- **Description:** Adding an optional parameter `linearization_config`
to the `AmazonTextractPDFLoader` so the caller can define how the output
will be linearized, instead of forcing a predefined set of linearization
configs. It will still have a default configuration as this will be an
optional parameter.
- **Issue:** #17457
- **Dependencies:** The same ones that already exist for
`AmazonTextractPDFLoader`
- **Twitter handle:** [@lvieirajr19](https://twitter.com/lvieirajr19)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
*Description**: My previous
[PR](https://github.com/langchain-ai/langchain/pull/18521) was
mistakenly closed, so I am reopening this one. Context: AWS released two
Mistral models on Bedrock last Friday (March 1, 2024). This PR includes
some code adjustments to ensure their compatibility with the Bedrock
class.
---------
Co-authored-by: Anis ZAKARI <anis.zakari@hymaia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Update azuresearch vectorstore from_texts() method to
include fields argument, necessary for creating an Azure AI Search index
with custom fields.
- **Issue:** Currently index fields are fixed to default fields if Azure
Search index is created using from_texts() method
- **Dependencies:** None
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Small improvement to the openapi prompt.
The agent was not finding the server base URL (looping through all
nodes). This small change narrows the search and enables finding the url
faster.
No dependency
Twitter : @al1pra
# Proper example for AzureOpenAI usage in error message
The original error message is wrong in part of a usage example it gives.
Corrected to the right one.
Co-authored-by: Dzmitry Kankalovich <dzmitry_kankalovich@epam.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR is a successor to this PR -
https://github.com/langchain-ai/langchain/pull/17436
This PR updates the cookbook README with the notebook so that it is
available on langchain docs for discoverability.
cc: @baskaryan, @3coins
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Fix lists display issues in **Docs > Use Cases > Q&A
with RAG > Quickstart**.
In essence, this PR changes:
```markdown
Some paragraph.
- Item a.
- Item b.
```
to:
```markdown
Some paragraph.
- Item a.
- Item b.
```
There needs an extra empty line to make the list rendered properly.
FYI, the old version is displayed not properly as:
<img width="856" alt="image"
src="https://github.com/langchain-ai/langchain/assets/22856433/65202577-8ea2-47c6-b310-39bf42796fac">
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** `S3DirectoryLoader` is failing if prefix is a folder
(ex: `my_folder/`) because `S3FileLoader` will try to load that folder
and will fail. This PR skip nested directories so prefix can be set to
folder instead of `my_folder/files_prefix`.
- **Issue:**
- #11917
- #6535
- #4326
- **Dependencies:** none
- **Twitter handle:** @Falydoor
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- [ ] Title: Mongodb: MongoDB connection performance improvement.
- [ ] Message:
- **Description:** I made collection index_creation as optional. Index
Creation is one time process.
- **Issue:** MongoDBChatMessageHistory class object is attempting to
create an index during connection, causing each request to take longer
than usual. This should be optional with a parameter.
- **Dependencies:** N/A
- **Branch to be checked:** origin/mongo_index_creation
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Add embedding instruction to
HuggingFaceBgeEmbeddings, so that it can be compatible with nomic and
other models that need embedding instruction.
---------
Co-authored-by: Tao Wu <tao.wu@rwth-aachen.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
_generate() and _agenerate() both accept **kwargs, then pass them on to
_format_output; but _format_output doesn't accept **kwargs. Attempting
to pass, e.g.,
timeout=50
to _generate (or invoke()) results in a TypeError.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Add Passio Nutrition AI Food Search Tool to Community Package
### Description
We propose adding a new tool to the `community` package, enabling
integration with Passio Nutrition AI for food search functionality. This
tool will provide a simple interface for retrieving nutrition facts
through the Passio Nutrition AI API, simplifying user access to
nutrition data based on food search queries.
### Implementation Details
- **Class Structure:** Implement `NutritionAI`, extending `BaseTool`. It
includes an `_run` method that accepts a query string and, optionally, a
`CallbackManagerForToolRun`.
- **API Integration:** Use `NutritionAIAPI` for the API wrapper,
encapsulating all interactions with the Passio Nutrition AI and
providing a clean API interface.
- **Error Handling:** Implement comprehensive error handling for API
request failures.
### Expected Outcome
- **User Benefits:** Enable easy querying of nutrition facts from Passio
Nutrition AI, enhancing the utility of the `langchain_community` package
for nutrition-related projects.
- **Functionality:** Provide a straightforward method for integrating
nutrition information retrieval into users' applications.
### Dependencies
- `langchain_core` for base tooling support
- `pydantic` for data validation and settings management
- Consider `requests` or another HTTP client library if not covered by
`NutritionAIAPI`.
### Tests and Documentation
- **Unit Tests:** Include tests that mock network interactions to ensure
tool reliability without external API dependency.
- **Documentation:** Create an example notebook in
`docs/docs/integrations/tools/passio_nutrition_ai.ipynb` showing usage,
setup, and example queries.
### Contribution Guidelines Compliance
- Adhere to the project's linting and formatting standards (`make
format`, `make lint`, `make test`).
- Ensure compliance with LangChain's contribution guidelines,
particularly around dependency management and package modifications.
### Additional Notes
- Aim for the tool to be a lightweight, focused addition, not
introducing significant new dependencies or complexity.
- Potential future enhancements could include caching for common queries
to improve performance.
### Twitter Handle
- Here is our Passio AI [twitter handle](https://twitter.com/@passio_ai)
where we announce our products.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
"community: added a feature to filter documents in Mongoloader"
- **Description:** added a feature to filter documents in Mongoloader
- **Feature:** the feature #18251
- **Dependencies:** No
- **Twitter handle:** https://twitter.com/im_Kushagra
For some DBs with lots of tables, reflection of all the tables can take
very long. So this change will make the tables be reflected lazily when
get_table_info() is called and `lazy_table_reflection` is True.
Allows all chat models that implement _stream, but not _astream to still have async streaming to work.
Amongst other things this should resolve issues with streaming community model implementations through langserve since langserve is exclusively async.
**Description:** Replacing the deprecated predict() and apredict()
methods in the unit tests
**Issue:** Not applicable
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` have been
run
**Description:** Minor update to Anthropic documentation
**Issue:** Not applicable
**Dependencies:** None
**Lint and test**: `make format` and `make lint` was done
This path updates function "run" to "invoke" in llm_bash.ipynb.
Without this path, you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0
and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Fixing a minor typo in the package name.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- [ ] **PR title:** docs: Fix link to HF TEI in
text_embeddings_inference.ipynb
- [ ] **PR message:**
- **Description:** Fix the link to [Hugging Face Text Embeddings
Inference
(TEI)](https://huggingface.co/docs/text-embeddings-inference/index) in
text_embeddings_inference.ipynb
- **Issue:** Fix#18576
Make `ElasticsearchRetriever` available as top-level import.
The `langchain` package depends on `langchain-community` so we do not
need to depend on it explicitly.
## Description
- Add [Friendli](https://friendli.ai/) integration for `Friendli` LLM
and `ChatFriendli` chat model.
- Unit tests and integration tests corresponding to this change are
added.
- Documentations corresponding to this change are added.
## Dependencies
- Optional dependency
[`friendli-client`](https://pypi.org/project/friendli-client/) package
is added only for those who use `Frienldi` or `ChatFriendli` model.
## Twitter handle
- https://twitter.com/friendliai
This pull request introduces initial support for the TiDB vector store.
The current version is basic, laying the foundation for the vector store
integration. While this implementation provides the essential features,
we plan to expand and improve the TiDB vector store support with
additional enhancements in future updates.
Upcoming Enhancements:
* Support for Vector Index Creation: To enhance the efficiency and
performance of the vector store.
* Support for max marginal relevance search.
* Customized Table Structure Support: Recognizing the need for
flexibility, we plan for more tailored and efficient data store
solutions.
Simple use case exmaple
```python
from typing import List, Tuple
from langchain.docstore.document import Document
from langchain_community.vectorstores import TiDBVectorStore
from langchain_openai import OpenAIEmbeddings
db = TiDBVectorStore.from_texts(
embedding=embeddings,
texts=['Andrew like eating oranges', 'Alexandra is from England', 'Ketanji Brown Jackson is a judge'],
table_name="tidb_vector_langchain",
connection_string=tidb_connection_url,
distance_strategy="cosine",
)
query = "Can you tell me about Alexandra?"
docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
```
## **Description:**
MongoDB integration tests link to a provided Atlas Cluster. We have very
stringent permissions set against the cluster provided. In order to make
it easier to track and isolate the collections each test gets run
against, we've updated the collection names to map the test file name.
i.e. `langchain_{filename}` => `langchain_test_vectorstores`
Fixes integration test results

## **Dependencies:**
Provided MONGODB_ATLAS_URI
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
cc: @shaneharvey, @blink1073 , @NoahStapp , @caseyclements
- **Description:** Chroma use uuid4 instead of uuid1 as random ids. Use
uuid1 may leak mac address, changing to uuid4 will not cause other
effects.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
Fixes#18513.
## Description
This PR attempts to fix the support for Anthropic Claude v3 models in
BedrockChat LLM. The changes here has updated the payload to use the
`messages` format instead of the formatted text prompt for all models;
`messages` API is backwards compatible with all models in Anthropic, so
this should not break the experience for any models.
## Notes
The PR in the current form does not support the v3 models for the
non-chat Bedrock LLM. This means, that with these changes, users won't
be able to able to use the v3 models with the Bedrock LLM. I can open a
separate PR to tackle this use-case, the intent here was to get this out
quickly, so users can start using and test the chat LLM. The Bedrock LLM
classes have also grown complex with a lot of conditions to support
various providers and models, and is ripe for a refactor to make future
changes more palatable. This refactor is likely to take longer, and
requires more thorough testing from the community. Credit to PRs
[18579](https://github.com/langchain-ai/langchain/pull/18579) and
[18548](https://github.com/langchain-ai/langchain/pull/18548) for some
of the code here.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
This integrates Infinispan as a vectorstore.
Infinispan is an open-source key-value data grid, it can work as single
node as well as distributed.
Vector search is supported since release 15.x
For more: [Infinispan Home](https://infinispan.org)
Integration tests are provided as well as a demo notebook
Thank you for contributing to LangChain!
- [x] **PR title**: "templates: rag-multi-modal typo, replace serch with
search "
- **Description:** Two little typos in multi modal templates (replace
serch string with search)
Signed-off-by: José Luis Di Biase <josx@interorganic.com.ar>
ValidationError: 2 validation errors for DocArrayDoc
text
Field required [type=missing, input_value={'embedding': [-0.0191128...9, 0.01005221541175212]}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.5/v/missing
metadata
Field required [type=missing, input_value={'embedding': [-0.0191128...9, 0.01005221541175212]}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.5/v/missing
```
In the `_get_doc_cls` method, the `DocArrayDoc` class is defined as
follows:
```python
class DocArrayDoc(BaseDoc):
text: Optional[str]
embedding: Optional[NdArray] = Field(**embeddings_params)
metadata: Optional[dict]
```
This is a PR that adds a dangerous load parameter to force users to opt in to use pickle.
This is a PR that's meant to raise user awareness that the pickling module is involved.
This is a patch for `CVE-2024-2057`:
https://www.cve.org/CVERecord?id=CVE-2024-2057
This affects users that:
* Use the `TFIDFRetriever`
* Attempt to de-serialize it from an untrusted source that contains a
malicious payload
**Description:** Update to the streaming tutorial notebook in the LCEL
documentation
**Issue:** Fixed an import and (minor) changes in documentation language
**Dependencies:** None
- **Description:** Databricks SerDe uses cloudpickle instead of pickle
when serializing a user-defined function transform_input_fn since pickle
does not support functions defined in `__main__`, and cloudpickle
supports this.
- **Dependencies:** cloudpickle>=2.0.0
Added a unit test.
