given what you know about these kinds of problem specification?37. Ignoring the current best solution, create an entirely new solution to the problem.39. Lets make a step by step plan and implement it with good notation and explanation.',\n",
" 'selected_modules': 'To solve the task of identifying the shape drawn by the given SVG path element, the following reasoning modules are crucial:\\n\\n1. **Critical Thinking (10)**: This involves analyzing the SVG path commands and coordinates logically to understand the shape they form. It requires questioning assumptions (e.g., not assuming the shape based on a quick glance at the coordinates but rather analyzing the path commands and their implications) and evaluating the information provided by the SVG path data.\\n\\n2. **Analytical Problem Solving (29)**: The task requires data analysis skills to interpret the SVG path commands and coordinates. Understanding how the \"M\" (moveto) and \"L\" (lineto) commands work to draw lines between specified points is essential for determining the shape.\\n\\n3. **Creative Thinking (11)**: While the task primarily involves analytical skills, creative thinking can help in visualizing the shape that the path commands are likely to form, especially when the path data doesn\\'t immediately suggest a common shape.\\n\\n4. **Systems Thinking (13)**: Recognizing the SVG path as part of a larger system (in this case, the SVG graphics system) and understanding how individual path commands contribute to the overall shape can be helpful. This involves understanding the interconnectedness of the start and end points of each line segment and how they come together to form a complete shape.\\n\\n5. **Break Down the Problem (9)**: Breaking down the SVG path into its individual commands and analyzing each segment between \"M\" and \"L\" commands can simplify the task. This makes it easier to visualize and understand the shape being drawn step by step.\\n\\n6. **Visualization (not explicitly listed but implied in creative and analytical thinking)**: Visualizing the path that the \"M\" and \"L\" commands create is essential. This isn\\'t a listed module but is a skill that underpins both creative and analytical approaches to solving this problem.\\n\\nGiven the SVG path commands, one would analyze each segment drawn by \"M\" (moveto) and \"L\" (lineto) commands to determine the shape\\'s vertices and sides. This process involves critical thinking to assess the information, analytical skills to interpret the path data, and a degree of creative thinking for visualization. The task does not directly involve assessing risks, long-term implications, or stakeholder perspectives, so modules focused on those aspects (e.g., Risk Analysis (14), Long-term Implications (8)) are less relevant here.',\n",
" 'adapted_modules': 'To enhance the process of identifying the shape drawn by the given SVG path element, the reasoning modules can be adapted and specified as follows:\\n\\n1. **Detailed Path Analysis (Critical Thinking)**: This module focuses on a meticulous examination of the SVG path commands and coordinates. It involves a deep dive into the syntax and semantics of path commands such as \"M\" (moveto) and \"L\" (lineto), challenging initial perceptions and rigorously interpreting the sequence of commands to deduce the shape accurately. This analysis goes beyond surface-level inspection, requiring a systematic questioning of each command\\'s role in constructing the overall shape.\\n\\n2. **Path Command Interpretation (Analytical Problem Solving)**: Essential for this task is the ability to decode the SVG path\\'s \"M\" and \"L\" commands, translating these instructions into a mental or visual representation of the shape\\'s geometry. This module emphasizes the analytical dissection of the path data, focusing on how each command contributes to the formation of vertices and edges, thereby facilitating the identification of the shape.\\n\\n3. **Shape Visualization (Creative Thinking)**: Leveraging imagination to mentally construct the shape from the path commands is the core of this module. It involves creatively synthesizing the segments drawn by the \"M\" and \"L\" commands into a coherent visual image, even when the path data does not immediately suggest a recognizable shape. This creative process aids in bridging gaps in the analytical interpretation, offering alternative perspectives on the possible shape outcomes.\\n\\n4. **Path-to-Shape Synthesis (Systems Thinking)**: This module entails understanding the SVG path as a component within the broader context of vector graphics, focusing on how individual path commands interlink to form a cohesive shape. It requires an appreciation of the cumulative effect of each command in relation to the others, recognizing the systemic relationship between the starting and ending points of segments and their collective role in shaping the final figure.\\n\\n5. **Sequential Command Analysis (Break Down the Problem)**: By segmenting the SVG path into discrete commands, this approach simplifies the complexity of the task. It advocates for a step-by-step examination of the path, where each \"M\" to \"L\" sequence is analyzed in isolation before synthesizing the findings to understand the overall shape. This methodical breakdown facilitates a clearer visualization and comprehension of the shape being drawn.\\n\\n6. **Command-to-Geometry Mapping (Visualization)**: Central to solving this task is the ability to map the abstract \"M\" and \"L\" commands onto a concrete geometric representation. This implicit module underlies both the analytical and creative thinking processes, focusing on converting the path data into a visual form that can be easily understood and manipulated mentally. It is about constructing a mental image of the shape as each command is processed, enabling a dynamic visualization that evolves with each new piece of path data.\\n\\nBy adapting and specifying these reasoning modules, the task of identifying the shape drawn by the SVG path element becomes a structured process that leverages critical analysis, analytical problem-solving, creative visualization, systemic thinking, and methodical breakdown to accurately determine the shape as a (D) kite.',\n",
" 'reasoning_structure': '```json\\n{\\n \"Step 1: Detailed Path Analysis\": {\\n \"Description\": \"Examine each SVG path command and its coordinates closely. Understand the syntax and semantics of \\'M\\' (moveto) and \\'L\\' (lineto) commands.\",\\n \"Action\": \"List all path commands and their coordinates.\",\\n \"Expected Outcome\": \"A clear understanding of the sequence and direction of each path command.\"\\n },\\n \"Step 2: Path Command Interpretation\": {\\n \"Description\": \"Decode the \\'M\\' and \\'L\\' commands to translate these instructions into a mental or visual representation of the shape\\'s geometry.\",\\n \"Action\": \"Map each \\'M\\' and \\'L\\' command to its corresponding action (move or draw line) in the context of the shape.\",\\n \"Expected Outcome\": \"A segmented representation of the shape, highlighting vertices and edges.\"\\n },\\n \"Step 3: Shape Visualization\": {\\n \"Description\": \"Use imagination to mentally construct the shape from the path commands, synthesizing the segments into a coherent visual image.\",\\n \"Action\": \"Visualize the shape based on the segmented representation from Step 2.\",\\n \"Expected Outcome\": \"A mental image of the potential shape, considering the sequence and direction of path commands.\"\\n },\\n \"Step 4: Path-to-Shape Synthesis\": {\\n \"Description\": \"Understand the SVG path as a component within the broader context of vector graphics, focusing on how individual path commands interlink to form a cohesive shape.\",\\n \"Action\": \"Analyze the systemic relationship between the starting and ending points of segments and their collective role in shaping the final figure.\",\\n \"Expected Outcome\": \"Identification of the overall shape by recognizing the cumulative effect of each command.\"\\n },\\n \"Step 5: Sequential Command Analysis\": {\\n \"Description\": \"Segment the SVG path into discrete commands for a step-by-step examination, analyzing each \\'M\\' to \\'L\\' sequence in isolation.\",\\n \"Action\": \"Break down the path into individual commands and analyze each separately before synthesizing the findings.\",\\n \"Expected Outcome\": \"A clearer visualization and comprehension of the shape being drawn, segment by segment.\"\\n },\\n \"Step 6: Command-to-Geometry Mapping\": {\\n \"Description\": \"Map the abstract \\'M\\' and \\'L\\' commands onto a concrete geometric representation, constructing a mental image of the shape as each command is processed.\",\\n \"Action\": \"Convert the path data into a visual form that can be easily understood and manipulated mentally.\",\\n \"Expected Outcome\": \"A dynamic visualization of the shape that evolves with each new piece of path data, leading to the identification of the shape as a kite.\"\\n },\\n \"Conclusion\": {\\n \"Description\": \"Based on the analysis and visualization steps, determine the shape drawn by the SVG path element.\",\\n \"Action\": \"Review the outcomes of each step and synthesize the information to identify the shape.\",\\n \"Expected Outcome\": \"The correct identification of the shape, supported by the structured analysis and reasoning process.\"\\n }\\n}\\n```',\n",
" 'answer': 'Based on the provided reasoning structure and the SVG path element given, let\\'s analyze the path commands to identify the shape.\\n\\n**Step 1: Detailed Path Analysis**\\n- Description: The SVG path provided contains multiple \\'M\\' (moveto) and \\'L\\' (lineto) commands. Each command specifies a point in a 2D coordinate system.\\n- Action: The path commands are as follows:\\n 1. M 55.57,80.69 (Move to point)\\n 2. L 57.38,65.80 (Line to point)\\n 3. M 57.38,65.80 (Move to point)\\n 4. L 48.90,57.46 (Line to point)\\n 5. M 48.90,57.46 (Move to point)\\n 6. L 45.58,47.78 (Line to point)\\n 7. M 45.58,47.78 (Move to point)\\n 8. L 53.25,36.07 (Line to point)\\n 9. L 66.29,48.90 (Line to point)\\n 10. L 78.69,61.09 (Line to point)\\n 11. L 55.57,80.69 (Line to point)\\n- Expected Outcome: Understanding that the path commands describe a series of movements and lines that form a closed shape.\\n\\n**Step 2: Path Command Interpretation**\\n- Description: The \\'M\\' and \\'L\\' commands are used to move the \"pen\" to a starting point and draw lines to subsequent points, respectively.\\n- Action: The commands describe a shape starting at (55.57,80.69), drawing lines through several points, and finally closing the shape by returning to the starting point.\\n- Expected Outcome: A segmented representation showing a shape with distinct vertices at the specified coordinates.\\n\\n**Step 3: Shape Visualization**\\n- Description: Mentally constructing the shape from the provided path commands.\\n- Action: Visualizing the lines connecting in sequence from the starting point, through each point described by the \\'L\\' commands, and back to the starting point.\\n- Expected Outcome: A mental image of a shape that appears to have four distinct sides, suggesting it could be a quadrilateral.\\n\\n**Step 4: Path-to-Shape Synthesis**\\n- Description: Understanding how the path commands collectively form a specific shape.\\n- Action: Recognizing that the shape starts and ends at the same point, with lines drawn between intermediate points without overlapping, except at the starting/ending point.\\n- Expected Outcome: Identification of a closed, four-sided figure, which suggests it could be a kite based on the symmetry and structure of the lines.\\n\\n**Step 5: Sequential Command Analysis**\\n- Description: Analyzing each \\'M\\' to \\'L\\' sequence in isolation.\\n- Action: Observing that the path does not describe a regular polygon (like a hexagon or octagon) or a circle, but rather a shape with distinct angles and sides.\\n- Expected Outcome: A clearer understanding that the shape has four sides, with two pairs of adjacent sides being potentially unequal, which is characteristic of a kite.\\n\\n**Step 6: Command-to-Geometry Mapping**\\n- Description: Converting the abstract path commands into a geometric shape.\\n- Action: Mapping the path data to visualize a shape with two pairs of adjacent sides that are distinct yet symmetrical, indicative of a kite.\\n- Expected Outcome: A dynamic visualization that evolves to clearly represent a kite shape.\\n\\n**Conclusion**\\n- Description: Determining the shape drawn by the SVG path element.\\n- Action: Reviewing the outcomes of each analysis step, which consistently point towards a four-sided figure with distinct properties of a kite.\\n- Expected Outcome: The correct identification of the shape as a kite (D).'}"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"overall_chain.invoke(\n",
" {\"task_description\": task_example, \"reasoning_modules\": reasoning_modules_str}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea8568d5-bdb6-45cd-8d04-1ab305786caa",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c14a291c-7c1b-43bc-807e-11180290985e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -670,8 +670,6 @@ local_llm = HuggingFacePipeline(pipeline=pipe)
<CodeOutputBlock lang="python">
```
/workspace/langchain/.venv/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
Loading checkpoint shards: 100%|██████████| 8/8 [00:32<00:00, 4.11s/it]
```

View File

@@ -82,7 +82,7 @@
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"from langchain_community.llms import Together\n",
"from langchain_together import Together\n",
"\n",
"llm = Together(\n",
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",

17
docker/docker-compose.yml Normal file
View File

@@ -0,0 +1,17 @@
# docker-compose to make it easier to spin up integration tests.
# Services should use NON standard ports to avoid collision with
version: "3"
name: langchain-tests
services:
redis:
image: redis/redis-stack-server:latest
# We use non standard ports since
# these instances are used for testing
# and users may already have existing
# redis instances set up locally
# for other projects
ports:
- "6020:6379"
volumes:
- ./redis-volume:/data

View File

@@ -16,7 +16,8 @@ cp ../cookbook/README.md src/pages/cookbook.mdx
mkdir -p docs/templates
cp ../templates/docs/INDEX.md docs/templates/index.md
poetry run python scripts/copy_templates.py
wget https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
wget -q https://raw.githubusercontent.com/langchain-ai/langgraph/main/README.md -O docs/langgraph.md
yarn

View File

@@ -146,6 +146,7 @@ partners = [
(p.name, p.name.replace("-", "_") + "_api_reference")
for p in partners_dir.iterdir()
]
partners = sorted(partners)
html_context = {
"display_github": True, # Integrate GitHub

View File

@@ -1,4 +1,5 @@
"""Script for auto-generating api_reference.rst."""
import importlib
import inspect
import os
@@ -186,7 +187,7 @@ def _load_package_modules(
modules_by_namespace[top_namespace] = _module_members
except ImportError as e:
print(f"Error: Unable to import module '{namespace}' with error: {e}")
print(f"Error: Unable to import module '{namespace}' with error: {e}") # noqa: T201
return modules_by_namespace

File diff suppressed because one or more lines are too long

View File

@@ -37,7 +37,7 @@ from langchain_community.llms import integration_class_REPLACE_ME
## Text Embedding Models
See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME)
See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME).
```python
from langchain_community.embeddings import integration_class_REPLACE_ME
@@ -45,7 +45,7 @@ from langchain_community.embeddings import integration_class_REPLACE_ME
## Chat models
See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME)
See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME).
```python
from langchain_community.chat_models import integration_class_REPLACE_ME

View File

@@ -2,7 +2,7 @@
Below are links to tutorials and courses on LangChain. For written guides on common use cases for LangChain, check out the [use cases guides](/docs/use_cases).
⛓ icon marks a new addition [last update 2023-09-21]
⛓ icon marks a new addition [last update 2024-02-06]
---------------------
@@ -10,18 +10,20 @@ Below are links to tutorials and courses on LangChain. For written guides on com
### Books
#### [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
#### [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
### DeepLearning.AI courses
by [Harrison Chase](https://en.wikipedia.org/wiki/LangChain) and [Andrew Ng](https://en.wikipedia.org/wiki/Andrew_Ng)
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
- [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
- [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
- [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
### Handbook
[LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
⛓ [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
### Short Tutorials
[LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners](https://youtu.be/aywZrzNaKjs) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
@@ -29,6 +31,8 @@ Below are links to tutorials and courses on LangChain. For written guides on com
[LangChain Crash Course - Build apps with language models](https://youtu.be/LbT1yp6quS8) by [Patrick Loeber](https://www.youtube.com/@patloeber)
⛓ [LangChain 101 Course](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb) by **Ivan Reznikov**
## Tutorials
### [LangChain for Gen AI and LLMs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F) by [James Briggs](https://www.youtube.com/@jamesbriggs)
@@ -44,8 +48,8 @@ Below are links to tutorials and courses on LangChain. For written guides on com
- #9 [Build Conversational Agents with Vector DBs](https://youtu.be/H6bCqqw9xyI)
- [Using NEW `MPT-7B` in Hugging Face and LangChain](https://youtu.be/DXpk9K7DgMo)
- [`MPT-30B` Chatbot with LangChain](https://youtu.be/pnem-EhT6VI)
- [Fine-tuning OpenAI's `GPT 3.5` for LangChain Agents](https://youtu.be/boHXgQ5eQic?si=OOOfK-GhsgZGBqSr)
- [Chatbots with `RAG`: LangChain Full Walkthrough](https://youtu.be/LhnCsygAvzY?si=N7k6xy4RQksbWwsQ)
- [Fine-tuning OpenAI's `GPT 3.5` for LangChain Agents](https://youtu.be/boHXgQ5eQic?si=OOOfK-GhsgZGBqSr)
- [Chatbots with `RAG`: LangChain Full Walkthrough](https://youtu.be/LhnCsygAvzY?si=N7k6xy4RQksbWwsQ)
### [LangChain 101](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5) by [Greg Kamradt (Data Indy)](https://www.youtube.com/@DataIndependent)
@@ -109,16 +113,16 @@ Below are links to tutorials and courses on LangChain. For written guides on com
- [What can you do with 16K tokens in LangChain?](https://youtu.be/z2aCZBAtWXs)
- [Tagging and Extraction - Classification using `OpenAI Functions`](https://youtu.be/a8hMgIcUEnE)
- [HOW to Make Conversational Form with LangChain](https://youtu.be/IT93On2LB5k)
- [`Claude-2` meets LangChain!](https://youtu.be/Hb_D3p0bK2U?si=j96Kc7oJoeRI5-iC)
- [`PaLM 2` Meets LangChain](https://youtu.be/orPwLibLqm4?si=KgJjpEbAD9YBPqT4)
- [`LLaMA2` with LangChain - Basics | LangChain TUTORIAL](https://youtu.be/cIRzwSXB4Rc?si=v3Hwxk1m3fksBIHN)
- [Serving `LLaMA2` with `Replicate`](https://youtu.be/JIF4nNi26DE?si=dSazFyC4UQmaR-rJ)
- [NEW LangChain Expression Language](https://youtu.be/ud7HJ2p3gp0?si=8pJ9O6hGbXrCX5G9)
- [Building a RCI Chain for Agents with LangChain Expression Language](https://youtu.be/QaKM5s0TnsY?si=0miEj-o17AHcGfLG)
- [How to Run `LLaMA-2-70B` on the `Together AI`](https://youtu.be/Tc2DHfzHeYE?si=Xku3S9dlBxWQukpe)
- [`RetrievalQA` with `LLaMA 2 70b` & `Chroma` DB](https://youtu.be/93yueQQnqpM?si=ZMwj-eS_CGLnNMXZ)
- [How to use `BGE Embeddings` for LangChain](https://youtu.be/sWRvSG7vL4g?si=85jnvnmTCF9YIWXI)
- [How to use Custom Prompts for `RetrievalQA` on `LLaMA-2 7B`](https://youtu.be/PDwUKves9GY?si=sMF99TWU0p4eiK80)
- [`Claude-2` meets LangChain!](https://youtu.be/Hb_D3p0bK2U?si=j96Kc7oJoeRI5-iC)
- [`PaLM 2` Meets LangChain](https://youtu.be/orPwLibLqm4?si=KgJjpEbAD9YBPqT4)
- [`LLaMA2` with LangChain - Basics | LangChain TUTORIAL](https://youtu.be/cIRzwSXB4Rc?si=v3Hwxk1m3fksBIHN)
- [Serving `LLaMA2` with `Replicate`](https://youtu.be/JIF4nNi26DE?si=dSazFyC4UQmaR-rJ)
- [NEW LangChain Expression Language](https://youtu.be/ud7HJ2p3gp0?si=8pJ9O6hGbXrCX5G9)
- [Building a RCI Chain for Agents with LangChain Expression Language](https://youtu.be/QaKM5s0TnsY?si=0miEj-o17AHcGfLG)
- [How to Run `LLaMA-2-70B` on the `Together AI`](https://youtu.be/Tc2DHfzHeYE?si=Xku3S9dlBxWQukpe)
- [`RetrievalQA` with `LLaMA 2 70b` & `Chroma` DB](https://youtu.be/93yueQQnqpM?si=ZMwj-eS_CGLnNMXZ)
- [How to use `BGE Embeddings` for LangChain](https://youtu.be/sWRvSG7vL4g?si=85jnvnmTCF9YIWXI)
- [How to use Custom Prompts for `RetrievalQA` on `LLaMA-2 7B`](https://youtu.be/PDwUKves9GY?si=sMF99TWU0p4eiK80)
### [LangChain](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
@@ -131,8 +135,8 @@ Below are links to tutorials and courses on LangChain. For written guides on com
- [LangChain: Giving Memory to LLMs](https://youtu.be/dxO6pzlgJiY)
- [BEST OPEN Alternative to `OPENAI's EMBEDDINGs` for Retrieval QA: LangChain](https://youtu.be/ogEalPMUCSY)
- [LangChain: Run Language Models Locally - `Hugging Face Models`](https://youtu.be/Xxxuw4_iCzw)
- [Slash API Costs: Mastering Caching for LLM Applications](https://youtu.be/EQOznhaJWR0?si=AXoI7f3-SVFRvQUl)
- [Avoid PROMPT INJECTION with `Constitutional AI` - LangChain](https://youtu.be/tyKSkPFHVX8?si=9mgcB5Y1kkotkBGB)
- [Slash API Costs: Mastering Caching for LLM Applications](https://youtu.be/EQOznhaJWR0?si=AXoI7f3-SVFRvQUl)
- [Avoid PROMPT INJECTION with `Constitutional AI` - LangChain](https://youtu.be/tyKSkPFHVX8?si=9mgcB5Y1kkotkBGB)
### LangChain by [Chat with data](https://www.youtube.com/@chatwithdata)
@@ -148,4 +152,4 @@ Below are links to tutorials and courses on LangChain. For written guides on com
---------------------
⛓ icon marks a new addition [last update 2023-09-21]
⛓ icon marks a new addition [last update 2024-02-061]

