Add unit tests that show differences between sync / async versions when
streaming.
The inner on_chain_chunk event is missing if mixing sync and async
functionality. Likely due to missing tap_output_iter implementation on
the sync variant of `_transform_stream_with_config`
0.2 is not a breaking release for core (but it is for langchain and
community)
To keep the core+langchain+community packages in sync at 0.2, we will
relax deps throughout the ecosystem to tolerate `langchain-core` 0.2
## Description
This PR introduces the new `langchain-qdrant` partner package, intending
to deprecate the community package.
## Changes
- Moved the Qdrant vector store implementation `/libs/partners/qdrant`
with integration tests.
- The conditional imports of the client library are now regular with
minor implementation improvements.
- Added a deprecation warning to
`langchain_community.vectorstores.qdrant.Qdrant`.
- Replaced references/imports from `langchain_community` with either
`langchain_core` or by moving the definitions to the `langchain_qdrant`
package itself.
- Updated the Qdrant vector store documentation to reflect the changes.
## Testing
- `QDRANT_URL` and
[`QDRANT_API_KEY`](583e36bf6b)
env values need to be set to [run integration
tests](d608c93d1f)
in the [cloud](https://cloud.qdrant.tech).
- If a Qdrant instance is running at `http://localhost:6333`, the
integration tests will use it too.
- By default, tests use an
[`in-memory`](https://github.com/qdrant/qdrant-client?tab=readme-ov-file#local-mode)
instance(Not comprehensive).
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
This PR makes some small updates for `KuzuQAChain` for graph QA.
- Updated Cypher generation prompt (we now support `WHERE EXISTS`) and
generalize it more
- Support different LLMs for Cypher generation and QA
- Update docs and examples
- Adds Techniques section
- Moves function calling, retrieval types to Techniques
- Removes Installation section (not conceptual)
- Reorders a few things (chat models before llms, package descriptions
before diagram)
- Add text splitter types to Techniques
First Pr for the langchain_huggingface partner Package
- Moved some of the hugging face related class from `community` to the
new `partner package`
Still needed :
- Documentation
- Tests
- Support for the new apply_chat_template in `ChatHuggingFace`
- Confirm choice of class to support for embeddings witht he
sentence-transformer team.
cc : @efriis
---------
Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- Introduce the `merge_and_split` function in the
`UpstageLayoutAnalysisLoader`.
- The `merge_and_split` function takes a list of documents and a
splitter as inputs.
- This function merges all documents and then divides them using the
`split_documents` method, which is a proprietary function of the
splitter.
- If the provided splitter is `None` (which is the default setting), the
function will simply merge the documents without splitting them.
- Make sure the left nav bar is horizontally scrollable
- Make sure the navigation dropdown is vertically scrollable and height
capped at 80% of viewport height
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Adds a Python REPL that executes code in a code interpreter session
using Azure Container Apps dynamic sessions.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [X] **PR title**: "community: Add source metadata to bedrock retriever
response"
- [X] **PR message**:
- **Description:** Bedrock retrieve API returns extra metadata in the
response which is currently not returned in the retriever response
- **Issue:** The change adds the metadata from bedrock retrieve API
response to the bedrock retriever in a backward compatible way. Renamed
metadata to sourceMetadata as metadata term is being used in the
Document already. This is in sync with what we are doing in llama-index
as well.
- **Dependencies:** No
- [X] **Add tests and docs**:
1. Added unit tests
2. Notebook already exists and does not need any change
3. Response from end to end testing, just to ensure backward
compatibility: `[Document(page_content='Exoplanets.',
metadata={'location': {'s3Location': {'uri':
's3://bucket/file_name.txt'}, 'type': 'S3'}, 'score': 0.46886647,
'source_metadata': {'x-amz-bedrock-kb-source-uri':
's3://bucket/file_name.txt', 'tag': 'space', 'team': 'Nasa', 'year':
1946.0}})]`
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
**Description:** Added a few additional arguments to the whisper parser,
which can be consumed by the underlying API.
The prompt is especially important to fine-tune transcriptions.
---------
Co-authored-by: Roi Perlman <roi@fivesigmalabs.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
This PR introduces chunking logic to the `DeepInfraEmbeddings` class to
handle large batch sizes without exceeding maximum batch size of the
backend. This enhancement ensures that embedding generation processes
large batches by breaking them down into smaller, manageable chunks,
each conforming to the maximum batch size limit.
**Issue:**
Fixes#21189
**Dependencies:**
No new dependencies introduced.
- Added new document_transformer: MarkdonifyTransformer, that uses
`markdonify` package with customizable options to convert HTML to
Markdown. It's similar to Html2TextTransformer, but has more flexible
options and also I've noticed that sometimes MarkdownifyTransformer
performs better than html2text one, so that's why I use markdownify on
my project.
- Added docs and tests
- Usage:
```python
from langchain_community.document_transformers import MarkdownifyTransformer
markdownify = MarkdownifyTransformer()
docs_transform = markdownify.transform_documents(docs)
```
- Example of better performance on simple task, that I've noticed:
```
<html>
<head><title>Reports on product movement</title></head>
<body>
<p data-block-key="2wst7">The reports on product movement will be useful for forming supplier orders and controlling outcomes.</p>
</body>
```
**Html2TextTransformer**:
```python
[Document(page_content='The reports on product movement will be useful for forming supplier orders and\ncontrolling outcomes.\n\n')]
# Here we can see 'and\ncontrolling', which has extra '\n' in it
```
**MarkdownifyTranformer**:
```python
[Document(page_content='Reports on product movement\n\nThe reports on product movement will be useful for forming supplier orders and controlling outcomes.')]
```
---------
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.bbrouter>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.local>
Co-authored-by: Sokolov Fedor <f.sokolov@192.168.1.6>
### GPT4AllEmbeddings parameters
---
**Description:**
As of right now the **Embed4All** class inside _GPT4AllEmbeddings_ is
instantiated as it's default which leaves no room to customize the
chosen model and it's behavior. Thus:
- GPT4AllEmbeddings can now be instantiated with custom parameters like
a different model that shall be used.
---------
Co-authored-by: AlexJauchWalser <alexander.jauch-walser@knime.com>
The `_amake_session()` method does not allow modifying the
`self.session_factory` with
anything other than `async_sessionmaker`. This prohibits advanced uses
of `index()`.
In a RAG architecture, it is necessary to import document chunks.
To keep track of the links between chunks and documents, we can use the
`index()` API.
This API proposes to use an SQL-type record manager.
In a classic use case, using `SQLRecordManager` and a vector database,
it is impossible
to guarantee the consistency of the import. Indeed, if a crash occurs
during the import
(problem with the network, ...)
there is an inconsistency between the SQL database and the vector
database.
With the
[PR](https://github.com/langchain-ai/langchain-postgres/pull/32) we are
proposing for `langchain-postgres`,
it is now possible to guarantee the consistency of the import of chunks
into
a vector database. It's possible only if the outer session is built
with the connection.
```python
def main():
db_url = "postgresql+psycopg://postgres:password_postgres@localhost:5432/"
engine = create_engine(db_url, echo=True)
embeddings = FakeEmbeddings()
pgvector:VectorStore = PGVector(
embeddings=embeddings,
connection=engine,
)
record_manager = SQLRecordManager(
namespace="namespace",
engine=engine,
)
record_manager.create_schema()
with engine.connect() as connection:
session_maker = scoped_session(sessionmaker(bind=connection))
# NOTE: Update session_factories
record_manager.session_factory = session_maker
pgvector.session_maker = session_maker
with connection.begin():
loader = CSVLoader(
"data/faq/faq.csv",
source_column="source",
autodetect_encoding=True,
)
result = index(
source_id_key="source",
docs_source=loader.load()[:1],
cleanup="incremental",
vector_store=pgvector,
record_manager=record_manager,
)
print(result)
```
The same thing is possible asynchronously, but a bug in
`sql_record_manager.py`
in `_amake_session()` must first be fixed.
```python
async def _amake_session(self) -> AsyncGenerator[AsyncSession, None]:
"""Create a session and close it after use."""
# FIXME: REMOVE if not isinstance(self.session_factory, async_sessionmaker):~~
if not isinstance(self.engine, AsyncEngine):
raise AssertionError("This method is not supported for sync engines.")
async with self.session_factory() as session:
yield session
```
Then, it is possible to do the same thing asynchronously:
```python
async def main():
db_url = "postgresql+psycopg://postgres:password_postgres@localhost:5432/"
engine = create_async_engine(db_url, echo=True)
embeddings = FakeEmbeddings()
pgvector:VectorStore = PGVector(
embeddings=embeddings,
connection=engine,
)
record_manager = SQLRecordManager(
namespace="namespace",
engine=engine,
async_mode=True,
)
await record_manager.acreate_schema()
async with engine.connect() as connection:
session_maker = async_scoped_session(
async_sessionmaker(bind=connection),
scopefunc=current_task)
record_manager.session_factory = session_maker
pgvector.session_maker = session_maker
async with connection.begin():
loader = CSVLoader(
"data/faq/faq.csv",
source_column="source",
autodetect_encoding=True,
)
result = await aindex(
source_id_key="source",
docs_source=loader.load()[:1],
cleanup="incremental",
vector_store=pgvector,
record_manager=record_manager,
)
print(result)
asyncio.run(main())
```
---------
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Sean <sean@upstage.ai>
Co-authored-by: JuHyung-Son <sonju0427@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: YISH <mokeyish@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Jason_Chen <820542443@qq.com>
Co-authored-by: Joan Fontanals <joan.fontanals.martinez@jina.ai>
Co-authored-by: Pavlo Paliychuk <pavlo.paliychuk.ca@gmail.com>
Co-authored-by: fzowl <160063452+fzowl@users.noreply.github.com>
Co-authored-by: samanhappy <samanhappy@gmail.com>
Co-authored-by: Lei Zhang <zhanglei@apache.org>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: merdan <48309329+merdan-9@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Andres Algaba <andresalgaba@gmail.com>
Co-authored-by: davidefantiniIntel <115252273+davidefantiniIntel@users.noreply.github.com>
Co-authored-by: Jingpan Xiong <71321890+klaus-xiong@users.noreply.github.com>
Co-authored-by: kaka <kaka@zbyte-inc.cloud>
Co-authored-by: jingsi <jingsi@leadincloud.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Rahul Triptahi <rahul.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Shengsheng Huang <shannie.huang@gmail.com>
Co-authored-by: Michael Schock <mjschock@users.noreply.github.com>
Co-authored-by: Anish Chakraborty <anish749@users.noreply.github.com>
Co-authored-by: am-kinetica <85610855+am-kinetica@users.noreply.github.com>
Co-authored-by: Dristy Srivastava <58721149+dristysrivastava@users.noreply.github.com>
Co-authored-by: Matt <matthew.gotteiner@microsoft.com>
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
- **Description:** Fix import class name exporeted from
'playwright.async_api' and 'playwright.sync_api' to match the correct
name in playwright tool. Change import from inline guard_import to
helper function that calls guard_import to make code more readable in
gmail tool. Upgrade playwright version to 1.43.0
- **Issue:** #21354
- **Dependencies:** upgrade playwright version(this is not required for
the bugfix itself, just trying to keep dependencies fresh. I can remove
the playwright version upgrade if you want.)
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
0.2rc
migrations
- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks
Other todo
- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Robocorp (action server) toolkit had a limitation that the content
length returned by the tool was always cut to max 5000 chars. This was
from the time when context windows were much more limited.
This PR removes the limitation. Whatever the underlying tool provides
gets sent back to the agent.
As the robocorp toolkit no longer restricts the content, the implication
is that either the Action (tool) developer or the agent developer needs
to be aware of potentially oversized tool responses. Our point of view
is this should be the agent developer's responsibility, them being in
control of the use case and aware of the context window the LLM has.
Description: We are merging UPSTAGE_DOCUMENT_AI_API_KEY and
UPSTAGE_API_KEY into one, and only UPSTAGE_API_KEY will be used going
forward. And we changed the base class of ChatUpstage to BaseChatOpenAI.
---------
Co-authored-by: Sean <chosh0615@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "langchain-ibm: Fix llm and embeddings 'verify'
attribute default value"
- [x] **PR message**:
- **Description:** fix default value of "verify" attribute
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Erick Friis <erick@langchain.dev>
…Endpoint`
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** add `bind_tools` and `with_structured_output` support
to `QianfanChatEndpoint`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- Added Together docs in chat models section
- Update Together provider docs to match the LLM & chat models sections
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This is a doc update. It fixes up formatting and product name
references. The example code is updated to use a local built-in text
file.
@mmhangami Please take a look
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** Updated the together integration docs by leading with
the streaming example, explicitly specifying a model to show users how
to do that, and updating the sections to more closely match other
integrations.
Description: This PR includes fix for loader_source to be fetched from
metadata in case of GdriveLoaders.
Documentation: NA
Unit Test: NA
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
- it's only node ids that are limited
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **HuggingFaceInferenceAPIEmbeddings**: "Additional Headers"
- Where: langchain, community, embeddings. huggingface.py.
- Community: add additional headers when needed by custom HuggingFace
TEI embedding endpoints. HuggingFaceInferenceAPIEmbeddings"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Adding the `additional_headers` to be passed to
requests library if needed
- **Dependencies:** none
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. Tested with locally available TEI endpoints with and without
`additional_headers`
2. Example Usage
```python
embeddings=HuggingFaceInferenceAPIEmbeddings(
api_key=MY_CUSTOM_API_KEY,
api_url=MY_CUSTOM_TEI_URL,
additional_headers={
"Content-Type": "application/json"
}
)
```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Massimiliano Pronesti <massimiliano.pronesti@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** Adding chat completions to the Together AI package,
which is our most popular API. Also staying backwards compatible with
the old API so folks can continue to use the completions API as well.
Also moved the embedding API to use the OpenAI library to standardize it
further.
**Twitter handle:** @nutlope
- [x] **Add tests and docs**: If you're adding a new integration, please
include
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
[Standardized model init args
#20085](https://github.com/langchain-ai/langchain/issues/20085)
- Enable premai chat model to be initialized with `model_name` as an
alias for `model`, `api_key` as an alias for `premai_api_key`.
- Add initialization test `test_premai_initialization`
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** fix: variable names in root validator not allowing
pass credentials as named parameters in llm instancing, also added
sambanova's sambaverse and sambastudio llms to __init__.py for module
import
Description: this change adds args_schema (pydantic BaseModel) to
YahooFinanceNewsTool for correct schema formatting on LLM function calls
Issue: currently using YahooFinanceNewsTool with OpenAI function calling
returns the following error "TypeError("YahooFinanceNewsTool._run() got
an unexpected keyword argument '__arg1'")". This happens because the
schema sent to the LLM is "input: "{'__arg1': 'MSFT'}"" while the method
should be called with the "query" parameter.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Issue: `load_qa_chain` is placed in the __init__.py file. As a result,
it is not listed in the API Reference docs.
BTW `load_qa_chain` is heavily presented in the doc examples, but is
missed in API Ref.
Change: moved code from init.py into a new file. Related: #21266
Reverts langchain-ai/langchain#21174
Hey team - going to revert this because it doesn't seem necessary for
testing. We should only be adding optional + extended_testing
dependencies for deps that have extended tests.
otherwise it just increases probability of dependency conflicts in the
community lockfile.
Thank you for contributing to LangChain!
community:baichuan[patch]: standardize init args
updated `baichuan_api_key` so that aliased to `api_key`. Added test that
it continues to set the same underlying attribute. Test checks for
`SecretStr`
updated `temperature` with Pydantic Field, added unit test.
Related to https://github.com/langchain-ai/langchain/issues/20085
If Session and/or keyspace are not provided, they are resolved from
cassio's context. So they are not required.
This change is fully backward compatible.
Issue: the `langkit` package is not presented in the `pyproject.toml`
but it is a requirement for the `WhyLabsCallbackHandler`
Change: added `langkit`
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** Update LarkSuite loader doc to give an example for
loading data from LarkSuite wiki.
**Issue:** None
**Dependencies:** None
**Twitter handle:** None
Thank you for contributing to LangChain!
- [x] **PR title**: "langchain-ibm: Add support for ibm-watsonx-ai new
major version"
- [x] **PR message**:
- **Description:** Add support for ibm-watsonx-ai new major version
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
The `LocalFileStore` class can be used to create an on-disk
`CacheBackedEmbeddings` cache. The number of files in these embeddings
caches can grow to be quite large over time (hundreds of thousands) as
embeddings are computed for new versions of content, but the embeddings
for old/deprecated content are not removed.
A *least-recently-used* (LRU) cache policy could be applied to the
`LocalFileStore` directory to delete cache entries that have not been
referenced for some time:
```bash
# delete files that have not been accessed in the last 90 days
find embeddings_cache_dir/ -atime 90 -print0 | xargs -0 rm
```
However, most filesystems in enterprise environments disable access time
modification on read to improve performance. As a result, the access
times of these cache entry files are not updated when their values are
read.
To resolve this, this pull request updates the `LocalFileStore`
constructor to offer an `update_atime` parameter that causes access
times to be updated when a cache entry is read.
For example,
```python
file_store = LocalFileStore(temp_dir, update_atime=True)
```
The default is `False`, which retains the original behavior.
**Testing:**
I updated the LocalFileStore unit tests to test the access time update.
Before you could only extract triples (diffbot calls it facts) from
diffbot to avoid isolated nodes. However, sometimes isolated nodes can
still be useful like for prefiltering, so we want to allow users to
extract them if they want. Default behaviour is unchanged.
**Description:** Update unit test for ChatAnthropic
**Issue:** Test for key passed in from the environment should not have
the key initialized in the constructor
**Dependencies:** None
Thank you for contributing to LangChain!
- Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings
- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.
- We have made sure that make format and make lint run clean.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Memory return could be set as `str` or `message` by `return_messages`
flag as mentioned in
https://python.langchain.com/docs/modules/memory/#whether-memory-is-a-string-or-a-list-of-messages,
where
`langchain.chains.conversation.memory.ConversationSummaryBufferMemory`
did not implement that.
This commit added `buffer_as_str` and `buffer_as_messages` function, and
`buffer` now affected by `return_messages` flag.
## Example Test Code and Output
```python
# Fix: ConversationSummaryBufferMemory with return_messages flag function
# Test code
from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
from langchain_community.llms.ollama import Ollama
llm = Ollama()
# Create an instance of ConversationSummaryBufferMemory with return_messages set to True
memory = ConversationSummaryBufferMemory(return_messages=True, llm=llm)
# Add user and AI messages to the chat memory
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("what's up?")
# Print the buffer
print("Buffer:")
print(*map(type, memory.buffer), sep="\n")
print(memory.buffer, "\n")
# Print the buffer as a string
print("Buffer as String:")
print(type(memory.buffer_as_str))
print(memory.buffer_as_str, "\n")
# Print the buffer as messages
print("Buffer as Messages:")
print(*map(type, memory.buffer_as_messages), sep="\n")
print(memory.buffer_as_messages, "\n")
# Print the buffer after setting return_messages to False
memory.return_messages = False
print("Buffer after setting return_messages to False:")
print(type(memory.buffer))
print(memory.buffer, "\n")
```
```plaintext
Buffer:
<class 'langchain_core.messages.human.HumanMessage'>
<class 'langchain_core.messages.ai.AIMessage'>
[HumanMessage(content='hi!'), AIMessage(content="what's up?")]
Buffer as String:
<class 'str'>
Human: hi!
AI: what's up?
Buffer as Messages:
<class 'langchain_core.messages.human.HumanMessage'>
<class 'langchain_core.messages.ai.AIMessage'>
[HumanMessage(content='hi!'), AIMessage(content="what's up?")]
Buffer after setting return_messages to False:
<class 'str'>
Human: hi!
AI: what's up?
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Issue: we have several helper functions to import third-party libraries
like tools.gmail.utils.import_google in
[community.tools](https://api.python.langchain.com/en/latest/community_api_reference.html#id37).
And we have core.utils.utils.guard_import that works exactly for this
purpose.
The import_<package> functions work inconsistently and rather be private
functions.
Change: replaced these functions with the guard_import function.
Related to #21133
Issues (nit):
1. `utils.guard_import` prints wrong error message when there is an
import `error.` It prints the whole `module_name` but should be only the
first part as the pip package name. E.i. `langchain_core.utils` -> print
not `langchain-core` but `langchain_core.utils`. Also replace '_' with
'-' in the pip package name.
2. it does not handle the `ModuleNotFoundError` which raised if
`guard_import("wrong_module")`
Fixed issues; added ut-s. Controversial: I've reraised
`ModuleNotFoundError` as `ImportError`, since in case of the error, the
proposed action is the same - we need to install a missed package.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Issue: `load_summarize_chain` is placed in the __init__.py file. As a
result, it doesn't listed in the API Reference docs.
Change: moved code from __init__.py into a new file.
**PR message**:
- **Description:** Corrected a syntax error in the code comments within
the `create_tool_calling_agent` function in the langchain package.
- **Issue:** N/A
- **Dependencies:** No additional dependencies required.
- **Twitter handle:** N/A
This PR fixes#21196.
The error was occurring when calling chat completion API with a chat
history. Indeed, the Mistral API does not accept both `content` and
`tool_calls` in the same body.
This PR removes one of theses variables depending on the necessity.
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
* Introduce individual `fetch_` methods for easier typing.
* Rework some docstrings to google style
* Move some logic to the tool
* Merge the 2 cassandra utility files
- support two-tuples of any sequence type (eg. json.loads never produces
tuples)
- support type alias for role key
- if id is passed in in dict form use it
- if tool_calls passed in in dict form use them
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Refactors the docs build in order to:
- run the same `make build` command in both vercel and local build
- incrementally build artifacts in 2 distinct steps, instead of building
all docs in-place (in vercel) or in a _dist dir (locally)
Highlights:
- introduces `make build` in order to build the docs
- collects and generates all files for the build in
`docs/build/intermediate`
- renders those jupyter notebook + markdown files into
`docs/build/outputs`
And now the outputs to host are in `docs/build/outputs`, which will need
a vercel settings change.
Todo:
- [ ] figure out how to point the right directory (right now deleting
and moving docs dir in vercel_build.sh isn't great)
**Description:**
This pull request introduces a new feature for LangChain: the
integration with the Rememberizer API through a custom retriever.
This enables LangChain applications to allow users to load and sync
their data from Dropbox, Google Drive, Slack, their hard drive into a
vector database that LangChain can query. Queries involve sending text
chunks generated within LangChain and retrieving a collection of
semantically relevant user data for inclusion in LLM prompts.
User knowledge dramatically improved AI applications.
The Rememberizer integration will also allow users to access general
purpose vectorized data such as Reddit channel discussions and US
patents.
**Issue:**
N/A
**Dependencies:**
N/A
**Twitter handle:**
https://twitter.com/Rememberizer
## Summary
`ruff /path/to/file.py` works but is deprecated, and we now recommend
`ruff check /path/to/file.py` (to match `ruff format /path/to/file.py`).
Vertex DIY RAG APIs helps to build complex RAG systems and provide more
granular control, and are suited for custom use cases.
The Ranking API takes in a list of documents and reranks those documents
based on how relevant the documents are to a given query. Compared to
embeddings that look purely at the semantic similarity of a document and
a query, the ranking API can give you a more precise score for how well
a document answers a given query.
[Reference](https://cloud.google.com/generative-ai-app-builder/docs/ranking)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Sync the config in `devcontainer.json` and `docker-compose.yml`**
Issue: when opening the current `master` branch in a dev container in VS
Code, I get the following message as VS Code cannot find the mounted
source folder:

Opening in a GitHub Codespace works (it seems to ignore the mounts in
the `docker-compose.yml`.
This PR updates the mount in `docker-compose.yml` and the config in
`devcontainer.json` so that the two align.
I have tested these changes in GitHub Codespaces and a VS Code dev
container and both loaded successfully.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Add tests to check API keys and Active Directory tokens
are masked
**Issue:** Resolves#12165 for OpenAI and Azure OpenAI models
**Dependencies:** None
Also resolves#12473 which may be closed.
Additional contributors @alex4321 (#12473) and @onesolpark (#12542)
- [ ] **PR message**:
- **Description:** Refactored the lazy_load method to use asynchronous
execution for improved performance. The method now initiates scraping of
all URLs simultaneously using asyncio.gather, enhancing data fetching
efficiency. Each Document object is yielded immediately once its content
becomes available, streamlining the entire process.
- **Issue:** N/A
- **Dependencies:** Requires the asyncio library for handling
asynchronous tasks, which should already be part of standard Python
libraries in Python 3.7 and above.
- **Email:** [r73327118@gmail.com](mailto:r73327118@gmail.com)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Update python.py(experimental:Added code for PythonREPL)
Added code for PythonREPL, defining a static method 'sanitize_input'
that takes the string 'query' as input and returns a sanitizing string.
The purpose of this method is to remove unwanted characters from the
input string, Specifically:
1. Delete the whitespace at the beginning and end of the string (' \s').
2. Remove the quotation marks (`` ` ``) at the beginning and end of the
string.
3. Remove the keyword "python" at the beginning of the string (case
insensitive) because the user may have typed it.
This method uses regular expressions (regex) to implement sanitizing.
It all started with this code:
from langchain.agents import Tool
from langchain_experimental.utilities import PythonREPL
python_repl = PythonREPL()
repl_tool = Tool(
name="python_repl",
description="Remove redundant formatting marks at the beginning and end
of source code from input.Use a Python shell to execute python commands.
If you want to see the output of a value, you should print it out with
`print(...)`.",
func=python_repl.run,
)
When I call the agent to write a piece of code for me and execute it
with the defined code, I must get an error: SyntaxError('invalid
syntax', ('<string>', 1, 1,'In', 1, 2))
After checking, I found that pythonREPL has less formatting of input
code than the soon-to-be deprecated pythonREPL tool, so I added this
step to it, so that no matter what code I ask the agent to write for me,
it can be executed smoothly and get the output result.
I have tried modifying the prompt words to solve this problem before,
but it did not work, and by adding a simple format check, the problem is
well resolved.
<img width="1271" alt="image"
src="https://github.com/langchain-ai/langchain/assets/164149097/c49a685f-d246-4b11-b655-fd952fc2f04c">
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**
This pull request updates the Bagel Network package name from
"betabageldb" to "bagelML" to align with the latest changes made by the
Bagel Network team.
The following modifications have been made:
- Updated all references to the old package name ("betabageldb") with
the new package name ("bagelML") throughout the codebase.
- Modified the documentation, and any relevant scripts to reflect the
package name change.
- Tested the changes to ensure that the functionality remains intact and
no breaking changes were introduced.
By merging this pull request, our project will stay up to date with the
latest Bagel Network package naming convention, ensuring compatibility
and smooth integration with their updated library.
Please review the changes and provide any feedback or suggestions. Thank
you!
**Description:** Update UpstageLayoutAnalysisParser and Loader and add
upstage loader example in pdf section
**Dependencies:** langchain_community
**Twitter handle:** [@upstageai](https://twitter.com/upstageai)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Issue:**
Currently `AzureSearch` vector store does not implement `delete` method.
This PR implements it. This also makes it compatible with LangChain
indexer.
**Dependencies:**
None
**Twitter handle:**
@martintriska1
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Upgrades prompts module to use optional imports.
This code was generated with a migration script, but had to be adjusted
manually a bit.
Testing in preparation for applying this code modification across the
rest of the modules in langchain package to reverse the dependency
between langchain community and langchain.
## Summary
No new diagnostics (given that the set of enabled rules hasn't changed),
but gains access to our new parser (much faster) and reduced false
positives all around.
### Description:
When attempting to download PDF files from arXiv, an unexpected 404
error frequently occurs. This error halts the operation, regardless of
whether there are additional documents to process. As a solution, I
suggest implementing a mechanism to ignore and communicate this error
and continue processing the next document from the list.
Proposed Solution: To address the issue of unexpected 404 errors during
PDF downloads from arXiv, I propose implementing the following solution:
- Error Handling: Implement error handling mechanisms to catch and
handle 404 errors gracefully.
- Communication: Inform the user or logging system about the occurrence
of the 404 error.
- Continued Processing: After encountering a 404 error, continue
processing the remaining documents from the list without interruption.
This solution ensures that the application can handle unexpected errors
without terminating the entire operation. It promotes resilience and
robustness in the face of intermittent issues encountered during PDF
downloads from arXiv.
### Issue:
#20909
### Dependencies:
none
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## Summary
I ran `ruff check --extend-select RUF100 -n` to identify `# noqa`
comments that weren't having any effect in Ruff, and then `ruff check
--extend-select RUF100 -n --fix` on select files to remove all of the
unnecessary `# noqa: F401` violations. It's possible that these were
needed at some point in the past, but they're not necessary in Ruff
v0.1.15 (used by LangChain) or in the latest release.
Co-authored-by: Erick Friis <erick@langchain.dev>
…/17690
Thank you for contributing to LangChain!
- [x] **Fix Google Lens knowledge graph issue**: "langchain: community"
- Fix for [No "knowledge_graph" property in Google Lens API call from
SerpAPI](https://github.com/langchain-ai/langchain/issues/17690)
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** handled the existence of keys in the json response of
Google Lens
- **Issue:** [No "knowledge_graph" property in Google Lens API call from
SerpAPI](https://github.com/langchain-ai/langchain/issues/17690)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Proposing to centralize code for handling dynamic imports. This allows treating langchain-community as an optional dependency.
---
The proposal is to scan the code base and to replace all existing imports with dynamic imports using this functionality.
Fixed the error that the model name is never actually put into GigaChat
request payload, always defaulting to `GigaChat-Lite`.
With this fix, model selection through
```python
import os
from langchain.chat_models.gigachat import GigaChat
chat = GigaChat(
name="GigaChat-Pro", # <- HERE!!!!!
...
)
```
should actually work, as intended in
[here](804390ba4b/libs/community/langchain_community/llms/gigachat.py (L36)).
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description**: ToolKit and Tools for accessing data in a Cassandra
Database primarily for Agent integration. Initially, this includes the
following tools:
- `cassandra_db_schema` Gathers all schema information for the connected
database or a specific schema. Critical for the agent when determining
actions.
- `cassandra_db_select_table_data` Selects data from a specific keyspace
and table. The agent can pass paramaters for a predicate and limits on
the number of returned records.
- `cassandra_db_query` Expiriemental alternative to
`cassandra_db_select_table_data` which takes a query string completely
formed by the agent instead of parameters. May be removed in future
versions.
Includes unit test and two notebooks to demonstrate usage.
**Dependencies**: cassio
**Twitter handle**: @PatrickMcFadin
---------
Co-authored-by: Phil Miesle <phil.miesle@datastax.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This pull request introduces a new feature to community
tools, enhancing its search capabilities by integrating the Mojeek
search engine
**Dependencies:** None
---------
Co-authored-by: Igor Brai <igor@mojeek.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Removed redundant self/cls from required args of class functions in
_get_python_function_required_args:
```python
class MemberTool:
def search_member(
self,
keyword: str,
*args,
**kwargs,
):
"""Search on members with any keyword like first_name, last_name, email
Args:
keyword: Any keyword of member
"""
headers = dict(authorization=kwargs['token'])
members = []
try:
members = request_(
method='SEARCH',
url=f'{service_url}/apiv1/members',
headers=headers,
json=dict(query=keyword),
)
except Exception as e:
logger.info(e.__doc__)
return members
convert_to_openai_tool(MemberTool.search_member)
```
expected result:
```
{'type': 'function', 'function': {'name': 'search_member', 'description': 'Search on members with any keyword like first_name, last_name, username, email', 'parameters': {'type': 'object', 'properties': {'keyword': {'type': 'string', 'description': 'Any keyword of member'}}, 'required': ['keyword']}}}
```
#20685
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "docs: switched GCSLoaders docs to
langchain-google-community"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** switched GCSLoaders docs to
langchain-google-community
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
Implemented bind_tools for OllamaFunctions.
Made OllamaFunctions sub class of ChatOllama.
Implemented with_structured_output for OllamaFunctions.
integration unit test has been updated.
notebook has been updated.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I can't seem to reproduce, but i got this:
```
SystemError: AST constructor recursion depth mismatch (before=102, after=37)
```
And the operation isn't critical for the actual forward pass so seems
preferable to expand our caught exceptions
**Description**: This update enhances the `extract_sub_links` function
within the `langchain_core/utils/html.py` module to include query
parameters in the extracted URLs.
**Issue**: N/A
**Dependencies**: No additional dependencies required for this change.
**Twitter handle**: N/A
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Just a simple PR to fix a broken link. Apparently having backticks
outside a link makes it render as code.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This introduces `store_kwargs` which behaves similarly to `graph_kwargs`
on the `RdfGraph` object, which will enable users to pass `headers` and
other arguments to the underlying `SPARQLStore` object. I have also made
a [PR in `rdflib` to support passing
`default_graph`](https://github.com/RDFLib/rdflib/pull/2761).
Example usage:
```python
from langchain_community.graphs import RdfGraph
graph = RdfGraph(
query_endpoint="http://localhost/sparql",
standard="rdf",
store_kwargs=dict(
default_graph="http://example.com/mygraph"
)
)
```
<!--If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.-->
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
MindsDB integrates with LangChain, enabling users to deploy, serve, and
fine-tune models available via LangChain within MindsDB, making them
accessible to numerous data sources.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: The PebbloSafeLoader should first check for owner,
full_path and size in metadata before implementing its own logic.
Dependencies: None
Documentation: NA.
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Issue: #20514
The current implementation of `construct_instance` expects a `texts:
List[str]` that will call the embedding function. This might not be
needed when we already have a client with collection and `path, you
don't want to add any text.
This PR adds a class method that returns a qdrant instance with an
existing client.
Here everytime
cb6e5e56c2/libs/community/langchain_community/vectorstores/qdrant.py (L1592)
`construct_instance` is called, this line sends some text for embedding
generation.
---------
Co-authored-by: Anush <anushshetty90@gmail.com>
* Groundedness Check takes `str` or `list[Document]` as input.
* Deprecate `GroundednessCheck` due to its naming.
* Added `UpstageGroundednessCheck`.
* Hotfix for Groundedness Check parameter.
The name `query` was misleading and it should be `answer` instead.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This auto generates partner migrations.
At the moment the migration is from community -> partner.
So one would need to run the migration script twice to go from langchain to partner.
Add script to help generate migrations.
This works well for partner packages. Migrations are generated based on run time rather than static analysis (much simpler to get the correct migrations implemented).
The script for generating migrations from langchain to community still needs work.
`langchain_pinecone.Pinecone` is deprecated in favor of
`PineconeVectorStore`, and is currently a subclass of
`PineconeVectorStore`.
```python
@deprecated(since="0.0.3", removal="0.2.0", alternative="PineconeVectorStore")
class Pinecone(PineconeVectorStore):
"""Deprecated. Use PineconeVectorStore instead."""
pass
```
**Description:** AzureSearch vector store has no tests. This PR adds
initial tests to validate the code can be imported and used.
**Issue:** N/A
**Dependencies:** azure-search-documents and azure-identity are added as
optional dependencies for testing
---------
Co-authored-by: Matt Gotteiner <[email protected]>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**:
_PebbloSafeLoader_: Add support for pebblo server and client version
**Documentation:** NA
**Unit test:** NA
**Issue:** NA
**Dependencies:** None
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- [ ] **Kinetica Document Loader**: "community: a class to load
Documents from Kinetica"
- [ ] **Kinetica Document Loader**:
- **Description:** implemented KineticaLoader in `kinetica_loader.py`
- **Dependencies:** install the Kinetica API using `pip install
gpudb==7.2.0.1 `
**Description:** Fixes a bug in the HuggingGPT task execution logic
here:
except Exception as e:
self.status = "failed"
self.message = str(e)
self.status = "completed"
self.save_product()
where a caught exception effectively just sets `self.message` and can
then throw an exception if, e.g., `self.product` is not defined.
**Issue:** None that I'm aware of.
**Dependencies:** None
**Twitter handle:** https://twitter.com/michaeljschock
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Changes
`lanchain_core.output_parsers.CommaSeparatedListOutputParser` to handle
`,` as a delimiter alongside the previous implementation which used `, `
as delimiter.
- **Issue:** Started noticing that some results returned by LLMs were
not getting parsed correctly when the output contained `,` instead of `,
`.
- **Dependencies:** No
- **Twitter handle:** not active on twitter.
<!---
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
-->
- **Description**:
- **add support for more data types**: by default `IpexLLM` will load
the model in int4 format. This PR adds more data types support such as
`sym_in5`, `sym_int8`, etc. Data formats like NF3, NF4, FP4 and FP8 are
only supported on GPU and will be added in future PR.
- Fix a small issue in saving/loading, update api docs
- **Dependencies**: `ipex-llm` library
- **Document**: In `docs/docs/integrations/llms/ipex_llm.ipynb`, added
instructions for saving/loading low-bit model.
- **Tests**: added new test cases to
`libs/community/tests/integration_tests/llms/test_ipex_llm.py`, added
config params.
- **Contribution maintainer**: @shane-huang
Description: Add support for Semantic topics and entities.
Classification done by pebblo-server is not used to enhance metadata of
Documents loaded by document loaders.
Dependencies: None
Documentation: Updated.
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**
- [x] **PR message**:
- **Description:** Deprecate persist method in Chroma no longer exists
in Chroma 0.4.x
- **Issue:** #20851
- **Dependencies:** None
- **Twitter handle:** AndresAlgaba1
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:**
This PR removes an unnecessary code snippet from the documentation. The
snippet in question is not relevant to the content and does not
contribute to the overall understanding of the topic. It contained
redundant imports and unused code, potentially causing confusion for
readers.
**Issue:**
There is no specific issue number associated with this change.
**Dependencies:**
No additional dependencies are required for this change.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
The RecursiveUrlLoader loader offers a link_regex parameter that can
filter out URLs. However, this filtering capability is limited, and if
the internal links of the website change, unexpected resources may be
loaded. These resources, such as font files, can cause problems in
subsequent embedding processing.
>
https://blog.langchain.dev/assets/fonts/source-sans-pro-v21-latin-ext_latin-regular.woff2?v=0312715cbf
We can add the Content-Type in the HTTP response headers to the document
metadata so developers can choose which resources to use. This allows
developers to make their own choices.
For example, the following may be a good choice for text knowledge.
- text/plain - simple text file
- text/html - HTML web page
- text/xml - XML format file
- text/json - JSON format data
- application/pdf - PDF file
- application/msword - Word document
and ignore the following
- text/css - CSS stylesheet
- text/javascript - JavaScript script
- application/octet-stream - binary data
- image/jpeg - JPEG image
- image/png - PNG image
- image/gif - GIF image
- image/svg+xml - SVG image
- audio/mpeg - MPEG audio files
- video/mp4 - MP4 video file
- application/font-woff - WOFF font file
- application/font-ttf - TTF font file
- application/zip - ZIP compressed file
- application/octet-stream - binary data
**Twitter handle:** @coolbeevip
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
**Description:** In VoyageAI text-embedding examples use voyage-law-2
model
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: Fix misplaced zep cloud example links
- [x] **PR message**:
- **Description:** Fixes misplaced links for vector store and memory zep
cloud examples
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** Adapt JinaEmbeddings to run with the new Jina AI
Rerank API
- **Twitter handle:** https://twitter.com/JinaAI_
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
OpenAI API compatible server may not support `safe_len_embedding`,
use `disable_safe_len_embeddings=True` to disable it.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
* Updating the provider docs page.
The RAG example was meant to be moved to cookbook, but was merged by
mistake.
* Fix bug in Groundedness Check
---------
Co-authored-by: JuHyung-Son <sonju0427@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Currently, when a new dev container is created, poetry does not work in
it with the error "No module named 'rapidfuzz'".
Install Poetry outside the project venv so that poetry and project
dependencies do not get mixed. Use pipx to install poetry securely in
its own isolated environment.
Issue: #12237
Twitter handle: https://twitter.com/ibratoev
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Currently, the regex is static (`r"(?<=[.?!])\s+"`),
which is only useful for certain use cases. The current change only
moves this to be a parameter of split_text(). Which adds flexibility
without making it more complex (as the default regex is still the same).
- **Issue:** Not applicable (I searched, no one seems to have created
this issue yet).
- **Dependencies:** None.
_If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17._
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: MarkdownHeaderTextSplitter Fails to Parse Headers with
non-printable characters. more #20643
The following is the official test case. Just replacing `# Foo\n\n` with
`\ufeff# Foo\n\n` will cause the test case to fail.
chunk metadata is empty
```python
def test_md_header_text_splitter_1() -> None:
"""Test markdown splitter by header: Case 1."""
markdown_document = (
"\ufeff# Foo\n\n"
" ## Bar\n\n"
"Hi this is Jim\n\n"
"Hi this is Joe\n\n"
" ## Baz\n\n"
" Hi this is Molly"
)
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
]
markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on,
)
output = markdown_splitter.split_text(markdown_document)
expected_output = [
Document(
page_content="Hi this is Jim \nHi this is Joe",
metadata={"Header 1": "Foo", "Header 2": "Bar"},
),
Document(
page_content="Hi this is Molly",
metadata={"Header 1": "Foo", "Header 2": "Baz"},
),
]
assert output == expected_output
```
twitter: @coolbeevip
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Description :
- added functionalities - delete, index creation, using existing
connection object etc.
- updated usage
- Added LaceDB cloud OSS support
make lint_diff , make test checks done
- **Description:** fix a bug in the agent_token_buffer_memory
- **Issue:** agent_token_buffer_memory was not working with openai tools
- **Dependencies:** None
- **Twitter handle:** @pokidyshef
**Description:** Adds the command to install packages required before
using _Unstructured_ and _PDFMiner_ from `langchain.community`
**Documentation Page Being Updated:** [LangChain > Retrieval > Document
loaders > PDF > Using
Unstructured](https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf/#using-unstructured)
**Issue:** #20719
**Dependencies:** no dependencies
**Twitter handle:** SalikaDave
<!--
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17. -->
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## Description
Add `aprep_output` method to `langchain/chains/base.py`. Some downstream
`ChatMessageHistory` objects that use async connections require an async
way to append to the context.
It turned out that `ainvoke()` was calling `prep_output` which is
synchronous.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
# Proxy Fix for Groq Class 🐛🚀
## Description
This PR fixes a bug related to proxy settings in the `Groq` class,
allowing users to connect to LangChain services via a proxy.
## Changes Made
- ✅ FIX support for specifying proxy settings in the `Groq` class.
- ✅ Resolved the bug causing issues with proxy settings.
- ❌ Did not include unit tests and documentation updates.
- ❌ Did not run make format, make lint, and make test to ensure code
quality and functionality because I couldn't get it to run, so I don't
program in Python and couldn't run `ruff`.
- ❔ Ensured that the changes are backwards compatible.
- ✅ No additional dependencies were added to `pyproject.toml`.
### Error Before Fix
```python
Traceback (most recent call last):
File "/home/bg/Documents/code/github.com/back2nix/test/groq/main.py", line 9, in <module>
chat = ChatGroq(
^^^^^^^^^
File "/home/bg/Documents/code/github.com/back2nix/test/groq/venv310/lib/python3.11/site-packages/langchain_core/load/serializable.py", line 120, in __init__
super().__init__(**kwargs)
File "/home/bg/Documents/code/github.com/back2nix/test/groq/venv310/lib/python3.11/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for ChatGroq
__root__
Invalid `http_client` argument; Expected an instance of `httpx.AsyncClient` but got <class 'httpx.Client'> (type=type_error)
```
### Example usage after fix
```python3
import os
import httpx
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
chat = ChatGroq(
temperature=0,
groq_api_key=os.environ.get("GROQ_API_KEY"),
model_name="mixtral-8x7b-32768",
http_client=httpx.Client(
proxies="socks5://127.0.0.1:1080",
transport=httpx.HTTPTransport(local_address="0.0.0.0"),
),
http_async_client=httpx.AsyncClient(
proxies="socks5://127.0.0.1:1080",
transport=httpx.HTTPTransport(local_address="0.0.0.0"),
),
)
system = "You are a helpful assistant."
human = "{text}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
chain = prompt | chat
out = chain.invoke({"text": "Explain the importance of low latency LLMs"})
print(out)
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Implemented the ability to enable full-text search within the
SingleStore vector store, offering users a versatile range of search
strategies. This enhancement allows users to seamlessly combine
full-text search with vector search, enabling the following search
strategies:
* Search solely by vector similarity.
* Conduct searches exclusively based on text similarity, utilizing
Lucene internally.
* Filter search results by text similarity score, with the option to
specify a threshold, followed by a search based on vector similarity.
* Filter results by vector similarity score before conducting a search
based on text similarity.
* Perform searches using a weighted sum of vector and text similarity
scores.
Additionally, integration tests have been added to comprehensively cover
all scenarios.
Updated notebook with examples.
CC: @baskaryan, @hwchase17
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- added guard on the `pyTigerGraph` import
- added a missed example page in the `docs/integrations/graphs/`
- formatted the `docs/integrations/providers/` page to the consistent
format. Added links.
- **Description:**
This PR adds support for advanced filtering to the integration of HANA
Vector Engine.
The newly supported filtering operators are: $eq, $ne, $gt, $gte, $lt,
$lte, $between, $in, $nin, $like, $and, $or
- **Issue:** N/A
- **Dependencies:** no new dependencies added
Added integration tests to:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`
Description of the new capabilities in notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
Thank you for contributing to LangChain!
community:perplexity[patch]: standardize init args
updated pplx_api_key and request_timeout so that aliased to api_key, and
timeout respectively. Added test that both continue to set the same
underlying attributes.
Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [x] **PR title**: docs: Update Zep Messaging, add links to Zep Cloud
Docs
- [x] **PR message**:
- **Description:** This PR updates Zep messaging in the docs + links to
Langchain Zep Cloud examples in our documentation
- **Twitter handle:** @paulpaliychuk51
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
This PR moves the interface and the logic to core.
The following changes to namespaces:
`indexes` -> `indexing`
`indexes._api` -> `indexing.api`
Testing code is intentionally duplicated for now since it's testing
different
implementations of the record manager (in-memory vs. SQL).
Common logic will need to be pulled out into the test client.
A follow up PR will move the SQL based implementation outside of
LangChain.
**Description:**
This PR fixes an issue in message formatting function for Anthropic
models on Amazon Bedrock.
Currently, LangChain BedrockChat model will crash if it uses Anthropic
models and the model return a message in the following type:
- `AIMessageChunk`
Moreover, when use BedrockChat with for building Agent, the following
message types will trigger the same issue too:
- `HumanMessageChunk`
- `FunctionMessage`
**Issue:**
https://github.com/langchain-ai/langchain/issues/18831
**Dependencies:**
No.
**Testing:**
Manually tested. The following code was failing before the patch and
works after.
```
@tool
def square_root(x: str):
"Useful when you need to calculate the square root of a number"
return math.sqrt(int(x))
llm = ChatBedrock(
model_id="anthropic.claude-3-sonnet-20240229-v1:0",
model_kwargs={ "temperature": 0.0 },
)
prompt = ChatPromptTemplate.from_messages(
[
("system", FUNCTION_CALL_PROMPT),
("human", "Question: {user_input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
tools = [square_root]
tools_string = format_tool_to_anthropic_function(square_root)
agent = (
RunnablePassthrough.assign(
user_input=lambda x: x['user_input'],
agent_scratchpad=lambda x: format_to_openai_function_messages(
x["intermediate_steps"]
)
)
| prompt
| llm
| AnthropicFunctionsAgentOutputParser()
)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, return_intermediate_steps=True)
output = agent_executor.invoke({
"user_input": "What is the square root of 2?",
"tools_string": tools_string,
})
```
List of messages returned from Bedrock:
```
<SystemMessage> content='You are a helpful assistant.'
<HumanMessage> content='Question: What is the square root of 2?'
<AIMessageChunk> content="Okay, let's calculate the square root of 2.<scratchpad>\nTo calculate the square root of a number, I can use the square_root tool:\n\n<function_calls>\n <invoke>\n <tool_name>square_root</tool_name>\n <parameters>\n <__arg1>2</__arg1>\n </parameters>\n </invoke>\n</function_calls>\n</scratchpad>\n\n<function_results>\n<search_result>\nThe square root of 2 is approximately 1.414213562373095\n</search_result>\n</function_results>\n\n<answer>\nThe square root of 2 is approximately 1.414213562373095\n</answer>" id='run-92363df7-eff6-4849-bbba-fa16a1b2988c'"
<FunctionMessage> content='1.4142135623730951' name='square_root'
```
Hi! My name is Alex, I'm an SDK engineer from
[Comet](https://www.comet.com/site/)
This PR updates the `CometTracer` class.
Fixed an issue when `CometTracer` failed while logging the data to Comet
because this data is not JSON-encodable.
The problem was in some of the `Run` attributes that could contain
non-default types inside, now these attributes are taken not from the
run instance, but from the `run.dict()` return value.
Causes an issue for this code
```python
from langchain.chat_models.openai import ChatOpenAI
from langchain.output_parsers.openai_tools import JsonOutputToolsParser
from langchain.schema import SystemMessage
prompt = SystemMessage(content="You are a nice assistant.") + "{question}"
llm = ChatOpenAI(
model_kwargs={
"tools": [
{
"type": "function",
"function": {
"name": "web_search",
"description": "Searches the web for the answer to the question.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The question to search for.",
},
},
},
},
}
],
},
streaming=True,
)
parser = JsonOutputToolsParser(first_tool_only=True)
llm_chain = prompt | llm | parser | (lambda x: x)
for chunk in llm_chain.stream({"question": "tell me more about turtles"}):
print(chunk)
# message = llm_chain.invoke({"question": "tell me more about turtles"})
# print(message)
```
Instead by definition, we'll assume that RunnableLambdas consume the
entire stream and that if the stream isn't addable then it's the last
message of the stream that's in the usable format.
---
If users want to use addable dicts, they can wrap the dict in an
AddableDict class.
---
Likely, need to follow up with the same change for other places in the
code that do the upgrade
- **Description:** In January, Laiyer.ai became part of ProtectAI, which
means the model became owned by ProtectAI. In addition to that,
yesterday, we released a new version of the model addressing issues the
Langchain's community and others mentioned to us about false-positives.
The new model has a better accuracy compared to the previous version,
and we thought the Langchain community would benefit from using the
[latest version of the
model](https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2).
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** @alex_yaremchuk
This PR moves the implementations for chat history to core. So it's
easier to determine which dependencies need to be broken / add
deprecation warnings
Fixed an error in the sample code to ensure that the code can run
directly.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
langchain_community.document_loaders depricated
new langchain_google_community
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
docs: Fix link for `partition_pdf` in Semi_Structured_RAG.ipynb cookbook
- **Description:** Fix incorrect link to unstructured-io `partition_pdf`
section
Vector indexes in ClickHouse are experimental at the moment and can
sometimes break/change behaviour. So this PR makes it possible to say
that you don't want to specify an index type.
Any queries against the embedding column will be brute force/linear
scan, but that gives reasonable performance for small-medium dataset
sizes.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "docs: added a description of differences
langchain_google_genai vs langchain_google_vertexai"
- [ ]
- **Description:** added a description of differences
langchain_google_genai vs langchain_google_vertexai
**Description:** implemented GraphStore class for Apache Age graph db
**Dependencies:** depends on psycopg2
Unit and integration tests included. Formatting and linting have been
run.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Update Neo4j Cypher templates to use function callback to pass context
instead of passing it in user prompt.
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** This pull request removes a duplicated `--quiet` flag
in the pip install command found in the LangSmith Walkthrough section of
the documentation.
**Issue:** N/A
**Dependencies:** None
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: docs"
- [ ] **PR message**:
- **Description:** Updated Tutorials for Vertex Vector Search
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
@lkuligin for review
---------
Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This pull request corrects a mistake in the variable name within the
example code. The variable doc_schema has been changed to dog_schema to
fix the error.
Description: you don't need to pass a version for Replicate official
models. That was broken on LangChain until now!
You can now run:
```
llm = Replicate(
model="meta/meta-llama-3-8b-instruct",
model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
prompt = """
User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?
Assistant:
"""
llm(prompt)
```
I've updated the replicate.ipynb to reflect that.
twitter: @charliebholtz
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
ZhipuAI API only accepts `temperature` parameter between `(0, 1)` open
interval, and if `0` is passed, it responds with status code `400`.
However, 0 and 1 is often accepted by other APIs, for example, OpenAI
allows `[0, 2]` for temperature closed range.
This PR truncates temperature parameter passed to `[0.01, 0.99]` to
improve the compatibility between langchain's ecosystem's and ZhipuAI
(e.g., ragas `evaluate` often generates temperature 0, which results in
a lot of 400 invalid responses). The PR also truncates `top_p` parameter
since it has the same restriction.
Reference: [glm-4 doc](https://open.bigmodel.cn/dev/api#glm-4) (which
unfortunately is in Chinese though).
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
faster-whisper is a reimplementation of OpenAI's Whisper model using
CTranslate2, which is up to 4 times faster than enai/whisper for the
same accuracy while using less memory. The efficiency can be further
improved with 8-bit quantization on both CPU and GPU.
It can automatically detect the following 14 languages and transcribe
the text into their respective languages: en, zh, fr, de, ja, ko, ru,
es, th, it, pt, vi, ar, tr.
The gitbub repository for faster-whisper is :
https://github.com/SYSTRAN/faster-whisper
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
VSDX data contains EMF files. Some of these apparently can contain
exploits with some Adobe tools.
This is likely a false positive from antivirus software, but we
can remove it nonetheless.
Hey @eyurtsev, I noticed that the notebook isn't displaying the outputs
properly. I've gone ahead and rerun the cells to ensure that readers can
easily understand the functionality without having to run the code
themselves.
Replaced `from langchain.prompts` with `from langchain_core.prompts`
where it is appropriate.
Most of the changes go to `langchain_experimental`
Similar to #20348
…gFaceTextGenInference)
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for [HuggingFaceTextGenInference]
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in [HuggingFaceTextGenInference]
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
fix timeout issue
fix zhipuai usecase notebookbook
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
fixed broken `LangGraph` hyperlink
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
@rgupta2508 I believe this change is necessary following
https://github.com/langchain-ai/langchain/pull/20318 because of how
Milvus handles defaults:
59bf5e811a/pymilvus/client/prepare.py (L82-L85)
```python
num_shards = kwargs[next(iter(same_key))]
if not isinstance(num_shards, int):
msg = f"invalid num_shards type, got {type(num_shards)}, expected int"
raise ParamError(message=msg)
req.shards_num = num_shards
```
this way lets Milvus control the default value (instead of maintaining a
separate default in Langchain).
Let me know if I've got this wrong or you feel it's unnecessary. Thanks.
To support number of the shards for the collection to create in milvus
vvectorstores.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Description:** Move `FileCallbackHandler` from community to core
**Issue:** #20493
**Dependencies:** None
(imo) `FileCallbackHandler` is a built-in LangChain callback handler
like `StdOutCallbackHandler` and should properly be in in core.
- **Description:** added the headless parameter as optional argument to
the langchain_community.document_loaders AsyncChromiumLoader class
- **Dependencies:** None
- **Twitter handle:** @perinim_98
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- would happen when user's code tries to access attritbute that doesnt
exist, we prefer to let this crash in the user's code, rather than here
- also catch more cases where a runnable is invoked/streamed inside a
lambda. before we weren't seeing these as deps
**Description:** currently, the `DirectoryLoader` progress-bar maximum value is based on an incorrect number of files to process
In langchain_community/document_loaders/directory.py:127:
```python
paths = p.rglob(self.glob) if self.recursive else p.glob(self.glob)
items = [
path
for path in paths
if not (self.exclude and any(path.match(glob) for glob in self.exclude))
]
```
`paths` returns both files and directories. `items` is later used to determine the maximum value of the progress-bar which gives an incorrect progress indication.
- Add functions (_stream, _astream)
- Connect to _generate and _agenerate
Thank you for contributing to LangChain!
- [x] **PR title**: "community: Add streaming logic in ChatHuggingFace"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Addition functions (_stream, _astream) and connection
to _generate and _agenerate
- **Issue:** #18782
- **Dependencies:** none
- **Twitter handle:** @lunara_x
**Community: Unify Titan Takeoff Integrations and Adding Embedding
Support**
**Description:**
Titan Takeoff no longer reflects this either of the integrations in the
community folder. The two integrations (TitanTakeoffPro and
TitanTakeoff) where causing confusion with clients, so have moved code
into one place and created an alias for backwards compatibility. Added
Takeoff Client python package to do the bulk of the work with the
requests, this is because this package is actively updated with new
versions of Takeoff. So this integration will be far more robust and
will not degrade as badly over time.
**Issue:**
Fixes bugs in the old Titan integrations and unified the code with added
unit test converge to avoid future problems.
**Dependencies:**
Added optional dependency takeoff-client, all imports still work without
dependency including the Titan Takeoff classes but just will fail on
initialisation if not pip installed takeoff-client
**Twitter**
@MeryemArik9
Thanks all :)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Description: Add support for authorized identities in PebbloSafeLoader.
Now with this change, PebbloSafeLoader will extract
authorized_identities from metadata and send it to pebblo server
Dependencies: None
Documentation: None
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
From `langchain_community 0.0.30`, there's a bug that cannot send a
file-like object via `file` parameter instead of `file path` due to
casting the `file_path` to str type even if `file_path` is None.
which means that when I call the `partition_via_api()`, exactly one of
`filename` and `file` must be specified by the following error message.
however, from `langchain_community 0.0.30`, `file_path` is casted into
`str` type even `file_path` is None in `get_elements_from_api()` and got
an error at `exactly_one(filename=filename, file=file)`.
here's an error message
```
---> 51 exactly_one(filename=filename, file=file)
53 if metadata_filename and file_filename:
54 raise ValueError(
55 "Only one of metadata_filename and file_filename is specified. "
56 "metadata_filename is preferred. file_filename is marked for deprecation.",
57 )
File /opt/homebrew/lib/python3.11/site-packages/unstructured/partition/common.py:441, in exactly_one(**kwargs)
439 else:
440 message = f"{names[0]} must be specified."
--> 441 raise ValueError(message)
ValueError: Exactly one of filename and file must be specified.
```
So, I simply made a change that casting to str type when `file_path` is
not None.
I use `UnstructuredAPIFileLoader` like below.
```
from langchain_community.document_loaders.unstructured import UnstructuredAPIFileLoader
documents: list = UnstructuredAPIFileLoader(
file_path=None,
file=file, # file-like object, io.BytesIO type
mode='elements',
url='http://127.0.0.1:8000/general/v0/general',
content_type='application/pdf',
metadata_filename='asdf.pdf',
).load_and_split()
```
- [x] **PR title**: "community: improve kuzu cypher generation prompt"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Improves the Kùzu Cypher generation prompt to be more
robust to open source LLM outputs
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** @kuzudb
- [x] **Add tests and docs**: If you're adding a new integration, please
include
No new tests (non-breaking. change)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
## Description:
The PR introduces 3 changes:
1. added `recursive` property to `O365BaseLoader`. (To keep the behavior
unchanged, by default is set to `False`). When `recursive=True`,
`_load_from_folder()` also recursively loads all nested folders.
2. added `folder_id` to SharePointLoader.(similar to (this
PR)[https://github.com/langchain-ai/langchain/pull/10780] ) This
provides an alternative to `folder_path` that doesn't seem to reliably
work.
3. when none of `document_ids`, `folder_id`, `folder_path` is provided,
the loader fetches documets from root folder. Combined with
`recursive=True` this provides an easy way of loading all compatible
documents from SharePoint.
The PR contains the same logic as [this stale
PR](https://github.com/langchain-ai/langchain/pull/10780) by
@WaleedAlfaris. I'd like to ask his blessing for moving forward with
this one.
## Issue:
- As described in https://github.com/langchain-ai/langchain/issues/19938
and https://github.com/langchain-ai/langchain/pull/10780 the sharepoint
loader often does not seem to work with folder_path.
- Recursive loading of subfolders is a missing functionality
## Dependecies: None
Twitter handle:
@martintriska1 @WRhetoric
This is my first PR here, please be gentle :-)
Please review @baskaryan
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR updates OctoAIEndpoint LLM to subclass BaseOpenAI as OctoAI is
an OpenAI-compatible service. The documentation and tests have also been
updated.
**Description:** Adds ThirdAI NeuralDB retriever integration. NeuralDB
is a CPU-friendly and fine-tunable text retrieval engine. We previously
added a vector store integration but we think that it will be easier for
our customers if they can also find us under under
langchain-community/retrievers.
---------
Co-authored-by: kartikTAI <129414343+kartikTAI@users.noreply.github.com>
Co-authored-by: Kartik Sarangmath <kartik@thirdai.com>
**Description:** Make ChatDatabricks model supports stream
**Issue:** N/A
**Dependencies:** MLflow nightly build version (we will release next
MLflow version soon)
**Twitter handle:** N/A
Manually test:
(Before testing, please install `pip install
git+https://github.com/mlflow/mlflow.git`)
```python
# Test Databricks Foundation LLM model
from langchain.chat_models import ChatDatabricks
chat_model = ChatDatabricks(
endpoint="databricks-llama-2-70b-chat",
max_tokens=500
)
from langchain_core.messages import AIMessageChunk
for chunk in chat_model.stream("What is mlflow?"):
print(chunk.content, end="|")
```
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Add conditional: bool property to json representation of the graphs
- Add option to generate mermaid graph stripped of styles (useful as a
text representation of graph)
…s arg too
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:**
This PR adds a callback handler for UpTrain. It performs evaluations in
the RAG pipeline to check the quality of retrieved documents, generated
queries and responses.
- **Dependencies:**
- The UpTrainCallbackHandler requires the uptrain package
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
enviroment variable ANTHROPIC_API_URL will not work if anthropic_api_url
has default value
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
**Description**: Support filter by OR and AND for deprecated PGVector
version
**Issue**: #20445
**Dependencies**: N/A
**Twitter** handle: @martinferenaz
- **Description:**Add Google Firestore Vector store docs
- **Issue:** NA
- **Dependencies:** NA
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
Description: fixes LangChainDeprecationWarning: The class
`langchain_community.embeddings.cohere.CohereEmbeddings` was deprecated
in langchain-community 0.0.30 and will be removed in 0.2.0. An updated
version of the class exists in the langchain-cohere package and should
be used instead. To use it run `pip install -U langchain-cohere` and
import as `from langchain_cohere import CohereEmbeddings`.

Dependencies : langchain_cohere
Twitter handle: @Mo_Noumaan
Description of features on mermaid graph renderer:
- Fixing CDN to use official Mermaid JS CDN:
https://www.jsdelivr.com/package/npm/mermaid?tab=files
- Add device_scale_factor to allow increasing quality of resulting PNG.
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for [DeepInfra]
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in [DeepInfra]
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Description: This update refines the documentation for
`RunnablePassthrough` by removing an unnecessary import and correcting a
minor syntactical error in the example provided. This change enhances
the clarity and correctness of the documentation, ensuring that users
have a more accurate guide to follow.
Issue: N/A
Dependencies: None
This PR focuses solely on documentation improvements, specifically
targeting the `RunnablePassthrough` class within the `langchain_core`
module. By clarifying the example provided in the docstring, users are
offered a more straightforward and error-free guide to utilizing the
`RunnablePassthrough` class effectively.
As this is a documentation update, it does not include changes that
require new integrations, tests, or modifications to dependencies. It
adheres to the guidelines of minimal package interference and backward
compatibility, ensuring that the overall integrity and functionality of
the LangChain package remain unaffected.
Thank you for considering this documentation refinement for inclusion in
the LangChain project.
Fix of YandexGPT embeddings.
The current version uses a single `model_name` for queries and
documents, essentially making the `embed_documents` and `embed_query`
methods the same. Yandex has a different endpoint (`model_uri`) for
encoding documents, see
[this](https://yandex.cloud/en/docs/yandexgpt/concepts/embeddings). The
bug may impact retrievers built with `YandexGPTEmbeddings` (for instance
FAISS database as retriever) since they use both `embed_documents` and
`embed_query`.
A simple snippet to test the behaviour:
```python
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
embeddings = YandexGPTEmbeddings()
q_emb = embeddings.embed_query('hello world')
doc_emb = embeddings.embed_documents(['hello world', 'hello world'])
q_emb == doc_emb[0]
```
The response is `True` with the current version and `False` with the
changes I made.
Twitter: @egor_krash
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Updates the documentation for Portkey and Langchain.
Also updates the notebook. The current documentation is fairly old and
is non-functional.
**Twitter handle:** @portkeyai
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
`_ListSQLDatabaseToolInput` raise error if model returns `{}`.
For example, gpt-4-turbo returns `{}` with SQL Agent initialized by
`create_sql_agent`.
So, I set default value `""` for `_ListSQLDatabaseToolInput` tool_input.
This is actually a gpt-4-turbo issue, not a LangChain issue, but I
thought it would be helpful to set a default value `""`.
This problem is discussed in detail in the following Issue.
**Issue:** https://github.com/langchain-ai/langchain/issues/20405
**Dependencies:** none
Sorry, I did not add or change the test code, as tests for this
components was not exist .
However, I have tested the following code based on the [SQL Agent
Document](https://python.langchain.com/docs/use_cases/sql/agents/), to
make sure it works.
```
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_openai import ChatOpenAI
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
llm = ChatOpenAI(model="gpt-4-turbo", temperature=0)
agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True)
result = agent_executor.invoke("List the total sales per country. Which country's customers spent the most?")
print(result["output"])
```
- **Description:** Complete the support for Lua code in
langchain.text_splitter module.
- **Dependencies:** No
- **Twitter handle:** @saberuster
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_groq import ChatGroq
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
model = ChatGroq(model_name="mixtral-8x7b-32768", temperature=0)
@tool
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
tools = [magic_function]
agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...
Invoking: `magic_function` with `{'input': 3}`
5The value of magic\_function(3) is 5.
> Finished chain.
{'input': 'what is the value of magic_function(3)?',
'output': 'The value of magic\\_function(3) is 5.'}
```
**Description:** Masking of the API key for AI21 models
**Issue:** Fixes#12165 for AI21
**Dependencies:** None
Note: This fix came in originally through #12418 but was possibly missed
in the refactor to the AI21 partner package
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Replaced all `from langchain.callbacks` into `from
langchain_core.callbacks` .
Changes in the `langchain` and `langchain_experimental`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description**: The pydantic schema fields are supposed to be
optional but the use of `...` makes them required. This causes a
`ValidationError` when running the example code. I replaced `...` with
`default=None` to make the fields optional as intended. I also
standardized the format for all fields.
- **Issue**: n/a
- **Dependencies**: none
- **Twitter handle**: https://twitter.com/m_atoms
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for Llamafile
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in community llamafile.py
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
spelling error fixed
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for HuggingFaceEndpoint
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in community HuggingFaceEndpoint
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Added the [FireCrawl](https://firecrawl.dev) document loader. Firecrawl
crawls and convert any website into LLM-ready data. It crawls all
accessible subpages and give you clean markdown for each.
- **Description:** Adds FireCrawl data loader
- **Dependencies:** firecrawl-py
- **Twitter handle:** @mendableai
ccing contributors: (@ericciarla @nickscamara)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
LLMs might sometimes return invalid response for LLM graph transformer.
Instead of failing due to pydantic validation, we skip it and manually
check and optionally fix error where we can, so that more information
gets extracted
- **Description:** Added cross-links for easy access of api
documentation of each output parser class from it's description page.
- **Issue:** related to issue #19969
Co-authored-by: Haris Ali <haris.ali@formulatrix.com>
avaliable -> available
- **Description:** fixed typo
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
Mistral gives us one ID per response, no individual IDs for tool calls.