- **Description:** Fixed some typos and copy errors in the Beta
Structured Output docs
- **Issue:** N/A
- **Dependencies:** Docs only
- **Twitter handle:** @psvann
Co-authored-by: P.S. Vann <psvann@yahoo.com>
Description:
This pull request addresses two key improvements to the langchain
repository:
**Fix for Crash in Flight Search Interface**:
Previously, the code would crash when encountering a failure scenario in
the flight ticket search interface. This PR resolves this issue by
implementing a fix to handle such scenarios gracefully. Now, the code
handles failures in the flight search interface without crashing,
ensuring smoother operation.
**Documentation Update for Amadeus Toolkit**:
Prior to this update, examples provided in the documentation for the
Amadeus Toolkit were unable to run correctly due to outdated
information. This PR includes an update to the documentation, ensuring
that all examples can now be executed successfully. With this update,
users can effectively utilize the Amadeus Toolkit with accurate and
functioning examples.
These changes aim to enhance the reliability and usability of the
langchain repository by addressing issues related to error handling and
ensuring that documentation remains up-to-date and actionable.
Issue: https://github.com/langchain-ai/langchain/issues/17375
Twitter Handle: SingletonYxx
### Description
Changed the value specified for `content_key` in JSONLoader from a
single key to a value based on jq schema.
I created [similar
PR](https://github.com/langchain-ai/langchain/pull/11255) before, but it
has several conflicts because of the architectural change associated
stable version release, so I re-create this PR to fit new architecture.
### Why
For json data like the following, specify `.data[].attributes.message`
for page_content and `.data[].attributes.id` or
`.data[].attributes.attributes. tags`, etc., the `content_key` must also
parse the json structure.
<details>
<summary>sample json data</summary>
```json
{
"data": [
{
"attributes": {
"message": "message1",
"tags": [
"tag1"
]
},
"id": "1"
},
{
"attributes": {
"message": "message2",
"tags": [
"tag2"
]
},
"id": "2"
}
]
}
```
</details>
<details>
<summary>sample code</summary>
```python
def metadata_func(record: dict, metadata: dict) -> dict:
metadata["source"] = None
metadata["id"] = record.get("id")
metadata["tags"] = record["attributes"].get("tags")
return metadata
sample_file = "sample1.json"
loader = JSONLoader(
file_path=sample_file,
jq_schema=".data[]",
content_key=".attributes.message", ## content_key is parsable into jq schema
is_content_key_jq_parsable=True, ## this is added parameter
metadata_func=metadata_func
)
data = loader.load()
data
```
</details>
### Dependencies
none
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
Neo4j tools use particular node labels and relationship types to store
metadata, but are irrelevant for text2cypher or graph generation, so we
want to ignore them in the schema representation.
This patch updates function "run" to "invoke" in smart_llm.ipynb.
Without this patch, you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Deprecates the old langchain-hub repository. Does *not* deprecate the
new https://smith.langchain.com/hub
@PinkDraconian has correctly raised that in the event someone is loading
unsanitized user input into the `try_load_from_hub` function, they have
the ability to load files from other locations in github than the
hwchase17/langchain-hub repository.
This PR adds some more path checking to that function and deprecates the
functionality in favor of the hub built into LangSmith.
**Description:**
modified the user_name to username to conform with the expected inputs
to TelegramChatApiLoader
**Issue:**
Current code fails in langchain-community 0.0.24
<loader = TelegramChatApiLoader(
chat_entity="<CHAT_URL>", # recommended to use Entity here
api_hash="<API HASH >",
api_id="<API_ID>",
user_name="", # needed only for caching the session.
)>
## Description
Adding in Unit Test variation for `MongoDBChatMessageHistory` package
Follow-up to #18590
- [x] **Add tests and docs**: Unit test is what's being added
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
## **Description**
Migrate the `MongoDBChatMessageHistory` to the managed
`langchain-mongodb` partner-package
## **Dependencies**
None
## **Twitter handle**
@mongodb
## **tests and docs**
- [x] Migrate existing integration test
- [x ]~ Convert existing integration test to a unit test~ Creation is
out of scope for this ticket
- [x ] ~Considering delaying work until #17470 merges to leverage the
`MockCollection` object. ~
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: deprecate vectorstores.MatchingEngine"
- [ ] **PR message**:
- **Description:** announced a deprecation since this integration has
been moved to langchain_google_vertexai
**Description:** Update docstrings of ChatAnthropic class
**Issue:** Change to ChatAnthropic from ChatAnthropicMessages
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` passed
- **Description:**
This PR fixes some issues in the Jupyter notebook for the VectorStore
"SAP HANA Cloud Vector Engine":
* Slight textual adaptations
* Fix of wrong column name VEC_META (was: VEC_METADATA)
- **Issue:** N/A
- **Dependencies:** no new dependecies added
- **Twitter handle:** @sapopensource
path to notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
Currently llm_checker.ipynb uses a function "run".
Update to "invoke" to avoid following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0
and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
This patch updates function "run" to "invoke".
Without this patch you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
## PR title
Docs: Updated callbacks/index.mdx adding example on runnable methods
## PR message
- **Description:** Updated callbacks/index.mdx adding an example on how
to pass callbacks to the runnable methods (invoke, batch, ...)
- **Issue:** #16379
- **Dependencies:** None
- **Description:** finishes adding the you.com functionality including:
- add async functions to utility and retriever
- add the You.com Tool
- add async testing for utility, retriever, and tool
- add a tool integration notebook page
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** @scottnath
- **Description:** add tools_renderer for various non-openai agents,
make tools can be render in different ways for your LLM.
- **Issue:** N/A
- **Dependencies:** N/A
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description:
This pull request introduces several enhancements for Azure Cosmos
Vector DB, primarily focused on improving caching and search
capabilities using Azure Cosmos MongoDB vCore Vector DB. Here's a
summary of the changes:
- **AzureCosmosDBSemanticCache**: Added a new cache implementation
called AzureCosmosDBSemanticCache, which utilizes Azure Cosmos MongoDB
vCore Vector DB for efficient caching of semantic data. Added
comprehensive test cases for AzureCosmosDBSemanticCache to ensure its
correctness and robustness. These tests cover various scenarios and edge
cases to validate the cache's behavior.
- **HNSW Vector Search**: Added HNSW vector search functionality in the
CosmosDB Vector Search module. This enhancement enables more efficient
and accurate vector searches by utilizing the HNSW (Hierarchical
Navigable Small World) algorithm. Added corresponding test cases to
validate the HNSW vector search functionality in both
AzureCosmosDBSemanticCache and AzureCosmosDBVectorSearch. These tests
ensure the correctness and performance of the HNSW search algorithm.
- **LLM Caching Notebook** - The notebook now includes a comprehensive
example showcasing the usage of the AzureCosmosDBSemanticCache. This
example highlights how the cache can be employed to efficiently store
and retrieve semantic data. Additionally, the example provides default
values for all parameters used within the AzureCosmosDBSemanticCache,
ensuring clarity and ease of understanding for users who are new to the
cache implementation.
@hwchase17,@baskaryan, @eyurtsev,
**Description:** Update to the pathspec for 'git grep' in lint check in
the Makefile
**Issue:** The pathspec {docs/docs,templates,cookbook} is not handled
correctly leading to the error during 'make lint' -
"fatal: ambiguous argument '{docs/docs,templates,cookbook}': unknown
revision or path not in the working tree."
See changes made in https://github.com/langchain-ai/langchain/pull/18058
Co-authored-by: Erick Friis <erick@langchain.dev>
### Description
Fixed a small bug in chroma.py add_images(), previously whenever we are
not passing metadata the documents is containing the base64 of the uris
passed, but when we are passing the metadata the documents is containing
normal string uris which should not be the case.
### Issue
In add_images() method when we are calling upsert() we have to use
"b64_texts" instead of normal string "uris".
### Twitter handle
https://twitter.com/whitepegasus01
- [X] Gemini Agent Executor imported `agent.py` has Gemini agent
executor which was not utilised in current template of gemini function
agent 🧑💻 instead openai_function_agent has been used
@sbusso @jarib please someone review it
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Remove the assert statement on the `count_documents`
in setup_class. It should just delete if there are documents present
- **Issue:** the issue # Crashes on class setup
- **Dependencies:** None
- **Twitter handle:** @mongodb
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. N/A
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Jib <jib@byblack.us>
Current implementation doesn't have an indexed property that would
optimize the import. I have added a `baseEntityLabel` parameter that
allows you to add a secondary node label, which has an indexed id
`property`. By default, the behaviour is identical to previous version.
Since multi-labeled nodes are terrible for text2cypher, I removed the
secondary label from schema representation object and string, which is
used in text2cypher.
**Description:**
(a) Update to the module import path to reflect the splitting up of
langchain into separate packages
(b) Update to the documentation to include the new calling method
(invoke)
This PR makes `cohere_api_key` in `llms/cohere` a SecretStr, so that the
API Key is not leaked when `Cohere.cohere_api_key` is represented as a
string.
---------
Signed-off-by: Arun <arun@arun.blog>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
The URL of the data to index, specified to `WebBaseLoader` to import is
incorrect, causing the `langsmith_search` retriever to return a `404:
NOT_FOUND`.
Incorrect URL: https://docs.smith.langchain.com/overview
Correct URL: https://docs.smith.langchain.com
**Issue:**
This commit corrects the URL and prevents the LangServe Playground from
returning an error from its inability to use the retriever when
inquiring, "how can langsmith help with testing?".
**Dependencies:**
None.
**Twitter Handle:**
@ryanmeinzer
**Description:** Fix `metadata_extractor` type for `RecursiveUrlLoader`,
the default `_metadata_extractor` returns `dict` instead of `str`.
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
Signed-off-by: Hemslo Wang <hemslo.wang@gmail.com>
- **Description:** Removing this line
```python
response = index.query(query, response_mode="no_text", **self.query_kwargs)
```
to
```python
response = index.query(query, **self.query_kwargs)
```
Since llama index query does not support response_mode anymore : ``` |
TypeError: BaseQueryEngine.query() got an unexpected keyword argument
'response_mode'````
- **Twitter handle:** @maximeperrin_
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
- [ ] **PR title**: "cookbook: using Gemma on LangChain"
- [ ] **PR message**:
- **Description:** added a tutorial how to use Gemma with LangChain
(from VertexAI or locally from Kaggle or HF)
- **Dependencies:** langchain-google-vertexai==0.0.7
- **Twitter handle:** lkuligin
In this commit we update the documentation for Google El Carro for Oracle Workloads. We amend the documentation in the Google Providers page to use the correct name which is El Carro for Oracle Workloads. We also add changes to the document_loaders and memory pages to reflect changes we made in our repo.
If the document loader recieves Pathlib path instead of str, it reads
the file correctly, but the problem begins when the document is added to
Deeplake.
This problem arises from casting the path to str in the metadata.
```python
deeplake = True
fname = Path('./lorem_ipsum.txt')
loader = TextLoader(fname, encoding="utf-8")
docs = loader.load_and_split()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks= text_splitter.split_documents(docs)
if deeplake:
db = DeepLake(dataset_path=ds_path, embedding=embeddings, token=activeloop_token)
db.add_documents(chunks)
else:
db = Chroma.from_documents(docs, embeddings)
```
So using this snippet of code the error message for deeplake looks like
this:
```
[part of error message omitted]
Traceback (most recent call last):
File "/home/mwm/repositories/sources/fixing_langchain/main.py", line 53, in <module>
db.add_documents(chunks)
File "/home/mwm/repositories/sources/langchain/libs/core/langchain_core/vectorstores.py", line 139, in add_documents
return self.add_texts(texts, metadatas, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/deeplake.py", line 258, in add_texts
return self.vectorstore.add(
^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/deeplake_vectorstore.py", line 226, in add
return self.dataset_handler.add(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/dataset_handlers/client_side_dataset_handler.py", line 139, in add
dataset_utils.extend_or_ingest_dataset(
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/vector_search/dataset/dataset.py", line 544, in extend_or_ingest_dataset
extend(
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/vector_search/dataset/dataset.py", line 505, in extend
dataset.extend(batched_processed_tensors, progressbar=False)
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/dataset/dataset.py", line 3247, in extend
raise SampleExtendError(str(e)) from e.__cause__
deeplake.util.exceptions.SampleExtendError: Failed to append a sample to the tensor 'metadata'. See more details in the traceback. If you wish to skip the samples that cause errors, please specify `ignore_errors=True`.