View File

@@ -120,6 +120,8 @@
- ⛓ [Use ANY language in `LangSmith` with REST](https://youtu.be/7BL0GEdMmgY?si=iXfOEdBLqXF6hqRM) by [Nerding I/O](https://www.youtube.com/@nerding_io)
- ⛓ [How to Leverage the Full Potential of LLMs for Your Business with Langchain - Leon Ruddat](https://youtu.be/vZmoEa7oWMg?si=ZhMmydq7RtkZd56Q) by [PyData](https://www.youtube.com/@PyDataTV)
- ⛓ [`ChatCSV` App: Chat with CSV files using LangChain and `Llama 2`](https://youtu.be/PvsMg6jFs8E?si=Qzg5u5gijxj933Ya) by [Muhammad Moin](https://www.youtube.com/@muhammadmoinfaisal)
- ⛓ [Build Chat PDF app in Python with LangChain, OpenAI, Streamlit | Full project | Learn Coding](https://www.youtube.com/watch?v=WYzFzZg4YZI) by [Jutsupoint](https://www.youtube.com/@JutsuPoint)
- ⛓ [Build Eminem Bot App with LangChain, Streamlit, OpenAI | Full Python Project | Tutorial | AI ChatBot](https://www.youtube.com/watch?v=a2shHB4MRZ4) by [Jutsupoint](https://www.youtube.com/@JutsuPoint)
### [Prompt Engineering and LangChain](https://www.youtube.com/watch?v=muXbPpG_ys4&list=PLEJK-H61Xlwzm5FYLDdKt_6yibO33zoMW) by [Venelin Valkov](https://www.youtube.com/@venelin_valkov)
@@ -132,4 +134,4 @@
---------------------
⛓ icon marks a new addition [last update 2023-09-21]
⛓ icon marks a new addition [last update 2024-02-04]

File diff suppressed because one or more lines are too long

View File

@@ -302,7 +302,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -85,21 +85,10 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "2448b6c2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Graph(nodes={'7308e6063c6d40818c5a0cc1cc7444f2': Node(id='7308e6063c6d40818c5a0cc1cc7444f2', data=<class 'pydantic.main.RunnableParallel<context,question>Input'>), '292bbd8021d44ec3a31fbe724d9002c1': Node(id='292bbd8021d44ec3a31fbe724d9002c1', data=<class 'pydantic.main.RunnableParallel<context,question>Output'>), '9212f219cf05488f95229c56ea02b192': Node(id='9212f219cf05488f95229c56ea02b192', data=VectorStoreRetriever(tags=['FAISS', 'OpenAIEmbeddings'], vectorstore=<langchain_community.vectorstores.faiss.FAISS object at 0x117334f70>)), 'c7a8e65fa5cf44b99dbe7d1d6e36886f': Node(id='c7a8e65fa5cf44b99dbe7d1d6e36886f', data=RunnablePassthrough()), '818b9bfd40a341008373d5b9f9d0784b': Node(id='818b9bfd40a341008373d5b9f9d0784b', data=ChatPromptTemplate(input_variables=['context', 'question'], messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context', 'question'], template='Answer the question based only on the following context:\\n{context}\\n\\nQuestion: {question}\\n'))])), 'b9f1d3ddfa6b4334a16ea439df22b11e': Node(id='b9f1d3ddfa6b4334a16ea439df22b11e', data=ChatOpenAI(client=<class 'openai.api_resources.chat_completion.ChatCompletion'>, openai_api_key='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', openai_proxy='')), '2bf84f6355c44731848345ca7d0f8ab9': Node(id='2bf84f6355c44731848345ca7d0f8ab9', data=StrOutputParser()), '1aeb2da5da5a43bb8771d3f338a473a2': Node(id='1aeb2da5da5a43bb8771d3f338a473a2', data=<class 'pydantic.main.StrOutputParserOutput'>)}, edges=[Edge(source='7308e6063c6d40818c5a0cc1cc7444f2', target='9212f219cf05488f95229c56ea02b192'), Edge(source='9212f219cf05488f95229c56ea02b192', target='292bbd8021d44ec3a31fbe724d9002c1'), Edge(source='7308e6063c6d40818c5a0cc1cc7444f2', target='c7a8e65fa5cf44b99dbe7d1d6e36886f'), Edge(source='c7a8e65fa5cf44b99dbe7d1d6e36886f', target='292bbd8021d44ec3a31fbe724d9002c1'), Edge(source='292bbd8021d44ec3a31fbe724d9002c1', target='818b9bfd40a341008373d5b9f9d0784b'), Edge(source='818b9bfd40a341008373d5b9f9d0784b', target='b9f1d3ddfa6b4334a16ea439df22b11e'), Edge(source='2bf84f6355c44731848345ca7d0f8ab9', target='1aeb2da5da5a43bb8771d3f338a473a2'), Edge(source='b9f1d3ddfa6b4334a16ea439df22b11e', target='2bf84f6355c44731848345ca7d0f8ab9')])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"chain.get_graph()"
]

View File

@@ -7,7 +7,7 @@
"source": [
"# Add message history (memory)\n",
"\n",
"The `RunnableWithMessageHistory` let's us add message history to certain types of chains.\n",
"The `RunnableWithMessageHistory` let us add message history to certain types of chains.\n",
"\n",
"Specifically, it can be used for any Runnable that takes as input one of\n",
"\n",

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -78,7 +78,7 @@ Let models choose which tools to use given high-level directives
Walkthroughs and techniques for common end-to-end use cases, like:
- [Document question answering](/docs/use_cases/question_answering/)
- [Chatbots](/docs/use_cases/chatbots/)
- [Analyzing structured data](/docs/use_cases/qa_structured/sql/)
- [Analyzing structured data](/docs/use_cases/sql/)
- and much more...
### [Integrations](/docs/integrations/providers/)
@@ -93,6 +93,3 @@ Head to the reference section for full documentation of all classes and methods
### [Developer's guide](/docs/contributing)
Check out the developer's guide for guidelines on contributing and help getting your dev environment set up.
### [Community](/docs/community)
Head to the [Community navigator](/docs/community) to find places to ask questions, share feedback, meet other developers, and dream about the future of LLMs.

View File

@@ -59,7 +59,7 @@ In this quickstart, we will walk through a few different ways of doing that.
We will start with a simple LLM chain, which just relies on information in the prompt template to respond.
Next, we will build a retrieval chain, which fetches data from a separate database and passes that into the prompt template.
We will then add in chat history, to create a conversation retrieval chain. This allows you interact in a chat manner with this LLM, so it remembers previous questions.
Finally, we will build an agent - which utilizes and LLM to determine whether or not it needs to fetch data to answer questions.
Finally, we will build an agent - which utilizes an LLM to determine whether or not it needs to fetch data to answer questions.
We will cover these at a high level, but there are lot of details to all of these!
We will link to relevant docs.
@@ -184,7 +184,6 @@ A Retriever can be backed by anything - a SQL table, the internet, etc - but in
First, we need to load the data that we want to index. In order to do this, we will use the WebBaseLoader. This requires installing [BeautifulSoup](https://beautiful-soup-4.readthedocs.io/en/latest/):
```
```shell
pip install beautifulsoup4
```
@@ -582,7 +581,10 @@ Using this, we can interact with the served chain as if it were running client-s
from langserve import RemoteRunnable
remote_chain = RemoteRunnable("http://localhost:8000/agent/")
remote_chain.invoke({"input": "how can langsmith help with testing?"})
remote_chain.invoke({
"input": "how can langsmith help with testing?",
"chat_history": [] # Providing an empty list as this is the first call
})
```
To learn more about the many other features of LangServe [head here](/docs/langserve).
@@ -597,6 +599,6 @@ To continue on your journey, we recommend you read the following (in order):
- [Model IO](/docs/modules/model_io) covers more details of prompts, LLMs, and output parsers.
- [Retrieval](/docs/modules/data_connection) covers more details of everything related to retrieval
- [Agents](/docs/modules/agents) covers details of everything related to agents
- Explore common [end-to-end use cases](/docs/use_cases/qa_structured/sql) and [template applications](/docs/templates)
- Explore common [end-to-end use cases](/docs/use_cases/) and [template applications](/docs/templates)
- [Read up on LangSmith](/docs/langsmith/), the platform for debugging, testing, monitoring and more
- Learn more about serving your applications with [LangServe](/docs/langserve)

View File

@@ -98,7 +98,7 @@ The LLM landscape is evolving at an unprecedented pace, with new libraries and m
### Model composition
Deploying systems like LangChain demands the ability to piece together different models and connect them via logic. Take the example of building a natural language input SQL query engine. Querying an LLM and obtaining the SQL command is only part of the system. You need to extract metadata from the connected database, construct a prompt for the LLM, run the SQL query on an engine, collect and feed back the response to the LLM as the query runs, and present the results to the user. This demonstrates the need to seamlessly integrate various complex components built in Python into a dynamic chain of logical blocks that can be served together.
Deploying systems like LangChain demands the ability to piece together different models and connect them via logic. Take the example of building a natural language input SQL query engine. Querying an LLM and obtaining the SQL command is only part of the system. You need to extract metadata from the connected database, construct a prompt for the LLM, run the SQL query on an engine, collect and feedback the response to the LLM as the query runs, and present the results to the user. This demonstrates the need to seamlessly integrate various complex components built in Python into a dynamic chain of logical blocks that can be served together.
## Cloud providers

View File

@@ -35,6 +35,22 @@
"from langchain_openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3dd69cb4",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"# get a new token: https://dashboard.cohere.ai/\n",
"os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Cohere API Key:\")\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Open API Key:\")\n",
"os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = getpass.getpass(\"Hugging Face API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -44,7 +60,7 @@
"source": [
"llms = [\n",
" OpenAI(temperature=0),\n",
" Cohere(model=\"command-xlarge-20221108\", max_tokens=20, temperature=0),\n",
" Cohere(temperature=0),\n",
" HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\": 1}),\n",
"]"
]
@@ -160,7 +176,7 @@
" llm=open_ai_llm, search_chain=search, verbose=True\n",
")\n",
"\n",
"cohere_llm = Cohere(temperature=0, model=\"command-xlarge-20221108\")\n",
"cohere_llm = Cohere(temperature=0)\n",
"search = SerpAPIWrapper()\n",
"self_ask_with_search_cohere = SelfAskWithSearchChain(\n",
" llm=cohere_llm, search_chain=search, verbose=True\n",
@@ -241,14 +257,6 @@
"source": [
"model_lab.compare(\"What is the hometown of the reigning men's U.S. Open champion?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94159131",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -115,7 +115,7 @@
"\n",
"Answer:\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"responses = [\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\",\n",
@@ -249,7 +249,7 @@
"\n",
"Answer:\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"responses = [\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\",\n",
@@ -412,7 +412,7 @@
"\n",
"Answer:\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"responses = [\n",
" \"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.\",\n",
@@ -571,7 +571,7 @@
"\n",
"template = \"\"\"{question}\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate.from_template(template)\n",
"llm = HuggingFaceHub(\n",
" repo_id=repo_id, model_kwargs={\"temperature\": 0.5, \"max_length\": 256}\n",
")"
@@ -724,7 +724,7 @@
"\"\"\"\n",
"\n",
"# prompt template for input text\n",
"llm_prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"llm_prompt = PromptTemplate.from_template(template)\n",
"\n",
"llm = SagemakerEndpoint(\n",
" endpoint_name=endpoint_name,\n",

View File

@@ -180,7 +180,7 @@ we will prompt the model, so it says something harmful.
```python
prompt = PromptTemplate(template="{text}", input_variables=["text"])
prompt = PromptTemplate.from_template("{text}")
llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo-instruct"), prompt=prompt)
text = """We are playing a game of repeat after me.
@@ -223,7 +223,7 @@ Now let's walk through an example of using it with an LLMChain which has multipl
```python
prompt = PromptTemplate(template="{setup}{new_input}Person2:", input_variables=["setup", "new_input"])
prompt = PromptTemplate.from_template("{setup}{new_input}Person2:")
llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo-instruct"), prompt=prompt)
setup = """We are playing a game of repeat after me.