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_mistralai import ChatMistralAI
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
model = ChatMistralAI(model="mistral-large-latest", temperature=0)
@tool
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
tools = [magic_function]
agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** Adds chroma to the partners package. Tests & code
mirror those in the community package.
**Dependencies:** None
**Twitter handle:** @akiradev0x
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.
See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
MessagesPlaceholder("chat_history", optional=True),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
model = ChatAnthropic(model="claude-3-opus-20240229")
@tool
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
tools = [magic_function]
agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...
Invoking: `magic_function` with `{'input': 3}`
responded: [{'text': '<thinking>\nThe user has asked for the value of magic_function applied to the input 3. Looking at the available tools, magic_function is the relevant one to use here, as it takes an integer input and returns an integer output.\n\nThe magic_function has one required parameter:\n- input (integer)\n\nThe user has directly provided the value 3 for the input parameter. Since the required parameter is present, we can proceed with calling the function.\n</thinking>', 'type': 'text'}, {'id': 'toolu_01HsTheJPA5mcipuFDBbJ1CW', 'input': {'input': 3}, 'name': 'magic_function', 'type': 'tool_use'}]
5
Therefore, the value of magic_function(3) is 5.
> Finished chain.
{'input': 'what is the value of magic_function(3)?',
'output': 'Therefore, the value of magic_function(3) is 5.'}
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor]
```python
class ToolCall(TypedDict):
name: str
args: Dict[str, Any]
id: Optional[str]
class InvalidToolCall(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
error: Optional[str]
class ToolCallChunk(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
index: Optional[int]
class AIMessage(BaseMessage):
...
tool_calls: List[ToolCall] = []
invalid_tool_calls: List[InvalidToolCall] = []
...
class AIMessageChunk(AIMessage, BaseMessageChunk):
...
tool_call_chunks: Optional[List[ToolCallChunk]] = None
...
```
Important considerations:
- Parsing logic occurs within different providers;
- ~Changing output type is a breaking change for anyone doing explicit
type checking;~
- ~Langsmith rendering will need to be updated:
https://github.com/langchain-ai/langchainplus/pull/3561~
- ~Langserve will need to be updated~
- Adding chunks:
- ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has
non-null .tool_calls.~
- Tool call chunks are appended, merging when having equal values of
`index`.
- additional_kwargs accumulate the normal way.
- During streaming:
- ~Messages can change types (e.g., from AIMessageChunk to
AIToolCallsMessageChunk)~
- Output parsers parse additional_kwargs (during .invoke they read off
tool calls).
Packages outside of `partners/`:
- https://github.com/langchain-ai/langchain-cohere/pull/7
- https://github.com/langchain-ai/langchain-google/pull/123/files
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description: When multithreading is set to True and using the
DirectoryLoader, there was a bug that caused the return type to be a
double nested list. This resulted in other places upstream not being
able to utilize the from_documents method as it was no longer a
`List[Documents]` it was a `List[List[Documents]]`. The change made was
to just loop through the `future.result()` and yield every item.
Issue: #20093
Dependencies: N/A
Twitter handle: N/A
This unit test fails likely validation by the openai client.
Newer openai library seems to be doing more validation so the existing
test fails since http_client needs to be of httpx instance
- **Description**: fixes BooleanOutputParser detecting sub-words ("NOW
this is likely (YES)" -> `True`, not `AmbiguousError`)
- **Issue(s)**: fixes#11408 (follow-up to #17810)
- **Dependencies**: None
- **GitHub handle**: @casperdcl
<!-- if unreviewd after a few days, @-mention one of baskaryan, efriis,
eyurtsev, hwchase17 -->
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
Use the `Stream` context managers in `ChatOpenAi` `stream` and `astream`
method.
Using the context manager returned by the OpenAI client makes it
possible to terminate the stream early since the response connection
will be closed when the context manager exists.
**Issue:** #5340
**Twitter handle:** @snopoke
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Bug fix. Removed extra line in `GCSDirectoryLoader`
to allow catching Exceptions. Now also logs the file path if Exception
is raised for easier debugging.
- **Issue:** #20198 Bug since langchain-community==0.0.31
- **Dependencies:** No change
- **Twitter handle:** timothywong731
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- make Tencent Cloud VectorDB support metadata filtering.
- implement delete function for Tencent Cloud VectorDB.
- support both Langchain Embedding model and Tencent Cloud VDB embedding
model.
- Tencent Cloud VectorDB support filter search keyword, compatible with
langchain filtering syntax.
- add Tencent Cloud VectorDB TranslationVisitor, now work with self
query retriever.
- more documentations.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** In this PR I fixed the links which points to the API
docs for classes in OpenAI functions and OpenAI tools section of output
parsers.
- **Issue:** It fixed the issue #19969
Co-authored-by: Haris Ali <haris.ali@formulatrix.com>
Issue `langchain_community.cross_encoders` didn't have flattening
namespace code in the __init__.py file.
Changes:
- added code to flattening namespaces (used #20050 as a template)
- added ut for a change
- added missed `test_imports` for `chat_loaders` and
`chat_message_histories` modules
This PR make `request_timeout` and `max_retries` configurable for
ChatAnthropic.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: Add semantic caching and memory using
MongoDB"
- [ ] **PR message**:
- **Description:** This PR introduces functionality for adding semantic
caching and chat message history using MongoDB in RAG applications. By
leveraging the MongoDBCache and MongoDBChatMessageHistory classes,
developers can now enhance their retrieval-augmented generation
applications with efficient semantic caching mechanisms and persistent
conversation histories, improving response times and consistency across
chat sessions.
- **Issue:** N/A
- **Dependencies:** Requires `datasets`, `langchain`,
`langchain-mongodb`, `langchain-openai`, `pymongo`, and `pandas` for
implementation. MongoDB Atlas is used for database services, and the
OpenAI API for model access.
- **Twitter handle:** @richmondalake
Co-authored-by: Erick Friis <erick@langchain.dev>
Issue:
When async_req is the default value True, pinecone client return the
multiprocessing AsyncResult object.
When async_req is set to False, pinecone client return the result
directly. `[{'upserted_count': 1}]` . Calling get() method will throw an
error in this case.
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
- **Twitter handle:** `@alexsherstinsky`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Last year Microsoft [changed the
name](https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search)
of Azure Cognitive Search to Azure AI Search. This PR updates the
Langchain Azure Retriever API and it's associated docs to reflect this
change. It may be confusing for users to see the name Cognitive here and
AI in the Microsoft documentation which is why this is needed. I've also
added a more detailed example to the Azure retriever doc page.
There are more places that need a similar update but I'm breaking it up
so the PRs are not too big 😄 Fixing my errors from the previous PR.
Twitter: @marlene_zw
Two new tests added to test backward compatibility in
`libs/community/tests/integration_tests/retrievers/test_azure_cognitive_search.py`
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** update langchain anthropic templates to support
Claude 3 (iterative search, chain of note, summarization, and XML
response)
- **Issue:** issue # N/A. Stability issues and errors encountered when
trying to use older langchain and anthropic libraries.
- **Dependencies:**
- langchain_anthropic version 0.1.4\
- anthropic package version in the range ">=0.17.0,<1" to support
langchain_anthropic.
- **Twitter handle:** @d_w_b7
- [ x]**Add tests and docs**: If you're adding a new integration, please
include
1. used instructions in the README for testing
- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
After this PR it will be possible to pass a cache instance directly to a
language model. This is useful to allow different language models to use
different caches if needed.
- **Issue:** close#19276
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- Added missed providers
- Added links, descriptions in related examples
- Formatted in a consistent format
Co-authored-by: Erick Friis <erick@langchain.dev>
Updated a page with existing document loaders with links to examples.
Fixed formatting of one example.
Co-authored-by: Erick Friis <erick@langchain.dev>
Issue: The `graph` code was moved into the `community` package a long
ago. But the related documentation is still in the
[use_cases](https://python.langchain.com/docs/use_cases/graph/integrations/diffbot_graphtransformer)
section and not in the `integrations`.
Changes:
- moved the `use_cases/graph/integrations` notebooks into the
`integrations/graphs`
- renamed files and changed titles to follow the consistent format
- redirected old page URLs to new URLs in `vercel.json` and in several
other pages
- added descriptions and links when necessary
- formatted into the consistent format
Should hopefully avoid weird broken link edge cases.
Relative links now trip up the Docusaurus broken link checker, so this
PR also removes them.
Also snuck in a small addition about asyncio
**Description:**
The `LocalFileStore` class can be used to create an on-disk
`CacheBackedEmbeddings` cache. However, the default `umask` settings
gives file/directory write permissions only to the original user. Once
the cache directory is created by the first user, other users cannot
write their own cache entries into the directory.
To make the cache usable by multiple users, this pull request updates
the `LocalFileStore` constructor to allow the permissions for newly
created directories and files to be specified. The specified permissions
override the default `umask` values.
For example, when configured as follows:
```python
file_store = LocalFileStore(temp_dir, chmod_dir=0o770, chmod_file=0o660)
```
then "user" and "group" (but not "other") have permissions to access the
store, which means:
* Anyone in our group could contribute embeddings to the cache.
* If we implement cache cleanup/eviction in the future, anyone in our
group could perform the cleanup.
The default values for the `chmod_dir` and `chmod_file` parameters is
`None`, which retains the original behavior of using the default `umask`
settings.
**Issue:**
Implements enhancement #18075.
**Testing:**
I updated the `LocalFileStore` unit tests to test the permissions.
---------
Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Adds async variants of afrom_texts and
afrom_embeddings into `OpenSearchVectorSearch`, which allows for
`afrom_documents` to be called.
- **Issue:** I implemented this because my use case involves an async
scraper generating documents as and when they're ready to be ingested by
Embedding/OpenSearch
- **Dependencies:** None that I'm aware
Co-authored-by: Ben Mitchell <b.mitchell@reply.com>
This PR supports using Pydantic v2 objects to generate the schema for
the JSONOutputParser (#19441). This also adds a `json_schema` parameter
to allow users to pass any JSON schema to validate with, not just
pydantic.
core/langchain_core/_api[Patch]: mypy ignore fixes#17048
Related to #17048
Applied mypy fixes to below two files:
libs/core/langchain_core/_api/deprecation.py
libs/core/langchain_core/_api/beta_decorator.py
Summary of Fixes:
**Issue 1**
class _deprecated_property(type(obj)): # type: ignore
error: Unsupported dynamic base class "type" [misc]
Fix:
1. Added an __init__ method to _deprecated_property to initialize the
fget, fset, fdel, and __doc__ attributes.
2. In the __get__, __set__, and __delete__ methods, we now use the
self.fget, self.fset, and self.fdel attributes to call the original
methods after emitting the warning.
3. The finalize function now creates an instance of _deprecated_property
with the fget, fset, fdel, and doc attributes from the original obj
property.
**Issue 2**
def finalize( # type: ignore
wrapper: Callable[..., Any], new_doc: str
) -> T:
error: All conditional function variants must have identical
signatures
Fix: Ensured that both definitions of the finalize function have the
same signature
Twitter Handle -
https://x.com/gupteutkarsha?s=11&t=uwHe4C3PPpGRvoO5Qpm1aA
**Description:** Citations are the main addition in this PR. We now emit
them from the multihop agent! Additionally the agent is now more
flexible with observations (`Any` is now accepted), and the Cohere SDK
version is bumped to fix an issue with the most recent version of
pydantic v1 (1.10.15)
- **Description:** In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, I implemented delete method
and all async methods in opensearch_vector_search
- **Dependencies:** No changes
- **Description:** Improvement for #19599: fixing missing return of
graph.draw_mermaid_png and improve it to make the saving of the rendered
image optional
Co-authored-by: Angel Igareta <angel.igareta@klarna.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Description:** Update of Cohere documentation (main provider page)
**Issue:** After addition of the Cohere partner package, the
documentation was out of date
**Dependencies:** None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: deprecating integrations moved to
langchain_google_community"
- [ ] **PR message**: deprecating integrations moved to
langchain_google_community
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Removes required usage of `requests` from `langchain-core`, all of which
has been deprecated.
- removes Tracer V1 implementations
- removes old `try_load_from_hub` github-based hub implementations
Removal done in a way where imports will still succeed, and usage will
fail with a `RuntimeError`.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**:
- **Description:** mention not-caching methods in CacheBackedEmbeddings
- **Issue:** n/a I almost created one until I read the code
- **Dependencies:** n/a
- **Twitter handle:** `tarsylia`
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Description**: Improves the stability of all Cohere partner package
integration tests. Fixes a bug with document parsing (both dicts and
Documents are handled).
**Description**: This PR simplifies an integration test within the
Cohere partner package:
* It no longer relies on exact model answers
* It no longer relies on a third party tool
This PR completes work for PR #18798 to expose raw tool output in
on_tool_end.
Affected APIs:
* astream_log
* astream_events
* callbacks sent to langsmith via langsmith-sdk
* Any other code that relies on BaseTracer!
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- This ensures ids are stable across streamed chunks
- Multiple messages in batch call get separate ids
- Also fix ids being dropped when combining message chunks
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** add `remove_comments` option (default: True): do not
extract html _comments_,
- **Issue:** None,
- **Dependencies:** None,
- **Tag maintainer:** @nfcampos ,
- **Twitter handle:** peter_v
I ran `make format`, `make lint` and `make test`.
Discussion: I my use case, I prefer to not have the comments in the
extracted text:
* e.g. from a Google tag that is added in the html as comment
* e.g. content that the authors have temporarily hidden to make it non
visible to the regular reader
Removing the comments makes the extracted text more alike the intended
text to be seen by the reader.
**Choice to make:** do we prefer to make the default for this
`remove_comments` option to be True or False?
I have changed it to True in a second commit, since that is how I would
prefer to use it by default. Have the
cleaned text (without technical Google tags etc.) and also closer to the
actually visible and intended content.
I am not sure what is best aligned with the conventions of langchain in
general ...
INITIAL VERSION (new version above):
~**Choice to make:** do we prefer to make the default for this
`ignore_comments` option to be True or False?
I have set it to False now to be backwards compatible. On the other
hand, I would use it mostly with True.
I am not sure what is best aligned with the conventions of langchain in
general ...~
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
As in #19346, this PR exposes `request_timeout` in `BaseCohere`, while
`max_retires` is no longer a parameter of the beneath client
(`cohere.Client`) and it is already configured in
`langchain_cohere.llms.Cohere`.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** the layout of html pages can be variant based on the
bootstrap framework or the styles of the pages. So we need to have a
splitter to transform the html tags to a proper layout and then split
the html content based on the provided list of tags to determine its
html sections. We are using BS4 library along with xslt structure to
split the html content using an section aware approach.
- **Dependencies:** No new dependencies
- **Twitter handle:** @m_setayesh
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
[Dria](https://dria.co/) is a hub of public RAG models for developers to
both contribute and utilize a shared embedding lake. This PR adds a
retriever that can retrieve documents from Dria.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**:
- **Description:** Fix argument translation from OpenAPI spec to OpenAI
function call (and similar)
- **Issue:** OpenGPTs failures with calling Action Server based actions.
- **Dependencies:** None
- **Twitter handle:** mikkorpela
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
~2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.~
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Description: Update `ChatZhipuAI` to support the latest `glm-4` model.
Issue: N/A
Dependencies: httpx, httpx-sse, PyJWT
The previous `ChatZhipuAI` implementation requires the `zhipuai`
package, and cannot call the latest GLM model. This is because
- The old version `zhipuai==1.*` doesn't support the latest model.
- `zhipuai==2.*` requires `pydantic V2`, which is incompatible with
'langchain-community'.
This re-implementation invokes the GLM model by sending HTTP requests to
[open.bigmodel.cn](https://open.bigmodel.cn/dev/api) via the `httpx`
package, and uses the `httpx-sse` package to handle stream events.
---------
Co-authored-by: zR <2448370773@qq.com>
- **Description:** Add functionality to generate Mermaid syntax and
render flowcharts from graph data. This includes support for custom node
colors and edge curve styles, as well as the ability to export the
generated graphs to PNG images using either the Mermaid.INK API or
Pyppeteer for local rendering.
- **Dependencies:** Optional dependencies are `pyppeteer` if rendering
wants to be done using Pypeteer and Javascript code.
---------
Co-authored-by: Angel Igareta <angel.igareta@klarna.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** An additional `U` argument was added for the
instructions to install the pip packages for the MediaWiki Dump Document
loader which was leading to error in installing the package. Removing
the argument fixed the command to install.
**Issue:** #19820
**Dependencies:** No dependency change requierd
**Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
* Replace `source_documents` with `documents`
* Pass `documents` as a named arg vs keyword
* Make `parsed_docs` more robust
* Fix edge case of doc page_content being `None`
- **Updating Together.ai Endpoint**: "langchain_together: Updated
Deprecated endpoint for partner package"
- Description: The inference API of together is deprecates, do replaced
with completions and made corresponding changes.
- Twitter handle: @dev_yashmathur
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Add attribution_token within
GoogleVertexAISearchRetriever so user can provide this information to
Google support team or product team during debug session.
Reference:
https://cloud.google.com/generative-ai-app-builder/docs/view-analytics#user-events
Attribution tokens. Attribution tokens are unique IDs generated by
Vertex AI Search and returned with each search request. Make sure to
include that attribution token as UserEvent.attributionToken with any
user events resulting from a search. This is needed to identify if a
search is served by the API. Only user events with a Google-generated
attribution token are used to compute metrics.
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** abehsu1992626
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Support reranking based on cross encoder models
available from HuggingFace.
- Added `CrossEncoder` schema
- Implemented `HuggingFaceCrossEncoder` and
`SagemakerEndpointCrossEncoder`
- Implemented `CrossEncoderReranker` that performs similar functionality
to `CohereRerank`
- Added `cross-encoder-reranker.ipynb` to demonstrate how to use it.
Please let me know if anything else needs to be done to make it visible
on the table-of-contents navigation bar on the left, or on the card list
on [retrievers documentation
page](https://python.langchain.com/docs/integrations/retrievers).
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
---------
Co-authored-by: Kenny Choe <kchoe@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Video imagery to text (Closed Captioning)
This pull request introduces the VideoCaptioningChain, a tool for
automated video captioning. It processes audio and video to generate
subtitles and closed captions, merging them into a single SRT output.
Issue: https://github.com/langchain-ai/langchain/issues/11770
Dependencies: opencv-python, ffmpeg-python, assemblyai, transformers,
pillow, torch, openai
Tag maintainer:
@baskaryan
@hwchase17
Hello! We are a group of students from the University of Toronto
(@LunarECL, @TomSadan, @nicoledroi1, @A2113S) that want to make a
contribution to the LangChain community! We have ran make format, make
lint and make test locally before submitting the PR. To our knowledge,
our changes do not introduce any new errors.
Thank you for taking the time to review our PR!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
This implementation adds functionality from the AlphaVantage API,
renowned for its comprehensive financial data. The class encapsulates
various methods, each dedicated to fetching specific types of financial
information from the API.
### Implemented Functions
- **`search_symbols`**:
- Searches the AlphaVantage API for financial symbols using the provided
keywords.
- **`_get_market_news_sentiment`**:
- Retrieves market news sentiment for a specified stock symbol from the
AlphaVantage API.
- **`_get_time_series_daily`**:
- Fetches daily time series data for a specific symbol from the
AlphaVantage API.
- **`_get_quote_endpoint`**:
- Obtains the latest price and volume information for a given symbol
from the AlphaVantage API.
- **`_get_time_series_weekly`**:
- Gathers weekly time series data for a particular symbol from the
AlphaVantage API.
- **`_get_top_gainers_losers`**:
- Provides details on top gainers, losers, and most actively traded
tickers in the US market from the AlphaVantage API.
### Issue:
- #11994
### Dependencies:
- 'requests' library for HTTP requests. (import requests)
- 'pytest' library for testing. (import pytest)
---------
Co-authored-by: Adam Badar <94140103+adam-badar@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Langchain-Predibase integration was failing, because
it was not current with the Predibase SDK; in addition, Predibase
integration tests were instantiating the Langchain Community `Predibase`
class with one required argument (`model`) missing. This change updates
the Predibase SDK usage and fixes the integration tests.
- **Twitter handle:** `@alexsherstinsky`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Code written by following, the official documentation
of [Google Drive
Loader](https://python.langchain.com/docs/integrations/document_loaders/google_drive),
gives errors. I have opened an issue regarding this. See #14725. This is
a pull request for modifying the documentation to use an approach that
makes the code work. Basically, the change is that we need to always set
the GOOGLE_APPLICATION_CREDENTIALS env var to an emtpy string, rather
than only in case of RefreshError. Also, rewrote 2 paragraphs to make
the instructions more clear.
- **Issue:** See this related [issue #
14725](https://github.com/langchain-ai/langchain/issues/14725)
- **Dependencies:** NA
- **Tag maintainer:** @baskaryan
- **Twitter handle:** NA
Co-authored-by: Snehil <snehil@example.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: added support for llmsherpa library"
- [x] **Add tests and docs**:
1. Integration test:
'docs/docs/integrations/document_loaders/test_llmsherpa.py'.
2. an example notebook:
`docs/docs/integrations/document_loaders/llmsherpa.ipynb`.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
this pr also drops the community added action for checking broken links
in mdx. It does not work well for our use case, throwing errors for
local paths, plus the rest of the errors our in house solution had.
# Description
Implementing `_combine_llm_outputs` to `ChatMistralAI` to override the
default implementation in `BaseChatModel` returning `{}`. The
implementation is inspired by the one in `ChatOpenAI` from package
`langchain-openai`.
# Issue
None
# Dependencies
None
# Twitter handle
None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
This template utilizes Chroma and TGI (Text Generation Inference) to
execute RAG on the Intel Xeon Scalable Processors. It serves as a
demonstration for users, illustrating the deployment of the RAG service
on the Intel Xeon Scalable Processors and showcasing the resulting
performance enhancements.
**Issue:**
None
**Dependencies:**
The template contains the poetry project requirements to run this
template.
CPU TGI batching is WIP.
**Twitter handle:**
None
---------
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** We'd like to support passing additional kwargs in
`with_structured_output`. I believe this is the accepted approach to
enable additional arguments on API calls.
- **Description:** Haskell language support added in text_splitter
module
- **Dependencies:** No
- **Twitter handle:** @nisargtr
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** PR adds support for limiting number of messages
preserved in a session history for DynamoDBChatMessageHistory
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Subject: Fix Type Misdeclaration for index_schema in redis/base.py
I noticed a type misdeclaration for the index_schema column in the
redis/base.py file.
When following the instructions outlined in [Redis Custom Metadata
Indexing](https://python.langchain.com/docs/integrations/vectorstores/redis)
to create our own index_schema, it leads to a Pylance type error. <br/>
**The error message indicates that Dict[str, list[Dict[str, str]]] is
incompatible with the type Optional[Union[Dict[str, str], str,
os.PathLike]].**
```
index_schema = {
"tag": [{"name": "credit_score"}],
"text": [{"name": "user"}, {"name": "job"}],
"numeric": [{"name": "age"}],
}
rds, keys = Redis.from_texts_return_keys(
texts,
embeddings,
metadatas=metadata,
redis_url="redis://localhost:6379",
index_name="users_modified",
index_schema=index_schema,
)
```
Therefore, I have created this pull request to rectify the type
declaration problem.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Feature
- Set additional headers in constructor
- Headers will be sent in post request
This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.
## Tests
- Test if header is passed
- Test if header is not passed
Similar to https://github.com/langchain-ai/langchain/pull/15881
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
If `prompt` is passed into `create_sql_agent()`, then
`toolkit.get_context()` shouldn't be executed against the database
unless relevant prompt variables (`table_info` or `table_names`) are
present .
Thank you for contributing to LangChain!
- [x] **PR title**: "community: Implement DirectoryLoader lazy_load
function"
- [x] **Description**: The `lazy_load` function of the `DirectoryLoader`
yields each document separately. If the given `loader_cls` of the
`DirectoryLoader` also implemented `lazy_load`, it will be used to yield
subdocuments of the file.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access:
`libs/community/tests/unit_tests/document_loaders/test_directory_loader.py`
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory:
`docs/docs/integrations/document_loaders/directory.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
When using the SQLDatabaseChain with Llama2-70b LLM and, SQLite
database. I was getting `Warning: You can only execute one statement at
a time.`.
```
from langchain.sql_database import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
sql_database_path = '/dccstor/mmdataretrieval/mm_dataset/swimming_record/rag_data/swimmingdataset.db'
sql_db = get_database(sql_database_path)
db_chain = SQLDatabaseChain.from_llm(mistral, sql_db, verbose=True, callbacks = [callback_obj])
db_chain.invoke({
"query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
})
```
Error:
```
Warning Traceback (most recent call last)
Cell In[31], line 3
1 import langchain
2 langchain.debug=False
----> 3 db_chain.invoke({
4 "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
5 })
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:162, in Chain.invoke(self, input, config, **kwargs)
160 except BaseException as e:
161 run_manager.on_chain_error(e)
--> 162 raise e
163 run_manager.on_chain_end(outputs)
164 final_outputs: Dict[str, Any] = self.prep_outputs(
165 inputs, outputs, return_only_outputs
166 )
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:156, in Chain.invoke(self, input, config, **kwargs)
149 run_manager = callback_manager.on_chain_start(
150 dumpd(self),
151 inputs,
152 name=run_name,
153 )
154 try:
155 outputs = (
--> 156 self._call(inputs, run_manager=run_manager)
157 if new_arg_supported
158 else self._call(inputs)
159 )
160 except BaseException as e:
161 run_manager.on_chain_error(e)
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:198, in SQLDatabaseChain._call(self, inputs, run_manager)
194 except Exception as exc:
195 # Append intermediate steps to exception, to aid in logging and later
196 # improvement of few shot prompt seeds
197 exc.intermediate_steps = intermediate_steps # type: ignore
--> 198 raise exc
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:143, in SQLDatabaseChain._call(self, inputs, run_manager)
139 intermediate_steps.append(
140 sql_cmd
141 ) # output: sql generation (no checker)
142 intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec
--> 143 result = self.database.run(sql_cmd)
144 intermediate_steps.append(str(result)) # output: sql exec
145 else:
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:436, in SQLDatabase.run(self, command, fetch, include_columns)
425 def run(
426 self,
427 command: str,
428 fetch: Literal["all", "one"] = "all",
429 include_columns: bool = False,
430 ) -> str:
431 """Execute a SQL command and return a string representing the results.
432
433 If the statement returns rows, a string of the results is returned.
434 If the statement returns no rows, an empty string is returned.
435 """
--> 436 result = self._execute(command, fetch)
438 res = [
439 {
440 column: truncate_word(value, length=self._max_string_length)
(...)
443 for r in result
444 ]
446 if not include_columns:
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:413, in SQLDatabase._execute(self, command, fetch)
410 elif self.dialect == "postgresql": # postgresql
411 connection.exec_driver_sql("SET search_path TO %s", (self._schema,))
--> 413 cursor = connection.execute(text(command))
414 if cursor.returns_rows:
415 if fetch == "all":
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1416, in Connection.execute(self, statement, parameters, execution_options)
1414 raise exc.ObjectNotExecutableError(statement) from err
1415 else:
-> 1416 return meth(
1417 self,
1418 distilled_parameters,
1419 execution_options or NO_OPTIONS,
1420 )
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/sql/elements.py:516, in ClauseElement._execute_on_connection(self, connection, distilled_params, execution_options)
514 if TYPE_CHECKING:
515 assert isinstance(self, Executable)
--> 516 return connection._execute_clauseelement(
517 self, distilled_params, execution_options
518 )
519 else:
520 raise exc.ObjectNotExecutableError(self)
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1639, in Connection._execute_clauseelement(self, elem, distilled_parameters, execution_options)
1627 compiled_cache: Optional[CompiledCacheType] = execution_options.get(
1628 "compiled_cache", self.engine._compiled_cache
1629 )
1631 compiled_sql, extracted_params, cache_hit = elem._compile_w_cache(
1632 dialect=dialect,
1633 compiled_cache=compiled_cache,
(...)
1637 linting=self.dialect.compiler_linting | compiler.WARN_LINTING,
1638 )
-> 1639 ret = self._execute_context(
1640 dialect,
1641 dialect.execution_ctx_cls._init_compiled,
1642 compiled_sql,
1643 distilled_parameters,
1644 execution_options,
1645 compiled_sql,
1646 distilled_parameters,
1647 elem,
1648 extracted_params,
1649 cache_hit=cache_hit,
1650 )
1651 if has_events:
1652 self.dispatch.after_execute(
1653 self,
1654 elem,
(...)
1658 ret,
1659 )
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1848, in Connection._execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)
1843 return self._exec_insertmany_context(
1844 dialect,
1845 context,
1846 )
1847 else:
-> 1848 return self._exec_single_context(
1849 dialect, context, statement, parameters
1850 )
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1988, in Connection._exec_single_context(self, dialect, context, statement, parameters)
1985 result = context._setup_result_proxy()
1987 except BaseException as e:
-> 1988 self._handle_dbapi_exception(
1989 e, str_statement, effective_parameters, cursor, context
1990 )
1992 return result
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:2346, in Connection._handle_dbapi_exception(self, e, statement, parameters, cursor, context, is_sub_exec)
2344 else:
2345 assert exc_info[1] is not None
-> 2346 raise exc_info[1].with_traceback(exc_info[2])
2347 finally:
2348 del self._reentrant_error
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1969, in Connection._exec_single_context(self, dialect, context, statement, parameters)
1967 break
1968 if not evt_handled:
-> 1969 self.dialect.do_execute(
1970 cursor, str_statement, effective_parameters, context
1971 )
1973 if self._has_events or self.engine._has_events:
1974 self.dispatch.after_cursor_execute(
1975 self,
1976 cursor,
(...)
1980 context.executemany,
1981 )
File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/default.py:922, in DefaultDialect.do_execute(self, cursor, statement, parameters, context)
921 def do_execute(self, cursor, statement, parameters, context=None):
--> 922 cursor.execute(statement, parameters)
Warning: You can only execute one statement at a time.
```
**Issue:**
The Error occurs because when generating the SQLQuery, the llm_input
includes the stop character of "\nSQLResult:", so for this user query
the LLM generated response is **SELECT Time FROM men_butterfly_100m
WHERE Swimmer = 'Lance Larson';\nSQLResult:** it is required to remove
the SQLResult suffix on the llm response before executing it on the
database.
```
llm_inputs = {
"input": input_text,
"top_k": str(self.top_k),
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:"],
}
sql_cmd = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
if SQL_RESULT in sql_cmd:
sql_cmd = sql_cmd.split(SQL_RESULT)[0].strip()
result = self.database.run(sql_cmd)
```
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Description: Fix xml parser to handle strings that only contain the root
tag
Issue: N/A
Dependencies: None
Twitter handle: N/A
A valid xml text can contain only the root level tag. Example: <body>
Some text here
</body>
The example above is a valid xml string. If parsed with the current
implementation the result is {"body": []}. This fix checks if the root
level text contains any non-whitespace character and if that's the case
it returns {root.tag: root.text}. The result is that the above text is
correctly parsed as {"body": "Some text here"}
@ale-delfino
Thank you for contributing to LangChain!
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR message: **Delete this entire template message** and replace it
with the following bulleted list
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
When testing Nomic embeddings --
```
from langchain_community.embeddings import LlamaCppEmbeddings
embd_model_path = "/Users/rlm/Desktop/Code/llama.cpp/models/nomic-embd/nomic-embed-text-v1.Q4_K_S.gguf"
embd_lc = LlamaCppEmbeddings(model_path=embd_model_path)
embedding_lc = embd_lc.embed_query(query)
```
We were seeing this error for strings > a certain size --
```
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/llama.py:827, in Llama.embed(self, input, normalize, truncate, return_count)
824 s_sizes = []
826 # add to batch
--> 827 self._batch.add_sequence(tokens, len(s_sizes), False)
828 t_batch += n_tokens
829 s_sizes.append(n_tokens)
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/_internals.py:542, in _LlamaBatch.add_sequence(self, batch, seq_id, logits_all)
540 self.batch.token[j] = batch[i]
541 self.batch.pos[j] = i
--> 542 self.batch.seq_id[j][0] = seq_id
543 self.batch.n_seq_id[j] = 1
544 self.batch.logits[j] = logits_all
ValueError: NULL pointer access
```
The default `n_batch` of llama-cpp-python's Llama is `512` but we were
explicitly setting it to `8`.
These need to be set to equal for embedding models.
* The embedding.cpp example has an assertion to make sure these are
always equal.
* Apparently this is not being done properly in llama-cpp-python.
With `n_batch` set to 8, if more than 8 tokens are passed the batch runs
out of space and it crashes.
This also explains why the CPU compute buffer size was small:
raw client with default `n_batch=512`
```
llama_new_context_with_model: CPU input buffer size = 3.51 MiB
llama_new_context_with_model: CPU compute buffer size = 21.00 MiB
```
langchain with `n_batch=8`
```
llama_new_context_with_model: CPU input buffer size = 0.04 MiB
llama_new_context_with_model: CPU compute buffer size = 0.33 MiB
```
We can work around this by passing `n_batch=512`, but this will not be
obvious to some users:
```
embedding = LlamaCppEmbeddings(model_path=embd_model_path,
n_batch=512)
```
From discussion w/ @cebtenzzre. Related:
https://github.com/abetlen/llama-cpp-python/issues/1189
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** The base URL for OpenAI is retrieved from the
environment variable "OPENAI_BASE_URL", whereas for langchain it is
obtained from "OPENAI_API_BASE". By adding `base_url =
os.environ.get("OPENAI_API_BASE")`, the OpenAI proxy can execute
correctly.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- **Description:** added unit tests for NotebookLoader. Linked PR:
https://github.com/langchain-ai/langchain/pull/17614
- **Issue:**
[#17614](https://github.com/langchain-ai/langchain/pull/17614)
- **Twitter handle:** @paulodoestech
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: lachiewalker <lachiewalker1@hotmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Created a Langchain Tool for OpenAI DALLE Image
Generation.
**Issue:**
[#15901](https://github.com/langchain-ai/langchain/issues/15901)
**Dependencies:** n/a
**Twitter handle:** @paulodoestech
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**: adding checking codes for calling AI model get error
in chat_models/base.py and llms/base.py
**Issue**: Sometimes the AI Model calling will get error, we should
raise it.
Otherwise, the next code 'choices.extend(response["choices"])' will
throw a "TypeError: 'NoneType' object is not iterable" error to mask the
true error.
Because 'response["choices"]' is None.
**Dependencies**: None
---------
Co-authored-by: yangkx <yangkx@asiainfo-int.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## PR message
**Description:** This PR adds a README file for the Together API in the
`libs/partners` folder of this repository. The README includes:
- A brief description of the package
- Installation instructions and class introductions
- Simple usage examples
**Issue:** #17545
This PR only contains document changes.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
1. Fix the BiliBiliLoader that can receive cookie parameters, it
requires 3 other parameters to run. The change is backward compatible.
2. Add test;
3. Add example in docs
- **Issue:** [#14213]
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** A few grammatical changes to improve readability of the
LCEL .ipynb and tidy some null characters.
**Issue:** N/A
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- [x] **PR title**: "community: Support streaming in Azure ML and few
naming changes"
- [x] **PR message**:
- **Description:** Added support for streaming for azureml_endpoint.
Also, renamed and AzureMLEndpointApiType.realtime to
AzureMLEndpointApiType.dedicated. Also, added new classes
CustomOpenAIChatContentFormatter and CustomOpenAIContentFormatter and
updated the classes LlamaChatContentFormatter and LlamaContentFormatter
to now show a deprecated warning message when instantiated.
---------
Co-authored-by: Sachin Paryani <saparan@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** At times, BaseChatMemory._get_input_output may acquire
some extra keys such as 'intermediate_steps' (agent_executor with
return_intermediate_steps set to True) and 'messages'
(agent_executor.iter with memory). In these instances, _get_input_output
can raise an error due to the presence of multiple keys. The 'output'
field should be used as the default field in these cases.
**Issue:** #16791
Previous markdown code was not working as intended, new code should add
green box around the tip so it is highlighted
Co-authored-by: Hershenson, Isaac (Extern) <isaac.hershenson.extern@bayer04.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Added missing `from_documents` method to `KNNRetriever`,
providing the ability to supply metadata to LangChain `Document`s, and
to give it parity to the other retrievers, which do have
`from_documents`.
- Issue: None
- Dependencies: None
- Twitter handle: None
Co-authored-by: Victor Adan <vadan@netroadshow.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Relates to #17048
Description : Applied fix to dynamodb and elasticsearch file.
Error was : `Cannot override writeable attribute with read-only
property`
Suggestion:
instead of adding
```
@messages.setter
def messages(self, messages: List[BaseMessage]) -> None:
raise NotImplementedError("Use add_messages instead")
```
we can change base class property
`messages: List[BaseMessage]`
to
```
@property
def messages(self) -> List[BaseMessage]:...
```
then we don't need to add `@messages.setter` in all child classes.
**Description:**
While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.
This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
In this small PR I added the `template_tool_response` arg to the
`create_json_chat` function, so that users can customize this prompt in
case of need.
Thanks for your reviews!
---------
Co-authored-by: taamedag <Davide.Menini@swisscom.com>
This patch updates multiple function "run" to "invoke" in
llm_symbolic_math.ipynb.
Without this patch, you see following message.
The function `run` was deprecated in LangChain 0.1.0
and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
**Description:** Adds support for `with_structured_output` to Cohere,
which supports single function calling.
---------
Co-authored-by: BeatrixCohere <128378696+BeatrixCohere@users.noreply.github.com>
- [x] **PR title**: "community: fix baidu qianfan missing stop
parameter"
- [x] **PR message**:
- **Description: Baidu Qianfan lost the stop parameter when requesting
service due to extracting it from kwargs. This bug can cause the agent
to receive incorrect results
---------
Co-authored-by: ligang33 <ligang33@baidu.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Bug fixes in this PR:
* allows for other params such as "message" not just the input param to
the prompt for the cohere tools agent
* fixes to documents kwarg from messages
* fixes to tool_calls API call
---------
Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
- **Issue:** When passing an empty list to MergerRetriever it fails with
error: ValueError: max() arg is an empty sequence
- **Description:** We have a use case where we dynamically select
retrievers and use MergerRetriever for merging the output of the
retrievers. We faced this issue when the retriever_docs list is empty.
Adding a default 0 for cases when retriever_docs is an empty list to
avoid "ValueError: max() arg is an empty sequence". Also, changed to use
map() which is more than twice as fast compared to the current
implementation.
```
import timeit
# Sample retriever_docs with varying lengths of sublists
retriever_docs = [[i for i in range(j)] for j in range(1, 1000)]
# First code snippet
code1 = '''
max_docs = max(len(docs) for docs in retriever_docs)
'''
# Second code snippet
code2 = '''
max_docs = max(map(len, retriever_docs), default=0)
'''
# Benchmarking
time1 = timeit.timeit(stmt=code1, globals=globals(), number=10000)
time2 = timeit.timeit(stmt=code2, globals=globals(), number=10000)
# Output
print(f"Execution time for code snippet 1: {time1} seconds")
print(f"Execution time for code snippet 2: {time2} seconds")
```
- **Dependencies:** none
The previous version didn't had Voyage rerank in the init file
- [ ] **PR title**: langchain_voyageai reranker is not working
- [ ] **PR message**:
- **Description:** This fix let you run reranker from voyage
- **Issue:** Was not able to run reranker from voyage
@efriis
Due to changes in the OpenAI SDK, the previous method of setting the
OpenAI proxy in ChatOpenAI no longer works. This PR fixes this issue,
making the previous way of setting the OpenAI proxy in ChatOpenAI
effective again.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This is a follow up to #18371. These are the changes:
- New **Azure AI Services** toolkit and tools to replace those of
**Azure Cognitive Services**.
- Updated documentation for Microsoft platform.
- The image analysis tool has been rewritten to use the new package
`azure-ai-vision-imageanalysis`, doing a proper replacement of
`azure-ai-vision`.
These changes:
- Update outdated naming from "Azure Cognitive Services" to "Azure AI
Services".
- Update documentation to use non-deprecated methods to create and use
agents.
- Removes need to depend on yanked python package (`azure-ai-vision`)
There is one new dependency that is needed as a replacement to
`azure-ai-vision`:
- `azure-ai-vision-imageanalysis`. This is optional and declared within
a function.
There is a new `azure_ai_services.ipynb` notebook showing usage; Changes
have been linted and formatted.
I am leaving the actions of adding deprecation notices and future
removal of Azure Cognitive Services up to the LangChain team, as I am
not sure what the current practice around this is.
---
If this PR makes it, my handle is @galo@mastodon.social
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description**: `bigdl-llm` library has been renamed to
[`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR
migrates the `bigdl-llm` integration to `ipex-llm` .
- **Issue**: N/A. The original PR of `bigdl-llm` is
https://github.com/langchain-ai/langchain/pull/17953
- **Dependencies**: `ipex-llm` library
- **Contribution maintainer**: @shane-huang
Updated doc: docs/docs/integrations/llms/ipex_llm.ipynb
Updated test:
libs/community/tests/integration_tests/llms/test_ipex_llm.py
- **Description:** Add support for Intel Lab's [Visual Data Management
System (VDMS)](https://github.com/IntelLabs/vdms) as a vector store
- **Dependencies:** `vdms` library which requires protobuf = "4.24.2".
There is a conflict with dashvector in `langchain` package but conflict
is resolved in `community`.
- **Contribution maintainer:** [@cwlacewe](https://github.com/cwlacewe)
- **Added tests:**
libs/community/tests/integration_tests/vectorstores/test_vdms.py
- **Added docs:** docs/docs/integrations/vectorstores/vdms.ipynb
- **Added cookbook:** cookbook/multi_modal_RAG_vdms.ipynb
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
If you use an embedding dist function in an eval loop, you get warned
every time. Would prefer to just check once and forget about it.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- .stream() and .astream() call on_llm_new_token, removing the need for
subclasses to do so. Backwards compatible because now we don't pass
run_manager into ._stream and ._astream
- .generate() and .agenerate() now handle `stream: bool` kwarg for
_generate and _agenerate. Subclasses handle this arg by delegating to
._stream(), now one less thing they need to do. Backwards compat because
this is an optional arg that we now never pass to the subclasses
- .generate() and .agenerate() now inspect callback handlers to decide
on a default value for stream:bool if not passed in. This auto enables
streaming when using astream_events and astream_log
- as a result of these three changes any usage of .astream_events and
.astream_log should now yield chat model stream events
- In future PRs we can update all subclasses to reflect these two things
now handled by base class, but in meantime all will continue to work
* **Description**: add `None` type for `file_path` along with `str` and
`List[str]` types.
* `file_path`/`filename` arguments in `get_elements_from_api()` and
`partition()` can be `None`, however, there's no `None` type hint for
`file_path` in `UnstructuredAPIFileLoader` and `UnstructuredFileLoader`
currently.
* calling the function with `file_path=None` is no problem, but my IDE
annoys me lol.
* **Issue**: N/A
* **Dependencies**: N/A
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Updates Meilisearch vectorstore for compatibility
with v1.6 and above. Adds embedders settings and embedder_name which are
now required.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
This PR adds a slightly more helpful message to a Tool Exception
```
# current state
langchain_core.tools.ToolException: Too many arguments to single-input tool
# proposed state
langchain_core.tools.ToolException: Too many arguments to single-input tool. Consider using a StructuredTool instead.
```
**Issue:** Somewhat discussed here 👉#6197
**Dependencies:** None
**Twitter handle:** N/A
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **cookbook** - update example for SalesGPT - include Stripe
Payment Link Generation
- **Description:** We updated the Jupyter notebook example with the
ability of the AI Agent to negotiate with customers and then close the
deal by generating a custom Stripe payment link.
- **Issue:** N/A
- **Dependencies:** N/a
- **Twitter handle:** @FilipMichalsky @0xtotaylor
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Filip Michalsky <filip_michalsky@g.harvard.edu>
Co-authored-by: Bagatur <baskaryan@gmail.com>
As mentioned in #18322, the current PydanticOutputParser won't work for
anyone trying to parse to pydantic v2 models. This PR adds a separate
`PydanticV2OutputParser`, as well as a `langchain_core.pydantic_v2`
namespace that will fail on import to any projects using pydantic<2.
Happy to update the docs for output parsers if this is something we're
interesting in adding.
On a separate note, I also updated `check_pydantic.sh` to detect
pydantic imports with leading whitespace and excluded the internal
namespaces. That change can be separated into its own PR if needed.
---------
Co-authored-by: Jan Nissen <jan23@gmail.com>
- **Description:** I've made a fix to a ParseError call in the
XMLOutputParser documentation.
- **Issue:** None
- **Dependencies:** None
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
PebbloSafeLoader: Add support for non-file-based Document Loaders
This pull request enhances PebbloSafeLoader by introducing support for
several non-file-based Document Loaders. With this update,
PebbloSafeLoader now seamlessly integrates with the following loaders:
- GoogleDriveLoader
- SlackDirectoryLoader
- Unstructured EmailLoader
**Issue:** NA
**Dependencies:** - None
**Twitter handle:** @Raj__725
---------
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Patch potential XML vulnerability CVE-2024-1455
This patches a potential XML vulnerability in the XMLOutputParser in
langchain-core. The vulnerability in some situations could lead to a
denial of service attack.
At risk are users that:
1) Running older distributions of python that have older version of
libexpat
2) Are using XMLOutputParser with an agent
3) Accept inputs from untrusted sources with this agent (e.g., endpoint
on the web that allows an untrusted user to interact wiith the parser)
Introduction
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit designed to accelerate GenAI/LLM everywhere
with the optimal performance of Transformer-based models on various
Intel platforms
Description
adding ITREX runtime embeddings using intel-extension-for-transformers.
added mdx documentation and example notebooks
added embedding import testing.
---------
Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] **PR title**: "experimental: Enhance LLMGraphTransformer with
async processing and improved readability"
- [x] **PR message**:
- **Description:** This pull request refactors the `process_response`
and `convert_to_graph_documents` methods in the LLMGraphTransformer
class to improve code readability and adds async versions of these
methods for concurrent processing.
The main changes include:
- Simplifying list comprehensions and conditional logic in the
process_response method for better readability.
- Adding async versions aprocess_response and
aconvert_to_graph_documents to enable concurrent processing of
documents.
These enhancements aim to improve the overall efficiency and
maintainability of the `LLMGraphTransformer` class.
- **Issue:** N/A
- **Dependencies:** No additional dependencies required.
- **Twitter handle:** @jjovalle99
- [x] **Add tests and docs**: N/A (This PR does not introduce a new
integration)
- [x] **Lint and test**: Ran make format, make lint, and make test from
the root of the modified package(s). All tests pass successfully.
Additional notes:
- The changes made in this PR are backwards compatible and do not
introduce any breaking changes.
- The PR touches only the `LLMGraphTransformer` class within the
experimental package.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Implemented try-except block for
`GCSDirectoryLoader`. Reason: Users processing large number of
unstructured files in a folder may experience many different errors. A
try-exception block is added to capture these errors. A new argument
`use_try_except=True` is added to enable *silent failure* so that error
caused by processing one file does not break the whole function.
- **Issue:** N/A
- **Dependencies:** no new dependencies
- **Twitter handle:** timothywong731
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Adding oracle autonomous database document loader
integration. This will allow users to connect to oracle autonomous
database through connection string or TNS configuration.
https://www.oracle.com/autonomous-database/
- **Issue:** None
- **Dependencies:** oracledb python package
https://pypi.org/project/oracledb/
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Unit test and doc are added.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Currently the semantic_configurations are not used
when creating an AzureSearch instance, instead creating a new one with
default values. This PR changes the behavior to use the passed
semantic_configurations if it is present, and the existing default
configuration if not.
---------
Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
DefusedXML is causing parsing errors on previously functional code with
the 0.7.x versions. These do not seem to support newer version of python
well. 0.8.x has only been released as rc, so we're not going to to use
it in the core package
* Adds support for `additional_kwargs` in `get_cohere_chat_request`
* This functionality passes in Cohere SDK specific parameters from
`BaseMessage` based classes to the API
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **Add len() implementation to Chroma**: "package: community"
- [x] **PR message**:
- **Description:** add an implementation of the __len__() method for the
Chroma vectostore, for convenience.
- **Issue:** no exposed method to know the size of a Chroma vectorstore
- **Dependencies:** None
- **Twitter handle:** lowrank_adrian
- [x] **Add tests and docs**
- [x] **Lint and test**
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Be more explicit with the `model_kwargs` and
`encode_kwargs` for `HuggingFaceEmbeddings`.
- **Issue:** -
- **Dependencies:** -
I received some reports by my users that they didn't realise that you
could change the default `batch_size` with `HuggingFaceEmbeddings`,
which may be attributed to how the `model_kwargs` and `encode_kwargs`
don't give much information about what you can specify.
I've added some parameter names & links to the Sentence Transformers
documentation to help clear it up. Let me know if you'd rather have
Markdown/Sphinx-style hyperlinks rather than a "bare URL".
- Tom Aarsen
So this arose from the
https://github.com/langchain-ai/langchain/pull/18397 problem of document
loaders not supporting `pathlib.Path`.
This pull request provides more uniform support for Path as an argument.
The core ideas for this upgrade:
- if there is a local file path used as an argument, it should be
supported as `pathlib.Path`
- if there are some external calls that may or may not support Pathlib,
the argument is immidiately converted to `str`
- if there `self.file_path` is used in a way that it allows for it to
stay pathlib without conversion, is is only converted for the metadata.
Twitter handle: https://twitter.com/mwmajewsk
### Issue
Recently, the new `allow_dangerous_deserialization` flag was introduced
for preventing unsafe model deserialization that relies on pickle
without user's notice (#18696). Since then some LLMs like Databricks
requires passing in this flag with true to instantiate the model.
However, this breaks existing functionality to loading such LLMs within
a chain using `load_chain` method, because the underlying loader
function
[load_llm_from_config](f96dd57501/libs/langchain/langchain/chains/loading.py (L40))
(and load_llm) ignores keyword arguments passed in.
### Solution
This PR fixes this issue by propagating the
`allow_dangerous_deserialization` argument to the class loader iff the
LLM class has that field.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Create a Class which allows to use the "text2vec" open source embedding
model.
It should install the model by running 'pip install -U text2vec'.
Example to call the model through LangChain:
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
embedding = Text2vecEmbeddings()
bookend.embed_documents([
"This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
])
bookend.embed_query(
"It can be used for text matching or semantic search."
)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
## Description
This PR proposes a modification to the `libs/langchain/dev.Dockerfile`
configuration to copy the `libs/langchain/poetry.lock` into the working
directory. The change aims to address the issue where the Poetry install
command, the last command in the `dev.Dockerfile`, takes excessively
long hours, and to ensure the reproducibility of the poetry environment
in the devcontainer.
## Problem
The `dev.Dockerfile`, prepared for development environments such as
`.devcontainer`, encounters an unending dependency resolution when
attempting the Poetry installation.
### Steps to Reproduce
Execute the following build command:
```bash
docker build -f libs/langchain/dev.Dockerfile .
```
### Current Behavior
The Docker build process gets stuck at the following step, which, in my
experience, did not conclude even after an entire night:
```
=> [langchain-dev-dependencies 4/6] COPY libs/community/ ../community/ 0.9s
=> [langchain-dev-dependencies 5/6] COPY libs/text-splitters/ ../text-splitters/ 0.0s
=> [langchain-dev-dependencies 6/6] RUN poetry install --no-interaction --no-ansi --with dev,test,docs 12.3s
=> => # Updating dependencies
=> => # Resolving dependencies...
```
### Expected Behavior
The Docker build completes in a realistic timeframe. By applying this
PR, the build finishes within a few minutes.
### Analysis
The complexity of LangChain's dependencies has reached a point where
Poetry is required to resolve dependencies akin to threading a needle.
Consequently, poetry install fails to complete in a practical timeframe.
## Solution
The solution for dependency resolution is already recorded in
`libs/langchain/poetry.lock`, so we can use it. When copying
`project.toml` and `poetry.toml`, the `poetry.lock` located in the same
directory should also be copied.
```diff
# Copy only the dependency files for installation
-COPY libs/langchain/pyproject.toml libs/langchain/poetry.toml ./
+COPY libs/langchain/pyproject.toml libs/langchain/poetry.toml libs/langchain/poetry.lock ./
```
## Note
I am not intimately familiar with the historical context of the
`dev.Dockerfile` and thus do not know why `poetry.lock` has not been
copied until now. It might have been an oversight, or perhaps dependency
resolution used to complete quickly even without the `poetry.lock` file
in the past. However, if there are deliberate reasons why copying
`poetry.lock` is not advisable, please just close this PR.
Description:
this change fixes the pydantic validation error when looking up from
GPTCache, the `ChatOpenAI` class returns `ChatGeneration` as response
which is not handled.
use the existing `_loads_generations` and `_dumps_generations` functions
to handle it
Trace
```
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/development/scripts/chatbot-postgres-test.py", line 90, in <module>
print(llm.invoke("tell me a joke"))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 166, in invoke
self.generate_prompt(
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 544, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 408, in generate
raise e
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 398, in generate
self._generate_with_cache(
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 585, in _generate_with_cache
cache_val = llm_cache.lookup(prompt, llm_string)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_community/cache.py", line 807, in lookup
return [
^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_community/cache.py", line 808, in <listcomp>
Generation(**generation_dict) for generation_dict in json.loads(res)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/langchain_core/load/serializable.py", line 120, in __init__
super().__init__(**kwargs)
File "/home/theinhumaneme/Documents/NebuLogic/conversation-bot/venv/lib/python3.11/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for Generation
type
unexpected value; permitted: 'Generation' (type=value_error.const; given=ChatGeneration; permitted=('Generation',))
```
Although I don't seem to find any issues here, here's an
[issue](https://github.com/zilliztech/GPTCache/issues/585) raised in
GPTCache. Please let me know if I need to do anything else
Thank you
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Few-Shot prompt template may use a `SemanticSimilarityExampleSelector`
that in turn uses a `VectorStore` that does I/O operations.
So to work correctly on the event loop, we need:
* async methods for the `VectorStore` (OK)
* async methods for the `SemanticSimilarityExampleSelector` (this PR)
* async methods for `BasePromptTemplate` and `BaseChatPromptTemplate`
(future work)
This is a small breaking change but I think it should be done as:
* No external dependency needs to be installed anymore for the default
to work
* It is vendor-neutral
This patch updates function "run" to "invoke" in fake_llm.ipynb. Without
this patch, you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Fixing some issues for AzureCosmosDBSemanticCache
- Added the entry for "AzureCosmosDBSemanticCache" which was missing in
langchain/cache.py
- Added application name when creating the MongoClient for the
AzureCosmosDBVectorSearch, for tracking purposes.
@baskaryan, can you please review this PR, we need this to go in asap.
These are just small fixes which we found today in our testing.
- **Description:** The `semantic_hybrid_search_with_score_and_rerank`
method of `AzureSearch` contains a hardcoded field name "metadata" for
the document metadata in the Azure AI Search Index. Adding such a field
is optional when creating an Azure AI Search Index, as other snippets
from `AzureSearch` test for the existence of this field before trying to
access it. Furthermore, the metadata field name shouldn't be hardcoded
as "metadata" and use the `FIELDS_METADATA` variable that defines this
field name instead. In the current implementation, any index without a
metadata field named "metadata" will yield an error if a semantic answer
is returned by the search in
`semantic_hybrid_search_with_score_and_rerank`.
- **Issue:** https://github.com/langchain-ai/langchain/issues/18731
- **Prior fix to this bug:** This bug was fixed in this PR
https://github.com/langchain-ai/langchain/pull/15642 by adding a check
for the existence of the metadata field named `FIELDS_METADATA` and
retrieving a value for the key called "key" in that metadata if it
exists. If the field named `FIELDS_METADATA` was not present, an empty
string was returned. This fix was removed in this PR
https://github.com/langchain-ai/langchain/pull/15659 (see
ed1ffca911#).
@lz-chen: could you confirm this wasn't intentional?
- **New fix to this bug:** I believe there was an oversight in the logic
of the fix from
[#1564](https://github.com/langchain-ai/langchain/pull/15642) which I
explain below.
The `semantic_hybrid_search_with_score_and_rerank` method creates a
dictionary `semantic_answers_dict` with semantic answers returned by the
search as follows.
5c2f7e6b2b/libs/community/langchain_community/vectorstores/azuresearch.py (L574-L581)
The keys in this dictionary are the unique document ids in the index, if
I understand the [documentation of semantic
answers](https://learn.microsoft.com/en-us/azure/search/semantic-answers)
in Azure AI Search correctly. When the method transforms a search result
into a `Document` object, an "answer" key is added to the document's
metadata. The value for this "answer" key should be the semantic answer
returned by the search from this document, if such an answer is
returned. The match between a `Document` object and the semantic answers
returned by the search should be done through the unique document id,
which is used as a key for the `semantic_answers_dict` dictionary. This
id is defined in the search result's field named `FIELDS_ID`. I added a
check to avoid any error in case no field named `FIELDS_ID` exists in a
search result (which shouldn't happen in theory).
A benefit of this approach is that this fix should work whether or not
the Azure AI Search Index contains a metadata field.
@levalencia could you confirm my analysis and test the fix?
@raunakshrivastava7 do you agree with the fix?
Thanks for the help!
### Prem SDK integration in LangChain
This PR adds the integration with [PremAI's](https://www.premai.io/)
prem-sdk with langchain. User can now access to deployed models
(llms/embeddings) and use it with langchain's ecosystem. This PR adds
the following:
### This PR adds the following:
- [x] Add chat support
- [X] Adding embedding support
- [X] writing integration tests
- [X] writing tests for chat
- [X] writing tests for embedding
- [X] writing unit tests
- [X] writing tests for chat
- [X] writing tests for embedding
- [X] Adding documentation
- [X] writing documentation for chat
- [X] writing documentation for embedding
- [X] run `make test`
- [X] run `make lint`, `make lint_diff`
- [X] Final checks (spell check, lint, format and overall testing)
---------
Co-authored-by: Anindyadeep Sannigrahi <anindyadeepsannigrahi@Anindyadeeps-MacBook-Pro.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** PgVector class always runs "create extension" on init
and this statement crashes on ReadOnly databases (read only replicas).
but wierdly the next create collection etc work even in readOnly
databases
- **Dependencies:** no new dependencies
- **Twitter handle:** @VenOmaX666
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
When run command langchain app new my-app, i get this error:
File
"/home/mauricio/.local/lib/python3.8/site-packages/langchain_cli/utils/pyproject.py",
line 15, in <module>
pyproject_toml: Path, local_editable_dependencies: Iterable[tuple[str,
Path]]
TypeError: 'type' object is not subscriptable
This PR fix the error.
The existing default list of separators for the `RecursiveTextSplitter`
assumes spaces are word boundaries. Some languages [don't use spaces
between
words](https://en.wikipedia.org/wiki/Category:Writing_systems_without_word_boundaries)
(Chinese, Japanese, Thai, Burmese).
This PR extends the documentation to explain how to cater for those
languages by adding additional punctuation to the separators and
zero-width spaces which are used by some typesetters and will assist the
splitter to not split in words.
Ideally, **these separators could be a constant in the module** but for
now, defining them in the documentation is a start.
**Description:**
- minor PR to speed up onboarding by not trying to add a dataset, if a
model is already present.
- replace batch publish API with streaming when single events are
published.
**Dependencies:** any dependencies required for this change
**Twitter handle:** behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
This PR aims to enhance the documentation for TiDB integration, driven
by feedback from our users. It provides detailed introductions to key
features, ensuring developers can fully leverage TiDB for AI application
development.
**Description:**
Expanding version in all the Confluence API calls so to get when the
page was last modified/created in all cases.
**Issue:** #12812
**Twitter handle:** zzste
This PR adds code to make sure that the correct base URL is being
created for the Azure Cognitive Search retriever. At the moment an
incorrect base URL is being generated. I think this is happening because
the original code was based on a depreciated API version. No
dependencies need to be added. I've also added more context to the test
doc strings.
I should also note that ACS is now Azure AI Search. I will open a
separate PR to make these changes as that would be a breaking change and
should potentially be discussed.
Twitter: @marlene_zw
- No new tests added, however the current ACS retriever tests are now
passing when I run them.
- Code was linted.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** This commit introduces support for the newly
available GPU index types introduced in Milvus 2.4 within the LangChain
project's `milvus.py`. With the release of Milvus 2.4, a range of
GPU-accelerated index types have been added, offering enhanced search
capabilities and performance optimizations for vector search operations.
This update ensures LangChain users can fully utilize the new
performance benefits for vector search operations.
- Reference: https://milvus.io/docs/gpu_index.md
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Corrected a broken link within the semantic-chunker.ipynb notebook,
ensuring that users can access the referenced resource.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This patch fixes the #18022 issue, converting the SimSIMD internal
zero-copy outputs to NumPy.
I've also noticed, that oftentimes `dtype=np.float32` conversion is used
before passing to SimSIMD. Which numeric types do LangChain users
generally care about? We support `float64`, `float32`, `float16`, and
`int8` for cosine distances and `float16` seems reasonable for
practically any kind of embeddings and any modern piece of hardware, so
we can change that part as well 🤗
- **Description:** Added support for lower-case and mixed-case names
The names for tables and columns previouly had to be UPPER_CASE.
With this enhancement, also lower_case and MixedCase are supported,
- **Issue:** N/A
- **Dependencies:** no new dependecies added
- **Twitter handle:** @sapopensource
- **Description:** Since the implicit `__call__` has been deprecated in
favor of `invoke`, the local_llms article also needed to be updated.
This article was my introduction to Lanchain, and as it was helpful in
getting me setup with running LLMs locally, it is nice to not have any
warnings when running the example code. With this change, the warnings
go away when running the example code.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** clarkerican
Previous PR passed _parser attribute which apparently is not meant to be
used by user code and causes non deterministic failures on CI when
testing the transform and a transform methods. Reverting this change
temporarily.
This mitigates a security concern for users still using older versions of libexpat that causes an attacker to compromise the availability of the system if an attacker manages to surface malicious payload to this XMLParser.
**Description:** This change passes through `batch_size` to
`add_documents()`/`aadd_documents()` on calls to `index()` and
`aindex()` such that the documents are processed in the expected batch
size.
**Issue:** #19415
**Dependencies:** N/A
**Twitter handle:** N/A
Updated `HuggingFacePipeline` docs to be in sync with list of supported
tasks, including translation.
- [x] **PR title**: "community: Update docs for `HuggingFacePipeline`"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**:
- **Description:** Update docs for `HuggingFacePipeline`, was earlier
missing `translation` as a valid task
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** None
- [x] **Add tests and docs**:
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
**Description:**
This PR adds [Dappier](https://dappier.com/) for the chat model. It
supports generate, async generate, and batch functionalities. We added
unit and integration tests as well as a notebook with more details about
our chat model.
**Dependencies:**
No extra dependencies are needed.
- **Description:** [CVE
2024-21503](https://www.cve.org/CVERecord?id=CVE-2024-21503) was
recently identified. The python linter "black" suffers from a potential
Regex-related denial of service attack. Updated version from the
vulnerable 24.2.0 to the patched 24.3.0.
- **Issue:** N/A
- **Dependencies:** The 'black' package in both `langchain` (top-level)
and `templates/python-lint`.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
DuckDB has a cosine similarity function along list and array data types,
which can be used as a vector store.
- **Description:** The latest version of DuckDB features a cosine
similarity function, which can be used with its support for list or
array column types. This PR surfaces this functionality to langchain.
- **Dependencies:** duckdb 0.10.0
- **Twitter handle:** @igocrite
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Update s3_file.py to use arguments **mode** and
**post_processors** from the base class **UnstructuredBaseLoader** to
include more metadata about the files from the S3 bucket such as
*'page_number', 'languages'* etc.
**Issue:** NA
**Dependencies:** None
**Twitter handle:** preak95
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Looking at tokens / page of our docs, we see a few outliers:
<img width="761" alt="image"
src="https://github.com/langchain-ai/langchain/assets/122662504/677aa2d6-0a29-45e4-882a-db2bbf46d02b">
It is due to non-rendering images in one case, and output spamming.
Clean these, along with other cases of excessing output spamming in
docs.
All get sucked into chat-langchain for retrieval.
Thank you for contributing to LangChain!
bilibili-api-python use https://github.com/Nemo2011/bilibili-api repo.
Change to the correct address.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Description:** Update module imports for Fireworks documentation
**Issue:** Module imports not present or in incorrect location
**Dependencies:** None
**Description:** Update import paths and move to lcel for llama.cpp
examples
**Issue:** Update import paths to reflect package refactoring and move
chains to LCEL in examples
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Invoke callback prior to yielding token for BaseOpenAI
& OpenAIChat
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
**Description:** Invoke callback prior to yielding token for Fireworks
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
**Description:** Moving FireworksEmbeddings documentation to the
location docs/integration/text_embedding/ from langchain_fireworks/docs/
**Issue:** FireworksEmbeddings documentation was not in the correct
location
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I have a small dataset, and I tried to use docarray:
``DocArrayHnswSearch ``. But when I execute, it returns:
```bash
raise ImportError(
ImportError: Could not import docarray python package. Please install it with `pip install "langchain[docarray]"`.
```
Instead of docarray it needs to be
```bash
docarray[hnswlib]
```
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
RecursiveUrlLoader does not currently provide an option to set
`base_url` other than the `url`, though it uses a function with such an
option.
For example, this causes it unable to parse the
`https://python.langchain.com/docs`, as it returns the 404 page, and
`https://python.langchain.com/docs/get_started/introduction` has no
child routes to parse.
`base_url` allows setting the `https://python.langchain.com/docs` to
filter by, while the starting URL is anything inside, that contains
relevant links to continue crawling.
I understand that for this case, the docusaurus loader could be used,
but it's a common issue with many websites.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Delete MistralAIEmbeddings usage document from folder
partners/mistralai/docs
**Issue:** The document is present in the folder docs/docs
**Dependencies:** None
**Description:** Invoke callback prior to yielding token for llama.cpp
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)
**Dependencies:** None
```python
from langchain.agents import tool
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
@tool
def get_word_length(word: str) -> int:
"""Returns the length of a word."""
return len(word)
tools = [get_word_length]
llm_with_tools = llm.bind_tools(tools)
llm_with_tools.invoke("how long is the word chrysanthemum")
```
currently raises
```
AttributeError: 'dict' object has no attribute 'model_dump'
```
Same with `.with_structured_output`
```python
from langchain_mistralai import ChatMistralAI
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
"""An answer to the user question along with justification for the answer."""
answer: str
justification: str
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
```
This appears to fix.
For prompt templates with only 1 variable (common in e.g.,
MessageGraph), it's convenient to wrap the incoming object in the
variable before formatting.
The downside of this, of course, would be that some number of
invocations will successfully format when the user may have intended to
format it properly before
This is a basic VectorStore implementation using an in-memory dict to
store the documents.
It doesn't need any extra/optional dependency as it uses numpy which is
already a dependency of langchain.
This is useful for quick testing, demos, examples.
Also it allows to write vendor-neutral tutorials, guides, etc...
Classes and functions defined in __init__.py are not parsed into the API
Reference.
For example:
- libs/core/langchain_core/messages/__init__.py : AnyMessage,
MessageLikeRepresentation, get_buffer_string(), messages_from_dict(),
...
Opinionated: __init__.py is not a typical place to define artifacts.
Moved artifacts from __init__ into utils.py.
Added `MessageLikeRepresentation` to __all__ since it is used outside of
`messages`, for example, in
`libs/core/langchain_core/language_models/base.py`
Added `_message_from_dict` to __all__ since it is used outside of
`messages`(???) I would add `message_from_dict` (without underscore) as
an alias. Please, advise.