```
Which is does not explain the error well enough.
The same error for chroma looks like this
```
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/mwm/repositories/sources/fixing_langchain/main.py", line 56, in <module>
db = Chroma.from_documents(docs, embeddings)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/chroma.py", line 778, in from_documents
return cls.from_texts(
^^^^^^^^^^^^^^^
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/chroma.py", line 736, in from_texts
chroma_collection.add_texts(
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/chroma.py", line 309, in add_texts
raise ValueError(e.args[0] + "\n\n" + msg)
ValueError: Expected metadata value to be a str, int, float or bool, got lorem_ipsum.txt which is a <class 'pathlib.PosixPath'>
Try filtering complex metadata from the document using langchain_community.vectorstores.utils.filter_complex_metadata.
```
Which is way more user friendly, so I just added information about
possible mismatch of the type in the error message, the same way it is
covered in chroma
https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/vectorstores/chroma.py#L224
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description**:
[`bigdl-llm`](https://github.com/intel-analytics/BigDL) is a library for
running LLM on Intel XPU (from Laptop to GPU to Cloud) using
INT4/FP4/INT8/FP8 with very low latency (for any PyTorch model). This PR
adds bigdl-llm integrations to langchain.
- **Issue**: NA
- **Dependencies**: `bigdl-llm` library
- **Contribution maintainer**: @shane-huang
Examples added:
- docs/docs/integrations/llms/bigdl.ipynb
Nvidia provider page is missing a Triton Inference Server package
reference.
Changes:
- added the Triton Inference Server reference
- copied the example notebook from the package into the doc files.
- added the Triton Inference Server description and links, the link to
the above example notebook
- formatted page to the consistent format
NOTE:
It seems that the [example
notebook](https://github.com/langchain-ai/langchain/blob/master/libs/partners/nvidia-trt/docs/llms.ipynb)
was originally created in wrong place. It should be in the LangChain
docs
[here](https://github.com/langchain-ai/langchain/tree/master/docs/docs/integrations/llms).
So, I've created a copy of this example. The original example is still
in the nvidia-trt package.
Description-
- Changed the GitHub endpoint as existing was not working and giving 404
not found error
- Also the existing function was failing if file_filter is not passed as
the tree api return all paths including directory as well, and when
get_file_content was iterating over these path, the function was failing
for directory as the api was returning list of files inside the
directory, so added a condition to ignore the paths if it a directory
- Fixes this issue -
https://github.com/langchain-ai/langchain/issues/17453
Co-authored-by: Radhika Bansal <Radhika.Bansal@veritas.com>
## Description
Updates the `langchain_community.embeddings.fastembed` provider as per
the recent updates to [`FastEmbed`](https://github.com/qdrant/fastembed)
library.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
This PR migrates the existing MongoDBAtlasVectorSearch abstraction from
the `langchain_community` section to the partners package section of the
codebase.
- [x] Run the partner package script as advised in the partner-packages
documentation.
- [x] Add Unit Tests
- [x] Migrate Integration Tests
- [x] Refactor `MongoDBAtlasVectorStore` (autogenerated) to
`MongoDBAtlasVectorSearch`
- [x] ~Remove~ deprecate the old `langchain_community` VectorStore
references.
## Additional Callouts
- Implemented the `delete` method
- Included any missing async function implementations
- `amax_marginal_relevance_search_by_vector`
- `adelete`
- Added new Unit Tests that test for functionality of
`MongoDBVectorSearch` methods
- Removed [`del
res[self._embedding_key]`](e0c81e1cb0/libs/community/langchain_community/vectorstores/mongodb_atlas.py (L218))
in `_similarity_search_with_score` function as it would make the
`maximal_marginal_relevance` function fail otherwise. The `Document`
needs to store the embedding key in metadata to work.
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR message
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. Existing tests supplied in docs/docs do not change. Updated
docstrings for new functions like `delete`
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory. (This already exists)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Steven Silvester <steven.silvester@ieee.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
## PR title
partners: changed the README file for the Fireworks integration in the
libs/partners/fireworks folder
## PR message
Description: Changed the README file of partners/fireworks following the
docs on https://python.langchain.com/docs/integrations/llms/Fireworks
The README includes:
- Brief description
- Installation
- Setting-up instructions (API key, model id, ...)
- Basic usage
Issue: https://github.com/langchain-ai/langchain/issues/17545
Dependencies: None
Twitter handle: None
- **Description:** The current embedchain implementation seems to handle
document metadata differently than done in the current implementation of
langchain and a KeyError is thrown. I would love for someone else to
test this...
---------
Co-authored-by: KKUGLER <kai.kugler@mercedes-benz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Sometimes, you want to use various parameters in the retrieval query of
Neo4j Vector to personalize/customize results. Before, when there were
only predefined chains, it didn't really make sense. Now that it's all
about custom chains and LCEL, it is worth adding since users can inject
any params they wish at query time. Isn't prone to SQL injection-type
attacks since we use parameters and not concatenating strings.
**Description:** Add facility to pass the optional output parser to
customize the parsing logic
---------
Co-authored-by: hasan <hasan@m2sys.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR adds links to some more free resources for people to get
acquainted with Langhchain without having to configure their system.
<!-- If no one reviews your PR within a few days, please @-mention one
of baskaryan, efriis, eyurtsev, hwchase17. -->
Co-authored-by: Filip Schouwenaars <filipsch@users.noreply.github.com>
**Description:**
In this PR, I am adding a `PolygonFinancials` tool, which can be used to
get financials data for a given ticker. The financials data is the
fundamental data that is found in income statements, balance sheets, and
cash flow statements of public US companies.
**Twitter**:
[@virattt](https://twitter.com/virattt)
Several URL-s were broken (in the yesterday PR). Like
[Integrations/platforms/google/Document
Loaders](https://python.langchain.com/docs/integrations/platforms/google#document-loaders)
page, Example link to "Document Loaders / Cloud SQL for PostgreSQL" and
most of the new example links in the Document Loaders, Vectorstores,
Memory sections.
- fixed URL-s (manually verified all example links)
- sorted sections in page to follow the "integrations/components" menu
item order.
- fixed several page titles to fix Navbar item order
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Update to the list of partner packages in the list of
providers
**Issue:** Google & Nvidia had two entries each, both pointing to the
same page
**Dependencies:** None
**Description**
This PR sets the "caller identity" of the Astra DB clients used by the
integration plugins (`AstraDBChatMessageHistory`, `AstraDBStore`,
`AstraDBByteStore` and, pending #17767 , `AstraDBVectorStore`). In this
way, the requests to the Astra DB Data API coming from within LangChain
are identified as such (the purpose is anonymous usage stats to best
improve the Astra DB service).
- **Description:** A generic document loader adapter for SQLAlchemy on
top of LangChain's `SQLDatabaseLoader`.
- **Needed by:** https://github.com/crate-workbench/langchain/pull/1
- **Depends on:** GH-16655
- **Addressed to:** @baskaryan, @cbornet, @eyurtsev
Hi from CrateDB again,
in the same spirit like GH-16243 and GH-16244, this patch breaks out
another commit from https://github.com/crate-workbench/langchain/pull/1,
in order to reduce the size of this patch before submitting it, and to
separate concerns.
To accompany the SQLAlchemy adapter implementation, the patch includes
integration tests for both SQLite and PostgreSQL. Let me know if
corresponding utility resources should be added at different spots.
With kind regards,
Andreas.
### Software Tests
```console
docker compose --file libs/community/tests/integration_tests/document_loaders/docker-compose/postgresql.yml up
```
```console
cd libs/community
pip install psycopg2-binary
pytest -vvv tests/integration_tests -k sqldatabase
```
```
14 passed
```

---------
Co-authored-by: Andreas Motl <andreas.motl@crate.io>
some mails from flipkart , amazon are encoded with other plain text
format so to handle UnicodeDecode error , added exception and latin
decoder
Thank you for contributing to LangChain!
@hwchase17
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
## PR title
langchain_nvidia_ai_endpoints[patch]: Invoke callback prior to yielding
## PR message
**Description:** Invoke callback prior to yielding token in _stream and
_astream methods for nvidia_ai_endpoints.
**Issue:** https://github.com/langchain-ai/langchain/issues/16913
**Dependencies:** None
- **Description:** Add possibility to pass ModelInference or Model
object to WatsonxLLM class
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
### Description
This PR moves the Elasticsearch classes to a partners package.
Note that we will not move (and later remove) `ElasticKnnSearch`. It
were previously deprecated.
`ElasticVectorSearch` is going to stay in the community package since it
is used quite a lot still.
Also note that I left the `ElasticsearchTranslator` for self query
untouched because it resides in main `langchain` package.
### Dependencies
There will be another PR that updates the notebooks (potentially pulling
them into the partners package) and templates and removes the classes
from the community package, see
https://github.com/langchain-ai/langchain/pull/17468
#### Open question
How to make the transition smooth for users? Do we move the import
aliases and require people to install `langchain-elasticsearch`? Or do
we remove the import aliases from the `langchain` package all together?
What has worked well for other partner packages?
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**
Adding different threshold types to the semantic chunker. I’ve had much
better and predictable performance when using standard deviations
instead of percentiles.

For all the documents I’ve tried, the distribution of distances look
similar to the above: positively skewed normal distribution. All skews
I’ve seen are less than 1 so that explains why standard deviations
perform well, but I’ve included IQR if anyone wants something more
robust.
Also, using the percentile method backwards, you can declare the number
of clusters and use semantic chunking to get an ‘optimal’ splitting.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** By default it expects a list but that's not the case
in corner scenarios when there is no document ingested(use case:
Bootstrap application).
\
Hence added as check, if the instance is panda Dataframe instead of list
then it will procced with return immediately.
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** jaskiratsingh1
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
## Description & Issue
While following the official doc to use clickhouse as a vectorstore, I
found only the default `annoy` index is properly supported. But I want
to try another engine `usearch` for `annoy` is not properly supported on
ARM platforms.
Here is the settings I prefer:
``` python
settings = ClickhouseSettings(
table="wiki_Ethereum",
index_type="usearch", # annoy by default
index_param=[],
)
```
The above settings do not work for the command `set
allow_experimental_annoy_index=1` is hard-coded.
This PR will make sure the experimental feature follow the `index_type`
which is also consistent with Clickhouse's naming conventions.
**Description:** Update the example fiddler notebook to use community
path, instead of langchain.callback
**Dependencies:** None
**Twitter handle:** @bhalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
h/t @hinthornw
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Avoids deprecation warning that triggered at import time, e.g. with
`python -c 'import langchain.smith'`
/opt/venv/lib/python3.12/site-packages/langchain/callbacks/__init__.py:37:
LangChainDeprecationWarning: Importing this callback from langchain is
deprecated. Importing it from langchain will no longer be supported as
of langchain==0.2.0. Please import from langchain-community instead:
`from langchain_community.callbacks import base`.
To install langchain-community run `pip install -U langchain-community`.
I tried to configure MongoDBChatMessageHistory using the code from the
original documentation to store messages based on the passed session_id
in MongoDB. However, this configuration did not take effect, and the
session id in the database remained as 'test_session'. To resolve this
issue, I found that when configuring MongoDBChatMessageHistory, it is
necessary to set session_id=session_id instead of
session_id=test_session.