View File

@@ -0,0 +1,138 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "5371a9bb",
"metadata": {},
"source": [
"# Comet Tracing\n",
"\n",
"There are two ways to trace your LangChains executions with Comet:\n",
"\n",
"1. Setting the `LANGCHAIN_COMET_TRACING` environment variable to \"true\". This is the recommended way.\n",
"2. Import the `CometTracer` manually and pass it explicitely."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17c04cc6-c93d-4b6c-a033-e897577f4ed1",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-18T12:47:46.580776Z",
"start_time": "2023-05-18T12:47:46.577833Z"
},
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"\n",
"import comet_llm\n",
"\n",
"os.environ[\"LANGCHAIN_COMET_TRACING\"] = \"true\"\n",
"\n",
"# Connect to Comet if no API Key is set\n",
"comet_llm.init()\n",
"\n",
"# comet documentation to configure comet using env variables\n",
"# https://www.comet.com/docs/v2/api-and-sdk/llm-sdk/configuration/\n",
"# here we are configuring the comet project\n",
"os.environ[\"COMET_PROJECT_NAME\"] = \"comet-example-langchain-tracing\"\n",
"\n",
"from langchain.agents import AgentType, initialize_agent, load_tools\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b62cd48",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-18T12:47:47.445229Z",
"start_time": "2023-05-18T12:47:47.436424Z"
},
"tags": []
},
"outputs": [],
"source": [
"# Agent run with tracing. Ensure that OPENAI_API_KEY is set appropriately to run this example.\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"tools = load_tools([\"llm-math\"], llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfa16b79-aa4b-4d41-a067-70d1f593f667",
"metadata": {
"ExecuteTime": {
"end_time": "2023-05-18T12:48:01.816137Z",
"start_time": "2023-05-18T12:47:49.109574Z"
},
"tags": []
},
"outputs": [],
"source": [
"agent = initialize_agent(\n",
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
")\n",
"\n",
"agent.run(\"What is 2 raised to .123243 power?\") # this should be traced\n",
"# An url for the chain like the following should print in your console:\n",
"# https://www.comet.com/<workspace>/<project_name>\n",
"# The url can be used to view the LLM chain in Comet."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e212e7d",
"metadata": {},
"outputs": [],
"source": [
"# Now, we unset the environment variable and use a context manager.\n",
"if \"LANGCHAIN_COMET_TRACING\" in os.environ:\n",
" del os.environ[\"LANGCHAIN_COMET_TRACING\"]\n",
"\n",
"from langchain.callbacks.tracers.comet import CometTracer\n",
"\n",
"tracer = CometTracer()\n",
"\n",
"# Recreate the LLM, tools and agent and passing the callback to each of them\n",
"llm = OpenAI(temperature=0)\n",
"tools = load_tools([\"llm-math\"], llm=llm)\n",
"agent = initialize_agent(\n",
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
")\n",
"\n",
"agent.run(\n",
" \"What is 2 raised to .123243 power?\", callbacks=[tracer]\n",
") # this should be traced"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -28,7 +28,7 @@ You can run `streamlit hello` to load a sample app and validate your install suc
To create a `StreamlitCallbackHandler`, you just need to provide a parent container to render the output.
```python
from langchain.callbacks import StreamlitCallbackHandler
from langchain_community.callbacks import StreamlitCallbackHandler
import streamlit as st
st_callback = StreamlitCallbackHandler(st.container())
@@ -44,23 +44,26 @@ agent in your Streamlit app and simply pass the `StreamlitCallbackHandler` to `a
thoughts and actions live in your app.
```python
from langchain_openai import OpenAI
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import StreamlitCallbackHandler
import streamlit as st
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent, load_tools
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_openai import OpenAI
llm = OpenAI(temperature=0, streaming=True)
tools = load_tools(["ddg-search"])
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
prompt = hub.pull("hwchase17/react")
agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
if prompt := st.chat_input():
st.chat_message("user").write(prompt)
with st.chat_message("assistant"):
st_callback = StreamlitCallbackHandler(st.container())
response = agent.run(prompt, callbacks=[st_callback])
st.write(response)
response = agent_executor.invoke(
{"input": prompt}, {"callbacks": [st_callback]}
)
st.write(response["output"])
```
**Note:** You will need to set `OPENAI_API_KEY` for the above app code to run successfully.

View File

@@ -22,44 +22,88 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:00.590587Z",
"start_time": "2024-01-19T11:25:00.127293Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.chat_models import ChatAnthropic"
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_core.prompts import ChatPromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:04.349676Z",
"start_time": "2024-01-19T11:25:03.964930Z"
},
"tags": []
},
"outputs": [],
"source": [
"chat = ChatAnthropic()"
"chat = ChatAnthropic(temperature=0, model_name=\"claude-2\")"
]
},
{
"cell_type": "markdown",
"id": "d1f9df276476f0bc",
"metadata": {
"collapsed": false
},
"source": [
"The code provided assumes that your ANTHROPIC_API_KEY is set in your environment variables. If you would like to manually specify your API key and also choose a different model, you can use the following code:\n",
"```python\n",
"chat = ChatAnthropic(temperature=0, anthropic_api_key=\"YOUR_API_KEY\", model_name=\"claude-instant-1.2\")\n",
"\n",
"```\n",
"Please note that the default model is \"claude-2,\" and you can check the available models at [here](https://docs.anthropic.com/claude/reference/selecting-a-model)."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:07.274418Z",
"start_time": "2024-01-19T11:25:05.898031Z"
},
"tags": []
},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": "AIMessage(content=' 저는 파이썬을 좋아합니다.')"
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat.invoke(messages)"
"system = (\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
")\n",
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chain = prompt | chat\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"Korean\",\n",
" \"text\": \"I love Python\",\n",
" }\n",
")"
]
},
{
@@ -72,44 +116,78 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "93a21c5c-6ef9-4688-be60-b2e1f94842fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:10.448733Z",
"start_time": "2024-01-19T11:25:08.866277Z"
},
"tags": []
},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": "AIMessage(content=\" Why don't bears like fast food? Because they can't catch it!\")"
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.ainvoke([messages])"
"chat = ChatAnthropic(temperature=0, model_name=\"claude-2\")\n",
"prompt = ChatPromptTemplate.from_messages([(\"human\", \"Tell me a joke about {topic}\")])\n",
"chain = prompt | chat\n",
"await chain.ainvoke({\"topic\": \"bear\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:24.438696Z",
"start_time": "2024-01-19T11:25:14.687480Z"
},
"tags": []
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Here are some of the most famous tourist attractions in Japan:\n",
"\n",
"- Tokyo - Tokyo Tower, Tokyo Skytree, Imperial Palace, Sensoji Temple, Meiji Shrine, Shibuya Crossing\n",
"\n",
"- Kyoto - Kinkakuji (Golden Pavilion), Fushimi Inari Shrine, Kiyomizu-dera Temple, Arashiyama Bamboo Grove, Gion Geisha District\n",
"\n",
"- Osaka - Osaka Castle, Dotonbori, Universal Studios Japan, Osaka Aquarium Kaiyukan \n",
"\n",
"- Hiroshima - Hiroshima Peace Memorial Park and Museum, Itsukushima Shrine (Miyajima Island)\n",
"\n",
"- Mount Fuji - Iconic and famous mountain, popular for hiking and viewing from places like Hakone and Kawaguchiko Lake\n",
"\n",
"- Himeji - Himeji Castle, one of Japan's most impressive feudal castles\n",
"\n",
"- Nara - Todaiji Temple, Nara Park with its bowing deer, Horyuji Temple with some of world's oldest wooden structures \n",
"\n",
"- Nikko - Elaborate shrines and temples nestled around Nikko National Park\n",
"\n",
"- Sapporo - Snow"
]
}
],
"source": [
"chat = ChatAnthropic(\n",
" streaming=True,\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
"chat = ChatAnthropic(temperature=0.3, model_name=\"claude-2\")\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"Give me a list of famous tourist attractions in Japan\")]\n",
")\n",
"chat.stream(messages)"
"chain = prompt | chat\n",
"for chunk in chain.stream({}):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
@@ -134,15 +212,130 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"id": "07c47c2a",
"metadata": {},
"outputs": [],
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:25.288133Z",
"start_time": "2024-01-19T11:25:24.438968Z"
}
},
"outputs": [
{
"data": {
"text/plain": "AIMessage(content='파이썬을 사랑합니다.')"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_anthropic import ChatAnthropicMessages\n",
"\n",
"chat = ChatAnthropicMessages(model_name=\"claude-instant-1.2\")\n",
"chat.invoke(messages)"
"system = (\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
")\n",
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chain = prompt | chat\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"Korean\",\n",
" \"text\": \"I love Python\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "19e53d75935143fd",
"metadata": {
"collapsed": false
},
"source": [
"ChatAnthropicMessages also requires the anthropic_api_key argument, or the ANTHROPIC_API_KEY environment variable must be set. \n",
"\n",
"ChatAnthropicMessages also supports async and streaming functionality:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e20a139d30e3d333",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:26.012325Z",
"start_time": "2024-01-19T11:25:25.288358Z"
},
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": "AIMessage(content='파이썬을 사랑합니다.')"
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chain.ainvoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"Korean\",\n",
" \"text\": \"I love Python\",\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6f34f1073d7e7120",
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T11:25:28.323455Z",
"start_time": "2024-01-19T11:25:26.012040Z"
},
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Here are some of the most famous tourist attractions in Japan:\n",
"\n",
"- Tokyo Tower - A communication and observation tower in Tokyo modeled after the Eiffel Tower. It offers stunning views of the city.\n",
"\n",
"- Mount Fuji - Japan's highest and most famous mountain. It's a iconic symbol of Japan and a UNESCO World Heritage Site. \n",
"\n",
"- Itsukushima Shrine (Miyajima) - A shrine located on an island in Hiroshima prefecture, known for its \"floating\" torii gate that seems to float on water during high tide.\n",
"\n",
"- Himeji Castle - A UNESCO World Heritage Site famous for having withstood numerous battles without destruction to its intricate white walls and sloping, triangular roofs. \n",
"\n",
"- Kawaguchiko Station - Near Mount Fuji, this area is known for its scenic Fuji Five Lakes region. \n",
"\n",
"- Hiroshima Peace Memorial Park and Museum - Commemorates the world's first atomic bombing in Hiroshima on August 6, 1945. \n",
"\n",
"- Arashiyama Bamboo Grove - A renowned bamboo forest located in Kyoto that draws many visitors.\n",
"\n",
"- Kegon Falls - One of Japan's largest waterfalls"
]
}
],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"Give me a list of famous tourist attractions in Japan\")]\n",
")\n",
"chain = prompt | chat\n",
"for chunk in chain.stream({}):\n",
" print(chunk.content, end=\"\", flush=True)"
]
}
],

View File

@@ -15,16 +15,7 @@
"execution_count": 1,
"id": "378be79b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.14) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
" warnings.warn(\n"
]
}
],
"outputs": [],
"source": [
"from langchain_experimental.llms.anthropic_functions import AnthropicFunctions"
]
@@ -41,7 +32,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "e1d535f6",
"metadata": {},
"outputs": [],
@@ -102,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"response = model.predict_messages(\n",
"response = model.invoke(\n",
" [HumanMessage(content=\"whats the weater in boston?\")], functions=functions\n",
")"
]
@@ -140,7 +131,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 4,
"id": "7af5c567",
"metadata": {},
"outputs": [],
@@ -162,7 +153,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"id": "bd01082a",
"metadata": {},
"outputs": [],
@@ -172,24 +163,12 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "b5a23e9f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'Alex', 'height': '5', 'hair_color': 'blonde'},\n",
" {'name': 'Claudia', 'height': '6', 'hair_color': 'brunette'}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"chain.run(inp)"
"chain.invoke(inp)"
]
},
{
@@ -256,7 +235,7 @@
}
],
"source": [
"chain.run(\"this is really cool\")"
"chain.invoke(\"this is really cool\")"
]
}
],
@@ -276,7 +255,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.9.0"
}
},
"nbformat": 4,

View File

@@ -15,9 +15,9 @@
"source": [
"# AzureMLChatOnlineEndpoint\n",
"\n",
">[Azure Machine Learning](https://azure.microsoft.com/en-us/products/machine-learning/) is a platform used to build, train, and deploy machine learning models. Users can explore the types of models to deploy in the Model Catalog, which provides Azure Foundation Models and OpenAI Models. `Azure Foundation Models` include various open-source models and popular Hugging Face models. Users can also import models of their liking into AzureML.\n",
">[Azure Machine Learning](https://azure.microsoft.com/en-us/products/machine-learning/) is a platform used to build, train, and deploy machine learning models. Users can explore the types of models to deploy in the Model Catalog, which provides foundational and general purpose models from different providers.\n",
">\n",
">[Azure Machine Learning Online Endpoints](https://learn.microsoft.com/en-us/azure/machine-learning/concept-endpoints). After you train machine learning models or pipelines, you need to deploy them to production so that others can use them for inference. Inference is the process of applying new input data to the machine learning model or pipeline to generate outputs. While these outputs are typically referred to as \"predictions,\" inferencing can be used to generate outputs for other machine learning tasks, such as classification and clustering. In `Azure Machine Learning`, you perform inferencing by using endpoints and deployments. `Endpoints` and `Deployments` allow you to decouple the interface of your production workload from the implementation that serves it.\n",
">In general, you need to deploy models in order to consume its predictions (inference). In `Azure Machine Learning`, [Online Endpoints](https://learn.microsoft.com/en-us/azure/machine-learning/concept-endpoints) are used to deploy these models with a real-time serving. They are based on the ideas of `Endpoints` and `Deployments` which allow you to decouple the interface of your production workload from the implementation that serves it.\n",
"\n",
"This notebook goes over how to use a chat model hosted on an `Azure Machine Learning Endpoint`."
]
@@ -37,10 +37,11 @@
"source": [
"## Set up\n",
"\n",
"To use the wrapper, you must [deploy a model on AzureML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) and obtain the following parameters:\n",
"You must [deploy a model on Azure ML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) or [to Azure AI studio](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/deploy-models-open) and obtain the following parameters:\n",
"\n",
"* `endpoint_api_key`: The API key provided by the endpoint\n",
"* `endpoint_url`: The REST endpoint url provided by the endpoint"
"* `endpoint_url`: The REST endpoint url provided by the endpoint.\n",
"* `endpoint_api_type`: Use `endpoint_type='realtime'` when deploying models to **Realtime endpoints** (hosted managed infrastructure). Use `endpoint_type='serverless'` when deploying models using the **Pay-as-you-go** offering (model as a service).\n",
"* `endpoint_api_key`: The API key provided by the endpoint"
]
},
{
@@ -51,7 +52,40 @@
"\n",
"The `content_formatter` parameter is a handler class for transforming the request and response of an AzureML endpoint to match with required schema. Since there are a wide range of models in the model catalog, each of which may process data differently from one another, a `ContentFormatterBase` class is provided to allow users to transform data to their liking. The following content formatters are provided:\n",
"\n",
"* `LLamaContentFormatter`: Formats request and response data for LLaMa2-chat"
"* `LLamaChatContentFormatter`: Formats request and response data for LLaMa2-chat\n",
"\n",
"*Note: `langchain.chat_models.azureml_endpoint.LLamaContentFormatter` is being deprecated and replaced with `langchain.chat_models.azureml_endpoint.LLamaChatContentFormatter`.*\n",
"\n",
"You can implement custom content formatters specific for your model deriving from the class `langchain_community.llms.azureml_endpoint.ContentFormatterBase`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Examples\n",
"\n",
"The following section cotain examples about how to use this class:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.chat_models.azureml_endpoint import (\n",
" AzureMLEndpointApiType,\n",
" LlamaChatContentFormatter,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: Chat completions with real-time endpoints"
]
},
{
@@ -76,11 +110,79 @@
"\n",
"chat = AzureMLChatOnlineEndpoint(\n",
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/score\",\n",
" endpoint_api_type=AzureMLEndpointApiType.realtime,\n",
" endpoint_api_key=\"my-api-key\",\n",
" content_formatter=LlamaContentFormatter,\n",
" content_formatter=LlamaChatContentFormatter(),\n",
")\n",
"response = chat(\n",
" messages=[HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")]\n",
"response = chat.invoke(\n",
" [HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")]\n",
")\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: Chat completions with pay-as-you-go deployments (model as a service)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat = AzureMLChatOnlineEndpoint(\n",
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions\",\n",
" endpoint_api_type=AzureMLEndpointApiType.serverless,\n",
" endpoint_api_key=\"my-api-key\",\n",
" content_formatter=LlamaChatContentFormatter,\n",
")\n",
"response = chat.invoke(\n",
" [HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")]\n",
")\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you need to pass additional parameters to the model, use `model_kwards` argument:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat = AzureMLChatOnlineEndpoint(\n",
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/chat/completions\",\n",
" endpoint_api_type=AzureMLEndpointApiType.serverless,\n",
" endpoint_api_key=\"my-api-key\",\n",
" content_formatter=LlamaChatContentFormatter,\n",
" model_kwargs={\"temperature\": 0.8},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Parameters can also be passed during invocation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = chat.invoke(\n",
" [HumanMessage(content=\"Will the Collatz conjecture ever be solved?\")],\n",
" max_tokens=512,\n",
")\n",
"response"
]

View File

@@ -13,7 +13,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# ChatBaichuan\n",
"# Chat with Baichuan-192K\n",
"\n",
"Baichuan chat models API by Baichuan Intelligent Technology. For more information, see [https://platform.baichuan-ai.com/docs/api](https://platform.baichuan-ai.com/docs/api)"
]
@@ -44,20 +44,25 @@
},
"outputs": [],
"source": [
"chat = ChatBaichuan(\n",
" baichuan_api_key=\"YOUR_API_KEY\", baichuan_secret_key=\"YOUR_SECRET_KEY\"\n",
")"
"chat = ChatBaichuan(baichuan_api_key=\"YOUR_API_KEY\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"or you can set `api_key` and `secret_key` in your environment variables\n",
"```bash\n",
"export BAICHUAN_API_KEY=YOUR_API_KEY\n",
"export BAICHUAN_SECRET_KEY=YOUR_SECRET_KEY\n",
"```"
"Alternatively, you can set your API key with:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"BAICHUAN_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{
@@ -91,7 +96,7 @@
"collapsed": false
},
"source": [
"## For ChatBaichuan with Streaming"
"## Chat with Baichuan-192K with Streaming"
]
},
{
@@ -108,7 +113,6 @@
"source": [
"chat = ChatBaichuan(\n",
" baichuan_api_key=\"YOUR_API_KEY\",\n",
" baichuan_secret_key=\"YOUR_SECRET_KEY\",\n",
" streaming=True,\n",
")"
]

View File

@@ -0,0 +1,224 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# DeepInfra\n",
"\n",