Covered by tests in
`libs/core/tests/unit_tests/language_models/chat_models/test_base.py`,
`libs/core/tests/unit_tests/language_models/llms/test_base.py` and
`libs/core/tests/unit_tests/runnables/test_runnable_events.py`
**Description:**
Currently, `CacheBackedEmbeddings` computes vectors for *all* uncached
documents before updating the store. This pull request updates the
embedding computation loop to compute embeddings in batches, updating
the store after each batch.
I noticed this when I tried `CacheBackedEmbeddings` on our 30k document
set and the cache directory hadn't appeared on disk after 30 minutes.
The motivation is to minimize compute/data loss when problems occur:
* If there is a transient embedding failure (e.g. a network outage at
the embedding endpoint triggers an exception), at least the completed
vectors are written to the store instead of being discarded.
* If there is an issue with the store (e.g. no write permissions), the
condition is detected early without computing (and discarding!) all the
vectors.
**Issue:**
Implements enhancement #18026.
**Testing:**
I was unable to run unit tests; details in [this
post](https://github.com/langchain-ai/langchain/discussions/15019#discussioncomment-8576684).
---------
Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
## Description
Semantic Cache can retrieve noisy information if the score threshold for
the value is too low. Adding the ability to set a `score_threshold` on
cache construction can allow for less noisy scores to appear.
- [x] **Add tests and docs**
1. Added tests that confirm the `score_threshold` query is valid.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
The `retryFailed` option will retry all failed links, once at a time
with the goal of not triggering bot protection
`microsoft.com` is now hard coded into the whitelist
Classes and functions defined in __init__.py are not parsed into the API
Reference.
For example: libs/core/langchain_core/globals/__init__.py :
`set_verbose` `get_llm_cache`, `set_llm_cache`, ...
And the whole `langchain_core.globals` namespace is not visible in the
API Reference. The refactoring is just file renaming.
- **Description:** Enhanced the `BaseChatModel` to support an
`Optional[Union[bool, BaseCache]]` type for the `cache` attribute,
allowing for both boolean flags and custom cache implementations.
Implemented logic within chat model methods to utilize the provided
custom cache implementation effectively. This change aims to provide
more flexibility in caching strategies for chat models.
- **Issue:** Implements enhancement request #17242.
- **Dependencies:** No additional dependencies required for this change.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **PR message**:
- **Description:** Update the slack toolkit doc to use an agent that
support multiple inputs. Using ReAct agent will cause a ValidationError
when invoking the slack tools. This is because the agent return a string
like `'{"channel": "C05LDF54S21", "message": "Hello, world!"}'` but the
ReAct agent does not support multiple inputs.
- **Issue:** This is related to this
[Discussion#18083](https://github.com/langchain-ai/langchain/discussions/18083)
- **Dependencies:** No dependencies required
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Changing OpenAIAssistantRunnable.create_assistant to send the `file_ids`
parameter to openai.beta.assistants.create
Co-authored-by: Frederico Wu <fred.diaswu@coxautoinc.com>
**Description**:
this PR enable VectorStore autoconfiguration for Infinispan: if
metadatas are only of basic types, protobuf
config will be automatically generated for the user.
When creating a new index, if we use a retrieval strategy that expects a
model to be deployed in Elasticsearch, check if a model with this name
is indeed deployed before creating an index. This lowers the probability
to get into a state in which an index was created with a faulty model
ID, which cannot be overwritten any more (the index has to manually be
deleted).
Add `keep_alive` parameter to control how long the model will stay
loaded into memory with Ollama。
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**
This PR adds some missing details from the "Split by tokens" page in the
documentation. Specifically:
- The `.from_tiktoken_encoder()` class methods for both the
`CharacterTextSplitter` and `RecursiveCharacterTextSplitter` default to
the old `gpt-2` encoding. I've added a comment to suggest specifying
`model_name` or `encoding`
- The docs didn't mention that the `from_tiktoken_encoder()` class
method passes additional kwargs down to the constructor of the splitter.
I only discovered this by reading the source code
- Added an example of using the `.from_tiktoken_encoder()` class method
with `RecursiveCharacterTextSplitter` which is the recommended approach
for most scenarios above `CharacterTextSplitter`
- Added a warning that `TokenTextSplitter` can split characters which
have multiple tokens (e.g. 猫 has 3 cl100k_base tokens) between multiple
chunks which creates malformed Unicode strings and should not be used in
these situations.
Side note: I think the default argument of `gpt2` for
`.from_tiktoken_encoder()` should be updated?
**Twitter handle** anthonypjshaw
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Issue : For functions which have an argument with the name 'title', the
convert_pydantic_to_openai_function generates an incorrect output and
omits the argument all together. This is because the _rm_titles function
removes all instances of the the key 'title' from the output.
Description : Updates the _rm_titles function to check the presence of
the 'type' key as well before removing the 'title' key. As the title key
that we wish to omit always has a type key along with it.
Potential gap if there is a function defined which has both title and
key as argument names, in which case this would fail. Maybe we could set
a filter on the function argument names and reject those with keyword
argument names.
No dependencies. Passed all tests.
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** There was no formatter for mistral models for Azure
ML endpoints. Adding that, plus a configurable timeout (it was hard
coded before)
- **Dependencies:** none
- **Twitter handle:** @tjaffri @docugami
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "Updating format of pip install in two files of
docs/cookbook"
- pip install is not reflecting properly in some of the files in
cookbook
- Example:
[docs/expression_language/cookbook/sql_db](https://python.langchain.com/docs/expression_language/cookbook/sql_db)
- [x] **PR message**: Updating format of pip install in two files of
docs/cookbook
- **Description:** a description of the change
- **Issue:** #19197
- Note - let's do squash merge for the PR
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
add **kwargs in add_documents for upsert, to make it use for other
argument also.
Lets use this, it was unused as of now.
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Rohit Gupta <rohit.gupta2@walmart.com>
## Description
This PR modifies the settings in `libs/langchain/dev.Dockerfile` to
ensure that the `text-splitters` directory is copied before the poetry
installation process begins.
Without this modification, the `docker build` command fails for
`dev.Dockerfile`, preventing the setup of some development environments,
including `.devcontainer`.
## Bug Details
### Repro
Run the following command:
```bash
docker build -f libs/langchain/dev.Dockerfile .
```
### Current Behavior
The docker build command fails, raising the following error:
```
...
=> [langchain-dev-dependencies 4/5] COPY libs/community/ ../community/ 0.4s
=> ERROR [langchain-dev-dependencies 5/5] RUN poetry install --no-interaction --no-ansi --with dev,test,docs 1.1s
------
> [langchain-dev-dependencies 5/5] RUN poetry install --no-interaction --no-ansi --with dev,test,docs:
#13 0.970
#13 0.970 Directory ../text-splitters does not exist
------
executor failed running [/bin/sh -c poetry install --no-interaction --no-ansi --with dev,test,docs]: exit code: 1
```
### Expected Behavior
The `docker build` command successfully completes without the poetry
error.
### Analysis
The error occurs because the `text-splitters` directory is not copied
into the build environment, unlike the other packages under the `libs`
directory. I suspect that the `COPY` setting was overlooked since
`text-splitters` was separated in a recent PR.
## Fix
Add the following lines to the `libs/langchain/dev.Dockerfile`:
```dockerfile
# Copy the text-splitters library for installation
COPY libs/text-splitters/ ../text-splitters/
```
- **Description:** Tests fail to do value lookup because it does not
specify the index name
- **Issue:** the issue # Failing integration test
- [x] **Add tests and docs**: Tests now pass
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
The root run id (~trace id's) is useful for assigning feedback, but the
current recommended approach is to use callbacks to retrieve it, which
has some drawbacks:
1. Doesn't work for streaming until after the first event
2. Doesn't let you call other endpoints with the same trace ID in
parallel (since you have to wait until the call is completed/started to
use
This PR lets you provide = "run_id" in the runnable config.
Couple considerations:
1. For batch calls, we split the trace up into separate trees (to permit
better rendering). We keep the provided run ID for the first one and
generate a unique one for other elements of the batch.
2. For nested calls, the provided ID is ONLY used on the top root/trace.
### Example Usage
```
chain.invoke("foo", {"run_id": uuid.uuid4()})
```
Classes are missed in __all__ and in different places of __init__.py
- BaichuanLLM
- ChatDatabricks
- ChatMlflow
- Llamafile
- Mlflow
- Together
Added classes to __all__. I also sorted __all__ list.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: deprecate DocugamiLoader"
- [x] **PR message**: Deprecate the langchain_community and use the
docugami_langchain DocugamiLoader
---------
Co-authored-by: Kenzie Mihardja <kenzie28@cs.washington.edu>
## Description
* In memory cache easily gets out of sync with the server cache, so we
will remove it entirely to reduce the issues around invalidated caches.
## Dependencies
None
- [x] If you're adding a new integration, please include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Erick Friis <erick@langchain.dev>
## Description
Returning the embedding is not necessary in the vector search
functionality unless specified as a debugging step. This change defaults
the behavior such that the server _only_ returns the embedding key if
explicitly requested, such as in the case of
`max_marginal_relevance_search`.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
* Added `test_from_documents_no_embedding_return`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- Description:
- Updated the import path for `StreamingStdOutCallbackHandler` in the
streaming response example within `huggingface_endpoint.py`. This change
corrects the import statement to reflect the actual location of
`StreamingStdOutCallbackHandler` in
`langchain_core.callbacks.streaming_stdout`.
- Issue:
- None
- Dependencies:
- No additional dependencies are required for this change.
- Twitter handle:
- None
## Note:
I have tested this change locally and confirmed that the
`StreamingStdOutCallbackHandler` works as expected with the updated
import path. This PR does not require the addition of new tests since it
is a correction to documentation/examples rather than functional code.
- [x] **Support for translation**: "community: Add support for
translation in `HuggingFacePipeline`"
- [x] **Add support for translation in `HuggingFacePipeline`**:
- **Description:** Add support for translation in `HuggingFacePipeline`,
which earlier used to support only text summarization and generation.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** None
- Description:
- This pull request is to fix a bug where page numbers were not set
correctly. In the current code, all chunks share the same metadata
object doc_metadata, so the page number is set with the same value for
all documents. To fix this, I changed to using separate metadata objects
for each chunk.
- Issue:
- None
- Dependencies:
- No additional dependencies are required for this change.
- Twitter handle:
- @eycjur
- Test
- Even if it's not a bug, there are cases where everything ends up with
the same number of pages, so it's very difficult for me to write
integration tests.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
I think that cell type for pip command may be 'code'.
Please check, thank you :)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Line `from langchain_openai import ChatOpenAI` is put twice in Get
Started / Serving with LangServe section.
Imports on lines 559 and 566 are identical
Co-authored-by: Vitalii <vitalii@localhost>
**Description:**
#18040 forces `fastembed>2.0`, and this causes dependency conflicts with
the new `unstructured` package (different `onnxruntime`). There may be
other dependency conflicts.. The only way to use
`langchain-community>=0.0.28` is rollback to `unstructured 0.10.X`. But
new `unstructured` contains many fixes.
This PR allows to use both `fastembed` `v1` and `v2`.
How to reproduce:
`pyproject.toml`:
```toml
[tool.poetry]
name = "depstest"
version = "0.0.0"
description = "test"
authors = ["<dev@example.org>"]
[tool.poetry.dependencies]
python = ">=3.10,<3.12"
langchain-community = "^0.0.28"
fastembed = "^0.2.0"
unstructured = {extras = ["pdf"], version = "^0.12"}
```
```bash
$ poetry lock
```
Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
- **Description:** This modification addresses the issue of mutable
default parameters in functions. In the original code, the `chunks`
parameter is defaulted to a list containing an empty dictionary, which
is mutable. Since default parameters in Python are evaluated only once
at function definition time, modifications to the parameter would
persist across future calls. By changing the default to `None` and
checking/initializing within the function, a new list is created for
each call, thus avoiding potential issues.
---------
Co-authored-by: sixiang <sixiang@lixiang.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Update stales link in Together AI documentation
**Issue:** Some links pointed to legacy webpages on the Together AI
website
**Dependencies:** None
**Lint and test**: `make format`, `make lint` were run
**Description:** Update docstring of Together class to show example and
update API URL
**Issue:** Improves usability
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` were run
- [ ] **PR title**: "docs: correction in
"https://github.com/langchain-ai/langchain/blob/master/docs/docs/get_started/quickstart.mdx",
line 289".
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**:
- Corrected the spelling mistake
- #18981
Fixed Grammar in Considerations of Model I/O Concepts documentation page
- Update concepts.mdx
Page Link:
https://python.langchain.com/docs/modules/model_io/concepts#considerations
- **Description:** Fixed Grammar in Considerations of Model I/O
Documentation Page
- **Issue:** "to work well with the model are you using" # "to work well
with the model you are using"
- **Dependencies:** None
- **Twitter handle:** @Anubhav_Madhav
(https://twitter.com/Anubhav_Madhav)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## Description
This PR addresses a documentation issue in the
[Indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
page. Specifically, it corrects the execution results of the Jupyter
notebook under the
[Source](https://python.langchain.com/docs/modules/data_connection/indexing#source)
section, which were broken as detailed below.
## Problem
The execution results following the statement, `This should delete the
old versions of documents associated with doggy.txt source and replace
them with the new versions.`, appear to be incorrect, as described
below.
### Current Behavior
- For some reason, the `index` function fails to add the new content of
`doggy.txt`. Although it deletes the document objects associated with
the `doggy.txt` source, it does not add the objects in
`changed_doggy_docs`. Consequently, the execution result displays
`num_added: 0`.
- This unexpected behavior also impacts the results of
`vectorstore.similarity_search("dog", k=30)`, showing only the contents
of `kitty.txt`. It appears as though the contents of `doggy.txt` have
been completely removed from the index:
```
Document(page_content='tty kitty', metadata={'source': 'kitty.txt'}),
Document(page_content='tty kitty ki', metadata={'source': 'kitty.txt'}),
Document(page_content='kitty kit', metadata={'source': 'kitty.txt'})]
```
### Expected Behavior
- The `index` function should successfully add the objects in
`changed_doggy_docs` after removing the old content of `doggy.txt`. The
anticipated execution result is `num_added: 2`.
- Subsequently, the modified content of `doggy.txt` should appear in the
results of `vectorstore.similarity_search("dog", k=30)` as follows:
```
[Document(page_content='woof woof', metadata={'source': 'doggy.txt'}),
Document(page_content='woof woof woof', metadata={'source': 'doggy.txt'}),
Document(page_content='tty kitty', metadata={'source': 'kitty.txt'}),
Document(page_content='tty kitty ki', metadata={'source': 'kitty.txt'}),
Document(page_content='kitty kit', metadata={'source': 'kitty.txt'})]
```
## Fix
I reran `docs/docs/modules/data_connection/indexing.ipynb` and have
included the diff in this PR.
- Description: [a description of the change] Add in code documentation
to core Runnable with_fallbacks method (docs only)
- Issue: the issue #18804
@eyurtsev PTAL
Docs fix: replace column name search with source.
The Xata integration expects metadata column named "source".
The docs suggest the name "search", which if used, yields the following
error:
```
File "/usr/local/lib/python3.11/site-packages/langchain_community/vectorstores/xata.py", line 95, in _add_vectors
raise Exception(f"Error adding vectors to Xata: {r.status_code} {r}")
Exception: Error adding vectors to Xata: 400 {'errors': [{'status': 400, 'message': 'invalid record: column [source]: column not found'}]}
```
**Description:** Many LLM steps complete in sub-second duration, which
can lead to non-collection of duration field for Fiddler. This PR
updates duration from seconds to milliseconds.
**Issue:** [INTERNAL] FDL-17568
**Dependencies:** NA
**Twitter handle:** behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
- **Description:** Handling fallbacks when calling async streaming for a
LLM that doesn't support it.
- **Issue:** #18920
- **Twitter handle:**@maximeperrin_
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
**Description:** This PR adds updates the fiddler events schema to also
pass user feedback, and llm status to fiddler
**Tickets:** [INTERNAL] FDL-17559
**Dependencies:** NA
**Twitter handle:** behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
- **Description:** This modification adds pydantic input definition for
sql_database tools. This helps for function calling capability in
LangGraph. Since actions nodes will usually check for the args_schema
attribute on tools, This update should make these tools compatible with
it (only implemented on the InfoSQLDatabaseTool)
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** juanfe8881
poetry can't reliably handle resolving the number of optional "extended
test" dependencies we have. If we instead just rely on pip to install
extended test deps in CI, this isn't an issue.
- **Description:** add async tests, add tokenize support
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:**
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally -> ✅
Please make sure integration_tests passing locally -> ✅
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR makes the following updates in the pgvector database:
1. Use JSONB field for metadata instead of JSON
2. Update operator syntax to include required `$` prefix before the
operators (otherwise there will be name collisions with fields)
3. The change is non-breaking, old functionality is still the default,
but it will emit a deprecation warning
4. Previous functionality has bugs associated with comparisons due to
casting to text (so lexical ordering is used incorrectly for numeric
fields)
5. Adds an a GIN index on the JSONB field for more efficient querying
**PR message**: ***Delete this entire checklist*** and replace with
- **Description:** [a description of the change](docs: Add in code
documentation to core Runnable assign method)
- **Issue:** the issue #18804
Fixed typo in line 661 - from 'mimimize' to 'minimize
- [ ] **PR message**:
- **Description:** Fixed typo in streaming document - change 'mimimize'
to 'minimize
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** When calling the `_stream_log_implementation` from
the `astream_log` method in the `Runnable` class, it is not handing over
the `kwargs` argument. Therefore, even if i want to customize APIHandler
and implement additional features with additional arguments, it is not
possible. Conversely, the `astream_events` method normally handing over
the `kwargs` argument.
- **Issue:** https://github.com/langchain-ai/langchain/issues/19054
- **Dependencies:**
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
Co-authored-by: hyungwookyang <hyungwookyang@worksmobile.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** This change fixes a bug where attempts to load data
from Notion using the NotionDBLoader resulted in a 400 Bad Request
error. The issue was traced to the unconditional addition of an empty
'filter' object in the request payload, which Notion's API does not
accept. The modification ensures that the 'filter' object is only
included in the payload when it is explicitly provided and not empty,
thus preventing the 400 error from occurring.
- **Issue:** Fixes
[#18009](https://github.com/langchain-ai/langchain/issues/18009)
- **Dependencies:** None
- **Twitter handle:** @gunnzolder
Co-authored-by: Anton Parkhomenko <anton@merge.rocks>
**Description:**
Updates to LangChain-MongoDB documentation: updates to the Atlas vector
search index definition
**Issue:**
NA
**Dependencies:**
NA
**Twitter handle:**
iprakul
This PR adds `batch as completed` method to the standard Runnable
interface. It takes in a list of inputs and yields the corresponding
outputs as the inputs are completed.
Add documentation notebook for `ElasticsearchRetriever`.
## Dependencies
- [ ] Release new `langchain-elasticsearch` version 0.2.0 that includes
`ElasticsearchRetriever`
**Description:** Circular dependencies when parsing references leading
to `RecursionError: maximum recursion depth exceeded` issue. This PR
address the issue by handling previously seen refs as in any typical DFS
to avoid infinite depths.
**Issue:** https://github.com/langchain-ai/langchain/issues/12163
**Twitter handle:** https://twitter.com/theBhulawat
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Refactor code of FAISS vectorcstore and update the
related documentation.
Details:
- replace `.format()` with f-strings for strings formatting;
- refactor definition of a filtering function to make code more readable
and more flexible;
- slightly improve efficiency of
`max_marginal_relevance_search_with_score_by_vector` method by removing
unnecessary looping over the same elements;
- slightly improve efficiency of `delete` method by using set data
structure for checking if the element was already deleted;
**Issue:** fix small inconsistency in the documentation (the old example
was incorrect and unappliable to faiss vectorstore)
**Dependencies:** basic langchain-community dependencies and `faiss`
(for CPU or for GPU)
**Twitter handle:** antonenkodev
Issue : _call method of LLMRouterChain uses predict_and_parse, which is
slated for deprecation.
Description : Instead of using predict_and_parse, this replaces it with
individual predict and parse functions.
Added deps:
- `@supabase/supabase-js` - for sending inserts
- `supabase` - dev dep, for generating types via cli
- `dotenv` for loading env vars
Added script:
- `yarn gen` - will auto generate the database schema types using the
supabase CLI. Not necessary for development, but is useful. Requires
authing with the supabase CLI (will error out w/ instructions if you're
not authed).
Added functionality:
- pulls users IP address (using a free endpoint: `https://api.ipify.org`
so we can filter out abuse down the line)
TODO:
- [x] add env vars to vercel
**Description:** Update the docstring of OpenAI, OpenAIEmbeddings and
ChatOpenAI classes
**Issue:** Update import module paths to the current LangChain API
**Dependencies:** None
**Lint and test**: `make format` and `make lint` were run
This incorporates the review comments from langchain-ai/langchain#18637
which I closed due to an issue I had in updating that pr branch
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
community: fix - change sparkllm spark_app_url to spark_api_url
- **Description:**
- Change the variable name from `sparkllm spark_app_url` to
`spark_api_url` in the community package.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Variable name was `openai_poem` but it didn't pass in the `"prompt":
"poem"` config, so the examples were showing a joke being returned from
a variable called `*_poem`.
We could have gone one of two ways:
1. Updating the config line and the output line, or
2. Updating the variable name
The latter seemed simpler, so that's what I went with. But I'd be glad
to re-do this PR if you prefer the former.
Thanks for everything, y'all. You rock 🤘
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** `conroywhitney`
**Description:** Update AnthropicLLM deprecation message import path for
ChatAnthropic
**Issue:** Incorrect import path in deprecation message
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` were run
This PR updates the on_tool_end handlers to return the raw output from the tool instead of casting it to a string.
This is technically a breaking change, though it's impact is expected to be somewhat minimal. It will fix behavior in `astream_events` as well.
Fixes the following issue #18760 raised by @eyurtsev
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** Update callbacks documentation
**Issue:** Change some module imports and a method invocation to reflect
the current LangChainAPI
**Dependencies:** None
BasePDFLoader doesn't parse the suffix of the file correctly when
parsing S3 presigned urls. This fix enables the proper detection and
parsing of S3 presigned URLs to prevent errors such as `OSError: [Errno
36] File name too long`.
No additional dependencies required.
Created the `facebook` page from `facebook_faiss` and `facebook_chat`
pages. Added another Facebook integrations into this page.
Updated `discord` page.
Deduplicate documents using MD5 of the page_content. Also allows for
custom deduplication with graph ingestion method by providing metadata
id attribute
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adding an optional parameter `linearization_config`
to the `AmazonTextractPDFLoader` so the caller can define how the output
will be linearized, instead of forcing a predefined set of linearization
configs. It will still have a default configuration as this will be an
optional parameter.
- **Issue:** #17457
- **Dependencies:** The same ones that already exist for
`AmazonTextractPDFLoader`
- **Twitter handle:** [@lvieirajr19](https://twitter.com/lvieirajr19)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
*Description**: My previous
[PR](https://github.com/langchain-ai/langchain/pull/18521) was
mistakenly closed, so I am reopening this one. Context: AWS released two
Mistral models on Bedrock last Friday (March 1, 2024). This PR includes
some code adjustments to ensure their compatibility with the Bedrock
class.
---------
Co-authored-by: Anis ZAKARI <anis.zakari@hymaia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Update azuresearch vectorstore from_texts() method to
include fields argument, necessary for creating an Azure AI Search index
with custom fields.
- **Issue:** Currently index fields are fixed to default fields if Azure
Search index is created using from_texts() method
- **Dependencies:** None
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Small improvement to the openapi prompt.
The agent was not finding the server base URL (looping through all
nodes). This small change narrows the search and enables finding the url
faster.
No dependency
Twitter : @al1pra
# Proper example for AzureOpenAI usage in error message
The original error message is wrong in part of a usage example it gives.
Corrected to the right one.
Co-authored-by: Dzmitry Kankalovich <dzmitry_kankalovich@epam.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR is a successor to this PR -
https://github.com/langchain-ai/langchain/pull/17436
This PR updates the cookbook README with the notebook so that it is
available on langchain docs for discoverability.
cc: @baskaryan, @3coins
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Fix lists display issues in **Docs > Use Cases > Q&A
with RAG > Quickstart**.
In essence, this PR changes:
```markdown
Some paragraph.
- Item a.
- Item b.
```
to:
```markdown
Some paragraph.
- Item a.
- Item b.
```
There needs an extra empty line to make the list rendered properly.
FYI, the old version is displayed not properly as:
<img width="856" alt="image"
src="https://github.com/langchain-ai/langchain/assets/22856433/65202577-8ea2-47c6-b310-39bf42796fac">
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** `S3DirectoryLoader` is failing if prefix is a folder
(ex: `my_folder/`) because `S3FileLoader` will try to load that folder
and will fail. This PR skip nested directories so prefix can be set to
folder instead of `my_folder/files_prefix`.
- **Issue:**
- #11917
- #6535
- #4326
- **Dependencies:** none
- **Twitter handle:** @Falydoor
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- [ ] Title: Mongodb: MongoDB connection performance improvement.
- [ ] Message:
- **Description:** I made collection index_creation as optional. Index
Creation is one time process.
- **Issue:** MongoDBChatMessageHistory class object is attempting to
create an index during connection, causing each request to take longer
than usual. This should be optional with a parameter.
- **Dependencies:** N/A
- **Branch to be checked:** origin/mongo_index_creation
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Add embedding instruction to
HuggingFaceBgeEmbeddings, so that it can be compatible with nomic and
other models that need embedding instruction.
---------
Co-authored-by: Tao Wu <tao.wu@rwth-aachen.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
_generate() and _agenerate() both accept **kwargs, then pass them on to
_format_output; but _format_output doesn't accept **kwargs. Attempting
to pass, e.g.,
timeout=50
to _generate (or invoke()) results in a TypeError.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Add Passio Nutrition AI Food Search Tool to Community Package
### Description
We propose adding a new tool to the `community` package, enabling
integration with Passio Nutrition AI for food search functionality. This
tool will provide a simple interface for retrieving nutrition facts
through the Passio Nutrition AI API, simplifying user access to
nutrition data based on food search queries.
### Implementation Details
- **Class Structure:** Implement `NutritionAI`, extending `BaseTool`. It
includes an `_run` method that accepts a query string and, optionally, a
`CallbackManagerForToolRun`.
- **API Integration:** Use `NutritionAIAPI` for the API wrapper,
encapsulating all interactions with the Passio Nutrition AI and
providing a clean API interface.
- **Error Handling:** Implement comprehensive error handling for API
request failures.
### Expected Outcome
- **User Benefits:** Enable easy querying of nutrition facts from Passio
Nutrition AI, enhancing the utility of the `langchain_community` package
for nutrition-related projects.
- **Functionality:** Provide a straightforward method for integrating
nutrition information retrieval into users' applications.
### Dependencies
- `langchain_core` for base tooling support
- `pydantic` for data validation and settings management
- Consider `requests` or another HTTP client library if not covered by
`NutritionAIAPI`.
### Tests and Documentation
- **Unit Tests:** Include tests that mock network interactions to ensure
tool reliability without external API dependency.
- **Documentation:** Create an example notebook in
`docs/docs/integrations/tools/passio_nutrition_ai.ipynb` showing usage,
setup, and example queries.
### Contribution Guidelines Compliance
- Adhere to the project's linting and formatting standards (`make
format`, `make lint`, `make test`).
- Ensure compliance with LangChain's contribution guidelines,
particularly around dependency management and package modifications.
### Additional Notes
- Aim for the tool to be a lightweight, focused addition, not
introducing significant new dependencies or complexity.
- Potential future enhancements could include caching for common queries
to improve performance.
### Twitter Handle
- Here is our Passio AI [twitter handle](https://twitter.com/@passio_ai)
where we announce our products.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
"community: added a feature to filter documents in Mongoloader"
- **Description:** added a feature to filter documents in Mongoloader
- **Feature:** the feature #18251
- **Dependencies:** No
- **Twitter handle:** https://twitter.com/im_Kushagra
For some DBs with lots of tables, reflection of all the tables can take
very long. So this change will make the tables be reflected lazily when
get_table_info() is called and `lazy_table_reflection` is True.
Allows all chat models that implement _stream, but not _astream to still have async streaming to work.
Amongst other things this should resolve issues with streaming community model implementations through langserve since langserve is exclusively async.
**Description:** Replacing the deprecated predict() and apredict()
methods in the unit tests
**Issue:** Not applicable
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` have been
run
**Description:** Minor update to Anthropic documentation
**Issue:** Not applicable
**Dependencies:** None
**Lint and test**: `make format` and `make lint` was done
This path updates function "run" to "invoke" in llm_bash.ipynb.
Without this path, you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0
and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Fixing a minor typo in the package name.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- [ ] **PR title:** docs: Fix link to HF TEI in
text_embeddings_inference.ipynb
- [ ] **PR message:**
- **Description:** Fix the link to [Hugging Face Text Embeddings
Inference
(TEI)](https://huggingface.co/docs/text-embeddings-inference/index) in
text_embeddings_inference.ipynb
- **Issue:** Fix#18576
Make `ElasticsearchRetriever` available as top-level import.
The `langchain` package depends on `langchain-community` so we do not
need to depend on it explicitly.
## Description
- Add [Friendli](https://friendli.ai/) integration for `Friendli` LLM
and `ChatFriendli` chat model.
- Unit tests and integration tests corresponding to this change are
added.
- Documentations corresponding to this change are added.
## Dependencies
- Optional dependency
[`friendli-client`](https://pypi.org/project/friendli-client/) package
is added only for those who use `Frienldi` or `ChatFriendli` model.
## Twitter handle
- https://twitter.com/friendliai
This pull request introduces initial support for the TiDB vector store.
The current version is basic, laying the foundation for the vector store
integration. While this implementation provides the essential features,
we plan to expand and improve the TiDB vector store support with
additional enhancements in future updates.
Upcoming Enhancements:
* Support for Vector Index Creation: To enhance the efficiency and
performance of the vector store.
* Support for max marginal relevance search.
* Customized Table Structure Support: Recognizing the need for
flexibility, we plan for more tailored and efficient data store
solutions.
Simple use case exmaple
```python
from typing import List, Tuple
from langchain.docstore.document import Document
from langchain_community.vectorstores import TiDBVectorStore
from langchain_openai import OpenAIEmbeddings
db = TiDBVectorStore.from_texts(
embedding=embeddings,
texts=['Andrew like eating oranges', 'Alexandra is from England', 'Ketanji Brown Jackson is a judge'],
table_name="tidb_vector_langchain",
connection_string=tidb_connection_url,
distance_strategy="cosine",
)
query = "Can you tell me about Alexandra?"
docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
```
## **Description:**
MongoDB integration tests link to a provided Atlas Cluster. We have very
stringent permissions set against the cluster provided. In order to make
it easier to track and isolate the collections each test gets run
against, we've updated the collection names to map the test file name.
i.e. `langchain_{filename}` => `langchain_test_vectorstores`
Fixes integration test results

## **Dependencies:**
Provided MONGODB_ATLAS_URI
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
cc: @shaneharvey, @blink1073 , @NoahStapp , @caseyclements
- **Description:** Chroma use uuid4 instead of uuid1 as random ids. Use
uuid1 may leak mac address, changing to uuid4 will not cause other
effects.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
Fixes#18513.
## Description
This PR attempts to fix the support for Anthropic Claude v3 models in
BedrockChat LLM. The changes here has updated the payload to use the
`messages` format instead of the formatted text prompt for all models;
`messages` API is backwards compatible with all models in Anthropic, so
this should not break the experience for any models.
## Notes
The PR in the current form does not support the v3 models for the
non-chat Bedrock LLM. This means, that with these changes, users won't
be able to able to use the v3 models with the Bedrock LLM. I can open a
separate PR to tackle this use-case, the intent here was to get this out
quickly, so users can start using and test the chat LLM. The Bedrock LLM
classes have also grown complex with a lot of conditions to support
various providers and models, and is ripe for a refactor to make future
changes more palatable. This refactor is likely to take longer, and
requires more thorough testing from the community. Credit to PRs
[18579](https://github.com/langchain-ai/langchain/pull/18579) and
[18548](https://github.com/langchain-ai/langchain/pull/18548) for some
of the code here.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
This integrates Infinispan as a vectorstore.
Infinispan is an open-source key-value data grid, it can work as single
node as well as distributed.
Vector search is supported since release 15.x
For more: [Infinispan Home](https://infinispan.org)
Integration tests are provided as well as a demo notebook
Thank you for contributing to LangChain!
- [x] **PR title**: "templates: rag-multi-modal typo, replace serch with
search "
- **Description:** Two little typos in multi modal templates (replace
serch string with search)
Signed-off-by: José Luis Di Biase <josx@interorganic.com.ar>
ValidationError: 2 validation errors for DocArrayDoc
text
Field required [type=missing, input_value={'embedding': [-0.0191128...9, 0.01005221541175212]}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.5/v/missing
metadata
Field required [type=missing, input_value={'embedding': [-0.0191128...9, 0.01005221541175212]}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.5/v/missing
```
In the `_get_doc_cls` method, the `DocArrayDoc` class is defined as
follows:
```python
class DocArrayDoc(BaseDoc):
text: Optional[str]
embedding: Optional[NdArray] = Field(**embeddings_params)
metadata: Optional[dict]
```
This is a PR that adds a dangerous load parameter to force users to opt in to use pickle.
This is a PR that's meant to raise user awareness that the pickling module is involved.
This is a patch for `CVE-2024-2057`:
https://www.cve.org/CVERecord?id=CVE-2024-2057
This affects users that:
* Use the `TFIDFRetriever`
* Attempt to de-serialize it from an untrusted source that contains a
malicious payload
**Description:** Update to the streaming tutorial notebook in the LCEL
documentation
**Issue:** Fixed an import and (minor) changes in documentation language
**Dependencies:** None
- **Description:** Databricks SerDe uses cloudpickle instead of pickle
when serializing a user-defined function transform_input_fn since pickle
does not support functions defined in `__main__`, and cloudpickle
supports this.
- **Dependencies:** cloudpickle>=2.0.0
Added a unit test.
- **Description:** Fixed some typos and copy errors in the Beta
Structured Output docs
- **Issue:** N/A
- **Dependencies:** Docs only
- **Twitter handle:** @psvann
Co-authored-by: P.S. Vann <psvann@yahoo.com>
Description:
This pull request addresses two key improvements to the langchain
repository:
**Fix for Crash in Flight Search Interface**:
Previously, the code would crash when encountering a failure scenario in
the flight ticket search interface. This PR resolves this issue by
implementing a fix to handle such scenarios gracefully. Now, the code
handles failures in the flight search interface without crashing,
ensuring smoother operation.
**Documentation Update for Amadeus Toolkit**:
Prior to this update, examples provided in the documentation for the
Amadeus Toolkit were unable to run correctly due to outdated
information. This PR includes an update to the documentation, ensuring
that all examples can now be executed successfully. With this update,
users can effectively utilize the Amadeus Toolkit with accurate and
functioning examples.
These changes aim to enhance the reliability and usability of the
langchain repository by addressing issues related to error handling and
ensuring that documentation remains up-to-date and actionable.
Issue: https://github.com/langchain-ai/langchain/issues/17375
Twitter Handle: SingletonYxx
### Description
Changed the value specified for `content_key` in JSONLoader from a
single key to a value based on jq schema.
I created [similar
PR](https://github.com/langchain-ai/langchain/pull/11255) before, but it
has several conflicts because of the architectural change associated
stable version release, so I re-create this PR to fit new architecture.
### Why
For json data like the following, specify `.data[].attributes.message`
for page_content and `.data[].attributes.id` or
`.data[].attributes.attributes. tags`, etc., the `content_key` must also
parse the json structure.
<details>
<summary>sample json data</summary>
```json
{
"data": [
{
"attributes": {
"message": "message1",
"tags": [
"tag1"
]
},
"id": "1"
},
{
"attributes": {
"message": "message2",
"tags": [
"tag2"
]
},
"id": "2"
}
]
}
```
</details>
<details>
<summary>sample code</summary>
```python
def metadata_func(record: dict, metadata: dict) -> dict:
metadata["source"] = None
metadata["id"] = record.get("id")
metadata["tags"] = record["attributes"].get("tags")
return metadata
sample_file = "sample1.json"
loader = JSONLoader(
file_path=sample_file,
jq_schema=".data[]",
content_key=".attributes.message", ## content_key is parsable into jq schema
is_content_key_jq_parsable=True, ## this is added parameter
metadata_func=metadata_func
)
data = loader.load()
data
```
</details>
### Dependencies
none
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
Neo4j tools use particular node labels and relationship types to store
metadata, but are irrelevant for text2cypher or graph generation, so we
want to ignore them in the schema representation.
This patch updates function "run" to "invoke" in smart_llm.ipynb.
Without this patch, you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Deprecates the old langchain-hub repository. Does *not* deprecate the
new https://smith.langchain.com/hub
@PinkDraconian has correctly raised that in the event someone is loading
unsanitized user input into the `try_load_from_hub` function, they have
the ability to load files from other locations in github than the
hwchase17/langchain-hub repository.
This PR adds some more path checking to that function and deprecates the
functionality in favor of the hub built into LangSmith.
**Description:**
modified the user_name to username to conform with the expected inputs
to TelegramChatApiLoader
**Issue:**
Current code fails in langchain-community 0.0.24
<loader = TelegramChatApiLoader(
chat_entity="<CHAT_URL>", # recommended to use Entity here
api_hash="<API HASH >",
api_id="<API_ID>",
user_name="", # needed only for caching the session.
)>
## Description
Adding in Unit Test variation for `MongoDBChatMessageHistory` package
Follow-up to #18590
- [x] **Add tests and docs**: Unit test is what's being added
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
## **Description**
Migrate the `MongoDBChatMessageHistory` to the managed
`langchain-mongodb` partner-package
## **Dependencies**
None
## **Twitter handle**
@mongodb
## **tests and docs**
- [x] Migrate existing integration test
- [x ]~ Convert existing integration test to a unit test~ Creation is
out of scope for this ticket
- [x ] ~Considering delaying work until #17470 merges to leverage the
`MockCollection` object. ~
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
# Description
- **Description:** Adding MongoDB LLM Caching Layer abstraction
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mongodb
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR Message (above)
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @efriis, @eyurtsev, @hwchase17.
---------
Co-authored-by: Jib <jib@byblack.us>
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: deprecate vectorstores.MatchingEngine"
- [ ] **PR message**:
- **Description:** announced a deprecation since this integration has
been moved to langchain_google_vertexai
**Description:** Update docstrings of ChatAnthropic class
**Issue:** Change to ChatAnthropic from ChatAnthropicMessages
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` passed
- **Description:**
This PR fixes some issues in the Jupyter notebook for the VectorStore
"SAP HANA Cloud Vector Engine":
* Slight textual adaptations
* Fix of wrong column name VEC_META (was: VEC_METADATA)
- **Issue:** N/A
- **Dependencies:** no new dependecies added
- **Twitter handle:** @sapopensource
path to notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
Currently llm_checker.ipynb uses a function "run".
Update to "invoke" to avoid following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0
and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
This patch updates function "run" to "invoke".
Without this patch you see following warning.
LangChainDeprecationWarning: The function `run` was deprecated in
LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
## PR title
Docs: Updated callbacks/index.mdx adding example on runnable methods
## PR message
- **Description:** Updated callbacks/index.mdx adding an example on how
to pass callbacks to the runnable methods (invoke, batch, ...)
- **Issue:** #16379
- **Dependencies:** None
- **Description:** finishes adding the you.com functionality including:
- add async functions to utility and retriever
- add the You.com Tool
- add async testing for utility, retriever, and tool
- add a tool integration notebook page
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** @scottnath
- **Description:** add tools_renderer for various non-openai agents,
make tools can be render in different ways for your LLM.
- **Issue:** N/A
- **Dependencies:** N/A
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description:
This pull request introduces several enhancements for Azure Cosmos
Vector DB, primarily focused on improving caching and search
capabilities using Azure Cosmos MongoDB vCore Vector DB. Here's a
summary of the changes:
- **AzureCosmosDBSemanticCache**: Added a new cache implementation
called AzureCosmosDBSemanticCache, which utilizes Azure Cosmos MongoDB
vCore Vector DB for efficient caching of semantic data. Added
comprehensive test cases for AzureCosmosDBSemanticCache to ensure its
correctness and robustness. These tests cover various scenarios and edge
cases to validate the cache's behavior.
- **HNSW Vector Search**: Added HNSW vector search functionality in the
CosmosDB Vector Search module. This enhancement enables more efficient
and accurate vector searches by utilizing the HNSW (Hierarchical
Navigable Small World) algorithm. Added corresponding test cases to
validate the HNSW vector search functionality in both
AzureCosmosDBSemanticCache and AzureCosmosDBVectorSearch. These tests
ensure the correctness and performance of the HNSW search algorithm.
- **LLM Caching Notebook** - The notebook now includes a comprehensive
example showcasing the usage of the AzureCosmosDBSemanticCache. This
example highlights how the cache can be employed to efficiently store
and retrieve semantic data. Additionally, the example provides default
values for all parameters used within the AzureCosmosDBSemanticCache,
ensuring clarity and ease of understanding for users who are new to the
cache implementation.
@hwchase17,@baskaryan, @eyurtsev,
**Description:** Update to the pathspec for 'git grep' in lint check in
the Makefile
**Issue:** The pathspec {docs/docs,templates,cookbook} is not handled
correctly leading to the error during 'make lint' -
"fatal: ambiguous argument '{docs/docs,templates,cookbook}': unknown
revision or path not in the working tree."
See changes made in https://github.com/langchain-ai/langchain/pull/18058
Co-authored-by: Erick Friis <erick@langchain.dev>
### Description
Fixed a small bug in chroma.py add_images(), previously whenever we are
not passing metadata the documents is containing the base64 of the uris
passed, but when we are passing the metadata the documents is containing
normal string uris which should not be the case.
### Issue
In add_images() method when we are calling upsert() we have to use
"b64_texts" instead of normal string "uris".
### Twitter handle
https://twitter.com/whitepegasus01
- [X] Gemini Agent Executor imported `agent.py` has Gemini agent
executor which was not utilised in current template of gemini function
agent 🧑💻 instead openai_function_agent has been used
@sbusso @jarib please someone review it
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Remove the assert statement on the `count_documents`
in setup_class. It should just delete if there are documents present
- **Issue:** the issue # Crashes on class setup
- **Dependencies:** None
- **Twitter handle:** @mongodb
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. N/A
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Jib <jib@byblack.us>
Current implementation doesn't have an indexed property that would
optimize the import. I have added a `baseEntityLabel` parameter that
allows you to add a secondary node label, which has an indexed id
`property`. By default, the behaviour is identical to previous version.
Since multi-labeled nodes are terrible for text2cypher, I removed the
secondary label from schema representation object and string, which is
used in text2cypher.
**Description:**
(a) Update to the module import path to reflect the splitting up of
langchain into separate packages
(b) Update to the documentation to include the new calling method
(invoke)
This PR makes `cohere_api_key` in `llms/cohere` a SecretStr, so that the
API Key is not leaked when `Cohere.cohere_api_key` is represented as a
string.
---------
Signed-off-by: Arun <arun@arun.blog>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
The URL of the data to index, specified to `WebBaseLoader` to import is
incorrect, causing the `langsmith_search` retriever to return a `404:
NOT_FOUND`.
Incorrect URL: https://docs.smith.langchain.com/overview
Correct URL: https://docs.smith.langchain.com
**Issue:**
This commit corrects the URL and prevents the LangServe Playground from
returning an error from its inability to use the retriever when
inquiring, "how can langsmith help with testing?".
**Dependencies:**
None.
**Twitter Handle:**
@ryanmeinzer
**Description:** Fix `metadata_extractor` type for `RecursiveUrlLoader`,
the default `_metadata_extractor` returns `dict` instead of `str`.
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
Signed-off-by: Hemslo Wang <hemslo.wang@gmail.com>
- **Description:** Removing this line
```python
response = index.query(query, response_mode="no_text", **self.query_kwargs)
```
to
```python
response = index.query(query, **self.query_kwargs)
```
Since llama index query does not support response_mode anymore : ``` |
TypeError: BaseQueryEngine.query() got an unexpected keyword argument
'response_mode'````
- **Twitter handle:** @maximeperrin_
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
- [ ] **PR title**: "cookbook: using Gemma on LangChain"
- [ ] **PR message**:
- **Description:** added a tutorial how to use Gemma with LangChain
(from VertexAI or locally from Kaggle or HF)
- **Dependencies:** langchain-google-vertexai==0.0.7
- **Twitter handle:** lkuligin
In this commit we update the documentation for Google El Carro for Oracle Workloads. We amend the documentation in the Google Providers page to use the correct name which is El Carro for Oracle Workloads. We also add changes to the document_loaders and memory pages to reflect changes we made in our repo.
If the document loader recieves Pathlib path instead of str, it reads
the file correctly, but the problem begins when the document is added to
Deeplake.
This problem arises from casting the path to str in the metadata.
```python
deeplake = True
fname = Path('./lorem_ipsum.txt')
loader = TextLoader(fname, encoding="utf-8")
docs = loader.load_and_split()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks= text_splitter.split_documents(docs)
if deeplake:
db = DeepLake(dataset_path=ds_path, embedding=embeddings, token=activeloop_token)
db.add_documents(chunks)
else:
db = Chroma.from_documents(docs, embeddings)
```
So using this snippet of code the error message for deeplake looks like
this:
```
[part of error message omitted]
Traceback (most recent call last):
File "/home/mwm/repositories/sources/fixing_langchain/main.py", line 53, in <module>
db.add_documents(chunks)
File "/home/mwm/repositories/sources/langchain/libs/core/langchain_core/vectorstores.py", line 139, in add_documents
return self.add_texts(texts, metadatas, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/deeplake.py", line 258, in add_texts
return self.vectorstore.add(
^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/deeplake_vectorstore.py", line 226, in add
return self.dataset_handler.add(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/dataset_handlers/client_side_dataset_handler.py", line 139, in add
dataset_utils.extend_or_ingest_dataset(
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/vector_search/dataset/dataset.py", line 544, in extend_or_ingest_dataset
extend(
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/vectorstore/vector_search/dataset/dataset.py", line 505, in extend
dataset.extend(batched_processed_tensors, progressbar=False)
File "/home/mwm/anaconda3/envs/langchain/lib/python3.11/site-packages/deeplake/core/dataset/dataset.py", line 3247, in extend
raise SampleExtendError(str(e)) from e.__cause__
deeplake.util.exceptions.SampleExtendError: Failed to append a sample to the tensor 'metadata'. See more details in the traceback. If you wish to skip the samples that cause errors, please specify `ignore_errors=True`.
```
Which is does not explain the error well enough.
The same error for chroma looks like this
```
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/mwm/repositories/sources/fixing_langchain/main.py", line 56, in <module>
db = Chroma.from_documents(docs, embeddings)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/chroma.py", line 778, in from_documents
return cls.from_texts(
^^^^^^^^^^^^^^^
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/chroma.py", line 736, in from_texts
chroma_collection.add_texts(
File "/home/mwm/repositories/sources/langchain/libs/community/langchain_community/vectorstores/chroma.py", line 309, in add_texts
raise ValueError(e.args[0] + "\n\n" + msg)
ValueError: Expected metadata value to be a str, int, float or bool, got lorem_ipsum.txt which is a <class 'pathlib.PosixPath'>
Try filtering complex metadata from the document using langchain_community.vectorstores.utils.filter_complex_metadata.
```
Which is way more user friendly, so I just added information about
possible mismatch of the type in the error message, the same way it is
covered in chroma
https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/vectorstores/chroma.py#L224
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description**:
[`bigdl-llm`](https://github.com/intel-analytics/BigDL) is a library for
running LLM on Intel XPU (from Laptop to GPU to Cloud) using
INT4/FP4/INT8/FP8 with very low latency (for any PyTorch model). This PR
adds bigdl-llm integrations to langchain.
- **Issue**: NA
- **Dependencies**: `bigdl-llm` library
- **Contribution maintainer**: @shane-huang
Examples added:
- docs/docs/integrations/llms/bigdl.ipynb
Nvidia provider page is missing a Triton Inference Server package
reference.
Changes:
- added the Triton Inference Server reference
- copied the example notebook from the package into the doc files.
- added the Triton Inference Server description and links, the link to
the above example notebook
- formatted page to the consistent format
NOTE:
It seems that the [example
notebook](https://github.com/langchain-ai/langchain/blob/master/libs/partners/nvidia-trt/docs/llms.ipynb)
was originally created in wrong place. It should be in the LangChain
docs
[here](https://github.com/langchain-ai/langchain/tree/master/docs/docs/integrations/llms).
So, I've created a copy of this example. The original example is still
in the nvidia-trt package.
Description-
- Changed the GitHub endpoint as existing was not working and giving 404
not found error
- Also the existing function was failing if file_filter is not passed as
the tree api return all paths including directory as well, and when
get_file_content was iterating over these path, the function was failing
for directory as the api was returning list of files inside the
directory, so added a condition to ignore the paths if it a directory
- Fixes this issue -
https://github.com/langchain-ai/langchain/issues/17453
Co-authored-by: Radhika Bansal <Radhika.Bansal@veritas.com>
## Description
Updates the `langchain_community.embeddings.fastembed` provider as per
the recent updates to [`FastEmbed`](https://github.com/qdrant/fastembed)
library.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
This PR migrates the existing MongoDBAtlasVectorSearch abstraction from
the `langchain_community` section to the partners package section of the
codebase.
- [x] Run the partner package script as advised in the partner-packages
documentation.
- [x] Add Unit Tests
- [x] Migrate Integration Tests
- [x] Refactor `MongoDBAtlasVectorStore` (autogenerated) to
`MongoDBAtlasVectorSearch`
- [x] ~Remove~ deprecate the old `langchain_community` VectorStore
references.
## Additional Callouts
- Implemented the `delete` method
- Included any missing async function implementations
- `amax_marginal_relevance_search_by_vector`
- `adelete`
- Added new Unit Tests that test for functionality of
`MongoDBVectorSearch` methods
- Removed [`del
res[self._embedding_key]`](e0c81e1cb0/libs/community/langchain_community/vectorstores/mongodb_atlas.py (L218))
in `_similarity_search_with_score` function as it would make the
`maximal_marginal_relevance` function fail otherwise. The `Document`
needs to store the embedding key in metadata to work.
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR message
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. Existing tests supplied in docs/docs do not change. Updated
docstrings for new functions like `delete`
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory. (This already exists)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Steven Silvester <steven.silvester@ieee.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
## PR title
partners: changed the README file for the Fireworks integration in the
libs/partners/fireworks folder
## PR message
Description: Changed the README file of partners/fireworks following the
docs on https://python.langchain.com/docs/integrations/llms/Fireworks
The README includes:
- Brief description
- Installation
- Setting-up instructions (API key, model id, ...)
- Basic usage
Issue: https://github.com/langchain-ai/langchain/issues/17545
Dependencies: None
Twitter handle: None
- **Description:** The current embedchain implementation seems to handle
document metadata differently than done in the current implementation of
langchain and a KeyError is thrown. I would love for someone else to
test this...
---------
Co-authored-by: KKUGLER <kai.kugler@mercedes-benz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Sometimes, you want to use various parameters in the retrieval query of
Neo4j Vector to personalize/customize results. Before, when there were
only predefined chains, it didn't really make sense. Now that it's all
about custom chains and LCEL, it is worth adding since users can inject
any params they wish at query time. Isn't prone to SQL injection-type
attacks since we use parameters and not concatenating strings.
**Description:** Add facility to pass the optional output parser to
customize the parsing logic
---------
Co-authored-by: hasan <hasan@m2sys.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR adds links to some more free resources for people to get
acquainted with Langhchain without having to configure their system.
<!-- If no one reviews your PR within a few days, please @-mention one
of baskaryan, efriis, eyurtsev, hwchase17. -->
Co-authored-by: Filip Schouwenaars <filipsch@users.noreply.github.com>
**Description:**
In this PR, I am adding a `PolygonFinancials` tool, which can be used to
get financials data for a given ticker. The financials data is the
fundamental data that is found in income statements, balance sheets, and
cash flow statements of public US companies.
**Twitter**:
[@virattt](https://twitter.com/virattt)
Several URL-s were broken (in the yesterday PR). Like
[Integrations/platforms/google/Document
Loaders](https://python.langchain.com/docs/integrations/platforms/google#document-loaders)
page, Example link to "Document Loaders / Cloud SQL for PostgreSQL" and
most of the new example links in the Document Loaders, Vectorstores,
Memory sections.
- fixed URL-s (manually verified all example links)
- sorted sections in page to follow the "integrations/components" menu
item order.
- fixed several page titles to fix Navbar item order
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Update to the list of partner packages in the list of
providers
**Issue:** Google & Nvidia had two entries each, both pointing to the
same page
**Dependencies:** None
**Description**
This PR sets the "caller identity" of the Astra DB clients used by the
integration plugins (`AstraDBChatMessageHistory`, `AstraDBStore`,
`AstraDBByteStore` and, pending #17767 , `AstraDBVectorStore`). In this
way, the requests to the Astra DB Data API coming from within LangChain
are identified as such (the purpose is anonymous usage stats to best
improve the Astra DB service).
- **Description:** A generic document loader adapter for SQLAlchemy on
top of LangChain's `SQLDatabaseLoader`.
- **Needed by:** https://github.com/crate-workbench/langchain/pull/1
- **Depends on:** GH-16655
- **Addressed to:** @baskaryan, @cbornet, @eyurtsev
Hi from CrateDB again,
in the same spirit like GH-16243 and GH-16244, this patch breaks out
another commit from https://github.com/crate-workbench/langchain/pull/1,
in order to reduce the size of this patch before submitting it, and to
separate concerns.
To accompany the SQLAlchemy adapter implementation, the patch includes
integration tests for both SQLite and PostgreSQL. Let me know if
corresponding utility resources should be added at different spots.
With kind regards,
Andreas.
### Software Tests
```console
docker compose --file libs/community/tests/integration_tests/document_loaders/docker-compose/postgresql.yml up
```
```console
cd libs/community
pip install psycopg2-binary
pytest -vvv tests/integration_tests -k sqldatabase
```
```
14 passed
```

---------
Co-authored-by: Andreas Motl <andreas.motl@crate.io>
some mails from flipkart , amazon are encoded with other plain text
format so to handle UnicodeDecode error , added exception and latin
decoder
Thank you for contributing to LangChain!
@hwchase17
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
## PR title
langchain_nvidia_ai_endpoints[patch]: Invoke callback prior to yielding
## PR message
**Description:** Invoke callback prior to yielding token in _stream and
_astream methods for nvidia_ai_endpoints.
**Issue:** https://github.com/langchain-ai/langchain/issues/16913
**Dependencies:** None
- **Description:** Add possibility to pass ModelInference or Model
object to WatsonxLLM class
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
### Description
This PR moves the Elasticsearch classes to a partners package.
Note that we will not move (and later remove) `ElasticKnnSearch`. It
were previously deprecated.
`ElasticVectorSearch` is going to stay in the community package since it
is used quite a lot still.
Also note that I left the `ElasticsearchTranslator` for self query
untouched because it resides in main `langchain` package.
### Dependencies
There will be another PR that updates the notebooks (potentially pulling
them into the partners package) and templates and removes the classes
from the community package, see
https://github.com/langchain-ai/langchain/pull/17468
#### Open question
How to make the transition smooth for users? Do we move the import
aliases and require people to install `langchain-elasticsearch`? Or do
we remove the import aliases from the `langchain` package all together?
What has worked well for other partner packages?
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**
Adding different threshold types to the semantic chunker. I’ve had much
better and predictable performance when using standard deviations
instead of percentiles.

For all the documents I’ve tried, the distribution of distances look
similar to the above: positively skewed normal distribution. All skews
I’ve seen are less than 1 so that explains why standard deviations
perform well, but I’ve included IQR if anyone wants something more
robust.
Also, using the percentile method backwards, you can declare the number
of clusters and use semantic chunking to get an ‘optimal’ splitting.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** By default it expects a list but that's not the case
in corner scenarios when there is no document ingested(use case:
Bootstrap application).
\
Hence added as check, if the instance is panda Dataframe instead of list
then it will procced with return immediately.
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** jaskiratsingh1
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
## Description & Issue
While following the official doc to use clickhouse as a vectorstore, I
found only the default `annoy` index is properly supported. But I want
to try another engine `usearch` for `annoy` is not properly supported on
ARM platforms.
Here is the settings I prefer:
``` python
settings = ClickhouseSettings(
table="wiki_Ethereum",
index_type="usearch", # annoy by default
index_param=[],
)
```
The above settings do not work for the command `set
allow_experimental_annoy_index=1` is hard-coded.
This PR will make sure the experimental feature follow the `index_type`
which is also consistent with Clickhouse's naming conventions.
**Description:** Update the example fiddler notebook to use community
path, instead of langchain.callback
**Dependencies:** None
**Twitter handle:** @bhalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
h/t @hinthornw
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Avoids deprecation warning that triggered at import time, e.g. with
`python -c 'import langchain.smith'`
/opt/venv/lib/python3.12/site-packages/langchain/callbacks/__init__.py:37:
LangChainDeprecationWarning: Importing this callback from langchain is
deprecated. Importing it from langchain will no longer be supported as
of langchain==0.2.0. Please import from langchain-community instead:
`from langchain_community.callbacks import base`.
To install langchain-community run `pip install -U langchain-community`.
I tried to configure MongoDBChatMessageHistory using the code from the
original documentation to store messages based on the passed session_id
in MongoDB. However, this configuration did not take effect, and the
session id in the database remained as 'test_session'. To resolve this
issue, I found that when configuring MongoDBChatMessageHistory, it is
necessary to set session_id=session_id instead of
session_id=test_session.
Issue: DOC: Ineffective Configuration of MongoDBChatMessageHistory for
Custom session_id Storage
previous code:
```python
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: MongoDBChatMessageHistory(
session_id="test_session",
connection_string="mongodb://root:Y181491117cLj@123.56.224.232:27017",
database_name="my_db",
collection_name="chat_histories",
),
input_messages_key="question",
history_messages_key="history",
)
config = {"configurable": {"session_id": "mmm"}}
chain_with_history.invoke({"question": "Hi! I'm bob"}, config)
```

Modified code:
```python
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: MongoDBChatMessageHistory(
session_id=session_id, # here is my modify code
connection_string="mongodb://root:Y181491117cLj@123.56.224.232:27017",
database_name="my_db",
collection_name="chat_histories",
),
input_messages_key="question",
history_messages_key="history",
)
config = {"configurable": {"session_id": "mmm"}}
chain_with_history.invoke({"question": "Hi! I'm bob"}, config)
```
Effect after modification (it works):

These packages have moved to
https://github.com/langchain-ai/langchain-google
Left tombstone readmes incase anyone ends up at the "Source Code" link
from old pypi releases. Can keep these around for a few months.
- **Description:** Introduce a new parameter `graph_kwargs` to
`RdfGraph` - parameters used to initialize the `rdflib.Graph` if
`query_endpoint` is set. Also, do not set
`rdflib.graph.DATASET_DEFAULT_GRAPH_ID` as default value for the
`rdflib.Graph` `identifier` if `query_endpoint` is set.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
- **Description:** I encountered this error when I tried to use
LLMChainFilter. Even if the message slightly differs, like `Not relevant
(NO)` this results in an error. It has been reported already here:
https://github.com/langchain-ai/langchain/issues/. This change hopefully
makes it more robust.
- **Issue:** #11408
- **Dependencies:** No
- **Twitter handle:** dokatox
**Description:** Update the azure search notebook to have more
descriptive comments, and an option to choose between OpenAI and
AzureOpenAI Embeddings
---------
Co-authored-by: Matt Gotteiner <[email protected]>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Llama Guard is deprecated from Anyscale public
endpoint.
**Issue:** Change the default model. and remove the limitation of only
use Llama Guard with Anyscale LLMs
Anyscale LLM can also works with all other Chat model hosted on
Anyscale.
Also added `async_client` for Anyscale LLM
**Description:** Callback handler to integrate fiddler with langchain.
This PR adds the following -
1. `FiddlerCallbackHandler` implementation into langchain/community
2. Example notebook `fiddler.ipynb` for usage documentation
[Internal Tracker : FDL-14305]
**Issue:**
NA
**Dependencies:**
- Installation of langchain-community is unaffected.
- Usage of FiddlerCallbackHandler requires installation of latest
fiddler-client (2.5+)
**Twitter handle:** @fiddlerlabs @behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
- **Description:** Fixing outdated imports after v0.10 llama index
update and updating metadata and source text access
- **Issue:** #17860
- **Twitter handle:** @maximeperrin_
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
- **Description:**
- Add DocumentManager class, which is a nosql record manager.
- In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, DocumentManager inherits
RecordManager.
- Also I added the MongoDB implementation of Document Manager too.
- **Dependencies:** pymongo, motor
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Add DocumentManager class, which is a no sql record
manager. To use index method and aindex method in indexes._api.py,
Document Manager inherits RecordManager.Add the MongoDB implementation
of Document Manager.
- **Dependencies:** pymongo, motor
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR updates RunnableWithMessageHistory to use add_messages which
will save on round-trips for any chat
history abstractions that implement the optimization. If the
optimization isn't
implemented, add_messages automatically invokes add_message serially.
- make schema Optional with default val None, since in json_mode you
don't need it if not parsing to pydantic
- change return_type -> include_raw
- expand docstring examples
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
After upgrading langchain-community to 0.0.22, it's not possible to use
openai from the community package with streaming=True
```
File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 434, in _generate
return generate_from_stream(stream_iter)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 65, in generate_from_stream
for chunk in stream:
File "/home/runner/work/ragstack-ai/ragstack-ai/ragstack-e2e-tests/.tox/langchain/lib/python3.11/site-packages/langchain_community/chat_models/openai.py", line 418, in _stream
run_manager.on_llm_new_token(chunk.text, chunk=cg_chunk)
^^^^^^^^^^
AttributeError: 'AIMessageChunk' object has no attribute 'text'
```
Fix regression of https://github.com/langchain-ai/langchain/pull/17907
**Twitter handle:** @nicoloboschi
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **Description:** fix SparkLLM error
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- **Description:** Added the `return_sparql_query` feature to the
`GraphSparqlQAChain` class, allowing users to get the formatted SPARQL
query along with the chain's result.
- **Issue:** NA
- **Dependencies:** None
Note: I've ensured that the PR passes linting and testing by running
make format, make lint, and make test locally.
I have added a test for the integration (which relies on network access)
and I have added an example to the notebook showing its use.
**Description**
This PR addresses a rare issue in `OpenAIWhisperParser` that causes it
to crash when processing an audio file with a duration very close to the
class's chunk size threshold of 20 minutes.
**Issue**
#11449
**Dependencies**
None
**Tag maintainer**
@agola11 @eyurtsev
**Twitter handle**
leonardodiegues
---------
Co-authored-by: Leonardo Diegues <leonardo.diegues@grupofolha.com.br>
Co-authored-by: Bagatur <baskaryan@gmail.com>
https://github.com/langchain-ai/langchain/issues/17657
Thank you for contributing to LangChain!
Checklist:
- [ ] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] PR message: **Delete this entire template message** and replace it
with the following bulleted list
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
# PR Message
- **Description:** This PR adds a README file for the Anthropic API in
the `libs/partners` folder of this repository. The README includes:
- A brief description of the Anthropic package
- Installation & API instructions
- Usage examples
- **Issue:**
[17545](https://github.com/langchain-ai/langchain/issues/17545)
- **Dependencies:** None
Additional notes:
This change only affects the docs package and does not introduce any new
dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: callback on_llm_new_token before yield chunk for
_stream/_astream for some chat models, make all chat models in a
consistent behaviour.
- Issue: N/A
- Dependencies: N/A
**Description:** Initial pull request for Kinetica LLM wrapper
**Issue:** N/A
**Dependencies:** No new dependencies for unit tests. Integration tests
require gpudb, typeguard, and faker
**Twitter handle:** @chad_juliano
Note: There is another pull request for Kinetica vectorstore. Ultimately
we would like to make a partner package but we are starting with a
community contribution.
- **Description:** Update the Azure Search vector store notebook for the
latest version of the SDK
---------
Co-authored-by: Matt Gotteiner <[email protected]>
**Description:** Clean up Google product names and fix document loader
section
**Issue:** NA
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Resolved 'TypeError: 'type' object is not subscriptable' by removing
subscription of Result type object
Thank you for contributing to LangChain!
- [x] **PR title**: "Langchain: Resolve type error for SQLAlchemy Result
object in QuerySQLDataBaseTool class"
- **Description:** Resolve type error for SQLAlchemy Result object in
QuerySQLDataBaseTool class
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- **Description:** Update IBM watsonx.ai docs and add IBM as a provider
docs
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
**Description:**
Change type hint on `QuerySQLDataBaseTool` to be compatible with
SQLAlchemy v1.4.x.
**Issue:**
Users locked to `SQLAlchemy < 2.x` are unable to import
`QuerySQLDataBaseTool`.
closes https://github.com/langchain-ai/langchain/issues/17819
**Dependencies:**
None
**Description:** This PR adds an `__init__` method to the
NeuralDBVectorStore class, which takes in a NeuralDB object to
instantiate the state of NeuralDBVectorStore.
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
**Description:** This PR changes the module import path for SQLDatabase
in the documentation
**Issue:** Updates the documentation to reflect the move of integrations
to langchain-community
- **Description:** The URL in the tigris tutorial was htttps instead of
https, leading to a bad link.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** Speucey
**Description:**
Updated documentation for DeepLake init method.
Especially the exec_option docs needed improvement, but did a general
cleanup while I was looking at it.
**Issue:** n/a
**Dependencies:** None
---------
Co-authored-by: Nathan Voxland <nathan@voxland.net>
- **Description:** In order to override the bool value of
"fetch_schema_from_transport" in the GraphQLAPIWrapper, a
"fetch_schema_from_transport" value needed to be added to the
"_EXTRA_OPTIONAL_TOOLS" dictionary in load_tools in the "graphql" key.
The parameter "fetch_schema_from_transport" must also be passed in to
the GraphQLAPIWrapper to allow reading of the value when creating the
client. Passing as an optional parameter is probably best to avoid
breaking changes. This change is necessary to support GraphQL instances
that do not support fetching schema, such as TigerGraph. More info here:
[TigerGraph GraphQL Schema
Docs](https://docs.tigergraph.com/graphql/current/schema)
- **Threads handle:** @zacharytoliver
---------
Co-authored-by: Zachary Toliver <zt10191991@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add missing chunk parameter for _stream/_astream for some
chat models, make all chat models in a consistent behaviour.
- Issue: N/A
- Dependencies: N/A
**Description:** Here is a minimal example to illustrate behavior:
```python
from langchain_core.runnables import RunnableLambda
def my_function(*args, **kwargs):
return 3 + kwargs.get("n", 0)
runnable = RunnableLambda(my_function).bind(n=1)
assert 4 == runnable.invoke({})
assert [4] == list(runnable.stream({}))
assert 4 == await runnable.ainvoke({})
assert [4] == [item async for item in runnable.astream({})]
```
Here, `runnable.invoke({})` and `runnable.stream({})` work fine, but
`runnable.ainvoke({})` raises
```
TypeError: RunnableLambda._ainvoke.<locals>.func() got an unexpected keyword argument 'n'
```
and similarly for `runnable.astream({})`:
```
TypeError: RunnableLambda._atransform.<locals>.func() got an unexpected keyword argument 'n'
```
Here we assume that this behavior is undesired and attempt to fix it.