Issue: DOC: Ineffective Configuration of MongoDBChatMessageHistory for
Custom session_id Storage
previous code:
```python
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: MongoDBChatMessageHistory(
session_id="test_session",
connection_string="mongodb://root:Y181491117cLj@123.56.224.232:27017",
database_name="my_db",
collection_name="chat_histories",
),
input_messages_key="question",
history_messages_key="history",
)
config = {"configurable": {"session_id": "mmm"}}
chain_with_history.invoke({"question": "Hi! I'm bob"}, config)
```

Modified code:
```python
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: MongoDBChatMessageHistory(
session_id=session_id, # here is my modify code
connection_string="mongodb://root:Y181491117cLj@123.56.224.232:27017",
database_name="my_db",
collection_name="chat_histories",
),
input_messages_key="question",
history_messages_key="history",
)
config = {"configurable": {"session_id": "mmm"}}
chain_with_history.invoke({"question": "Hi! I'm bob"}, config)
```
Effect after modification (it works):

These packages have moved to
https://github.com/langchain-ai/langchain-google
Left tombstone readmes incase anyone ends up at the "Source Code" link
from old pypi releases. Can keep these around for a few months.
- **Description:** Introduce a new parameter `graph_kwargs` to
`RdfGraph` - parameters used to initialize the `rdflib.Graph` if
`query_endpoint` is set. Also, do not set
`rdflib.graph.DATASET_DEFAULT_GRAPH_ID` as default value for the
`rdflib.Graph` `identifier` if `query_endpoint` is set.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
- **Description:** I encountered this error when I tried to use
LLMChainFilter. Even if the message slightly differs, like `Not relevant
(NO)` this results in an error. It has been reported already here:
https://github.com/langchain-ai/langchain/issues/. This change hopefully
makes it more robust.
- **Issue:** #11408
- **Dependencies:** No
- **Twitter handle:** dokatox
**Description:** Update the azure search notebook to have more
descriptive comments, and an option to choose between OpenAI and
AzureOpenAI Embeddings
---------
Co-authored-by: Matt Gotteiner <[email protected]>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Llama Guard is deprecated from Anyscale public
endpoint.
**Issue:** Change the default model. and remove the limitation of only
use Llama Guard with Anyscale LLMs
Anyscale LLM can also works with all other Chat model hosted on
Anyscale.
Also added `async_client` for Anyscale LLM
**Description:** Callback handler to integrate fiddler with langchain.
This PR adds the following -
1. `FiddlerCallbackHandler` implementation into langchain/community
2. Example notebook `fiddler.ipynb` for usage documentation
[Internal Tracker : FDL-14305]
**Issue:**
NA
**Dependencies:**
- Installation of langchain-community is unaffected.
- Usage of FiddlerCallbackHandler requires installation of latest
fiddler-client (2.5+)
**Twitter handle:** @fiddlerlabs @behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
- **Description:** Fixing outdated imports after v0.10 llama index
update and updating metadata and source text access
- **Issue:** #17860
- **Twitter handle:** @maximeperrin_
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
- **Description:**
- Add DocumentManager class, which is a nosql record manager.
- In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, DocumentManager inherits
RecordManager.
- Also I added the MongoDB implementation of Document Manager too.
- **Dependencies:** pymongo, motor
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Add DocumentManager class, which is a no sql record
manager. To use index method and aindex method in indexes._api.py,
Document Manager inherits RecordManager.Add the MongoDB implementation
of Document Manager.
- **Dependencies:** pymongo, motor
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR updates RunnableWithMessageHistory to use add_messages which
will save on round-trips for any chat
history abstractions that implement the optimization. If the
optimization isn't
implemented, add_messages automatically invokes add_message serially.
- make schema Optional with default val None, since in json_mode you
don't need it if not parsing to pydantic
- change return_type -> include_raw
- expand docstring examples
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
After upgrading langchain-community to 0.0.22, it's not possible to use
openai from the community package with streaming=True
```
File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 434, in _generate
return generate_from_stream(stream_iter)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 65, in generate_from_stream
for chunk in stream:
File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 418, in _stream
run_manager.on_llm_new_token(chunk.text, chunk=cg_chunk)
^^^^^^^^^^
AttributeError: 'AIMessageChunk' object has no attribute 'text'
```
Fix regression of https://github.com/langchain-ai/langchain/pull/17907
**Twitter handle:** @nicoloboschi
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **Description:** fix SparkLLM error
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- **Description:** Added the `return_sparql_query` feature to the
`GraphSparqlQAChain` class, allowing users to get the formatted SPARQL
query along with the chain's result.
- **Issue:** NA
- **Dependencies:** None
Note: I've ensured that the PR passes linting and testing by running
make format, make lint, and make test locally.
I have added a test for the integration (which relies on network access)
and I have added an example to the notebook showing its use.
**Description**
This PR addresses a rare issue in `OpenAIWhisperParser` that causes it
to crash when processing an audio file with a duration very close to the
class's chunk size threshold of 20 minutes.
**Issue**
#11449
**Dependencies**
None
**Tag maintainer**
@agola11 @eyurtsev
**Twitter handle**
leonardodiegues
---------
Co-authored-by: Leonardo Diegues <leonardo.diegues@grupofolha.com.br>
Co-authored-by: Bagatur <baskaryan@gmail.com>
https://github.com/langchain-ai/langchain/issues/17657
Thank you for contributing to LangChain!
Checklist:
- [ ] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] PR message: **Delete this entire template message** and replace it
with the following bulleted list
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
# PR Message
- **Description:** This PR adds a README file for the Anthropic API in
the `libs/partners` folder of this repository. The README includes:
- A brief description of the Anthropic package
- Installation & API instructions
- Usage examples
- **Issue:**
[17545](https://github.com/langchain-ai/langchain/issues/17545)
- **Dependencies:** None
Additional notes:
This change only affects the docs package and does not introduce any new
dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: callback on_llm_new_token before yield chunk for
_stream/_astream for some chat models, make all chat models in a
consistent behaviour.
- Issue: N/A
- Dependencies: N/A
**Description:** Initial pull request for Kinetica LLM wrapper
**Issue:** N/A
**Dependencies:** No new dependencies for unit tests. Integration tests
require gpudb, typeguard, and faker
**Twitter handle:** @chad_juliano
Note: There is another pull request for Kinetica vectorstore. Ultimately
we would like to make a partner package but we are starting with a
community contribution.
- **Description:** Update the Azure Search vector store notebook for the
latest version of the SDK
---------
Co-authored-by: Matt Gotteiner <[email protected]>
**Description:** Clean up Google product names and fix document loader
section
**Issue:** NA
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Resolved 'TypeError: 'type' object is not subscriptable' by removing
subscription of Result type object
Thank you for contributing to LangChain!
- [x] **PR title**: "Langchain: Resolve type error for SQLAlchemy Result
object in QuerySQLDataBaseTool class"
- **Description:** Resolve type error for SQLAlchemy Result object in
QuerySQLDataBaseTool class
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** Update IBM watsonx.ai docs and add IBM as a provider
docs
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
**Description:**
Change type hint on `QuerySQLDataBaseTool` to be compatible with
SQLAlchemy v1.4.x.
**Issue:**
Users locked to `SQLAlchemy < 2.x` are unable to import
`QuerySQLDataBaseTool`.
closes https://github.com/langchain-ai/langchain/issues/17819
**Dependencies:**
None
**Description:** This PR adds an `__init__` method to the
NeuralDBVectorStore class, which takes in a NeuralDB object to
instantiate the state of NeuralDBVectorStore.
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
**Description:** This PR changes the module import path for SQLDatabase
in the documentation
**Issue:** Updates the documentation to reflect the move of integrations
to langchain-community
- **Description:** The URL in the tigris tutorial was htttps instead of
https, leading to a bad link.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** Speucey
**Description:**
Updated documentation for DeepLake init method.
Especially the exec_option docs needed improvement, but did a general
cleanup while I was looking at it.
**Issue:** n/a
**Dependencies:** None
---------
Co-authored-by: Nathan Voxland <nathan@voxland.net>
- **Description:** In order to override the bool value of
"fetch_schema_from_transport" in the GraphQLAPIWrapper, a
"fetch_schema_from_transport" value needed to be added to the
"_EXTRA_OPTIONAL_TOOLS" dictionary in load_tools in the "graphql" key.
The parameter "fetch_schema_from_transport" must also be passed in to
the GraphQLAPIWrapper to allow reading of the value when creating the
client. Passing as an optional parameter is probably best to avoid
breaking changes. This change is necessary to support GraphQL instances
that do not support fetching schema, such as TigerGraph. More info here:
[TigerGraph GraphQL Schema
Docs](https://docs.tigergraph.com/graphql/current/schema)
- **Threads handle:** @zacharytoliver
---------
Co-authored-by: Zachary Toliver <zt10191991@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add missing chunk parameter for _stream/_astream for some
chat models, make all chat models in a consistent behaviour.
- Issue: N/A
- Dependencies: N/A
**Description:** Here is a minimal example to illustrate behavior:
```python
from langchain_core.runnables import RunnableLambda
def my_function(*args, **kwargs):
return 3 + kwargs.get("n", 0)
runnable = RunnableLambda(my_function).bind(n=1)
assert 4 == runnable.invoke({})
assert [4] == list(runnable.stream({}))
assert 4 == await runnable.ainvoke({})
assert [4] == [item async for item in runnable.astream({})]
```
Here, `runnable.invoke({})` and `runnable.stream({})` work fine, but
`runnable.ainvoke({})` raises
```
TypeError: RunnableLambda._ainvoke.<locals>.func() got an unexpected keyword argument 'n'
```
and similarly for `runnable.astream({})`:
```
TypeError: RunnableLambda._atransform.<locals>.func() got an unexpected keyword argument 'n'
```
Here we assume that this behavior is undesired and attempt to fix it.
**Issue:** https://github.com/langchain-ai/langchain/issues/17241,
https://github.com/langchain-ai/langchain/discussions/16446
In this pull request, we introduce the add_images method to the
SingleStoreDB vector store class, expanding its capabilities to handle
multi-modal embeddings seamlessly. This method facilitates the
incorporation of image data into the vector store by associating each
image's URI with corresponding document content, metadata, and either
pre-generated embeddings or embeddings computed using the embed_image
method of the provided embedding object.
the change includes integration tests, validating the behavior of the
add_images. Additionally, we provide a notebook showcasing the usage of
this new method.
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Issue in the API Reference:
If the `Classes` of `Functions` section is empty, it still shown in API
Reference. Here is an
[example](https://api.python.langchain.com/en/latest/core_api_reference.html#module-langchain_core.agents)
where `Functions` table is empty but still presented.
It happens only if this section has only the "private" members (with
names started with '_'). Those members are not shown but the whole
member section (empty) is shown.
- **Description:**
The existing `RedisCache` implementation lacks proper handling for redis
client failures, such as `ConnectionRefusedError`, leading to subsequent
failures in pipeline components like LLM calls. This pull request aims
to improve error handling for redis client issues, ensuring a more
robust and graceful handling of such errors.
- **Issue:** Fixes#16866
- **Dependencies:** No new dependency
- **Twitter handle:** N/A
Co-authored-by: snsten <>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Sent to LangSmith
Thank you for contributing to LangChain!
Checklist:
- [ ] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] PR message: **Delete this entire template message** and replace it
with the following bulleted list
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
This way we can document APIs in methods signature only where they are
checked by the typing system and we get them also in the param
description without having to duplicate in the docstrings (where they
are unchecked).
Twitter: @cbornet_
Description:
In this PR, I am adding a PolygonTickerNews Tool, which can be used to
get the latest news for a given ticker / stock.
Twitter handle: [@virattt](https://twitter.com/virattt)
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Please follow these instructions, fill every question, and do every step. 🙏
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
this is time that we cannot spend on adding new features, fixing bugs, write documentation or reviewing pull requests.
this is time that we cannot spend on adding new features, fixing bugs, writing documentation or reviewing pull requests.
By asking questions in a structured way (following this) it will be much easier to help you.
By asking questions in a structured way (following this) it will be much easier for us to help you.