"[DeepInfra](https://deepinfra.com/?utm_source=langchain) is a serverless inference as a service that provides access to a [variety of LLMs](https://deepinfra.com/models?utm_source=langchain) and [embeddings models](https://deepinfra.com/models?type=embeddings&utm_source=langchain). This notebook goes over how to use LangChain with DeepInfra for chat models."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from DeepInfra. You have to [Login](https://deepinfra.com/login?from=%2Fdash) and get a new token.\n",
"\n",
"You are given a 1 hour free of serverless GPU compute to test different models. (see [here](https://github.com/deepinfra/deepctl#deepctl))\n",
"You can print your token with `deepctl auth token`"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ········\n"
]
}
],
"source": [
"# get a new token: https://deepinfra.com/login?from=%2Fdash\n",
"\n",
"from getpass import getpass\n",
"\n",
"DEEPINFRA_API_TOKEN = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"\n",
"# or pass deepinfra_api_token parameter to the ChatDeepInfra constructor\n",
"os.environ[\"DEEPINFRA_API_TOKEN\"] = DEEPINFRA_API_TOKEN"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatDeepInfra\n",
"from langchain.schema import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat = ChatDeepInfra(model=\"meta-llama/Llama-2-7b-chat-hf\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" J'aime la programmation.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c361ab1e-8c0c-4206-9e3c-9d1424a12b9c",
"metadata": {},
"source": [
"## `ChatDeepInfra` also supports async and streaming functionality:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "93a21c5c-6ef9-4688-be60-b2e1f94842fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[ChatGeneration(text=\" J'aime programmer.\", generation_info=None, message=AIMessage(content=\" J'aime programmer.\", additional_kwargs={}, example=False))]], llm_output={}, run=[RunInfo(run_id=UUID('8cc8fb68-1c35-439c-96a0-695036a93652'))])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.agenerate([messages])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" J'aime la programmation."
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\" J'aime la programmation.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatDeepInfra(\n",
" streaming=True,\n",
" verbose=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
")\n",
"chat(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c253883f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,272 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Eden AI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Eden AI is revolutionizing the AI landscape by uniting the best AI providers, empowering users to unlock limitless possibilities and tap into the true potential of artificial intelligence. With an all-in-one comprehensive and hassle-free platform, it allows users to deploy AI features to production lightning fast, enabling effortless access to the full breadth of AI capabilities via a single API. (website: https://edenai.co/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example goes over how to use LangChain to interact with Eden AI models\n",
"\n",
"-----------------------------------------------------------------------------------"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`EdenAI` goes beyond mere model invocation. It empowers you with advanced features, including:\n",
"\n",
"- **Multiple Providers**: Gain access to a diverse range of language models offered by various providers, giving you the freedom to choose the best-suited model for your use case.\n",
"\n",
"- **Fallback Mechanism**: Set a fallback mechanism to ensure seamless operations even if the primary provider is unavailable, you can easily switches to an alternative provider.\n",
"\n",
"- **Usage Tracking**: Track usage statistics on a per-project and per-API key basis. This feature allows you to monitor and manage resource consumption effectively.\n",
"\n",
"- **Monitoring and Observability**: `EdenAI` provides comprehensive monitoring and observability tools on the platform. Monitor the performance of your language models, analyze usage patterns, and gain valuable insights to optimize your applications.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the EDENAI's API requires an API key, \n",
"\n",
"which you can get by creating an account https://app.edenai.run/user/register and heading here https://app.edenai.run/admin/iam/api-keys\n",
"\n",
"Once we have a key we'll want to set it as an environment variable by running:\n",
"\n",
"```bash\n",
"export EDENAI_API_KEY=\"...\"\n",
"```\n",
"\n",
"You can find more details on the API reference : https://docs.edenai.co/reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you'd prefer not to set an environment variable you can pass the key in directly via the edenai_api_key named parameter\n",
"\n",
" when initiating the EdenAI Chat Model class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.edenai import ChatEdenAI\n",
"from langchain_core.messages import HumanMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"chat = ChatEdenAI(\n",
" edenai_api_key=\"...\", provider=\"openai\", temperature=0.2, max_tokens=250\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello! How can I assist you today?')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [HumanMessage(content=\"Hello !\")]\n",
"chat.invoke(messages)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello! How can I assist you today?')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.ainvoke(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Streaming and Batching\n",
"\n",
"`ChatEdenAI` supports streaming and batching. Below is an example."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello! How can I assist you today?"
]
}
],
"source": [
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='Hello! How can I assist you today?')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat.batch([messages])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fallback mecanism\n",
"\n",
"With Eden AI you can set a fallback mechanism to ensure seamless operations even if the primary provider is unavailable, you can easily switches to an alternative provider."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"chat = ChatEdenAI(\n",
" edenai_api_key=\"...\",\n",
" provider=\"openai\",\n",
" temperature=0.2,\n",
" max_tokens=250,\n",
" fallback_providers=\"google\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example, you can use Google as a backup provider if OpenAI encounters any issues.\n",
"\n",
"For more information and details about Eden AI, check out this link: : https://docs.edenai.co/docs/additional-parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chaining Calls\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",
" \"What is a good name for a company that makes {product}?\"\n",
")\n",
"chain = prompt | chat"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='VitalBites')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"product\": \"healthy snacks\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-pr",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -320,11 +320,57 @@
"4. Message may be blocked if they violate the safety checks of the LLM. In this case, the model will return an empty response."
]
},
{
"cell_type": "markdown",
"id": "54793b9e",
"metadata": {},
"source": [
"### Safety Settings\n",
"\n",
"Gemini models have default safety settings that can be overridden. If you are receiving lots of \"Safety Warnings\" from your models, you can try tweaking the `safety_settings` attribute of the model. For example, to turn off safety blocking for dangerous content, you can construct your LLM as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "75fdfad6",
"metadata": {},
"outputs": [],
"source": [
"from langchain_google_genai import (\n",
" ChatGoogleGenerativeAI,\n",
" HarmBlockThreshold,\n",
" HarmCategory,\n",
")\n",
"\n",
"llm = ChatGoogleGenerativeAI(\n",
" model=\"gemini-pro\",\n",
" safety_settings={\n",
" HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e68e203d",
"metadata": {},
"source": [
"For an enumeration of the categories and thresholds available, see Google's [safety setting types](https://ai.google.dev/api/python/google/generativeai/types/SafetySettingDict)."
]
},
{
"cell_type": "markdown",
"id": "92b5aca5",
"metadata": {},
"source": []
"source": [
"## Additional Configuration\n",
"\n",
"You can pass the following parameters to ChatGoogleGenerativeAI in order to customize the SDK's behavior:\n",
"\n",
"- `client_options`: [Client Options](https://googleapis.dev/python/google-api-core/latest/client_options.html#module-google.api_core.client_options) to pass to the Google API Client, such as a custom `client_options[\"api_endpoint\"]`\n",
"- `transport`: The transport method to use, such as `rest`, `grpc`, or `grpc_asyncio`."
]
}
],
"metadata": {

View File

@@ -11,7 +11,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -19,6 +18,14 @@
"\n",
"Note: This is separate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there. \n",
"\n",
"ChatVertexAI exposes all foundational models available in Google Cloud:\n",
"\n",
"- Gemini (`gemini-pro` and `gemini-pro-vision`)\n",
"- PaLM 2 for Text (`text-bison`)\n",
"- Codey for Code Generation (`codechat-bison`)\n",
"\n",
"For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview).\n",
"\n",
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) customer data to train its foundation models as part of Google Cloud`s AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
"\n",
"To use `Google Cloud Vertex AI` PaLM you must have the `langchain-google-vertexai` Python package installed and either:\n",
@@ -35,29 +42,16 @@
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-google-vertexai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -67,7 +61,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -76,7 +70,7 @@
"AIMessage(content=\" J'aime la programmation.\")"
]
},
"execution_count": 2,
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -92,6 +86,40 @@
"chain.invoke({})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Gemini doesn't support SystemMessage at the moment, but it can be added to the first human message in the row. If you want such behavior, just set the `convert_system_message_to_human` to `True`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'aime la programmation.\")"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"system = \"You are a helpful assistant who translate English to French\"\n",
"human = \"Translate this sentence from English to French. I love programming.\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chat = ChatVertexAI(model_name=\"gemini-pro\", convert_system_message_to_human=True)\n",
"\n",
"chain = prompt | chat\n",
"chain.invoke({})"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -101,7 +129,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -110,7 +138,7 @@
"AIMessage(content=' プログラミングが大好きです')"
]
},
"execution_count": 3,
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -122,6 +150,8 @@
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chat = ChatVertexAI()\n",
"\n",
"chain = prompt | chat\n",
"\n",
"chain.invoke(\n",
@@ -134,30 +164,18 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-17T21:09:25.423568Z",
"iopub.status.busy": "2023-06-17T21:09:25.423213Z",
"iopub.status.idle": "2023-06-17T21:09:25.429641Z",
"shell.execute_reply": "2023-06-17T21:09:25.429060Z",
"shell.execute_reply.started": "2023-06-17T21:09:25.423546Z"
},
"tags": []
},
"metadata": {},
"source": [
"## Code generation chat models\n",
"You can now leverage the Codey API for code chat within Vertex AI. The model name is:\n",
"- codechat-bison: for code assistance"
"You can now leverage the Codey API for code chat within Vertex AI. The model available is:\n",
"- `codechat-bison`: for code assistance"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -165,27 +183,51 @@
"text": [
" ```python\n",
"def is_prime(n):\n",
" if n <= 1:\n",
" return False\n",
" for i in range(2, n):\n",
" if n % i == 0:\n",
" return False\n",
" return True\n",
" \"\"\"\n",
" Check if a number is prime.\n",
"\n",
" Args:\n",
" n: The number to check.\n",
"\n",
" Returns:\n",
" True if n is prime, False otherwise.\n",
" \"\"\"\n",
"\n",
" # If n is 1, it is not prime.\n",
" if n == 1:\n",
" return False\n",
"\n",
" # Iterate over all numbers from 2 to the square root of n.\n",
" for i in range(2, int(n ** 0.5) + 1):\n",
" # If n is divisible by any number from 2 to its square root, it is not prime.\n",
" if n % i == 0:\n",
" return False\n",
"\n",
" # If n is divisible by no number from 2 to its square root, it is prime.\n",
" return True\n",
"\n",
"\n",
"def find_prime_numbers(n):\n",
" prime_numbers = []\n",
" for i in range(2, n + 1):\n",
" if is_prime(i):\n",
" prime_numbers.append(i)\n",
" return prime_numbers\n",
" \"\"\"\n",
" Find all prime numbers up to a given number.\n",
"\n",
"print(find_prime_numbers(100))\n",
"```\n",
" Args:\n",
" n: The upper bound for the prime numbers to find.\n",
"\n",
"Output:\n",
" Returns:\n",
" A list of all prime numbers up to n.\n",
" \"\"\"\n",
"\n",
"```\n",
"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]\n",
" # Create a list of all numbers from 2 to n.\n",
" numbers = list(range(2, n + 1))\n",
"\n",
" # Iterate over the list of numbers and remove any that are not prime.\n",
" for number in numbers:\n",
" if not is_prime(number):\n",
" numbers.remove(number)\n",
"\n",
" # Return the list of prime numbers.\n",
" return numbers\n",
"```\n"
]
}
@@ -195,22 +237,159 @@
" model_name=\"codechat-bison\", max_output_tokens=1000, temperature=0.5\n",
")\n",
"\n",
"message = chat.invoke(\"Write a Python function to identify all prime numbers\")\n",
"message = chat.invoke(\"Write a Python function generating all prime numbers\")\n",
"print(message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Full generation info\n",
"\n",
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just chat completions\n",
"\n",
"Note that the `generation_info` will be different depending if you're using a gemini model or not.\n",
"\n",
"### Gemini model\n",
"\n",
"`generation_info` will include:\n",
"\n",
"- `is_blocked`: whether generation was blocked or not\n",
"- `safety_ratings`: safety ratings' categories and probability labels"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'is_blocked': False,\n",
" 'safety_ratings': [{'category': 'HARM_CATEGORY_HARASSMENT',\n",
" 'probability_label': 'NEGLIGIBLE'},\n",
" {'category': 'HARM_CATEGORY_HATE_SPEECH',\n",
" 'probability_label': 'NEGLIGIBLE'},\n",
" {'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',\n",
" 'probability_label': 'NEGLIGIBLE'},\n",
" {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',\n",
" 'probability_label': 'NEGLIGIBLE'}]}\n"
]
}
],
"source": [
"from pprint import pprint\n",
"\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_google_vertexai import ChatVertexAI, HarmBlockThreshold, HarmCategory\n",
"\n",
"human = \"Translate this sentence from English to French. I love programming.\"\n",
"messages = [HumanMessage(content=human)]\n",
"\n",
"\n",
"chat = ChatVertexAI(\n",
" model_name=\"gemini-pro\",\n",
" safety_settings={\n",
" HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE\n",
" },\n",
")\n",
"\n",
"result = chat.generate([messages])\n",
"pprint(result.generations[0][0].generation_info)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Non-gemini model\n",
"\n",
"`generation_info` will include:\n",
"\n",
"- `is_blocked`: whether generation was blocked or not\n",
"- `safety_attributes`: a dictionary mapping safety attributes to their scores"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'is_blocked': False,\n",
" 'safety_attributes': {'Derogatory': 0.1,\n",
" 'Finance': 0.3,\n",
" 'Insult': 0.1,\n",
" 'Sexual': 0.1}}\n"
]
}
],
"source": [
"chat = ChatVertexAI() # default is `chat-bison`\n",
"\n",
"result = chat.generate([messages])\n",
"pprint(result.generations[0][0].generation_info)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Function Calling with Gemini\n",
"\n",
"We can call Gemini models with tools."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"MyModel(name='Erick', age=27)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.pydantic_v1 import BaseModel\n",
"from langchain_google_vertexai import create_structured_runnable\n",
"\n",
"llm = ChatVertexAI(model_name=\"gemini-pro\")\n",
"\n",
"\n",
"class MyModel(BaseModel):\n",
" name: str\n",
" age: int\n",
"\n",
"\n",
"chain = create_structured_runnable(MyModel, llm)\n",
"chain.invoke(\"My name is Erick and I'm 27 years old\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Asynchronous calls\n",
"\n",
"We can make asynchronous calls via the Runnables [Async Interface](/docs/expression_language/interface)"
"We can make asynchronous calls via the Runnables [Async Interface](/docs/expression_language/interface)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -224,16 +403,16 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' Why do you love programming?')"
"AIMessage(content=' अहं प्रोग्रामनं प्रेमामि')"
]
},
"execution_count": 6,
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -244,6 +423,8 @@
")\n",
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chat = ChatVertexAI(model_name=\"chat-bison\", max_output_tokens=1000, temperature=0.5)\n",
"chain = prompt | chat\n",
"\n",
"asyncio.run(\n",
@@ -268,7 +449,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -299,37 +480,15 @@
" sys.stdout.write(chunk.content)\n",
" sys.stdout.flush()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
"display_name": "",
"name": ""
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "cc99336516f23363341912c6723b01ace86f02e26b4290be1efc0677e2e2ec24"
}
"name": "python"
}
},
"nbformat": 4,

View File

@@ -4,9 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Hugging Face Chat Wrapper\n",
"# Hugging Face\n",
"\n",
"This notebook shows how to get started using Hugging Face LLM's as chat models.\n",
"This notebook shows how to get started using `Hugging Face` LLM's as chat models.\n",
"\n",
"In particular, we will:\n",
"1. Utilize the [HuggingFaceTextGenInference](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_text_gen_inference.py), [HuggingFaceEndpoint](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_endpoint.py), or [HuggingFaceHub](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/llms/huggingface_hub.py) integrations to instantiate an `LLM`.\n",
@@ -26,8 +26,6 @@
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: You are using pip version 22.0.4; however, version 23.3.1 is available.\n",
"You should consider upgrading via the '/Users/jacoblee/langchain/langchain/libs/langchain/.venv/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
@@ -49,23 +47,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### `HuggingFaceTextGenInference`"
"### `HuggingFaceTextGenInference`"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/jacoblee/langchain/langchain/libs/langchain/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"outputs": [],
"source": [
"import os\n",
"\n",
@@ -93,7 +82,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### `HuggingFaceEndpoint`"
"### `HuggingFaceEndpoint`"
]
},
{
@@ -121,7 +110,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### `HuggingFaceHub`"
"### `HuggingFaceHub`"
]
},
{
@@ -291,7 +280,7 @@
"source": [
"## 3. Take it for a spin as an agent!\n",
"\n",
"Here we'll test out `Zephyr-7B-beta` as a zero-shot ReAct Agent. The example below is taken from [here](https://python.langchain.com/docs/modules/agents/agent_types/react#using-chat-models).\n",
"Here we'll test out `Zephyr-7B-beta` as a zero-shot `ReAct` Agent. The example below is taken from [here](https://python.langchain.com/docs/modules/agents/agent_types/react#using-chat-models).\n",
"\n",
"> Note: To run this section, you'll need to have a [SerpAPI Token](https://serpapi.com/) saved as an environment variable: `SERPAPI_API_KEY`"
]
@@ -448,7 +437,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -15,23 +15,21 @@
"source": [
"# ChatKonko\n",
"\n",
"# Konko\n",
"\n",
">[Konko](https://www.konko.ai/) API is a fully managed Web API designed to help application developers:\n",
"\n",
"Konko API is a fully managed API designed to help application developers:\n",
"\n",
"1. Select the right LLM(s) for their application\n",
"2. Prototype with various open-source and proprietary LLMs\n",
"3. Move to production in-line with their security, privacy, throughput, latency SLAs without infrastructure set-up or administration using Konko AI's SOC 2 compliant infrastructure\n",
"1. **Select** the right open source or proprietary LLMs for their application\n",
"2. **Build** applications faster with integrations to leading application frameworks and fully managed APIs\n",
"3. **Fine tune** smaller open-source LLMs to achieve industry-leading performance at a fraction of the cost\n",