**Issue:** https://github.com/langchain-ai/langchain/issues/17241,
https://github.com/langchain-ai/langchain/discussions/16446
In this pull request, we introduce the add_images method to the
SingleStoreDB vector store class, expanding its capabilities to handle
multi-modal embeddings seamlessly. This method facilitates the
incorporation of image data into the vector store by associating each
image's URI with corresponding document content, metadata, and either
pre-generated embeddings or embeddings computed using the embed_image
method of the provided embedding object.
the change includes integration tests, validating the behavior of the
add_images. Additionally, we provide a notebook showcasing the usage of
this new method.
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Issue in the API Reference:
If the `Classes` of `Functions` section is empty, it still shown in API
Reference. Here is an
[example](https://api.python.langchain.com/en/latest/core_api_reference.html#module-langchain_core.agents)
where `Functions` table is empty but still presented.
It happens only if this section has only the "private" members (with
names started with '_'). Those members are not shown but the whole
member section (empty) is shown.
- **Description:**
The existing `RedisCache` implementation lacks proper handling for redis
client failures, such as `ConnectionRefusedError`, leading to subsequent
failures in pipeline components like LLM calls. This pull request aims
to improve error handling for redis client issues, ensuring a more
robust and graceful handling of such errors.
- **Issue:** Fixes#16866
- **Dependencies:** No new dependency
- **Twitter handle:** N/A
Co-authored-by: snsten <>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Sent to LangSmith
Thank you for contributing to LangChain!
Checklist:
- [ ] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] PR message: **Delete this entire template message** and replace it
with the following bulleted list
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [ ] Add tests and docs: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
This way we can document APIs in methods signature only where they are
checked by the typing system and we get them also in the param
description without having to duplicate in the docstrings (where they
are unchecked).
Twitter: @cbornet_
Description:
In this PR, I am adding a PolygonTickerNews Tool, which can be used to
get the latest news for a given ticker / stock.
Twitter handle: [@virattt](https://twitter.com/virattt)
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Description**: CogniSwitch focusses on making GenAI usage more
reliable. It abstracts out the complexity & decision making required for
tuning processing, storage & retrieval. Using simple APIs documents /
URLs can be processed into a Knowledge Graph that can then be used to
answer questions.
**Dependencies**: No dependencies. Just network calls & API key required
**Tag maintainer**: @hwchase17
**Twitter handle**: https://github.com/CogniSwitch
**Documentation**: Please check
`docs/docs/integrations/toolkits/cogniswitch.ipynb`
**Tests**: The usual tool & toolkits tests using `test_imports.py`
PR has passed linting and testing before this submission.
---------
Co-authored-by: Saicharan Sridhara <145636106+saiCogniswitch@users.noreply.github.com>
## Amazon Personalize support on Langchain
This PR is a successor to this PR -
https://github.com/langchain-ai/langchain/pull/13216
This PR introduces an integration with [Amazon
Personalize](https://aws.amazon.com/personalize/) to help you to
retrieve recommendations and use them in your natural language
applications. This integration provides two new components:
1. An `AmazonPersonalize` client, that provides a wrapper around the
Amazon Personalize API.
2. An `AmazonPersonalizeChain`, that provides a chain to pull in
recommendations using the client, and then generating the response in
natural language.
We have added this to langchain_experimental since there was feedback
from the previous PR about having this support in experimental rather
than the core or community extensions.
Here is some sample code to explain the usage.
```python
from langchain_experimental.recommenders import AmazonPersonalize
from langchain_experimental.recommenders import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock
recommender_arn = "<insert_arn>"
client=AmazonPersonalize(
credentials_profile_name="default",
region_name="us-west-2",
recommender_arn=recommender_arn
)
bedrock_llm = Bedrock(
model_id="anthropic.claude-v2",
region_name="us-west-2"
)
chain = AmazonPersonalizeChain.from_llm(
llm=bedrock_llm,
client=client
)
response = chain({'user_id': '1'})
```
Reviewer: @3coins
Hi, I'm from the LanceDB team.
Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.
Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain
PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
- OpenLLM was using outdated method to get the final text output from
openllm client invocation which was raising the error. Therefore
corrected that.
- OpenLLM `_identifying_params` was getting the openllm's client
configuration using outdated attributes which was raising error.
- Updated the docstring for OpenLLM.
- Added timeout parameter to be passed to underlying openllm client.
This PR replaces the imports of the Astra DB vector store with the
newly-released partner package, in compliance with the deprecation
notice now attached to the community "legacy" store.
Another PR will be done for the langchain-astradb package.
Note: for future PRs, devs will be done in the partner package only. This one is just to align with the rest of the components in the community package and it fixes a bunch of issues.
- **Description:** Update documentation for RunnableWithMessageHistory
- **Issue:** https://github.com/langchain-ai/langchain/issues/16642
I don't have access to an Anthropic API key so I updated things to use
OpenAI. Let me know if you'd prefer another provider.
- **Description:** adds an `exclude` parameter to the DirectoryLoader
class, based on similar behavior in GenericLoader
- **Issue:** discussed in
https://github.com/langchain-ai/langchain/discussions/9059 and I think
in some other issues that I cannot find at the moment 🙇
- **Dependencies:** None
- **Twitter handle:** don't have one sorry! Just https://github/nejch
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Addresses the bugs described in linked issue where an
import was erroneously removed and the rename of a keyword argument was
missed when migrating from beta --> stable of the azure-search-documents
package
- **Issue:** https://github.com/langchain-ai/langchain/issues/17598
- **Dependencies:** N/A
- **Twitter handle:** N/A
- **Description:** This fixes an issue with working with RecordManager.
RecordManager was generating new hashes on documents because `add_texts`
was modifying the metadata directly. Additionally moved some tests to
unit tests since that was a more appropriate home.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** `@_morgan_adams_`
The current issue:
Most of the deprecation descriptions are duplicated. For example:
`[Deprecated] Chat Agent.[Deprecated] Chat Agent.` for the [ChatAgent
class](https://api.python.langchain.com/en/latest/langchain_api_reference.html#classes)
description.
NOTE: I've tested it only with new ut! I cannot build API Reference
locally :(
**Description:** This PR introduces a new "Astra DB" Partner Package.
So far only the vector store class is _duplicated_ there, all others
following once this is validated and established.
Along with the move to separate package, incidentally, the class name
will change `AstraDB` => `AstraDBVectorStore`.
The strategy has been to duplicate the module (with prospected removal
from community at LangChain 0.2). Until then, the code will be kept in
sync with minimal, known differences (there is a makefile target to
automate drift control. Out of convenience with this check, the
community package has a class `AstraDBVectorStore` aliased to `AstraDB`
at the end of the module).
With this PR several bugfixes and improvement come to the vector store,
as well as a reshuffling of the doc pages/notebooks (Astra and
Cassandra) to align with the move to a separate package.
**Dependencies:** A brand new pyproject.toml in the new package, no
changes otherwise.
**Twitter handle:** `@rsprrs`
---------
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Updates to the Kuzu API had broken this
functionality. These updates resolve those issues and add a new test to
demonstrate the updates.
- **Issue:** #11874
- **Dependencies:** No new dependencies
- **Twitter handle:** @amirk08
Test results:
```
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_no_params PASSED [ 33%]
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params PASSED [ 66%]
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema PASSED [100%]
=================================================== slowest 5 durations ===================================================
0.53s call tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema
0.34s call tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_no_params
0.28s call tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params
0.03s teardown tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema
0.02s teardown tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params
==================================================== 3 passed in 1.27s ====================================================
```
- **Description:** Allow a bool value to be passed to
fetch_schema_from_transport since not all GraphQL instances support this
feature, such as TigerGraph.
- **Threads:** @zacharytoliver
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
A few minor changes for contribution:
1) Updating link to say "Contributing" rather than "Developer's guide"
2) Minor changes after going through the contributing documentation
page.
- **Description:** Resolving problem in
`langchain_community\document_loaders\pebblo.py` with `import pwd`.
`pwd` is not available on windows. import moved to try catch block
- **Issue:** #17514
Noticed and fixed a few typos in the SmartLLMChain default ideation and
critique prompts
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Adds an optional name param to our base message to support passing names
into LLMs.
OpenAI supports having a name on anything except tool message now
(system, ai, user/human).
https://github.com/langchain-ai/langchain/issues/17525
### Example Code
```python
from langchain_community.document_loaders.athena import AthenaLoader
database_name = "database"
s3_output_path = "s3://bucket-no-prefix"
query="""SELECT
CAST(extract(hour FROM current_timestamp) AS INTEGER) AS current_hour,
CAST(extract(minute FROM current_timestamp) AS INTEGER) AS current_minute,
CAST(extract(second FROM current_timestamp) AS INTEGER) AS current_second;
"""
profile_name = "AdministratorAccess"
loader = AthenaLoader(
query=query,
database=database_name,
s3_output_uri=s3_output_path,
profile_name=profile_name,
)
documents = loader.load()
print(documents)
```
### Error Message and Stack Trace (if applicable)
NoSuchKey: An error occurred (NoSuchKey) when calling the GetObject
operation: The specified key does not exist
### Description
Athena Loader errors when result s3 bucket uri has no prefix. The Loader
instance call results in a "NoSuchKey: An error occurred (NoSuchKey)
when calling the GetObject operation: The specified key does not exist."
error.
If s3_output_path contains a prefix like:
```python
s3_output_path = "s3://bucket-with-prefix/prefix"
```
Execution works without an error.
## Suggested solution
Modify:
```python
key = "/".join(tokens[1:]) + "/" + query_execution_id + ".csv"
```
to
```python
key = "/".join(tokens[1:]) + ("/" if tokens[1:] else "") + query_execution_id + ".csv"
```
9e8a3fc4ff/libs/community/langchain_community/document_loaders/athena.py (L128)
### System Info
System Information
------------------
> OS: Darwin
> OS Version: Darwin Kernel Version 22.6.0: Fri Sep 15 13:41:30 PDT
2023; root:xnu-8796.141.3.700.8~1/RELEASE_ARM64_T8103
> Python Version: 3.9.9 (main, Jan 9 2023, 11:42:03)
[Clang 14.0.0 (clang-1400.0.29.102)]
Package Information
-------------------
> langchain_core: 0.1.23
> langchain: 0.1.7
> langchain_community: 0.0.20
> langsmith: 0.0.87
> langchain_openai: 0.0.6
> langchainhub: 0.1.14
Packages not installed (Not Necessarily a Problem)
--------------------------------------------------
The following packages were not found:
> langgraph
> langserve
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
If the SQLAlchemyMd5Cache is shared among multiple processes, it is
possible to encounter a race condition during the cache update.
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Support filtering databases in the use case where
devs do not want to query ALL entries within a DB,
- **Issue:** N/A,
- **Dependencies:** N/A,
- **Twitter handle:** I don't have Twitter but feel free to tag my
Github!
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This pull request introduces support for various Approximate Nearest
Neighbor (ANN) vector index algorithms in the VectorStore class,
starting from version 8.5 of SingleStore DB. Leveraging this enhancement
enables users to harness the power of vector indexing, significantly
boosting search speed, particularly when handling large sets of vectors.
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
1. Added _clear_edges()_ and _get_number_of_nodes()_ functions in
NetworkxEntityGraph class.
2. Added the above two function in graph_networkx_qa.ipynb
documentation.
- **Description:** Callback manager can't catch chain input or output
validation errors because `prepare_input` and `prepare_output` are not
part of the try/raise logic, this PR fixes that logic.
- **Issue:** #15954
- **Description:** Fixes a type annotation issue in the definition of
BedrockBase. This issue was that the annotation for the `config`
attribute includes a ForwardRef to `botocore.client.Config` which is
only imported when `TYPE_CHECKING`. This can cause pydantic to raise an
error like `pydantic.errors.ConfigError: field "config" not yet prepared
so type is still a ForwardRef, ...`.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** `@__nat_n__`
- **Description :**
Fix: Use shallow copy for schema manipulation in get_format_instructions
Prevents side effects on the original schema object by using a
dictionary comprehension for a safer and more controlled manipulation of
schema key-value pairs, enhancing code reliability.
- **Issue:** #17161
- **Dependencies:** None
- **Twitter handle:** None
Thank you for contributing to LangChain!
Checklist:
- **PR title**: docs: add & update docs for Oracle Cloud Infrastructure
(OCI) integrations
- **Description**: adding and updating documentation for two
integrations - OCI Generative AI & OCI Data Science
(1) adding integration page for OCI Generative AI embeddings (@baskaryan
request,
docs/docs/integrations/text_embedding/oci_generative_ai.ipynb)
(2) updating integration page for OCI Generative AI llms
(docs/docs/integrations/llms/oci_generative_ai.ipynb)
(3) adding platform documentation for OCI (@baskaryan request,
docs/docs/integrations/platforms/oci.mdx). this combines the
integrations of OCI Generative AI & OCI Data Science
(4) if possible, requesting to be added to 'Featured Community
Providers' so supplying a modified
docs/docs/integrations/platforms/index.mdx to reflect the addition
- **Issue:** none
- **Dependencies:** no new dependencies
- **Twitter handle:**
---------
Co-authored-by: MING KANG <ming.kang@oracle.com>
Users can provide an Elasticsearch connection with custom headers. This
PR makes sure these headers are preserved when adding the langchain user
agent header.
- **Description:** Depending on `token_max` used in
`load_summarize_chain`, it could cause an infinite loop when documents
cannot collapse under `token_max`. This change would not affect the
existing feature, but it also gives an option to users to avoid the
situation.
- **Issue:** https://github.com/langchain-ai/langchain/issues/16251
- **Dependencies:** None
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
1. integrate chat models with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)
Yuan2.0 is a new generation Fundamental Large Language Model developed
by IEIT System. We have published all three models, Yuan 2.0-102B, Yuan
2.0-51B, and Yuan 2.0-2B.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
Addresses a problem where the Date type within an Elasticsearch
SelfQueryRetriever would encounter difficulties in generating a valid
query.
Issue: #17042
---------
Co-authored-by: Max Jakob <max.jakob@elastic.co>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
I am submitting this for a school project as part of a team of 5. Other
team members are @LeilaChr, @maazh10, @Megabear137, @jelalalamy. This PR
also has contributions from community members @Harrolee and @Mario928.
Initial context is in the issue we opened (#11229).
This pull request adds:
- Generic framework for expanding the languages that `LanguageParser`
can handle, using the
[tree-sitter](https://github.com/tree-sitter/py-tree-sitter#py-tree-sitter)
parsing library and existing language-specific parsers written for it
- Support for the following additional languages in `LanguageParser`:
- C
- C++
- C#
- Go
- Java (contributed by @Mario928
https://github.com/ThatsJustCheesy/langchain/pull/2)
- Kotlin
- Lua
- Perl
- Ruby
- Rust
- Scala
- TypeScript (contributed by @Harrolee
https://github.com/ThatsJustCheesy/langchain/pull/1)
Here is the [design
document](https://docs.google.com/document/d/17dB14cKCWAaiTeSeBtxHpoVPGKrsPye8W0o_WClz2kk)
if curious, but no need to read it.
## Issues
- Closes#11229
- Closes#10996
- Closes#8405
## Dependencies
`tree_sitter` and `tree_sitter_languages` on PyPI. We have tried to add
these as optional dependencies.
## Documentation
We have updated the list of supported languages, and also added a
section to `source_code.ipynb` detailing how to add support for
additional languages using our framework.
## Maintainer
- @hwchase17 (previously reviewed
https://github.com/langchain-ai/langchain/pull/6486)
Thanks!!
## Git commits
We will gladly squash any/all of our commits (esp merge commits) if
necessary. Let us know if this is desirable, or if you will be
squash-merging anyway.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Maaz Hashmi <mhashmi373@gmail.com>
Co-authored-by: LeilaChr <87657694+LeilaChr@users.noreply.github.com>
Co-authored-by: Jeremy La <jeremylai511@gmail.com>
Co-authored-by: Megabear137 <zubair.alnoor27@gmail.com>
Co-authored-by: Lee Harrold <lhharrold@sep.com>
Co-authored-by: Mario928 <88029051+Mario928@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Adding a new notebook that demonstrates how to use LangChain's standard
chat features while passing the chat messages back and forth via Apache
Kafka.
This goal is to simulate an architecture where the chat front end and
the LLM are running as separate services that need to communicate with
one another over an internal nework.
It's an alternative to typical pattern of requesting a reponse from the
model via a REST API (there's more info on why you would want to do this
at the end of the notebook).
NOTE: Assuming "uses cases" is the right place for this but feel free to
propose another location.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
- The existing code was trying to find a `.embeddings` property on the
`Coroutine` returned by calling `cohere.async_client.embed`.
- Instead, the `.embeddings` property is present on the value returned
by the `Coroutine`.
- Also, it seems that the original cohere client expects a value of
`max_retries` to not be `None`. Hence, setting the default value of
`max_retries` to `3`.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Pebblo opensource project enables developers to
safely load data to their Gen AI apps. It identifies semantic topics and
entities found in the loaded data and summarizes them in a
developer-friendly report.
- **Dependencies:** none
- **Twitter handle:** srics
@hwchase17
**Description**: This PR adds a chain for Amazon Neptune graph database
RDF format. It complements the existing Neptune Cypher chain. The PR
also includes a Neptune RDF graph class to connect to, introspect, and
query a Neptune RDF graph database from the chain. A sample notebook is
provided under docs that demonstrates the overall effect: invoking the
chain to make natural language queries against Neptune using an LLM.
**Issue**: This is a new feature
**Dependencies**: The RDF graph class depends on the AWS boto3 library
if using IAM authentication to connect to the Neptune database.
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This PR adds support for
[flashrank](https://github.com/PrithivirajDamodaran/FlashRank) for
reranking as alternative to Cohere.
I'm not sure `libs/langchain` is the right place for this change. At
first, I wanted to put it under `libs/community`. All the compressors
were under `libs/langchain/retrievers/document_compressors` though. Hope
this makes sense!
- **Description:** Improve test cases for `SQLDatabase` adapter
component, see
[suggestion](https://github.com/langchain-ai/langchain/pull/16655#pullrequestreview-1846749474).
- **Depends on:** GH-16655
- **Addressed to:** @baskaryan, @cbornet, @eyurtsev
_Remark: This PR is stacked upon GH-16655, so that one will need to go
in first._
Edit: Thank you for bringing in GH-17191, @eyurtsev. This is a little
aftermath, improving/streamlining the corresponding test cases.
- **Description:**
[AS-IS] When dealing with a yaml file, the extension must be .yaml.
[TO-BE] In the absence of extension length constraints in the OS, the
extension of the YAML file is yaml, but control over the yml extension
must still be made.
It's as if it's an error because it's a .jpg extension in jpeg support.
- **Issue:** -
- **Dependencies:**
no dependencies required for this change,
- **Description:** The from__xx methods of FAISS class have hardcoded
InMemoryStore implementation and thereby not let users pass a custom
DocStore implementation,
- **Issue:** no referenced issue,
- **Dependencies:** none,
- **Twitter handle:** ksachdeva
**Description:**
Bugfix: Langchain_community's GitHub Api wrapper throws a TypeError when
searching for issues and/or PRs (the `search_issues_and_prs` method).
This is because PyGithub's PageinatedList type does not support the
len() method. See https://github.com/PyGithub/PyGithub/issues/1476

**Dependencies:** None
**Twitter handle**: @ChrisKeoghNZ
I haven't registered an issue as it would take me longer to fill the
template out than to make the fix, but I'm happy to if that's deemed
essential.
I've added a simple integration test to cover this as there were no
existing unit tests and it was going to be tricky to set them up.
Co-authored-by: Chris Keogh <chris.keogh@xero.com>
- **Description:** This adds a delete method so that rocksetdb can be
used with `RecordManager`.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** `@_morgan_adams_`
---------
Co-authored-by: Rockset API Bot <admin@rockset.io>
This PR replaces the memory stream implementation used by the
LogStreamCallbackHandler.
This implementation resolves an issue in which streamed logs and
streamed events originating from sync code would arrive only after the
entire sync code would finish execution (rather than arriving in real
time as they're generated).
One example is if trying to stream tokens from an llm within a tool. If
the tool was an async tool, but the llm was invoked via stream (sync
variant) rather than astream (async variant), then the tokens would fail
to stream in real time and would all arrived bunched up after the tool
invocation completed.
- Reordered sections
- Applied consistent formatting
- Fixed headers (there were 2 H1 headers; this breaks CoT)
- Added `Settings` header and moved all related sections under it
Description: Updated doc for integrations/chat/anthropic_functions with
new functions: invoke. Changed structure of the document to match the
required one.
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
---------
Co-authored-by: NaveenMaltesh <naveen@onmeta.in>
**Description:** changed filtering so that failed filter doesn't add
document to results. Currently filtering is entirely broken and all
documents are returned whether or not they pass the filter.
fixes issue introduced in
https://github.com/langchain-ai/langchain/pull/16190
- **Description:** Adds the document loader for [AWS
Athena](https://aws.amazon.com/athena/), a serverless and interactive
analytics service.
- **Dependencies:** Added boto3 as a dependency
- **Description:** This PR adds support for `search_types="mmr"` and
`search_type="similarity_score_threshold"` to retrievers using
`DatabricksVectorSearch`,
- **Issue:**
- **Dependencies:**
- **Twitter handle:**
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR updates the `TF-IDF.ipynb` documentation to reflect the new
import path for TFIDFRetriever in the langchain-community package. The
previous path, `from langchain.retrievers import TFIDFRetriever`, has
been updated to `from langchain_community.retrievers import
TFIDFRetriever` to align with the latest changes in the langchain
library.
according to https://youtu.be/rZus0JtRqXE?si=aFo1JTDnu5kSEiEN&t=678 by
@efriis
- **Description:** Seems the requirements for tool names have changed
and spaces are no longer allowed. Changed the tool name from Google
Search to google_search in the notebook
- **Issue:** n/a
- **Dependencies:** none
- **Twitter handle:** @mesirii
Ref: https://openai.com/pricing
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Unlike vector results, the LLM has to completely trust the context of a
graph database result, even if it doesn't provide whole context. We
tried with instructions, but it seems that adding a single example is
the way to go to solve this issue.
### This pull request makes the following changes:
* Fixed issue #16913
Fixed the google gen ai chat_models.py code to make sure that the
callback is called before the token is yielded
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Pydantic's `dict()` function raises an error here if you pass in a
generator. We have a more robust serialization function in lagnsmith
that we will use instead.
**Description**
Make some functions work with Milvus:
1. get_ids: Get primary keys by field in the metadata
2. delete: Delete one or more entities by ids
3. upsert: Update/Insert one or more entities
**Issue**
None
**Dependencies**
None
**Tag maintainer:**
@hwchase17
**Twitter handle:**
None
---------
Co-authored-by: HoaNQ9 <hoanq.1811@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
1. Modify LLMs/Anyscale to work with OAI v1
2. Get rid of openai_ prefixed variables in Chat_model/ChatAnyscale
3. Modify `anyscale_api_base` to `anyscale_base_url` to follow OAI name
convention (reverted)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Summary
This PR upgrades LangChain's Ruff configuration in preparation for
Ruff's v0.2.0 release. (The changes are compatible with Ruff v0.1.5,
which LangChain uses today.) Specifically, we're now warning when
linter-only options are specified under `[tool.ruff]` instead of
`[tool.ruff.lint]`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Issue:** Issue with model argument support (been there for a while
actually):
- Non-specially-handled arguments like temperature don't work when
passed through constructor.
- Such arguments DO work quite well with `bind`, but also do not abide
by field requirements.
- Since initial push, server-side error messages have gotten better and
v0.0.2 raises better exceptions. So maybe it's better to let server-side
handle such issues?
- **Description:**
- Removed ChatNVIDIA's argument fields in favor of
`model_kwargs`/`model_kws` arguments which aggregates constructor kwargs
(from constructor pathway) and merges them with call kwargs (bind
pathway).
- Shuffled a few functions from `_NVIDIAClient` to `ChatNVIDIA` to
streamline construction for future integrations.
- Minor/Optional: Old services didn't have stop support, so client-side
stopping was implemented. Now do both.
- **Any Breaking Changes:** Minor breaking changes if you strongly rely
on chat_model.temperature, etc. This is captured by
chat_model.model_kwargs.
PR passes tests and example notebooks and example testing. Still gonna
chat with some people, so leaving as draft for now.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Description: Missing _identifying_params create issues when dealing with
callbacks to get current run model parameters.
All other model partners implementation provide this property and also
provide _default_params. I'm not sure about the default values to
include or if we can re-use the same as for _VertexAICommon(), this
change allows you to access the model parameters correctly.
Issue: Not exactly this issue but could be related
https://github.com/langchain-ai/langchain/issues/14711
Twitter handle:@musicaoriginal2
The streaming API doesn't separate safety_settings from the
generation_config payload. As the result the following error is observed
when using `stream` API. The functionality is correct with `invoke` API.
The fix separates the `safety_settings` from params and sets it as
argument to the `send_message` method.
```
ERROR: Unknown field for GenerationConfig: safety_settings
Traceback (most recent call last):
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py", line 250, in stream
raise e
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/langchain_core/language_models/chat_models.py", line 234, in stream
for chunk in self._stream(
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/langchain_google_vertexai/chat_models.py", line 501, in _stream
for response in responses:
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py", line 921, in _send_message_streaming
for chunk in stream:
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py", line 514, in _generate_content_streaming
request = self._prepare_request(
^^^^^^^^^^^^^^^^^^^^^^
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/vertexai/generative_models/_generative_models.py", line 256, in _prepare_request
gapic_generation_config = gapic_content_types.GenerationConfig(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/user/Library/Caches/pypoetry/virtualenvs/chatbot-worker-main-Ju-qIM-X-py3.12/lib/python3.12/site-packages/proto/message.py", line 576, in __init__
raise ValueError(
ValueError: Unknown field for GenerationConfig: safety_settings
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The Integrations `Toolkits` menu was named as [`Agents and
toolkits`](https://python.langchain.com/docs/integrations/toolkits).
This name has a historical reason that is not correct anymore. Now this
menu is all about community `Toolkits`. There is a separate menu for
[Agents](https://python.langchain.com/docs/modules/agents/). Also Agents
are officially not part of Integrations (Community package) but part of
LangChain package.
I noticed that RunnableConfigurableAlternatives which is an important
composition in LCEL has no Docstring. Therefore I added the detailed
Docstring for it.
@baskaryan, @eyurtsev, @hwchase17 please have a look and let me if the
docstring is looking good.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.
Usage example:
```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)
hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description: changes to you.com files**
- general cleanup
- adds community/utilities/you.py, moving bulk of code from retriever ->
utility
- removes `snippet` as endpoint
- adds `news` as endpoint
- adds more tests
<s>**Description: update community MAKE file**
- adds `integration_tests`
- adds `coverage`</s>
- **Issue:** the issue # it fixes if applicable,
- [For New Contributors: Update Integration
Documentation](https://github.com/langchain-ai/langchain/issues/15664#issuecomment-1920099868)
- **Dependencies:** n/a
- **Twitter handle:** @scottnath
- **Mastodon handle:** scottnath@mastodon.social
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** This adds a recursive json splitter class to the
existing text_splitters as well as unit tests
- **Issue:** splitting text from structured data can cause issues if you
have a large nested json object and you split it as regular text you may
end up losing the structure of the json. To mitigate against this you
can split the nested json into large chunks and overlap them, but this
causes unnecessary text processing and there will still be times where
the nested json is so big that the chunks get separated from the parent
keys.
As an example you wouldn't want the following to be split in half:
```shell
{'val0': 'DFWeNdWhapbR',
'val1': {'val10': 'QdJo',
'val11': 'FWSDVFHClW',
'val12': 'bkVnXMMlTiQh',
'val13': 'tdDMKRrOY',
'val14': 'zybPALvL',
'val15': 'JMzGMNH',
'val16': {'val160': 'qLuLKusFw',
'val161': 'DGuotLh',
'val162': 'KztlcSBropT',
-----------------------------------------------------------------------split-----
'val163': 'YlHHDrN',
'val164': 'CtzsxlGBZKf',
'val165': 'bXzhcrWLmBFp',
'val166': 'zZAqC',
'val167': 'ZtyWno',
'val168': 'nQQZRsLnaBhb',
'val169': 'gSpMbJwA'},
'val17': 'JhgiyF',
'val18': 'aJaqjUSFFrI',
'val19': 'glqNSvoyxdg'}}
```
Any llm processing the second chunk of text may not have the context of
val1, and val16 reducing accuracy. Embeddings will also lack this
context and this makes retrieval less accurate.
Instead you want it to be split into chunks that retain the json
structure.
```shell
{'val0': 'DFWeNdWhapbR',
'val1': {'val10': 'QdJo',
'val11': 'FWSDVFHClW',
'val12': 'bkVnXMMlTiQh',
'val13': 'tdDMKRrOY',
'val14': 'zybPALvL',
'val15': 'JMzGMNH',
'val16': {'val160': 'qLuLKusFw',
'val161': 'DGuotLh',
'val162': 'KztlcSBropT',
'val163': 'YlHHDrN',
'val164': 'CtzsxlGBZKf'}}}
```
and
```shell
{'val1':{'val16':{
'val165': 'bXzhcrWLmBFp',
'val166': 'zZAqC',
'val167': 'ZtyWno',
'val168': 'nQQZRsLnaBhb',
'val169': 'gSpMbJwA'},
'val17': 'JhgiyF',
'val18': 'aJaqjUSFFrI',
'val19': 'glqNSvoyxdg'}}
```
This recursive json text splitter does this. Values that contain a list
can be converted to dict first by using split(... convert_lists=True)
otherwise long lists will not be split and you may end up with chunks
larger than the max chunk.
In my testing large json objects could be split into small chunks with
✅ Increased question answering accuracy
✅ The ability to split into smaller chunks meant retrieval queries can
use fewer tokens
- **Dependencies:** json import added to text_splitter.py, and random
added to the unit test
- **Twitter handle:** @joelsprunger
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**: Fix 422 error in example with LangServe client code
httpx.HTTPStatusError: Client error '422 Unprocessable Entity' for url
'http://localhost:8000/agent/invoke'
**Description:** Databricks LLM does not support SerDe the
transform_input_fn and transform_output_fn. After saving and loading,
the LLM will be broken. This PR serialize these functions into a hex
string using pickle, and saving the hex string in the yaml file. Using
pickle to serialize a function can be flaky, but this is a simple
workaround that unblocks many use cases. If more sophisticated SerDe is
needed, we can improve it later.
Test:
Added a simple unit test.
I did manual test on Databricks and it works well.
The saved yaml looks like:
```
llm:
_type: databricks
cluster_driver_port: null
cluster_id: null
databricks_uri: databricks
endpoint_name: databricks-mixtral-8x7b-instruct
extra_params: {}
host: e2-dogfood.staging.cloud.databricks.com
max_tokens: null
model_kwargs: null
n: 1
stop: null
task: null
temperature: 0.0
transform_input_fn: 80049520000000000000008c085f5f6d61696e5f5f948c0f7472616e73666f726d5f696e7075749493942e
transform_output_fn: null
```
@baskaryan
```python
from langchain_community.embeddings import DatabricksEmbeddings
from langchain_community.llms import Databricks
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import mlflow
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
def transform_input(**request):
request["messages"] = [
{
"role": "user",
"content": request["prompt"]
}
]
del request["prompt"]
return request
llm = Databricks(endpoint_name="databricks-mixtral-8x7b-instruct", transform_input_fn=transform_input)
persist_dir = "faiss_databricks_embedding"
# Create the vector db, persist the db to a local fs folder
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
db.save_local(persist_dir)
def load_retriever(persist_directory):
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
vectorstore = FAISS.load_local(persist_directory, embeddings)
return vectorstore.as_retriever()
retriever = load_retriever(persist_dir)
retrievalQA = RetrievalQA.from_llm(llm=llm, retriever=retriever)
with mlflow.start_run() as run:
logged_model = mlflow.langchain.log_model(
retrievalQA,
artifact_path="retrieval_qa",
loader_fn=load_retriever,
persist_dir=persist_dir,
)
# Load the retrievalQA chain
loaded_model = mlflow.pyfunc.load_model(logged_model.model_uri)
print(loaded_model.predict([{"query": "What did the president say about Ketanji Brown Jackson"}]))
```
- **Description:**
Embedding field name was hard-coded named "embedding".
So I suggest that change `res["embedding"]` into
`res[self._embedding_key]`.
- **Issue:** #17177,
- **Twitter handle:**
[@bagcheoljun17](https://twitter.com/bagcheoljun17)
- **Description:** Fixes in the Ontotext GraphDB Graph and QA Chain
related to the error handling in case of invalid SPARQL queries, for
which `prepareQuery` doesn't throw an exception, but the server returns
400 and the query is indeed invalid
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** @OntotextGraphDB
**Description:**
Implemented unique ID validation in the FAISS component to ensure all
document IDs are distinct. This update resolves issues related to
non-unique IDs, such as inconsistent behavior during deletion processes.
**Description:** enable _parse_response_candidate to support complex
structure format.
**Issue:**
currently, if Gemini response complex args format, people will get
"TypeError: Object of type RepeatedComposite is not JSON serializable"
error from _parse_response_candidate.
response candidate example
```
content {
role: "model"
parts {
function_call {
name: "Information"
args {
fields {
key: "people"
value {
list_value {
values {
string_value: "Joe is 30, his mom is Martha"
}
}
}
}
}
}
}
}
finish_reason: STOP
safety_ratings {
category: HARM_CATEGORY_HARASSMENT
probability: NEGLIGIBLE
}
safety_ratings {
category: HARM_CATEGORY_HATE_SPEECH
probability: NEGLIGIBLE
}
safety_ratings {
category: HARM_CATEGORY_SEXUALLY_EXPLICIT
probability: NEGLIGIBLE
}
safety_ratings {
category: HARM_CATEGORY_DANGEROUS_CONTENT
probability: NEGLIGIBLE
}
```
error msg:
```
Traceback (most recent call last):
File "/home/jupyter/user/abehsu/gemini_langchain_tools/example2.py", line 36, in <module>
print(tagging_chain.invoke({"input": "Joe is 30, his mom is Martha"}))
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/runnables/base.py", line 2053, in invoke
input = step.invoke(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/runnables/base.py", line 3887, in invoke
return self.bound.invoke(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 165, in invoke
self.generate_prompt(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 543, in generate_prompt
return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 407, in generate
raise e
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 397, in generate
self._generate_with_cache(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_core/language_models/chat_models.py", line 576, in _generate_with_cache
return self._generate(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 406, in _generate
generations = [
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 408, in <listcomp>
message=_parse_response_candidate(c),
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/site-packages/langchain_google_vertexai/chat_models.py", line 280, in _parse_response_candidate
function_call["arguments"] = json.dumps(
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/__init__.py", line 231, in dumps
return _default_encoder.encode(obj)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 199, in encode
chunks = self.iterencode(o, _one_shot=True)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 257, in iterencode
return _iterencode(o, 0)
File "/opt/conda/envs/gemini_langchain_tools/lib/python3.10/json/encoder.py", line 179, in default
raise TypeError(f'Object of type {o.__class__.__name__} '
TypeError: Object of type RepeatedComposite is not JSON serializable
```
**Twitter handle:** @abehsu1992626
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description: added logic to override get_num_tokens_from_messages()
for ChatVertexAI. Currently ChatVertexAI was inheriting
get_num_tokens_from_messages() from BaseChatModel which in-turn was
calling GPT-2 tokenizer
- **Issue: NA
- **Dependencies: NA
- **Twitter handle:@aditya_rane
@lkuligin for review
---------
Co-authored-by: adityarane@google.com <adityarane@google.com>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Ran
```python
import glob
import re
def update_prompt(x):
return re.sub(
r"(?P<start>\b)PromptTemplate\(template=(?P<template>.*), input_variables=(?:.*)\)",
"\g<start>PromptTemplate.from_template(\g<template>)",
x
)
for fn in glob.glob("docs/**/*", recursive=True):
try:
content = open(fn).readlines()
except:
continue
content = [update_prompt(l) for l in content]
with open(fn, "w") as f:
f.write("".join(content))
```
Replace this entire comment with:
- **Description:** Added missing link for Quickstart in Model IO
documentation,
- **Issue:** N/A,
- **Dependencies:** N/A,
- **Twitter handle:** N/A
<!--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Several notebooks have Title != file name. That results in corrupted
sorting in Navbar (ToC).
- Fixed titles and file names.
- Changed text formats to the consistent form
- Redirected renamed files in the `Vercel.json`
- **Description:**
Actually the test named `test_openai_apredict` isn't testing the
apredict method from ChatOpenAI.
- **Twitter handle:**
https://twitter.com/OAlmofadas
* This PR adds async methods to the LLM cache.
* Adds an implementation using Redis called AsyncRedisCache.
* Adds a docker compose file at the /docker to help spin up docker
* Updates redis tests to use a context manager so flushing always happens by default
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
This PR standardizes the `output_parser.py` file across all agent types
to ensure a uniform parsing mechanism is implemented. It introduces a
cohesive structure and common interface for output parsing, facilitating
easier modifications and extensions by users. The standardized approach
enhances maintainability and scalability of the codebase by providing a
consistent pattern for output parsing, which can be easily understood
and utilized across different agent types.
This PR builds upon the foundation set by a previously merged PR, which
focused exclusively on standardizing the `output_parser.py` for the
`conversational_agent` ([PR
#16945](https://github.com/langchain-ai/langchain/pull/16945)). With
this new update, I extend the standardization efforts to encompass
`output_parser.py` files across all agent types. This enhancement not
only unifies the parsing mechanism across the board but also introduces
the flexibility for users to incorporate custom `FORMAT_INSTRUCTIONS`.
- **Issue:**
https://github.com/langchain-ai/langchain/issues/10721https://github.com/langchain-ai/langchain/issues/4044
- **Dependencies:**
No new dependencies required for this change
- **Twitter handle:**
With my github user is enough. Thanks
I hope you accept my PR.
Based on my experiments, the newline isn't always there, so we can make
the regex slightly more robust by allowing an optional newline after the
bacticks
This PR is opinionated.
- Moved `Embedding models` item to place after `LLMs` and `Chat model`,
so all items with models are together.
- Renamed `Text embedding models` to `Embedding models`. Now, it is
shorter and easier to read. `Text` is obvious from context. The same as
the `Text LLMs` vs. `LLMs` (we also have multi-modal LLMs).
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The `Partner libs` menu is not sorted. Now it is long enough, and items
should be sorted to simplify a package search.
- Sorted items in the `Partner libs` menu
- **Description:**
before the change I've got
1. propagate InferenceClientException to the caller.
2. stop grpc receiver thread on exception
```
for token in result_queue:
> result_str += token
E TypeError: can only concatenate str (not "InferenceServerException") to str
../../langchain_nvidia_trt/llms.py:207: TypeError
```
And stream thread keeps running.
after the change request thread stops correctly and caller got a root
cause exception:
```
E tritonclient.utils.InferenceServerException: [request id: 4529729] expected number of inputs between 2 and 3 but got 10 inputs for model 'vllm_model'
../../langchain_nvidia_trt/llms.py:205: InferenceServerException
```
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** [t.me/mkhl_spb](https://t.me/mkhl_spb)
I'm not sure about test coverage. Should I setup deep mocks or there's a
kind of triton stub via testcontainers or so.
**Description:**
With this modification, users can customize the `FORMAT_INSTRUCTIONS`
template, allowing them to create their own prompts
As it is happening in
[this](https://github.com/langchain-ai/langchain/issues/10721) issue,
the `FORMAT_INSTRUCTIONS` is not customizable for the output parser,
unless you create your own class `ConvoOutputParser`. To avoid this, a
modification was done, creating a `format_instruction` variable that
users can customize with ease after initialize the agent.
For example:
```
agent = initialize_agent(
agent = AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
tools = tools,
llm = llm_agent,
verbose = True,
max_iterations = 3,
early_stopping_method = 'generate',
memory = b_w_memory,
handle_parsing_errors = True,
agent_kwargs={
'system_message':PREFIX,
'human_message':SUFFIX,
'template_tool_response':TEMPLATE_TOOL_RESPONSE,
}
)
agent.agent.output_parser.format_instructions = "MY CUSTOM FORMAT INSTRUCTIONS"
print(agent.agent.output_parser.get_format_instructions())
MY CUSTOM FORMAT INSTRUCTIONS
```
Other parameters like `system_message`, `human_message`, or
`template_tool_response` are already customizable and with this PR, the
last parameter `FORMAT_INSTRUCTIONS` in
`langchain.agents.conversational_chat.prompt` can be modified.
**Issue:**
https://github.com/langchain-ai/langchain/issues/10721
**Dependencies:**
No new dependencies required for this change
**Twitter handle:**
With my github user is enough. Thanks
I hope you accept my PR.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Link to the Brave Website added to the
`brave-search.ipynb` notebook.
This notebook is shown in the docs as an example for the brave tool.
**Issue:** There was to reference on where / how to get an api key
**Dependencies:** none
**Twitter handle:** not for this one :)
- **Description:** docs: update StreamlitCallbackHandler example.
- **Issue:** None
- **Dependencies:** None
I have updated the example for StreamlitCallbackHandler in the
documentation bellow.
https://python.langchain.com/docs/integrations/callbacks/streamlit
Previously, the example used `initialize_agent`, which has been
deprecated, so I've updated it to use `create_react_agent` instead. Many
langchain users are likely searching examples of combining
`create_react_agent` or `openai_tools_agent_chain` with
StreamlitCallbackHandler. I'm sure this update will be really helpful
for them!
Unfortunately, writing unit tests for this example is difficult, so I
have not written any tests. I have run this code in a standalone Python
script file and ensured it runs correctly.
- **Description:** Ensure the `LlamaGrammar` custom type is always
available when instantiating a `LlamaCpp` LLM
- **Issue:** #16994
- **Dependencies:** None
- **Twitter handle:** @fpaupier
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
As described in issue #17060, in the case in which text has only one
sentence the following function fails. Checking for that and adding a
return case fixed the issue.
```python
def split_text(self, text: str) -> List[str]:
"""Split text into multiple components."""
# Splitting the essay on '.', '?', and '!'
single_sentences_list = re.split(r"(?<=[.?!])\s+", text)
sentences = [
{"sentence": x, "index": i} for i, x in enumerate(single_sentences_list)
]
sentences = combine_sentences(sentences)
embeddings = self.embeddings.embed_documents(
[x["combined_sentence"] for x in sentences]
)
for i, sentence in enumerate(sentences):
sentence["combined_sentence_embedding"] = embeddings[i]
distances, sentences = calculate_cosine_distances(sentences)
start_index = 0
# Create a list to hold the grouped sentences
chunks = []
breakpoint_percentile_threshold = 95
breakpoint_distance_threshold = np.percentile(
distances, breakpoint_percentile_threshold
) # If you want more chunks, lower the percentile cutoff
indices_above_thresh = [
i for i, x in enumerate(distances) if x > breakpoint_distance_threshold
] # The indices of those breakpoints on your list
# Iterate through the breakpoints to slice the sentences
for index in indices_above_thresh:
# The end index is the current breakpoint
end_index = index
# Slice the sentence_dicts from the current start index to the end index
group = sentences[start_index : end_index + 1]
combined_text = " ".join([d["sentence"] for d in group])
chunks.append(combined_text)
# Update the start index for the next group
start_index = index + 1
# The last group, if any sentences remain
if start_index < len(sentences):
combined_text = " ".join([d["sentence"] for d in sentences[start_index:]])
chunks.append(combined_text)
return chunks
```
Co-authored-by: Giulio Zani <salamanderxing@Giulios-MBP.homenet.telecomitalia.it>
- **Description:** Add relevant type annotations for relevant session
and query objects to resolve mypy errors when `# type: ignore` comments
are removed.
- **Issue:** #17048
- **Dependencies:** None,
- **Twitter handle:** [clesiemo3](https://twitter.com/clesiemo3)
I attempted to solve the `UpsertionRecord` ignore but it would require
added a deprecated plugin or moving completely to sqlalchemy 2.0+ from
my understanding. I'm assuming this is not something desired at this
point in time.
- **Description:** "load HTML **form** web URLs" should be "load HTML
**from** web URLs"? 🤔
- **Issue:** Typo
- **Dependencies:** Nope
- **Twitter handle:** n0vad3v
- **Description:** Adds a function parameter to HuggingFaceEmbeddings
called `show_progress` that enables a `tqdm` progress bar if enabled.
Does not function if `multi_process = True`.
- **Issue:** n/a
- **Dependencies:** n/a
- **Description:** Adds an additional class variable to `BedrockBase`
called `provider` that allows sending a model provider such as amazon,
cohere, ai21, etc.
Up until now, the model provider is extracted from the `model_id` using
the first part before the `.`, such as `amazon` for
`amazon.titan-text-express-v1` (see [supported list of Bedrock model IDs
here](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html)).
But for custom Bedrock models where the ARN of the provisioned
throughput must be supplied, the `model_id` is like
`arn:aws:bedrock:...` so the `model_id` cannot be extracted from this. A
model `provider` is required by the LangChain Bedrock class to perform
model-based processing. To allow the same processing to be performed for
custom-models of a specific base model type, passing this `provider`
argument can help solve the issues.
The alternative considered here was the use of
`provider.arn:aws:bedrock:...` which then requires ARN to be extracted
and passed separately when invoking the model. The proposed solution
here is simpler and also does not cause issues for current models
already using the Bedrock class.
- **Issue:** N/A
- **Dependencies:** N/A
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
This is a PR about #16334
The Stop sequenes isn't meanful in `json_chat` because it depends json
to work, not completions
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Several meta/usability updates, including User-Agent.
- **Issue:**
- User-Agent metadata for tracking connector engagement. @milesial
please check and advise.
- Better error messages. Tries harder to find a request ID. @milesial
requested.
- Client-side image resizing for multimodal models. Hope to upgrade to
Assets API solution in around a month.
- `client.payload_fn` allows you to modify payload before network
request. Use-case shown in doc notebook for kosmos_2.
- `client.last_inputs` put back in to allow for advanced
support/debugging.
- **Dependencies:**
- Attempts to pull in PIL for image resizing. If not installed, prints
out "please install" message, warns it might fail, and then tries
without resizing. We are waiting on a more permanent solution.
For LC viz: @hinthornw
For NV viz: @fciannella @milesial @vinaybagade
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Initial commit oss-tool-retrieval-agent
- README update
- lint
- lock
- format imports
- Rename to retrieval-agent-fireworks
- cr
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
Previously, if this did not find a mypy cache then it wouldnt run
this makes it always run
adding mypy ignore comments with existing uncaught issues to unblock other prs
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description**: We discovered a bug converting dictionaries to
messages where the ChatMessageChunk message type isn't handled. This PR
adds support for that message type.
- **Issue**: #17022
- **Dependencies**: None
- **Twitter handle**: None
- **Description:** Updating one line code sample for Ollama with new
**langchain_community** package
- **Issue:**
- **Dependencies:** none
- **Twitter handle:** @picsoung
## Description
In #16608, the calling `collection_name` was wrong.
I made a fix for it.
Sorry for the inconvenience!
## Issue
https://github.com/langchain-ai/langchain/issues/16962
## Dependencies
N/A
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Kumar Shivendu <kshivendu1@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
primary problem in pydantic still exists, where `Optional[str]` gets
turned to `string` in the jsonschema `.schema()`
Also fixes the `SchemaSchema` naming issue
---------
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
We didn't override the namespace of the ImagePromptTemplate, so it is
listed as being in langchain.schema
This updates the mapping to let the loader deserialize.
Alternatively, we could make a slight breaking change and update the
namespace of the ImagePromptTemplate since we haven't broadly
publicized/documented it yet..
All models should be calling the callback for new token prior to
yielding the token.
Not doing this can cause callbacks for downstream steps to be called
prior to the callback for the new token; causing issues in
astream_events APIs and other things that depend in callback ordering
being correct.
We need to make this change for all chat models.
The `langchain.prompts.example_selector` [still holds several
artifacts](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.prompts)
that belongs to `community`. If they moved to
`langchain_community.example_selectors`, the `langchain.prompts`
namespace would be effectively removed which is great.
- moved a class and afunction to `langchain_community`
Note:
- Previously, the `langchain.prompts.example_selector` artifacts were
moved into the `langchain_core.exampe_selectors`. See the flattened
namespace (`.prompts` was removed)!
Similar flattening was implemented for the `langchain_core` as the
`langchain_core.exampe_selectors`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
* Adds `AstraDBEnvironment` class and use it in `AstraDBLoader`,
`AstraDBCache`, `AstraDBSemanticCache`, `AstraDBBaseStore` and
`AstraDBChatMessageHistory`
* Create an `AsyncAstraDB` if we only have an `AstraDB` and vice-versa
so:
* we always have an instance of `AstraDB`
* we always have an instance of `AsyncAstraDB` for recent versions of
astrapy
* Create collection if not exists in `AstraDBBaseStore`
* Some typing improvements
Note: `AstraDB` `VectorStore` not using `AstraDBEnvironment` at the
moment. This will be done after the `langchain-astradb` package is out.
Added notification about limited preview status of Guardrails for Amazon
Bedrock feature to code example.
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
- **Description:**
The BaseStore methods are currently blocking. Some implementations
(AstraDBStore, RedisStore) would benefit from having async methods.
Also once we have async methods for BaseStore, we can implement the
async `aembed_documents` in CacheBackedEmbeddings to cache the
embeddings asynchronously.
* adds async methods amget, amset, amedelete and ayield_keys to
BaseStore
* implements the async methods for InMemoryStore
* adds tests for InMemoryStore async methods
- **Twitter handle:** cbornet_
* Add bulk add_messages method to the interface.
* Update documentation for add_ai_message and add_human_message to
denote them as being marked for deprecation. We should stop using them
as they create more incorrect (inefficient) ways of doing things
Adds:
* methods `aload()` and `alazy_load()` to interface `BaseLoader`
* implementation for class `MergedDataLoader `
* support for class `BaseLoader` in async function `aindex()` with unit
tests
Note: this is compatible with existing `aload()` methods that some
loaders already had.
**Twitter handle:** @cbornet_
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
- **Description:** the existing AssemblyAI API allows to pass a path or
an url to transcribe an audio file and turn in into Langchain Documents,
this PR allows to get existing transcript by their transcript id and
turn them into Documents.
- **Issue:** not related to an existing issue
- **Dependencies:** requests
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The current implementation leaves it up to the particular file loader
implementation to report the file on which an error was encountered - in
my case pdfminer was simply saying it could not parse a file as a PDF,
but I didn't know which of my hundreds of files it was failing on.
No reason not to log the particular item on which an error was
encountered, and it should be an immense debugging assistant.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Description: Added the parameter for a possibility to change a language
model in SpacyEmbeddings. The default value is still the same:
"en_core_web_sm", so it shouldn't affect a code which previously did not
specify this parameter, but it is not hard-coded anymore and easy to
change in case you want to use it with other languages or models.
Issue: At Barcelona Supercomputing Center in Aina project
(https://github.com/projecte-aina), a project for Catalan Language
Models and Resources, we would like to use Langchain for one of our
current projects and we would like to comment that Langchain, while
being a very powerful and useful open-source tool, is pretty much
focused on English language. We would like to contribute to make it a
bit more adaptable for using with other languages.
Dependencies: This change requires the Spacy library and a language
model, specified in the model parameter.
Tag maintainer: @dev2049
Twitter handle: @projecte_aina
---------
Co-authored-by: Marina Pliusnina <marina.pliusnina@bsc.es>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description**: fully async versions are available for astrapy 0.7+.
For older astrapy versions or if the user provides a sync client without
an async one, the async methods will call the sync ones wrapped in
`run_in_executor`
- **Twitter handle:** cbornet_
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
- **Description:**
Filtering in a FAISS vectorstores is very inflexible and doesn't allow
that many use case. I think supporting callable like this enables a lot:
regular expressions, condition on multiple keys etc. **Note** I had to
manually alter a test. I don't understand if it was falty to begin with
or if there is something funky going on.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
Signed-off-by: thiswillbeyourgithub <26625900+thiswillbeyourgithub@users.noreply.github.com>
Adjusted deprecate decorator to make sure decorated async functions are
still recognized as "coroutinefunction" by inspect
Addresses #16402
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
The PR is to return the ID and collection name from qdrant client to
metadata field in `Document` class.
## Issue
The motivation is almost same to
[11592](https://github.com/langchain-ai/langchain/issues/11592)
Returning ID is useful to update existing records in a vector store, but
we cannot know them if we use some retrievers.
In order to avoid any conflicts, breaking changes, the new fields in
metadata have a prefix `_`
## Dependencies
N/A
## Twitter handle
@kill_in_sun
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Use the real "history" provided by the original program instead of
putting "None" in the history.
- **Description:** I change one line in the code to make it return the
"history" of the chat model.
- **Issue:** At the moment it returns only the answers of the chat
model. However the chat model himself provides a history more complet
with the questions of the user.
- **Dependencies:** no dependencies required for this change,
This PR includes updates for OctoAI integrations:
- The LLM class was updated to fix a bug that occurs with multiple
sequential calls
- The Embedding class was updated to support the new GTE-Large endpoint
released on OctoAI lately
- The documentation jupyter notebook was updated to reflect using the
new LLM sdk
Thank you!
Description: One too many set of triple-ticks in a sample code block in
the QuickStart doc was causing "\`\`\`shell" to appear in the shell
command that was being demonstrated. I just deleted the extra "```".
Issue: Didn't see one
Dependencies: None
## Summary
This PR implements the "Connery Action Tool" and "Connery Toolkit".
Using them, you can integrate Connery actions into your LangChain agents
and chains.
Connery is an open-source plugin infrastructure for AI.
With Connery, you can easily create a custom plugin with a set of
actions and seamlessly integrate them into your LangChain agents and
chains. Connery will handle the rest: runtime, authorization, secret
management, access management, audit logs, and other vital features.
Additionally, Connery and our community offer a wide range of
ready-to-use open-source plugins for your convenience.
Learn more about Connery:
- GitHub: https://github.com/connery-io/connery-platform
- Documentation: https://docs.connery.io
- Twitter: https://twitter.com/connery_io
## TODOs
- [x] API wrapper
- [x] Integration tests
- [x] Connery Action Tool
- [x] Docs
- [x] Example
- [x] Integration tests
- [x] Connery Toolkit
- [x] Docs
- [x] Example
- [x] Formatting (`make format`)
- [x] Linting (`make lint`)
- [x] Testing (`make test`)
- **Description:** To adapt more parameters related to
MemorySearchPayload for the search method of ZepChatMessageHistory,
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
**Description:**
Updated the retry.ipynb notebook, it contains the illustrations of
RetryOutputParser in LangChain. But the notebook lacks to explain the
compatibility of RetryOutputParser with existing chains. This changes
adds some code to illustrate the workflow of using RetryOutputParser
with the user chain.
Changes:
1. Changed RetryWithErrorOutputParser with RetryOutputParser, as the
markdown text says so.
2. Added code at the last of the notebook to define a chain which passes
the LLM completions to the retry parser, which can be customised for
user needs.
**Issue:**
Since RetryOutputParser/RetryWithErrorOutputParser does not implement
the parse function it cannot be used with LLMChain directly like
[this](https://python.langchain.com/docs/expression_language/cookbook/prompt_llm_parser#prompttemplate-llm-outputparser).
This also raised various issues #15133#12175#11719 still open, instead
of adding new features/code changes its best to explain the "how to
integrate LLMChain with retry parsers" clearly with an example in the
corresponding notebook.
Inspired from:
https://github.com/langchain-ai/langchain/issues/15133#issuecomment-1868972580
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add missing async similarity_distance_threshold handling in
RedisVectorStoreRetriever
- **Description:** added method `_aget_relevant_documents` to
`RedisVectorStoreRetriever` that overrides parent method to add support
of `similarity_distance_threshold` in async mode (as for sync mode)
- **Issue:** #16099
- **Dependencies:** N/A
- **Twitter handle:** N/A
- **Description:** This is a template for creating shopping assistant
chat bots
- **Issue:** Example for creating a shopping assistant with OpenAI Tools
Agent
- **Dependencies:** Ionic
https://github.com/ioniccommerce/ionic_langchain
- **Twitter handle:** @ioniccommerce
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Presidio-based anonymizers are not working because
`_remove_conflicts_and_get_text_manipulation_data` was being called
without a conflict resolution strategy. This PR fixes this issue. In
addition, it removes some mutable default arguments (antipattern).
To reproduce the issue, just run the very first cell of this
[notebook](https://python.langchain.com/docs/guides/privacy/2/) from
langchain's documentation.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description** : This PR updates the documentation for installing
llama-cpp-python on Windows.
- Updates install command to support pyproject.toml
- Makes CPU/GPU install instructions clearer
- Adds reinstall with GPU support command
**Issue**: Existing
[documentation](https://python.langchain.com/docs/integrations/llms/llamacpp#compiling-and-installing)
lists the following commands for installing llama-cpp-python
```
python setup.py clean
python setup.py install
````
The current version of the repo does not include a `setup.py` and uses a
`pyproject.toml` instead.
This can be replaced with
```
python -m pip install -e .
```
As explained in
https://github.com/abetlen/llama-cpp-python/issues/965#issuecomment-1837268339
**Dependencies**: None
**Twitter handle**: None
---------
Co-authored-by: blacksmithop <angstycoder101@gmaii.com>
- **Description:** The current pubmed tool documentation is referencing
the path to langchain core not the path to the tool in community. The
old tool redirects anyways, but for efficiency of using the more direct
path, just adding this documentation so it references the new path
- **Issue:** doesn't fix an issue
- **Dependencies:** no dependencies
- **Twitter handle:** rooftopzen
* Description: Fixed schema discrepancy in **from_texts** function for
weaviate vectorstore which created a redundant property "key" inside a
class.
* Issue: Fixed: https://github.com/langchain-ai/langchain/issues/16692
* Twitter handle: @pashvamehta1
- **Description:** Syntax correction according to langchain version
update in 'Retry Parser' tutorial example,
- **Issue:** #16698
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adds Wikidata support to langchain. Can read out
documents from Wikidata.
- **Issue:** N/A
- **Dependencies:** Adds implicit dependencies for
`wikibase-rest-api-client` (for turning items into docs) and
`mediawikiapi` (for hitting the search endpoint)
- **Twitter handle:** @derenrich
You can see an example of this tool used in a chain
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Langchain.ipynb)
or
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Lars_Kai_Hansen.ipynb)
<!-- Thank you for contributing to LangChain!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
URL : https://python.langchain.com/docs/use_cases/extraction
Desc:
<b> While the following statement executes successfully, it throws an
error which is described below when we use the imported packages</b>
```py
from pydantic import BaseModel, Field, validator
```
Code:
```python
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
PromptTemplate,
)
from langchain_openai import OpenAI
from pydantic import BaseModel, Field, validator
# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# You can add custom validation logic easily with Pydantic.
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
```
Error:
```md
PydanticUserError: The `field` and `config` parameters are not available
in Pydantic V2, please use the `info` parameter instead.
For further information visit
https://errors.pydantic.dev/2.5/u/validator-field-config-info
```
Solution:
Instead of doing:
```py
from pydantic import BaseModel, Field, validator
```
We should do:
```py
from langchain_core.pydantic_v1 import BaseModel, Field, validator
```
Thanks.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This update ensures that the user-defined embedding
function specified during vector store creation is applied during
queries. Previously, even if a custom embedding function was defined at
the time of store creation, Bagel DB would default to using the standard
embedding function during query execution. This pull request addresses
this issue by consistently using the user-defined embedding function for
queries if one has been specified earlier.
- **Description:** This change allows the `_fetch` method in the
`WebBaseLoader` class to utilize cookies from an existing
`requests.Session`. It ensures that when the `fetch` method is used, any
cookies in the provided session are included in the request. This
enhancement maintains compatibility with existing functionality while
extending the utility of the `fetch` method for scenarios where cookie
persistence is necessary.
- **Issue:** Not applicable (new feature),
- **Dependencies:** Requires `aiohttp` and `requests` libraries (no new
dependencies introduced),
- **Twitter handle:** N/A
Co-authored-by: Joao Almeida <joao.almeida@mercedes-benz.io>
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
if eg. the stream iterator is interrupted then adding more events to the
send_stream will raise an exception that we should catch (and handle
where appropriate)
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description**: YoutubeLoader right now returns one document that
contains the entire transcript. I think it would be useful to add an
option to return multiple documents, where each document would contain
one line of transcript with the start time and duration in the metadata.
For example,
[AssemblyAIAudioTranscriptLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/assemblyai.py)
is implemented in a similar way, it allows you to choose between the
format to use for the document loader.
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.
- **Dependencies**: No dependencies are added as we call a rest API.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
… converters
One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
community:
- **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
- Add tests and Jupyter notebook.
- **Issue:** None
- **Dependencies:** Relies on existing ChatLiteLLM integration
- **Twitter handle:** @bburgin_0
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
The parameters for user and assistant in Anthropic should be 'ai ->
assistant,' but they are reversed to 'assistant -> ai.'
Below is error code.
```python
anthropic.BadRequestError: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'messages: Unexpected role "ai". Allowed roles are "user" or "assistant"'}}
```
[anthropic](7177f3a71f/src/anthropic/types/beta/message_param.py (L13))
- **Issue:** : #16561
- **Dependencies:** : None
- **Twitter handle:** : None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
- **Issue:** None,
- **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.
@baskaryan @hwchase17
```python
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
guardrails={"id": " <guardrail_id>",
"version": "<guardrail_version>",
"trace": True}, callbacks=[BedrockAsyncCallbackHandler()])
class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
"""Async callback handler that can be used to handle callbacks from langchain."""
async def on_llm_error(
self,
error: BaseException,
**kwargs: Any,
) -> Any:
reason = kwargs.get("reason")
if reason == "GUARDRAIL_INTERVENED":
# kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
print(f"""Guardrails: {kwargs}""")
# streaming
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
streaming=True,
guardrails={"id": "<guardrail_id>",
"version": "<guardrail_version>"})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).
- **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
- **Twitter handle:** @sapopensource
Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`
Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`
Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`
Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
Access credentials for execution of the integration tests can be
provided to the maintainers.
---------
Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
- checked that the doc chat/google_vertex_ai_palm is using new
functions: invoke, stream etc.
- added Gemini example
- fixed wrong output in Sanskrit example
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
Flushing out the `mypy` config in `langchain-google-vertexai` to show
error codes and other warnings
This PR also bumps `mypy` to above version 1's stable release
**Description:**
Handle unsupported languages in same way as when none is provided
**Issue:**
The following line will throw a KeyError if the language is not
supported.
```python
self.Segmenter = LANGUAGE_SEGMENTERS[language]
```
E.g. when using `Language.CPP` we would get `KeyError: <Language.CPP:
'cpp'>`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** added the conversational task to hugginFace endpoint
in order to use models designed for chatbot programming.
- **Dependencies:** None
---------
Co-authored-by: Alessio Serra (ext.) <alessio.serra@partner.bmw.de>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
- **Issue:** Fixed#15607,
- **Dependencies:** NA
- **Twitter handle:** NA
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
- **Dependencies:** websocket-client ^1.6.1
- **Tag maintainer:** @baskaryan
### SparkLLM chat model usage
Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:
```python3
from langchain.chat_models.sparkllm import ChatSparkLLM
client = ChatSparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
```
- **Description:**
This PR aims to enhance the `langchain` library by enabling the support
for passing `custom_headers` in the `GraphQLAPIWrapper` usage within
`langchain/agents/load_tools.py`.
While the `GraphQLAPIWrapper` from the `langchain_community` module is
inherently capable of handling `custom_headers`, its current invocation
in `load_tools.py` does not facilitate this functionality.
This limitation restricts the use of the `graphql` tool with databases
or APIs that require token-based authentication.
The absence of support for `custom_headers` in this context also leads
to a lack of error messages when attempting to interact with secured
GraphQL endpoints, making debugging and troubleshooting more
challenging.
This update modifies the `load_tools` function to correctly handle
`custom_headers`, thereby allowing secure and authenticated access to
GraphQL services requiring tokens.
Example usage after the proposed change:
```python
tools = load_tools(
["graphql"],
graphql_endpoint="https://your-graphql-endpoint.com/graphql",
custom_headers={"Authorization": f"Token {api_token}"},
)
```
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
- **Description:** This addresses the issue tagged below where if you
try to pass your own client when creating an OpenAI assistant, a
pydantic error is raised:
Example code:
```python
import openai
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
client = openai.OpenAI()
interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=[{"type": "code_interpreter"}],
model="gpt-4-1106-preview",
client=client
)
```
Error:
`pydantic.v1.errors.ConfigError: field "client" not yet prepared, so the
type is still a ForwardRef. You might need to call
OpenAIAssistantRunnable.update_forward_refs()`
It additionally updates type hints and docstrings to indicate that an
AzureOpenAI client is permissible as well.
- **Issue:** https://github.com/langchain-ai/langchain/issues/15948
- **Dependencies:** N/A
Description:
- Added output and environment variables
- Updated the documentation for chat/anthropic, changing references from
`langchain.schema` to `langchain_core.prompts`.
Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
Since this is my first open-source PR, please feel free to point out any
mistakes, and I'll be eager to make corrections.
This PR introduces update to Konko Integration with LangChain.
1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.
2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.
4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.
Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.
---------
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
- **Description:** extreact the _aperform_agent_action in the
AgentExecutor class to allow for easier overriding. Extracted logic from
_iter_next_step into a new method _perform_agent_action for consistency
and easier overriding.
- **Issue:** #15706Closes#15706
- **Description:** The HTMLHeaderTextSplitter Class now explicitly
specifies utf-8 encoding in the part of the split_text_from_file method
that calls the HTMLParser.
- **Issue:** Prevent garbled characters due to differences in encoding
of html files (except for English in particular, I noticed that problem
with Japanese).
- **Dependencies:** No dependencies,
- **Twitter handle:** @i_w__a
Adds the ability to return similarity scores when using
`RetrievalQA.from_chain_type` with `MongoDBAtlasVectorSearch`. Requires
that `return_source_documents=True` is set.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vector_search.as_retriever(search_kwargs={"additional": ["similarity_score"]}),
return_source_documents=True
)
...
docs = qa({"query": "..."})
docs["source_documents"][0].metadata["score"] # score will be here
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
- **Description:** Allow passing run_id to MLflowCallbackHandler to
resume a run instead of creating a new run. Support recording retriever
relevant metrics. Refactor the code to fix some bugs.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
In this PR I added a post-processing function to normalize the
embeddings. This happens only if the new `normalize` flag is `True`.
---------
Co-authored-by: taamedag <Davide.Menini@swisscom.com>
- **Description:** Baichuan Chat (with both Baichuan-Turbo and
Baichuan-Turbo-192K models) has updated their APIs. There are breaking
changes. For example, BAICHUAN_SECRET_KEY is removed in the latest API
but is still required in Langchain. Baichuan's Langchain integration
needs to be updated to the latest version.
- **Issue:** #15206
- **Dependencies:** None,
- **Twitter handle:** None
@hwchase17.
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
**Description:**
- Implement `SQLStrStore` and `SQLDocStore` classes that inherits from
`BaseStore` to allow to persist data remotely on a SQL server.
- SQL is widely used and sometimes we do not want to install a caching
solution like Redis.