And there's a high chance that you will find the solution along the way and you won't even have to submit it and wait for an answer. 😎
There's a high chance that by following this process, you'll find the solution on your own, eliminating the need to submit a question and wait for an answer. 😎
As there are too many questions, we will **DISCARD** and close the incomplete ones.
As there are many questions submitted every day, we will **DISCARD** and close the incomplete ones.
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged merged pull requests.
or are a regular contributor to LangChain with previous merged pull requests.
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint it ready, you need to copy its number."
"2024-02-27 17:15:10.457149: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 17:15:10.508925: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 17:15:10.508957: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 17:15:10.510289: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 17:15:10.518898: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of'\n",
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nPrompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of<end_of_turn>\\n<start_of_turn>user\\nHow much is 3+3?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\nOutput:\\n3-years old.<end_of_turn>\\n\\n<'\n"
"In order to run Gemma locally, you can download it from Kaggle first. In order to do this, you'll need to login into the Kaggle platform, create a API key and download a `kaggle.json` Read more about Kaggle auth [here](https://www.kaggle.com/docs/api)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S1EsXQ3XvZkQ"
},
"source": [
"### Installation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"executionInfo": {
"elapsed": 335,
"status": "ok",
"timestamp": 1708976305471,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "p8SMwpKRvbef",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
" pid, fd = os.forkpty()\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"tensorstore 0.1.54 requires ml-dtypes>=0.3.1, but you have ml-dtypes 0.2.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install keras>=3 keras_nlp"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E9zn8nYpv3QZ"
},
"source": [
"### Usage"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"executionInfo": {
"elapsed": 8536,
"status": "ok",
"timestamp": 1708976601206,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "0LFRmY8TjCkI",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:38:40.797559: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 16:38:40.848444: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 16:38:40.848478: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 16:38:40.849728: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 16:38:40.857936: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"W0000 00:00:1709051129.518076 774855 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"What is the meaning of life?\n",
"\n",
"The question is one of the most important questions in the world.\n",
"\n",
"It’s the question that has\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=30)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ChatModel"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MSctpRE4u43N"
},
"source": [
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:58:22.331067: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 16:58:22.382948: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 16:58:22.382978: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 16:58:22.384312: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 16:58:22.392767: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"2024-02-27 16:58:49.848412: I external/local_xla/xla/service/service.cc:168] XLA service 0x55adc0cf2c10 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
"2024-02-27 16:58:50.116614: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
"2024-02-27 16:58:54.389324: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8900\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"I0000 00:00:1709053145.225207 784891 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n",
"W0000 00:00:1709053145.284227 784891 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.\"\n"
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\"\n"
]
}
],
"source": [
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
"2024-02-27 17:02:21.832409: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 17:02:21.883625: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 17:02:21.883656: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 17:02:21.884987: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 17:02:21.893340: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"The question is one of the most important questions in the world.\n",
"\n",
"It’s the question that has been asked by philosophers, theologians, and scientists for centuries.\n",
"\n",
"And it’s the question that\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=50)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean\"\n"
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\\nI can help you with anything.\\n<\"\n"
]
}
],
"source": [
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
[amazon_personalize_how_to.ipynb](https://github.com/langchain-ai/langchain/blob/master/cookbook/amazon_personalize_how_to.ipynb) | Retrieving personalized recommendations from Amazon Personalize and use custom agents to build generative AI apps
[analyze_document.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/analyze_document.ipynb) | Analyze a single long document.
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
"[Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\\r\\n\\r\\n## PR message\\r\\nDescription: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\nThe README includes:\\r\\n\\r\\n- Brief description\\r\\n- Installation\\r\\n- Setting-up instructions (API key, project id, ...)\\r\\n- Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n \\r\\nIssue: https://github.com/langchain-ai/langchain/issues/17545\\r\\n\\r\\nDependencies: None\\r\\n\\r\\nTwitter handle: None'),\n",
" Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the `libs/partners/ibm` folder. \\r\\n\\r\\n\\r\\n\\r\\n## PR message\\r\\n- **Description:** Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\n The README includes:\\r\\n - Brief description\\r\\n - Installation\\r\\n - Setting-up instructions (API key, project id, ...)\\r\\n - Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n\\r\\n\\r\\n- **Issue:** #17545\\r\\n- **Dependencies:** None\\r\\n- **Twitter handle:** None'),\n",
" Document(page_content='# IBM: added partners package `langchain_ibm`, added llm\\nby MateuszOssGit\\n\\n - **Description:** Added `langchain_ibm` as an langchain partners package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (`WatsonxLLM`)\\r\\n - **Dependencies:** [ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),\\r\\n - **Tag maintainer:** : \\r\\n\\r\\nPlease make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. ✅'),\n",
" Document(page_content='# Add WatsonX support\\nby baptistebignaud\\n\\nIt is a connector to use a LLM from WatsonX.\\r\\nIt requires python SDK \"ibm-generative-ai\"\\r\\n\\r\\n(It might not be perfect since it is my first PR on a public repository 😄)')]"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever.invoke(\"pull requests related to IBM\")"
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
"\n",
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal nework.\n",
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal network.\n",
"\n",
"It's an alternative to typical pattern of requesting a reponse from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
"It's an alternative to typical pattern of requesting a response from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
"\n",
"Here, we're overiding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
"Here, we're overriding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
]
},
{
@@ -272,7 +272,7 @@
},
"outputs": [],
"source": [
"# Load the model with the apporiate parameters:\n",
"# Load the model with the appropriate parameters:\n",
"llm = LlamaCpp(\n",
" model_path=model_path,\n",
" max_tokens=250,\n",
@@ -551,7 +551,7 @@
"\n",
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
"\n",
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distribuited architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distributed architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
"\n",
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
" 2. Split all documents to chunks using the `langchain_text_splitters.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
"2. Question-Answering:\n",
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
"[Fireworks AI](https://python.langchain.com/docs/integrations/llms/fireworks) wants to provide the best experience when working with LangChain, and here is an example of Fireworks + LangChain doing RAG\n",
"\n",
"See [our models page](https://fireworks.ai/models) for the full list of models. We use `accounts/fireworks/models/mixtral-8x7b-instruct` for RAG In this tutorial.\n",
"\n",
"For the RAG target, we will use the Gemma technical report https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n",
"\u001b[?25hRequirement already satisfied: aiohttp<4.0.0,>=3.9.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (3.9.3)\n",
"Requirement already satisfied: fireworks-ai<0.13.0,>=0.12.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.12.0)\n",
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.1.23)\n",
"Requirement already satisfied: requests<3,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (2.31.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.3.1)\n",
"Requirement already satisfied: attrs>=17.3.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (23.1.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.4.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (6.0.4)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.9.2)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (4.0.3)\n",
"Requirement already satisfied: httpx in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.26.0)\n",
"Requirement already satisfied: httpx-sse in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.4.0)\n",
"Requirement already satisfied: pydantic in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.4.2)\n",
"Requirement already satisfied: Pillow in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (10.2.0)\n",
"Requirement already satisfied: PyYAML>=5.3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (6.0.1)\n",
"Requirement already satisfied: anyio<5,>=3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (3.7.1)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.33)\n",
"Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (0.1.5)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (23.2)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (8.2.3)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.3.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2.0.6)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2023.7.22)\n",
"Requirement already satisfied: sniffio>=1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.3.0)\n",
"Requirement already satisfied: exceptiongroup in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.1.3)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (2.4)\n",
"Requirement already satisfied: annotated-types>=0.4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.5.0)\n",
"Requirement already satisfied: pydantic-core==2.10.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.10.1)\n",
"Requirement already satisfied: typing-extensions>=4.6.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (4.8.0)\n",
"Requirement already satisfied: httpcore==1.* in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (1.0.2)\n",
"Requirement already satisfied: h11<0.15,>=0.13 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.14.0)\n",
"Building wheels for collected packages: langchain-fireworks\n",
" Building editable for langchain-fireworks (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for langchain-fireworks: filename=langchain_fireworks-0.0.1-py3-none-any.whl size=2228 sha256=564071b120b09ec31f2dc737733448a33bbb26e40b49fcde0c129ad26045259d\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-oz368vdk/wheels/e0/ad/31/d7e76dd73d61905ff7f369f5b0d21a4b5e7af4d3cb7487aece\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
"Run examples through the chain. This can either be manually, or using a list of examples, or production traffic"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "19a88d13",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'One of the horror movies released in the early 2000s is \"The Ring\" (2002), directed by Gore Verbinski.'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"question\": \"what is a horror movie released in early 2000s\"})"
]
},
{
"cell_type": "markdown",
"id": "17f9cdae",
"metadata": {},
"source": [
"## Annotate\n",
"\n",
"Now, go to LangSmitha and annotate those examples as correct or incorrect"
]
},
{
"cell_type": "markdown",
"id": "5e211da6",
"metadata": {},
"source": [
"## Create Dataset\n",
"\n",
"We can now create a dataset from those runs.\n",
"\n",
"What we will do is find the runs marked as correct, then grab the sub-chains from them. Specifically, the query generator sub chain and the final generation step"
"'1. \"Saving Private Ryan\" (1998) - Directed by Steven Spielberg, this war film follows a group of soldiers during World War II as they search for a missing paratrooper.\\n\\n2. \"The Matrix\" (1999) - Directed by the Wachowskis, this science fiction action film follows a computer hacker who discovers the truth about the reality he lives in.\\n\\n3. \"Lethal Weapon 4\" (1998) - Directed by Richard Donner, this action-comedy film follows two mismatched detectives as they investigate a Chinese immigrant smuggling ring.\\n\\n4. \"The Fifth Element\" (1997) - Directed by Luc Besson, this science fiction action film follows a cab driver who must protect a mysterious woman who holds the key to saving the world.\\n\\n5. \"The Rock\" (1996) - Directed by Michael Bay, this action thriller follows a group of rogue military men who take over Alcatraz and threaten to launch missiles at San Francisco.'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain1.invoke(\n",
" {\"question\": \"what are good action movies made before 2000 but after 1997?\"}\n",
Below are links to tutorials and courses on LangChain. For written guides on common use cases for LangChain, check out the [use cases guides](/docs/use_cases).