"4. **Deploy production-scale APIs** that meet security, privacy, throughput, and latency SLAs without infrastructure set-up or administration using Konko AI's SOC 2 compliant, multi-cloud infrastructure\n",
"\n",
"\n",
"This example goes over how to use LangChain to interact with `Konko` [models](https://docs.konko.ai/docs/overview)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To run this notebook, you'll need Konko API key. You can request it by messaging support@konko.ai."
"This example goes over how to use LangChain to interact with `Konko` ChatCompletion [models](https://docs.konko.ai/docs/list-of-models#konko-hosted-models-for-chatcompletion)\n",
"\n",
"To run this notebook, you'll need Konko API key. Sign in to our web app to [create an API key](https://platform.konko.ai/settings/api-keys) to access models\n",
"\n"
]
},
{
@@ -50,11 +48,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set API Keys\n",
"\n",
"<br />\n",
"\n",
"### Option 1: Set Environment Variables\n",
"#### Set Environment Variables\n",
"\n",
"1. You can set environment variables for \n",
" 1. KONKO_API_KEY (Required)\n",
@@ -64,18 +58,7 @@
"```shell\n",
"export KONKO_API_KEY={your_KONKO_API_KEY_here}\n",
"export OPENAI_API_KEY={your_OPENAI_API_KEY_here} #Optional\n",
"```\n",
"\n",
"Alternatively, you can add the above lines directly to your shell startup script (such as .bashrc or .bash_profile for Bash shell and .zshrc for Zsh shell) to have them set automatically every time a new shell session starts.\n",
"\n",
"### Option 2: Set API Keys Programmatically\n",
"\n",
"If you prefer to set your API keys directly within your Python script or Jupyter notebook, you can use the following commands:\n",
"\n",
"```python\n",
"konko.set_api_key('your_KONKO_API_KEY_here') \n",
"konko.set_openai_api_key('your_OPENAI_API_KEY_here') # Optional\n",
"```\n"
"```"
]
},
{
@@ -84,36 +67,34 @@
"source": [
"## Calling a model\n",
"\n",
"Find a model on the [Konko overview page](https://docs.konko.ai/docs/overview)\n",
"Find a model on the [Konko overview page](https://docs.konko.ai/docs/list-of-models)\n",
"\n",
"For example, for this [LLama 2 model](https://docs.konko.ai/docs/meta-llama-2-13b-chat). The model id would be: `\"meta-llama/Llama-2-13b-chat-hf\"`\n",
"\n",
"Another way to find the list of models running on the Konko instance is through this [endpoint](https://docs.konko.ai/reference/listmodels).\n",
"Another way to find the list of models running on the Konko instance is through this [endpoint](https://docs.konko.ai/reference/get-models).\n",
"\n",
"From here, we can initialize our model:\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"chat = ChatKonko(max_tokens=400, model=\"meta-llama/Llama-2-13b-chat-hf\")"
"chat = ChatKonko(max_tokens=400, model=\"meta-llama/llama-2-13b-chat\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" Sure, I'd be happy to explain the Big Bang Theory briefly!\\n\\nThe Big Bang Theory is the leading explanation for the origin and evolution of the universe, based on a vast amount of observational evidence from many fields of science. In essence, the theory posits that the universe began as an infinitely hot and dense point, known as a singularity, around 13.8 billion years ago. This singularity expanded rapidly, and as it did, it cooled and formed subatomic particles, which eventually coalesced into the first atoms, and later into the stars and galaxies we see today.\\n\\nThe theory gets its name from the idea that the universe began in a state of incredibly high energy and temperature, and has been expanding and cooling ever since. This expansion is thought to have been driven by a mysterious force known as dark energy, which is thought to be responsible for the accelerating expansion of the universe.\\n\\nOne of the key predictions of the Big Bang Theory is that the universe should be homogeneous and isotropic on large scales, meaning that it should look the same in all directions and have the same properties everywhere. This prediction has been confirmed by a wealth of observational evidence, including the cosmic microwave background radiation, which is thought to be a remnant of the early universe.\\n\\nOverall, the Big Bang Theory is a well-established and widely accepted explanation for the origins of the universe, and it has been supported by a vast amount of observational evidence from many fields of science.\", additional_kwargs={}, example=False)"
"AIMessage(content=\" Sure thing! The Big Bang Theory is a scientific theory that explains the origins of the universe. In short, it suggests that the universe began as an infinitely hot and dense point around 13.8 billion years ago and expanded rapidly. This expansion continues to this day, and it's what makes the universe look the way it does.\\n\\nHere's a brief overview of the key points:\\n\\n1. The universe started as a singularity, a point of infinite density and temperature.\\n2. The singularity expanded rapidly, causing the universe to cool and expand.\\n3. As the universe expanded, particles began to form, including protons, neutrons, and electrons.\\n4. These particles eventually came together to form atoms, and later, stars and galaxies.\\n5. The universe is still expanding today, and the rate of this expansion is accelerating.\\n\\nThat's the Big Bang Theory in a nutshell! It's a pretty mind-blowing idea when you think about it, and it's supported by a lot of scientific evidence. Do you have any other questions about it?\")"
]
},
"execution_count": 7,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -125,13 +106,6 @@
"]\n",
"chat(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -0,0 +1,218 @@
{
"cells": [
{
"cell_type": "raw",
"id": "59148044",
"metadata": {},
"source": [
"---\n",
"sidebar_label: LiteLLM Router\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "247da7a6",
"metadata": {},
"source": []
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# ChatLiteLLMRouter\n",
"\n",
"[LiteLLM](https://github.com/BerriAI/litellm) is a library that simplifies calling Anthropic, Azure, Huggingface, Replicate, etc. \n",
"\n",
"This notebook covers how to get started with using Langchain + the LiteLLM Router I/O library. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.chat_models import ChatLiteLLMRouter\n",
"from litellm import Router"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model_list = [\n",
" {\n",
" \"model_name\": \"gpt-4\",\n",
" \"litellm_params\": {\n",
" \"model\": \"azure/gpt-4-1106-preview\",\n",
" \"api_key\": \"<your-api-key>\",\n",
" \"api_version\": \"2023-05-15\",\n",
" \"api_base\": \"https://<your-endpoint>.openai.azure.com/\",\n",
" },\n",
" },\n",
" {\n",
" \"model_name\": \"gpt-4\",\n",
" \"litellm_params\": {\n",
" \"model\": \"azure/gpt-4-1106-preview\",\n",
" \"api_key\": \"<your-api-key>\",\n",
" \"api_version\": \"2023-05-15\",\n",
" \"api_base\": \"https://<your-endpoint>.openai.azure.com/\",\n",
" },\n",
" },\n",
"]\n",
"litellm_router = Router(model_list=model_list)\n",
"chat = ChatLiteLLMRouter(router=litellm_router)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'aime programmer.\")"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" HumanMessage(\n",
" content=\"Translate this sentence from English to French. I love programming.\"\n",
" )\n",
"]\n",
"chat(messages)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c361ab1e-8c0c-4206-9e3c-9d1424a12b9c",
"metadata": {},
"source": [
"## `ChatLiteLLMRouter` also supports async and streaming functionality:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "93a21c5c-6ef9-4688-be60-b2e1f94842fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[ChatGeneration(text=\"J'adore programmer.\", generation_info={'finish_reason': 'stop'}, message=AIMessage(content=\"J'adore programmer.\"))]], llm_output={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 19, 'total_tokens': 25}, 'model_name': None}, run=[RunInfo(run_id=UUID('75003ec9-1e2b-43b7-a216-10dcc0f75e00'))])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"await chat.agenerate([messages])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer."
]
},
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\")"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatLiteLLMRouter(\n",
" router=litellm_router,\n",
" streaming=True,\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
")\n",
"chat(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c253883f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -15,16 +15,53 @@
"id": "bf733a38-db84-4363-89e2-de6735c37230",
"metadata": {},
"source": [
"# ChatMistralAI\n",
"# MistralAI\n",
"\n",
"This notebook covers how to get started with MistralAI chat models, via their [API](https://docs.mistral.ai/api/).\n",
"\n",
"A valid [API key](https://console.mistral.ai/users/api-keys/) is needed to communicate with the API."
"A valid [API key](https://console.mistral.ai/users/api-keys/) is needed to communicate with the API.\n",
"\n",
"Head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) for detailed documentation of all attributes and methods."
]
},
{
"cell_type": "markdown",
"id": "cc686b8f",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"You will need the `langchain-core` and `langchain-mistralai` package to use the API. You can install these with:\n",
"\n",
"```bash\n",
"pip install -U langchain-core langchain-mistralai\n",
"\n",
"We'll also need to get a [Mistral API key](https://console.mistral.ai/users/api-keys/)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 7,
"id": "c3fd4184",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"mistral_api_key = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "502127fd",
"metadata": {},
"source": [
"## Usage"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d4a7c55d-b235-4ca4-a579-c90cc9570da9",
"metadata": {
"tags": []
@@ -37,23 +74,20 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 8,
"id": "70cf04e8-423a-4ff6-8b09-f11fb711c817",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"\n",
"mistral_api_key = os.environ.get(\"MISTRAL_API_KEY\")\n",
"# If mistral_api_key is not passed, default behavior is to use the `MISTRAL_API_KEY` environment variable.\n",
"chat = ChatMistralAI(mistral_api_key=mistral_api_key)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 9,
"id": "8199ef8f-eb8b-4253-9ea0-6c24a013ca4c",
"metadata": {
"tags": []
@@ -62,16 +96,16 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"Hello! I'm here to assist you. How can I help you today? If you have any questions or need information on a particular topic, feel free to ask. I'm ready to provide accurate and helpful answers to the best of my ability.\")"
"AIMessage(content=\"Who's there? I was just about to ask the same thing! How can I assist you today?\")"
]
},
"execution_count": 3,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [HumanMessage(content=\"say a brief hello\")]\n",
"messages = [HumanMessage(content=\"knock knock\")]\n",
"chat.invoke(messages)"
]
},
@@ -80,12 +114,12 @@
"id": "c361ab1e-8c0c-4206-9e3c-9d1424a12b9c",
"metadata": {},
"source": [
"## `ChatMistralAI` also supports async and streaming functionality:"
"### Async"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 10,
"id": "c5fac0e9-05a4-4fc1-a3b3-e5bbb24b971b",
"metadata": {
"tags": []
@@ -94,10 +128,10 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"Hello! I'm glad you're here. If you have any questions or need assistance with something related to programming or software development, feel free to ask. I'll do my best to help you out. Have a great day!\")"
"AIMessage(content='Who\\'s there?\\n\\n(You can then continue the \"knock knock\" joke by saying the name of the person or character who should be responding. For example, if I say \"Banana,\" you could respond with \"Banana who?\" and I would say \"Banana bunch! Get it? Because a group of bananas is called a \\'bunch\\'!\" and then we would both laugh and have a great time. But really, you can put anything you want in the spot where I put \"Banana\" and it will still technically be a \"knock knock\" joke. The possibilities are endless!)')"
]
},
"execution_count": 4,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -106,9 +140,17 @@
"await chat.ainvoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "86ccef97",
"metadata": {},
"source": [
"### Streaming\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 11,
"id": "025be980-e50d-4a68-93dc-c9c7b500ce34",
"metadata": {
"tags": []
@@ -118,7 +160,27 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Hello! I'm happy to assist you. Is there a specific question or topic you would like to discuss? I can provide information and answer questions on a wide variety of subjects."
"Who's there?\n",
"\n",
"(After this, the conversation can continue as a call and response \"who's there\" joke. Here is an example of how it could go:\n",
"\n",
"You say: Orange.\n",
"I say: Orange who?\n",
"You say: Orange you glad I didn't say banana!?)\n",
"\n",
"But since you asked for a knock knock joke specifically, here's one for you:\n",
"\n",
"Knock knock.\n",
"\n",
"Me: Who's there?\n",
"\n",
"You: Lettuce.\n",
"\n",
"Me: Lettuce who?\n",
"\n",
"You: Lettuce in, it's too cold out here!\n",
"\n",
"I hope this brings a smile to your face! Do you have a favorite knock knock joke you'd like to share? I'd love to hear it."
]
}
],
@@ -126,6 +188,79 @@
"for chunk in chat.stream(messages):\n",
" print(chunk.content, end=\"\")"
]
},
{
"cell_type": "markdown",
"id": "f6189577",
"metadata": {},
"source": [
"### Batch"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e63aebcb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Who's there? I was just about to ask the same thing! Go ahead and tell me who's there. I love a good knock-knock joke.\")]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat.batch([messages])"
]
},
{
"cell_type": "markdown",
"id": "38e39e71",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/expression_language)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ee43a1ae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
"chain = prompt | chat"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "0dc49212",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Why do bears hate shoes so much? They like to run around in their bear feet.')"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"topic\": \"bears\"})"
]
}
],
"metadata": {
@@ -144,7 +279,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,99 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "3ddface67cd10a87",
"metadata": {
"collapsed": false
},
"source": [
"# SparkLLM Chat\n",
"\n",
"SparkLLM chat models API by iFlyTek. For more information, see [iFlyTek Open Platform](https://www.xfyun.cn/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic use"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43daa39972d4c533",
"metadata": {
"collapsed": false,
"is_executing": true
},
"outputs": [],
"source": [
"\"\"\"For basic init and call\"\"\"\n",
"from langchain.chat_models import ChatSparkLLM\n",
"from langchain.schema import HumanMessage\n",
"\n",
"chat = ChatSparkLLM(\n",
" spark_app_id=\"<app_id>\", spark_api_key=\"<api_key>\", spark_api_secret=\"<api_secret>\"\n",
")\n",
"message = HumanMessage(content=\"Hello\")\n",
"chat([message])"
]
},
{
"cell_type": "markdown",
"id": "df755f4c5689510",
"metadata": {
"collapsed": false
},
"source": [
"- Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API Console](https://console.xfyun.cn/services/bm3) (for more info, see [iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY` and `IFLYTEK_SPARK_API_SECRET` or pass parameters when creating `ChatSparkLLM` as the demo above."
]
},
{
"cell_type": "markdown",
"id": "984e32ee47bc6772",
"metadata": {
"collapsed": false
},
"source": [
"## For ChatSparkLLM with Streaming"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7dc162bd65fec08f",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"chat = ChatSparkLLM(streaming=True)\n",
"for chunk in chat.stream(\"Hello!\"):\n",
" print(chunk.content, end=\"\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,463 @@
{
"cells": [
{
"cell_type": "raw",
"source": [
"---\n",
"sidebar_label: YUAN2\n",
"---"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% raw\n"
}
}
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# YUAN2.0\n",
"\n",
"This notebook shows how to use [YUAN2 API](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/docs/inference_server.md) in LangChain with the langchain.chat_models.ChatYuan2.\n",
"\n",
"[*Yuan2.0*](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md) is a new generation Fundamental Large Language Model developed by IEIT System. We have published all three models, Yuan 2.0-102B, Yuan 2.0-51B, and Yuan 2.0-2B. And we provide relevant scripts for pretraining, fine-tuning, and inference services for other developers. Yuan2.0 is based on Yuan1.0, utilizing a wider range of high-quality pre training data and instruction fine-tuning datasets to enhance the model's understanding of semantics, mathematics, reasoning, code, knowledge, and other aspects."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Getting started\n",
"### Installation\n",
"First, Yuan2.0 provided an OpenAI compatible API, and we integrate ChatYuan2 into langchain chat model by using OpenAI client.\n",
"Therefore, ensure the openai package is installed in your Python environment. Run the following command:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet openai"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Importing the Required Modules\n",
"After installation, import the necessary modules to your Python script:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatYuan2\n",
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Setting Up Your API server\n",
"Setting up your OpenAI compatible API server following [yuan2 openai api server](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md).\n",
"If you deployed api server locally, you can simply set `api_key=\"EMPTY\"` or anything you want.\n",
"Just make sure, the `api_base` is set correctly."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"yuan2_api_key = \"your_api_key\"\n",
"yuan2_api_base = \"http://127.0.0.1:8001/v1\""
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Initialize the ChatYuan2 Model\n",
"Here's how to initialize the chat model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"chat = ChatYuan2(\n",
" yuan2_api_base=\"http://127.0.0.1:8001/v1\",\n",
" temperature=1.0,\n",
" model_name=\"yuan2\",\n",
" max_retries=3,\n",
" streaming=False,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Basic Usage\n",
"Invoke the model with system and human messages like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
},
"scrolled": true
},
"outputs": [],
"source": [
"messages = [\n",
" SystemMessage(content=\"你是一个人工智能助手。\"),\n",
" HumanMessage(content=\"你好,你是谁?\"),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"print(chat(messages))"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Basic Usage with streaming\n",
"For continuous interaction, use the streaming feature:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"\n",
"chat = ChatYuan2(\n",
" yuan2_api_base=\"http://127.0.0.1:8001/v1\",\n",
" temperature=1.0,\n",
" model_name=\"yuan2\",\n",
" max_retries=3,\n",
" streaming=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
")\n",
"messages = [\n",
" SystemMessage(content=\"你是个旅游小助手。\"),\n",
" HumanMessage(content=\"给我介绍一下北京有哪些好玩的。\"),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"chat(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Advanced Features\n",
"### Usage with async calls\n",
"\n",
"Invoke the model with non-blocking calls, like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"async def basic_agenerate():\n",
" chat = ChatYuan2(\n",
" yuan2_api_base=\"http://127.0.0.1:8001/v1\",\n",
" temperature=1.0,\n",
" model_name=\"yuan2\",\n",
" max_retries=3,\n",
" )\n",
" messages = [\n",
" [\n",
" SystemMessage(content=\"你是个旅游小助手。\"),\n",
" HumanMessage(content=\"给我介绍一下北京有哪些好玩的。\"),\n",
" ]\n",
" ]\n",
"\n",
" result = await chat.agenerate(messages)\n",
" print(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"import asyncio\n",
"\n",
"asyncio.run(basic_agenerate())"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Usage with prompt template\n",
"\n",
"Invoke the model with non-blocking calls and used chat template like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"async def ainvoke_with_prompt_template():\n",
" from langchain.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" )\n",
"\n",
" chat = ChatYuan2(\n",
" yuan2_api_base=\"http://127.0.0.1:8001/v1\",\n",
" temperature=1.0,\n",
" model_name=\"yuan2\",\n",
" max_retries=3,\n",
" )\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", \"你是一个诗人,擅长写诗。\"),\n",
" (\"human\", \"给我写首诗,主题是{theme}。\"),\n",
" ]\n",
" )\n",
" chain = prompt | chat\n",
" result = await chain.ainvoke({\"theme\": \"明月\"})\n",