- Multiple issues/comments complain that there is no easy remote and
persistent solution that are not in memory (users want to replace
InMemoryStore), e.g.,
https://github.com/langchain-ai/langchain/issues/14267,
https://github.com/langchain-ai/langchain/issues/15633,
https://github.com/langchain-ai/langchain/issues/14643,
https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
- This is particularly painful when wanting to use
`ParentDocumentRetriever `
- This implementation is particularly useful when:
* it's expensive to construct an InMemoryDocstore/dict
* you want to retrieve documents from remote sources
* you just want to reuse existing objects
- This implementation integrates well with PGVector, indeed, when using
PGVector, you already have a SQL instance running. `SQLDocStore` is a
convenient way of using this instance to store documents associated to
vectors. An integration example with ParentDocumentRetriever and
PGVector is provided in docs/docs/integrations/stores/sql.ipynb or
[here](https://github.com/gcheron/langchain/blob/sql-store/docs/docs/integrations/stores/sql.ipynb).
- It persists `str` and `Document` objects but can be easily extended.
**Issue:**
Provide an easy SQL alternative to `InMemoryStore`.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** this PR upgrades the `HuggingFaceHub` LLM:
* support more tasks (`translation` and `conversational`)
* replaced the deprecated `InferenceApi` with `InferenceClient`
* adjusted the overall logic to use the "recommended" model for each
task when no model is provided, and vice-versa.
- **Tag mainter(s)**: @baskaryan @hwchase17
For tracing, if a validation error occurs, currently it is attributed to
the previous step of the chain. It would be nice to have the on_start
and on_error callbacks called for tools when there is a validation error
that occurs to more easily attribute the root-cause
**Description** : New documents loader for visio files (with extension
.vsdx)
A [visio file](https://fr.wikipedia.org/wiki/Microsoft_Visio) (with
extension .vsdx) is associated with Microsoft Visio, a diagram creation
software. It stores information about the structure, layout, and
graphical elements of a diagram. This format facilitates the creation
and sharing of visualizations in areas such as business, engineering,
and computer science.
A Visio file can contain multiple pages. Some of them may serve as the
background for others, and this can occur across multiple layers. This
loader extracts the textual content from each page and its associated
pages, enabling the extraction of all visible text from each page,
similar to what an OCR algorithm would do.
**Dependencies** : xmltodict package
- **Description:** Updated the Chat/Ollama docs notebook with LCEL chain
examples
- **Issue:** #15664 I'm a new contributor 😊
- **Dependencies:** No dependencies
- **Twitter handle:**
Comments:
- How do I truncate the output of the stream in the notebook if and or
when it goes on and on and on for even the basic of prompts?
Edit:
Looking forward to feedback @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Problem
Spent several hours trying to figure out how to pass
`RedisChatMessageHistory` as a `GetSessionHistoryCallable` with a
different REDIS hostname. This example kept connecting to
`redis://localhost:6379`, but I wanted to connect to a server not hosted
locally.
## Cause
Assumption the user knows how to implement `BaseChatMessageHistory` and
`GetSessionHistoryCallable`
## Solution
Update documentation to show how to explicitly set the REDIS hostname
using a lambda function much like the MongoDB and SQLite examples.
After merging [PR
#16304](https://github.com/langchain-ai/langchain/pull/16304), I
realized that our notebook example for integrating TiDB with LangChain
was too basic. To make it more useful and user-friendly, I plan to
create a detailed example. This will show how to use TiDB for saving
history messages in LangChain, offering a clearer, more practical guide
for our users
I also added LANGCHAIN_COMET_TRACING to enable the CometLLM tracing
integration similar to other tracing integrations. This is easier for
end-users to enable it rather than importing the callback and pass it
manually.
(This is the same content as
https://github.com/langchain-ai/langchain/pull/14650 but rebased and
squashed as something seems to confuse Github Action).
- **Description:** At the moment it's not possible to include in the
same project langchain-google-vertexai and boto3 (e.g. use bedrock and
vertex in the same application) because of the dependency resolutions
conflict. boto3 is still using urllib3 1.x, meanwhile
langchain-google-vertexai -> types-requests depends on urllib3 2.x. [the
last version of types-requests that allows urllib3 1.x is
2.31.0.6](https://pypi.org/project/types-requests/#description).
In this PR I allow the vertexai package to get that version also.
- **Twitter handle:** nicoloboschi
Description: Added support for asynchronous streaming in the Bedrock
class and corresponding tests.
Primarily:
async def aprepare_output_stream
async def _aprepare_input_and_invoke_stream
async def _astream
async def _acall
I've ensured that the code adheres to the project's linting and
formatting standards by running make format, make lint, and make test.
Issue: #12054, #11589
Dependencies: None
Tag maintainer: @baskaryan
Twitter handle: @dominic_lovric
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
Replace this entire comment with:
- **Description:** allow user to define tVector length in PGVector when
creating the embedding store, this allows for later indexing
- **Issue:** #16132
- **Dependencies:** None
**Description:** Add support for querying TigerGraph databases through
the InquiryAI service.
**Issue**: N/A
**Dependencies:** N/A
**Twitter handle:** @TigerGraphDB
there is a case where "coords" does not exist in the "sentence"
therefore, the "split(";")" will lead to error.
we can fix that by adding "if sentence.get("coords") is not None:"
the resulting empty "sbboxes" from this scenario will raise error at
"sbboxes[0]["page"]" because sbboxes are empty.
the PDF from https://pubmed.ncbi.nlm.nih.gov/23970373/ can replicate
those errors.
This pull request integrates the TiDB database into LangChain for
storing message history, marking one of several steps towards a
comprehensive integration of TiDB with LangChain.
A simple usage
```python
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory
history = TiDBChatMessageHistory(
connection_string="mysql+pymysql://<host>:<PASSWORD>@<host>:4000/<db>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true",
session_id="code_gen",
earliest_time=datetime.utcnow(), # Optional to set earliest_time to load messages after this time point.
)
history.add_user_message("hi! How's feature going?")
history.add_ai_message("It's almot done")
```
The callbacks get started demo code was updated , replacing the
chain.run() command ( which is now depricated) ,with the updated
chain.invoke() command.
Solving the following issue : #16379
Twitter/X : @Hazxhx
- **Description:** add support for kwargs in`MlflowEmbeddings`
`embed_document()` and `embed_query()` so that all the arguments
required by Cohere API (and others?) can be passed down to the server.
- **Issue:** #15234
- **Dependencies:** MLflow with MLflow Deployments (`pip install
mlflow[genai]`)
**Tests**
Now this code [adapted from the
docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example)
for the Cohere API works locally.
```python
"""
Setup
-----
export COHERE_API_KEY=...
mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml
Run
---
python /path/to/this/file.py
"""
embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
```
Output
```
[0.060455322, 0.028793335, -0.025848389]
[0.031707764, 0.021057129, -0.009361267]
```
Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.
Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
Adjusted `deprecate` decorator to make sure decorated async functions
are still recognized as "coroutinefunction" by `inspect`.
Before change, functions such as `LLMChain.acall` which are decorated as
deprecated are not recognized as coroutine functions. After the change,
they are recognized:
```python
import inspect
from langchain import LLMChain
# Is false before change but true after.
inspect.iscoroutinefunction(LLMChain.acall)
```
- **Description:** I removed two queries to the database and left just
one whose results were formatted afterward into other type of schema
(avoided two calls to DB)
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** @supe_katarina
- **Description:** Some code sources have been moved from `langchain` to
`langchain_community` and so the documentation is not yet up-to-date.
This is specifically true for `StreamlitCallbackHandler` which returns a
`warning` message if not loaded from `langchain_community`.,
- **Issue:** I don't see a # issue that could address this problem but
perhaps #10744,
- **Dependencies:** Since it's a documentation change no dependencies
are required
- **Description:** update documentation on jaguar vector store:
Instruction for setting up jaguar server and usage of text_tag.
- **Issue:**
- **Dependencies:**
- **Twitter handle:**
---------
Co-authored-by: JY <jyjy@jaguardb>
Implement similarity function selector for ElasticsearchStore. The
scores coming back from Elasticsearch are already similarities (not
distances) and they are already normalized (see
[docs](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)).
Hence we leave the scores untouched and just forward them.
This fixes#11539.
However, in hybrid mode (when keyword search and vector search are
involved) Elasticsearch currently returns no scores. This PR adds an
error message around this fact. We need to think a bit more to come up
with a solution for this case.
This PR also corrects a small error in the Elasticsearch integration
test.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Issue:** This is a PR about #16340
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: yuhei.tsunoda <yuhei.tsunoda@brainpad.co.jp>
- **Description:** Updating documentation of IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM with using
`invoke` instead of `__call__`
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
The following warning information show when i use `run` and `__call__`
method:
```
LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
We need to update documentation for using `invoke` method
The following warning information will be displayed when i use
`llm(PROMPT)`:
```python
/Users/169/llama.cpp/venv/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
So I changed to standard usage.
**Description:**
In this PR, I am adding a `PolygonLastQuote` Tool, which can be used to
get the latest price quote for a given ticker / stock.
Additionally, I've added a Polygon Toolkit, which we can use to
encapsulate future tools that we build for Polygon.
**Twitter handle:** [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Used to be None, now is just the last chunk
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
fixed multi-query template for Vectara
added self-query template for Vectara
Also added prompt_name parameter to summarization
CC @efriis
**Twitter handle:** @ofermend
Add a version parameter while the method is in beta phase.
The idea is to make it possible to minimize making breaking changes for users while we're iterating on schema.
Once the API is stable we can assign a default version requirement.
- **Description:** Adds a text splitter based on
[Konlpy](https://konlpy.org/en/latest/#start) which is a Python package
for natural language processing (NLP) of the Korean language. (It is
like Spacy or NLTK for Korean)
- **Dependencies:** Konlpy would have to be installed before this
splitter is used,
- **Twitter handle:** @untilhamza
- **Description:** Fixes a few issues in NVIDIAcanonical RAG template's
README, and adds a notebook for the template
- **Dependencies:** Adds the pypdf dependency which is needed for
ingestion, and updates the lock file
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Add privileged version for issue creation.
This adds a version of issue creation which is unstructured by design to
make it easier for maintainers to create issues.
Maintainers are expected to write / describe issues clearly.
- **Description:** Some text-generation models on huggingface repeat the
prompt in their generated response, but not all do! The tests use "gpt2"
which DOES repeat the prompt and as such, the HuggingFaceHub class is
hardcoded to remove the first few characters of the response (to match
the len(prompt)). However, if you are using a model (such as the very
popular "meta-llama/Llama-2-7b-chat-hf") that DOES NOT repeat the prompt
in it's generated text, then the beginning of the generated text will be
cut off. This code change fixes that bug by first checking whether the
prompt is repeated in the generated response and removing it
conditionally.
- **Issue:** #16232
- **Dependencies:** N/A
- **Twitter handle:** N/A
This PR adds `astream_events` method to Runnables to make it easier to
stream data from arbitrary chains.
* Streaming only works properly in async right now
* One should use `astream()` with if mixing in imperative code as might
be done with tool implementations
* Astream_log has been modified with minimal additive changes, so no
breaking changes are expected
* Underlying callback code / tracing code should be refactored at some
point to handle things more consistently (OK for now)
- ~~[ ] verify event for on_retry~~ does not work until we implement
streaming for retry
- ~~[ ] Any rrenaming? Should we rename "event" to "hook"?~~
- [ ] Any other feedback from community?
- [x] throw NotImplementedError for `RunnableEach` for now
## Example
See this [Example
Notebook](dbbc7fa0d6/docs/docs/modules/agents/how_to/streaming_events.ipynb)
for an example with streaming in the context of an Agent
## Event Hooks Reference
Here is a reference table that shows some events that might be emitted
by the various Runnable objects.
Definitions for some of the Runnable are included after the table.
| event | name | chunk | input | output |
|----------------------|------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------|
| on_chat_model_start | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | |
| on_chat_model_stream | [model name] | AIMessageChunk(content="hello")
| | |
| on_chat_model_end | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | {"generations": [...], "llm_output": None, ...} |
| on_llm_start | [model name] | | {'input': 'hello'} | |
| on_llm_stream | [model name] | 'Hello' | | |
| on_llm_end | [model name] | | 'Hello human!' |
| on_chain_start | format_docs | | | |
| on_chain_stream | format_docs | "hello world!, goodbye world!" | | |
| on_chain_end | format_docs | | [Document(...)] | "hello world!,
goodbye world!" |
| on_tool_start | some_tool | | {"x": 1, "y": "2"} | |
| on_tool_stream | some_tool | {"x": 1, "y": "2"} | | |
| on_tool_end | some_tool | | | {"x": 1, "y": "2"} |
| on_retriever_start | [retriever name] | | {"query": "hello"} | |
| on_retriever_chunk | [retriever name] | {documents: [...]} | | |
| on_retriever_end | [retriever name] | | {"query": "hello"} |
{documents: [...]} |
| on_prompt_start | [template_name] | | {"question": "hello"} | |
| on_prompt_end | [template_name] | | {"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
Here are declarations associated with the events shown above:
`format_docs`:
```python
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
```
`some_tool`:
```python
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
```
`prompt`:
```python
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
```
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** In Google Vertex AI, Gemini Chat models currently
doesn't have a support for SystemMessage. This PR adds support for it
only if a user provides additional convert_system_message_to_human flag
during model initialization (in this case, SystemMessage would be
prepended to the first HumanMessage). **NOTE:** The implementation is
similar to #14824
- **Twitter handle:** rajesh_thallam
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description**: Updated doc for llm/google_vertex_ai_palm with new
functions: `invoke`, `stream`... Changed structure of the document to
match the required one.
- **Issue**: #15664
- **Dependencies**: None
- **Twitter handle**: None
---------
Co-authored-by: Jorge Zaldívar <jzaldivar@google.com>
**Description:** Gemini model has quite annoying default safety_settings
settings. In addition, current VertexAI class doesn't provide a property
to override such settings.
So, this PR aims to
- add safety_settings property to VertexAI
- fix issue with incorrect LLM output parsing when LLM responds with
appropriate 'blocked' response
- fix issue with incorrect parsing LLM output when Gemini API blocks
prompt itself as inappropriate
- add safety_settings related tests
I'm not enough familiar with langchain code base and guidelines. So, any
comments and/or suggestions are very welcome.
**Issue:** it will likely fix#14841
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
* Removed some env vars not used in langchain package IT
* Added Astra DB env vars in langchain package, used for cache tests
* Added conftest.py to load env vars in langchain_community IT
* Added .env.example in langchain_community IT
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The timeout function comes in handy when you want to kill longrunning
queries.
The value sanitization removes all lists that are larger than 128
elements. The idea here is to remove embedding properties from results.
- **Description:** As Shell tool is very versatile, while integrating it
into applications as openai functions, developers have no clue about
what command is being executed using the ShellTool. All one can see is:

Summarising my feature request:
1. There's no visibility about what command was executed.
2. There's no mechanism to prevent a command to be executed using
ShellTool, like a y/n human input which can be accepted from user to
proceed with executing the command.,
- **Issue:** the issue #15931 it fixes if applicable,
- **Dependencies:** There isn't any dependancy,
- **Twitter handle:** @krishnashed
- **Description:** Made a small fix for the `SQLDatabase` highlighted in
an issue. The issue pertains to switching schema for different SQL
engines.
- **Issue:** #16023
@baskaryan
- **Description:** Support IN and LIKE comparators in Milvus
self-querying retriever, based on [Boolean Expression
Rules](https://milvus.io/docs/boolean.md)
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** No
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
**Description**: This PR fixes an error in the documentation for Azure
Cosmos DB Integration.
**Issue**: The correct way to import `AzureCosmosDBVectorSearch` is
```python
from langchain_community.vectorstores.azure_cosmos_db import (
AzureCosmosDBVectorSearch,
)
```
While the
[documentation](https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db)
states it to be
```python
from langchain_community.vectorstores.azure_cosmos_db_vector_search import (
AzureCosmosDBVectorSearch,
CosmosDBSimilarityType,
)
```
As you can see in
[azure_cosmos_db.py](c323742f4f/libs/langchain/langchain/vectorstores/azure_cosmos_db.py (L1C45-L2))
**Dependencies:**: None
**Twitter handle**: None
- **Description:** This handles the cohere response when documents
aren't included in the response
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
- bumps package post versions for packages without current unreleased
updates
- will bump package version in release prs associated with packages that
do have changes (mistral, vertex)
- **Description:** Adds MistralAIEmbeddings class for embeddings, using
the new official API.
- **Dependencies:** mistralai
- **Tag maintainer**: @efriis, @hwchase17
- **Twitter handle:** @LMS_David_RS
Create `integrations/text_embedding/mistralai.ipynb`: an example
notebook for MistralAIEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/mistralai.py`: The embedding class
Create `integration_tests/embeddings/test_mistralai.py`: The test file.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Implement `adelete` function from `VectorStore` in `Qdrant` to support
other asynchronous flows such as async indexing (`aindex`) which
requires `adelete` to be implemented. Since `Qdrant` can be passed an
async qdrant client, this can be supported easily.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR addresses an issue in OpenAIWhisperParserLocal where requesting
CUDA without availability leads to an AttributeError #15143
Changes:
- Refactored Logic for CUDA Availability: The initialization now
includes a check for CUDA availability. If CUDA is not available, the
code falls back to using the CPU. This ensures seamless operation
without manual intervention.
- Parameterizing Batch Size and Chunk Size: The batch_size and
chunk_size are now configurable parameters, offering greater flexibility
and optimization options based on the specific requirements of the use
case.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** This new feature enhances the flexibility of pipeline
integration, particularly when working with RESTful APIs.
``JsonRequestsWrapper`` allows for the decoding of JSON output, instead
of the only option for text output.
---------
Co-authored-by: Zhichao HAN <hanzhichao2000@hotmail.com>
- **Description:** Adds documentation for the
`FirestoreChatMessageHistory` integration and lists integration in
Google's documentation
- **Issue:** NA
- **Dependencies:** No
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixed the issue mentioned in #15698 for SlackGetChannel Tool.
@baskaryan.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** add deprecated warning for ErnieBotChat and
ErnieEmbeddings.
- These two classes **lack maintenance** and do not use the sdk provided
by qianfan, which means hard to implement some key feature like
streaming.
- The alternative `langchain_community.chat_models.QianfanChatEndpoint`
and `langchain_community.embeddings.QianfanEmbeddingsEndpoint` can
completely replace these two classes, only need to change configuration
items.
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**: `zip` is iterator that will only produce result once,
so the previous code will cause the `embeddings` to be an empty list.
**Issue**: I could not find a related issue.
**Dependencies**: this PR does not introduce or affect dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** docs update following the changes introduced in
#15879
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR:
1. Add `metadata[_job_ib]` in Document returned by any similarity search
2. Add `explore_job_stats` to enable users to explore job statistics and
better the debuggability
3. Set the minimum row limit for running create vector index.
## Description
In this update, I addressed the missing implementation for
atransform_document, which is the asynchronous counterpart of
transform_document in Doctran.
### Usage Example:
```py
# Instantiate DoctranPropertyExtractor with specified properties
property_extractor = DoctranPropertyExtractor(properties=properties)
# Asynchronously extract properties from a list of documents
extracted_document = await property_extractor.atransform_documents(
documents, properties=properties
)
# Display metadata of the first extracted document
print(json.dumps(extracted_document[0].metadata, indent=2))
```
## Issue
- Pull request #14525 has caused a break in the aforementioned code.
Instead of removing an asynchronous implementation of a function,
consider implementing a synchronous version alongside it.
- **Description:** Added parenthesis in return statement of
aembed_query() funtion to fix 'coroutine' object is not subscriptable
error.
- **Dependencies:** NA
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
## Feature
- Follow parameter structure as per official documentation
- top level parameters (e.g. model, system, template) will be passed as
top level parameters
- other parameters will be sent in options unless options is provided

## Tests
- Test if top level parameters handled properly
- Test if parameters that are not top level parameters are handled as
options
- Test if options is provided, it will be passed as is
**Description:** Added the new gpt-3.5-turbo-1106 for **finetuned** cost
calculation,
**Issue:** no issue found open
By the information in OpenAI the pricing is the same as the older model
(0613)
- vertex chat
- google
- some pip openai
- percent and openai
- all percent
- more
- pip
- fmt
- docs: google vertex partner docs
- fmt
- docs: more pip installs
- **Description:** Added a `PolygonAPIWrapper` and an initial
`get_last_quote` endpoint, which allows us to get the last price quote
for a given `ticker`. Once merged, I can add a Polygon tool in `tools/`
for agents to use.
- **Twitter handle:** [@virattt](https://twitter.com/virattt)
The Polygon.io Stocks API provides REST endpoints that let you query the
latest market data from all US stock exchanges.
Support [Lantern](https://github.com/lanterndata/lantern) as a new
VectorStore type.
- Added Lantern as VectorStore.
It will support 3 distance functions `l2 squared`, `cosine` and
`hamming` and will use `HNSW` index.
- Added tests
- Added example notebook
**Description**: the "page" mode in the
AzureAIDocumentIntelligenceParser is not accessible due to a wrong
membership test. The mode argument can only be a string (also see the
assertion in the `__init__`: `assert self.mode in ["single", "page",
"object", "markdown"]`, so the check `elif self.mode == ["page"]:`
always fails.
As a result, effectively the "object" mode is used when selecting the
"page" mode, which may lead to errors.
The docstring of the `AzureAIDocumentIntelligenceLoader` also ommitted
the `mode` parameter alltogether, so I added it.
**Issue**: I could not find a related issue (this class is only 3 weeks
old anyways)
**Dependencies**: this PR does not introduce or affect dependencies.
The current demo notebook and examples are not affected because they all
use the default markdown mode.
- **Description:** Azure Cognitive Search vector DB store performs slow
embedding as it does not utilize the batch embedding functionality. This
PR provide a fix to improve the performance of Azure Search class when
adding documents to the vector search,
- **Issue:** #11313 ,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Remove section on how to install Action Server and direct the users t o
the instructions on Robocorp repository.
**Reason:**
Robocorp Action Server has moved from a pip installation to a standalone
cli application and is due for changes. Because of that, leaving only
LangChain integration relevant part in the documentation.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Milvus's partition key is an important feature. It
can support multi-tenancy. We hope to introduce this feature.
https://milvus.io/docs/partition_key.md
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** No
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add support for end_point and transport parameters to the Gemini API
---------
Co-authored-by: yangenfeng <yangenfeng@xiaoniangao.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Added aembed_documents() and aembed_query() async functions in
HuggingFaceHubEmbeddings class in
langchain_community\embeddings\huggingface_hub.py file. It will support
to make async calls to HuggingFaceHub's
embedding endpoint and generate embeddings asynchronously.
Test Cases: Added test_huggingfacehub_embedding_async_documents() and
test_huggingfacehub_embedding_async_query()
functions in test_huggingface_hub.py file to test the two async
functions created in HuggingFaceHubEmbeddings class.
Documentation: Updated huggingfacehub.ipynb with steps to install
huggingface_hub package and use
HuggingFaceHubEmbeddings.
**Dependencies:** None,
**Twitter handle:** I do not have a Twitter account
---------
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
- **Description:** This PR defines the output parser of
OpenAIFunctionsAgent as an attribute, enabling customization and
subclassing of the parser logic.
- **Issue:** Subclassing is currently impossible as the
`OpenAIFunctionsAgentOutputParser` class is hard coded into the `plan`
and `aplan` methods
- **Dependencies:** None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Feature
- Set additional headers in constructor
- Headers will be sent in post request
This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.
## Tests
- Test if header is passed
- Test if header is not passed
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Major changes:
- Rename `wasm_chat.py` to `llama_edge.py`
- Rename the `WasmChatService` class to `ChatService`
- Implement the `stream` interface for `ChatService`
- Add `test_chat_wasm_service_streaming` in the integration test
- Update `llama_edge.ipynb`
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
- **Description:** `AmadeusToolkit` and `AmadeusClosestAirport`
contained a hardcoded call to `ChatOpenAI`. This PR makes it
LLM-independent, while guaranteeing backward compatibility.
- **Issue:** #15847
- **Dependencies:** None
@baskaryan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Fixes OutputParserException thrown by the output_parser when 'query' is
'Null'.
Replace this entire comment with:
- **Description:** Current implentation of output_parser throws
OutputParserException if the response from the LLM contains `query:
null`. This unfortunately happens for my use case. And since there is no
way to modify the prompt used in SelfQueryRetriever, then we have to fix
it here, so it doesn't crash.
- **Issue:** https://github.com/langchain-ai/langchain/issues/15914
Didn't run tests. `make test` is not working. There is no `test` rule in
the `Makefile`.
Co-authored-by: Jan Horcicka <jhorcick@amazon.com>
- **Description:** The pinecone docstring instructs to pass the
embedding query text causing the warning below. It should be the
embeddings object.
warning message: UserWarning: Passing in `embedding` as a Callable is
deprecated. Please pass in an Embeddings object instead.
- **Issue:** NA
- **Dependencies:** None
@baskaryan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Community : Modified doc strings and example notebook for Clarifai
Description:
1. Modified doc strings inside clarifai vectorstore class and
embeddings.
2. Modified notebook examples.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Adds a RAG template that uses NVIDIA AI playground
and embedding models, along with Milvus vector store
- **Dependencies:** This template depends on the AI playground service
in NVIDIA NGC. API keys with a significant trial compute are available
(10k queries at the time of writing). This template also depends on the
Milvus Vector store which is publicly available.
Note: [A quick link to get a
key](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/ai-foundation/models/codellama-13b/api)
when you have an NGC account. Generate Key button at the top right of
the code window.
---------
Co-authored-by: Sagar B Manjunath <sbogadimanju@nvidia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR fixes an issue where AgentExecutor with RunnableAgent does not allow users to see individual llm tokens if streaming=True is not set explicitly on the underlying chat model.
The majority of this PR is testing code:
1. Create a test chat model that makes it easier to test streaming and
supports AIMessages that include function invocation information.
2. Tests for the chat model
3. Tests for RunnableAgent (previously untested)
4. Tests for openai agent (previously untested)
- **Description:**
`QianfanChatEndpoint` extends `BaseChatModel` as a super class, which
has a default stream implement might concat the MessageChunk with
`__add__`. When call stream(), a ValueError for duplicated key will be
raise.
- **Issues:**
* #13546
* #13548
* merge two single test file related to qianfan.
- **Dependencies:** no
- **Tag maintainer:**
---------
Co-authored-by: root <liujun45@baidu.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
experimental relies on `from langchain_core.runnables.config import
run_in_executor` which was introduced in core 0.1.5.
Updated pyproject dependency as well as minimum version test.
Now the SQL used to delete vector doc from myscale is as follow:
```sql
DELETE FROM collection WHERE id = '1' AND id = '2' AND id = '3'
```
But the expected one should be
```sql
DELETE FROM collection WHERE id IN ('1', '2', '3')
```
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
**Description:** Fixes the word "iteratively" in the use-cases
documentation
**Twitter handle:** @untilhamza
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change fixes the AstraDB logical operator filtering (`$and,`
`$or`).
The `metadata` prefix must not be added if the key is `$and` or `$or`.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
See preview :
https://langchain-git-fork-cbornet-astra-loader-doc-langchain.vercel.app/docs/integrations/document_loaders/astradb
This means that users of astream_log() now get streamed output of
virtually all requested runs, whereas before the only streamed output
would be for the root run and raw llm runs
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Add missing import of 'ConfigurableField' in 'Full
code comparison' example in LCEL
- **Issue:** Example code not running
- **Dependencies:** None
- **Twitter handle:** @heyyoshan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This update rectifies an error in the notebook by
changing the input variable from `zhipu_api_key` to `api_key`. It also
includes revisions to comments to improve program readability.
- **Issue:** The input variable in the notebook example should be
`api_key` instead of `zhipu_api_key`.
- **Dependencies:** No additional dependencies are required for this
change.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
- ArgillaCallbackHandler does not properly set the default values while
initializing. This PR corrects the line.
- Issue: #15531
- Dependencies: Argilla
- Also corrected some dead links.
fix of #14905
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Improving documentation
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding resource for Curie model
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** @mmarccode
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** The `delete_collection` method deletes an entire
collection regardless of custom ID. The `delete` method deletes
everything with the provided custom IDs regardless of collection. It can
be useful to restrict deletion to both the collection and a set of
custom IDs. This change adds support for that by allowing you to
optionally specify that `delete` should be restricted to the collection
defined on the `PGVector` instance.
- **Description:** Includes the PDF ID in the MathPix document metadata.
This is useful in case you need to re-request a processed PDF from the
MathPix API later.
- **Description:** The `error_info['id']` can be cross-referenced with
the MathPix API documentation to get very specific information about why
an error occurred.
- **Description:** This PR is to fix a bug of "system message check" in
langchain_community/ chat_models/tongyi.py
- **Issue:** In term of current logic, if there's no system message in
the chat messages, an error of "System message can only be the first
message." will be wrongly raised.
- **Dependencies:** No.
- **Twitter handle:** I don't have a Twitter account.
- **Description:** This PR is to fix a bug in
semantic_hybrid_search_with_score_and_rerank() function in
langchain_community/vectorstores/azuresearch.py. The hardcoded
"metadata" name is replaced with FIELDS_METADATA variable with an if
block to check if the metadata column exists or not.
- **Issue:** Fixed#15581
- **Dependencies:** No
- **Twitter handle:** None
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
Updates docs and cookbooks to import ChatOpenAI, OpenAI, and OpenAI
Embeddings from `langchain_openai`
There are likely more
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Todo
- [x] copy over integration tests
- [x] update docs with new instructions in #15513
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models
Contributor steps:
- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml
Maintainer steps (Contributors should not do these):
- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge
Functional changes to existing classes:
- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package
Codebase organization
- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
removed the deprecated model from text embedding page of openai notebook
and added the suggested model from openai page
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Removes unused `Params` in `libs/langchain/langchain/llms/mlflow.py`.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The example code for `llms.Mlflow` is outdated.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** `MarkdownHeaderTextSplitter` currently strips header
lines from chunked content. Many applications require these header lines
are preserved. This adds an optional parameter to preserve those headers
in the chunked content.
- **Issue:** #2836 (relevant)
- **Dependencies:** -
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @finnless
Unit tests and new examples in notebook included.
cc @rlancemartin
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds `WasmChat` integration. `WasmChat` runs GGUF models locally or via
chat service in lightweight and secure WebAssembly containers. In this
PR, `WasmChatService` is introduced as the first step of the
integration. `WasmChatService` is driven by
[llama-api-server](https://github.com/second-state/llama-utils) and
[WasmEdge Runtime](https://wasmedge.org/).
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
Follow up on https://github.com/langchain-ai/langchain/pull/13048.
This PR intends to simplify the Qdrant async implementation by replacing
the internal GRPC methods with the `QdrantAsyncClient` methods.
This is a backward compatible change with no additional steps required
after merge.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixes#14347
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Added the traceback of the previous error to keep the
initial error type,
- **Issue:** #14347 ,
- **Dependencies:** None,
- **Tag maintainer:**
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Julien Raffy <julien.raffy@emeria.eu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** the ability to add all extra parameter of vectorstore
and using them SemanticSimilarityExampleSelector.
- **Issue:** #14583
- **Dependencies:** no dependensies
- **Tag maintainer:**
- **Twitter handle:** @AmirMalekiz
---------
Co-authored-by: Amir Maleki <amaleki@fb.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Add support for setting the `score_threshold` for
similarity search in SupabaseVectoreStore.
This pull request addresses issue #14438
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** changed json.py to handle additional cases of partial
json string to be parsed, basically by dropping the last character in
the string until a valid json string is found or the string is empty.
Also added additional test cases.
- **Issue:** function parse_partial_json could not parse cases where the
key is present but the value is not.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Because Milvus' collection_name doesn't support UFT8 characters in other
languages, I want the `collection_descriotion`.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Fix for processing for serpapi response for Google Maps
API
**Issue:** Due to the fact corresponding
[api](https://serpapi.com/google-maps-api) returns 'local_results' as
list, and old version requested `res["local_results"].keys()` of the
list. As the result we got exception: ```AttributeError: 'list' object
has no attribute 'keys'```.
Way to reproduce wrong behaviour:
```
params = {
"engine": "google_maps",
"type": "search",
"google_domain": "google.de",
"ll": "@51.1917,10.525,14z",
"hl": "de",
"gl": "de",
}
search = SerpAPIWrapper(params=params)
results = search.run("cafe")
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Ran <rccalman@gmail.com>
Because Milvus doesn't support nullable fields, but document metadata is
very rich, so it makes more sense to store it as json.
https://github.com/milvus-io/pymilvus/issues/1705#issuecomment-1731112372
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR integrates LangChain vectorstore with BigQuery Vector Search.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Vlad Kolesnikov <vladkol@google.com>
- **Description:** replace score_threshold with args
- **Issue:** needs a way to pass more options to similarity search
- **Dependencies:** None
- **Twitter handle:** @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
- **Description:** Tool now supports querying over 200 million
scientific articles, vastly expanding its reach beyond the 2 million
articles accessible through Arxiv. This update significantly broadens
access to the entire scope of scientific literature.
- **Dependencies:** semantischolar
https://github.com/danielnsilva/semanticscholar
- **Twitter handle:** @shauryr
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
- easier to write custom logic/loops with automatic tracing
- if you don't want to streaming support write a regular function and
pass to RunnableLambda
- if you do want streaming write a generator and pass it to
RunnableGenerator
```py
import json
from typing import AsyncIterator
from langchain_core.messages import BaseMessage, FunctionMessage, HumanMessage
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import Runnable, RunnableGenerator, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.tools.render import format_tool_to_openai_function
def _get_tavily():
from langchain.tools.tavily_search import TavilySearchResults
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
tavily_search = TavilySearchAPIWrapper()
return TavilySearchResults(api_wrapper=tavily_search)
async def _agent_executor_generator(
input: AsyncIterator[list[BaseMessage]],
*,
max_iterations: int = 10,
tools: dict[str, BaseTool],
agent: Runnable[list[BaseMessage], BaseMessage],
parser: Runnable[BaseMessage, AgentAction | AgentFinish],
) -> AsyncIterator[BaseMessage]:
messages = [m async for mm in input for m in mm]
for _ in range(max_iterations):
next_message = await agent.ainvoke(messages)
yield next_message
messages.append(next_message)
parsed = await parser.ainvoke(next_message)
if isinstance(parsed, AgentAction):
result = await tools[parsed.tool].ainvoke(parsed.tool_input)
next_message = FunctionMessage(name=parsed.tool, content=json.dumps(result))
yield next_message
messages.append(next_message)
elif isinstance(parsed, AgentFinish):
return
def get_agent_executor(tools: list[BaseTool], system_message: str):
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0, streaming=True)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_message),
MessagesPlaceholder(variable_name="messages"),
]
)
llm_with_tools = llm.bind(
functions=[format_tool_to_openai_function(t) for t in tools]
)
agent = {"messages": RunnablePassthrough()} | prompt | llm_with_tools
parser = OpenAIFunctionsAgentOutputParser()
executor = RunnableGenerator(_agent_executor_generator)
return executor.bind(
tools={tool.name for tool in tools}, agent=agent, parser=parser
)
agent = get_agent_executor([_get_tavily()], "You are a very nice agent!")
async def main():
async for message in agent.astream(
[HumanMessage(content="whats the weather in sf tomorrow?")]
):
print(message)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
```
results in this trace
https://smith.langchain.com/public/fa17f05d-9724-4d08-8fa1-750f8fcd051b/r
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** SingleFileFacebookMessengerChatLoader did not handle
the case for when messages had stickers and/or photos so fixed that.
- **Issue:** #15356
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** updates/enhancements to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider
(prompt tuned models and prompt templates deployments support)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** : @hwchase17 , @eyurtsev , @baskaryan
- **Twitter handle:** details in comment below.
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The fix#14221 has broken default gitlab url which is forcing the users
to specify GITLAB_URL for default one. With this fix if GITLAB_URL is
not set, the default gitlab url will be taken.
- **Description:** Add the GITHUB URL instead of None
- **Issue:** the issue #14221 has broken the default github URL
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
- **Twitter handle:** manjunath_shiva
- **Description:** This PR adds `api_base` to `_client_params` in the
`chat_model` of LiteLLM to ensure it's included in API calls.
Previously, `api_base` was set on the client but was not included in the
parameters passed to the completion function. This change ensures that
`api_base` is correctly passed to all API calls.
- **Issue:** #14338
- **Tag maintainer:** @hwchase17 @agola11
- **Twitter handle:** @LMS_David_RS
Sometimes, the tool_schema is like:
` {'action_name': 'search_items', 'action': {'term': 'pizza'}}`
sometimes, specially with gpt3.5 it comes like:
`{'action_name': 'search_items', 'term': 'pizza'}`
and it fails.
This PR is a way to make it work in both scenarios.
issues releated: #6624
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Lucca Zenobio <lucca.zenobio@ifood.com.br>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change addresses the issue where DashScopeEmbeddingAPI limits
requests to 25 lines of data, and DashScopeEmbeddings did not handle
cases with more than 25 lines, leading to errors. I have implemented a
fix to manage data exceeding this limit efficiently.
---------
Co-authored-by: xuxiang <xuxiang@aliyun.com>
Adding to my previously, already merged PR I made some further
improvements:
* Added documentation to the existing Pydantic Parser notebook, with an
example using LCEL and `with_retry()` on `OutputParserException`.
* Added an additional output example to the prompt
* More lenient parser in terms of LLM output format
* Amended unit test
FYI @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Update _retrieve_ref inside json_schema.py to include
an isdigit() check
- **Issue:** This library is used inside dereference_refs inside
langchain_community.agent_toolkits.openapi.spec. When I read in a yaml
file which has references for "400", "401" etc; the line "out =
out[component]" causes a KeyError. The isdigit() check ensures that if
it is an integer like "400" or "401"; it converts it into integer before
using it as a key to prevent the error.
- **Dependencies:** No dependencies
- **Tag maintainer:** @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Description: _python-lint_
This agent writes Python code that is formatted and linted using
`black`, `ruff`, and `mypy`, but does not execute the code. It writes
the code to a temporary file and then runs the linters. Once these
checks pass, the code is returned.
# Dependencies
- black
- ruff
- mypy
# Demo
The functionality can be seen here:
https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo
Added some Headers in steam tool notebook to match consistency with the
other toolkit notebooks
- Dependencies: no new dependencies
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
`integrations/document_loaders/` `Excel` and `OneNote` pages in the
navbar were in the wrong sort order. It is because the file names are
not equal to the page titles.
- renamed `excel` and `onenote` file names
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The regex used to match "Action" and "Action Input" in the output parser
has been updated. Previously, the regex did not correctly handle
multi-line inputs for "Action Input". The updated code uses the
're.DOTALL' flag to ensure multi-line inputs are correctly captured.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:**
- This PR introduces a significant enhancement to the LangChain project
by integrating a new chat model powered by the third-generation base
large model, ChatGLM3, via the zhipuai API.
- This advanced model supports functionalities like function calls, code
interpretation, and intelligent Agent capabilities.
- The additions include the chat model itself, comprehensive
documentation in the form of Python notebook docs, and thorough testing
with both unit and integrated tests.
- **Dependencies:** This update relies on the ZhipuAI package as a key
dependency.
- **Twitter handle:** If this PR receives spotlight attention, we would
be honored to receive a mention for our integration of the advanced
ChatGLM3 model via the ZhipuAI API. Kindly tag us at @kaiwu.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
TO DO: Continue refining and enhancing both the unit tests and
integrated tests.
---------
Co-authored-by: jing <jingguo92@gmail.com>
Co-authored-by: hyy1987 <779003812@qq.com>
Co-authored-by: jianchuanqi <qijianchuan@hotmail.com>
Co-authored-by: lirq <whuclarence@gmail.com>
Co-authored-by: whucalrence <81530213+whucalrence@users.noreply.github.com>
Co-authored-by: Jing Guo <48378126+JaneCrystall@users.noreply.github.com>
Description: Volcano Ark is an enterprise-grade large-model service
platform for developers, providing a full range of functions and
services such as model training, inference, evaluation, fine-tuning. You
can visit its homepage at https://www.volcengine.com/docs/82379/1099455
for details. This change could help developers use the platform for
embedding.
Issue: None
Dependencies: volcengine
Tag maintainer: @baskaryan
Twitter handle: @hinnnnnnnnnnnns
---------
Co-authored-by: lujingxuansc <lujingxuansc@bytedance.com>
Updated prompt input suggestions
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** updated the outdated code in the document that was
generating the error,
- **Issue:** #15086 ,
- **Dependencies:** N/A,
- **Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
**Description:** the MWDumpLoader implementation currently does not
support the lazy_load method, and the files are usually very large. We
are proposing refactoring the load function, extracting two private
functions with the functionality of loading the dump file and parsing a
single page, to reuse the code in the lazy_load implementation.
**Description:**
This PR adds the `**kwargs` parameter to six calls in the `chroma.py`
package. All functions already were able to receive `kwargs` but they
were discarded before.
**Issue:**
When passing `kwargs` to functions in the `chroma.py` package they are
being ignored.
For example:
```
chroma_instance.similarity_search_with_score(
query,
k=100,
include=["metadatas", "documents", "distances", "embeddings"], # this parameter gets ignored
)
```
The `include` parameter does not get passed on to the next function and
does not have any effect.
**Dependencies:**
None
The quickstart doc is missing a few but very simple things that without
them, the code does not work. This PR fixes that by
- Adding commands to install `tiktoken` and `langchainhub`
- Adds a comma between 2 parameters for one of the methods
- **Description:** Fix a few spelling and grammar issues
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** @donovancmuller
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This PR corrects a documentation error in the
`ollama` usage tutorial. Specifically, it fixes a missing `])` in the
`CallbackManager()` example, ensuring that the code snippet is
syntactically correct and can be successfully executed.
- **Issue:** N/A
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** My twitter is @yhzhu99
Updated comment for better understanding
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
- support custom kwargs in object initialization. For instantance, QPS
differs from multiple object(chat/completion/embedding with diverse
models), for which global env is not a good choice for configuration.
- **Issue:** no
- **Dependencies:** no
- **Twitter handle:** no
@baskaryan PTAL
These can happen for edge cases not covered by `default` handler (eg.
"strange" keys in dicts)
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Any direct usage of ThreadPoolExecutor or asyncio.run_in_executor
needs manual handling of context vars
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fix parse issue for AIMessageChunk when using
- **Issue:** https://github.com/langchain-ai/langchain/issues/14511
- **Dependencies:** none
- **Twitter handle:** none
Taken from this fix:
https://github.com/gpt-engineer-org/gpt-engineer/issues/804#issuecomment-1769853850
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
removed bad comments
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fixes and upgrades for the Tongyi LLM and ChatTongyi
Model
- Fixed typos; it should be `Tongyi`, not `OpenAI`.
- Fixed a bug in `stream_generate_with_retry`; it's a real stream
generator now.
- Fixed a bug in `validate_environment`; the `dashscope_api_key` should
be properly handled when set by environment variables or initialization
parameters.
- Changed the `dashscope` response to incremental output by setting the
parameter `incremental_output`, which eliminates the need for the
prefix-removal trick.
- Removed some unused parameters, like `n`, `prefix_messages`.
- Added `_stream` method.
- Added async methods support, such as `_astream`, `_agenerate`,
`_abatch`.
- **Dependencies:** No new dependencies.
- **Tag maintainer:** @hwchase17
> PS: Some may be confused about the terms `dashscope`, `tongyi`, and
`Qwen`:
> - `dashscope`: A platform to deploy LLMs and provide APIs to invoke
the LLM.
> - `tongyi`: A brand name or overall term about Alibaba Cloud's LLM/AI.
> - `Qwen`: An LLM that is open-sourced and deployed in `dashscope`.
>
> We use the `dashscope` SDK to interact with the `tongyi`-`Qwen` LLM.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Correcting a small typo ('the' instead of 'then') and changing another
'the' (instead of 'then' too, it was a hard day for the 'n' key :D) to
'also' to match better with what is done in the code
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** in the code_understanding.ipynb example, the loader
errors out on the
langchain/libs/community/tests/examples/non-utf8-encoding.py file, so I
updated the loader to exclude that file. Excluding that file allows the
example to run.
- **Issue:** not applicable
- **Dependencies:** none
- do not match text after - in the middle of a sentence
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…parse
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
```shell
Python 3.11.6 (main, Nov 2 2023, 04:39:43) [Clang 14.0.3 (clang-1403.0.22.14.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> s = {'name': 'gc', 'arguments': '{"prompt":"hi\nbob."}'}
>>> import json
>>> json.loads(s['arguments'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/__init__.py", line 346, in loads
return _default_decoder.decode(s)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py", line 337, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.6_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/json/decoder.py", line 353, in raw_decode
obj, end = self.scan_once(s, idx)
^^^^^^^^^^^^^^^^^^^^^^
json.decoder.JSONDecodeError: Invalid control character at: line 1 column 14 (char 13)
>>> json.loads(s['arguments'].replace('\n', '\\n'))
{'prompt': 'hi\nbob.'}
>>>
```
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
While using `chain.batch`, the default implementation uses a
`ThreadPoolExecutor` and run the chains in separate threads. An issue
with this approach is that that [the token counting
callback](https://python.langchain.com/docs/modules/callbacks/token_counting)
fails to work as a consequence of the context not being propagated
between threads. This PR adds context propagation to the new threads and
adds some thread synchronization in the OpenAI callback. With this
change, the token counting callback works as intended.
Having the context propagation change would be highly beneficial for
those implementing custom callbacks for similar functionalities as well.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
- Enables strict=False by default
- Uses partial json recovery logic by default
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
- **Description:** The Github error prompt is confused because of JWT
enctrypt to somebody not familiar with Github connection method. This PR
is to add some useful error prompt to help users troubleshooting.
- **Issue:**
https://github.com/langchain-ai/langchain/issues/14550#issuecomment-1867445049
- **Dependencies:** None,
- **Twitter handle:** None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…ableBinding
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…unnableAssign or RunnablePick
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…ching documentation
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Fixed the wrong output and code block comment in
`Upstash Redis` Cache section of LLM Caching documentation,
- **Issue:** #15139 ,
- **Dependencies:** N/A,
- **Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
**Description:**
Adding async methods to booth OllamaLLM and ChatOllama to enable async
streaming and async .on_llm_new_token callbacks.
**Issue:**
ChatOllama is not working in combination with an AsyncCallbackManager
because the .on_llm_new_token method is not awaited.
**Description:** `decouple` is not the correct package, it's
`python-decouple`, and the notebook cell doesn't compile.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This document uses Oxford comma (A, B, and C), in this list the comma
was missing before "and".
This PR corrects that.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Added ensure_ascii property to ElasticsearchChatMessageHistory
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Ivan Chetverikov <ivan.chetverikov@raftds.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description**: The parameter chunk_type was being hard coded to
"extractive_answers", so that when "snippet" was being passed, it was
being ignored. This change simply doesn't do that.
Added the call function get_summaries_as_docs inside of Arxivloader
- **Description:** Added a function that returns the documents from
get_summaries_as_docs, as the call signature is present in the parent
file but never used from Arxivloader, this can be used from Arxivloader
itself just like .load() as both the signatures are same.
- **Issue:** Reduces time to load papers as no pdf is processed only
metadata is pulled from Arxiv allowing users for faster load times on
bulk loads. Users can then choose one or more paper and use ID directly
with .load() to load pdf thereby loading all the contents of the paper.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Description
Changes the behavior of `add_user_message` and `add_ai_message` to allow
for messages of those types to be passed in. Currently, if you want to
use the `add_user_message` or `add_ai_message` methods, you have to pass
in a string. For `add_message` on `ChatMessageHistory`, however, you
have to pass a `BaseMessage`. This behavior seems a bit inconsistent.
Personally, I'd love to be able to be explicit that I want to
`add_user_message` and pass in a `HumanMessage` without having to grab
the `content` attribute. This PR allows `add_user_message` to accept
`HumanMessage`s or `str`s and `add_ai_message` to accept `AIMessage`s or
`str`s to add that functionality and ensure backwards compatibility.
## Issue
* None
## Dependencies
* None
## Tag maintainer
@hinthornw
@baskaryan
## Note
`make test` results in `make: *** No rule to make target 'test'. Stop.`
- **Description:** `tools.gmail.send_message` implements a
`SendMessageSchema` that is not used anywhere. `GmailSendMessage` also
does not have an `args_schema` attribute (this led to issues when
invoking the tool with an OpenAI functions agent, at least for me). Here
we add the missing attribute and a minimal test for the tool.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
---------
Co-authored-by: Chester Curme <chestercurme@microsoft.com>
Fixing typos: it's -> its
Fixing grammatical mistakes:
* having to worry -> worrying
* convert -> converts
* few main types -> a few main types
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
add_video_info should be false in the first example
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** In response to user feedback, this PR refactors the
Baseten integration with updated model endpoints, as well as updates
relevant documentation. This PR has been tested by end users in
production and works as expected.
- **Issue:** N/A
- **Dependencies:** This PR actually removes the dependency on the
`baseten` package!
- **Twitter handle:** https://twitter.com/basetenco
# Description
This PR adds the ability to pass a `botocore.config.Config` instance to
the boto3 client instantiated by the Bedrock LLM.
Currently, the Bedrock LLM doesn't support a way to pass a Config, which
means that some settings (e.g., timeouts and retry configuration)
require instantiating a new boto3 client with a Config and then
replacing the LLM's client:
```python
llm = Bedrock(
region_name='us-west-2',
model_id="anthropic.claude-v2",
model_kwargs={'max_tokens_to_sample': 4096, 'temperature': 0},
)
llm.client = boto_client('bedrock-runtime', region_name='us-west-2', config=Config({'read_timeout': 300}))
```
# Issue
N/A
# Dependencies
N/A
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
fix spellings
**seperate -> separate**: found more occurrences, see
https://github.com/langchain-ai/langchain/pull/14602
**initialise -> intialize**: the latter is more common in the repo
**pre-defined > predefined**: adding a comma after a prefix is a
delicate matter, but this is a generally accepted word
also, another word that appears in the repo is "fs" (stands for
filesystem), e.g., in `libs/core/langchain_core/prompts/loading.py`
` """Unified method for loading a prompt from LangChainHub or local
fs."""`
Isn't "filesystem" better?
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Ran <rccalman@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This PR fixes test failures on Windows caused by path
handling differences and unescaped special characters in regex. The
failing tests are:
```
FAILED tests/unit_tests/storage/test_filesystem.py::test_yield_keys - AssertionError: assert ['key1', 'subdir\\key2'] == ['key1', 'subdir/key2']
FAILED tests/unit_tests/test_imports.py::test_importable_all - ModuleNotFoundError: No module named 'langchain_community.langchain_community\\adapters'
FAILED tests/unit_tests/tools/file_management/test_utils.py::test_get_validated_relative_path_errs_on_absolute - re.error: incomplete escape \U at position 53
FAILED tests/unit_tests/tools/file_management/test_utils.py::test_get_validated_relative_path_errs_on_parent_dir - re.error: incomplete escape \U at position 69
FAILED tests/unit_tests/tools/file_management/test_utils.py::test_get_validated_relative_path_errs_for_symlink_outside_root - re.error: incomplete escape \U at position 64
```
- **Issue:** fixes
https://github.com/langchain-ai/langchain/issues/11775 (partially)
- **Dependencies:** none
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Replace this entire comment with:
- **Description:** @kurtisvg has raised a point that it's a good idea to
have a fixed version for embeddings (since otherwise a user might run a
query with one version vs a vectorstore where another version was used).
In order to avoid breaking changes, I'd suggest to give users a warning,
and make a `model_name` a required argument in 1.5 months.
Surrealdb client changes from 0.3.1 to 0.3.2 broke the surrealdb vectore
integration.
This PR updates the code to work with the updated client. The change is
backwards compatible with previous versions of surrealdb client.
Also expanded the vector store implementation to store and retrieve
metadata that's included with the document object.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Fixed jaguar.py to import JaguarHttpClient with try
and catch
- **Issue:** the issue # Unable to use the JaguarHttpClient at run time
- **Dependencies:** It requires "pip install -U jaguardb-http-client"
- **Twitter handle:** workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**
For the Momento Vector Index (MVI) vector store implementation, pass
through `filter_expression` kwarg to the MVI client, if specified. This
change will enable the MVI self query implementation in a future PR.
Also fixes some integration tests.
- **Description:** Fix typo in class Docstring to replace
AZURE_OPENAI_API_ENDPOINT by AZURE_OPENAI_ENDPOINT
- **Issue:** the issue #14901
- **Dependencies:** NA
- **Twitter handle:**
Co-authored-by: Yacine Bouakkaz <Yacine.Bouakkaz@evokegroup.com>
* This PR adds `stream` implementations to Runnable Branch.
* Runnable Branch still does not support `transform` so it'll break streaming if it happens in middle or end of sequence, but will work if happens at beginning of sequence.
* Fixes use the async callback manager for async methods
* Handle BaseException rather than Exception, so more errors could be logged as errors when they are encountered
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description: Adding Summarization to Vectara, to reflect it provides not
only vector-store type functionality but also can return a summary.
Also added:
MMR capability (in the Vectara platform side)
Updated templates
Updated documentation and IPYNB examples
Tag maintainer: @baskaryan
Twitter handle: @ofermend
---------
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
**What is the reproduce code?**
```python
from langchain.chains import LLMChain, load_chain
from langchain.llms import Databricks
from langchain.prompts import PromptTemplate
def transform_output(response):
# Extract the answer from the responses.
return str(response["candidates"][0]["text"])
def transform_input(**request):
full_prompt = f"""{request["prompt"]}
Be Concise.
"""
request["prompt"] = full_prompt
return request
chat_model = Databricks(
endpoint_name="llama2-13B-chat-Brambles",
transform_input_fn=transform_input,
transform_output_fn=transform_output,
verbose=True,
)
print(f"Test chat model: {chat_model('What is Apache Spark')}") # This works
llm_chain = LLMChain(llm=chat_model, prompt=PromptTemplate.from_template("{chat_input}"))
llm_chain("colorful socks") # this works
llm_chain.save("databricks_llm_chain.yaml") # transform_input_fn and transform_output_fn are not serialized into the model yaml file
loaded_chain = load_chain("databricks_llm_chain.yaml") # The Databricks LLM is recreated with transform_input_fn=None, transform_output_fn=None.
loaded_chain("colorful socks") # Thus this errors. The transform_output_fn is needed to produce the correct output
```
Error:
```
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-6c34afab-3473-421d-877f-1ef18930ef4d/lib/python3.10/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for Generation
text
str type expected (type=type_error.str)
request payload: {'query': 'What is a databricks notebook?'}'}
```
**What does the error mean?**
When the LLM generates an answer, represented by a Generation data
object. The Generation data object takes a str field called text, e.g.
Generation(text=”blah”). However, the Databricks LLM tried to put a
non-str to text, e.g. Generation(text={“candidates”:[{“text”: “blah”}]})
Thus, pydantic errors.
**Why the output format becomes incorrect after saving and loading the
Databricks LLM?**
Databrick LLM does not support serializing transform_input_fn and
transform_output_fn, so they are not serialized into the model yaml
file. When the Databricks LLM is loaded, it is recreated with
transform_input_fn=None, transform_output_fn=None. Without
transform_output_fn, the output text is not unwrapped, thus errors.
Missing transform_output_fn causes this error.
Missing transform_input_fn causes the additional prompt “Be Concise.” to
be lost after saving and loading.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
This PR intends to add support for Qdrant's new [sparse vector
retrieval](https://qdrant.tech/articles/sparse-vectors/) by introducing
a new retriever class, `QdrantSparseVectorRetriever`.
Necessary usage docs and integration tests have been added for the
retriever.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
This PR fixes the issue faces with duplicate input id in Clarifai
vectorstore class when ingesting documents into the vectorstore more
than the batch size.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Similar to https://github.com/langchain-ai/langchain/issues/5861, I've
experienced `KeyError`s resulting from unsafe lookups in the
`convert_dict_to_message` function in [this
file](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/adapters/openai.py).
While that issue focused on `KeyError 'content'`, I've opened another
issue (#14764) about how the problem still exists in the same function
but with `KeyError 'role'`. The fix for #5861 only added a safe lookup
to the specific line that was giving them trouble.. This PR fixes the
unsafe lookup in the rest of the function but the problem still exists
across the repo.
## Issues
* #14764
* #5861
## Dependencies
* None
## Checklist
[x] make format
[x] make lint
[ ] make test - Results in `make: *** No rule to make target 'test'.
Stop.`
## Maintainers
* @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR adds support for PygmalionAI's [Aphrodite
Engine](https://github.com/PygmalionAI/aphrodite-engine), based on
vLLM's attention mechanism. At the moment, this PR does not include
support for the API servers, but they will be added in a later PR.
The only dependency as of now is `aphrodite-engine==0.4.2`. We pin the
version to prevent breakage due to changes in the aphrodite-engine
library.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Modify community chat model vertexai to handle png
and other image types encoded in base64
- **Dependencies:** added `import re` but no new dependencies.
This addresses a problem where the vertexai method
_parse_chat_history_gemini() was only recognizing image uris in jpeg
format. I made a simple change to cover other extension types.
- **Description:** The Qianfan SDK offers multiple authentication
methods, but in the `QianfanEndpoint` of Langchain, it currently only
supports authentication through AK and SK. In order to accommodate users
who wish to use alternative authentication methods, this pull request
makes AK and SK optional. This change should not impact existing users,
while allowing users to configure other authentication methods as per
the Qianfan SDK documentation.
- **Issue:** /
- **Dependencies:** No
- **Tag maintainer:** No
- **Twitter handle:**
Added Entry ID as a return value inside get_summaries_as_docs
- **Description:** Added the Entry ID as a return, so it's easier to
track the IDs of the papers that are being returned.
With the addition return of the entry ID in functions like
ArxivRetriever, it will be easier to reference the ID of the paper
itself.
- Description: Just a minor add to the documentation to clarify how to
load all files from a folder. I assumed and try to do it specifying it
in the bucket (BUCKET/FOLDER), instead of using the prefix.
- **Description:** Documentation update. The custom tool notebook
documentation is updated to revome the warning caused by directly
instantiating of the LLMMathChain with an llm which is is deprecated.
The from_llm class method is used instead. LLM output results gets
updated as well.
- **Issue:** no applicable
- **Dependencies:** No dependencies
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ybouakkaz
Co-authored-by: Yacine Bouakkaz <Yacine.Bouakkaz@evokegroup.com>
- **Description:** Going forward, we have a own API `pip install
gradientai`. Therefore gradually removing the self-build packages in
llamaindex, haystack and langchain.
- **Issue:** None.
- **Dependencies:** `pip install gradientai`
- **Tag maintainer:** @michaelfeil
**Description:** Added logic for re-calling the YandexGPT API in case of
an error
---------
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
Description: A new vector store Jaguar is being added. Class, test
scripts, and documentation is added.
Issue: None -- This is the first PR contributing to LangChain
Dependencies: This depends on "pip install -U jaguardb-http-client"
client http package
Tag maintainer: @baskaryan, @eyurtsev, @hwchase1
Twitter handle: @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Addded missed docstrings. Fixed inconsistency in docstrings.
**Note** CC @efriis
There were PR errors on
`langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py`
But, I didn't touch this file in this PR! Can it be some cache problems?
I fixed this error.
- **Description:** added support for chat_history for Google
GenerativeAI (to actually use the `chat` API) plus since Gemini
currently doesn't have a support for SystemMessage, added support for it
only if a user provides additional `convert_system_message_to_human`
flag during model initialization (in this case, SystemMessage would be
prepanded to the first HumanMessage)
- **Issue:** #14710
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** lkuligin
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
- updated `Tencent` provider page: added a chat model and document
loader references; company description
- updated Chat model and Document loader pages with descriptions, links
- renamed files to consistent formats; redirected file names
Note:
I was getting this linting error on code that **was not changed in my
PR**!
> Error:
docs/docs/guides/safety/hugging_face_prompt_injection.ipynb:1:1: I001
Import block is un-sorted or un-formatted
> make: *** [Makefile:47: lint_package] Error 1
I've fixed this error in the notebook
Replace this entire comment with:
- **Description:** OPENAI_PROXY is not working for openai==1.3.9, The
`proxies` argument is deprecated. The `http_client` argument should be
passed instead,
- **Issue:** OPENAI_PROXY is not working,
- **Dependencies:** None,
- **Tag maintainer:** @hwchase17 ,
- **Twitter handle:** timothy66666
- **Description:** This is addition to [my previous
PR](https://github.com/langchain-ai/langchain/pull/13930) with
improvements to flexibility allowing different models and notebook to
use ONNX runtime for faster speed. Since the last PR, [our
model](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection)
got more than 660k downloads, and with the [public
benchmark](https://huggingface.co/spaces/laiyer/prompt-injection-benchmark)
showed much fewer false-positives than the previous one from deepset.
Additionally, on the ONNX runtime, it can be running 3x faster on the
CPU, which might be handy for builders using Langchain.
**Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** N/A
- **Twitter handle:** `@laiyer_ai`
Fixing issue - https://github.com/langchain-ai/langchain/issues/14494 to
avoid Kendra query ValidationException
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Update kendra.py to avoid Kendra query
ValidationException,
- **Issue:** the issue
#https://github.com/langchain-ai/langchain/issues/14494,
- **Dependencies:** None,
- **Tag maintainer:** ,
- **Twitter handle:**
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description**
The contributing docs lists a poetry command to install community for
dev work that includes a poetry group called `integration_tests`. This
is a mistake: the poetry group for integration tests is called
`test_integration`, not `integration_tests`. See here:
https://github.com/langchain-ai/langchain/blob/master/libs/community/pyproject.toml#L119
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** fixed tiktoken link error,
- **Issue:** no,
- **Dependencies:** no,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** no!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fixed tiktoken link error,
- **Issue:** no,
- **Dependencies:** no,
- **Tag maintainer:** @baskaryan,
- **Twitter handle:** SignetCode!
- **Description:**
- Add a break case to `text_splitter.py::split_text_on_tokens()` to
avoid unwanted item at the end of result.
- Add a testcase to enforce the behavior.
- **Issue:**
- #14649
- #5897
- **Dependencies:** n/a,
---
**Quick illustration of change:**
```
text = "foo bar baz 123"
tokenizer = Tokenizer(
chunk_overlap=3,
tokens_per_chunk=7
)
output = split_text_on_tokens(text=text, tokenizer=tokenizer)
```
output before change: `["foo bar", "bar baz", "baz 123", "123"]`
output after change: `["foo bar", "bar baz", "baz 123"]`
This is technically a breaking change because it'll switch out default
models from `text-davinci-003` to `gpt-3.5-turbo-instruct`, but OpenAI
is shutting off those endpoints on 1/4 anyways.
Feels less disruptive to switch out the default instead.
- **Description:** Modification of descriptions for marketing purposes
and transitioning towards `platforms` directory if possible.
- **Issue:** Some marketing opportunities, lodging PR and awaiting later
discussions.
-
This PR is intended to be merged when decisions settle/hopefully after
further considerations. Submitting as Draft for now. Nobody @'d yet.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Gpt-3.5 sometimes calls with empty string arguments instead of `{}`
I'd assume it's because the typescript representation on their backend
makes it a bit ambiguous.
- **Description:** VertexAIEmbeddings performance improvements
- **Twitter handle:** @vladkol
## Improvements
- Dynamic batch size, starting from 250, lowering down to 5. Batch size
varies across regions.
Some regions support larger batches, and it significantly improves
performance.
When running large batches of texts in `us-central1`, performance gain
can be up to 3.5x.
The dynamic batching also makes sure every batch is below 20K token
limit.
- New model parameter `embeddings_type` that translates to `task_type`
parameter of the API. Newer model versions support [different embeddings
task
types](https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings#api_changes_to_models_released_on_or_after_august_2023).
Now that it's supported again for OAI chat models .
Shame this wouldn't include it in the `.invoke()` output though (it's
not included in the message itself). Would need to do a follow-up for
that to be the case
Fixed:
- `_agenerate` return value in the YandexGPT Chat Model
- duplicate line in the documentation
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Builds out a developer documentation section in the docs
- Links it from contributing.md
- Adds an initial guide on how to contribute an integration
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds the option for `similarity_score_threshold` when using
`MongoDBAtlasVectorSearch` as a vector store retriever.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa_retriever = vector_search.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"score_threshold": 0.5,
}
)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=qa_retriever,
)
docs = qa({"query": "..."})
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
… (#14723)
- **Description:** Minor updates per marketing requests. Namely, name
decisions (AI Foundation Models / AI Playground)
- **Tag maintainer:** @hinthornw
Do want to pass around the PR for a bit and ask a few more marketing
questions before merge, but just want to make sure I'm not working in a
vacuum. No major changes to code functionality intended; the PR should
be for documentation and only minor tweaks.
Note: QA model is a bit borked across staging/prod right now. Relevant
teams have been informed and are looking into it, and I'm placeholdered
the response to that of a working version in the notebook.
Co-authored-by: Vadim Kudlay <32310964+VKudlay@users.noreply.github.com>
Replace this entire comment with:
- **Description:** added support for new Google GenerativeAI models
- **Twitter handle:** lkuligin
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
hi! just a simple typo fix in the local LLM python docs
- **Description:** removing a trailing "\`" character in a `!pip install
...` command
- **Issue:** n/a
- **Dependencies:** n/a
- **Tag maintainer:** n/a
- **Twitter handle:** n/a
Description: Added NVIDIA AI Playground Initial support for a selection of models (Llama models, Mistral, etc.)
Dependencies: These models do depend on the AI Playground services in NVIDIA NGC. API keys with a significant amount of trial compute are available (10K queries as of the time of writing).
H/t to @VKudlay
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: fangkeke <3339698829@qq.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Add gemini references
- Fix the notebook (ultra isn't generally available; also gemini will
randomly filter out responses, so added a fallback)
---------
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Add a new ChatGoogleGenerativeAI class in a `langchain-google-genai`
package.
Still todo: add a deprecation warning in PALM
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Co-authored-by: Bagatur <baskaryan@gmail.com>
h/t to @lkuligin
- **Description:** added new models on VertexAI
- **Twitter handle:** @lkuligin
---------
Co-authored-by: Leonid Kuligin <lkuligin@yandex.ru>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR adds an example notebook for the Databricks Vector Search vector
store. It also adds an introduction to the Databricks Vector Search
product on the Databricks's provider page.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** :
I just update the openai functions docs to use the latest model (ex.
gpt-3.5-turbo-1106)
https://python.langchain.com/docs/modules/chains/how_to/openai_functions
The reason is as follow:
After reviewing the OpenAI Function Calling official guide at
https://platform.openai.com/docs/guides/function-calling, the following
information was noted:
> "The latest models (gpt-3.5-turbo-1106 and gpt-4-1106-preview) have
been trained to both detect when a function should be called (depending
on the input) and to respond with JSON that adheres to the function
signature more closely than previous models. With this capability also
comes potential risks. We strongly recommend building in user
confirmation flows before taking actions that impact the world on behalf
of users (sending an email, posting something online, making a purchase,
etc)."
CC: @efriis
When using local Chatglm2-6B by changing OPENAI_BASE_URL to localhost,
the token_usage in ChatOpenAI becomes None. This leads to an
AttributeError when trying to access token_usage.items().
This commit adds a check to ensure token_usage is not None before
accessing its items. This change prevents the AttributeError and allows
ChatOpenAI to work seamlessly with a local Chatglm2-6B model, aligning
with the way it operates with the OpenAI API.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** This PR fixes `HuggingFaceHubEmbeddings` by making the
API token optional (as in the client beneath). Most models don't require
one. I also updated the notebook for TEI (text-embeddings-inference)
accordingly as requested here #14288. In addition, I fixed a mistake in
the POST call parameters.