## Books and Handbooks
⛓ icon marks a new addition [last update 2024-02-06]
by [Harrison Chase](https://en.wikipedia.org/wiki/LangChain) and [Andrew Ng](https://en.wikipedia.org/wiki/Andrew_Ng)
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
- [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
- [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
### Handbook
[LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
⛓ [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
### Short Tutorials
[LangChain Explained in 13 Minutes | QuickStart Tutorial for Beginners](https://youtu.be/aywZrzNaKjs) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
[LangChain Crash Course: Build an AutoGPT app in 25 minutes](https://youtu.be/MlK6SIjcjE8) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
[LangChain Crash Course - Build apps with language models](https://youtu.be/LbT1yp6quS8) by [Patrick Loeber](https://www.youtube.com/@patloeber)
⛓ [LangChain 101 Course](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb) by **Ivan Reznikov**
## Tutorials
### [LangChain for Gen AI and LLMs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F) by [James Briggs](https://www.youtube.com/@jamesbriggs)
- #1 [Getting Started with `GPT-3` vs. Open Source LLMs](https://youtu.be/nE2skSRWTTs)
- #2 [Prompt Templates for `GPT 3.5` and other LLMs](https://youtu.be/RflBcK0oDH0)
- #3 [LLM Chains using `GPT 3.5` and other LLMs](https://youtu.be/S8j9Tk0lZHU)
- [LangChain Data Loaders, Tokenizers, Chunking, and Datasets - Data Prep 101](https://youtu.be/eqOfr4AGLk8)
- #4 [Chatbot Memory for `Chat-GPT`, `Davinci` + other LLMs](https://youtu.be/X05uK0TZozM)
- #5 [Chat with OpenAI in LangChain](https://youtu.be/CnAgB3A5OlU)
- #6 [Fixing LLM Hallucinations with Retrieval Augmentation in LangChain](https://youtu.be/kvdVduIJsc8)
- #7 [LangChain Agents Deep Dive with `GPT 3.5`](https://youtu.be/jSP-gSEyVeI)
- #8 [Create Custom Tools for Chatbots in LangChain](https://youtu.be/q-HNphrWsDE)
- #9 [Build Conversational Agents with Vector DBs](https://youtu.be/H6bCqqw9xyI)
- [Using NEW `MPT-7B` in Hugging Face and LangChain](https://youtu.be/DXpk9K7DgMo)
- [`MPT-30B` Chatbot with LangChain](https://youtu.be/pnem-EhT6VI)
- [Fine-tuning OpenAI's `GPT 3.5` for LangChain Agents](https://youtu.be/boHXgQ5eQic?si=OOOfK-GhsgZGBqSr)
- [Chatbots with `RAG`: LangChain Full Walkthrough](https://youtu.be/LhnCsygAvzY?si=N7k6xy4RQksbWwsQ)
- [Question A 300 Page Book (w/ `OpenAI` + `Pinecone`)](https://youtu.be/h0DHDp1FbmQ)
- [Workaround `OpenAI's` Token Limit With Chain Types](https://youtu.be/f9_BWhCI4Zo)
- [Build Your Own OpenAI + LangChain Web App in 23 Minutes](https://youtu.be/U_eV8wfMkXU)
- [Working With The New `ChatGPT API`](https://youtu.be/e9P7FLi5Zy8)
- [OpenAI + LangChain Wrote Me 100 Custom Sales Emails](https://youtu.be/y1pyAQM-3Bo)
- [Structured Output From `OpenAI` (Clean Dirty Data)](https://youtu.be/KwAXfey-xQk)
- [Connect `OpenAI` To +5,000 Tools (LangChain + `Zapier`)](https://youtu.be/7tNm0yiDigU)
- [Use LLMs To Extract Data From Text (Expert Mode)](https://youtu.be/xZzvwR9jdPA)
- [Extract Insights From Interview Transcripts Using LLMs](https://youtu.be/shkMOHwJ4SM)
- [5 Levels Of LLM Summarizing: Novice to Expert](https://youtu.be/qaPMdcCqtWk)
- [Control Tone & Writing Style Of Your LLM Output](https://youtu.be/miBG-a3FuhU)
- [Build Your Own `AI Twitter Bot` Using LLMs](https://youtu.be/yLWLDjT01q8)
- [ChatGPT made my interview questions for me (`Streamlit` + LangChain)](https://youtu.be/zvoAMx0WKkw)
- [Function Calling via ChatGPT API - First Look With LangChain](https://youtu.be/0-zlUy7VUjg)
- [Extract Topics From Video/Audio With LLMs (Topic Modeling w/ LangChain)](https://youtu.be/pEkxRQFNAs4)
## Courses
### Featured courses on Deeplearning.AI
### [LangChain How to and guides](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ) by [Sam Witteveen](https://www.youtube.com/@samwitteveenai)
- [LangChain Basics - LLMs & PromptTemplates with Colab](https://youtu.be/J_0qvRt4LNk)
- [LangChain Basics - Tools and Chains](https://youtu.be/hI2BY7yl_Ac)
- [`ChatGPT API` Announcement & Code Walkthrough with LangChain](https://youtu.be/phHqvLHCwH4)
- [Conversations with Memory (explanation & code walkthrough)](https://youtu.be/X550Zbz_ROE)
- [Chat with `Flan20B`](https://youtu.be/VW5LBavIfY4)
- [Using `Hugging Face Models` locally (code walkthrough)](https://youtu.be/Kn7SX2Mx_Jk)
- [`PAL`: Program-aided Language Models with LangChain code](https://youtu.be/dy7-LvDu-3s)
- [Building a Summarization System with LangChain and `GPT-3` - Part 1](https://youtu.be/LNq_2s_H01Y)
- [Building a Summarization System with LangChain and `GPT-3` - Part 2](https://youtu.be/d-yeHDLgKHw)
- [Microsoft's `Visual ChatGPT` using LangChain](https://youtu.be/7YEiEyfPF5U)
- [LangChain Agents - Joining Tools and Chains with Decisions](https://youtu.be/ziu87EXZVUE)
- [Comparing LLMs with LangChain](https://youtu.be/rFNG0MIEuW0)
- [Using `Constitutional AI` in LangChain](https://youtu.be/uoVqNFDwpX4)
- [Talking to `Alpaca` with LangChain - Creating an Alpaca Chatbot](https://youtu.be/v6sF8Ed3nTE)
- [Talk to your `CSV` & `Excel` with LangChain](https://youtu.be/xQ3mZhw69bc)
- [`BabyAGI`: Discover the Power of Task-Driven Autonomous Agents!](https://youtu.be/QBcDLSE2ERA)
- [Improve your `BabyAGI` with LangChain](https://youtu.be/DRgPyOXZ-oE)
- [Master `PDF` Chat with LangChain - Your essential guide to queries on documents](https://youtu.be/ZzgUqFtxgXI)
- [Using LangChain with `DuckDuckGO`, `Wikipedia` & `PythonREPL` Tools](https://youtu.be/KerHlb8nuVc)
- [Building Custom Tools and Agents with LangChain (gpt-3.5-turbo)](https://youtu.be/biS8G8x8DdA)
- [LangChain Retrieval QA Over Multiple Files with `ChromaDB`](https://youtu.be/3yPBVii7Ct0)
- [LangChain Retrieval QA with Instructor Embeddings & `ChromaDB` for PDFs](https://youtu.be/cFCGUjc33aU)
- [LangChain + Retrieval Local LLMs for Retrieval QA - No OpenAI!!!](https://youtu.be/9ISVjh8mdlA)
- [`Camel` + LangChain for Synthetic Data & Market Research](https://youtu.be/GldMMK6-_-g)
- [Information Extraction with LangChain & `Kor`](https://youtu.be/SW1ZdqH0rRQ)
- [Converting a LangChain App from OpenAI to OpenSource](https://youtu.be/KUDn7bVyIfc)
- [Using LangChain `Output Parsers` to get what you want out of LLMs](https://youtu.be/UVn2NroKQCw)
- [Building a LangChain Custom Medical Agent with Memory](https://youtu.be/6UFtRwWnHws)
- [Understanding `ReACT` with LangChain](https://youtu.be/Eug2clsLtFs)
- [`OpenAI Functions` + LangChain : Building a Multi Tool Agent](https://youtu.be/4KXK6c6TVXQ)
- [What can you do with 16K tokens in LangChain?](https://youtu.be/z2aCZBAtWXs)
- [Tagging and Extraction - Classification using `OpenAI Functions`](https://youtu.be/a8hMgIcUEnE)
- [HOW to Make Conversational Form with LangChain](https://youtu.be/IT93On2LB5k)
- [Building a RCI Chain for Agents with LangChain Expression Language](https://youtu.be/QaKM5s0TnsY?si=0miEj-o17AHcGfLG)
- [How to Run `LLaMA-2-70B` on the `Together AI`](https://youtu.be/Tc2DHfzHeYE?si=Xku3S9dlBxWQukpe)
- [`RetrievalQA` with `LLaMA 2 70b` & `Chroma` DB](https://youtu.be/93yueQQnqpM?si=ZMwj-eS_CGLnNMXZ)
- [How to use `BGE Embeddings` for LangChain](https://youtu.be/sWRvSG7vL4g?si=85jnvnmTCF9YIWXI)
- [How to use Custom Prompts for `RetrievalQA` on `LLaMA-2 7B`](https://youtu.be/PDwUKves9GY?si=sMF99TWU0p4eiK80)
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
- [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
- [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
- [Build LLM Apps with LangChain.js](https://learn.deeplearning.ai/courses/build-llm-apps-with-langchain-js)
### Online courses
### [LangChain](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr) by [Prompt Engineering](https://www.youtube.com/@engineerprompt)
- [LangChain Crash Course — All You Need to Know to Build Powerful Apps with LLMs](https://youtu.be/5-fc4Tlgmro)
- [Working with MULTIPLE `PDF` Files in LangChain: `ChatGPT` for your Data](https://youtu.be/s5LhRdh5fu4)
- [`ChatGPT` for YOUR OWN `PDF` files with LangChain](https://youtu.be/TLf90ipMzfE)
- [Talk to YOUR DATA without OpenAI APIs: LangChain](https://youtu.be/wrD-fZvT6UI)
- [LangChain: `PDF` Chat App (GUI) | `ChatGPT` for Your `PDF` FILES](https://youtu.be/RIWbalZ7sTo)
- [`LangFlow`: Build Chatbots without Writing Code](https://youtu.be/KJ-ux3hre4s)
- [LangChain: Giving Memory to LLMs](https://youtu.be/dxO6pzlgJiY)
- [BEST OPEN Alternative to `OPENAI's EMBEDDINGs` for Retrieval QA: LangChain](https://youtu.be/ogEalPMUCSY)
- [LangChain: Run Language Models Locally - `Hugging Face Models`](https://youtu.be/Xxxuw4_iCzw)
- [Slash API Costs: Mastering Caching for LLM Applications](https://youtu.be/EQOznhaJWR0?si=AXoI7f3-SVFRvQUl)
- [Avoid PROMPT INJECTION with `Constitutional AI` - LangChain](https://youtu.be/tyKSkPFHVX8?si=9mgcB5Y1kkotkBGB)
The docs directory contains Documentation and API Reference.
LangChain documentation consists of two components:
Documentation is built using [Quarto](https://quarto.org) and [Docusaurus 2](https://docusaurus.io/).
1. Main Documentation: Hosted at [python.langchain.com](https://python.langchain.com/),
this comprehensive resource serves as the primary user-facing documentation.
It covers a wide array of topics, including tutorials, use cases, integrations,
and more, offering extensive guidance on building with LangChain.
The content for this documentation lives in the `/docs` directory of the monorepo.
2. In-code Documentation: This is documentation of the codebase itself, which is also
used to generate the externally facing [API Reference](https://api.python.langchain.com/en/latest/langchain_api_reference.html).
The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that
developers document their code well.
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code and are hosted by [Read the Docs](https://readthedocs.org/).
For that reason, we ask that you add good documentation to all classes and methods.
The main documentation is built using [Quarto](https://quarto.org) and [Docusaurus 2](https://docusaurus.io/).
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
The `API Reference` is largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/)
from the code and is hosted by [Read the Docs](https://readthedocs.org/).
## Build Documentation Locally
We appreciate all contributions to the documentation, whether it be fixing a typo,
adding a new tutorial or example and whether it be in the main documentation or the API Reference.
Similar to linting, we recognize documentation can be annoying. If you do not want
to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
## 📜 Main Documentation
The content for the main documentation is located in the `/docs` directory of the monorepo.
The documentation is written using a combination of ipython notebooks (`.ipynb` files)
and markdown (`.mdx` files). The notebooks are converted to markdown
using [Quarto](https://quarto.org) and then built using [Docusaurus 2](https://docusaurus.io/).
Feel free to make contributions to the main documentation! 🥰
After modifying the documentation:
1. Run the linting and formatting commands (see below) to ensure that the documentation is well-formatted and free of errors.
2. Optionally build the documentation locally to verify that the changes look good.
3. Make a pull request with the changes.
4. You can preview and verify that the changes are what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page. This will take you to a preview of the documentation changes.
## ⚒️ Linting and Building Documentation Locally
After writing up the documentation, you may want to lint and build the documentation
locally to ensure that it looks good and is free of errors.
If you're unable to build it locally that's okay as well, as you will be able to
see a preview of the documentation on the pull request page.
### Install dependencies
- [Quarto](https://quarto.org) - package that converts Jupyter notebooks (`.ipynb` files) into mdx files for serving in Docusaurus.
- `poetry install --with lint,docs --no-root` from the monorepo root.
- [Quarto](https://quarto.org) - package that converts Jupyter notebooks (`.ipynb` files) into mdx files for serving in Docusaurus. [Download link](https://quarto.org/docs/download/).