" print(f\"type(result): {type(result)}; {result}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"asyncio.run(ainvoke_with_prompt_template())"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Usage with async calls in streaming\n",
"For non-blocking calls with streaming output, use the astream method:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"async def basic_astream():\n",
" chat = ChatYuan2(\n",
" yuan2_api_base=\"http://127.0.0.1:8001/v1\",\n",
" temperature=1.0,\n",
" model_name=\"yuan2\",\n",
" max_retries=3,\n",
" )\n",
" messages = [\n",
" SystemMessage(content=\"你是个旅游小助手。\"),\n",
" HumanMessage(content=\"给我介绍一下北京有哪些好玩的。\"),\n",
" ]\n",
" result = chat.astream(messages)\n",
" async for chunk in result:\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true,
"name": "#%%\n"
},
"scrolled": true
},
"outputs": [],
"source": [
"import asyncio\n",
"\n",
"asyncio.run(basic_astream())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -0,0 +1,110 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "MwTWzDxYgbrR"
},
"source": [
"# Athena\n",
"\n",
"This notebooks goes over how to load documents from AWS Athena"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "F0zaLR3xgWmO"
},
"outputs": [],
"source": [
"! pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "076NLjfngoWJ"
},
"outputs": [],
"source": [
"from langchain_community.document_loaders.athena import AthenaLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XpMRQwU9gu44"
},
"outputs": [],
"source": [
"database_name = \"my_database\"\n",
"s3_output_path = \"s3://my_bucket/query_results/\"\n",
"query = \"SELECT * FROM my_table\"\n",
"profile_name = \"my_profile\"\n",
"\n",
"loader = AthenaLoader(\n",
" query=query,\n",
" database=database_name,\n",
" s3_output_uri=s3_output_path,\n",
" profile_name=profile_name,\n",
")\n",
"\n",
"documents = loader.load()\n",
"print(documents)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5IBapL3ejoEt"
},
"source": [
"Example with metadata columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "wMx6nI1qjryD"
},
"outputs": [],
"source": [
"database_name = \"my_database\"\n",
"s3_output_path = \"s3://my_bucket/query_results/\"\n",
"query = \"SELECT * FROM my_table\"\n",
"profile_name = \"my_profile\"\n",
"metadata_columns = [\"_row\", \"_created_at\"]\n",
"\n",
"loader = AthenaLoader(\n",
" query=query,\n",
" database=database_name,\n",
" s3_output_uri=s3_output_path,\n",
" profile_name=profile_name,\n",
" metadata_columns=metadata_columns,\n",
")\n",
"\n",
"documents = loader.load()\n",
"print(documents)"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,241 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "vm8vn9t8DvC_"
},
"source": [
"# Cassandra"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Cassandra](https://cassandra.apache.org/) is a NoSQL, row-oriented, highly scalable and highly available database.Starting with version 5.0, the database ships with [vector search capabilities](https://cassandra.apache.org/doc/trunk/cassandra/vector-search/overview.html)."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "5WjXERXzFEhg"
},
"source": [
"## Overview"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "juAmbgoWD17u"
},
"source": [
"The Cassandra Document Loader returns a list of Langchain Documents from a Cassandra database.\n",
"\n",
"You must either provide a CQL query or a table name to retrieve the documents.\n",
"The Loader takes the following parameters:\n",
"\n",
"* table: (Optional) The table to load the data from.\n",
"* session: (Optional) The cassandra driver session. If not provided, the cassio resolved session will be used.\n",
"* keyspace: (Optional) The keyspace of the table. If not provided, the cassio resolved keyspace will be used.\n",
"* query: (Optional) The query used to load the data.\n",
"* page_content_mapper: (Optional) a function to convert a row to string page content. The default converts the row to JSON.\n",
"* metadata_mapper: (Optional) a function to convert a row to metadata dict.\n",
"* query_parameters: (Optional) The query parameters used when calling session.execute .\n",
"* query_timeout: (Optional) The query timeout used when calling session.execute .\n",
"* query_custom_payload: (Optional) The query custom_payload used when calling `session.execute`.\n",
"* query_execution_profile: (Optional) The query execution_profile used when calling `session.execute`.\n",
"* query_host: (Optional) The query host used when calling `session.execute`.\n",
"* query_execute_as: (Optional) The query execute_as used when calling `session.execute`."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load documents with the Document Loader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import CassandraLoader"
]
},
{
"cell_type": "markdown",
"source": [
"### Init from a cassandra driver Session\n",
"\n",
"You need to create a `cassandra.cluster.Session` object, as described in the [Cassandra driver documentation](https://docs.datastax.com/en/developer/python-driver/latest/api/cassandra/cluster/#module-cassandra.cluster). The details vary (e.g. with network settings and authentication), but this might be something like:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"outputs": [],
"source": [
"from cassandra.cluster import Cluster\n",
"\n",
"cluster = Cluster()\n",
"session = cluster.connect()"
],
"metadata": {
"collapsed": false
},
"execution_count": null
},
{
"cell_type": "markdown",
"source": [
"You need to provide the name of an existing keyspace of the Cassandra instance:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"outputs": [],
"source": [
"CASSANDRA_KEYSPACE = input(\"CASSANDRA_KEYSPACE = \")"
],
"metadata": {
"collapsed": false
},
"execution_count": null
},
{
"cell_type": "markdown",
"source": [
"Creating the document loader:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T15:47:25.893037Z",
"start_time": "2024-01-19T15:47:25.889398Z"
}
},
"outputs": [],
"source": [
"loader = CassandraLoader(\n",
" table=\"movie_reviews\",\n",
" session=session,\n",
" keyspace=CASSANDRA_KEYSPACE,\n",
")"
]
},
{
"cell_type": "code",
"outputs": [],
"source": [
"docs = loader.load()"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2024-01-19T15:47:26.399472Z",
"start_time": "2024-01-19T15:47:26.389145Z"
}
},
"execution_count": 17
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"ExecuteTime": {
"end_time": "2024-01-19T15:47:33.287783Z",
"start_time": "2024-01-19T15:47:33.277862Z"
}
},
"outputs": [
{
"data": {
"text/plain": "Document(page_content='Row(_id=\\'659bdffa16cbc4586b11a423\\', title=\\'Dangerous Men\\', reviewtext=\\'\"Dangerous Men,\" the picture\\\\\\'s production notes inform, took 26 years to reach the big screen. After having seen it, I wonder: What was the rush?\\')', metadata={'table': 'movie_reviews', 'keyspace': 'default_keyspace'})"
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs[0]"
]
},
{
"cell_type": "markdown",
"source": [
"### Init from cassio\n",
"\n",
"It's also possible to use cassio to configure the session and keyspace."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"outputs": [],
"source": [
"import cassio\n",
"\n",
"cassio.init(contact_points=\"127.0.0.1\", keyspace=CASSANDRA_KEYSPACE)\n",
"\n",
"loader = CassandraLoader(\n",
" table=\"movie_reviews\",\n",
")\n",
"\n",
"docs = loader.load()"
],
"metadata": {
"collapsed": false
},
"execution_count": null
}
],
"metadata": {
"colab": {
"collapsed_sections": [
"5WjXERXzFEhg"
],
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -3,7 +3,7 @@ class MyClass:
self.name = name
def greet(self):
print(f"Hello, {self.name}!")
print(f"Hello, {self.name}!") # noqa: T201
def main():

View File

@@ -6,7 +6,7 @@
"source": [
"# GitHub\n",
"\n",
"This notebooks shows how you can load issues and pull requests (PRs) for a given repository on [GitHub](https://github.com/). We will use the LangChain Python repository as an example."
"This notebooks shows how you can load issues and pull requests (PRs) for a given repository on [GitHub](https://github.com/). Also shows how you can load github files for a given repository on [GitHub](https://github.com/). We will use the LangChain Python repository as an example."
]
},
{
@@ -46,7 +46,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {
"tags": []
},
@@ -57,7 +57,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -91,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -100,27 +100,9 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Creates GitHubLoader (#5257)\r\n",
"\r\n",
"GitHubLoader is a DocumentLoader that loads issues and PRs from GitHub.\r\n",
"\r\n",
"Fixes #5257\r\n",
"\r\n",
"Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested:\r\n",
"DataLoaders\r\n",
"- @eyurtsev\r\n",
"\n",
"{'url': 'https://github.com/langchain-ai/langchain/pull/5408', 'title': 'DocumentLoader for GitHub', 'creator': 'UmerHA', 'created_at': '2023-05-29T14:50:53Z', 'comments': 0, 'state': 'open', 'labels': ['enhancement', 'lgtm', 'doc loader'], 'assignee': None, 'milestone': None, 'locked': False, 'number': 5408, 'is_pull_request': True}\n"
]
}
],
"outputs": [],
"source": [
"print(docs[0].page_content)\n",
"print(docs[0].metadata)"
@@ -142,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -157,84 +139,68 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"### System Info\n",
"\n",
"LangChain version = 0.0.167\r\n",
"Python version = 3.11.0\r\n",
"System = Windows 11 (using Jupyter)\n",
"\n",
"### Who can help?\n",
"\n",
"- @hwchase17\r\n",
"- @agola11\r\n",
"- @UmerHA (I have a fix ready, will submit a PR)\n",
"\n",
"### Information\n",
"\n",
"- [ ] The official example notebooks/scripts\n",
"- [X] My own modified scripts\n",
"\n",
"### Related Components\n",
"\n",
"- [X] LLMs/Chat Models\n",
"- [ ] Embedding Models\n",
"- [X] Prompts / Prompt Templates / Prompt Selectors\n",
"- [ ] Output Parsers\n",
"- [ ] Document Loaders\n",
"- [ ] Vector Stores / Retrievers\n",
"- [ ] Memory\n",
"- [ ] Agents / Agent Executors\n",
"- [ ] Tools / Toolkits\n",
"- [ ] Chains\n",
"- [ ] Callbacks/Tracing\n",
"- [ ] Async\n",
"\n",
"### Reproduction\n",
"\n",
"```\r\n",
"import os\r\n",
"os.environ[\"OPENAI_API_KEY\"] = \"...\"\r\n",
"\r\n",
"from langchain.chains import LLMChain\r\n",
"from langchain_openai import ChatOpenAI\r\n",
"from langchain.prompts import PromptTemplate\r\n",
"from langchain.prompts.chat import ChatPromptTemplate\r\n",
"from langchain.schema import messages_from_dict\r\n",
"\r\n",
"role_strings = [\r\n",
" (\"system\", \"you are a bird expert\"), \r\n",
" (\"human\", \"which bird has a point beak?\")\r\n",
"]\r\n",
"prompt = ChatPromptTemplate.from_role_strings(role_strings)\r\n",
"chain = LLMChain(llm=ChatOpenAI(), prompt=prompt)\r\n",
"chain.run({})\r\n",
"```\n",
"\n",
"### Expected behavior\n",
"\n",
"Chain should run\n",
"{'url': 'https://github.com/langchain-ai/langchain/issues/5027', 'title': \"ChatOpenAI models don't work with prompts created via ChatPromptTemplate.from_role_strings\", 'creator': 'UmerHA', 'created_at': '2023-05-20T10:39:18Z', 'comments': 1, 'state': 'open', 'labels': [], 'assignee': None, 'milestone': None, 'locked': False, 'number': 5027, 'is_pull_request': False}\n"
]
}
],
"outputs": [],
"source": [
"print(docs[0].page_content)\n",
"print(docs[0].metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Github File Content\n",
"\n",
"For below code, loads all markdown file in rpeo `langchain-ai/langchain`"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import GithubFileLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"loader = GithubFileLoader(\n",
" repo=\"langchain-ai/langchain\", # the repo name\n",
" access_token=ACCESS_TOKEN,\n",
" github_api_url=\"https://api.github.com\",\n",
" file_filter=lambda file_path: file_path.endswith(\n",
" \".md\"\n",
" ), # load all markdowns files.\n",
")\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"example output of one of document: \n",
"\n",
"```json\n",
"documents.metadata: \n",
" {\n",
" \"path\": \"README.md\",\n",
" \"sha\": \"82f1c4ea88ecf8d2dfsfx06a700e84be4\",\n",
" \"source\": \"https://github.com/langchain-ai/langchain/blob/master/README.md\"\n",
" }\n",
"documents.content:\n",
" mock content\n",
"```"
]
}
],
"metadata": {
@@ -253,7 +219,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,88 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pebblo Safe DocumentLoader\n",
"\n",
"> [Pebblo](https://github.com/daxa-ai/pebblo) enables developers to safely load data and promote their Gen AI app to deployment without worrying about the organizations compliance and security requirements. The project identifies semantic topics and entities found in the loaded data and summarizes them on the UI or a PDF report.\n",
"\n",
"Pebblo has two components.\n",
"\n",
"1. Pebblo Safe DocumentLoader for Langchain\n",
"1. Pebblo Daemon\n",
"\n",
"This document describes how to augment your existing Langchain DocumentLoader with Pebblo Safe DocumentLoader to get deep data visibility on the types of Topics and Entities ingested into the Gen-AI Langchain application. For details on `Pebblo Daemon` see this [pebblo daemon](https://daxa-ai.github.io/pebblo-docs/daemon.html) document.\n",
"\n",
"Pebblo Safeloader enables safe data ingestion for Langchain `DocumentLoader`. This is done by wrapping the document loader call with `Pebblo Safe DocumentLoader`.\n",
"\n",
"#### How to Pebblo enable Document Loading?\n",
"\n",
"Assume a Langchain RAG application snippet using `CSVLoader` to read a CSV document for inference.\n",
"\n",
"Here is the snippet of Document loading using `CSVLoader`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders.csv_loader import CSVLoader\n",
"\n",
"loader = CSVLoader(\"data/corp_sens_data.csv\")\n",
"documents = loader.load()\n",
"print(documents)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Pebblo SafeLoader can be enabled with few lines of code change to the above snippet."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders.csv_loader import CSVLoader\n",
"from langchain_community.document_loaders import PebbloSafeLoader\n",
"\n",
"loader = PebbloSafeLoader(\n",
" CSVLoader(\"data/corp_sens_data.csv\"),\n",
" name=\"acme-corp-rag-1\", # App name (Mandatory)\n",
" owner=\"Joe Smith\", # Owner (Optional)\n",
" description=\"Support productivity RAG application\", # Description (Optional)\n",
")\n",
"documents = loader.load()\n",
"print(documents)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -8,7 +8,7 @@
"This notebook covers how to load documents from `Psychic`. See [here](/docs/integrations/providers/psychic) for more details.\n",
"\n",
"## Prerequisites\n",
"1. Follow the Quick Start section in [this document](/docs/ecosystem/integrations/psychic)\n",
"1. Follow the Quick Start section in [this document](/docs/integrations/providers/psychic)\n",
"2. Log into the [Psychic dashboard](https://dashboard.psychic.dev/) and get your secret key\n",
"3. Install the frontend react library into your web app and have a user authenticate a connection. The connection will be created using the connection id that you specify."
]

View File

@@ -13,27 +13,16 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: nest_asyncio in /Users/tasp/Code/projects/langchain/.venv/lib/python3.10/site-packages (1.5.6)\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.0.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"outputs": [],
"source": [
"%pip install --upgrade --quiet nest_asyncio"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@@ -54,11 +43,11 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sitemap_loader = SitemapLoader(web_path=\"https://langchain.readthedocs.io/sitemap.xml\")\n",
"sitemap_loader = SitemapLoader(web_path=\"https://api.python.langchain.com/sitemap.xml\")\n",
"\n",
"docs = sitemap_loader.load()"
]
@@ -90,7 +79,7 @@
{
"data": {
"text/plain": [
"Document(page_content='\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLangChain Python API Reference Documentation.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYou will be automatically redirected to the new location of this page.\\n\\n', metadata={'source': 'https://api.python.langchain.com/en/stable/', 'loc': 'https://api.python.langchain.com/en/stable/', 'lastmod': '2023-10-13T18:13:26.966937+00:00', 'changefreq': 'weekly', 'priority': '1'})"
"Document(page_content='\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLangChain Python API Reference Documentation.\\n\\n\\nYou will be automatically redirected to the new location of this page.\\n\\n', metadata={'source': 'https://api.python.langchain.com/en/stable/', 'loc': 'https://api.python.langchain.com/en/stable/', 'lastmod': '2024-02-09T01:10:49.422114+00:00', 'changefreq': 'weekly', 'priority': '1'})"
]
},
"execution_count": 6,
@@ -113,20 +102,12 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Fetching pages: 100%|##########| 1/1 [00:00<00:00, 16.39it/s]\n"
]
}
],
"outputs": [],
"source": [
"loader = SitemapLoader(\n",
" web_path=\"https://langchain.readthedocs.io/sitemap.xml\",\n",
" web_path=\" https://api.python.langchain.com/sitemap.xml\",\n",
" filter_urls=[\"https://api.python.langchain.com/en/latest\"],\n",
")\n",
"documents = loader.load()"
@@ -134,7 +115,7 @@
},
{
"cell_type": "code",
"execution_count": 28,
"execution_count": 8,
"metadata": {
"scrolled": true
},
@@ -142,10 +123,10 @@
{
"data": {
"text/plain": [
"Document(page_content='\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLangChain Python API Reference Documentation.\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYou will be automatically redirected to the new location of this page.\\n\\n', metadata={'source': 'https://api.python.langchain.com/en/latest/', 'loc': 'https://api.python.langchain.com/en/latest/', 'lastmod': '2023-10-13T18:09:58.478681+00:00', 'changefreq': 'daily', 'priority': '0.9'})"
"Document(page_content='\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nLangChain Python API Reference Documentation.\\n\\n\\nYou will be automatically redirected to the new location of this page.\\n\\n', metadata={'source': 'https://api.python.langchain.com/en/latest/', 'loc': 'https://api.python.langchain.com/en/latest/', 'lastmod': '2024-02-12T05:26:10.971077+00:00', 'changefreq': 'daily', 'priority': '0.9'})"
]
},
"execution_count": 28,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -183,7 +164,7 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -211,12 +192,12 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"loader = SitemapLoader(\n",
" \"https://langchain.readthedocs.io/sitemap.xml\",\n",
" \"https://api.python.langchain.com/sitemap.xml\",\n",
" filter_urls=[\"https://api.python.langchain.com/en/latest/\"],\n",
" parsing_function=remove_nav_and_header_elements,\n",
")"
@@ -233,17 +214,9 @@
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Fetching pages: 100%|##########| 3/3 [00:00<00:00, 12.46it/s]\n"
]
}
],
"outputs": [],
"source": [
"sitemap_loader = SitemapLoader(web_path=\"example_data/sitemap.xml\", is_local=True)\n",
"\n",

View File

@@ -9,7 +9,35 @@
"\n",
"This notebook covers how to load source code files using a special approach with language parsing: each top-level function and class in the code is loaded into separate documents. Any remaining code top-level code outside the already loaded functions and classes will be loaded into a separate document.\n",
"\n",
"This approach can potentially improve the accuracy of QA models over source code. Currently, the supported languages for code parsing are Python and JavaScript. The language used for parsing can be configured, along with the minimum number of lines required to activate the splitting based on syntax."
"This approach can potentially improve the accuracy of QA models over source code.\n",
"\n",
"The supported languages for code parsing are:\n",
"\n",
"- C (*)\n",
"- C++ (*)\n",
"- C# (*)\n",
"- COBOL\n",
"- Go (*)\n",
"- Java (*)\n",
"- JavaScript (requires package `esprima`)\n",
"- Kotlin (*)\n",
"- Lua (*)\n",
"- Perl (*)\n",
"- Python\n",
"- Ruby (*)\n",
"- Rust (*)\n",
"- Scala (*)\n",
"- TypeScript (*)\n",
"\n",
"Items marked with (*) require the packages `tree_sitter` and `tree_sitter_languages`.\n",
"It is straightforward to add support for additional languages using `tree_sitter`,\n",
"although this currently requires modifying LangChain.\n",
"\n",
"The language used for parsing can be configured, along with the minimum number of\n",
"lines required to activate the splitting based on syntax.\n",
"\n",
"If a language is not explicitly specified, `LanguageParser` will infer one from\n",
"filename extensions, if present."
]
},
{
@@ -19,7 +47,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet esprima"
"%pip install -qU esprima esprima tree_sitter tree_sitter_languages"
]
},
{
@@ -395,6 +423,33 @@
"source": [
"print(\"\\n\\n--8<--\\n\\n\".join([document.page_content for document in result]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Adding Languages using Tree-sitter Template\n",
"\n",