**Tag maintainers:** @baskaryan
Description: I was following the docs and got an error about missing
tiktoken dependency. Adding it to the comment where the langchain and
docarray libs are.
## Description
New YAML output parser as a drop-in replacement for the Pydantic output
parser. Yaml is a much more token-efficient format than JSON, proving to
be **~35% faster and using the same percentage fewer completion
tokens**.
☑️ Formatted
☑️ Linted
☑️ Tested (analogous to the existing`test_pydantic_parser.py`)
The YAML parser excels in situations where a list of objects is
required, where the root object needs no key:
```python
class Products(BaseModel):
__root__: list[Product]
```
I ran the prompt `Generate 10 healthy, organic products` 10 times on one
chain using the `PydanticOutputParser`, the other one using
the`YamlOutputParser` with `Products` (see below) being the targeted
model to be created.
LLMs used were Fireworks' `lama-v2-34b-code-instruct` and OpenAI
`gpt-3.5-turbo`. All runs succeeded without validation errors.
```python
class Nutrition(BaseModel):
sugar: int = Field(description="Sugar in grams")
fat: float = Field(description="% of daily fat intake")
class Product(BaseModel):
name: str = Field(description="Product name")
stats: Nutrition
class Products(BaseModel):
"""A list of products"""
products: list[Product] # Used `__root__` for the yaml chain
```
Stats after 10 runs reach were as follows:
### JSON
ø time: 7.75s
ø tokens: 380.8
### YAML
ø time: 5.12s
ø tokens: 242.2
Looking forward to feedback, tips and contributions!
This patch fixes some typos.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
**Description:**
Fixes to rag-semi-structured template.
- Added required libraries
- pdfminer was causing issues when installing with pip. pdfminer.six
works best
- Changed the pdf name for demo from llama2 to llava
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** There is a bug in RedisNum filter that filter towards
value 0 will be parsed as "*". This is a fix to it.
- **Issue:** NA
- **Dependencies:** NA
- **Tag maintainer:** NA
- **Twitter handle:** NA
seperate -> separate
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Update the information in the Docugami cookbook. Fix
broken links and add information on our kg-rag template.
Co-authored-by: Kenzie Mihardja <kenzie@docugami.com>
This PR updates RunnableWithMessage history to support user specific
configuration for the factory.
It extends support to passing multiple named arguments into the factory
if the factory takes more than a single argument.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Fix `from langchain.llms import DatabricksEmbeddings` to `from
langchain.embeddings import DatabricksEmbeddings`.
Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
TIL `**` globstar doesn't work in make
Makefile changes fix that.
`__getattr__` changes allow import of all files, but raise error when
accessing anything from the module.
file deletions were corresponding libs change from #14559
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Added `presidio` and `OneNote` references to `microsoft.mdx`; added link
and description to the `presidio` notebook
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Keeping it consistent with everywhere else in the docs and adding the
missing imports to be able to copy paste and run the code example.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**
The `SmartLLMChain` was was fixed to output key "resolution".
Unfortunately, this prevents the ability to use multiple `SmartLLMChain`
in a `SequentialChain` because of colliding output keys. This change
simply gives the option the customize the output key to allow for
sequential chaining. The default behavior is the same as the current
behavior.
Now, it's possible to do the following:
```
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_experimental.smart_llm import SmartLLMChain
from langchain.chains import SequentialChain
joke_prompt = PromptTemplate(
input_variables=["content"],
template="Tell me a joke about {content}.",
)
review_prompt = PromptTemplate(
input_variables=["scale", "joke"],
template="Rate the following joke from 1 to {scale}: {joke}"
)
llm = ChatOpenAI(temperature=0.9, model_name="gpt-4-32k")
joke_chain = SmartLLMChain(llm=llm, prompt=joke_prompt, output_key="joke")
review_chain = SmartLLMChain(llm=llm, prompt=review_prompt, output_key="review")
chain = SequentialChain(
chains=[joke_chain, review_chain],
input_variables=["content", "scale"],
output_variables=["review"],
verbose=True
)
response = chain.run({"content": "chickens", "scale": "10"})
print(response)
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Updated the MongoDB Atlas Vector Search docs to indicate the service is
Generally Available, updated the example to use the new index
definition, and added an example that uses metadata pre-filtering for
semantic search
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Updated provider page by adding LLM and ChatLLM references; removed a
content that is duplicate text from the LLM referenced page.
Updated the collback page
Many jupyter notebooks didn't pass linting. List of these files are
presented in the [tool.ruff.lint.per-file-ignores] section of the
pyproject.toml . Addressed these bugs:
- fixed bugs; added missed imports; updated pyproject.toml
Only the `document_loaders/tensorflow_datasets.ipyn`,
`cookbook/gymnasium_agent_simulation.ipynb` are not completely fixed.
I'm not sure about imports.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
The namespaces like `langchain.agents.format_scratchpad` clogging the
API Reference sidebar.
This change removes those 3-level namespaces from sidebar (this issue
was discussed with @efriis )
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This reverts commit 38813d7090. This is a
temporary fix, as I don't see a clear way on how to use multiple keys
with `Qdrant.from_texts`.
Context: #14378
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Brace Sproul <braceasproul@gmail.com>
Keeping it simple for now.
Still iterating on our docs build in pursuit of making everything mdxv2
compatible for docusaurus 3, and the fewer custom scripts we're reliant
on through that, the less likely the docs will break again.
Other things to consider in future:
Quarto rewriting in ipynbs:
https://quarto.org/docs/extensions/nbfilter.html (but this won't do
md/mdx files)
Docusaurus plugins for rewriting these paths
- **Description:** In Qdrant allows to input list of keys as the
content_payload_key to retrieve multiple fields (the generated document
will contain the dictionary {field: value} in a string),
- **Issue:** Previously we were able to retrieve only one field from the
vector database when making a search
- **Dependencies:**
- **Tag maintainer:**
- **Twitter handle:** @jb_dlb
---------
Co-authored-by: Jean Baptiste De La Broise <jeanbaptiste.delabroise@mdpi.com>
Description: This PR masked baidu qianfan - Chat_Models API Key and
added unit tests.
Issue: the issue langchain-ai#12165.
Tag maintainer: @eyurtsev
---------
Co-authored-by: xiayi <xiayi@bytedance.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
We found a request with `max_tokens=None` results in the following error
in Anthropic:
```
HTTPError: 400 Client Error: Bad Request for url: https://oregon.staging.cloud.databricks.com/serving-endpoints/corey-anthropic/invocations.
Response text: {"error_code":"INVALID_PARAMETER_VALUE","message":"INVALID_PARAMETER_VALUE: max_tokens was not of type Integer: null"}
```
This PR excludes `max_tokens` if it's None.
- **Description:** new parameters in OpenAIEmbeddings() constructor
(retry_min_seconds and retry_max_seconds) that allow parametrization by
the user of the former min_seconds and max_seconds that were hidden in
_create_retry_decorator() and _async_retry_decorator()
- **Issue:** #9298, #12986
- **Dependencies:** none
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @adumont
make format ✅
make lint ✅
make test ✅
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description :
Updated the functions with new Clarifai python SDK.
Enabled initialisation of Clarifai class with model URL.
Updated docs with new functions examples.
Remove whitespaces from the input of the ListSQLDatabaseTool for better
support.
for example, the input "table1,table2,table3" will throw an exception
whiteout the change although it's a valid input.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** add gitlab url from env,
- **Issue:** no issue,
- **Dependencies:** no,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This PR adds support for metadata filters of the form:
`{"filter": {"key": { "NIN" : ["list", "of", "values"]}}}`
"IN" is already supported, so this is a quick & related update to add
"NIN"
- **Description:**
1. Add system parameters to the ERNIE LLM API to set the role of the
LLM.
2. Add support for the ERNIE-Bot-turbo-AI model according from the
document https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Alp0kdm0n.
3. For the function call of ErnieBotChat, align with the
QianfanChatEndpoint.
With this PR, the `QianfanChatEndpoint()` can use the `function calling`
ability with `create_ernie_fn_chain()`. The example is as the following:
```
from langchain.prompts import ChatPromptTemplate
import json
from langchain.prompts.chat import (
ChatPromptTemplate,
)
from langchain.chat_models import QianfanChatEndpoint
from langchain.chains.ernie_functions import (
create_ernie_fn_chain,
)
def get_current_news(location: str) -> str:
"""Get the current news based on the location.'
Args:
location (str): The location to query.
Returs:
str: Current news based on the location.
"""
news_info = {
"location": location,
"news": [
"I have a Book.",
"It's a nice day, today."
]
}
return json.dumps(news_info)
def get_current_weather(location: str, unit: str="celsius") -> str:
"""Get the current weather in a given location
Args:
location (str): location of the weather.
unit (str): unit of the tempuature.
Returns:
str: weather in the given location.
"""
weather_info = {
"location": location,
"temperature": "27",
"unit": unit,
"forecast": ["sunny", "windy"],
}
return json.dumps(weather_info)
template = ChatPromptTemplate.from_messages([
("user", "{user_input}"),
])
chat = QianfanChatEndpoint(model="ERNIE-Bot-4")
chain = create_ernie_fn_chain([get_current_weather, get_current_news], chat, template, verbose=True)
res = chain.run("北京今天的新闻是什么?")
print(res)
```
The result of the above code:
```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 北京今天的新闻是什么?
> Finished chain.
{'name': 'get_current_news', 'arguments': {'location': '北京'}}
```
For the `ErnieBotChat`, now can use the `system` parameter to set the
role of the LLM.
```
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models import ErnieBotChat
llm = ErnieBotChat(model_name="ERNIE-Bot-turbo-AI", system="你是一个能力很强的机器人,你的名字叫 小叮当。无论问你什么问题,你都可以给出答案。")
prompt = ChatPromptTemplate.from_messages(
[
("human", "{query}"),
]
)
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
res = chain.run(query="你是谁?")
print(res)
```
The result of the above code:
```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 你是谁?
> Finished chain.
我是小叮当,一个智能机器人。我可以为你提供各种服务,包括回答问题、提供信息、进行计算等。如果你需要任何帮助,请随时告诉我,我会尽力为你提供最好的服务。
```
- **Description:** Added a notebook to illustrate how to use
`text-embeddings-inference` from huggingface. As
`HuggingFaceHubEmbeddings` was using a deprecated client, I made the
most of this PR updating that too.
- **Issue:** #13286
- **Dependencies**: None
- **Tag maintainer:** @baskaryan
- **Description:** Update code to correctly pass the kwargs
- **Issue:** #14295
- **Dependencies:** -
- **Tag maintainer:**
<--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
#issue-14295
### Description
Fixed 3 doc issues:
1. `ConfigurableField ` needs to be imported in
`docs/docs/expression_language/how_to/configure.ipynb`
2. use `error` instead of `RateLimitError()` in
`docs/docs/expression_language/how_to/fallbacks.ipynb`
3. I think it might be better to output the fixed json data(when I
looked at this example, I didn't understand its purpose at first, but
then I suddenly realized):
<img width="1219" alt="Screenshot 2023-12-05 at 10 34 13 PM"
src="https://github.com/langchain-ai/langchain/assets/10000925/7623ba13-7b56-4964-8c98-b7430fabc6de">
- **Description:** allows not enforcing function usage when a single
function is passed to an openAI function executable (or corresponding
legacy chain). This is a desired feature in the case where the model
does not have enough information to call a function, and needs to get
back to the user.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** N/A
Add metadata to the blob object. This makes it easier
to make a pipeline that properly propagates metadata information
from raw content to the derived content.
- Fixes `input_variables=[""]` crashing validations with a template
`"{}"`
- Uses `__cause__` for proper `Exception` chaining in
`check_valid_template`
- **Description:** Fix#11737 issue (extra_tools option of
create_pandas_dataframe_agent is not working),
- **Issue:** #11737 ,
- **Dependencies:** no,
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17 I needed this
method at work, so I modified it myself and used it. There is a similar
issue(#11737) and PR(#13018) of @PyroGenesis, so I combined my code at
the original PR.
You may be busy, but it would be great help for me if you checked. Thank
you.
- **Twitter handle:** @lunara_x
If you need an .ipynb example about this, please tag me.
I will share what I am working on after removing any work-related
content.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Enhanced `create_sync_playwright_browser` and
`create_async_playwright_browser` functions to accept a list of
arguments. These arguments are now forwarded to
`browser.chromium.launch()` for customizable browser instantiation.
- **Issue:** #13143
- **Dependencies:** None
- **Tag maintainer:** @eyurtsev,
- **Twitter handle:** Dr_Bearden
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:**
Reference library azure-search-documents has been adapted in version
11.4.0:
1. Notebook explaining Azure AI Search updated with most recent info
2. HnswVectorSearchAlgorithmConfiguration --> HnswAlgorithmConfiguration
3. PrioritizedFields(prioritized_content_fields) -->
SemanticPrioritizedFields(content_fields)
4. SemanticSettings --> SemanticSearch
5. VectorSearch(algorithm_configurations) -->
VectorSearch(configurations)
--> Changes now reflected on Langchain: default vector search config
from langchain is now compatible with officially released library from
Azure.
- **Issue:**
Issue creating a new index (due to wrong class used for default vector
search configuration) if using latest version of azure-search-documents
with current langchain version
- **Dependencies:** azure-search-documents>=11.4.0,
- **Tag maintainer:** ,
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** This PR modifies the LLM validation in OpenAI
function agents to check whether the LLM supports OpenAI functions based
on a property (`supports_oia_functions`) instead of whether the LLM
passed to the agent `isinstance` of `ChatOpenAI`. This allows classes
that extend `BaseChatModel` to be passed to these agents as long as
they've been integrated with the OpenAI APIs and have this property set,
even if they don't extend `ChatOpenAI`.
- **Issue:** N/A
- **Dependencies:** none
for issue https://github.com/langchain-ai/langchain/issues/13162
migrate openai audio api, as [openai v1.0.0 Migration
Guide](https://github.com/openai/openai-python/discussions/742)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Double Max <max@ground-map.com>
- **Description:** In openapi/planner deal with json in markdown output
cases
- **Issue:** In some cases LLMs could return json in markdown which
can't be loaded.
- **Dependencies:**
- **Tag maintainer:** @eyurtsev
- **Twitter handle:**
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adds doc key to metadata field when adding document
to Azure Search.
- **Issue:** -,
- **Dependencies:** -,
- **Tag maintainer:** @eyurtsev,
- **Twitter handle:** @finnless
Right now the document key with the name FIELDS_ID is not included in
the FIELDS_METADATA field, and therefore is not included in the Document
returned from a query. This is really annoying if you want to be able to
modify that item in the vectorstore.
Other's thoughts on this are welcome.
Description: There's a copy-paste typo where on_llm_error() calls
_on_chain_error() instead of _on_llm_error().
Issue: #13580
Dependencies: None
Tag maintainer: @hwchase17
Twitter handle: @jwatte
"Run `make format`, `make lint` and `make test` to check this locally."
The test scripts don't work in a plain Ubuntu LTS 20.04 system.
It looks like the dev container pulling is stuck. Or maybe the internet
is just ornery today.
---------
Co-authored-by: jwatte <jwatte@observeinc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
here it is validating shapely.geometry.point.Point: if not
isinstance(data_frame[page_content_column].iloc[0], gpd.GeoSeries):
raise ValueError(
f"Expected data_frame[{page_content_column}] to be a GeoSeries" you need
it to validate the geoSeries and not the shapely.geometry.point.Point
if not isinstance(data_frame[page_content_column], gpd.GeoSeries):
raise ValueError(
f"Expected data_frame[{page_content_column}] to be a GeoSeries"
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description**
Implements `max_marginal_relevance_search` and
`max_marginal_relevance_search_by_vector` for the Momento Vector Index
vectorstore.
Additionally bumps the `momento` dependency in the lock file and adds
logging to the implementation.
**Dependencies**
✅ updates `momento` dependency in lock file
**Tag maintainer**
@baskaryan
**Twitter handle**
Please tag @momentohq for Momento Vector Index and @mloml for the
contribution 🙇
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Hi! I'm Alex, Python SDK Team Lead from
[Comet](https://www.comet.com/site/).
This PR contains our new integration between langchain and Comet -
`CometTracer` class which uses new `comet_llm` python package for
submitting data to Comet.
No additional dependencies for the langchain package are required
directly, but if the user wants to use `CometTracer`, `comet-llm>=2.0.0`
should be installed. Otherwise an exception will be raised from
`CometTracer.__init__`.
A test for the feature is included.
There is also an already existing callback (and .ipynb file with
example) which ideally should be deprecated in favor of a new tracer. I
wasn't sure how exactly you'd prefer to do it. For example we could open
a separate PR for that.
I'm open to your ideas :)
Running a large number of requests to Embaas' servers (or any server)
can result in intermittent network failures (both from local and
external network/service issues). This PR implements exponential backoff
retries to help mitigate this issue.
The Github utilities are fantastic, so I'm adding support for deeper
interaction with pull requests. Agents should read "regular" comments
and review comments, and the content of PR files (with summarization or
`ctags` abbreviations).
Progress:
- [x] Add functions to read pull requests and the full content of
modified files.
- [x] Function to use Github's built in code / issues search.
Out of scope:
- Smarter summarization of file contents of large pull requests (`tree`
output, or ctags).
- Smarter functions to checkout PRs and edit the files incrementally
before bulk committing all changes.
- Docs example for creating two agents:
- One watches issues: For every new issue, open a PR with your best
attempt at fixing it.
- The other watches PRs: For every new PR && every new comment on a PR,
check the status and try to finish the job.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
The `/docs/integrations/toolkits/vectorstore` page is not the
Integration page. The best place is in `/docs/modules/agents/how_to/`
- Moved the file
- Rerouted the page URL
Allow users to pass a generic `BaseStore[str, bytes]` to
MultiVectorRetriever, removing the need to use the `create_kv_docstore`
method. This encoding will now happen internally.
@rlancemartin @eyurtsev
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
When a RunnableLambda only receives a synchronous callback, this
callback is wrapped into an async one since #13408. However, this
wrapping with `(*args, **kwargs)` causes the `accepts_config` check at
[/libs/core/langchain_core/runnables/config.py#L342](ee94ef55ee/libs/core/langchain_core/runnables/config.py (L342))
to fail, as this checks for the presence of a "config" argument in the
method signature.
Adding a `functools.wraps` around it, resolves it.
If we are not going to make the existing Docstore class also implement
`BaseStore[str, Document]`, IMO all base store implementations should
always be `[str, bytes]` so that they are more interchangeable.
CC @rlancemartin @eyurtsev
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** The existing version hardcoded search.windows.net in
the base url. This is not compatible with the gov cloud. I am allowing
the user to override the default for gov cloud support.,
- **Issue:** N/A, did not write up in an issue,
- **Dependencies:** None
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Nicholas Ceccarelli <nceccarelli2@moog.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Obsidian templates can include
[variables](https://help.obsidian.md/Plugins/Templates#Template+variables)
using double curly braces. `ObsidianLoader` uses PyYaml to parse the
frontmatter of documents. This parsing throws an error when encountering
variables' curly braces. This is avoided by temporarily substituting
safe strings before parsing.
- **Issue:** #13887
- **Tag maintainer:** @hwchase17
Switches to a more maintained solution for building ipynb -> md files
(`quarto`)
Also bumps us down to python3.8 because it's significantly faster in the
vercel build step. Uses default openssl version instead of upgrading as
well.
**Description:**
Adds the document loader for [Couchbase](http://couchbase.com/), a
distributed NoSQL database.
**Dependencies:**
Added the Couchbase SDK as an optional dependency.
**Twitter handle:** nithishr
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Our PR is an integration of a Steam API Tool that
makes recommendations on steam games based on user's Steam profile and
provides information on games based on user provided queries.
- **Issue:** the issue # our PR implements:
https://github.com/langchain-ai/langchain/issues/12120
- **Dependencies:** python-steam-api library, steamspypi library and
decouple library
- **Tag maintainer:** @baskaryan, @hwchase17
- **Twitter handle:** N/A
Hello langchain Maintainers,
We are a team of 4 University of Toronto students contributing to
langchain as part of our course [CSCD01 (link to course
page)](https://cscd01.com/work/open-source-project). We hope our changes
help the community. We have run make format, make lint and make test
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.
Our PR integrates the python-steam-api, steamspypi and decouple
packages. We have added integration tests to test our python API
integration into langchain and an example notebook is also provided.
Our amazing team that contributed to this PR: @JohnY2002, @shenceyang,
@andrewqian2001 and @muntaqamahmood
Thank you in advance to all the maintainers for reviewing our PR!
---------
Co-authored-by: Shence <ysc1412799032@163.com>
Co-authored-by: JohnY2002 <johnyuan0526@gmail.com>
Co-authored-by: Andrew Qian <andrewqian2001@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: JohnY <94477598+JohnY2002@users.noreply.github.com>
### Description
Starting from [openai version
1.0.0](17ac677995 (module-level-client)),
the camel case form of `openai.ChatCompletion` is no longer supported
and has been changed to lowercase `openai.chat.completions`. In
addition, the returned object only accepts attribute access instead of
index access:
```python
import openai
# optional; defaults to `os.environ['OPENAI_API_KEY']`
openai.api_key = '...'
# all client options can be configured just like the `OpenAI` instantiation counterpart
openai.base_url = "https://..."
openai.default_headers = {"x-foo": "true"}
completion = openai.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "user",
"content": "How do I output all files in a directory using Python?",
},
],
)
print(completion.choices[0].message.content)
```
So I implemented a compatible adapter that supports both attribute
access and index access:
```python
In [1]: from langchain.adapters import openai as lc_openai
...: messages = [{"role": "user", "content": "hi"}]
In [2]: result = lc_openai.chat.completions.create(
...: messages=messages, model="gpt-3.5-turbo", temperature=0
...: )
In [3]: result.choices[0].message
Out[3]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}
In [4]: result["choices"][0]["message"]
Out[4]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}
In [5]: result = await lc_openai.chat.completions.acreate(
...: messages=messages, model="gpt-3.5-turbo", temperature=0
...: )
In [6]: result.choices[0].message
Out[6]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}
In [7]: result["choices"][0]["message"]
Out[7]: {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}
In [8]: for rs in lc_openai.chat.completions.create(
...: messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
...: ):
...: print(rs.choices[0].delta)
...: print(rs["choices"][0]["delta"])
...:
{'role': 'assistant', 'content': ''}
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': 'Hello'}
{'content': '!'}
{'content': '!'}
In [20]: async for rs in await lc_openai.chat.completions.acreate(
...: messages=messages, model="gpt-3.5-turbo", temperature=0, stream=True
...: ):
...: print(rs.choices[0].delta)
...: print(rs["choices"][0]["delta"])
...:
{'role': 'assistant', 'content': ''}
{'role': 'assistant', 'content': ''}
{'content': 'Hello'}
{'content': 'Hello'}
{'content': '!'}
{'content': '!'}
...
```
### Twitter handle
[lin_bob57617](https://twitter.com/lin_bob57617)
- **Description:** to support not only publicly available Hugging Face
endpoints, but also protected ones (created with "Inference Endpoints"
Hugging Face feature), I have added ability to specify custom api_url.
But if not specified, default behaviour won't change
- **Issue:** #9181,
- **Dependencies:** no extra dependencies
**Description:** The way the condition is checked in the
`return_stopped_response` function of `OpenAIAgent` may not be correct,
when the value returned is `AgentFinish` from the tools it does not work
properly.
Thanks for review, @baskaryan, @eyurtsev, @hwchase17.
- **Description:** As part of my conversation with Cerebrium team,
`model_api_request` will be no longer available in cerebrium lib so it
needs to be replaced.
- **Issue:** #12705 12705,
- **Dependencies:** Cerebrium team (agreed)
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** No official Twitter account sorry :D
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The `AWS` platform page has many missed integrations.
- added missed integration references to the `AWS` platform page
- added/updated descriptions and links in the referenced notebooks
- renamed two notebook files. They have file names != page Title, which
generate unordered ToC.
- reroute the URLs for renamed files
- fixed `amazon_textract` notebook: removed failed cell outputs
**Description:** Adding a possibility to use asynchronous callback
handler in human-in-the-loop validation tool. Very useful, for example,
if you want to implement a validation over Telegram bot.
**Issue:** -
**Dependencies:** -
---------
Co-authored-by: Daniyar_Supiyev <daniyar_supiyev@epam.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description**: This PR addresses an issue with the OpenAI API
streaming response, where initially the key (arguments) is provided but
the value is None. Subsequently, it updates with {"arguments": "{\n"},
leading to a type inconsistency that causes an exception. The specific
error encountered is ValueError: additional_kwargs["arguments"] already
exists in this message, but with a different type. This change aims to
resolve this inconsistency and ensure smooth API interactions.
- **Issue**: None.
- **Dependencies**: None.
- **Tag maintainer**: @eyurtsev
This is an updated version of #13229 based on the refactored code.
Credit goes to @superken01.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** some vector stores have a flag for try deleting the
collection before creating it (such as ´vectorpg´). This is a useful
flag when prototyping indexing pipelines and also for integration tests.
Added the bool flag `pre_delete_collection ` to the constructor (default
False)
- **Tag maintainer:** @hemidactylus
- **Twitter handle:** nicoloboschi
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** This extends `OpenAIEmbeddings` to add support for
non-`tiktoken` based embeddings, specifically for use with the new
`text-generation-webui` API (`--extensions openai`) which does not
support `tiktoken` encodings, but rather strings
- **Issue:** Not found,
- **Dependencies:** HuggingFace `transformers.AutoTokenizer` is new
dependency for running the model without `tiktoken`
- **Tag maintainer:** @baskaryan based on last commit for
`langchain-core` refactor
- **Twitter handle:** @xychelsea
Modified the tokenization process to be model-agnostic, allowing for
both OpenAI and non-OpenAI model tokenizations, by setting the new
default `bool` flag `tiktoken_enabled` to `False`. This requeires
HuggingFace’s AutoTokenizer and handling tokenization for models
requiring different preprocessing steps to generate a chunked string
request rather than a list of integers.
Updated the embeddings generation process to accommodate non-OpenAI
models. This includes converting tokenized text into embeddings using
OpenAI’s and Hugging Face’s model architectures.
-->
Hi,
I made some code changes on the Hologres vector store to improve the
data insertion performance.
Also, this version of the code uses `hologres-vector` library. This
library is more convenient for us to update, and more efficient in
performance.
The code has passed the format/lint/spell check. I have run the unit
test for Hologres connecting to my own database.
Please check this PR again and tell me if anything needs to change.
Best,
Changgeng,
Developer @ Alibaba Cloud
Co-authored-by: Changgeng Zhao <zhaochanggeng.zcg@alibaba-inc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
`Hugging Face` is definitely a platform. It includes many integrations
for many modules (LLM, Embedding, DocumentLoader, Tool)
So, a doc page was added that defines Hugging Face as a platform.
- **Description:** Fixes the Mathpix PDF loader API integration.
Specifically, ensures that Mathpix auth headers are provided for every
request, and ensures that we recognize all errors that can occur during
a request. Also, the option to provide API keys as kwargs never actually
worked before, but now that's fixed too.
- **Issue:** #11249
- **Dependencies:** None
- **Description:**
This PR introduces the Slack toolkit to LangChain, which allows users to
read and write to Slack using the Slack API. Specifically, we've added
the following tools.
1. get_channel: Provides a summary of all the channels in a workspace.
2. get_message: Gets the message history of a channel.
3. send_message: Sends a message to a channel.
4. schedule_message: Sends a message to a channel at a specific time and
date.
- **Issue:** This pull request addresses [Add Slack Toolkit
#11747](https://github.com/langchain-ai/langchain/issues/11747)
- **Dependencies:** package`slack_sdk`
Note: For this toolkit to function you will need to add a Slack app to
your workspace. Additional info can be found
[here](https://slack.com/help/articles/202035138-Add-apps-to-your-Slack-workspace).
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ArianneLavada <ariannelavada@gmail.com>
Co-authored-by: ArianneLavada <84357335+ArianneLavada@users.noreply.github.com>
Co-authored-by: ariannelavada@gmail.com <you@example.com>
- **Description:** : As described in the issue below,
https://python.langchain.com/docs/use_cases/summarization
I've modified the Python code in the above notebook to perform well.
I also modified the OpenAI LLM model to the latest version as shown
below.
`gpt-3.5-turbo-16k --> gpt-3.5-turbo-1106`
This is because it seems to be a bit more responsive.
- **Issue:** : #14066
Unnecessarily overridden methods:
- Give the idea the subclass is doing something special (when it isn't)
- Block CTRL-click to the actual method
This PR removes some unnecessarily overridden methods in
`StdOutCallbackHandler`
Supercedes https://github.com/langchain-ai/langchain/pull/12858
### Description
The `RateLimitError` initialization method has changed after openai v1,
and the usage of `patch` needs to be changed.
### Twitter handle
[lin_bob57617](https://twitter.com/lin_bob57617)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Hi,
There is some unintended behavior in Html2TextTransformer.
The current code is **directly modifying the original documents that are
passed as arguments to the function.**
Therefore, not only the return of the function but also the input
variables are being modified simultaneously.
**To resolve this, I added unit test code as well.**
reference link: [Shallow vs Deep Copying of Python
Objects](https://realpython.com/copying-python-objects/)
Thanks! ☺️
Before, we need to use `params` to pass extra parameters:
```python
from langchain.llms import Databricks
Databricks(..., params={"temperature": 0.0})
```
Now, we can directly specify extra params:
```python
from langchain.llms import Databricks
Databricks(..., temperature=0.0)
```
This PR adds an "Azure AI data" document loader, which allows Azure AI
users to load their registered data assets as a document object in
langchain.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
See PR title.
From what I can see, `poetry` will auto-include this. Please let me know
if I am missing something here.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
… properly
Fixed a bug that was causing the streaming transfer to not work
properly.
- **Description:
1、The on_llm_new_token method in the streaming callback can now be
called properly in streaming transfer mode.
2、In streaming transfer mode, LLM can now correctly output the complete
response instead of just the first token.
- **Tag maintainer: @wangxuqi
- **Twitter handle: @kGX7XJjuYxzX9Km
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
* Add support for passing a specific file to the file system blob loader
* Allow specifying a class parameter for the parser for the generic
loader
```python
class AudioLoader(GenericLoader):
@staticmethod
def get_parser(**kwargs):
return MyAudioParser(**kwargs):
```
The intent of the GenericLoader is to provide on-ramps from different
sources (e.g., web, s3, file system).
An alternative is to use pipelining syntax or creating a Pipeline
```
FileSystemBlobLoader(...) | MyAudioParser
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Change instances of RunnableMap to RunnableParallel,
as that should be the one used going forward. This makes it consistent
across the codebase.
### Description:
Doc addition for LCEL introduction. Adds a more basic starter guide for
using LCEL.
---------
Co-authored-by: Alex Kira <akira@Alexs-MBP.local.tld>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** just a little change of ErnieChatBot class
description, sugguesting user to use more suitable class
- **Issue:** none,
- **Dependencies:** none,
- **Tag maintainer:** @baskaryan ,
- **Twitter handle:** none
**Description**
`embed_with_retry` is for sync operations and not for async operations.
Use `async_embed_with_retry` for appropriate async operations.
I'm using `OpenAIEmbedding(http_client=httpx.AsyncClient())` with only
async operations.
However, I got an error when I use `embedding.aembed_documents` because
`embed_with_retry` uses sync OpenAI client with async http client.
Description
when the desc of arg in python docstring contains ":", the
`_parse_python_function_docstring` will raise **ValueError: too many
values to unpack (expected 2)**.
A sample desc would be:
"""
Args:
error_arg: this is an arg with an additional ":" symbol
"""
So, set `maxsplit` parameter to fix it.
The number of times I try to format a string (especially in lcel) is
embarrassingly high. Think this may be more actionable than the default
error message. Now I get nice helpful errors
```
KeyError: "Input to ChatPromptTemplate is missing variable 'input'. Expected: ['input'] Received: ['dialogue']"
```
### Description
Now if `example` in Message is False, it will not be displayed. Update
the output in this document.
```python
In [22]: m = HumanMessage(content="Text")
In [23]: m
Out[23]: HumanMessage(content='Text')
In [24]: m = HumanMessage(content="Text", example=True)
In [25]: m
Out[25]: HumanMessage(content='Text', example=True)
```
### Twitter handle
[lin_bob57617](https://twitter.com/lin_bob57617)
**Description:** By combining the document timestamp refresh within a
single call to update(), this enables batching of multiple documents in
a single SQL statement. This is important for non-local databases where
tens of milliseconds has a huge impact on performance when doing
document-by-document SQL statements.
**Issue:** #11935
**Dependencies:** None
**Tag maintainer:** @eyurtsev
- **Description:** Touch up of the documentation page for Metaphor
Search Tool integration. Removes documentation for old built-in tool
wrapper.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
CC @baskaryan @hwchase17 @jmorganca
Having a bit of trouble importing `langchain_experimental` from a
notebook, will figure it out tomorrow
~Ah and also is blocked by #13226~
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Related to https://github.com/mlflow/mlflow/pull/10420. MLflow AI
gateway will be deprecated and replaced by the `mlflow.deployments`
module. Happy to split this PR if it's too large.
```
pip install git+https://github.com/langchain-ai/langchain.git@refs/pull/13699/merge#subdirectory=libs/langchain
```
## Dependencies
Install mlflow from https://github.com/mlflow/mlflow/pull/10420:
```
pip install git+https://github.com/mlflow/mlflow.git@refs/pull/10420/merge
```
## Testing plan
The following code works fine on local and databricks:
<details><summary>Click</summary>
<p>
```python
"""
Setup
-----
mlflow deployments start-server --config-path examples/gateway/openai/config.yaml
databricks secrets create-scope <scope>
databricks secrets put-secret <scope> openai-api-key --string-value $OPENAI_API_KEY
Run
---
python /path/to/this/file.py secrets/<scope>/openai-api-key
"""
from langchain.chat_models import ChatMlflow, ChatDatabricks
from langchain.embeddings import MlflowEmbeddings, DatabricksEmbeddings
from langchain.llms import Databricks, Mlflow
from langchain.schema.messages import HumanMessage
from langchain.chains.loading import load_chain
from mlflow.deployments import get_deploy_client
import uuid
import sys
import tempfile
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
###############################
# MLflow
###############################
chat = ChatMlflow(
target_uri="http://127.0.0.1:5000", endpoint="chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))
embeddings = MlflowEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
llm = Mlflow(
target_uri="http://127.0.0.1:5000",
endpoint="completions",
params={"temperature": 0.1},
)
print(llm("I am"))
llm_chain = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
print(llm_chain.run(adjective="funny"))
# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
print(tmpdir)
path = f"{tmpdir}/llm.yaml"
llm_chain.save(path)
loaded_chain = load_chain(path)
print(loaded_chain("funny"))
###############################
# Databricks
###############################
secret = sys.argv[1]
client = get_deploy_client("databricks")
# External - chat
name = f"chat-{uuid.uuid4()}"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "gpt-4",
"provider": "openai",
"task": "llm/v1/chat",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
try:
chat = ChatDatabricks(
target_uri="databricks", endpoint=name, params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))
finally:
client.delete_endpoint(endpoint=name)
# External - embeddings
name = f"embeddings-{uuid.uuid4()}"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "text-embedding-ada-002",
"provider": "openai",
"task": "llm/v1/embeddings",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
try:
embeddings = DatabricksEmbeddings(target_uri="databricks", endpoint=name)
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
finally:
client.delete_endpoint(endpoint=name)
# External - completions
name = f"completions-{uuid.uuid4()}"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "gpt-3.5-turbo-instruct",
"provider": "openai",
"task": "llm/v1/completions",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
try:
llm = Databricks(
endpoint_name=name,
model_kwargs={"temperature": 0.1},
)
print(llm("I am"))
finally:
client.delete_endpoint(endpoint=name)
# Foundation model - chat
chat = ChatDatabricks(
endpoint="databricks-llama-2-70b-chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))
# Foundation model - embeddings
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
print(embeddings.embed_query("hello")[:3])
# Foundation model - completions
llm = Databricks(
endpoint_name="databricks-mpt-7b-instruct", model_kwargs={"temperature": 0.1}
)
print(llm("hello"))
llm_chain = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
print(llm_chain.run(adjective="funny"))
# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
print(tmpdir)
path = f"{tmpdir}/llm.yaml"
llm_chain.save(path)
loaded_chain = load_chain(path)
print(loaded_chain("funny"))
```
Output:
```
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
sorry, but I cannot continue the sentence as it is incomplete. Can you please provide more information or context?
Sure, here's a classic one for you:
Why don't scientists trust atoms?
Because they make up everything!
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmpx_4no6ad
{'adjective': 'funny', 'text': "Sure, here's a classic one for you:\n\nWhy don't scientists trust atoms?\n\nBecause they make up everything!"}
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
a 23 year old female and I am currently studying for my master's degree
content="\nHello! It's nice to meet you. Is there something I can help you with or would you like to chat for a bit?"
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]
hello back
Well, I don't really know many jokes, but I do know this funny story...
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmp7_ds72ex
{'adjective': 'funny', 'text': " Well, I don't really know many jokes, but I do know this funny story..."}
```
</p>
</details>
The existing workflow doesn't break:
<details><summary>click</summary>
<p>
```python
import uuid
import mlflow
from mlflow.models import ModelSignature
from mlflow.types.schema import ColSpec, Schema
class MyModel(mlflow.pyfunc.PythonModel):
def predict(self, context, model_input):
return str(uuid.uuid4())
with mlflow.start_run():
mlflow.pyfunc.log_model(
"model",
python_model=MyModel(),
pip_requirements=["mlflow==2.8.1", "cloudpickle<3"],
signature=ModelSignature(
inputs=Schema(
[
ColSpec("string", "prompt"),
ColSpec("string", "stop"),
]
),
outputs=Schema(
[
ColSpec(name=None, type="string"),
]
),
),
registered_model_name=f"lang-{uuid.uuid4()}",
)
# Manually create a serving endpoint with the registered model and run
from langchain.llms import Databricks
llm = Databricks(endpoint_name="<name>")
llm("hello") # 9d0b2491-3d13-487c-bc02-1287f06ecae7
```
</p>
</details>
## Follow-up tasks
(This PR is too large. I'll file a separate one for follow-up tasks.)
- Update `docs/docs/integrations/providers/mlflow_ai_gateway.mdx` and
`docs/docs/integrations/providers/databricks.md`.
---------
Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
…parameters.
In Langchain's `dumps()` function, I've added a `**kwargs` parameter.
This allows users to pass additional parameters to the underlying
`json.dumps()` function, providing greater flexibility and control over
JSON serialization.
Many parameters available in `json.dumps()` can be useful or even
necessary in specific situations. For example, when using an Agent with
return_intermediate_steps set to true, the output is a list of
AgentAction objects. These objects can't be serialized without using
Langchain's `dumps()` function.
The issue arises when using the Agent with a language other than
English, which may contain non-ASCII characters like 'é'. The default
behavior of `json.dumps()` sets ensure_ascii to true, converting
`{"name": "José"}` into `{"name": "Jos\u00e9"}`. This can make the
output hard to read, especially in the case of intermediate steps in
agent logs.
By allowing users to pass additional parameters to `json.dumps()` via
Langchain's dumps(), we can solve this problem. For instance, users can
set `ensure_ascii=False` to maintain the original characters.
This update also enables users to pass other useful `json.dumps()`
parameters like `sort_keys`, providing even more flexibility.
The implementation takes into account edge cases where a user might pass
a "default" parameter, which is already defined by `dumps()`, or an
"indent" parameter, which is also predefined if `pretty=True` is set.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
### Description
Hello,
The [integration_test
README](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests)
was indicating incorrect paths for the `.env.example` and `.env` files.
`tests/.env.example` ->`tests/integration_tests/.env.example`
While it’s a minor error, it could **potentially lead to confusion** for
the document’s readers, so I’ve made the necessary corrections.
Thank you! ☺️
### Related Issue
- https://github.com/langchain-ai/langchain/pull/2806
**Description:**
Added support for a Pandas DataFrame OutputParser with format
instructions, along with unit tests and a demo notebook. Namely, we've
added the ability to request data from a DataFrame, have the LLM parse
the request, and then use that request to retrieve a well-formatted
response.
Within LangChain, it seamlessly integrates with language models like
OpenAI's `text-davinci-003`, facilitating streamlined interaction using
the format instructions (just like the other output parsers).
This parser structures its requests as
`<operation/column/row>[<optional_array_params>]`. The instructions
detail permissible operations, valid columns, and array formats,
ensuring clarity and adherence to the required format.
For example:
- When the LLM receives the input: "Retrieve the mean of `num_legs` from
rows 1 to 3."
- The provided format instructions guide the LLM to structure the
request as: "mean:num_legs[1..3]".
The parser processes this formatted request, leveraging the LLM's
understanding to extract the mean of `num_legs` from rows 1 to 3 within
the Pandas DataFrame.
This integration allows users to communicate requests naturally, with
the LLM transforming these instructions into structured commands
understood by the `PandasDataFrameOutputParser`. The format instructions
act as a bridge between natural language queries and precise DataFrame
operations, optimizing communication and data retrieval.
**Issue:**
- https://github.com/langchain-ai/langchain/issues/11532
**Dependencies:**
No additional dependencies :)
**Tag maintainer:**
@baskaryan
**Twitter handle:**
No need. :)
---------
Co-authored-by: Wasee Alam <waseealam@protonmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
When using Vald, only insecure grpc connection was supported, so secure
connection is now supported.
In addition, grpc metadata can be added to Vald requests to enable
authentication with a token.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
grammar correction
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Response_if_no_docs_found is not implemented in
ConversationalRetrievalChain for async code paths. Implemented it and
added test cases
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Description
This PR implements Self-Query Retriever for MongoDB Atlas vector store.
I've implemented the comparators and operators that are supported by
MongoDB Atlas vector store according to the section titled "Atlas Vector
Search Pre-Filter" from
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/.
Namely:
```
allowed_comparators = [
Comparator.EQ,
Comparator.NE,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
Comparator.IN,
Comparator.NIN,
]
"""Subset of allowed logical operators."""
allowed_operators = [
Operator.AND,
Operator.OR
]
```
Translations from comparators/operators to MongoDB Atlas filter
operators(you can find the syntax in the "Atlas Vector Search
Pre-Filter" section from the previous link) are done using the following
dictionary:
```
map_dict = {
Operator.AND: "$and",
Operator.OR: "$or",
Comparator.EQ: "$eq",
Comparator.NE: "$ne",
Comparator.GTE: "$gte",
Comparator.LTE: "$lte",
Comparator.LT: "$lt",
Comparator.GT: "$gt",
Comparator.IN: "$in",
Comparator.NIN: "$nin",
}
```
In visit_structured_query() the filters are passed as "pre_filter" and
not "filter" as in the MongoDB link above since langchain's
implementation of MongoDB atlas vector
store(libs\langchain\langchain\vectorstores\mongodb_atlas.py) in
_similarity_search_with_score() sets the "filter" key to have the value
of the "pre_filter" argument.
```
params["filter"] = pre_filter
```
Test cases and documentation have also been added.
# Issue
#11616
# Dependencies
No new dependencies have been added.
# Documentation
I have created the notebook mongodb_atlas_self_query.ipynb outlining the
steps to get the self-query mechanism working.
I worked closely with [@Farhan-Faisal](https://github.com/Farhan-Faisal)
on this PR.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Description
We implemented a simple tool for accessing the Merriam-Webster
Collegiate Dictionary API
(https://dictionaryapi.com/products/api-collegiate-dictionary).
Here's a simple usage example:
```py
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
llm = OpenAI()
tools = load_tools(["serpapi", "merriam-webster"], llm=llm) # Serp API gives our agent access to Google
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("What is the english word for the german word Himbeere? Define that word.")
```
Sample output:
```
> Entering new AgentExecutor chain...
I need to find the english word for Himbeere and then get the definition of that word.
Action: Search
Action Input: "English word for Himbeere"
Observation: {'type': 'translation_result'}
Thought: Now I have the english word, I can look up the definition.
Action: MerriamWebster
Action Input: raspberry
Observation: Definitions of 'raspberry':
1. rasp-ber-ry, noun: any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries
2. rasp-ber-ry, noun: a perennial plant (genus Rubus) of the rose family that bears raspberries
3. rasp-ber-ry, noun: a sound of contempt made by protruding the tongue between the lips and expelling air forcibly to produce a vibration; broadly : an expression of disapproval or contempt
4. black raspberry, noun: a raspberry (Rubus occidentalis) of eastern North America that has a purplish-black fruit and is the source of several cultivated varieties —called also blackcap
Thought: I now know the final answer.
Final Answer: Raspberry is an english word for Himbeere and it is defined as any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries.
> Finished chain.
```
# Issue
This closes#12039.
# Dependencies
We added no extra dependencies.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Lara <63805048+larkgz@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Update the document for drop box loader + made the
messages more verbose when loading pdf file since people were getting
confused
- **Issue:** #13952
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17,
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Added a tool called RedditSearchRun and an
accompanying API wrapper, which searches Reddit for posts with support
for time filtering, post sorting, query string and subreddit filtering.
- **Issue:** #13891
- **Dependencies:** `praw` module is used to search Reddit
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed
- **Twitter handle:** None.
Hello,
This is our first PR and we hope that our changes will be helpful to the
community. We have run `make format`, `make lint` and `make test`
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.
Our PR integrates the `praw` package which is already used by
RedditPostsLoader in LangChain. Nonetheless, we have added integration
tests and edited unit tests to test our changes. An example notebook is
also provided. These changes were put together by me, @Anika2000,
@CharlesXu123, and @Jeremy-Cheng-stack
Thank you in advance to the maintainers for their time.
---------
Co-authored-by: What-Is-A-Username <49571870+What-Is-A-Username@users.noreply.github.com>
Co-authored-by: Anika2000 <anika.sultana@mail.utoronto.ca>
Co-authored-by: Jeremy Cheng <81793294+Jeremy-Cheng-stack@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Volc Engine MaaS serves as an enterprise-grade,
large-model service platform designed for developers. You can visit its
homepage at https://www.volcengine.com/docs/82379/1099455 for details.
This change will facilitate developers to integrate quickly with the
platform.
- **Issue:** None
- **Dependencies:** volcengine
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @he1v3tica
---------
Co-authored-by: lvzhong <lvzhong@bytedance.com>
- **Description:** use post field validation for `CohereRerank`
- **Issue:** #12899 and #13058
- **Dependencies:**
- **Tag maintainer:** @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Update 5 pdf document loaders in
`langchain.document_loaders.pdf`, to store a url in the metadata
(instead of a temporary, local file path) if the user provides a web
path to a pdf: `PyPDFium2Loader`, `PDFMinerLoader`,
`PDFMinerPDFasHTMLLoader`, `PyMuPDFLoader`, and `PDFPlumberLoader` were
updated.
- The updates follow the approach used to update `PyPDFLoader` for the
same behavior in #12092
- The `PyMuPDFLoader` changes required additional work in updating
`langchain.document_loaders.parsers.pdf.PyMuPDFParser` to be able to
process either an `io.BufferedReader` (from local pdf) or `io.BytesIO`
(from online pdf)
- The `PDFMinerPDFasHTMLLoader` change used a simpler approach since the
metadata is assigned by the loader and not the parser
- **Issue:** Fixes#7034
- **Dependencies:** None
```python
# PyPDFium2Loader example:
# old behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': '/var/folders/7z/d5dt407n673drh1f5cm8spj40000gn/T/tmpm5oqa92f/tmp.pdf', 'page': 0}
# new behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': 'https://arxiv.org/pdf/1706.03762.pdf', 'page': 0}
```
- **Description:** Updated to remove deprecated parameter penalty_alpha,
and use string variation of prompt rather than json object for better
flexibility. - **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** N/A
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** @symbldotai
---------
Co-authored-by: toshishjawale <toshish@symbl.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Instead of using JSON-like syntax to describe node and relationship
properties we changed to a shorter and more concise schema description
Old:
```
Node properties are the following:
[{'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Movie'}, {'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Actor'}]
Relationship properties are the following:
[]
The relationships are the following:
['(:Actor)-[:ACTED_IN]->(:Movie)']
```
New:
```
Node properties are the following:
Movie {name: STRING},Actor {name: STRING}
Relationship properties are the following:
The relationships are the following:
(:Actor)-[:ACTED_IN]->(:Movie)
```
Implements
[#12115](https://github.com/langchain-ai/langchain/issues/12115)
Who can review?
@baskaryan , @eyurtsev , @hwchase17
Integrated Stack Exchange API into Langchain, enabling access to diverse
communities within the platform. This addition enhances Langchain's
capabilities by allowing users to query Stack Exchange for specialized
information and engage in discussions. The integration provides seamless
interaction with Stack Exchange content, offering content from varied
knowledge repositories.
A notebook example and test cases were included to demonstrate the
functionality and reliability of this integration.
- Add StackExchange as a tool.
- Add unit test for the StackExchange wrapper and tool.
- Add documentation for the StackExchange wrapper and tool.
If you have time, could you please review the code and provide any
feedback as necessary! My team is welcome to any suggestions.
---------
Co-authored-by: Yuval Kamani <yuvalkamani@gmail.com>
Co-authored-by: Aryan Thakur <aryanthakur@Aryans-MacBook-Pro.local>
Co-authored-by: Manas1818 <79381912+manas1818@users.noreply.github.com>
Co-authored-by: aryan-thakur <61063777+aryan-thakur@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** The class allows to only select between a few
predefined prompts from the paper. That is not ideal, since other use
cases might need a custom prompt. The changes made allow for this. To be
able to monitor those, I also added functionality to supply a custom
run_manager.
- **Issue:** no issue, but a new feature,
- **Dependencies:** none,
- **Tag maintainer:** @hwchase17,
- **Twitter handle:** @yvesloy
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Support providing whatever extra parameters you want
to the Mathpix PDF loader API request.
- **Issue:** #12773
- **Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Adds a tqdm progress bar to GooglePalmEmbeddings when
embedding a list.
- **Issue:** #13637
- **Dependencies:** TQDM as a main dependency (instead of extra)
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
---------
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
langsmith is available on conda-forge as well and also a dependency of
the package so it gets installed either way by conda
306ed13308/recipe/meta.yaml (L43)
This PR is fixing an attributeError: object endpoint has no attribute
"_public_match_client" when using gcp matching engine with private VPC
network.
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** As of OpenAI's Python package 1.0, the existing
DallEAPIWrapper does not work correctly, so the example in the LangChain
Documentation link below does not work either.
https://python.langchain.com/docs/integrations/tools/dalle_image_generator
Also, since OpenAI only supports DALL-E version 2 or version 3, I
modified the DallEAPIWrapper to support it.
- **Issue:** #13825
- **Twitter handle:** ggeutzzang
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Small fix to _summarization_ example, `reduce_template` should use
`{docs}` variable.
Bug likely introduced as following code suggests using
`hub.pull("rlm/map-prompt")` instead of defined prompt.
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/6lp69is2a, add ERNIE-Bot-8K
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-8K, you should have the
model's access authority.
Replace this entire comment with:
- **Description:** updates `create_llm_result` function within
`openai.py` to consider latest `params`,
- **Issue:** #8928
- **Dependencies:** -,
- **Tag maintainer:** -
- **Twitter handle:** [burkomr](https://twitter.com/burkomr)
<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17. -->
---------
Co-authored-by: Burak Ömür <burakomur@retorio.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Replace this entire comment with:
- **Description:** VertexAI models are now GA, moved away from using
preview ones from the SDK
- **Issue:** #13606
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
### Description:
Hey 👋🏽 this is a small docs example fix. Hoping it helps future developers who are working with Langchain.
### Problem:
Take a look at the original example code. You were not able to get the `dialogue_turn[0]` while it was a tuple.
Original code:
```python
def _format_chat_history(chat_history: List[Tuple]) -> str:
buffer = ""
for dialogue_turn in chat_history:
human = "Human: " + dialogue_turn[0]
ai = "Assistant: " + dialogue_turn[1]
buffer += "\n" + "\n".join([human, ai])
return buffer
```
In the original code you were getting this error:
```bash
human = "Human: " + dialogue_turn[0].content
~~~~~~~~~~~~~^^^
TypeError: 'HumanMessage' object is not subscriptable
```
### Solution:
The fix is to just for loop over the chat history and look to see if its a human or ai message and add it to the buffer.
**Description:**
Repair Wikipedia document loader `load_max_docs` and improve test
coverage.
**Issue:**
The Wikipedia document loader was not respecting the `load_max_docs`
paramater (not reported) and would always return a maximum of 10
documents. This is because the API wrapper (in `utilities/wikipedia.py`)
wasn't passing `top_k_results` to the underlying [Wikipedia
library](https://wikipedia.readthedocs.io/en/latest/code.html#module-wikipedia).
By default this library returns 10 results.
The default number of results for the document loader has been reduced
from 100 to 25. This is because loading 100 results takes a very long
time and is an inconvenient default. It should possibly be 10.
In addition, the documentation for the loader reported that there was a
hard limit (300) on the number of documents returned. In actuality 300
is the maximum Wikipedia query character length set by the API wrapper.
Tests have been added for the document loader (previously missing) and
to test the correct numbers of documents are being returned by each
class, both by default, and when overridden. Also repaired is the
`assert_docs` test which has been updated to correctly test for the
default metadata (which includes `source` in recent releases).
**Dependencies:**
nil
**Tag maintainer:**
@leo-gan
**Twitter handle:**
@queenvictoria
### **Description:**
Previously `python_repl` was a built-in tool, but now it has been moved
to `langchain_experimental`.
When I use `load_tools` I get an error:
```python
In [1]: from langchain.agents import load_tools
In [2]: load_tools(["python_repl"])
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[2], line 1
----> 1 load_tools(["python_repl"])
File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:530, in load_tools(tool_names, llm, callbacks, **kwargs)
528 tool_names.extend(requests_method_tools)
529 elif name in _BASE_TOOLS:
--> 530 tools.append(_BASE_TOOLS[name]())
531 elif name in _LLM_TOOLS:
532 if llm is None:
File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:84, in _get_python_repl()
83 def _get_python_repl() -> BaseTool:
---> 84 raise ImportError(
85 "This tool has been moved to langchain experiment. "
86 "This tool has access to a python REPL. "
87 "For best practices make sure to sandbox this tool. "
88 "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md "
89 "To keep using this code as is, install langchain experimental and "
90 "update relevant imports replacing 'langchain' with 'langchain_experimental'"
91 )
ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental'
```
In this case, it will be very confusing. I think it is no longer a
built-in tool now, so it can be removed from `_BASE_TOOLS`
### **Issue:**
https://github.com/langchain-ai/langchain/issues/13858,
https://github.com/langchain-ai/langchain/issues/13859,
https://github.com/langchain-ai/langchain/issues/13856
### **Twitter handle:**
[lin_bob57617](https://twitter.com/lin_bob57617)
The `integrations/vectorstores/matchingengine.ipynb` example has the
"Google Vertex AI Vector Search" title. This place this Title in the
wrong order in the ToC (it is sorted by the file name).
- Renamed `integrations/vectorstores/matchingengine.ipynb` into
`integrations/vectorstores/google_vertex_ai_vector_search.ipynb`.
- Updated a correspondent comment in docstring
- Rerouted old URL to a new URL
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
It was :
`from langchain.schema.prompts import BasePromptTemplate`
but because of the breaking change in the ns, it is now
`from langchain.schema.prompt_template import BasePromptTemplate`
This bug prevents building the API Reference for the langchain_experimental
Addressed this issue with the top menu: It allocates too much space. If the screen is small, then the top menu items are split into two lines and look unreadable.
Another issue is with several top menu items: "Chat our docs" and "Also by LangChain". They are compound of several words which also hurts readability. The top menu items should be 1-word size.
Updates:
- "Chat our docs" -> "Chat" (the meaning is clean after clicking/opening the item)
- "Also by LangChain" -> "🦜️🔗"
- "🦜️🔗" moved before "Chat" item. This new item is partially copied from the first left item, the "🦜️🔗 LangChain". This design (with two 🦜️🔗 elements, visually splits the top menu into two parts. The first item in each part holds the 🦜️🔗 symbols and, when we click the second 🦜️🔗 item, it opens the drop-down menu. So, we've got two visually similar parts, which visually split the top menu on the right side: the LangChain Docs (and Doc-related items) and the lift side: other LangChain.ai (company) products/docs.
There are the following main changes in this PR:
1. Rewrite of the DocugamiLoader to not do any XML parsing of the DGML
format internally, and instead use the `dgml-utils` library we are
separately working on. This is a very lightweight dependency.
2. Added MMR search type as an option to multi-vector retriever, similar
to other retrievers. MMR is especially useful when using Docugami for
RAG since we deal with large sets of documents within which a few might
be duplicates and straight similarity based search doesn't give great
results in many cases.
We are @docugami on twitter, and I am @tjaffri
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
- **Description:** Adds a retriever implementation for [Knowledge Bases
for Amazon Bedrock](https://aws.amazon.com/bedrock/knowledge-bases/), a
new service announced at AWS re:Invent, shortly before this PR was
opened. This depends on the `bedrock-agent-runtime` service, which will
be included in a future version of `boto3` and of `botocore`. We will
open a follow-up PR documenting the minimum required versions of `boto3`
and `botocore` after that information is available.
- **Issue:** N/A
- **Dependencies:** `boto3>=1.33.2, botocore>=1.33.2`
- **Tag maintainer:** @baskaryan
- **Twitter handles:** `@pjain7` `@dead_letter_q`
This PR includes a documentation notebook under
`docs/docs/integrations/retrievers`, which I (@dlqqq) have verified
independently.
EDIT: `bedrock-agent-runtime` service is now included in
`boto3>=1.33.2`:
5cf793f493
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Addressing incorrect order being sent to callbacks / tracers, due to the
nature of threading
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Add arg to omit streamed_output list, in cases where final_output is
enough this saves bandwidth
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This PR rearranges the docstring for the `AstraDB` vector store class so
as to have all useful information in the _class_ docstring for ease of
reading.
(incidentally, due to an oversight, the docstring that was in the
constructor ended up buried below some lines of code, thereby
disappearing altogether from accessibility. Apologies.)
- **Description:** Updates to `AnthropicFunctions` to be compatible with
the OpenAI `function_call` functionality.
- **Issue:** The functionality to indicate `auto`, `none` and a forced
function_call was not completely implemented in the existing code.
- **Dependencies:** None
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed.
- **Twitter handle:** None
I have specifically tested this functionality via AWS Bedrock with the
Claude-2 and Claude-Instant models.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** dead link replacement
- **Issue:** no open issue
**Note:**
Hi langchain team,
Sorry to open a PR for this concern but we realized that one of the
links present in the documentation booklet was broken 😄
- **Description:** We are adding functionality to extract message
content from the `attributedBody` field of the database, in case the
content is not in the `text` field.
- **Issue:** Closes#13326 and #10680
- **Dependencies:** None.
- **Tag maintainer:** @eyurtsev, @hwchase17
---------
Co-authored-by: onotate <johnp.pham@mail.utoronto.ca>
- **Description:** Reduce image asset file size used in documentation by
running them via lossless image optimization
([tinypng](https://www.npmjs.com/package/tinypng-cli) was used in this
case). Images wider than 1916px (the maximum width of an image displayed
in documentation) where downsized.
- **Issue:** No issue is created for this, but the large image file
assets caused slow documentation load times
- **Dependencies:** No dependencies affected
- **Description:** Previously `MarkdownHeaderTextSplitter` did not
consider tilde-fenced code blocks
(https://spec.commonmark.org/0.30/#fenced-code-blocks). This PR fixes
that.
````md
# Bug caused by previous implementation:
~~~py
foo()
# This is a comment that would be considered header
bar()
~~~
````
- **Tag maintainer:** @baskaryan
Several bug fixes:
- emails: instead of `bcc` the `cc` is used.
- errors in the truncation descriptions
- no truncation of the `message_search`
Several updates:
- generalized UTC format
- truncation limit can be changed now in _call()
Fixes#13407.
This workaround consists in letting the RunnableLambda create its
self.afunc from its self.func when self.afunc is not provided; the
change has no dependency.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
```
---- chunk 1
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]}
---- chunk 2
{'messages': [FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search')],
'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”")]}
---- chunk 3
{'actions': [AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]}
---- chunk 4
{'messages': [FunctionMessage(content='25 years', name='Search')],
'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years')]}
---- chunk 5
{'actions': [AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})]}
---- chunk 6
{'messages': [FunctionMessage(content='Answer: 3.991298452658078', name='Calculator')],
'steps': [AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
---- chunk 7
{'messages': [AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
'power is approximately 3.99.'}
---- final
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]),
AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]),
AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}}),
FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search'),
AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}}),
FunctionMessage(content='25 years', name='Search'),
AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}}),
FunctionMessage(content='Answer: 3.991298452658078', name='Calculator'),
AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
'power is approximately 3.99.',
'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”"),
AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years'),
AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
```
- **Description:** Existing model used for Prompt Injection is quite
outdated but we fine-tuned and open-source a new model based on the same
model deberta-v3-base from Microsoft -
[laiyer/deberta-v3-base-prompt-injection](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection).
It supports more up-to-date injections and less prone to
false-positives.
- **Dependencies:** No
- **Tag maintainer:** -
- **Twitter handle:** @alex_yaremchuk
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** The experimental package needs to be compatible with
the usage of importing agents
For example, if i use `from langchain.agents import
create_pandas_dataframe_agent`, running the program will prompt the
following information:
```
Traceback (most recent call last):
File "/Users/dongwm/test/main.py", line 1, in <module>
from langchain.agents import create_pandas_dataframe_agent
File "/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 87, in __getattr__
raise ImportError(
ImportError: create_pandas_dataframe_agent has been moved to langchain experimental. See https://github.com/langchain-ai/langchain/discussions/11680 for more information.
Please update your import statement from: `langchain.agents.create_pandas_dataframe_agent` to `langchain_experimental.agents.create_pandas_dataframe_agent`.
```
But when I changed to `from langchain_experimental.agents import
create_pandas_dataframe_agent`, it was actually wrong:
```python
Traceback (most recent call last):
File "/Users/dongwm/test/main.py", line 2, in <module>
from langchain_experimental.agents import create_pandas_dataframe_agent
ImportError: cannot import name 'create_pandas_dataframe_agent' from 'langchain_experimental.agents' (/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain_experimental/agents/__init__.py)
```
I should use `from langchain_experimental.agents.agent_toolkits import
create_pandas_dataframe_agent`. In order to solve the problem and make
it compatible, I added additional import code to the
langchain_experimental package. Now it can be like this Used `from
langchain_experimental.agents import create_pandas_dataframe_agent`
- **Twitter handle:** [lin_bob57617](https://twitter.com/lin_bob57617)
- **Description:** Adds a tqdm progress bar to OllamaEmbeddings when
embedding a list.
- **Issue:** Related to #13637, but extended to Ollama.
- **Dependencies:** `tqdm` made a necessary dependency.
Thanks to @ugm2 for helping identify a common problem. Embeddings take a
very long time to finish on local machines, and require a progress bar
to help identify if one should even attempt the workload.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adding rag-opensearch template.
---------
Signed-off-by: kalyanr <kalyan.ben10@live.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Current docs for adapters are in the `Guides/Adapters which is not a
good place.
- moved Adapters into `Integratons/Components/Adapters/
- simplified the OpenAI adapter notebook
- rerouted the old OpenAI adapter page URL to a new one.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Added a line to pass the tenant parameter to
add_data_object
- **Issue:** An extra line added from the fix for #9956
- **Dependencies:** n/a
- **Tag maintainer:** @baskaryan
Tested locally, works as expected with the line change.
---------
Co-authored-by: Simon Dai <simon6752@gmail.com>
Description: Some Elastic indexes do not return a 'metadata' field in
'_source'. However, prior to this PR, the code assumed there always is a
'metadata' field. This PR adds support for cases where the field is
missing by adding it manually.
Issue: #13869
**Description:**
This PR adds Databricks Vector Search as a new vector store in
LangChain.
- [x] Add `DatabricksVectorSearch` in `langchain/vectorstores/`
- [x] Unit tests
- [x] Add
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)
as a new optional dependency
We ran the following checks:
- `make format` passed ✅
- `make lint` failed but the failures were caused by other files
+ Files touched by this PR passed the linter ✅
- `make test` passed ✅
- `make coverage` failed but the failures were caused by other files.
Tests added by or related to this PR all passed
+ langchain/vectorstores/databricks_vector_search.py test coverage 94% ✅
- `make spell_check` passed ✅
The example notebook and updates to the [provider's documentation
page](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/providers/databricks.md)
will be added later in a separate PR.
**Dependencies:**
Optional dependency:
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The cookbook had some code to upload files, and wait for the processing
to finish.
This code is now moved to the `docugami` library so removing from the
cookbook to simplify.
Thanks @rlancemartin for suggesting this when working on evals.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
This pull request addresses an issue found in the example code within
the docstring of `libs/core/langchain_core/runnables/passthrough.py`
The original code snippet caused a `NameError` due to the missing import
of `RunnableLambda`. The error was as follows:
```
12 return "completion"
13
---> 14 chain = RunnableLambda(fake_llm) | {
15 'original': RunnablePassthrough(), # Original LLM output
16 'parsed': lambda text: text[::-1] # Parsing logic
NameError: name 'RunnableLambda' is not defined
```
To resolve this, I have modified the example code to include the
necessary import statement for `RunnableLambda`. Additionally, I have
adjusted the indentation in the code snippet to ensure consistency and
readability.
The modified code now successfully defines and utilizes
`RunnableLambda`, ensuring that users referencing the docstring will
have a functional and clear example to follow.
There are no related GitHub issues for this particular change.
Modified Code:
```python
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.runnables import RunnableLambda
runnable = RunnableParallel(
origin=RunnablePassthrough(),
modified=lambda x: x+1
)
runnable.invoke(1) # {'origin': 1, 'modified': 2}
def fake_llm(prompt: str) -> str: # Fake LLM for the example
return "completion"
chain = RunnableLambda(fake_llm) | {
'original': RunnablePassthrough(), # Original LLM output
'parsed': lambda text: text[::-1] # Parsing logic
}
chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'}
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Added a retriever for the Outline API to ask
questions on knowledge base
- **Issue:** resolves#11814
- **Dependencies:** None
- **Tag maintainer:** @baskaryan
- **Description:**
I encountered an issue while running the existing sample code on the
page https://python.langchain.com/docs/modules/agents/how_to/agent_iter
in an environment with Pydantic 2.0 installed. The following error was
triggered:
```python
ValidationError Traceback (most recent call last)
<ipython-input-12-2ffff2c87e76> in <cell line: 43>()
41
42 tools = [
---> 43 Tool(
44 name="GetPrime",
45 func=get_prime,
2 frames
/usr/local/lib/python3.10/dist-packages/pydantic/v1/main.py in __init__(__pydantic_self__, **data)
339 values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
340 if validation_error:
--> 341 raise validation_error
342 try:
343 object_setattr(__pydantic_self__, '__dict__', values)
ValidationError: 1 validation error for Tool
args_schema
subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)
```
I have made modifications to the example code to ensure it functions
correctly in environments with Pydantic 2.0.
- **Description:** Simple change, I just added title metadata to
GoogleDriveLoader for optional File Loaders
- **Dependencies:** no dependencies
- **Tag maintainer:** @hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR provides idiomatic implementations for the exact-match and the
semantic LLM caches using Astra DB as backend through the database's
HTTP JSON API. These caches require the `astrapy` library as dependency.