From the **monorepo root**, run the following command to install the dependencies:
```bash
poetry install --with lint,docs --no-root
````
### Building
The code that builds the documentation is located in the `/docs` directory of the monorepo.
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
Before building the documentation, it is always a good idea to clean the build directory:
@@ -46,7 +90,7 @@ make api_docs_linkcheck
### Linting and Formatting
The docs are linted from the monorepo root. To lint the docs, run the following from there:
The Main Documentation is linted from the **monorepo root**. To lint the main documentation, run the following from there:
```bash
make lint
@@ -56,9 +100,73 @@ If you have formatting-related errors, you can fix them automatically with:
```bash
make format
```
```
## Verify Documentation changes
## ⌨️ In-code Documentation
The in-code documentation is largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code and is hosted by [Read the Docs](https://readthedocs.org/).
For the API reference to be useful, the codebase must be well-documented. This means that all functions, classes, and methods should have a docstring that explains what they do, what the arguments are, and what the return value is. This is a good practice in general, but it is especially important for LangChain because the API reference is the primary resource for developers to understand how to use the codebase.
We generally follow the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings) for docstrings.
Here is an example of a well-documented function:
```python
def my_function(arg1: int, arg2: str) -> float:
"""This is a short description of the function. (It should be a single sentence.)
This is a longer description of the function. It should explain what
the function does, what the arguments are, and what the return value is.
It should wrap at 88 characters.
Examples:
This is a section for examples of how to use the function.
.. code-block:: python
my_function(1, "hello")
Args:
arg1: This is a description of arg1. We do not need to specify the type since
it is already specified in the function signature.
arg2: This is a description of arg2.
Returns:
This is a description of the return value.
"""
return 3.14
```
### Linting and Formatting
The in-code documentation is linted from the directories belonging to the packages
being documented.
For example, if you're working on the `langchain-community` package, you would change
the working directory to the `langchain-community` directory:
```bash
cd [root]/libs/langchain-community
```
Set up a virtual environment for the package if you haven't done so already.
Install the dependencies for the package.
```bash
poetry install --with lint
```
Then you can run the following commands to lint and format the in-code documentation:
```bash
make format
make lint
```
## Verify Documentation Changes
After pushing documentation changes to the repository, you can preview and verify that the changes are
what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page.
"You can pass a Runnable into an agent. Make sure you have `langchainhub` installed: `pip install langchainhub`"
]
},
{
@@ -98,7 +98,7 @@
"source": [
"Building an agent from a runnable usually involves a few things:\n",
"\n",
"1. Data processing for the intermediate steps. These need to represented in a way that the language model can recognize them. This should be pretty tightly coupled to the instructions in the prompt\n",
"1. Data processing for the intermediate steps. These need to be represented in a way that the language model can recognize them. This should be pretty tightly coupled to the instructions in the prompt\n",
"2. Writing custom factory function that takes the input of a previous step and returns a **runnable**. Importantly, this should return a **runnable** and NOT actually execute.\n",
"1. Conditionally return runnables from a [`RunnableLambda`](./functions) (recommended)\n",
"2. Using a `RunnableBranch`.\n",
"\n",
"We'll illustrate both methods using a two step sequence where the first step classifies an input question as being about `LangChain`, `Anthropic`, or `Other`, then routes to a corresponding prompt chain."
]
},
{
"cell_type": "markdown",
"id": "f885113d",
"metadata": {},
"source": [
"## Using a RunnableBranch\n",
"\n",
"A `RunnableBranch` is initialized with a list of (condition, runnable) pairs and a default runnable. It selects which branch by passing each condition the input it's invoked with. It selects the first condition to evaluate to True, and runs the corresponding runnable to that condition with the input. \n",
"\n",
"If no provided conditions match, it runs the default runnable.\n",
"\n",
"Here's an example of what it looks like in action:"
"AIMessage(content=\" As Dario Amodei told me, here are some ways to use Anthropic:\\n\\n- Sign up for an account on Anthropic's website to access tools like Claude, Constitutional AI, and Writer. \\n\\n- Use Claude for tasks like email generation, customer service chat, and QA. Claude can understand natural language prompts and provide helpful responses.\\n\\n- Use Constitutional AI if you need an AI assistant that is harmless, honest, and helpful. It is designed to be safe and aligned with human values.\\n\\n- Use Writer to generate natural language content for things like marketing copy, stories, reports, and more. Give it a topic and prompt and it will create high-quality written content.\\n\\n- Check out Anthropic's documentation and blog for tips, tutorials, examples, and announcements about new capabilities as they continue to develop their AI technology.\\n\\n- Follow Anthropic on social media or subscribe to their newsletter to stay up to date on new features and releases.\\n\\n- For most people, the easiest way to leverage Anthropic's technology is through their website - just create an account to get started!\", additional_kwargs={}, example=False)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke({\"question\": \"how do I use Anthropic?\"})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c67d8733",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' As Harrison Chase told me, here is how you use LangChain:\\n\\nLangChain is an AI assistant that can have conversations, answer questions, and generate text. To use LangChain, you simply type or speak your input and LangChain will respond. \\n\\nYou can ask LangChain questions, have discussions, get summaries or explanations about topics, and request it to generate text on a subject. Some examples of interactions:\\n\\n- Ask general knowledge questions and LangChain will try to answer factually. For example \"What is the capital of France?\"\\n\\n- Have conversations on topics by taking turns speaking. You can prompt the start of a conversation by saying something like \"Let\\'s discuss machine learning\"\\n\\n- Ask for summaries or high-level explanations on subjects. For example \"Can you summarize the main themes in Shakespeare\\'s Hamlet?\" \\n\\n- Give creative writing prompts or requests to have LangChain generate text in different styles. For example \"Write a short children\\'s story about a mouse\" or \"Generate a poem in the style of Robert Frost about nature\"\\n\\n- Correct LangChain if it makes an inaccurate statement and provide the right information. This helps train it.\\n\\nThe key is interacting naturally and giving it clear prompts and requests', additional_kwargs={}, example=False)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"full_chain.invoke({\"question\": \"how do I use LangChain?\"})"
"A `RunnableBranch` is a special type of runnable that allows you to define a set of conditions and runnables to execute based on the input. It does **not** offer anything that you can't achieve in a custom function as described above, so we recommend using a custom function instead.\n",
"\n",
"A `RunnableBranch` is initialized with a list of (condition, runnable) pairs and a default runnable. It selects which branch by passing each condition the input it's invoked with. It selects the first condition to evaluate to True, and runs the corresponding runnable to that condition with the input. \n",
"\n",
"If no provided conditions match, it runs the default runnable.\n",
"\n",
"Here's an example of what it looks like in action:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46802d04",
"id": "2a101418",
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\" As Dario Amodei told me, here are some ways to use Anthropic:\\n\\n- Sign up for an account on Anthropic's website to access tools like Claude, Constitutional AI, and Writer. \\n\\n- Use Claude for tasks like email generation, customer service chat, and QA. Claude can understand natural language prompts and provide helpful responses.\\n\\n- Use Constitutional AI if you need an AI assistant that is harmless, honest, and helpful. It is designed to be safe and aligned with human values.\\n\\n- Use Writer to generate natural language content for things like marketing copy, stories, reports, and more. Give it a topic and prompt and it will create high-quality written content.\\n\\n- Check out Anthropic's documentation and blog for tips, tutorials, examples, and announcements about new capabilities as they continue to develop their AI technology.\\n\\n- Follow Anthropic on social media or subscribe to their newsletter to stay up to date on new features and releases.\\n\\n- For most people, the easiest way to leverage Anthropic's technology is through their website - just create an account to get started!\", additional_kwargs={}, example=False)"
"full_chain.invoke({\"question\": \"how do I use Anthropic?\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d8caf9b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=' As Harrison Chase told me, here is how you use LangChain:\\n\\nLangChain is an AI assistant that can have conversations, answer questions, and generate text. To use LangChain, you simply type or speak your input and LangChain will respond. \\n\\nYou can ask LangChain questions, have discussions, get summaries or explanations about topics, and request it to generate text on a subject. Some examples of interactions:\\n\\n- Ask general knowledge questions and LangChain will try to answer factually. For example \"What is the capital of France?\"\\n\\n- Have conversations on topics by taking turns speaking. You can prompt the start of a conversation by saying something like \"Let\\'s discuss machine learning\"\\n\\n- Ask for summaries or high-level explanations on subjects. For example \"Can you summarize the main themes in Shakespeare\\'s Hamlet?\" \\n\\n- Give creative writing prompts or requests to have LangChain generate text in different styles. For example \"Write a short children\\'s story about a mouse\" or \"Generate a poem in the style of Robert Frost about nature\"\\n\\n- Correct LangChain if it makes an inaccurate statement and provide the right information. This helps train it.\\n\\nThe key is interacting naturally and giving it clear prompts and requests', additional_kwargs={}, example=False)"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"full_chain.invoke({\"question\": \"how do I use LangChain?\"})"
"1. sync `stream` and async `astream`: a **default implementation** of streaming that streams the **final output** from the chain.\n",
"2. async `astream_events` and async `astream_log`: these provide a way to stream both **intermediate steps** and **final output** from the chain.\n",
"\n",
"Let's take a look at both approaches, and try to understand a how to use them. 🥷\n",
"Let's take a look at both approaches, and try to understand how to use them. 🥷\n",
"\n",
"## Using Stream\n",
"\n",
@@ -48,7 +47,25 @@
"\n",
"Large language models can take **several seconds** to generate a complete response to a query. This is far slower than the **~200-300 ms** threshold at which an application feels responsive to an end user.\n",
"\n",
"The key strategy to make the application feel more responsive is to show intermediate progress; e.g., to stream the output from the model **token by token**."
"The key strategy to make the application feel more responsive is to show intermediate progress; viz., to stream the output from the model **token by token**."
]
},
{
"cell_type": "markdown",
"id": "9eb73e8b",
"metadata": {},
"source": [
"We will show examples of streaming using the chat model from [Anthropic](https://python.langchain.com/docs/integrations/platforms/anthropic). To use the model, you will need to install the `langchain-anthropic` package. You can do this with the following command:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd351cf4",
"metadata": {},
"outputs": [],
"source": [
"pip install -qU langchain-anthropic"
]
},
{
@@ -68,7 +85,7 @@
"source": [
"# Showing the example using anthropic, but you can use\n",
"We will use `StrOutputParser` to parse the output from the model. This is a simple parser that extracts the `content` field from an `AIMessageChunk`, giving us the `token` returned by the model.\n",
"\n",
":::{.callout-tip}\n",
"LCEL is a *declarative* way to specify a \"program\" by chainining together different LangChain primitives. Chains created using LCEL benefit from an automatic implementation of `stream`, and `astream` allowing streaming of the final output. In fact, chains created with LCEL implement the entire standard Runnable interface.\n",
"LCEL is a *declarative* way to specify a \"program\" by chainining together different LangChain primitives. Chains created using LCEL benefit from an automatic implementation of `stream` and `astream` allowing streaming of the final output. In fact, chains created with LCEL implement the entire standard Runnable interface.\n",
":::"
]
},
@@ -330,7 +347,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "cab6dca2-2027-414d-a196-2db6e3ebb8a5",
"metadata": {},
@@ -464,12 +480,12 @@
"id": "6fd3e71b-439e-418f-8a8a-5232fba3d9fd",
"metadata": {},
"source": [
"Stream just yielded the final result from that component.\n",
"Stream just yielded the final result from that component.\n",
"\n",
"This is OK 🥹! Not all components have to implement streaming -- in some cases streaming is either unnecessary, difficult or just doesn't make sense.\n",
"\n",
":::{.callout-tip}\n",
"An LCEL chain constructed using using non-streaming components, will still be able to stream in a lot of cases, with streaming of partial output starting after the last non-streaming step in the chain.\n",
"An LCEL chain constructed using non-streaming components, will still be able to stream in a lot of cases, with streaming of partial output starting after the last non-streaming step in the chain.\n",
@@ -14,7 +14,16 @@ This framework consists of several parts.