"Expanding language support using the Tree-Sitter template involves a few essential steps:\n",
"\n",
"1. **Creating a New Language File**:\n",
" - Begin by creating a new file in the designated directory (langchain/libs/community/langchain_community/document_loaders/parsers/language).\n",
" - Model this file based on the structure and parsing logic of existing language files like **`cpp.py`**.\n",
" - You will also need to create a file in the langchain directory (langchain/libs/langchain/langchain/document_loaders/parsers/language).\n",
"2. **Parsing Language Specifics**:\n",
" - Mimic the structure used in the **`cpp.py`** file, adapting it to suit the language you are incorporating.\n",
" - The primary alteration involves adjusting the chunk query array to suit the syntax and structure of the language you are parsing.\n",
"3. **Testing the Language Parser**:\n",
" - For thorough validation, generate a test file specific to the new language. Create **`test_language.py`** in the designated directory(langchain/libs/community/tests/unit_tests/document_loaders/parsers/language).\n",
" - Follow the example set by **`test_cpp.py`** to establish fundamental tests for the parsed elements in the new language.\n",
"4. **Integration into the Parser and Text Splitter**:\n",
" - Incorporate your new language within the **`language_parser.py`** file. Ensure to update LANGUAGE_EXTENSIONS and LANGUAGE_SEGMENTERS along with the docstring for LanguageParser to recognize and handle the added language.\n",
" - Also, confirm that your language is included in **`text_splitter.py`** in class Language for proper parsing.\n",
"\n",
"By following these steps and ensuring comprehensive testing and integration, you'll successfully extend language support using the Tree-Sitter template.\n",
"\n",
"Best of luck!"
]
}
],
"metadata": {
@@ -413,7 +468,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "497736aa",
"metadata": {},
"outputs": [],
@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "009e0036",
"metadata": {},
"outputs": [],
@@ -34,19 +34,19 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"id": "910fb6ee",
"metadata": {},
"outputs": [],
"source": [
"loader = ToMarkdownLoader.from_api_key(\n",
" url=\"https://python.langchain.com/en/latest/\", api_key=api_key\n",
"loader = ToMarkdownLoader(\n",
" url=\"https://python.langchain.com/docs/get_started/introduction\", api_key=api_key\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"id": "ac8db139",
"metadata": {},
"outputs": [],
@@ -56,7 +56,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 10,
"id": "706304e9",
"metadata": {},
"outputs": [
@@ -64,130 +64,106 @@
"name": "stdout",
"output_type": "stream",
"text": [
"## Contents\n",
"**LangChain** is a framework for developing applications powered by language models. It enables applications that:\n",
"\n",
"- [Getting Started](#getting-started)\n",
"- [Modules](#modules)\n",
"- [Use Cases](#use-cases)\n",
"- [Reference Docs](#reference-docs)\n",
"- [LangChain Ecosystem](#langchain-ecosystem)\n",
"- [Additional Resources](#additional-resources)\n",
"- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)\n",
"- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)\n",
"\n",
"## Welcome to LangChain [\\#](\\#welcome-to-langchain \"Permalink to this headline\")\n",
"This framework consists of several parts.\n",
"\n",
"**LangChain** is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model, but will also be:\n",
"- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.\n",
"- **[LangChain Templates](https://python.langchain.com/docs/templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.\n",
"- **[LangServe](https://python.langchain.com/docs/langserve)**: A library for deploying LangChain chains as a REST API.\n",
"- **[LangSmith](https://python.langchain.com/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.\n",
"\n",
"1. _Data-aware_: connect a language model to other sources of data\n",
"![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://python.langchain.com/assets/images/langchain_stack-f21828069f74484521f38199910007c1.svg)\n",
"\n",
"2. _Agentic_: allow a language model to interact with its environment\n",
"Together, these products simplify the entire application lifecycle:\n",
"\n",
"- **Develop**: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference.\n",
"- **Productionize**: Use LangSmith to inspect, test and monitor your chains, so that you can constantly improve and deploy with confidence.\n",
"- **Deploy**: Turn any chain into an API with LangServe.\n",
"\n",
"The LangChain framework is designed around these principles.\n",
"## LangChain Libraries [](\\#langchain-libraries \"Direct link to LangChain Libraries\")\n",
"\n",
"This is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see [here](https://docs.langchain.com/docs/). For the JavaScript documentation, see [here](https://js.langchain.com/docs/).\n",
"The main value props of the LangChain packages are:\n",
"\n",
"## Getting Started [\\#](\\#getting-started \"Permalink to this headline\")\n",
"1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not\n",
"2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks\n",
"\n",
"How to get started using LangChain to create an Language Model application.\n",
"Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.\n",
"\n",
"- [Quickstart Guide](https://python.langchain.com/en/latest/getting_started/getting_started.html)\n",
"The LangChain libraries themselves are made up of several different packages.\n",
"\n",
"- **`langchain-core`**: Base abstractions and LangChain Expression Language.\n",
"- **`langchain-community`**: Third party integrations.\n",
"- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.\n",
"\n",
"Concepts and terminology.\n",
"## Get started [](\\#get-started \"Direct link to Get started\")\n",
"\n",
"- [Concepts and terminology](https://python.langchain.com/en/latest/getting_started/concepts.html)\n",
"[Heres](https://python.langchain.com/docs/get_started/installation) how to install LangChain, set up your environment, and start building.\n",
"\n",
"We recommend following our [Quickstart](https://python.langchain.com/docs/get_started/quickstart) guide to familiarize yourself with the framework by building your first LangChain application.\n",
"\n",
"Tutorials created by community experts and presented on YouTube.\n",
"Read up on our [Security](https://python.langchain.com/docs/security) best practices to make sure you're developing safely with LangChain.\n",
"\n",
"- [Tutorials](https://python.langchain.com/en/latest/getting_started/tutorials.html)\n",
"note\n",
"\n",
"These docs focus on the Python LangChain library. [Head here](https://js.langchain.com) for docs on the JavaScript LangChain library.\n",
"\n",
"## Modules [\\#](\\#modules \"Permalink to this headline\")\n",
"## LangChain Expression Language (LCEL) [](\\#langchain-expression-language-lcel \"Direct link to LangChain Expression Language (LCEL)\")\n",
"\n",
"These modules are the core abstractions which we view as the building blocks of any LLM-powered application.\n",
"LCEL is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.\n",
"\n",
"For each module LangChain provides standard, extendable interfaces. LanghChain also provides external integrations and even end-to-end implementations for off-the-shelf use.\n",
"- **[Overview](https://python.langchain.com/docs/expression_language/)**: LCEL and its benefits\n",
"- **[Interface](https://python.langchain.com/docs/expression_language/interface)**: The standard interface for LCEL objects\n",
"- **[How-to](https://python.langchain.com/docs/expression_language/how_to)**: Key features of LCEL\n",
"- **[Cookbook](https://python.langchain.com/docs/expression_language/cookbook)**: Example code for accomplishing common tasks\n",
"\n",
"The docs for each module contain quickstart examples, how-to guides, reference docs, and conceptual guides.\n",
"## Modules [](\\#modules \"Direct link to Modules\")\n",
"\n",
"The modules are (from least to most complex):\n",
"LangChain provides standard, extendable interfaces and integrations for the following modules:\n",
"\n",
"- [Models](https://python.langchain.com/docs/modules/model_io/models/): Supported model types and integrations.\n",
"#### [Model I/O](https://python.langchain.com/docs/modules/model_io/) [](\\#model-io \"Direct link to model-io\")\n",
"\n",
"- [Prompts](https://python.langchain.com/en/latest/modules/prompts.html): Prompt management, optimization, and serialization.\n",
"Interface with language models\n",
"\n",
"- [Memory](https://python.langchain.com/en/latest/modules/memory.html): Memory refers to state that is persisted between calls of a chain/agent.\n",
"#### [Retrieval](https://python.langchain.com/docs/modules/data_connection/) [](\\#retrieval \"Direct link to retrieval\")\n",
"\n",
"- [Indexes](https://python.langchain.com/en/latest/modules/data_connection.html): Language models become much more powerful when combined with application-specific data - this module contains interfaces and integrations for loading, querying and updating external data.\n",
"Interface with application-specific data\n",
"\n",
"- [Chains](https://python.langchain.com/en/latest/modules/chains.html): Chains are structured sequences of calls (to an LLM or to a different utility).\n",
"#### [Agents](https://python.langchain.com/docs/modules/agents/) [](\\#agents \"Direct link to agents\")\n",
"\n",
"- [Agents](https://python.langchain.com/en/latest/modules/agents.html): An agent is a Chain in which an LLM, given a high-level directive and a set of tools, repeatedly decides an action, executes the action and observes the outcome until the high-level directive is complete.\n",
"Let models choose which tools to use given high-level directives\n",
"\n",
"- [Callbacks](https://python.langchain.com/en/latest/modules/callbacks/getting_started.html): Callbacks let you log and stream the intermediate steps of any chain, making it easy to observe, debug, and evaluate the internals of an application.\n",
"## Examples, ecosystem, and resources [](\\#examples-ecosystem-and-resources \"Direct link to Examples, ecosystem, and resources\")\n",
"\n",
"### [Use cases](https://python.langchain.com/docs/use_cases/question_answering/) [](\\#use-cases \"Direct link to use-cases\")\n",
"\n",
"## Use Cases [\\#](\\#use-cases \"Permalink to this headline\")\n",
"Walkthroughs and techniques for common end-to-end use cases, like:\n",
"\n",
"Best practices and built-in implementations for common LangChain use cases:\n",
"- [Document question answering](https://python.langchain.com/docs/use_cases/question_answering/)\n",
"- [Chatbots](https://python.langchain.com/docs/use_cases/chatbots/)\n",
"- [Analyzing structured data](https://python.langchain.com/docs/use_cases/sql/)\n",
"- and much more...\n",
"\n",
"- [Autonomous Agents](https://python.langchain.com/en/latest/use_cases/autonomous_agents.html): Autonomous agents are long-running agents that take many steps in an attempt to accomplish an objective. Examples include AutoGPT and BabyAGI.\n",
"### [Integrations](https://python.langchain.com/docs/integrations/providers/) [](\\#integrations \"Direct link to integrations\")\n",
"\n",
"- [Agent Simulations](https://python.langchain.com/en/latest/use_cases/agent_simulations.html): Putting agents in a sandbox and observing how they interact with each other and react to events can be an effective way to evaluate their long-range reasoning and planning abilities.\n",
"LangChain is part of a rich ecosystem of tools that integrate with our framework and build on top of it. Check out our growing list of [integrations](https://python.langchain.com/docs/integrations/providers/).\n",
"\n",
"- [Personal Assistants](https://python.langchain.com/en/latest/use_cases/personal_assistants.html): One of the primary LangChain use cases. Personal assistants need to take actions, remember interactions, and have knowledge about your data.\n",
"### [Guides](https://python.langchain.com/docs/guides/debugging) [](\\#guides \"Direct link to guides\")\n",
"\n",
"- [Question Answering](https://python.langchain.com/en/latest/use_cases/question_answering.html): Another common LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.\n",
"Best practices for developing with LangChain.\n",
"\n",
"- [Chatbots](https://python.langchain.com/en/latest/use_cases/chatbots.html): Language models love to chat, making this a very natural use of them.\n",
"### [API reference](https://api.python.langchain.com) [](\\#api-reference \"Direct link to api-reference\")\n",
"\n",
"- [Querying Tabular Data](https://python.langchain.com/en/latest/use_cases/tabular.html): Recommended reading if you want to use language models to query structured data (CSVs, SQL, dataframes, etc).\n",
"Head to the reference section for full documentation of all classes and methods in the LangChain and LangChain Experimental Python packages.\n",
"\n",
"- [Code Understanding](https://python.langchain.com/en/latest/use_cases/code.html): Recommended reading if you want to use language models to analyze code.\n",
"### [Developer's guide](https://python.langchain.com/docs/contributing) [](\\#developers-guide \"Direct link to developers-guide\")\n",
"\n",
"- [Interacting with APIs](https://python.langchain.com/en/latest/use_cases/apis.html): Enabling language models to interact with APIs is extremely powerful. It gives them access to up-to-date information and allows them to take actions.\n",
"Check out the developer's guide for guidelines on contributing and help getting your dev environment set up.\n",
"\n",
"- [Extraction](https://python.langchain.com/en/latest/use_cases/extraction.html): Extract structured information from text.\n",
"\n",
"- [Summarization](https://python.langchain.com/en/latest/use_cases/summarization.html): Compressing longer documents. A type of Data-Augmented Generation.\n",
"\n",
"- [Evaluation](https://python.langchain.com/en/latest/use_cases/evaluation.html): Generative models are hard to evaluate with traditional metrics. One promising approach is to use language models themselves to do the evaluation.\n",
"\n",
"\n",
"## Reference Docs [\\#](\\#reference-docs \"Permalink to this headline\")\n",
"\n",
"Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\n",
"\n",
"- [Reference Documentation](https://python.langchain.com/en/latest/reference.html)\n",
"\n",
"\n",
"## LangChain Ecosystem [\\#](\\#langchain-ecosystem \"Permalink to this headline\")\n",
"\n",
"Guides for how other companies/products can be used with LangChain.\n",
"\n",
"- [LangChain Ecosystem](https://python.langchain.com/en/latest/ecosystem.html)\n",
"\n",
"\n",
"## Additional Resources [\\#](\\#additional-resources \"Permalink to this headline\")\n",
"\n",
"Additional resources we think may be useful as you develop your application!\n",
"\n",
"- [LangChainHub](https://github.com/hwchase17/langchain-hub): The LangChainHub is a place to share and explore other prompts, chains, and agents.\n",
"\n",
"- [Gallery](https://python.langchain.com/en/latest/additional_resources/gallery.html): A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\n",
"\n",
"- [Deployments](https://python.langchain.com/en/latest/additional_resources/deployments.html): A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\n",
"\n",
"- [Tracing](https://python.langchain.com/en/latest/additional_resources/tracing.html): A guide on using tracing in LangChain to visualize the execution of chains and agents.\n",
"\n",
"- [Model Laboratory](https://python.langchain.com/en/latest/additional_resources/model_laboratory.html): Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\n",
"\n",
"- [Discord](https://discord.gg/6adMQxSpJS): Join us on our Discord to discuss all things LangChain!\n",
"\n",
"- [YouTube](https://python.langchain.com/en/latest/additional_resources/youtube.html): A collection of the LangChain tutorials and videos.\n",
"\n",
"- [Production Support](https://forms.gle/57d8AmXBYp8PP8tZA): As you move your LangChains into production, wed love to offer more comprehensive support. Please fill out this form and well set up a dedicated support Slack channel.\n"
"Head to the [Community navigator](https://python.langchain.com/docs/community) to find places to ask questions, share feedback, meet other developers, and dream about the future of LLMs.\n"
]
}
],
@@ -198,7 +174,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "5dde17e7",
"id": "7c89b313-adb6-4aa2-9cd8-952a5724a2ce",
"metadata": {},
"outputs": [],
"source": []
@@ -220,7 +196,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.6"
}
},
"nbformat": 4,

View File

@@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "2886982e",
"metadata": {},
"outputs": [],
@@ -100,6 +100,54 @@
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "b4ab0a79",
"metadata": {},
"source": [
"### Load list of files"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "092d9a0b",
"metadata": {},
"outputs": [],
"source": [
"files = [\"./example_data/whatsapp_chat.txt\", \"./example_data/layout-parser-paper.pdf\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f841c4f8",
"metadata": {},
"outputs": [],
"source": [
"loader = UnstructuredFileLoader(files)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "993c240b",
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ce4ff07",
"metadata": {},
"outputs": [],
"source": [
"docs[0].page_content[:400]"
]
},
{
"cell_type": "markdown",
"id": "7874d01d",
@@ -495,7 +543,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
"version": "3.9.0"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,486 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Vsdx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> A [visio file](https://fr.wikipedia.org/wiki/Microsoft_Visio) (with extension .vsdx) is associated with Microsoft Visio, a diagram creation software. It stores information about the structure, layout, and graphical elements of a diagram. This format facilitates the creation and sharing of visualizations in areas such as business, engineering, and computer science."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A Visio file can contain multiple pages. Some of them may serve as the background for others, and this can occur across multiple layers. This **loader** extracts the textual content from each page and its associated pages, enabling the extraction of all visible text from each page, similar to what an OCR algorithm would do."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**WARNING** : Only Visio files with the **.vsdx** extension are compatible with this loader. Files with extensions such as .vsd, ... are not compatible because they cannot be converted to compressed XML."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import VsdxLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"loader = VsdxLoader(file_path=\"./example_data/fake.vsdx\")\n",
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Display loaded documents**"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"------ Page 0 ------\n",
"Title page : Summary\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Best Caption of the worl\n",
"This is an arrow\n",
"This is Earth\n",
"This is a bounded arrow\n",
"\n",
"------ Page 1 ------\n",
"Title page : Glossary\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"\n",
"------ Page 2 ------\n",
"Title page : blanket page\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"This file is a vsdx file\n",
"First text\n",
"Second text\n",
"Third text\n",
"\n",
"------ Page 3 ------\n",
"Title page : BLABLABLA\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Another RED arrow wow\n",
"Arrow with point but red\n",
"Green line\n",
"User\n",
"Captions\n",
"Red arrow magic !\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"This is a page with something...\n",
"\n",
"WAW I have learned something !\n",
"This is a page with something...\n",
"\n",
"WAW I have learned something !\n",
"\n",
"X2\n",
"\n",
"------ Page 4 ------\n",
"Title page : What a page !!\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"Another RED arrow wow\n",
"Arrow with point but red\n",
"Green line\n",
"User\n",
"Captions\n",
"Red arrow magic !\n",
"\n",
"------ Page 5 ------\n",
"Title page : next page after previous one\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Another RED arrow wow\n",
"Arrow with point but red\n",
"Green line\n",
"User\n",
"Captions\n",
"Red arrow magic !\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor\n",
"\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0\\u00a0-\\u00a0incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in\n",
"\n",
"\n",
"voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa\n",
"*\n",
"\n",
"\n",
"qui officia deserunt mollit anim id est laborum.\n",
"\n",
"------ Page 6 ------\n",
"Title page : Connector Page\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"\n",
"------ Page 7 ------\n",