Comes with integration tests and example usage in the `llm_cache.ipynb`
in the docs.
@baskaryan this is the Astra DB counterpart for the Cassandra classes
you merged some time ago, tagging you for your familiarity with the
topic. Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR adds a chat message history component that uses Astra DB for
persistence through the JSON API.
The `astrapy` package is required for this class to work.
I have added tests and a small notebook, and updated the relevant
references in the other docs pages.
(@rlancemartin this is the counterpart of the Cassandra equivalent class
you so helpfully reviewed back at the end of June)
Thank you!
- **Description:** This commit fixed the problem that Redis vector store
will change the value of a metadata from 0 to empty when saving the
document, which should be an un-intended behavior.
- **Issue:** N/A
- **Dependencies:** N/A
**Description:** Currently, if we pass in a ToolMessage back to the
chain, it crashes with error
`Got unsupported message type: `
This fixes it.
Tested locally
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** BaseStringMessagePromptTemplate.from_template was
passing the value of partial_variables into cls(...) via **kwargs,
rather than passing it to PromptTemplate.from_template. Which resulted
in those *partial_variables being* lost and becoming required
*input_variables*.
Co-authored-by: Josep Pon Farreny <josep.pon-farreny@siemens.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fix some circular deps:
- move PromptValue into top level module bc both PromptTemplates and
OutputParsers import
- move tracer context vars to `tracers.context` and import them in
functions in `callbacks.manager`
- add core import tests
Adds a cookbook for semi-structured RAG via Docugami. This follows the
same outline as the semi-structured RAG with Unstructured cookbook:
https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb
The main change is this cookbook uses Docugami instead of Unstructured
to find text and tables, and shows how XML markup in the output helps
with retrieval and generation.
We are \@docugami on twitter, I am \@tjaffri
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
- **Description:** We need to update the Dockerfile for templates to
also copy your README.md. This is because poetry requires that a readme
exists if it is specified in the pyproject.toml
Changes:
- remove langchain_core/schema since no clear distinction b/n schema and
non-schema modules
- make every module that doesn't end in -y plural
- where easy have 1-2 classes per file
- no more than one level of nesting in directories
- only import from top level core modules in langchain
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** fix a bug that prevented as_retriever() in Vectara to
use the desired input arguments
- **Issue:** as_retriever did not pass the arguments properly
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ofermend
I encountered this during summarization with VertexAI. I was receiving
an INVALID_ARGUMENT error, as it was trying to send a list of about
17000 single characters.
The [count_tokens
method](https://github.com/googleapis/python-aiplatform/blob/main/vertexai/language_models/_language_models.py#L658)
made available by Google takes in a list of prompts. It does not fail
for small texts, but it does for longer documents because the argument
list will be exceeding Googles allowed limit. Enforcing the list type
makes it work successfully.
This change will cast the input text to count to a list of that single
text so that the input format is always correct.
[Twitter](https://www.x.com/stijn_tratsaert)
- **Description:** ERNIE-Bot-Chat-4 Large Language Model adds the
ability of `Function Calling` by passing parameters through the
`functions` parameter in the request. To simplify function calling for
ERNIE-Bot-Chat-4, the `create_ernie_fn_chain()` function has been added.
The definition and usage of the `create_ernie_fn_chain()` function is
similar to that of the `create_openai_fn_chain()` function.
Examples as the follows:
```
import json
from langchain.chains.ernie_functions import (
create_ernie_fn_chain,
)
from langchain.chat_models import ErnieBotChat
from langchain.prompts import ChatPromptTemplate
def get_current_news(location: str) -> str:
"""Get the current news based on the location.'
Args:
location (str): The location to query.
Returs:
str: Current news based on the location.
"""
news_info = {
"location": location,
"news": [
"I have a Book.",
"It's a nice day, today."
]
}
return json.dumps(news_info)
def get_current_weather(location: str, unit: str="celsius") -> str:
"""Get the current weather in a given location
Args:
location (str): location of the weather.
unit (str): unit of the tempuature.
Returns:
str: weather in the given location.
"""
weather_info = {
"location": location,
"temperature": "27",
"unit": unit,
"forecast": ["sunny", "windy"],
}
return json.dumps(weather_info)
llm = ErnieBotChat(model_name="ERNIE-Bot-4")
prompt = ChatPromptTemplate.from_messages(
[
("human", "{query}"),
]
)
chain = create_ernie_fn_chain([get_current_weather, get_current_news], llm, prompt, verbose=True)
res = chain.run("北京今天的新闻是什么?")
print(res)
```
The running results of the above program are shown below:
```
> Entering new LLMChain chain...
Prompt after formatting:
Human: 北京今天的新闻是什么?
> Finished chain.
{'name': 'get_current_news', 'thoughts': '用户想要知道北京今天的新闻。我可以使用get_current_news工具来获取这些信息。', 'arguments': {'location': '北京'}}
```
- **Description:** during search with DeepLake some people are facing
backwards compatibility issues, this PR fixes it by making search
accessible for the older datasets
---------
Co-authored-by: adolkhan <adilkhan.sarsen@alumni.nu.edu.kz>
- **Description:**
- Fixes a `key_prefix` bug where passing it in on
`Redis.from_existing(...)` did not work properly. Updates doc strings
accordingly.
- Updates Redis filter classes logic with best practices on typing,
string formatting, and handling "empty" filters.
- Fixes a bug that would prevent multiple tag filters from being applied
together in some scenarios.
- Added a whole new filter unit testing module. Also updated code
formatting for a number of modules that were failing the `make`
commands.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @tchutch94
- **Description:** Fix typo in MongoDB memory docs
- **Tag maintainer:** @eyurtsev
<!-- Thank you for contributing to LangChain!
- **Description:** Fix typo in MongoDB memory docs
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** @baskaryan
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
In the `FORMAT_INSTRUCTIONS` template, 4 curly braces (escaping) are
used to get single curly brace after formatting:
```
"{{{ ... }}}}" -> format_instructions.format() -> "{{ ... }}" -> template.format() -> "{ ... }".
```
Tool's `args_schema` string contains single braces `{ ... }`, and is
also transformed to `{{{{ ... }}}}` form. But this is not really correct
since there is only one `format()` call:
```
"{{{{ ... }}}}" -> template.format() -> "{{ ... }}".
```
As a result we get double curly braces in the prompt:
````
Respond to the human as helpfully and accurately as possible. You have access to the following tools:
foo: Test tool FOO, args: {{'tool_input': {{'type': 'string'}}}} # <--- !!!
...
Provide only ONE action per $JSON_BLOB, as shown:
```
{
"action": $TOOL_NAME,
"action_input": $INPUT
}
```
````
This PR fixes curly braces escaping in the `args_schema` to have single
braces in the final prompt:
````
Respond to the human as helpfully and accurately as possible. You have access to the following tools:
foo: Test tool FOO, args: {'tool_input': {'type': 'string'}} # <--- !!!
...
Provide only ONE action per $JSON_BLOB, as shown:
```
{
"action": $TOOL_NAME,
"action_input": $INPUT
}
```
````
---------
Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
Hi 👋 We are working with Llama2 on Bedrock, and would like to add it to
Langchain. We saw a [pull
request](https://github.com/langchain-ai/langchain/pull/13322) to add it
to the `llm.Bedrock` class, but since it concerns a chat model, we would
like to add it to `BedrockChat` as well.
- **Description:** Add support for Llama2 to `BedrockChat` in
`chat_models`
- **Issue:** the issue # it fixes (if applicable)
[#13316](https://github.com/langchain-ai/langchain/issues/13316)
- **Dependencies:** any dependencies required for this change `None`
- **Tag maintainer:** /
- **Twitter handle:** `@SimonBockaert @WouterDurnez`
---------
Co-authored-by: wouter.durnez <wouter.durnez@showpad.com>
Co-authored-by: Simon Bockaert <simon.bockaert@showpad.com>
- **Description:** This change adds an agent to the Azure Cognitive
Services toolkit for identifying healthcare entities
- **Dependencies:** azure-ai-textanalytics (Optional)
---------
Co-authored-by: James Beck <James.Beck@sa.gov.au>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hi!
This short PR aims at:
* Fixing `OpenAIEmbeddings`' check on `chunk_size` when used with Azure
OpenAI (thus with openai < 1.0). Azure OpenAI embeddings support at most
16 chunks per batch, I believe we are supposed to take the min between
the passed value/default value and 16, not the max - which, I suppose,
was introduced by accident while refactoring the previous version of
this check from this other PR of mine: #10707
* Porting this fix to the newest class (`AzureOpenAIEmbeddings`) for
openai >= 1.0
This fixes#13539 (closed but the issue persists).
@baskaryan @hwchase17
- **Description:** There are several mistakes in the sample code in the
doc-string of `DashVector` class, and this pull request aims to correct
them.
The correction code has been tested against latest version (at the time
of creation of this pull request) of: `langchain==0.0.336`
`dashvector==1.0.6` .
- **Issue:** No issue is created for this.
- **Dependencies:** No dependency is required for this change,
<!-- - **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below), -->
- **Twitter handle:** `zeyanglin`
<!-- Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** AstraDB is going to deprecate the `$similarity`
projection property in favor of the ´includeSimilarity´ option flag. I
moved all the queries to the new format.
- **Tag maintainer:** @hemidactylus
- **Twitter handle:** nicoloboschi
Added a `search_kwargs` field to BingSearchAPIWrapper in
`bing_search.py,` enabling users to include extra keyword arguments in
Bing search queries. This update, like specifying language preferences,
adds more customization to searches. The `search_kwargs` seamlessly
merge with standard parameters in `_bing_search_results` method.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Fix Astra integration tests that are failing. The
`delete` always return True as the deletion is successful if no errors
are thrown. I aligned the test to verify this behaviour
- **Tag maintainer:** @hemidactylus
- **Twitter handle:** nicoloboschi
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The issue was accuring because of `openai` update in Completions. its
not accepting `api_key` and 'api_base' args.
The fix is we check for the openai version and if ats v1 then remove
these keys from args before passing them to `Compilation.create(...)`
when sending from `VLLMOpenAI`
Fixed: #13507
@eyu
@efriis
@hwchase17
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** In this pull request, we address an issue related to
assigning a schema to the SQLDatabase class when utilizing an Oracle
database. The current implementation encounters a bug where, upon
attempting to execute a query, the alter session parse is not
appropriately defined for Oracle, leading to an error,
- **Issue:** #7928,
- **Dependencies:** No dependencies,
- **Tag maintainer:** @baskaryan,
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** This change allows for the `MWDumpLoader` to load all
namespaces including custom by default instead of only loading the
[default
namespaces](https://www.mediawiki.org/wiki/Help:Namespaces#Localisation).
- **Tag maintainer:** @hwchase17
**Description:**
This commit adds embedchain retriever along with tests and docs.
Embedchain is a RAG framework to create data pipelines.
**Twitter handle:**
- [Taranjeet's twitter](https://twitter.com/taranjeetio) and
[Embedchain's twitter](https://twitter.com/embedchain)
**Reviewer**
@hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Enhance the functionality of YoutubeLoader to enable the translation of
available transcripts by refining the existing logic.
**Issue:**
Encountering a problem with YoutubeLoader (#13523) where the translation
feature is not functioning as expected.
Tag maintainers/contributors who might be interested:
@eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
BUG: langchain.agents.openai_assistant has a reference as
`from langchain_experimental.openai_assistant.base import
OpenAIAssistantRunnable`
should be
`from langchain.agents.openai_assistant.base import
OpenAIAssistantRunnable`
This prevents building of the API Reference docs
## Update 2023-09-08
This PR now supports further models in addition to Lllama-2 chat models.
See [this comment](#issuecomment-1668988543) for further details. The
title of this PR has been updated accordingly.
## Original PR description
This PR adds a generic `Llama2Chat` model, a wrapper for LLMs able to
serve Llama-2 chat models (like `LlamaCPP`,
`HuggingFaceTextGenInference`, ...). It implements `BaseChatModel`,
converts a list of chat messages into the [required Llama-2 chat prompt
format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) and
forwards the formatted prompt as `str` to the wrapped `LLM`. Usage
example:
```python
# uses a locally hosted Llama2 chat model
llm = HuggingFaceTextGenInference(
inference_server_url="http://127.0.0.1:8080/",
max_new_tokens=512,
top_k=50,
temperature=0.1,
repetition_penalty=1.03,
)
# Wrap llm to support Llama2 chat prompt format.
# Resulting model is a chat model
model = Llama2Chat(llm=llm)
messages = [
SystemMessage(content="You are a helpful assistant."),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template("{text}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = LLMChain(llm=model, prompt=prompt, memory=memory)
# use chat model in a conversation
# ...
```
Also part of this PR are tests and a demo notebook.
- Tag maintainer: @hwchase17
- Twitter handle: `@mrt1nz`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Added a method `fetch_valid_documents` to
`WebResearchRetriever` class that will test the connection for every url
in `new_urls` and remove those that raise a `ConnectionError`.
- **Issue:** [Previous
PR](https://github.com/langchain-ai/langchain/pull/13353),
- **Dependencies:** None,
- **Tag maintainer:** @efriis
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
## Description
This PR adds an option to allow unsigned requests to the Neptune
database when using the `NeptuneGraph` class.
```python
graph = NeptuneGraph(
host='<my-cluster>',
port=8182,
sign=False
)
```
Also, added is an option in the `NeptuneOpenCypherQAChain` to provide
additional domain instructions to the graph query generation prompt.
This will be injected in the prompt as-is, so you should include any
provider specific tags, for example `<instructions>` or `<INSTR>`.
```python
chain = NeptuneOpenCypherQAChain.from_llm(
llm=llm,
graph=graph,
extra_instructions="""
Follow these instructions to build the query:
1. Countries contain airports, not the other way around
2. Use the airport code for identifying airports
"""
)
```
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**
MongoDB drivers are used in various flavors and languages. Making sure
we exercise our due diligence in identifying the "origin" of the library
calls makes it best to understand how our Atlas servers get accessed.
The original notebook has the `faiss` title which is duplicated in
the`faiss.jpynb`. As a result, we have two `faiss` items in the
vectorstore ToC. And the first item breaks the searching order (it is
placed between `A...` items).
- I updated title to `Asynchronous Faiss`.
**Description/Issue:**
When OpenAI calls a function with no args, the args are `""` rather than
`"{}"`. Then `json.loads("")` blows up. This PR handles it correctly.
**Dependencies:** None
- Fixed titles for two notebooks. They were inconsistent with other
titles and clogged ToC.
- Added `Upstash` description and link
- Moved the authentication text up in the `Elasticsearch` nb, right
after package installation. It was on the end of the page which was a
wrong place.
This PR brings a few minor improvements to the docs, namely class/method
docstrings and the demo notebook.
- A note on how to control concurrency levels to tune performance in
bulk inserts, both in the class docstring and the demo notebook;
- Slightly increased concurrency defaults after careful experimentation
(still on the conservative side even for clients running on
less-than-typical network/hardware specs)
- renamed the DB token variable to the standardized
`ASTRA_DB_APPLICATION_TOKEN` name (used elsewhere, e.g. in the Astra DB
docs)
- added a note and a reference (add_text docstring, demo notebook) on
allowed metadata field names.
Thank you!
The current `integrations/document_loaders/` sidebar has the
`example_data` item, which is a menu with a single item: "Notebook".
It is happening because the `integrations/document_loaders/` folder has
the `example_data/notebook.md` file that is used to autogenerate the
above menu item.
- removed an example_data/notebook.md file. Docusaurus doesn't have
simple ways to fix this problem (to exclude folders/files from an
autogenerated sidebar). Removing this file didn't break any existing
examples, so this fix is safe.
Updated several notebooks:
- fixed titles which are inconsistent or break the ToC sorting order.
- added missed soruce descriptions and links
- fixed formatting
- the `SemaDB` notebook was placed in additional subfolder which breaks
the vectorstore ToC. I moved file up, removed this unnecessary
subfolder; updated the `vercel.json` with rerouting for the new URL
- Added SemaDB description and link
- improved text consistency
- Fixed the title of the notebook. It created an ugly ToC element as
`Activeloop DeepLake's DeepMemory + LangChain + ragas or how to get +27%
on RAG recall.`
- Added Activeloop description
- improved consistency in text
- fixed ToC (it was using HTML tagas that break left-side in-page ToC).
Now in-page ToC works
- Fixed headers (was more then 1 Titles)
- Removed security token value. It was OK to have it, because it is
temporary token, but the automatic security swippers raise warnings on
that.
- Added `ClickUp` service description and link.
…rnative LLMs until used
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
fix#13356
Add supports following properties for metadata to NotionDBLoader.
- `checkbox`
- `email`
- `number`
- `select`
There are no relevant tests for this code to be updated.
The `Integrations` site is hidden now.
I've added it into the `More` menu.
The name is `Integration Cards` otherwise, it is confused with the
`Integrations` menu.
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
- **Description:** Adds `limit_to_domains` param to the APIChain based
tools (open_meteo, TMDB, podcast_docs, and news_api)
- **Issue:** I didn't open an issue, but after upgrading to 0.0.328
using these tools would throw an error.
- **Dependencies:** N/A
- **Tag maintainer:** @baskaryan
**Note**: I included the trailing / simply because the docs here did
fc886cc303/docs/docs/use_cases/apis.ipynb (L246)
, but I checked the code and it is using `urlparse`. SoI followed the
docs since it comes down to stylee.
The `langchain` repo was being flagged for using vulnerable
dependencies, some of which were in this template's lockfile. Updating
to newer versions should fix that.
Just `poetry lock` and moving `langchain` to the latest version, in case
folks copy this template.
This resolves some vulnerable dependency alerts GitHub code scanning was
flagging.
My thought is that the ==version would prevent pip from finding the
package on regular [pypi.org](http://pypi.org/), so it would look at
[test.pypi.org](http://test.pypi.org/) for that. Otherwise it'll pull
package from [pypi.org](http://pypi.org/) (e.g. sub deps)
Right now, the cli release is failing because it's going to
test.pypi.org by default, so it finds this incorrect FASTAPI package
instead of the real one: https://test.pypi.org/project/FASTAPI/
The new ruff version fixed the blocking bugs, and I was able to fairly
easily us to a passing state: ruff fixed some issues on its own, I fixed
a handful by hand, and I added a list of narrowly-targeted exclusions
for files that are currently failing ruff rules that we probably should
look into eventually.
I went pretty lenient on the docs / cookbooks rules, allowing dead code
and such things. Perhaps in the future we may want to tighten the rules
further, but this is already a good set of checks that found real issues
and will prevent them going forward.
Hi,
this PR adds support for OpenAI API v1 for Azure OpenAI completion API.
@baskaryan @hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Bumps [pyarrow](https://github.com/apache/arrow) from 13.0.0 to 14.0.1.
<details>
<summary>Commits</summary>
<ul>
<li><a
href="ba53748361"><code>ba53748</code></a>
MINOR: [Release] Update versions for 14.0.1</li>
<li><a
href="529f3768fa"><code>529f376</code></a>
MINOR: [Release] Update .deb/.rpm changelogs for 14.0.1</li>
<li><a
href="b84bbcac64"><code>b84bbca</code></a>
MINOR: [Release] Update CHANGELOG.md for 14.0.1</li>
<li><a
href="f141709763"><code>f141709</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38607">GH-38607</a>:
[Python] Disable PyExtensionType autoload (<a
href="https://redirect.github.com/apache/arrow/issues/38608">#38608</a>)</li>
<li><a
href="5a37e74198"><code>5a37e74</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38431">GH-38431</a>:
[Python][CI] Update fs.type_name checks for s3fs tests (<a
href="https://redirect.github.com/apache/arrow/issues/38455">#38455</a>)</li>
<li><a
href="2dcee3f82c"><code>2dcee3f</code></a>
MINOR: [Release] Update versions for 14.0.0</li>
<li><a
href="297428cbf2"><code>297428c</code></a>
MINOR: [Release] Update .deb/.rpm changelogs for 14.0.0</li>
<li><a
href="3e9734f883"><code>3e9734f</code></a>
MINOR: [Release] Update CHANGELOG.md for 14.0.0</li>
<li><a
href="9f90995c8c"><code>9f90995</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/38332">GH-38332</a>:
[CI][Release] Resolve symlinks in RAT lint (<a
href="https://redirect.github.com/apache/arrow/issues/38337">#38337</a>)</li>
<li><a
href="bd61239a32"><code>bd61239</code></a>
<a
href="https://redirect.github.com/apache/arrow/issues/35531">GH-35531</a>:
[Python] C Data Interface PyCapsule Protocol (<a
href="https://redirect.github.com/apache/arrow/issues/37797">#37797</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/apache/arrow/compare/go/v13.0.0...go/v14.0.1">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/langchain-ai/langchain/network/alerts).
</details>
---------
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Predrag Gruevski <2348618+obi1kenobi@users.noreply.github.com>
Hey @rlancemartin, @eyurtsev ,
I did some minimal changes to the `ElasticVectorSearch` client so that
it plays better with existing ES indices.
Main changes are as follows:
1. You can pass the dense vector field name into `_default_script_query`
2. You can pass a custom script query implementation and the respective
parameters to `similarity_search_with_score`
3. You can pass functions for building page content and metadata for the
resulting `Document`
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
4. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @dev2049
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @dev2049
- Memory: @hwchase17
- Agents / Tools / Toolkits: @vowelparrot
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
hi!
This is pretty straight-forward: The sdist package does not contain the
license file (which is needed by e.g. conda) because the package is
built from the subdir and can't see the license.
I _copied_ the license but since I'm unfamiliar with the projects
direction, I'm not sure that's correct.
thanks!
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Fixes: #8207
Description:
Pinecone returns scores (not distances) with cosine similarity. The
values according to the docs are [-1, 1], although I could never
reproduce negative values.
This PR ensures that the score returned from Pinecone is preserved,
rather than inverted, so the most relevant documents can be filtered (eg
when using similarity thresholds)
I'll leave this as a draft PR as I couldn't run the tests (my pinecone
account might not be enough - some errors were being thrown around
namespaces) so hopefully someone who _can_ will pick this up.
Maintainers:
@rlancemartin, @eyurtsev
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Fixed a serialization issue in the add_texts method
of the Matching Engine Vector Store caused by a typo, leading to an
attempt to serialize the json module itself.
- **Issue:** #12154
- **Dependencies:** ./.
- **Tag maintainer:**
- **Description:** Refine Weaviate tutorial and add an example for
Retrieval-Augmented Generation (RAG)
- **Issue:** (not applicable),
- **Dependencies:** none
- **Tag maintainer:** @baskaryan <!--
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Twitter handle:** @helloiamleonie
Co-authored-by: Leonie <leonie@Leonies-MBP-2.fritz.box>
Due to the possibility of external inputs including UUIDs, there may be
additional values in **kwargs, while Weaviate's `__init__` method does
not support passing extra **kwarg parameters.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
When calling max_marginal_relevance_search from PGVector the filter
param is not carried over to max_marginal_relevance_search_by_vector
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Uses `endpoint_url` if provided with a boto3 session.
When running dynamodb locally, credentials are required even if invalid.
With this change, it will be possible to pass a boto3 session with
credentials and specify an endpoint_url
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Replace this entire comment with:
- **Description:** Add MyScaleWithoutJSON which allows user to wrap
columns into Document's Metadata
- **Tag maintainer:** @baskaryan
**Description**
Bumps the Momento dependency to the latest version and refactors the
usage of `SearchHit` in the Momento Vector Index (MVI) vector store
integration. This change is a one liner where we use the preferred
attribute `score` to read the query-document similarity instead of
`distance`. The latest versions of Momento clients will use this
attribute going forward.
**Dependencies**
Updated the Momento dependency to latest version.
**Tests**
💚 I re-ran the existing MVI integration tests
(`tests/integration_tests/vectorstores/test_momento_vector_index.py`)
and they pass.
**Review**
cc @baskaryan @eyurtsev
On the [Defining Custom
Tools](https://python.langchain.com/docs/modules/agents/tools/custom_tools)
page, there's a 'Subclassing the BaseTool class' paragraph under the
'Completely New Tools - String Input and Output' header. Also there's
another 'Subclassing the BaseTool' paragraph under no header, which I
think may belong to the 'Custom Structured Tools' header.
Another thing is, there's a 'Using the tool decorator' and a 'Using the
decorator' paragraph, I think should belong to 'Completely New Tools -
String Input and Output' and 'Custom Structured Tools' separately.
This PR moves those paragraphs to corresponding headers.
**Description**
the ollama api now supports passing system prompt and template directly
instead of modifying the model file , but the ollama integration in
langchain did not have this change updated . The update just adds these
two parameters to it ( there are 2 more parameters that are pending to
be updated, I was not sure about their utility wrt to langchain )
Refer :
8713ac23a8
**Issue** : None Applicable
**Dependencies** : None Changed
**Twitter handle** : https://twitter.com/violetto96
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
added Parallel Function Calling for Structured Data Extraction notebook
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
`_get_kwarg_value` function is useless, one can rely on python builtin
functionalities to do the exact same thing.
- **Description:** Removed `_get_kwarg_value`. Helps with code
readability.
- **Issue:** the issue # it fixes (if applicable),
- **Twitter handle:** @Guillem_96
Improve CSV reader which can't call .strip() on NoneType if there are
less cells in the row compared to the header
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:**
I have a CSV file as followed
```
headerA,headerB,headerC
v1A,v1B,v1C,
v2A,v2B
v3A,v3B,v3C
```
In this case, row 2 is missing a value, which results in reading a None
type. The strip() method can not be called on None, hence raising. In
this PR I am making the change to only call strip if the value if not
None.
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
We updated MyScale free knowledge base, where you can try your RAG with
36 million paragraphs from wikipedia and 2 million paragraphs from
ArXiv.
The pod has two tables
```sql
CREATE TABLE default.ChatArXiv (
`abstract` String,
`id` String,
`vector` Array(Float32),
`metadata` Object('JSON'),
`pubdate` DateTime,
`title` String,
`categories` Array(String),
`authors` Array(String),
`comment` String,
`primary_category` String,
VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'),
CONSTRAINT vec_len CHECK length(vector) = 768)
ENGINE = ReplacingMergeTree ORDER BY id;
CREATE TABLE wiki.Wikipedia (
`id` String,
`title` String,
`text` String,
`url` String,
`wiki_id` UInt64,
`views` Float32,
`paragraph_id` UInt64,
`langs` UInt32,
`emb` Array(Float32),
VECTOR INDEX emb_idx emb TYPE MSTG('metric_type=Cosine'),
CONSTRAINT emb_len CHECK length(emb) = 768)
ENGINE = ReplacingMergeTree ORDER BY id;
```
You can connect those two tables using credentials below (just the same
to the old one)
URL: `msc-4a9e710a.us-east-1.aws.staging.myscale.cloud`
Port: `443`
Username: `chatdata`
Password: `myscale_rocks`
It's FREE and you can also use it with
ChatData: https://github.com/myscale/ChatData
Retrieval-QA-Benchmark:
https://github.com/myscale/Retrieval-QA-Benchmark
... and also LangChain!
Request for review @baskaryan
**Description:** This is like the rag-conversation template in many
ways. What's different is:
- support for a timescale vector store.
- support for time-based filters.
- support for metadata filters.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Changed the fleet_context documentation to use
`context.download_embeddings()` from the latest release from our
package. More details here:
https://github.com/fleet-ai/context/tree/main#api
- **Issue:** n/a
- **Dependencies:** n/a
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @andrewthezhou
Added a Docusaurus Loader
Issue: #6353
I had to implement this for working with the Ionic documentation, and
wanted to open this up as a draft to get some guidance on building this
out further. I wasn't sure if having it be a light extension of the
SitemapLoader was in the spirit of a proper feature for the library --
but I'm grateful for the opportunities Langchain has given me and I'd
love to build this out properly for the sake of the community.
Any feedback welcome!
- **Description:** `AzureMLChatOnlineEndpoint` object from
langchain/chat_models/azureml_endpoint.py safe to print
without having any secrets included in raw format in the string
representation.
- **Issue:** #12165,
- **Tag maintainer:** @eyurtsev
---------
Co-authored-by: Faysal Bougamale <faysal.bougamale@horiba.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Adding documentation to the runnable.
- Documentation is not organized in the best way for the runnable; i.e.,
in
terms of LCEL vs. other standard methods, will follow up with more
edits.
**Description:** Removing the single quote wrapper around the table
names in the SQL agent toolkit.py file as it misleads the LLM into
querying against tables with single quotes around their names.
**Issue:** #7457
**Dependencies:** None
**Tag maintainer:** @hwchase17
**Twitter handle:** None
- Implement config_specs to include session_id
- Remove Runnable method and update notebook
- Add more details to notebook, eg. show input schema and config schema
before and after adding message history
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This commit fixes the issue that langchain.llms OpenAI completion
stopped working since the V1 openai client update.
Replace this entire comment with:
- **Description:** This PR fixes the issue [AttributeError: module
'openai' has no attribute
'Completion'](https://github.com/langchain-ai/langchain/issues/12967)
similar to
8e0cb2eb84
and https://github.com/langchain-ai/langchain/pull/12969,
- **Issue:** https://github.com/langchain-ai/langchain/issues/12967,
- **Dependencies:** `openai` v1.x.x client,
- **Tag maintainer:** @baskaryan,
- **Twitter handle:** @dosuken123
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This adds the response message as a document to the rag retriever so
users can choose to use this. Also drops document limit.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
We need to centralize the API we use to get the project name for our
tracers. This PR makes it so we always get this from a shared function
in the langsmith sdk.
## Dependencies
Upgraded langsmith from 0.52 to 0.62 to include the new API
`get_tracer_project`
- **Description:**
Recently Chroma rolled out a breaking change on the way we handle
embedding functions, in order to support multi-modal collections.
This broke the way LangChain's `Chroma` objects get created, because we
were passing the EF down into the Chroma collection:
https://docs.trychroma.com/migration#migration-to-0416---november-7-2023
However, internally, we are never actually using embeddings on the
chroma collection - LangChain's `Chroma` object calls it instead. Thus
we just don't pass an `embedding_function` to Chroma itself, which fixes
the issue.
- **Description:** The issue was not listing the proper import error for
amazon textract loader.
- **Issue:** Time wasted trying to figure out what to install...
(langchain docs don't list the dependency either)
- **Dependencies:** N/A
- **Tag maintainer:** @sbusso
- **Twitter handle:** @h9ste
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Astra DB Vector store integration
- **Description:** This PR adds a `VectorStore` implementation for
DataStax Astra DB using its HTTP API
- **Issue:** (no related issue)
- **Dependencies:** A new required dependency is `astrapy` (`>=0.5.3`)
which was added to pyptoject.toml, optional, as per guidelines
- **Tag maintainer:** I recently mentioned to @baskaryan this
integration was coming
- **Twitter handle:** `@rsprrs` if you want to mention me
This PR introduces the `AstraDB` vector store class, extensive
integration test coverage, a reworking of the documentation which
conflates Cassandra and Astra DB on a single "provider" page and a new,
completely reworked vector-store example notebook (common to the
Cassandra store, since parts of the flow is shared by the two APIs). I
also took care in ensuring docs (and redirects therein) are behaving
correctly.
All style, linting, typechecks and tests pass as far as the `AstraDB`
integration is concerned.
I could build the documentation and check it all right (but ran into
trouble with the `api_docs_build` makefile target which I could not
verify: `Error: Unable to import module
'plan_and_execute.agent_executor' with error: No module named
'langchain_experimental'` was the first of many similar errors)
Thank you for a review!
Stefano
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Correct naming for package in README
- **Issue:** README wasn't aligned with pyproject.toml, resulting in not
being able to install the rag-supabase package.
- **Tag maintainer:** @gregnr
Cohere released the new embedding API (Embed v3:
https://txt.cohere.com/introducing-embed-v3/) that treats document and
query embeddings differently. This PR updated the `CohereEmbeddings` to
use them appropriately. It also works with the old models.
Description: This PR masks API key secrets for the Nebula model from
Symbl.ai
Issue: #12165
Maintainer: @eyurtsev
---------
Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
* ChatAnyscale was missing coercion to SecretStr for anyscale api key
* The model inherits from ChatOpenAI so it should not force the openai
api key to be secret str until openai model has the same changes
https://github.com/langchain-ai/langchain/issues/12841
- **Description:** Remove text "LangChain currently does not support"
which appears to be vestigial leftovers from a previous change.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @baskaryan, @eyurtsev
- **Twitter handle:** thezanke
- **Description:** Noticed that the Hugging Face Pipeline documentation
was a bit out of date.
Updated with information about passing in a pipeline directly
(consistent with docstring) and a recent contribution of mine on adding
support for multi-gpu specifications with Accelerate in
21eeba075c
Qdrant was incorrectly calculating the cosine similarity and returning
`0.0` for the best match, instead of `1.0`. Internally Qdrant returns a
cosine score from `-1.0` (worst match) to `1.0` (best match), and the
current formula reflects it.
Possibility to pass on_artifacts to a conversation. It can be then
achieved by adding this way:
```python
result = agent.run(
input=message.text,
metadata={
"on_artifact": CALLBACK_FUNCTION
},
)
```
The line removed is not required as there are no other alternative
solutions above than that.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This patch fixes a spelling typo in message
within wikibase_agent.ipynb.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
This PR adds a self-querying template using Qdrant as a vector store.
The template uses an artificial dataset and was implemented in a way
that simplifies passing different components and choosing LLM and
embedding providers.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Calls uvicorn directly from cli:
Reload works if you define app by import string instead of object.
(was doing subprocess in order to get reloading)
Version bump to 0.0.14
Remove the need for [serve] for simplicity.
Readmes are updated in #12847 to avoid cluttering this PR
Previously we treated trace_on_chain_group as a command to always start
tracing. This is unintuitive (makes the function do 2 things), and makes
it harder to toggle tracing
**Description**
Removed confusing sentence.
Not clear what "both" was referring to. The two required components
mentioned previously? The two methods listed below?
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
When you use a MultiQuery it might be useful to use the original query
as well as the newly generated ones to maximise the changes to retriever
the correct document. I haven't created an issue, it seems a very small
and easy thing.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Description
Add a RAG template showcasing Momento Vector Index as a vector store.
Includes a project directory and README.
# **Twitter handle**
Tag the company @momentohq for a mention and @mlonml for the
contribution.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change adds a new template for simple RAG using the SingleStoreDB
vectorstore.
Twitter: @alexjpeng
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Correct number of elements in config list in
`batch()` and `abatch()` of `BaseLLM` in case `max_concurrency` is not
None.
- **Issue:** #12643
- **Twitter handle:** @akionux
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Zep now has the ability to search over chat history summaries. This PR
adds support for doing so. More here: https://blog.getzep.com/zep-v0-17/
@baskaryan @eyurtsev
…s present
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
### Enabling `device_map` in HuggingFacePipeline
For multi-gpu settings with large models, the
[accelerate](https://huggingface.co/docs/accelerate/usage_guides/big_modeling#using--accelerate)
library provides the `device_map` parameter to automatically distribute
the model across GPUs / disk.
The [Transformers
pipeline](3520e37e86/src/transformers/pipelines/__init__.py (L543))
enables users to specify `device` (or) `device_map`, and handles cases
(with warnings) when both are specified.
However, Langchain's HuggingFacePipeline only supports specifying
`device` when calling transformers which limits large models and
multi-gpu use-cases.
Additionally, the [default
value](8bd3ce59cd/libs/langchain/langchain/llms/huggingface_pipeline.py (L72))
of `device` is initialized to `-1` , which is incompatible with the
transformers pipeline when `device_map` is specified.
This PR addresses the addition of `device_map` as a parameter , and
solves the incompatibility of `device = -1` when `device_map` is also
specified.
An additional test has been added for this feature.
Additionally, some existing tests no longer work since
1. `max_new_tokens` has to be specified under `pipeline_kwargs` and not
`model_kwargs`
2. The GPT2 tokenizer raises a `ValueError: Pipeline with tokenizer
without pad_token cannot do batching`, since the `tokenizer.pad_token`
is `None` ([related
issue](https://github.com/huggingface/transformers/issues/19853) on the
transformers repo).
This PR handles fixing these tests as well.
Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
[The python
spec](https://docs.python.org/3/reference/datamodel.html#object.__getattr__)
requires that `__getattr__` throw `AttributeError` for missing
attributes but there are several places throwing `ImportError` in the
current code base. This causes a specific problem with `hasattr` since
it calls `__getattr__` then looks only for `AttributeError` exceptions.
At present, calling `hasattr` on any of these modules will raise an
unexpected exception that most code will not handle as `hasattr`
throwing exceptions is not expected.
In our case this is triggered by an exception tracker (Airbrake) that
attempts to collect the version of all installed modules with code that
looks like: `if hasattr(mod, "__version__"):`. With `HEAD` this is
causing our exception tracker to fail on all exceptions.
I only changed instances of unknown attributes raising `ImportError` and
left instances of known attributes raising `ImportError`. It feels a
little weird but doesn't seem to break anything.
- **Description:** Use all Google search results data in SerpApi.com
wrapper instead of the first one only
- **Tag maintainer:** @hwchase17
_P.S. `libs/langchain/tests/integration_tests/utilities/test_serpapi.py`
are not executed during the `make test`._
- **Description:**
Corrected a specific link within the documentation.
- **Issue:**
#12490
- **Dependencies:**
- **Tag maintainer:**
- **Twitter handle:**
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
It was passing in message instead of generation
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Cookbook showing how to incoporate RAG search within a postgreSQL
database using pgvector.
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Fixed a typo
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Fixed a typo on the code
- **Issue:** the issue # it fixes (if applicable),
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
* Restrict the chain to specific domains by default
* This is a breaking change, but it will fail loudly upon object
instantiation -- so there should be no silent errors for users
* Resolves CVE-2023-32786
* This is an opt-in feature, so users should be aware of risks if using
jinja2.
* Regardless we'll add sandboxing by default to jinja2 templates -- this
sandboxing is a best effort basis.
* Best strategy is still to make sure that jinja2 templates are only
loaded from trusted sources.
**Description:** Update `langchain.document_loaders.pdf.PyPDFLoader` to
store url in metadata (instead of a temporary file path) if user
provides a web path to a pdf
- **Issue:** Related to #7034; the reporter on that issue submitted a PR
updating `PyMuPDFParser` for this behavior, but it has unresolved merge
issues as of 20 Oct 2023 #7077
- In addition to `PyPDFLoader` and `PyMuPDFParser`, these other classes
in `langchain.document_loaders.pdf` exhibit similar behavior and could
benefit from an update: `PyPDFium2Loader`, `PDFMinerLoader`,
`PDFMinerPDFasHTMLLoader`, `PDFPlumberLoader` (I'm happy to contribute
to some/all of that, including assisting with `PyMuPDFParser`, if my
work is agreeable)
- The root cause is that the underlying pdf parser classes, e.g.
`langchain.document_loaders.parsers.pdf.PyPDFParser`, never receive
information about the url; the parsers receive a
`langchain.document_loaders.blob_loaders.blob`, which contains the pdf
contents and local file path, but not the url
- This update passes the web path directly to the parser since it's
minimally invasive and doesn't require further changes to maintain
existing behavior for local files... bigger picture, I'd consider
extending `blob` so that extra information like this can be
communicated, but that has much bigger implications on the codebase
which I think warrants maintainer input
- **Dependencies:** None
```python
# old behavior
>>> from langchain.document_loaders import PyPDFLoader
>>> loader = PyPDFLoader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': '/var/folders/w2/zx77z1cs01s1thx5dhshkd58h3jtrv/T/tmpfgrorsi5/tmp.pdf', 'page': 0}
# new behavior
>>> from langchain.document_loaders import PyPDFLoader
>>> loader = PyPDFLoader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': 'https://arxiv.org/pdf/1706.03762.pdf', 'page': 0}
```
- **Description:** #12273 's suggestion PR
Like other PDFLoader, loading pdf per each page and giving page
metadata.
- **Issue:** #12273
- **Twitter handle:** @blue0_0hope
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This will allow you create the schema beforehand. The check was failing
and preventing importing into existing classes.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** This template creates an agent that transforms a single
LLM into a cognitive synergist by engaging in multi-turn
self-collaboration with multiple personas.
**Tag maintainer:** @hwchase17
---------
Co-authored-by: Sayandip Sarkar <sayandip.sarkar@skypointcloud.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
PyPI trusted publishing wants to know which workflow is expected to do
the publish. We always want to publish from the same workflow, so we're
making `_test_release.yml` the only workflow that publishes to Test
PyPI.
This follows the principle of least privilege. Our `poetry build` step
doesn't need, and shouldn't get, access to our GitHub OIDC capability.
This is the same structure as I used in the already-merged PR for
refactoring the regular PyPI release workflow: #12578.
- a few instructions in the readme (load_documents -> ingest.py)
- added docker run command for local elastic
- adds input type definition to render playground properly
Prior to this PR, `ruff` was used only for linting and not for
formatting, despite the names of the commands. This PR makes it be used
for both linting code and autoformatting it.
This input key was missed in the last update PR:
https://github.com/langchain-ai/langchain/pull/7391
The input/output formats are intended to be like this:
```
{"inputs": [<prompt>]}
{"outputs": [<output_text>]}
```
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Matvey Arye <mat@timescale.com>
## Description
This PR adds support for
[lm-format-enforcer](https://github.com/noamgat/lm-format-enforcer) to
LangChain.

The library is similar to jsonformer / RELLM which are supported in
Langchain, but has several advantages such as
- Batching and Beam search support
- More complete JSON Schema support
- LLM has control over whitespace, improving quality
- Better runtime performance due to only calling the LLM's generate()
function once per generate() call.
The integration is loosely based on the jsonformer integration in terms
of project structure.
## Dependencies
No compile-time dependency was added, but if `lm-format-enforcer` is not
installed, a runtime error will occur if it is trying to be used.
## Tests
Due to the integration modifying the internal parameters of the
underlying huggingface transformer LLM, it is not possible to test
without building a real LM, which requires internet access. So, similar
to the jsonformer and RELLM integrations, the testing is via the
notebook.
## Twitter Handle
[@noamgat](https://twitter.com/noamgat)
Looking forward to hearing feedback!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR addresses what seems like a unnecessary Python version
restriction in the pyroject.toml specs within both Cassandra (/Astra DB)
templates. With "^3.11" I got some version incompatibilities with the
latest "langchain add [...]" commands, so these are now relaxed in line
with the other templates I could inspect.
Incidentally, in the "entomology" template, the need for an explicit
"setup" step for the user to carry on has been removed, replaced by a
check-and-execute-if-necessary instruction on app startup.
Thank you for your attention!
Best to review one commit at a time, since two of the commits are 100%
autogenerated changes from running `ruff format`:
- Install and use `ruff format` instead of black for code formatting.
- Output of `ruff format .` in the `langchain` package.
- Use `ruff format` in experimental package.
- Format changes in experimental package by `ruff format`.
- Manual formatting fixes to make `ruff .` pass.
I always take 20-30 seconds to re-discover where the
`convert_to_openai_function` wrapper lives in our codebase. Chat
langchain [has no
clue](https://smith.langchain.com/public/3989d687-18c7-4108-958e-96e88803da86/r)
what to do either. There's the older `create_openai_fn_chain` , but we
haven't been recommending it in LCEL. The example we show in the
[cookbook](https://python.langchain.com/docs/expression_language/how_to/binding#attaching-openai-functions)
is really verbose.
General function calling should be as simple as possible to do, so this
seems a bit more ergonomic to me (feel free to disagree). Another option
would be to directly coerce directly in the class's init (or when
calling invoke), if provided. I'm not 100% set against that. That
approach may be too easy but not simple. This PR feels like a decent
compromise between simple and easy.
```
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
class Category(str, Enum):
"""The category of the issue."""
bug = "bug"
nit = "nit"
improvement = "improvement"
other = "other"
class IssueClassification(BaseModel):
"""Classify an issue."""
category: Category
other_description: Optional[str] = Field(
description="If classified as 'other', the suggested other category"
)
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI().bind_functions([IssueClassification])
llm.invoke("This PR adds a convenience wrapper to the bind argument")
# AIMessage(content='', additional_kwargs={'function_call': {'name': 'IssueClassification', 'arguments': '{\n "category": "improvement"\n}'}})
```
- Prefer lambda type annotations over inferred dict schema
- For sequences that start with RunnableAssign infer seq input type as
"input type of 2nd item in sequence - output type of runnable assign"
- **Description:**
Before:
`
To install modules needed for the common LLM providers, run:
`
After:
`
To install modules needed for the common LLM providers, run the
following command. Please bear in mind that this command is exclusively
compatible with the `bash` shell:
`
> This is required for the user so that the user will know if this
command is compatible with `zsh` or not.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Replace this entire comment with:
-Add MultiOn close function and update key value and add async
functionality
- solved the key value TabId not found.. (updated to use latest key
value)
@hwchase17
**Description:** Textract PDF Loader generating linearized output,
meaning it will replicate the structure of the source document as close
as possible based on the features passed into the call (e. g. LAYOUT,
FORMS, TABLES). With LAYOUT reading order for multi-column documents or
identification of lists and figures is supported and with TABLES it will
generate the table structure as well. FORMS will indicate "key: value"
with columms.
- **Issue:** the issue fixes#12068
- **Dependencies:** amazon-textract-textractor is added, which provides
the linearization
- **Tag maintainer:** @3coins
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Ran the following bash script for all templates
```bash
#!/bin/bash
set -e
current_dir="$(pwd)"
for directory in */; do
if [ -d "$directory" ]; then
(cd "$directory" && poetry lock --no-update)
fi
done
cd "$current_dir"
```
Co-authored-by: Bagatur <baskaryan@gmail.com>
can get the correct token count instead of using gpt-2 model
**Description:**
Implement get_num_tokens within VertexLLM to use google's count_tokens
function.
(https://cloud.google.com/vertex-ai/docs/generative-ai/get-token-count).
So we don't need to download gpt-2 model from huggingface, also when we
do the mapreduce chain we can get correct token count.
**Tag maintainer:**
@lkuligin
**Twitter handle:**
My twitter: @abehsu1992626
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Following this tutoral about using OpenAI Embeddings with FAISS
https://python.langchain.com/docs/integrations/vectorstores/faiss
```python
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader
from langchain.document_loaders import TextLoader
loader = TextLoader("../../../extras/modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
```
This works fine
```python
db = FAISS.from_documents(docs, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
```
But the async version is not
```python
db = await FAISS.afrom_documents(docs, embeddings) # NotImplementedError
query = "What did the president say about Ketanji Brown Jackson"
docs = await db.asimilarity_search(query) # this will use await asyncio.get_event_loop().run_in_executor under the hood and will not call OpenAIEmbeddings.aembed_query but call OpenAIEmbeddings.embed_query
```
So this PR add async/await supports for FAISS
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Before making a new `langchain` release, we want to test that everything
works as expected. This PR lets us publish `langchain` to test PyPI,
then install it from there and run checks to ensure everything works
normally before publishing it "for real".
It also takes the opportunity to refactor the build process, splitting
up the build, release-creation, and PyPI upload steps into separate jobs
that do not share their elevated permissions with each other.
- Description: adding support to Activeloop's DeepMemory feature that
boosts recall up to 25%. Added Jupyter notebook showcasing the feature
and also made index params explicit.
- Twitter handle: will really appreciate if we could announce this on
twitter.
---------
Co-authored-by: adolkhan <adilkhan.sarsen@alumni.nu.edu.kz>
Hey, we're looking to invest more in adding cohere integrations to
langchain so would love to get more of an idea for how it's used.
Hopefully this pr is acceptable. This week I'm also going to be looking
into adding our new [retrieval augmented generation
product](https://txt.cohere.com/chat-with-rag/) to langchain.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## **Description:**
When building our own readthedocs.io scraper, we noticed a couple
interesting things:
1. Text lines with a lot of nested <span> tags would give unclean text
with a bunch of newlines. For example, for [Langchain's
documentation](https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html#langchain.document_loaders.readthedocs.ReadTheDocsLoader),
a single line is represented in a complicated nested HTML structure, and
the naive `soup.get_text()` call currently being made will create a
newline for each nested HTML element. Therefore, the document loader
would give a messy, newline-separated blob of text. This would be true
in a lot of cases.
<img width="945" alt="Screenshot 2023-10-26 at 6 15 39 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/eca85d1f-d2bf-4487-a18a-e1e732fadf19">
<img width="1031" alt="Screenshot 2023-10-26 at 6 16 00 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/035938a0-9892-4f6a-83cd-0d7b409b00a3">
Additionally, content from iframes, code from scripts, css from styles,
etc. will be gotten if it's a subclass of the selector (which happens
more often than you'd think). For example, [this
page](https://pydeck.gl/gallery/contour_layer.html#) will scrape 1.5
million characters of content that looks like this:
<img width="1372" alt="Screenshot 2023-10-26 at 6 32 55 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/dbd89e39-9478-4a18-9e84-f0eb91954eac">
Therefore, I wrote a recursive _get_clean_text(soup) class function that
1. skips all irrelevant elements, and 2. only adds newlines when
necessary.
2. Index pages (like [this
one](https://api.python.langchain.com/en/latest/api_reference.html))
would be loaded, chunked, and eventually embedded. This is really bad
not just because the user will be embedding irrelevant information - but
because index pages are very likely to show up in retrieved content,
making retrieval less effective (in our tests). Therefore, I added a
bool parameter `exclude_index_pages` defaulted to False (which is the
current behavior — although I'd petition to default this to True) that
will skip all pages where links take up 50%+ of the page. Through manual
testing, this seems to be the best threshold.
## Other Information:
- **Issue:** n/a
- **Dependencies:** n/a
- **Tag maintainer:** n/a
- **Twitter handle:** @andrewthezhou
---------
Co-authored-by: Andrew Zhou <andrew@heykona.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
* Add unit tests for document_transformers/beautiful_soup_transformer.py
* Basic functionality is tested (extract tags, remove tags, drop lines)
* add a FIXME comment about the order of tags that is not preserved
(and a passing test, but with the expected tags now out-of-order)
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @rlancemartin
- **Twitter handle:** `peter_v`
Please make sure your PR is passing linting and testing before
submitting.
=> OK: I ran `make format`, `make test` (passing after install of
beautifulsoup4) and `make lint`.
- **Description:** Added masking of the API Key for AI21 LLM when
printed and improved the docstring for AI21 LLM.
- Updated the AI21 LLM to utilize SecretStr from pydantic to securely
manage API key.
- Made improvements in the docstring of AI21 LLM. It now mentions that
the API key can also be passed as a named parameter to the constructor.
- Added unit tests.
- **Issue:** #12165
- **Tag maintainer:** @eyurtsev
---------
Co-authored-by: Anirudh Gautam <anirudh@Anirudhs-Mac-mini.local>
Currently this gives a bug:
```
from langchain.schema.runnable import RunnableLambda
bound = RunnableLambda(lambda x: x).with_config({"callbacks": []})
# ConfigError: field "callbacks" not yet prepared so type is still a ForwardRef, you might need to call RunnableConfig.update_forward_refs().
```
Rather than deal with cyclic imports and extra load time, etc., I think
it makes sense to just have a separate Callbacks definition here that is
a relaxed typehint.
1. Allow run evaluators to return {"results": [list of evaluation
results]} in the evaluator callback.
2. Allows run evaluators to pick the target run ID to provide feedback
to
(1) means you could do something like a function call that populates a
full rubric in one go (not sure how reliable that is in general though)
rather than splitting off into separate LLM calls - cheaper and less
code to write
(2) means you can provide feedback to runs on subsequent calls.
Immediate use case is if you wanted to add an evaluator to a chat bot
and assign to assign to previous conversation turns
have a corresponding one in the SDK
In the GoogleSerperResults class, the name field is defined as
'google_serrper_results_json'. This looks like a typo, and perhaps
should be 'google_serper_results_json'.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Add Redis langserve template! Eventually will add semantic caching to
this too. But I was struggling to get that to work for some reason with
the LCEL implementation here.
- **Description:** Introduces the Redis LangServe template. A simple RAG
based app built on top of Redis that allows you to chat with company's
public financial data (Edgar 10k filings)
- **Issue:** None
- **Dependencies:** The template contains the poetry project
requirements to run this template
- **Tag maintainer:** @baskaryan @Spartee
- **Twitter handle:** @tchutch94
**Note**: this requires the commit here that deletes the
`_aget_relevant_documents()` method from the Redis retriever class that
wasn't implemented. That was breaking the langserve app.
---------
Co-authored-by: Sam Partee <sam.partee@redis.com>
Updates the bedrock rag template.
- Removes pinecone and replaces with FAISS as the vector store
- Fixes the environment variables, setting defaults
- Adds a `main.py` test file quick sanity testing
- Updates README.md with correct instructions
-**Description** Adds returning the reranking score when using semantic
search
-**Issue:* #12317
---------
Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Bumps
[@babel/traverse](https://github.com/babel/babel/tree/HEAD/packages/babel-traverse)
from 7.22.8 to 7.23.2.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/babel/babel/releases"><code>@babel/traverse</code>'s
releases</a>.</em></p>
<blockquote>
<h2>v7.23.2 (2023-10-11)</h2>
<p><strong>NOTE</strong>: This release also re-publishes
<code>@babel/core</code>, even if it does not appear in the linked
release commit.</p>
<p>Thanks <a
href="https://github.com/jimmydief"><code>@jimmydief</code></a> for
your first PR!</p>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16033">#16033</a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16022">#16022</a>
Rewrite <code>.tsx</code> extension when using
<code>rewriteImportExtensions</code> (<a
href="https://github.com/jimmydief"><code>@jimmydief</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16017">#16017</a>
Fix: fallback to typeof when toString is applied to incompatible object
(<a href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16025">#16025</a>
Avoid override mistake in namespace imports (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h4>Committers: 5</h4>
<ul>
<li>Babel Bot (<a
href="https://github.com/babel-bot"><code>@babel-bot</code></a>)</li>
<li>Huáng Jùnliàng (<a
href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
<li>James Diefenderfer (<a
href="https://github.com/jimmydief"><code>@jimmydief</code></a>)</li>
<li>Nicolò Ribaudo (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
<li><a
href="https://github.com/liuxingbaoyu"><code>@liuxingbaoyu</code></a></li>
</ul>
<h2>v7.23.1 (2023-09-25)</h2>
<p>Re-publishing <code>@babel/helpers</code> due to a publishing error
in 7.23.0.</p>
<h2>v7.23.0 (2023-09-25)</h2>
<p>Thanks <a
href="https://github.com/lorenzoferre"><code>@lorenzoferre</code></a>
and <a
href="https://github.com/RajShukla1"><code>@RajShukla1</code></a> for
your first PRs!</p>
<h4>🚀 New Feature</h4>
<ul>
<li><code>babel-plugin-proposal-import-wasm-source</code>,
<code>babel-plugin-syntax-import-source</code>,
<code>babel-plugin-transform-dynamic-import</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15870">#15870</a>
Support transforming <code>import source</code> for wasm (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-module-transforms</code>,
<code>babel-helpers</code>,
<code>babel-plugin-proposal-import-defer</code>,
<code>babel-plugin-syntax-import-defer</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15878">#15878</a>
Implement <code>import defer</code> proposal transform support (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>, <code>babel-parser</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15845">#15845</a>
Implement <code>import defer</code> parsing support (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
<li><a
href="https://redirect.github.com/babel/babel/pull/15829">#15829</a> Add
parsing support for the "source phase imports" proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>,
<code>babel-helper-module-transforms</code>, <code>babel-parser</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-systemjs</code>,
<code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15682">#15682</a> Add
<code>createImportExpressions</code> parser option (<a
href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15671">#15671</a>
Pass through nonce to the transformed script element (<a
href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-function-name</code>,
<code>babel-helper-member-expression-to-functions</code>,
<code>babel-helpers</code>, <code>babel-parser</code>,
<code>babel-plugin-proposal-destructuring-private</code>,
<code>babel-plugin-proposal-optional-chaining-assign</code>,
<code>babel-plugin-syntax-optional-chaining-assign</code>,
<code>babel-plugin-transform-destructuring</code>,
<code>babel-plugin-transform-optional-chaining</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15751">#15751</a> Add
support for optional chain in assignments (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-proposal-decorators</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15895">#15895</a>
Implement the "decorator metadata" proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15893">#15893</a> Add
<code>t.buildUndefinedNode</code> (<a
href="https://github.com/liuxingbaoyu"><code>@liuxingbaoyu</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/babel/babel/blob/main/CHANGELOG.md"><code>@babel/traverse</code>'s
changelog</a>.</em></p>
<blockquote>
<h2>v7.23.2 (2023-10-11)</h2>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16033">#16033</a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16022">#16022</a>
Rewrite <code>.tsx</code> extension when using
<code>rewriteImportExtensions</code> (<a
href="https://github.com/jimmydief"><code>@jimmydief</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16017">#16017</a>
Fix: fallback to typeof when toString is applied to incompatible object
(<a href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/16025">#16025</a>
Avoid override mistake in namespace imports (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h2>v7.23.0 (2023-09-25)</h2>
<h4>🚀 New Feature</h4>
<ul>
<li><code>babel-plugin-proposal-import-wasm-source</code>,
<code>babel-plugin-syntax-import-source</code>,
<code>babel-plugin-transform-dynamic-import</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15870">#15870</a>
Support transforming <code>import source</code> for wasm (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-module-transforms</code>,
<code>babel-helpers</code>,
<code>babel-plugin-proposal-import-defer</code>,
<code>babel-plugin-syntax-import-defer</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15878">#15878</a>
Implement <code>import defer</code> proposal transform support (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>, <code>babel-parser</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15845">#15845</a>
Implement <code>import defer</code> parsing support (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
<li><a
href="https://redirect.github.com/babel/babel/pull/15829">#15829</a> Add
parsing support for the "source phase imports" proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-generator</code>,
<code>babel-helper-module-transforms</code>, <code>babel-parser</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-systemjs</code>,
<code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15682">#15682</a> Add
<code>createImportExpressions</code> parser option (<a
href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-standalone</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15671">#15671</a>
Pass through nonce to the transformed script element (<a
href="https://github.com/JLHwung"><code>@JLHwung</code></a>)</li>
</ul>
</li>
<li><code>babel-helper-function-name</code>,
<code>babel-helper-member-expression-to-functions</code>,
<code>babel-helpers</code>, <code>babel-parser</code>,
<code>babel-plugin-proposal-destructuring-private</code>,
<code>babel-plugin-proposal-optional-chaining-assign</code>,
<code>babel-plugin-syntax-optional-chaining-assign</code>,
<code>babel-plugin-transform-destructuring</code>,
<code>babel-plugin-transform-optional-chaining</code>,
<code>babel-runtime-corejs2</code>, <code>babel-runtime-corejs3</code>,
<code>babel-runtime</code>, <code>babel-standalone</code>,
<code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15751">#15751</a> Add
support for optional chain in assignments (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-helpers</code>,
<code>babel-plugin-proposal-decorators</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15895">#15895</a>
Implement the "decorator metadata" proposal (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-traverse</code>, <code>babel-types</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15893">#15893</a> Add
<code>t.buildUndefinedNode</code> (<a
href="https://github.com/liuxingbaoyu"><code>@liuxingbaoyu</code></a>)</li>
</ul>
</li>
<li><code>babel-preset-typescript</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15913">#15913</a> Add
<code>rewriteImportExtensions</code> option to TS preset (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
<li><code>babel-parser</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15896">#15896</a>
Allow TS tuples to have both labeled and unlabeled elements (<a
href="https://github.com/yukukotani"><code>@yukukotani</code></a>)</li>
</ul>
</li>
</ul>
<h4>🐛 Bug Fix</h4>
<ul>
<li><code>babel-plugin-transform-block-scoping</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15962">#15962</a>
fix: <code>transform-block-scoping</code> captures the variables of the
method in the loop (<a
href="https://github.com/liuxingbaoyu"><code>@liuxingbaoyu</code></a>)</li>
</ul>
</li>
</ul>
<h4>💅 Polish</h4>
<ul>
<li><code>babel-traverse</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15797">#15797</a>
Expand evaluation of global built-ins in <code>@babel/traverse</code>
(<a
href="https://github.com/lorenzoferre"><code>@lorenzoferre</code></a>)</li>
</ul>
</li>
<li><code>babel-plugin-proposal-explicit-resource-management</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15985">#15985</a>
Improve source maps for blocks with <code>using</code> declarations (<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h4>🔬 Output optimization</h4>
<ul>
<li><code>babel-core</code>,
<code>babel-helper-module-transforms</code>,
<code>babel-plugin-transform-async-to-generator</code>,
<code>babel-plugin-transform-classes</code>,
<code>babel-plugin-transform-dynamic-import</code>,
<code>babel-plugin-transform-function-name</code>,
<code>babel-plugin-transform-modules-amd</code>,
<code>babel-plugin-transform-modules-commonjs</code>,
<code>babel-plugin-transform-modules-umd</code>,
<code>babel-plugin-transform-parameters</code>,
<code>babel-plugin-transform-react-constant-elements</code>,
<code>babel-plugin-transform-react-inline-elements</code>,
<code>babel-plugin-transform-runtime</code>,
<code>babel-plugin-transform-typescript</code>,
<code>babel-preset-env</code>
<ul>
<li><a
href="https://redirect.github.com/babel/babel/pull/15984">#15984</a>
Inline <code>exports.XXX =</code> update in simple variable declarations
(<a
href="https://github.com/nicolo-ribaudo"><code>@nicolo-ribaudo</code></a>)</li>
</ul>
</li>
</ul>
<h2>v7.22.20 (2023-09-16)</h2>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="b4b9942a6c"><code>b4b9942</code></a>
v7.23.2</li>
<li><a
href="b13376b346"><code>b13376b</code></a>
Only evaluate own String/Number/Math methods (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/16033">#16033</a>)</li>
<li><a
href="ca58ec15cb"><code>ca58ec1</code></a>
v7.23.0</li>
<li><a
href="0f333dafcf"><code>0f333da</code></a>
Add <code>createImportExpressions</code> parser option (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15682">#15682</a>)</li>
<li><a
href="3744545649"><code>3744545</code></a>
Fix linting</li>
<li><a
href="c7e6806e21"><code>c7e6806</code></a>
Add <code>t.buildUndefinedNode</code> (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15893">#15893</a>)</li>
<li><a
href="38ee8b4dd6"><code>38ee8b4</code></a>
Expand evaluation of global built-ins in <code>@babel/traverse</code>
(<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15797">#15797</a>)</li>
<li><a
href="9f3dfd9021"><code>9f3dfd9</code></a>
v7.22.20</li>
<li><a
href="3ed28b29c1"><code>3ed28b2</code></a>
Fully support <code>||</code> and <code>&&</code> in
<code>pluginToggleBooleanFlag</code> (<a
href="https://github.com/babel/babel/tree/HEAD/packages/babel-traverse/issues/15961">#15961</a>)</li>
<li><a
href="77b0d73599"><code>77b0d73</code></a>
v7.22.19</li>
<li>Additional commits viewable in <a
href="https://github.com/babel/babel/commits/v7.23.2/packages/babel-traverse">compare
view</a></li>
</ul>
</details>
<br />
[](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.
[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)
---
<details>
<summary>Dependabot commands and options</summary>
<br />
You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the
[Security Alerts
page](https://github.com/langchain-ai/langchain/network/alerts).
</details>
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
**Description:** Improve handling of empty queries in timescale-vector.
For timescale-vector it is more efficient to get a None embedding when
the embedding has no semantic meaning. It allows timescale-vector to
perform more optimizations. Thus, when the query is empty, use a None
embedding.
Also pass down constructor arguments to the timescale vector client.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This code path is hit in the following case:
- Start in langchain code and manually provide a tracer
- Handoff to the traceable
- Hand back to langchain code.
Which happens for evaluating `@traceable` functions unfortunately
- **Description: To handle the hybrid search with RRF(Reciprocal Rank
Fusion) in the Elasticsearch, rrf argument was added for adjusting
'rank_constant' and 'window_size' to combine multiple result sets with
different relevance indicators into a single result set. (ref:
https://www.elastic.co/kr/blog/whats-new-elastic-enterprise-search-8-9-0),
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** No dependencies changed,
- **Tag maintainer:** @baskaryan,
Nice to meet you,
I'm a newbie for contributions and it's my first PR.
I only changed the langchain/vectorstores/elasticsearch.py file.
I did make format&lint
I got this message,
```shell
make lint_diff
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run black langchain/vectorstores/elasticsearch.py --check
All done! ✨🍰✨
1 file would be left unchanged.
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run mypy langchain/vectorstores/elasticsearch.py
langchain/__init__.py: error: Source file found twice under different module names: "mvp.nlp.langchain.libs.langchain.langchain" and "langchain"
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint_diff] Error 2
```
Thank you
---------
Co-authored-by: 황중원 <jwhwang@amorepacific.com>
My postgres out of connections after continuous PGVector usage, and the
reason because it constantly creates new connections, so adding a
reusable pre established connection seems like solves an issue
---------
Co-authored-by: Roman Vasilyev <rvasilyev@mozilla.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
See discussion here:
https://github.com/langchain-ai/langchain/discussions/11680
The code is available for usage from langchain_experimental. The reason
for the deprecation is that the agents are relying on a Python REPL. The
code can only be run safely with appropriate sandboxing.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The changes introduced in #12267 and #12190 broke the cost computation
of the `completion` tokens for fine-tuned models because of the early
return. This PR aims at fixing this.
@baskaryan.
Adds a `langchain-location` param to lint, so we can properly locate it.
Regular langchain and experimental lint steps are passing, so default
value seems to be working.
**Description:**
Revise `libs/langchain/langchain/document_loaders/async_html.py` to
store the HTML Title and Page Language in the `metadata` of
`AsyncHtmlLoader`.
Compare predicted json to reference. First canonicalize (sort keys, rm
whitespace separators), then return normalized string edit distance.
Not a silver bullet but maybe an easy way to capture structure
differences in a less flakey way
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Will run all CI because of _test change, but future PRs against CLI will
only trigger the new CLI one
Has a bunch of file changes related to formatting/linting.
No mypy yet - coming soon
**Description**
This small change will make chunk_size a configurable parameter for
loading documents into a Supabase database.
**Issue**
https://github.com/langchain-ai/langchain/issues/11422
**Dependencies**
No chanages
**Twitter**
@ j1philli
**Reminder**
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Greg Richardson <greg.nmr@gmail.com>
Description
* Add _generate and _agenerate to support Fireworks batching.
* Add stop words test cases
* Opt out retry mechanism
Issue - Not applicable
Dependencies - None
Tag maintainer - @baskaryan
- **Description:** refactors the redis vector field schema to properly
handle default values, includes a new unit test suite.
- **Issue:** N/A
- **Dependencies:** nothing new.
- **Tag maintainer:** @baskaryan @Spartee
- **Twitter handle:** this is a tiny fix/improvement :)
This issue was causing some clients/cuatomers issues when building a
vector index on Redis on smaller db instances (due to fault default
values in index configuration). It would raise an error like:
```redis.exceptions.ResponseError: Vector index initial capacity 20000 exceeded server limit (852 with the given parameters)```
This PR will address this moving forward.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This PR replaces the previous `Intent` check with the new `Prompt
Safety` check. The logic and steps to enable chain moderation via the
Amazon Comprehend service, allowing you to detect and redact PII, Toxic,
and Prompt Safety information in the LLM prompt or answer remains
unchanged.
This implementation updates the code and configuration types with
respect to `Prompt Safety`.