- **[LangServe](/docs/langserve)**: A library for deploying LangChain chains as a REST API.
- **[LangSmith](/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.

import ThemedImage from '@theme/ThemedImage';
<ThemedImage
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
sources={{
light: '/svg/langchain_stack.svg',
dark: '/svg/langchain_stack_dark.svg',
}}
title="LangChain Framework Overview"
/>
Together, these products simplify the entire application lifecycle:
- **Develop**: Write your applications in LangChain/LangChain.js. Hit the ground running using Templates for reference.
@@ -58,14 +58,14 @@ LangChain enables building application that connect external sources of data and
In this quickstart, we will walk through a few different ways of doing that.
We will start with a simple LLM chain, which just relies on information in the prompt template to respond.
Next, we will build a retrieval chain, which fetches data from a separate database and passes that into the prompt template.
We will then add in chat history, to create a conversation retrieval chain. This allows you interact in a chat manner with this LLM, so it remembers previous questions.
We will then add in chat history, to create a conversation retrieval chain. This allows you to interact in a chat manner with this LLM, so it remembers previous questions.
Finally, we will build an agent - which utilizes an LLM to determine whether or not it needs to fetch data to answer questions.
We will cover these at a high level, but there are lot of details to all of these!
We will link to relevant docs.
## LLM Chain
For this getting started guide, we will provide two options: using OpenAI (a popular model available via API) or using a local open source model.
We'll show how to use models available via API, like OpenAI, and local open source models, using integrations like Ollama.
[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.
@@ -112,6 +112,66 @@ Then, make sure the Ollama server is running. After that, you can do:
```python
from langchain_community.llms import Ollama
llm = Ollama(model="llama2")
```
</TabItem>
<TabItem value="anthropic" label="Anthropic">
First we'll need to import the LangChain x Anthropic package.
```shell
pip install langchain-anthropic
```
Accessing the API requires an API key, which you can get by creating an account [here](https://claude.ai/login). Once we have a key we'll want to set it as an environment variable by running:
If you'd prefer not to set an environment variable you can pass the key in directly via the `anthropic_api_key` named parameter when initiating the Anthropic Chat Model class:
```python
llm = ChatAnthropic(anthropic_api_key="...")
```
</TabItem>
<TabItem value="cohere" label="Cohere">
First we'll need to import the Cohere SDK package.
```shell
pip install cohere
```
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://dashboard.cohere.com/api-keys). Once we have a key we'll want to set it as an environment variable by running:
```shell
export COHERE_API_KEY="..."
```
We can then initialize the model:
```python
from langchain_community.chat_models import ChatCohere
llm = ChatCohere()
```
If you'd prefer not to set an environment variable you can pass the key in directly via the `cohere_api_key` named parameter when initiating the Cohere LLM class:
```python
from langchain_community.chat_models import ChatCohere
llm = ChatCohere(cohere_api_key="...")
```
</TabItem>
@@ -193,17 +253,17 @@ After that, we can import and use WebBaseLoader.
```python
from langchain_community.document_loaders import WebBaseLoader
Next, we need to index it into a vectorstore. This requires a few components, namely an [embedding model](/docs/modules/data_connection/text_embedding) and a [vectorstore](/docs/modules/data_connection/vectorstores).
For embedding models, we once again provide examples for accessing via OpenAI or via local models.
For embedding models, we once again provide examples for accessing via API or by running local models.
Extending LangChain's base abstractions, whether you're planning to contribute back to the open-source repo or build a bespoke internal integration, is encouraged.
Check out these guides for building your own custom classes for the following modules:
- [Chat models](/docs/modules/model_io/chat/custom_chat_model) for interfacing with chat-tuned language models.
- [LLMs](/docs/modules/model_io/llms/custom_llm) for interfacing with text language models.
- [Output parsers](/docs/modules/model_io/output_parsers/custom) for handling language model outputs.
"The popularity of projects like [PrivateGPT](https://github.com/imartinez/privateGPT), [llama.cpp](https://github.com/ggerganov/llama.cpp), and [GPT4All](https://github.com/nomic-ai/gpt4all) underscore the demand to run LLMs locally (on your own device).\n",
"The popularity of projects like [PrivateGPT](https://github.com/imartinez/privateGPT), [llama.cpp](https://github.com/ggerganov/llama.cpp), [GPT4All](https://github.com/nomic-ai/gpt4all), and [llamafile](https://github.com/Mozilla-Ocho/llamafile) underscore the demand to run LLMs locally (on your own device).\n",
"\n",
"This has at least two important benefits:\n",
"\n",
@@ -46,7 +46,8 @@
"\n",
"1. [`llama.cpp`](https://github.com/ggerganov/llama.cpp): C++ implementation of llama inference code with [weight optimization / quantization](https://finbarr.ca/how-is-llama-cpp-possible/)\n",
"2. [`gpt4all`](https://docs.gpt4all.io/index.html): Optimized C backend for inference\n",
"3. [`Ollama`](https://ollama.ai/): Bundles model weights and environment into an app that runs on device and serves the LLM\n",
"3. [`Ollama`](https://ollama.ai/): Bundles model weights and environment into an app that runs on device and serves the LLM\n",
"4. [`llamafile`](https://github.com/Mozilla-Ocho/llamafile): Bundles model weights and everything needed to run the model in a single file, allowing you to run the LLM locally from this file without any additional installation steps\n",
"\n",
"In general, these frameworks will do a few things:\n",
"\n",
@@ -157,7 +158,7 @@
"\n",
"### Running Apple silicon GPU\n",
"\n",
"`Ollama` will automatically utilize the GPU on Apple devices.\n",
"`Ollama` and [`llamafile`](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#gpu-support) will automatically utilize the GPU on Apple devices.\n",
" \n",
"Other frameworks require the user to set up the environment to utilize the Apple GPU.\n",
"\n",
@@ -191,7 +192,7 @@
"\n",
"There are various ways to gain access to quantized model weights.\n",
"\n",
"1. [`HuggingFace`](https://huggingface.co/TheBloke) - Many quantized model are available for download and can be run with framework such as [`llama.cpp`](https://github.com/ggerganov/llama.cpp)\n",
"1. [`HuggingFace`](https://huggingface.co/TheBloke) - Many quantized model are available for download and can be run with framework such as [`llama.cpp`](https://github.com/ggerganov/llama.cpp). You can also download models in [`llamafile` format](https://huggingface.co/models?other=llamafile) from HuggingFace.\n",
"2. [`gpt4all`](https://gpt4all.io/index.html) - The model explorer offers a leaderboard of metrics and associated quantized models available for download \n",
"3. [`Ollama`](https://github.com/jmorganca/ollama) - Several models can be accessed directly via `pull`\n",
"\n",
@@ -428,6 +429,62 @@
"llm(\"The first man on the moon was ... Let's think step by step\")"
]
},
{
"cell_type": "markdown",
"id": "056854e2-5e4b-4a03-be7e-03192e5c4e1e",
"metadata": {},
"source": [
"### llamafile\n",
"\n",
"One of the simplest ways to run an LLM locally is using a [llamafile](https://github.com/Mozilla-Ocho/llamafile). All you need to do is:\n",
"\n",
"1) Download a llamafile from [HuggingFace](https://huggingface.co/models?other=llamafile)\n",
"2) Make the file executable\n",
"3) Run the file\n",
"\n",
"llamafiles bundle model weights and a [specially-compiled](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#technical-details) version of [`llama.cpp`](https://github.com/ggerganov/llama.cpp) into a single file that can run on most computers any additional dependencies. They also come with an embedded inference server that provides an [API](https://github.com/Mozilla-Ocho/llamafile/blob/main/llama.cpp/server/README.md#api-endpoints) for interacting with your model. \n",
"\n",
"Here's a simple bash script that shows all 3 setup steps:\n",
"After you run the above setup steps, you can use LangChain to interact with your model:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "002e655c-ba18-4db3-ac7b-f33e825d14b6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"\\nFirstly, let's imagine the scene where Neil Armstrong stepped onto the moon. This happened in 1969. The first man on the moon was Neil Armstrong. We already know that.\\n2nd, let's take a step back. Neil Armstrong didn't have any special powers. He had to land his spacecraft safely on the moon without injuring anyone or causing any damage. If he failed to do this, he would have been killed along with all those people who were on board the spacecraft.\\n3rd, let's imagine that Neil Armstrong successfully landed his spacecraft on the moon and made it back to Earth safely. The next step was for him to be hailed as a hero by his people back home. It took years before Neil Armstrong became an American hero.\\n4th, let's take another step back. Let's imagine that Neil Armstrong wasn't hailed as a hero, and instead, he was just forgotten. This happened in the 1970s. Neil Armstrong wasn't recognized for his remarkable achievement on the moon until after he died.\\n5th, let's take another step back. Let's imagine that Neil Armstrong didn't die in the 1970s and instead, lived to be a hundred years old. This happened in 2036. In the year 2036, Neil Armstrong would have been a centenarian.\\nNow, let's think about the present. Neil Armstrong is still alive. He turned 95 years old on July 20th, 2018. If he were to die now, his achievement of becoming the first human being to set foot on the moon would remain an unforgettable moment in history.\\nI hope this helps you understand the significance and importance of Neil Armstrong's achievement on the moon!\""
"It is often crucial to have LLMs return structured output. This is because oftentimes the outputs of the LLMs are used in downstream applications, where specific arguments are required. Having the LLM return structured output reliably is necessary for that.\n",
"\n",
"There are a few different high level strategies that are used to do this:\n",
"\n",
"- Prompting: This is when you ask the LLM (very nicely) to return output in the desired format (JSON, XML). This is nice because it works with all LLMs. It is not nice because there is no guarantee that the LLM returns the output in the right format.\n",
"- Function calling: This is when the LLM is fine-tuned to be able to not just generate a completion, but also generate a function call. The functions the LLM can call are generally passed as extra parameters to the model API. The function names and descriptions should be treated as part of the prompt (they usually count against token counts, and are used by the LLM to decide what to do).\n",
"- Tool calling: A technique similar to function calling, but it allows the LLM to call multiple functions at the same time.\n",
"- JSON mode: This is when the LLM is guaranteed to return JSON.\n",
"\n",
"\n",
"\n",
"Different models may support different variants of these, with slightly different parameters. In order to make it easy to get LLMs to return structured output, we have added a common interface to LangChain models: `.with_structured_output`. \n",
"\n",
"By invoking this method (and passing in a JSON schema or a Pydantic model) the model will add whatever model parameters + output parsers are necessary to get back the structured output. There may be more than one way to do this (e.g., function calling vs JSON mode) - you can configure which method to use by passing into that method.\n",
"\n",
"Let's look at some examples of this in action!\n",
"\n",
"We will use Pydantic to easily structure the response schema."
">[Fiddler](https://www.fiddler.ai/) is the pioneer in enterprise Generative and Predictive system ops, offering a unified platform that enables Data Science, MLOps, Risk, Compliance, Analytics, and other LOB teams to monitor, explain, analyze, and improve ML deployments at enterprise scale. "
"This notebook shows how to use an experimental wrapper around Anthropic that gives it the same API as OpenAI Functions."
"This notebook shows how to use an experimental wrapper around Anthropic that gives it tool calling and structured output capabilities. It follows Anthropic's guide [here](https://docs.anthropic.com/claude/docs/functions-external-tools)\n",
"\n",
"The wrapper is available from the `langchain-anthropic` package, and it also requires the optional dependency `defusedxml` for parsing XML output from the llm.\n",
"\n",
"Note: this is a beta feature that will be replaced by Anthropic's formal implementation of tool calling, but it is useful for testing and experimentation in the meantime."
"`ChatAnthropicTools` also implements the [`with_structured_output` spec](/docs/guides/structured_output) for extracting values. Note: this may not be as stable as with models that explicitly offer tool calling."
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.