"Title page : Useful ↔ Useless page\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"Title of this document : BLABLABLA\n",
"\n",
"------ Page 8 ------\n",
"Title page : Alone page\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Black cloud\n",
"Unidirectional traffic primary path\n",
"Unidirectional traffic backup path\n",
"Encapsulation\n",
"User\n",
"Captions\n",
"Bidirectional traffic\n",
"Alone, sad\n",
"Test of another page\n",
"This is a \\\"bannier\\\"\n",
"Tests of some exotics characters :\\u00a0\\u00e3\\u00e4\\u00e5\\u0101\\u0103 \\u00fc\\u2554\\u00a0 \\u00a0\\u00bc \\u00c7 \\u25d8\\u25cb\\u2642\\u266b\\u2640\\u00ee\\u2665\n",
"This is ethernet\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"This is an empty case\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor\n",
"\\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0-\\u00a0 incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in\n",
"\n",
"\n",
" voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa \n",
"*\n",
"\n",
"\n",
"qui officia deserunt mollit anim id est laborum.\n",
"\n",
"------ Page 9 ------\n",
"Title page : BG\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Best Caption of the worl\n",
"This is an arrow\n",
"This is Earth\n",
"This is a bounded arrow\n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"\n",
"------ Page 10 ------\n",
"Title page : BG + caption1\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Another RED arrow wow\n",
"Arrow with point but red\n",
"Green line\n",
"User\n",
"Captions\n",
"Red arrow magic !\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"Useful\\u2194 Useless page\\u00a0\n",
"\n",
"Tests of some exotics characters :\\u00a0\\u00e3\\u00e4\\u00e5\\u0101\\u0103 \\u00fc\\u2554\\u00a0\\u00a0\\u00bc \\u00c7 \\u25d8\\u25cb\\u2642\\u266b\\u2640\\u00ee\\u2665\n",
"\n",
"------ Page 11 ------\n",
"Title page : BG+\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"\n",
"------ Page 12 ------\n",
"Title page : BG WITH CONTENT\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"\n",
"\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. - Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"\n",
"\n",
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\n",
"This is a page with a lot of text\n",
"\n",
"------ Page 13 ------\n",
"Title page : 2nd caption with ____________________________________________________________________ content\n",
"Source : ./example_data/fake.vsdx\n",
"\n",
"==> CONTENT <== \n",
"Created by\n",
"Created the\n",
"Modified by\n",
"Modified the\n",
"Version\n",
"Title\n",
"Florian MOREL\n",
"2024-01-14\n",
"FLORIAN Morel\n",
"Today\n",
"0.0.0.0.0.1\n",
"This is a title\n",
"Another RED arrow wow\n",
"Arrow with point but red\n",
"Green line\n",
"User\n",
"Captions\n",
"Red arrow magic !\n",
"Something white\n",
"Something Red\n",
"This a a completly useless diagramm, cool !!\n",
"\n",
"But this is for example !\n",
"This diagramm is a base of many pages in this file. But it is editable in file \\\"BG WITH CONTENT\\\"\n",
"Only connectors on this page. This is the CoNNeCtor page\n"
]
}
],
"source": [
"for i, doc in enumerate(documents):\n",
" print(f\"\\n------ Page {doc.metadata['page']} ------\")\n",
" print(f\"Title page : {doc.metadata['page_name']}\")\n",
" print(f\"Source : {doc.metadata['source']}\")\n",
" print(\"\\n==> CONTENT <== \")\n",
" print(doc.page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -27,17 +27,17 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 1,
"id": "0cb0f937-b610-42a2-b765-336eed037031",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"name": "stdout",
"output_type": "stream",
"text": [
" ········\n"
"········\n"
]
}
],
@@ -51,21 +51,20 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 2,
"id": "6fb585dd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import AlephAlpha"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 3,
"id": "f81a230d",
"metadata": {
"tags": []
@@ -76,12 +75,12 @@
"\n",
"A:\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
"prompt = PromptTemplate.from_template(template)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 4,
"id": "f0d26e48",
"metadata": {
"tags": []
@@ -98,19 +97,19 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 5,
"id": "6811d621",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
"llm_chain = prompt | llm"
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 8,
"id": "3058e63f",
"metadata": {
"tags": []
@@ -119,10 +118,10 @@
{
"data": {
"text/plain": [
"' Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems.\\n'"
"' Artificial Intelligence is the simulation of human intelligence processes by machines.\\n\\n'"
]
},
"execution_count": 10,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -130,8 +129,16 @@
"source": [
"question = \"What is AI?\"\n",
"\n",
"llm_chain.run(question)"
"llm_chain.invoke({\"question\": question})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3544eff",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -150,7 +157,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.9.12"
},
"vscode": {
"interpreter": {

View File

@@ -4,8 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# AliCloud PAI EAS\n",
"Machine Learning Platform for AI of Alibaba Cloud is a machine learning or deep learning engineering platform intended for enterprises and developers. It provides easy-to-use, cost-effective, high-performance, and easy-to-scale plug-ins that can be applied to various industry scenarios. With over 140 built-in optimization algorithms, Machine Learning Platform for AI provides whole-process AI engineering capabilities including data labeling (PAI-iTAG), model building (PAI-Designer and PAI-DSW), model training (PAI-DLC), compilation optimization, and inference deployment (PAI-EAS). PAI-EAS supports different types of hardware resources, including CPUs and GPUs, and features high throughput and low latency. It allows you to deploy large-scale complex models with a few clicks and perform elastic scale-ins and scale-outs in real time. It also provides a comprehensive O&M and monitoring system."
"# Alibaba Cloud PAI EAS\n",
"\n",
">[Machine Learning Platform for AI of Alibaba Cloud](https://www.alibabacloud.com/help/en/pai) is a machine learning or deep learning engineering platform intended for enterprises and developers. It provides easy-to-use, cost-effective, high-performance, and easy-to-scale plug-ins that can be applied to various industry scenarios. With over 140 built-in optimization algorithms, `Machine Learning Platform for AI` provides whole-process AI engineering capabilities including data labeling (`PAI-iTAG`), model building (`PAI-Designer` and `PAI-DSW`), model training (`PAI-DLC`), compilation optimization, and inference deployment (`PAI-EAS`). `PAI-EAS` supports different types of hardware resources, including CPUs and GPUs, and features high throughput and low latency. It allows you to deploy large-scale complex models with a few clicks and perform elastic scale-ins and scale-outs in real time. It also provides a comprehensive O&M and monitoring system."
]
},
{
@@ -22,14 +23,14 @@
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
"prompt = PromptTemplate.from_template(template)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One who want to use eas llms must set up eas service first. When the eas service is launched, eas_service_rul and eas_service token can be got. Users can refer to https://www.alibabacloud.com/help/en/pai/user-guide/service-deployment/ for more information,"
"One who wants to use EAS LLMs must set up EAS service first. When the EAS service is launched, `EAS_SERVICE_URL` and `EAS_SERVICE_TOKEN` can be obtained. Users can refer to https://www.alibabacloud.com/help/en/pai/user-guide/service-deployment/ for more information,"
]
},
{
@@ -50,7 +51,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -65,16 +66,16 @@
}
],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"llm_chain = prompt | llm\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"llm_chain.run(question)"
"llm_chain.invoke({\"question\": question})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -88,10 +89,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
},
"orig_nbformat": 4
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -66,7 +66,7 @@
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
"prompt = PromptTemplate.from_template(template)"
]
},
{
@@ -90,7 +90,7 @@
},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
"llm_chain = prompt | llm"
]
},
{
@@ -104,7 +104,7 @@
"source": [
"question = \"When was George Washington president?\"\n",
"\n",
"llm_chain.run(question)"
"llm_chain.invoke({\"question\": question})"
]
},
{

View File

@@ -151,7 +151,7 @@
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",

View File

@@ -6,9 +6,9 @@
"source": [
"# Azure ML\n",
"\n",
"[Azure ML](https://azure.microsoft.com/en-us/products/machine-learning/) is a platform used to build, train, and deploy machine learning models. Users can explore the types of models to deploy in the Model Catalog, which provides Azure Foundation Models and OpenAI Models. Azure Foundation Models include various open-source models and popular Hugging Face models. Users can also import models of their liking into AzureML.\n",
"[Azure ML](https://azure.microsoft.com/en-us/products/machine-learning/) is a platform used to build, train, and deploy machine learning models. Users can explore the types of models to deploy in the Model Catalog, which provides foundational and general purpose models from different providers.\n",
"\n",
"This notebook goes over how to use an LLM hosted on an `AzureML online endpoint`"
"This notebook goes over how to use an LLM hosted on an `Azure ML Online Endpoint`."
]
},
{
@@ -26,11 +26,12 @@
"source": [
"## Set up\n",
"\n",
"To use the wrapper, you must [deploy a model on AzureML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) and obtain the following parameters:\n",
"You must [deploy a model on Azure ML](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-foundation-models?view=azureml-api-2#deploying-foundation-models-to-endpoints-for-inferencing) or [to Azure AI studio](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/deploy-models-open) and obtain the following parameters:\n",
"\n",
"* `endpoint_api_key`: Required - The API key provided by the endpoint\n",
"* `endpoint_url`: Required - The REST endpoint url provided by the endpoint\n",
"* `deployment_name`: Not required - The deployment name of the model using the endpoint"
"* `endpoint_url`: The REST endpoint url provided by the endpoint.\n",
"* `endpoint_api_type`: Use `endpoint_type='realtime'` when deploying models to **Realtime endpoints** (hosted managed infrastructure). Use `endpoint_type='serverless'` when deploying models using the **Pay-as-you-go** offering (model as a service).\n",
"* `endpoint_api_key`: The API key provided by the endpoint.\n",
"* `deployment_name`: (Optional) The deployment name of the model using the endpoint."
]
},
{
@@ -46,31 +47,107 @@
"* `HFContentFormatter`: Formats request and response data for text-generation Hugging Face models\n",
"* `LLamaContentFormatter`: Formats request and response data for LLaMa2\n",
"\n",
"*Note: `OSSContentFormatter` is being deprecated and replaced with `GPT2ContentFormatter`. The logic is the same but `GPT2ContentFormatter` is a more suitable name. You can still continue to use `OSSContentFormatter` as the changes are backwards compatible.*\n",
"\n",
"Below is an example using a summarization model from Hugging Face."
"*Note: `OSSContentFormatter` is being deprecated and replaced with `GPT2ContentFormatter`. The logic is the same but `GPT2ContentFormatter` is a more suitable name. You can still continue to use `OSSContentFormatter` as the changes are backwards compatible.*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Custom Content Formatter"
"## Examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: LlaMa 2 completions with real-time endpoints"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"HaSeul won her first music show trophy with \"So What\" on Mnet's M Countdown. Loona released their second EP titled [#] (read as hash] on February 5, 2020. HaSeul did not take part in the promotion of the album because of mental health issues. On October 19, 2020, they released their third EP called [12:00]. It was their first album to enter the Billboard 200, debuting at number 112. On June 2, 2021, the group released their fourth EP called Yummy-Yummy. On August 27, it was announced that they are making their Japanese debut on September 15 under Universal Music Japan sublabel EMI Records.\n"
]
}
],
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.llms.azureml_endpoint import (\n",
" AzureMLEndpointApiType,\n",
" LlamaContentFormatter,\n",
")\n",
"\n",
"llm = AzureMLOnlineEndpoint(\n",
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/score\",\n",
" endpoint_api_type=AzureMLEndpointApiType.realtime,\n",
" endpoint_api_key=\"my-api-key\",\n",
" content_formatter=LlamaContentFormatter(),\n",
" model_kwargs={\"temperature\": 0.8, \"max_new_tokens\": 400},\n",
")\n",
"response = llm.invoke(\"Write me a song about sparkling water:\")\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Model parameters can also be indicated during invocation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = llm.invoke(\"Write me a song about sparkling water:\", temperature=0.5)\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: Chat completions with pay-as-you-go deployments (model as a service)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import HumanMessage\n",
"from langchain_community.llms.azureml_endpoint import (\n",
" AzureMLEndpointApiType,\n",
" LlamaContentFormatter,\n",
")\n",
"\n",
"llm = AzureMLOnlineEndpoint(\n",
" endpoint_url=\"https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/completions\",\n",
" endpoint_api_type=AzureMLEndpointApiType.serverless,\n",
" endpoint_api_key=\"my-api-key\",\n",
" content_formatter=LlamaContentFormatter(),\n",
" model_kwargs={\"temperature\": 0.8, \"max_new_tokens\": 400},\n",
")\n",
"response = llm.invoke(\"Write me a song about sparkling water:\")\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: Custom content formatter\n",
"\n",
"Below is an example using a summarization model from Hugging Face."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
@@ -104,6 +181,7 @@
"content_formatter = CustomFormatter()\n",
"\n",
"llm = AzureMLOnlineEndpoint(\n",
" endpoint_api_type=\"realtime\",\n",
" endpoint_api_key=os.getenv(\"BART_ENDPOINT_API_KEY\"),\n",
" endpoint_url=os.getenv(\"BART_ENDPOINT_URL\"),\n",
" model_kwargs={\"temperature\": 0.8, \"max_new_tokens\": 400},\n",
@@ -132,7 +210,7 @@
"that Loona will release the double A-side single, \"Hula Hoop / Star Seed\" on September 15, with a physical CD release on October \n",
"20.[53] In December, Chuu filed an injunction to suspend her exclusive contract with Blockberry Creative.[54][55]\n",
"\"\"\"\n",
"summarized_text = llm(large_text)\n",
"summarized_text = llm.invoke(large_text)\n",
"print(summarized_text)"
]
},
@@ -140,22 +218,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dolly with LLMChain"
"### Example: Dolly with LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Many people are willing to talk about themselves; it's others who seem to be stuck up. Try to understand others where they're coming from. Like minded people can build a tribe together.\n"
]
}
],
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
@@ -177,31 +247,22 @@
")\n",
"\n",
"chain = LLMChain(llm=llm, prompt=prompt)\n",
"print(chain.run({\"word_count\": 100, \"topic\": \"how to make friends\"}))"
"print(chain.invoke({\"word_count\": 100, \"topic\": \"how to make friends\"}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Serializing an LLM\n",
"## Serializing an LLM\n",
"You can also save and load LLM configurations"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1mAzureMLOnlineEndpoint\u001b[0m\n",
"Params: {'deployment_name': 'databricks-dolly-v2-12b-4', 'model_kwargs': {'temperature': 0.2, 'max_tokens': 150, 'top_p': 0.8, 'frequency_penalty': 0.32, 'presence_penalty': 0.072}}\n"
]
}
],
"outputs": [],
"source": [
"from langchain_community.llms.loading import load_llm\n",
"\n",
@@ -224,9 +285,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "langchain",
"language": "python",
"name": "python3"
"name": "langchain"
},
"language_info": {
"codemirror_mode": {
@@ -238,7 +299,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,97 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Baichuan LLM\n",
"Baichuan Inc. (https://www.baichuan-ai.com/) is a Chinese startup in the era of AGI, dedicated to addressing fundamental human needs: Efficiency, Health, and Happiness."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisite\n",
"An API key is required to access Baichuan LLM API. Visit https://platform.baichuan-ai.com/ to get your API key."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use Baichuan LLM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"BAICHUAN_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import BaichuanLLM\n",
"\n",
"# Load the model\n",
"llm = BaichuanLLM()\n",
"\n",
"res = llm(\"What's your name?\")\n",
"print(res)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = llm.generate(prompts=[\"你好!\"])\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for res in llm.stream(\"Who won the second world war?\"):\n",
" print(res)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import asyncio\n",
"\n",
"\n",
"async def run_aio_stream():\n",
" async for res in llm.astream(\"Write a poem about the sun.\"):\n",
" print(res)\n",
"\n",
"\n",
"asyncio.run(run_aio_stream())"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -66,7 +66,7 @@
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
"prompt = PromptTemplate.from_template(template)"
]
},
{

View File

@@ -106,6 +106,76 @@
"\n",
"conversation.predict(input=\"Hi there!\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Custom models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_llm = Bedrock(\n",
" credentials_profile_name=\"bedrock-admin\",\n",
" provider=\"cohere\",\n",
" model_id=\"<Custom model ARN>\", # ARN like 'arn:aws:bedrock:...' obtained via provisioning the custom model\n",
" model_kwargs={\"temperature\": 1},\n",
" streaming=True,\n",
" callbacks=[StreamingStdOutCallbackHandler()],\n",
")\n",
"\n",
"conversation = ConversationChain(\n",
" llm=custom_llm, verbose=True, memory=ConversationBufferMemory()\n",
")\n",
"conversation.predict(input=\"What is the recipe of mayonnaise?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Guardrails for Amazon Bedrock example \n",
"\n",
"## Guardrails for Amazon Bedrock (Preview) \n",
"[Guardrails for Amazon Bedrock](https://aws.amazon.com/bedrock/guardrails/) evaluates user inputs and model responses based on use case specific policies, and provides an additional layer of safeguards regardless of the underlying model. Guardrails can be applied across models, including Anthropic Claude, Meta Llama 2, Cohere Command, AI21 Labs Jurassic, and Amazon Titan Text, as well as fine-tuned models.\n",
"**Note**: Guardrails for Amazon Bedrock is currently in preview and not generally available. Reach out through your usual AWS Support contacts if youd like access to this feature.\n",
"In this section, we are going to set up a Bedrock language model with specific guardrails that include tracing capabilities. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import Any\n",
"\n",
"from langchain_core.callbacks import AsyncCallbackHandler\n",
"\n",
"\n",
"class BedrockAsyncCallbackHandler(AsyncCallbackHandler):\n",
" # Async callback handler that can be used to handle callbacks from langchain.\n",
"\n",
" async def on_llm_error(self, error: BaseException, **kwargs: Any) -> Any:\n",
" reason = kwargs.get(\"reason\")\n",
" if reason == \"GUARDRAIL_INTERVENED\":\n",
" print(f\"Guardrails: {kwargs}\")\n",
"\n",
"\n",
"# Guardrails for Amazon Bedrock with trace\n",
"llm = Bedrock(\n",
" credentials_profile_name=\"bedrock-admin\",\n",
" model_id=\"<Model_ID>\",\n",
" model_kwargs={},\n",
" guardrails={\"id\": \"<Guardrail_ID>\", \"version\": \"<Version>\", \"trace\": True},\n",
" callbacks=[BedrockAsyncCallbackHandler()],\n",
")"
]
}
],
"metadata": {
@@ -124,7 +194,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.7"
}
},
"nbformat": 4,

View File

@@ -92,7 +92,7 @@
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate.from_template(template)\n",
"\n",
"# System parameter in NIBittensorLLM is optional but you can set whatever you want to perform with model\n",
"llm = NIBittensorLLM(\n",

View File

@@ -101,7 +101,7 @@
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
"prompt = PromptTemplate.from_template(template)"
]
},
{

Some files were not shown because too many files have changed in this diff Show More