### Usage sample
```python
from langchain_experimental.comprehend_moderation import (BaseModerationConfig,
ModerationPromptSafetyConfig,
ModerationPiiConfig,
ModerationToxicityConfig
)
pii_config = ModerationPiiConfig(
labels=["SSN"],
redact=True,
mask_character="X"
)
toxicity_config = ModerationToxicityConfig(
threshold=0.5
)
prompt_safety_config = ModerationPromptSafetyConfig(
threshold=0.5
)
moderation_config = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, #specify the configuration
client=comprehend_client, #optionally pass the Boto3 Client
verbose=True
)
template = """Question: {question}
Answer:"""
prompt = PromptTemplate(template=template, input_variables=["question"])
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here."
]
llm = FakeListLLM(responses=responses)
llm_chain = LLMChain(prompt=prompt, llm=llm)
chain = (
prompt
| comp_moderation_with_config
| {llm_chain.input_keys[0]: lambda x: x['output'] }
| llm_chain
| { "input": lambda x: x['text'] }
| comp_moderation_with_config
)
try:
response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"})
except Exception as e:
print(str(e))
else:
print(response['output'])
```
### Output
```python
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii Validation...
Running toxicity Validation...
Running prompt safety Validation...
> Finished chain.
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii Validation...
Running toxicity Validation...
Running prompt safety Validation...
> Finished chain.
Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876.
```
---------
Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
**Description:**
This PR adds support for the [Pro version of Titan Takeoff
Server](https://docs.titanml.co/docs/category/pro-features). Users of
the Pro version will have to import the TitanTakeoffPro model, which is
different from TitanTakeoff.
**Issue:**
Also minor fixes to docs for Titan Takeoff (Community version)
**Dependencies:**
No additional dependencies
**Twitter handle:** @becoming_blake
@baskaryan @hwchase17
- **Description:** Super simple fix for colab link on
code_understanding.ipynb,
- **Issue:** not applicable
- **Dependencies:** none,
- **Tag maintainer:** ,
- **Twitter handle:** @kengoodridge
- **Description:**
This PR adds `allowd_operators` property to `QdrantTranslator` to fix
the `TypeError: can only join an iterable` bug. This property is
required in `get_query_constructor_prompt` in
`query_constructor\base.py`:
```
allowed_operators=" | ".join(allowed_operators),
```
- **Issue:**
#12061
---------
Co-authored-by: XIE Qihui <qihui.xie@bopufund.com>
Problem statement:
In the `integrations/llms` and `integrations/chat` pages, we have a
sidebar with ToC, and we also have a ToC at the end of the page.
The ToC at the end of the page is not necessary, and it is confusing
when we mix the index page styles; moreover, it requires manual work.
So, I removed ToC at the end of the page (it was discussed with and
approved by @baskaryan)
If user function is wrapped as a traceable function, this will help hand
off the trace between the two.
Also update handling fields to reflect optional values
- **Description**: Fix for the SPARQL QA chain: fixed SPARQL queries for
retrieving information about relations in the graph to create a textual
description of the schema for the language model. This should resolve
#8907
- **Issue**: #8907
- **Dependencies**: None
- **Tag maintainer**: @baskaryan, @hwchase17
**Description:** When llms output leading or trailing whitespace for xml
(when using XMLOutputParser) the parser would raise a `ValueError: Could
not parse output: ...`. However, leading or trailing whitespace are
"ignorable" in the sense of XML standard.
**Issue:** I did not find an issue related.
**Dependencies:** None
**Tag maintainer:**
**Twitter handle:** donatoaz
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
Done, updated unit test and ran `make docker_test`.
- **Description:** Response parser for arcee retriever,
- **Issue:** follow-up pr on #11578 and
[discussion](https://github.com/arcee-ai/arcee-python/issues/15#issuecomment-1759874053),
- **Dependencies:** NA
This pr implements a parser for the response from ArceeRetreiver to
convert to langchain `Document`. This closes the loop of generation and
retrieval for Arcee DALMs in langchain.
The reference for the response parser is
[api-docs:retrieve](https://api.arcee.ai/docs#/v2/retrieve_model)
Attaching screenshot of working implementation:
<img width="1984" alt="Screenshot 2023-10-25 at 7 42 34 PM"
src="https://github.com/langchain-ai/langchain/assets/65639964/026987b9-34b2-4e4b-b87d-69fcd0c6641a">
\*api key deleted
---
Successful tests, lints, etc.
```shell
Re-run pytest with --snapshot-update to delete unused snapshots.
==================================================================================================================== slowest 5 durations =====================================================================================================================
1.56s call tests/unit_tests/schema/runnable/test_runnable.py::test_retrying
0.63s call tests/unit_tests/schema/runnable/test_runnable.py::test_map_astream
0.33s call tests/unit_tests/schema/runnable/test_runnable.py::test_map_stream_iterator_input
0.30s call tests/unit_tests/schema/runnable/test_runnable.py::test_map_astream_iterator_input
0.20s call tests/unit_tests/indexes/test_indexing.py::test_cleanup_with_different_batchsize
======================================================================================================= 1265 passed, 270 skipped, 32 warnings in 6.55s =======================================================================================================
[ "." = "" ] || poetry run black .
All done! ✨🍰✨
1871 files left unchanged.
[ "." = "" ] || poetry run ruff --select I --fix .
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run black . --check
All done! ✨🍰✨
1871 files would be left unchanged.
[ "." = "" ] || poetry run mypy .
Success: no issues found in 1868 source files
poetry run codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml -w
```
Co-authored-by: Shubham Kushwaha <shwu@Shubhams-MacBook-Pro.local>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Documents further usage of RetrievalQAWithSourcesChain in an existing
test. I'd not found much documented usage of RetrievalQAWithSourcesChain
and how to get the sources out. This additional code will hopefully be
useful to other potential users of this retriever.
**Issue:** No raised issue
**Dependencies:** No new dependencies needed to run the test (it already
needs `open-ai`, `faiss-cpu` and `unstructured`).
Note - `make lint` showed 8 linting errors in unrelated files
---------
Co-authored-by: richarda23 <richard.c.adams@infinityworks.com>
If I go traceable -> runnable when the project is manually specified,
the runnable wont be logged. This makes sure the session/project is
threaded through appropriately.
- Move Document AI provider to the Google provider page
- Change Vertex AI Matching Engine to Vector Search
- Change references from GCP to Google Cloud
- Add Gmail chat loader to Google provider page
- Change Serper page title to "Serper - Google Search API" since it is
not a Google product.
* Add a type literal for the generation and sub-classes for serialization purposes.
* Fix the root validator of ChatGeneration to return ValueError instead of KeyError or Attribute error if intialized improperly.
* This change is done for langserve to make sure that llm related callbacks can be serialized/deserialized properly.
Fix Description:
For Redis Vector integration in add_texts method, there were two issues
that lead to this bug.
1. Vector index is not being created leading to no such_index error
2. `doc:index` prefix was also missing for Redis Keys.
resolves#11197
Maintainer: @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Add cost calculation for fine tuned models (new and legacy), this is
required after OpenAI added new models for fine tuning and separated the
costs of I/O for fine tuned models.
Also I updated the relevant unit tests
see https://platform.openai.com/docs/guides/fine-tuning for more
information.
issue: https://github.com/langchain-ai/langchain/issues/11715
- **Issue:** 11715
- **Twitter handle:** @nirkopler
- replace `requests` package with `langchain.requests`
- add `_acall` support
- add `_stream` and `_astream`
- freshen up the documentation a bit
- update vendor doc
Allows for passing arguments into the LLM chains used by the
GraphCypherQAChain. This is to address a request by a user to include
memory in the Cypher creating chain. Will keep the prompt variables
as-is to be backward compatible. But, would be a good idea to deprecate
them and use the **kwargs variables. Added a test case.
In general, I think it would be good for any chain to automatically pass
in a readonlymemory(of its input) to its subchains whilist allowing for
an override. But, this would be a different change.
- **Description:**
Add missing apostrophe in `user's` in stuff_prompt's system_template.
The first sentence in the system template went from:
> Use the following pieces of context to answer the users question.
to
> Use the following pieces of context to answer the user's question.
- **Issue:**
- **Dependencies:** none
- **Tag maintainer:** @baskaryan
- **Twitter handle:** ojohnnyo
- This is used internally to gather aggregate usage metrics for the
LangChain integrations
- Note: This cannot be added to some of the Vertex AI integrations at
this time because the SDK doesn't allow overriding the
[`ClientInfo`](https://googleapis.dev/python/google-api-core/latest/client_info.html#module-google.api_core.client_info)
- Added to:
- BigQuery
- Google Cloud Storage
- Document AI
- Vertex AI Model Garden
- Document AI Warehouse
- Vertex AI Search
- Vertex AI Matching Engine (Cloud Storage Client)
@baskaryan, @eyurtsev, @hwchase17
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
code of conduct.md file is missing it is generally present in good repos
which have large community
Replace this entire comment with:
- **Description:** Added a `code_of_conduct.md` file to the repository
to establish community standards and guidelines for contributors.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** N/A
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** In the max_marginal_relevance_search function of the
ElasticsearchStore vector store, the name of the field corresponding to
the vector embedding of the document is hard coded in the delete
statement that drops the field from the document metadata. This results
in an exception if the vector embedding field is customized. This PR
changes the hard-coded "vector" into the vector_query_field variable.
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
Co-authored-by: Shilong Dai <sdai@viperfish.net>
**Description: Allow to inject boto3 client for Cross account access
type of scenarios in using SagemakerEndpointEmbeddings and also updated
the documentation for same in the sample notebook**
**Issue:SagemakerEndpointEmbeddings cross account capability #10634
#10184**
Dependencies: None
Tag maintainer:
Twitter handle:lethargicoder
Co-authored-by: Vikram(VS) <vssht@amazon.com>
- **Description:** sqlalchemy create_engine() does not take into account
connect_args which are mandatory for managed PGSQL instances on cloud
providers (ssl_context for example).
Also re-enabled create_vector_extension at post_init for using pgvector
class seamlessly
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Sami Bargaoui <bargaoui.sam@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
If non-pickleable objects (like locks) get passed to the tracing
callback, they'll fail in the deepcopy. Fallback to a shallow copy in
these instances .
We don't use any of the new functionality at the moment. Just making
sure we don't fall back on versions and fail to benefit from new
patches. This is an easy upgrade and it's always harder to upgrade
across multiple major versions at once.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adding Tavily Search API as a tool. I will be the maintainer and
assaf_elovic is the twitter handler.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Current ChatTongyi is not compatible with DashScope API, which will
cause error when passing api key to chat model directly.
- **Description:** Update tongyi.py to be compatible with DashScope API.
Specifically, update parameter name "dashscope_api_key" to "api_key".
- **Issue:** None.
- **Dependencies:** Nothing new, Tongyi would require DashScope as
before.
- **Description:**
- Replace Telegram with Whatsapp in whatsapp.ipynb
- Add # to mark the telegram as heading in telegram.ipynb
- **Issue:** None
- **Dependencies:** None
- **Description:** Implementing the Google Scholar Tool as requested in
PR #11505. The tool will be using the [serpapi python
package](https://serpapi.com/integrations/python#search-google-scholar).
The main idea of the tool will be to return the results from a Google
Scholar search given a query as an input to the tool.
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17
Replace this entire comment with:
- **Description:** Fix superfluous [Auto-fixing
parser](https://python.langchain.com/docs/modules/model_io/output_parsers/output_fixing_parser)
docs. Also switching to `langchain.pydantic_v1` from the direct
reference to `pydantic`,
- **Issue:** N/A,
- **Dependencies:** N/A,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @dosuken123
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
- Fixes error:
```
ValueError: "GoogleVertexAISearchRetriever" object has no field "_serving_config"
```
Introduced in #11736
@baskaryan, @eyurtsev, @hwchase17 if you could review and merge quickly,
that would be appreciated :)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** The return info in the documentation for
similarity_search_by_vector and similarity_search_with_relevance_scores
is wrong
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This reverts commit a46eef64a7.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Provide a way to use different text for embedding.
- For example, if you are ingesting stack-overflow Q&As for RAG, you
would want to embed the questions and return the answer(s) for the hits.
With this change, the consumer of langchain can implement that easily.
- I noticed the similar function is added on faiss.py with #1912 which
was for performance reason, but I see the same function can be used to
achieve what I thought. So instead of changing Document class to have
embedding_content, I mimicked the implementation of faiss.py.
- The test should provide some guidance on how to use it. It would be
more intuitive if I just pass texts and embedding_texts as separate
arguments, but I chose to use `zip`-ed object for the consistency with
faiss.py implementation.
- I plan to make similar pull request for OpenSearch.
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Adding Pydantic v2 support for OpenAPI Specs
- **Issue:**
- OpenAPI spec support was disabled because `openapi-schema-pydantic`
doesn't support Pydantic v2:
#9205
- Caused errors in `get_openapi_chain`
- This may be the cause of #9520.
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** kreneskyp
The root cause was that `openapi-schema-pydantic` hasn't been updated in
some time but
[openapi-pydantic](https://github.com/mike-oakley/openapi-pydantic)
forked and updated the project.
Added a notebook with examples of the creation of a retriever from the
SingleStoreDB vector store, and further usage.
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Updated the elasticsearch self query retriever to use the match clause
for LIKE operator instead of the non-analyzed fuzzy search clause.
Other small updates include:
- fixing the stack inference integration test where the index's default
pipeline didn't use the inference pipeline created
- adding a user-agent to the old implementation to track usage
- improved the documentation for ElasticsearchStore filters
### Description:
To provide an eas llm service access methods in this pull request by
impletementing `PaiEasEndpoint` and `PaiEasChatEndpoint` classes in
`langchain.llms` and `langchain.chat_models` modules. Base on this pr,
langchain users can build up a chain to call remote eas llm service and
get the llm inference results.
### About EAS Service
EAS is a Alicloud product on Alibaba Cloud Machine Learning Platform for
AI which is short for AliCloud PAI. EAS provides model inference
deployment services for the users. We build up a llm inference services
on EAS with a general llm docker images. Therefore, end users can
quickly setup their llm remote instances to load majority of the
hugginface llm models, and serve as a backend for most of the llm apps.
### Dependencies
This pr does't involve any new dependencies.
---------
Co-authored-by: 子洪 <gaoyihong.gyh@alibaba-inc.com>
Description: Supported RetryOutputParser & RetryWithErrorOutputParser
max_retries
- max_retries: Maximum number of retries to parser.
Issue: None
Dependencies: None
Tag maintainer: @baskaryan
Twitter handle:
We now require uses to have the pip package `llmonitor` installed. It
allows us to have cleaner code and avoid duplicates between our library
and our code in Langchain.
FAISS does not implement embeddings method and use embed_query to
embedding texts which is wrong for some embedding models.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
feat: Raise KeyError when 'prompt' key is missing in JSON response
This commit updates the error handling in the code to raise a KeyError
when the 'prompt' key is not found in the JSON response. This change
makes the code more explicit about the nature of the error, helping to
improve clarity and debugging.
@baskaryan, @eyurtsev.
I may be missing something but it seems like we inappropriately overrode
the 'stream()' method, losing callbacks in the process. I don't think
(?) it gave us anything in this case to customize it here?
See new trace:
https://smith.langchain.com/public/fbb82825-3a16-446b-8207-35622358db3b/r
and confirmed it streams.
Also fixes the stopwords issues from #12000
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t, add ERNIE-Bot-4
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-4, you should have the
model's access authority.
By default replace input_variables with the correct value
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
.dict() is a Pydantic method that cannot raise exceptions, as it is used
eg. in `__eq__`
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Type hinting `*args` as `List[Any]` means that each positional argument
should be a list. Type hinting `**kwargs` as `Dict[str, Any]` means that
each keyword argument should be a dict of strings.
This is almost never what we actually wanted, and doesn't seem to be
what we want in any of the cases I'm replacing here.
The Docs folder changed its structure, and the notebook example for
SingleStoreDChatMessageHistory has not been copied to the new place due
to a merge conflict. Adding the example to the correct place.
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
- Update Zep Memory and Retriever docstrings
- Zep Memory Retriever: Add support for native MMR
- Add MMR example to existing ZepRetriever Notebook
@baskaryan
Example
```
from langchain.schema.runnable import RunnableLambda
from langsmith import traceable
chain = RunnableLambda(lambda x: x)
@traceable(run_type = "chain")
def my_traceable(a):
chain.invoke(a)
my_traceable(5)
```
Would have a nested result.
This would NOT work for interleaving chains and traceables. E.g., things
like thiswould still not work well
```
from langchain.schema.runnable import RunnableLambda
from langsmith import traceable
@traceable()
def other_traceable(a):
return a
def foo(x):
return other_traceable(x)
chain = RunnableLambda(foo)
@traceable(run_type = "chain")
def my_traceable(a):
chain.invoke(a)
my_traceable(5)
```
Minor lint dependency version upgrade to pick up latest functionality.
Ruff's new v0.1 version comes with lots of nice features, like
fix-safety guarantees and a preview mode for not-yet-stable features:
https://astral.sh/blog/ruff-v0.1.0
- **Description:** Chroma >= 0.4.10 added support for batch sizes
validation of add/upsert. This batch size is dependent on the SQLite
limits of the target system and varies. In this change, for
Chroma>=0.4.10 batch splitting was added as the aforementioned
validation is starting to surface in the Chroma community (users using
LC)
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** t_azarov
- Description: Considering the similarity computation method of
[BGE](https://github.com/FlagOpen/FlagEmbedding) model is cosine
similarity, set normalize_embeddings to be True.
- Tag maintainer: @baskaryan
Co-authored-by: Erick Friis <erick@langchain.dev>
Description: A large language models developed by Baichuan Intelligent
Technology,https://www.baichuan-ai.com/home
Issue: None
Dependencies: None
Tag maintainer:
Twitter handle:
This adds security notices to toolkits init, and to several toolkits.
We'll need to continue documenting the rest of the toolkits.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- Fix some typing issues found while doing that
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
the updated value was:
` Criteria.MISOGYNY: "Is the submission misogynistic? If so, respond Y."
`
The " If so, respond Y." should not be here. This sub-string is not
presented in any other criteria and should not be presented here.
I also added a synonym to "misogynistic" as it done in many other
criteria.
The current ToC on the index page and on navbar don't match. Page titles
and Titles in ToC doesn't match
Changes:
- made ToCs equal
- made titles equal
- updated some page formattings.
I have fixed some typos in file
`cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb`. I kindly
request the repo maintainers to review and merge it. Thanks!
I have fixed some typos in file
`cookbook/Semi_structured_and_multi_modal_RAG.ipynb`. I kindly request
the repo maintainers to review and merge it. Thanks!
**Description**
- Added the `SingleStoreDBChatMessageHistory` class that inherits
`BaseChatMessageHistory` and allows to use of a SingleStoreDB database
as a storage for chat message history.
- Added integration test to check that everything works (requires
`singlestoredb` to be installed)
- Added notebook with usage example
- Removed custom retriever for SingleStoreDB vector store (as it is
useless)
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
## Description
| Tool | Original Tool Name |
|-----------------------------|---------------------------|
| open-meteo-api | Open Meteo API |
| news-api | News API |
| tmdb-api | TMDB API |
| podcast-api | Podcast API |
| golden_query | Golden Query |
| dall-e-image-generator | Dall-E Image Generator |
| twilio | Text Message |
| searx_search_results | Searx Search Results |
| dataforseo | DataForSeo Results JSON |
When using these tools through `load_tools`, I encountered the following
validation error:
```console
openai.error.InvalidRequestError: 'TMDB API' does not match '^[a-zA-Z0-9_-]{1,64}$' - 'functions.0.name'
```
In order to avoid this error, I replaced spaces with hyphens in the tool
names:
| Tool | Corrected Tool Name |
|-----------------------------|---------------------------|
| open-meteo-api | Open-Meteo-API |
| news-api | News-API |
| tmdb-api | TMDB-API |
| podcast-api | Podcast-API |
| golden_query | Golden-Query |
| dall-e-image-generator | Dall-E-Image-Generator |
| twilio | Text-Message |
| searx_search_results | Searx-Search-Results |
| dataforseo | DataForSeo-Results-JSON |
This correction resolved the validation error.
Additionally, a unit test,
`tests/unit_tests/schema/runnable/test_runnable.py::test_stream_log_retriever`,
was failing at random. Upon further investigation, I confirmed that the
failure was not related to the above-mentioned changes. The `stream_log`
variable was generating the order of logs in two ways at random The
reason for this behavior is unclear, but in the assertion, I included
both possible orders to account for this variability.
Fixed a typo :
"asyncrhonized" > "asynchronized"
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Hello Folks,
Alibaba Cloud OpenSearch has released a new version of the vector
storage engine, which has significantly improved performance compared to
the previous version. At the same time, the sdk has also undergone
changes, requiring adjustments alibaba opensearch vector store code to
adapt.
This PR includes:
Adapt to the latest version of Alibaba Cloud OpenSearch API.
More comprehensive unit testing.
Improve documentation.
I have read your contributing guidelines. And I have passed the tests
below
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
---------
Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
This patch fixes some spelling typo in
learned_prompt_optimization.ipynb.
It only changed messages, no logic changed.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
**Description:**
While working on the Docusaurus site loader #9138, I noticed some
outdated docs and tests for the Sitemap Loader.
**Issue:**
This is tangentially related to #6691 in reference to doc links. I plan
on digging in to a few of these issue when I find time next.
- **Description:** added examples to Vertex chat models as optional
class attributes, so that a model with examples can be used inside a
chain
- **Twitter handle:** lkuligin
Adding description of the `View deployment` button on the PR page. This
nice feature was not documented.
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Related to #10800
- Errors in the Docstring of GradientLLM / Gradient.ai LLM
- Renamed the `model_id` to `model` and adapting this in all tests.
Reason to so is to be in Sync with `GradientEmbeddings` and other LLM's.
- inmproving tests so they check the headers in the sent request.
- making the aiosession a private attribute in the docs, as in the
future `pip install gradientai` will be replacing aiosession.
- adding a example how to fine-tune on the Prompt Template as suggested
in #10800
- Description: Adds the ChatEverlyAI class with llama-2 7b on [EverlyAI
Hosted
Endpoints](https://everlyai.xyz/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
---------
Co-authored-by: everly-studio <127131037+everly-studio@users.noreply.github.com>
- **Description:**
- If the Elasticsearch field used for Langchain > Document.page_content
is missing because the specific document is
somehow malformed fail gracefully.
- **Tag maintainer:**
- @joemcelroy
Reverts langchain-ai/langchain#11714
This has linting and formatting issues, plus it's added to chat models
folder but doesn't subclass Chat Model base class
Motivation and Context
At present, the Baichuan Large Language Model is relatively popular and
efficient in performance. Due to widespread market recognition, this
model has been added to enhance the scalability of Langchain's ability
to access the big language model, so as to facilitate application access
and usage for interested users.
System Info
langchain: 0.0.295
python:3.8.3
IDE:vs code
Description
Add the following files:
1. Add baichuan_baichuaninc_endpoint.py in the
libs/langchain/langchain/chat_models
2. Modify the __init__.py file,which is located in the
libs/langchain/langchain/chat_models/__init__.py:
a. Add "from langchain.chat_models.baichuan_baichuaninc_endpoint import
BaichuanChatEndpoint"
b. Add "BaichuanChatEndpoint" In the file's __ All__ method
Your contribution
I am willing to help implement this feature and submit a PR, but I would
appreciate guidance from the maintainers or community to ensure the
changes are made correctly and in line with the project's standards and
practices.
- **Description:** Add `TrainableLLM` for those LLM support fine-tuning
- **Tag maintainer:** @hwchase17
This PR add training methods to `GradientLLM`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hi there
This PR is aim to implement chat model for Alibaba Tongyi LLM model. It
contains work below:
1.Implement ChatTongyi chat model in langchain.chat_models.tongyi. Note
this is different with tongyi llm model to another PR
https://github.com/langchain-ai/langchain/pull/10878.
For detail it implements _generate() and _stream() function in
ChatTongyi.
2. Add some examples in chat/tongyi.ipynb.
3. Add integration test in chat_models/test_tongyi.py
Note async completion for the Text API is not yet supported.
Dependencies: dashscope. It will be installed manually cause it is not
need by everyone.
**Description**
This PR adds the `ElasticsearchChatMessageHistory` implementation that
stores chat message history in the configured
[Elasticsearch](https://www.elastic.co/elasticsearch/) deployment.
```python
from langchain.memory.chat_message_histories import ElasticsearchChatMessageHistory
history = ElasticsearchChatMessageHistory(
es_url="https://my-elasticsearch-deployment-url:9200", index="chat-history-index", session_id="123"
)
history.add_ai_message("This is me, the AI")
history.add_user_message("This is me, the human")
```
**Dependencies**
- [elasticsearch client](https://elasticsearch-py.readthedocs.io/)
required
Co-authored-by: Bagatur <baskaryan@gmail.com>
Instead of accessing `langchain.debug`, `langchain.verbose`, or
`langchain.llm_cache`, please use the new getter/setter functions in
`langchain.globals`:
- `langchain.globals.set_debug()` and `langchain.globals.get_debug()`
- `langchain.globals.set_verbose()` and
`langchain.globals.get_verbose()`
- `langchain.globals.set_llm_cache()` and
`langchain.globals.get_llm_cache()`
Using the old globals directly will now raise a warning.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
Add a document loader for the RSpace Electronic Lab Notebook
(www.researchspace.com), so that scientific documents and research notes
can be easily pulled into Langchain pipelines.
**Issue**
This is an new contribution, rather than an issue fix.
**Dependencies:**
There are no new required dependencies.
In order to use the loader, clients will need to install rspace_client
SDK using `pip install rspace_client`
---------
Co-authored-by: richarda23 <richard.c.adams@infinityworks.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Update Indexing API docs to specify vectorstores that
are compatible with the Indexing API. I add a unit test to remind
developers to update the documentation whenever they add or change a
vectorstore in a way that affects compatibility. For the unit test I
repurposed existing code from
[here](https://github.com/langchain-ai/langchain/blob/v0.0.311/libs/langchain/langchain/indexes/_api.py#L245-L257).
This is my first PR to an open source project. This is a trivially
simple PR whose main purpose is to make me more comfortable submitting
Langchain PRs. If this PR goes through I plan to submit PRs with more
substantive changes in the near future.
**Issue:** Resolves
[10482](https://github.com/langchain-ai/langchain/discussions/10482).
**Dependencies:** No new dependencies.
**Twitter handle:** None.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Allows MMR functionality only for the case where we have access to the
embedding function. Also allows for users to request for fields from
elasticsearch store. These are added to the document metadata.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Introducing an ability to load a transcription document of
audio file using [Yandex
SpeechKit](https://cloud.yandex.com/en-ru/services/speechkit)
Issue: None
Dependencies: yandex-speechkit
Tag maintainer: @rlancemartin, @eyurtsev
**Description**
This PR implements the usage of the correct tokenizer in Bedrock LLMs,
if using anthropic models.
**Issue:** #11560
**Dependencies:** optional dependency on `anthropic` python library.
**Twitter handle:** jtolgyesi
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Modify Anyscale integration to work with [Anyscale
Endpoint](https://docs.endpoints.anyscale.com/)
and it supports invoke, async invoke, stream and async invoke features
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Should delegate to parse_result, not to aparse, as parse_result is a
method that some output parsers override
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Avoid huggingfacepipeline to truncate the response if
user setup return_full_text as False within huggingface pipeline.
**Dependencies:** : None
**Tag maintainer:** Maybe @sam-h-bean ?
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
No relevant documents may be found for a given question. In some use
cases, we could directly respond with a fixed message instead of doing
an LLM call with an empty context. This PR exposes this as an option:
response_if_no_docs_found.
---------
Co-authored-by: Sudharsan Rangarajan <sudranga@nile-global.com>
Fix the documentation in
https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/ngram_overlap.
It's currently declaring unrelated variables, for example, `examples`
local variable is declared twice and the first one is overwritten
immediately.
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @dosuken123
Replace this entire comment with:
- **Description:** In this modified version of the function, if the
metadatas parameter is not None, the function includes the corresponding
metadata in the JSON object for each text. This allows the metadata to
be stored alongside the text's embedding in the vector store.
-
- **Issue:** #10924
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
@agola11
- **Twitter handle:** @MelliJoaco
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added demo for QA system with anonymization. It will be part of
LangChain's privacy webinar.
@hwchase17 @baskaryan @nfcampos
Twitter handle: @MaksOpp
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** fixed a bug in pal-chain when it reports Python
code validation errors. When node.func does not have any ids, the
original code tried to print node.func.id in raising ValueError.
- **Issue:** n/a,
- **Dependencies:** no dependencies,
- **Tag maintainer:** @hazzel-cn, @eyurtsev
- **Twitter handle:** @lazyswamp
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I am merely making some minor adjustments to the function documentation.
I hope to provide a small assistance to LangChain.
- **Description:** Change the docs of JSONAgentOutputParser. It will be
`JSON` better,
- **Issue:** no,
- **Dependencies:** no,
- **Tag maintainer:** @hwchase17,
- **Twitter handle:** Not worth mentioning.
**Description:** This PR adds support for ChatOpenAI models in the
Infino callback handler. In particular, this PR implements
`on_chat_model_start` callback, so that ChatOpenAI models are supported.
With this change, Infino callback handler can be used to track latency,
errors, and prompt tokens for ChatOpenAI models too (in addition to the
support for OpenAI and other non-chat models it has today). The existing
example notebook is updated to show how to use this integration as well.
cc/ @naman-modi @savannahar68
**Issue:** https://github.com/langchain-ai/langchain/issues/11607
**Dependencies:** None
**Tag maintainer:** @hwchase17
**Twitter handle:** [@vkakade](https://twitter.com/vkakade)
* Should use non chunked messages for Invoke/Batch
* After this PR, stream output type is not represented, do we want to
use the union?
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Adds standard `type` field for all messages that will be
serialized/validated by pydantic.
* The presence of `type` makes it easier for developers consuming
schemas to write client code to serialize/deserialize.
* In LangServe `type` will be used for both validation and will appear
in the generated openapi specs
Preventing error caused by attempting to move the model that was already
loaded on the GPU using the Accelerate module to the same or another
device. It is not possible to load model with Accelerate/PEFT to CPU for
now
Addresses:
[#10985](https://github.com/langchain-ai/langchain/issues/10985)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This is an update to OctoAI LLM provider that adds
support for llama2 endpoints hosted on OctoAI and updates MPT-7b url
with the current one.
@baskaryan
Thanks!
---------
Co-authored-by: ML Wiz <bassemgeorgi@gmail.com>
**Description:** I noticed the metadata returned by the url_selenium
loader was missing several values included by the web_base loader. (The
former returned `{source: ...}`, the latter returned `{source: ...,
title: ..., description: ..., language: ...}`.) This change fixes it so
both loaders return all 4 key value pairs.
Files have been properly formatted and all tests are passing. Note,
however, that I am not much of a python expert, so that whole "Adding
the imports inside the code so that tests pass" thing seems weird to me.
Please LMK if I did anything wrong.
- **Description:** Assigning the custom_llm_provider to the default
params function so that it will be passed to the litellm
- **Issue:** Even though the custom_llm_provider argument is being
defined it's not being assigned anywhere in the code and hence its not
being passed to litellm, therefore any litellm call which uses the
custom_llm_provider as required parameter is being failed. This
parameter is mainly used by litellm when we are doing inference via
Custom API server.
https://docs.litellm.ai/docs/providers/custom_openai_proxy
- **Dependencies:** No dependencies are required
@krrishdholakia , @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
There is some invalid link in open ai platform
[docs](https://python.langchain.com/docs/integrations/platforms/openai).
So i fixed it to valid links.
- `/docs/integrations/chat_models/openai` ->
`/docs/integrations/chat/openai`
- `/docs/integrations/chat_models/azure_openai` ->
`/docs/integrations/chat/azure_chat_openai`
Thanks! ☺️
- **Description:** This PR introduces a new LLM and Retriever API to
https://arcee.ai for the python client
- **Issue:** implements the integrations as requested in #11578 ,
- **Dependencies:** no dependencies are required,
- **Tag maintainer:** @hwchase17
- **Twitter handle:** shwooobham
**✅ `make format`, `make lint` and `make test` runs locally.**
```shell
=========== 1245 passed, 277 skipped, 20 warnings in 16.26s ===========
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run black . --check
All done! ✨🍰✨
1818 files would be left unchanged.
[ "." = "" ] || poetry run mypy .
Success: no issues found in 1815 source files
[ "." = "" ] || poetry run black .
All done! ✨🍰✨
1818 files left unchanged.
[ "." = "" ] || poetry run ruff --select I --fix .
poetry run codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml -w
```
**Contributions**
1. Arcee (langchain/llms), ArceeRetriever (langchain/retrievers),
ArceeWrapper (langchain/utilities)
2. docs for Arcee (llms/arcee.py) and
ArceeRetriever(retrievers/arcee.py)
3.
cc: @jacobsolawetz @ben-epstein
---------
Co-authored-by: Shubham <shubham@sORo.local>
jinja2 templates are not sandboxed and are at risk for arbitrary code
execution. To mitigate this risk:
- We no longer support loading jinja2-formatted prompt template files.
- `PromptTemplate` with jinja2 may still be constructed manually, but
the class carries a security warning reminding the user to not pass
untrusted input into it.
Resolves#4394.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** CohereRerank is missing `cohere_api_key` as a field and
since extras are forbidden, it is not possible to pass-in the key. The
only way is to use an env variable named `COHERE_API_KEY`.
For example, if trying to create a compressor like this:
```python
cohere_api_key = "......Cohere api key......"
compressor = CohereRerank(cohere_api_key=cohere_api_key)
```
you will get the following error:
```
File "/langchain/.venv/lib/python3.10/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for CohereRerank
cohere_api_key
extra fields not permitted (type=value_error.extra)
```
- **Description:** Fixes minor typo for the
query_sql_database_tool_description in the db toolkit
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @nfcampos
- **Twitter handle:** N/A
LangChain relies on NumPy to compute cosine distances, which becomes a
bottleneck with the growing dimensionality and number of embeddings. To
avoid this bottleneck, in our libraries at
[Unum](https://github.com/unum-cloud), we have created a specialized
package - [SimSIMD](https://github.com/ashvardanian/simsimd), that knows
how to use newer hardware capabilities. Compared to SciPy and NumPy, it
reaches 3x-200x performance for various data types. Since publication,
several LangChain users have asked me if I can integrate it into
LangChain to accelerate their workflows, so here I am 🤗
## Benchmarking
To conduct benchmarks locally, run this in your Jupyter:
```py
import numpy as np
import scipy as sp
import simsimd as simd
import timeit as tt
def cosine_similarity_np(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity
def cosine_similarity_sp(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
return 1 - sp.spatial.distance.cdist(X, Y, metric='cosine')
def cosine_similarity_simd(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
return 1 - simd.cdist(X, Y, metric='cosine')
X = np.random.randn(1, 1536).astype(np.float32)
Y = np.random.randn(1, 1536).astype(np.float32)
repeat = 1000
print("NumPy: {:,.0f} ops/s, SciPy: {:,.0f} ops/s, SimSIMD: {:,.0f} ops/s".format(
repeat / tt.timeit(lambda: cosine_similarity_np(X, Y), number=repeat),
repeat / tt.timeit(lambda: cosine_similarity_sp(X, Y), number=repeat),
repeat / tt.timeit(lambda: cosine_similarity_simd(X, Y), number=repeat),
))
```
## Results
I ran this on an M2 Pro Macbook for various data types and different
number of rows in `X` and reformatted the results as a table for
readability:
| Data Type | NumPy | SciPy | SimSIMD |
| :--- | ---: | ---: | ---: |
| `f32, 1` | 59,114 ops/s | 80,330 ops/s | 475,351 ops/s |
| `f16, 1` | 32,880 ops/s | 82,420 ops/s | 650,177 ops/s |
| `i8, 1` | 47,916 ops/s | 115,084 ops/s | 866,958 ops/s |
| `f32, 10` | 40,135 ops/s | 24,305 ops/s | 185,373 ops/s |
| `f16, 10` | 7,041 ops/s | 17,596 ops/s | 192,058 ops/s |
| `f16, 10` | 21,989 ops/s | 25,064 ops/s | 619,131 ops/s |
| `f32, 100` | 3,536 ops/s | 3,094 ops/s | 24,206 ops/s |
| `f16, 100` | 900 ops/s | 2,014 ops/s | 23,364 ops/s |
| `i8, 100` | 5,510 ops/s | 3,214 ops/s | 143,922 ops/s |
It's important to note that SimSIMD will underperform if both matrices
are huge.
That, however, seems to be an uncommon usage pattern for LangChain
users.
You can find a much more detailed performance report for different
hardware models here:
- [Apple M2
Pro](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-1-performance-on-apple-m2-pro).
- [4th Gen Intel Xeon
Platinum](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-2-performance-on-4th-gen-intel-xeon-platinum-8480).
- [AWS Graviton
3](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-3-performance-on-aws-graviton-3).
## Additional Notes
1. Previous version used `X = np.array(X)`, to repackage lists of lists.
It's an anti-pattern, as it will use double-precision floating-point
numbers, which are slow on both CPUs and GPUs. I have replaced it with
`X = np.array(X, dtype=np.float32)`, but a more selective approach
should be discussed.
2. In numerical computations, it's recommended to explicitly define
tolerance levels, which were previously avoided in
`np.allclose(expected, actual)` calls. For now, I've set absolute
tolerance to distance computation errors as 0.01: `np.allclose(expected,
actual, atol=1e-2)`.
---
- **Dependencies:** adds `simsimd` dependency
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @ashvardanian
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
#### Description
This PR adds the option to specify additional metadata columns in the
CSVLoader beyond just `Source`.
The current CSV loader includes all columns in `page_content` and if we
want to have columns specified for `page_content` and `metadata` we have
to do something like the below.:
```
csv = pd.read_csv(
"path_to_csv"
).to_dict("records")
documents = [
Document(
page_content=doc["content"],
metadata={
"last_modified_by": doc["last_modified_by"],
"point_of_contact": doc["point_of_contact"],
}
) for doc in csv
]
```
#### Usage
Example Usage:
```
csv_test = CSVLoader(
file_path="path_to_csv",
metadata_columns=["last_modified_by", "point_of_contact"]
)
```
Example CSV:
```
content, last_modified_by, point_of_contact
"hello world", "Person A", "Person B"
```
Example Result:
```
Document {
page_content: "hello world"
metadata: {
row: '0',
source: 'path_to_csv',
last_modified_by: 'Person A',
point_of_contact: 'Person B',
}
```
---------
Co-authored-by: Ben Chello <bchello@dropbox.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Fixes the comments in the ConvoOutputParser. Because
the \\\\ is escaping a single \\, they render something like:
`"action_input": string \ The input to the action` in the prompt.
Changing this to \\\\\\\\ lets it escape two slashes so that it renders
a proper comment: `"action_input": string \\ The input to the action`
- **Issue:** N/A
- **Dependencies:**
- **Tag maintainer:** @hwchase17
- **Twitter handle:**
**Description**:
- Added Momento Vector Index (MVI) as a vector store provider. This
includes an implementation with docstrings, integration tests, a
notebook, and documentation on the docs pages.
- Updated the Momento dependency in pyproject.toml and the lock file to
enable access to MVI.
- Refactored the Momento cache and chat history session store to prefer
using "MOMENTO_API_KEY" over "MOMENTO_AUTH_TOKEN" for consistency with
MVI. This change is backwards compatible with the previous "auth_token"
variable usage. Updated the code and tests accordingly.
**Dependencies**:
- Updated Momento dependency in pyproject.toml.
**Testing**:
- Run the integration tests with a Momento API key. Get one at the
[Momento Console](https://console.gomomento.com) for free. MVI is
available in AWS us-west-2 with a superuser key.
- `MOMENTO_API_KEY=<your key> poetry run pytest
tests/integration_tests/vectorstores/test_momento_vector_index.py`
**Tag maintainer:**
@eyurtsev
**Twitter handle**:
Please mention @momentohq for this addition to langchain. With the
integration of Momento Vector Index, Momento caching, and session store,
Momento provides serverless support for the core langchain data needs.
Also mention @mlonml for the integration.
**Description**
This PR adds an additional Example to the Redis integration
documentation. [The
example](https://learn.microsoft.com/azure/azure-cache-for-redis/cache-tutorial-vector-similarity)
is a step-by-step walkthrough of using Azure Cache for Redis and Azure
OpenAI for vector similarity search, using LangChain extensively
throughout.
**Issue**
Nothing specific, just adding an additional example.
**Dependencies**
None.
**Tag Maintainer**
Tagging @hwchase17 :)
Wraps every callback handler method in error handlers to avoid breaking
users' programs when an error occurs inside the handler.
Thanks @valdo99 for the suggestion 🙂
[The `duckduckgo-search` v3.9.2 was removed from
PyPi](https://pypi.org/project/duckduckgo-search/#history). That breaks
the build.
- **Description:** refreshes the Poetry dependency to v3.9.3
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ashvardanian
updating query constructor and self query retriever to
- make it easier to pass in examples
- validate attributes used in query
- remove invalid parts of query
- make it easier to get + edit prompt
- make query constructor a runnable
- make self query retriever use as runnable
- keep alias for RunnableMap
- update docs to use RunnableParallel and RunnablePassthrough.assign
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Add support for a SQLRecordManager in async
environments. It includes the creation of `RecorManagerAsync` abstract
class.
- **Issue:** None
- **Dependencies:** Optional `aiosqlite`.
- **Tag maintainer:** @nfcampos
- **Twitter handle:** @jvelezmagic
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Use `.copy()` to fix the bug that the first `llm_inputs` element is
overwritten by the second `llm_inputs` element in `intermediate_steps`.
***Problem description:***
In [line 127](
c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L127C17-L127C17)),
the `llm_inputs` of the sql generation step is appended as the first
element of `intermediate_steps`:
```
intermediate_steps.append(llm_inputs) # input: sql generation
```
However, `llm_inputs` is a mutable dict, it is updated in [line
179](https://github.com/langchain-ai/langchain/blob/master/libs/experimental/langchain_experimental/sql/base.py#L179)
for the final answer step:
```
llm_inputs["input"] = input_text
```
Then, the updated `llm_inputs` is appended as another element of
`intermediate_steps` in [line
180](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L180)):
```
intermediate_steps.append(llm_inputs) # input: final answer
```
As a result, the final `intermediate_steps` returned in [line
189](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L189C43-L189C43))
actually contains two same `llm_inputs` elements, i.e., the `llm_inputs`
for the sql generation step overwritten by the one for final answer step
by mistake. Users are not able to get the actual `llm_inputs` for the
sql generation step from `intermediate_steps`
Simply calling `.copy()` when appending `llm_inputs` to
`intermediate_steps` can solve this problem.
### Description
This pull request involves modifications to the extraction method for
abstracts/summaries within the PubMed utility. A condition has been
added to verify the presence of unlabeled abstracts. Now an abstract
will be extracted even if it does not have a subtitle. In addition, the
extraction of the abstract was extended to books.
### Issue
The PubMed utility occasionally returns an empty result when extracting
abstracts from articles, despite the presence of an abstract for the
paper on PubMed. This issue arises due to the varying structure of
articles; some articles follow a "subtitle/label: text" format, while
others do not include subtitles in their abstracts. An example of the
latter case can be found at:
[https://pubmed.ncbi.nlm.nih.gov/37666905/](url)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
SelfQueryRetriever is missing async support, so I am adding it.
I also removed deprecated predict_and_parse method usage here, and added
some tests.
### Issue
N/A
### Tag maintainer
Not yet
### Twitter handle
N/A
**Description**
It is for #10423 that it will be a useful feature if we can extract
images from pdf and recognize text on them. I have implemented it with
`PyPDFLoader`, `PyPDFium2Loader`, `PyPDFDirectoryLoader`,
`PyMuPDFLoader`, `PDFMinerLoader`, and `PDFPlumberLoader`.
[RapidOCR](https://github.com/RapidAI/RapidOCR.git) is used to recognize
text on extracted images. It is time-consuming for ocr so a boolen
parameter `extract_images` is set to control whether to extract and
recognize. I have tested the time usage for each parser on my own laptop
thinkbook 14+ with AMD R7-6800H by unit test and the result is:
| extract_images | PyPDFParser | PDFMinerParser | PyMuPDFParser |
PyPDFium2Parser | PDFPlumberParser |
| ------------- | ------------- | ------------- | ------------- |
------------- | ------------- |
| False | 0.27s | 0.39s | 0.06s | 0.08s | 1.01s |
| True | 17.01s | 20.67s | 20.32s | 19,75s | 20.55s |
**Issue**
#10423
**Dependencies**
rapidocr_onnxruntime in
[RapidOCR](https://github.com/RapidAI/RapidOCR/tree/main)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: The previous version of the MarkdownHeaderTextSplitter
did not take into account the possibility of '#' appearing within code
blocks, which caused segmentation anomalies in these situations. This PR
has fixed this issue.
- Issue:
- Dependencies: No
- Tag maintainer:
- Twitter handle:
cc @baskaryan @eyurtsev @rlancemartin
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: This PR adds a new chain `rl_chain.PickBest` for learned
prompt variable injection, detailed description and usage can be found
in the example notebook added. It essentially adds a
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) layer
before the llm call in order to learn or personalize prompt variable
selections.
Most of the code is to make the API simple and provide lots of defaults
and data wrangling that is needed to use Vowpal Wabbit, so that the user
of the chain doesn't have to worry about it.
- Dependencies:
[vowpal-wabbit-next](https://pypi.org/project/vowpal-wabbit-next/),
- sentence-transformers (already a dep)
- numpy (already a dep)
- tagging @ataymano who contributed to this chain
- Tag maintainer: @baskaryan
- Twitter handle: @olgavrou
Added example notebook and unit tests
Replace this entire comment with:
- **Description:** minor update to constructor to allow for
specification of "source"
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ofermend
# Description
Attempts to fix RedisCache for ChatGenerations using `loads` and `dumps`
used in SQLAlchemy cache by @hwchase17 . this is better than pickle
dump, because this won't execute any arbitrary code during
de-serialisation.
# Issues
#7722 & #8666
# Dependencies
None, but removes the warning introduced in #8041 by @baskaryan
Handle: @jaikanthjay46
- Description: Updated output parser for mrkl to remove any
hallucination actions after the final answer; this was encountered when
using Anthropic claude v2 for planning; reopening PR with updated unit
tests
- Issue: #10278
- Dependencies: N/A
- Twitter handle: @johnreynolds
Description: this PR changes the `ArcGISLoader` to set
`return_all_records` to `False` when `result_record_count` is provided
as a keyword argument. Previously, `return_all_records` was `True` by
default and this made the API ignore `result_record_count`.
Issue: `ArcGISLoader` would ignore `result_record_count` unless user
also passed `return_all_records=False`.
- **Description:** This commit corrects a minor typo in the
documentation. It changes "frum" to "from" in the sentence: "The results
from search are passed back to the LLM for synthesis into an answer" in
the file `docs/extras/use_cases/more/agents/agents.ipynb`. This typo fix
enhances the clarity and accuracy of the documentation.
- **Tag maintainer:** @baskaryan
- **Description:** Fix the `PyMuPDFLoader` to accept `loader_kwargs`
from the document loader's `loader_kwargs` option. This provides more
flexibility in formatting the output from documents.
- **Issue:** The `loader_kwargs` is not passed into the `load` method
from the document loader, which limits configuration options.
- **Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
I have restructured the code to ensure uniform handling of ImportError.
In place of previously used ValueError, I've adopted the standard
practice of raising ImportError with explanatory messages. This
modification enhances code readability and clarifies that any problems
stem from module importation.
- **Description:** Just docs related to csharp code splitter
- **Issue:** It's related to a request made by @baskaryan in a comment
on my previous PR #10350
- **Dependencies:** None
- **Twitter handle:** @ather19
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
Add instance anonymization - if `John Doe` will appear twice in the
text, it will be treated as the same entity.
The difference between `PresidioAnonymizer` and
`PresidioReversibleAnonymizer` is that only the second one has a
built-in memory, so it will remember anonymization mapping for multiple
texts:
```
>>> anonymizer = PresidioAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Brett Russell. Hi Brett Russell!'
```
```
>>> anonymizer = PresidioReversibleAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
```
### Twitter handle
@deepsense_ai / @MaksOpp
### Tag maintainer
@baskaryan @hwchase17 @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
PyPDF does not chunk at the character level to my understanding.
Description: PyPDF does not chunk at the character level, but instead
breaks up content by page. Fixup comment
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: There are cases when the output from the LLM comes fine
(i.e. function_call["arguments"] is a valid JSON object), but it does
not contain the key "actions". So I split the validation in 2 steps:
loading arguments as JSON and then checking for "actions" in it.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Google Cloud Enterprise Search was renamed to Vertex AI
Search
-
https://cloud.google.com/blog/products/ai-machine-learning/vertex-ai-search-and-conversation-is-now-generally-available
- This PR updates the documentation and Retriever class to use the new
terminology.
- Changed retriever class from `GoogleCloudEnterpriseSearchRetriever` to
`GoogleVertexAISearchRetriever`
- Updated documentation to specify that `extractive_segments` requires
the new [Enterprise
edition](https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#enterprise-features)
to be enabled.
- Fixed spelling errors in documentation.
- Change parameter for Retriever from `search_engine_id` to
`data_store_id`
- When this retriever was originally implemented, there was no
distinction between a data store and search engine, but now these have
been split.
- Fixed an issue blocking some users where the api_endpoint can't be set
### Description
When using Weaviate Self-Retrievers, certain common filter comparators
generated by user queries were unimplemented, resulting in errors. This
PR implements some of them. All linting and format commands have been
run and tests passed.
### Issue
#10474
### Dependencies
timestamp module
---------
Co-authored-by: Patrick Randell <prandell@deloitte.com.au>
**Description:** Previously if the access to Azure Cognitive Search was
not done via an API key, the default credential was called which doesn't
allow to use an interactive login. I simply added the option to use
"INTERACTIVE" as a key name, and this will launch a login window upon
initialization of the AzureSearch object.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
I was hoping this would pick up numpy 1.26, which is required to support
the new Python 3.12 release, but it didn't. It seems that some
transitive dependency requirement on numpy is preventing that, and the
highest we can currently go is 1.24.x.
But to find this out required a 15min `poetry lock`, so I figured we
might as well upgrade the dependencies we can and hopefully make the
next dependency upgrade a bit smaller.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
There are several pages in `integrations/providers/more` that belongs to
Google and AWS `integrations/providers`.
- moved content of these pages into the Google and AWS
`integrations/providers` pages
- removed these individual pages
Consolidating to a single README for now, will be easier to maintain we
can differentiate between poetry and pip later. Does not seem critical.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
First version of CLI command to create a new langchain project template
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Description
Currently SQLAlchemy >=1.4.0 is a hard requirement. We are unable to run
`from langchain.vectorstores import FAISS` with SQLAlchemy <1.4.0 due to
top-level imports, even if we aren't even using parts of the library
that use SQLAlchemy. See Testing section for repro. Let's make it so
that langchain is still compatible with SQLAlchemy <1.4.0, especially if
we aren't using parts of langchain that require it.
The main conflict is that SQLAlchemy removed `declarative_base` from
`sqlalchemy.ext.declarative` in 1.4.0 and moved it to `sqlalchemy.orm`.
We can fix this by try-catching the import. This is the same fix as
applied in https://github.com/langchain-ai/langchain/pull/883.
(I see that there seems to be some refactoring going on about isolating
dependencies, e.g.
c87e9fb2ce,
so if this issue will be eventually fixed by isolating imports in
langchain.vectorstores that also works).
## Issue
I can't find a matching issue.
## Dependencies
No additional dependencies
## Maintainer
@hwchase17 since you reviewed
https://github.com/langchain-ai/langchain/pull/883
## Testing
I didn't add a test, but I manually tested this.
1. Current failure:
```
langchain==0.0.305
sqlalchemy==1.3.24
```
``` python
python -i
>>> from langchain.vectorstores import FAISS
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/pay/src/zoolander/vendor3/lib/python3.8/site-packages/langchain/vectorstores/__init__.py", line 58, in <module>
from langchain.vectorstores.pgembedding import PGEmbedding
File "/pay/src/zoolander/vendor3/lib/python3.8/site-packages/langchain/vectorstores/pgembedding.py", line 10, in <module>
from sqlalchemy.orm import Session, declarative_base, relationship
ImportError: cannot import name 'declarative_base' from 'sqlalchemy.orm' (/pay/src/zoolander/vendor3/lib/python3.8/site-packages/sqlalchemy/orm/__init__.py)
```
2. This fix:
```
langchain==<this PR>
sqlalchemy==1.3.24
```
``` python
python -i
>>> from langchain.vectorstores import FAISS
<succeeds>
```
- Make logs a dictionary keyed by run name (and counter for repeats)
- Ensure no output shows up in lc_serializable format
- Fix up repr for RunLog and RunLogPatch
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- default MessagesPlaceholder one to list of messages
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Removes human prompt prefix before system message for anthropic models
Bedrock anthropic api enforces that Human and Assistant messages must be
interleaved (cannot have same type twice in a row). We currently treat
System Messages as human messages when converting messages -> string
prompt. Our validation when using Bedrock/BedrockChat raises an error
when this happens. For ChatAnthropic we don't validate this so no error
is raised, but perhaps the behavior is still suboptimal
- **Description:** add a paragraph to the GoogleDriveLoader doc on how
to bypass errors on authentication.
For some reason, specifying credential path via `credentials_path`
constructor parameter when creating `GoogleDriveLoader` makes it so that
the oAuth screen is never showing up when first using GoogleDriveLoader.
Instead, the `RefreshError: ('invalid_grant: Bad Request', {'error':
'invalid_grant', 'error_description': 'Bad Request'})` error happens.
Setting it via `os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ...`
solves the problem. Also, `token_path` constructor parameter is
mandatory, otherwise another error happens when trying to `load()` for
the first time.
These errors are tricky and time-consuming to figure out, so I believe
it's good to mention them in the docs.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Added support for Cohere command model via Bedrock.
With this change it is now possible to use the `cohere.command-text-v14`
model via Bedrock API.
About Streaming: Cohere model outputs 2 additional chunks at the end of
the text being generated via streaming: a chunk containing the text
`<EOS_TOKEN>`, and a chunk indicating the end of the stream. In this
implementation I chose to ignore both chunks. An alternative solution
could be to replace `<EOS_TOKEN>` with `\n`
Tests: manually tested that the new model work with both
`llm.generate()` and `llm.stream()`.
Tested with `temperature`, `p` and `stop` parameters.
**Issue:** #11181
**Dependencies:** No new dependencies
**Tag maintainer:** @baskaryan
**Twitter handle:** mangelino
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Similar in concept to the `MarkdownHeaderTextSplitter`, the
`HTMLHeaderTextSplitter` is a "structure-aware" chunker that splits text
at the element level and adds metadata for each header "relevant" to any
given chunk. It can return chunks element by element or combine elements
with the same metadata, with the objectives of (a) keeping related text
grouped (more or less) semantically and (b) preserving context-rich
information encoded in document structures. It can be used with other
text splitters as part of a chunking pipeline.
Dependency: lxml python package
Maintainer: @hwchase17
Twitter handle: @MartinZirulnik
---------
Co-authored-by: PresidioVantage <github@presidiovantage.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Doc corrections and resolve notebook rendering issue
on GH
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:** @baskaryan
- **Twitter handle:** `@isaacchung1217`
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
Examples in the "Select by similarity" section were not really
highlighting capabilities of similarity search.
E.g. "# Input is a measurement, so should select the tall/short example"
was still outputting the "mood" example.
I tweaked the inputs a bit and fixed the examples (checking that those
are indeed what the search outputs).
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
I've refactored the code to ensure that ImportError is consistently
handled. Instead of using ValueError as before, I've now followed the
standard practice of raising ImportError along with clear and
informative error messages. This change enhances the code's clarity and
explicitly signifies that any problems are associated with module
imports.
- **Description:** Fix typo about `RetrievalQAWithSourceChain` ->
`RetrievalQAWithSourcesChain`
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Adds Kotlin language to `TextSplitter`
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
For external libraries that depend on `type_to_cls_dict`, adds a
workaround to continue using the old format.
Recommend people use `get_type_to_cls_dict()` instead and only resolve
the imports when they're used.
- **Description:** use term keyword according to the official python doc
glossary, see https://docs.python.org/3/glossary.html
- **Issue:** not applicable
- **Dependencies:** not applicable
- **Tag maintainer:** @hwchase17
- **Twitter handle:** vreyespue
The previous API of the `_execute()` function had a few rough edges that
this PR addresses:
- The `fetch` argument was type-hinted as being able to take any string,
but any string other than `"all"` or `"one"` would `raise ValueError`.
The new type hints explicitly declare that only those values are
supported.
- The return type was type-hinted as `Sequence` but using `fetch =
"one"` would actually return a single result item. This was incorrectly
suppressed using `# type: ignore`. We now always return a list.
- Using `fetch = "one"` would return a single item if data was found, or
an empty *list* if no data was found. This was confusing, and we now
always return a list to simplify.
- The return type was `Sequence[Any]` which was a bit difficult to use
since it wasn't clear what one could do with the returned rows. I'm
making the new type `Dict[str, Any]` that corresponds to the column
names and their values in the query.
I've updated the use of this method elsewhere in the file to match the
new behavior.
continuation of PR #8550
@hwchase17 please see and merge. And also close the PR #8550.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
therefor -> therefore
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Instead of:
```
client = Client()
with collect_runs() as cb:
chain.invoke()
run = cb.traced_runs[0]
client.get_run_url(run)
```
it's
```
with tracing_v2_enabled() as cb:
chain.invoke()
cb.get_run_url()
```
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Similarly to Vertex classes, PaLM classes weren't marked as
serialisable. Should be working fine with LangSmith.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This PR uses 2 dedicated LangChain warnings types for deprecations
(mirroring python's built in deprecation and pending deprecation
warnings).
These deprecation types are unslienced during initialization in
langchain achieving the same default behavior that we have with our
current warnings approach. However, because these warnings have a
dedicated type, users will be able to silence them selectively (I think
this is strictly better than our current handling of warnings).
The PR adds a deprecation warning to llm symbolic math.
---------
Co-authored-by: Predrag Gruevski <2348618+obi1kenobi@users.noreply.github.com>
- Also move RunnableBranch to its own file
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
### Description
When I was reading the document, I found that some examples had extra
spaces and violated "Unexpected spaces around keyword / parameter equals
(E251)" in pep8. I removed these extra spaces.
### Tag maintainer
@eyurtsev
### Twitter handle
[billvsme](https://twitter.com/billvsme)
### Description
renamed several repository links from `hwchase17` to `langchain-ai`.
### Why
I discovered that the README file in the devcontainer contains an old
repository name, so I took the opportunity to rename the old repository
name in all files within the repository, excluding those that do not
require changes.
### Dependencies
none
### Tag maintainer
@baskaryan
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
updated `YouTube` and `tutorial` videos with new links.
Removed couple of duplicates.
Reordered several links by view counters
Some formatting: emphasized the names of products
- updated titles and descriptions of the `integrations/memory` notebooks
into consistent and laconic format;
- removed
`docs/extras/integrations/memory/motorhead_memory_managed.ipynb` file as
a duplicate of the
`docs/extras/integrations/memory/motorhead_memory.ipynb`;
- added `integrations/providers` Integration Cards for `dynamodb`,
`motorhead`.
- updated `integrations/providers/redis.mdx` with links
- renamed several notebooks; updated `vercel.json` to reroute new names.
**Description:** Adds streaming and many more sampling parameters to the
DeepSparse interface
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Fix a code injection vuln by adding one more keyword
into the filtering list
- **Issue:** N/A
- **Dependencies:** N/A
- **Tag maintainer:**
- **Twitter handle:**
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Passes through dict input and assigns additional keys
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<img width="1728" alt="Screenshot 2023-09-28 at 20 15 01"
src="https://github.com/langchain-ai/langchain/assets/56902/ed0644c3-6db7-41b9-9543-e34fce46d3e5">
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Enviroment -> Environment
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Suppress warnings in interactive environments that can arise from users
relying on tab completion (without even using deprecated modules).
jupyter seems to filter warnings by default (at least for me), but
ipython surfaces them all
- **Description:** A Document Loader for MongoDB
- **Issue:** n/a
- **Dependencies:** Motor, the async driver for MongoDB
- **Tag maintainer:** n/a
- **Twitter handle:** pigpenblue
Note that an initial mongodb document loader was created 4 months ago,
but the [PR ](https://github.com/langchain-ai/langchain/pull/4285)was
never pulled in. @leo-gan had commented on that PR, but given it is
extremely far behind the master branch and a ton has changed in
Langchain since then (including repo name and structure), I rewrote the
branch and issued a new PR with the expectation that the old one can be
closed.
Please reference that old PR for comments/context, but it can be closed
in favor of this one. Thanks!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
```
ChatPromptTemplate(messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a nice assistant.')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], template='{question}'))])
| RunnableLambda(lambda x: x)
| {
chat: FakeListChatModel(responses=["i'm a chatbot"]),
llm: FakeListLLM(responses=["i'm a textbot"])
}
```
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
be able to use langchain with other version than tiktoken 0.3.3 i.e
0.5.1
- **Issue:**
cannot installed the conda-forge version since it applied all optional
dependency:
https://github.com/conda-forge/langchain-feedstock/pull/85
replace "^0.3.2" by "">=0.3.2,<0.6.0" and "^3.9" by python=">=3.9"
Tested with python 3.10, langchain=0.0.288 and tiktoken==0.5.0
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
As of now, when instantiating and during inference, `LlamaCppEmbeddings`
outputs (a lot of) verbose when controlled from Langchain binding - it
is a bit annoying when computing the embeddings of long documents, for
instance.
This PR adds `verbose` for `LlamaCppEmbeddings` objects to be able
**not** to print the verbose of the model to `stderr`. It is natively
supported by `llama-cpp-python` and directly passed to the library – the
PR is hence very small.
The value of `verbose` is `True` by default, following the way it is
defined in [`LlamaCpp` (`llamacpp.py`
#L136-L137)](c87e9fb2ce/libs/langchain/langchain/llms/llamacpp.py (L136-L137))
## Issue
_No issue linked_
## Dependencies
_No additional dependency needed_
## To see it in action
```python
from langchain.embeddings import LlamaCppEmbeddings
MODEL_PATH = "<path_to_gguf_file>"
if __name__ == "__main__":
llm_embeddings = LlamaCppEmbeddings(
model_path=MODEL_PATH,
n_gpu_layers=1,
n_batch=512,
n_ctx=2048,
f16_kv=True,
verbose=False,
)
```
Co-authored-by: Bagatur <baskaryan@gmail.com>
Based on the customers' requests for native langchain integration,
SearchApi is ready to invest in AI and LLM space, especially in
open-source development.
- This is our initial PR and later we want to improve it based on
customers' and langchain users' feedback. Most likely changes will
affect how the final results string is being built.
- We are creating similar native integration in Python and JavaScript.
- The next plan is to integrate into Java, Ruby, Go, and others.
- Feel free to assign @SebastjanPrachovskij as a main reviewer for any
SearchApi-related searches. We will be glad to help and support
langchain development.
- **Description:**
- Make running integration test for opensearch easy
- Provide a way to use different text for embedding: refer to #11002 for
more of the use case and design decision.
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
Both black and mypy expect a list of files or directories as input.
As-is the Makefile computes a list files changed relative to the last
commit; these are passed to black and mypy in the `format_diff` and
`lint_diff` targets. This is done by way of the Makefile variable
`PYTHON_FILES`. This is to save time by skipping running mypy and black
over the whole source tree.
When no changes have been made, this variable is empty, so the call to
black (and mypy) lacks input files. The call exits with error causing
the Makefile target to error out with:
```bash
$ make format_diff
poetry run black
Usage: black [OPTIONS] SRC ...
One of 'SRC' or 'code' is required.
make: *** [format_diff] Error 1
```
This is unexpected and undesirable, as the naive caller (that's me! 😄 )
will think something else is wrong. This commit smooths over this by
short circuiting when `PYTHON_FILES` is empty.
- **Description:** The types of 'destination_chains' and 'default_chain'
in 'MultiPromptChain' were changed from 'LLMChain' to 'Chain'. and
removed variables declared overlapping with the parent class
- **Issue:** When a class that inherits only Chain and not LLMChain,
such as 'SequentialChain' or 'RetrievalQA', is entered in
'destination_chains' and 'default_chain', a pydantic validation error is
raised.
- - codes
```
retrieval_chain = ConversationalRetrievalChain(
retriever=doc_retriever,
combine_docs_chain=combine_docs_chain,
question_generator=question_gen_chain,
)
destination_chains = {
'retrieval': retrieval_chain,
}
main_chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
verbose=True,
)
```
✅ `make format`, `make lint` and `make test`
## Description
Expanded the upper bound for `networkx` dependency to allow installation
of latest stable version. Tested the included sample notebook with
version 3.1, and all steps ran successfully.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds support for the `$vectorSearch` operator for
MongoDBAtlasVectorSearch, which was announced at .Local London
(September 26th, 2023). This change maintains breaks compatibility
support for the existing `$search` operator used by the original
integration (https://github.com/langchain-ai/langchain/pull/5338) due to
incompatibilities in the Atlas search implementations.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
We noticed that as we have been moving developers to the new
`ElasticsearchStore` implementation, we want to keep the
ElasticVectorSearch class still available as developers transition
slowly to the new store.
To speed up this process, I updated the blurb giving them a better
recommendation of why they should use ElasticsearchStore.
Description: Add "source" metadata to OutlookMessageLoader
This pull request adds the "source" metadata to the OutlookMessageLoader
class in the load method. The "source" metadata is required when
indexing with RecordManager in order to sync the index documents with a
source.
Issue: None
Dependencies: None
Twitter handle: @ATelders
Co-authored-by: Arthur Telders <arthur.telders@roquette.com>
- **Description:** Bedrock updated boto service name to
"bedrock-runtime" for the InvokeModel and InvokeModelWithResponseStream
APIs. This update also includes new model identifiers for Titan text,
embedding and Anthropic.
Co-authored-by: Mani Kumar Adari <maniadar@amazon.com>
The key of stopping strings used in text-generation-webui api is
[`stopping_strings`](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py#L51),
not `stop`.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Fixed Typo Error in Update get_started.mdx file by addressing a minor
typographical error.
This improvement enhances the readability and correctness of the
notebook, making it easier for users to understand and follow the
demonstration. The commit aims to maintain the quality and accuracy of
the content within the repository.
please review the change at your convenience.
@baskaryan , @hwaking
- **Description:** Changed data type from `text` to `json` in xata for
improved performance. Also corrected the `additionalKwargs` key in the
`messages()` function to `additional_kwargs` to adhere to `BaseMessage`
requirements.
- **Issue:** The Chathisroty.messages() will return {} of
`additional_kwargs`, as the name is wrong for `additionalKwargs` .
- **Dependencies:** N/A
- **Tag maintainer:** N/A
- **Twitter handle:** N/A
My PR is passing linting and testing before submitting.
This adds `input_schema` and `output_schema` properties to all
runnables, which are Pydantic models for the input and output types
respectively. These are inferred from the structure of the Runnable as
much as possible, the only manual typing needed is
- optionally add type hints to lambdas (which get translated to
input/output schemas)
- optionally add type hint to RunnablePassthrough
These schemas can then be used to create JSON Schema descriptions of
input and output types, see the tests
- [x] Ensure no InputType and OutputType in our classes use abstract
base classes (replace with union of subclasses)
- [x] Implement in BaseChain and LLMChain
- [x] Implement in RunnableBranch
- [x] Implement in RunnableBinding, RunnableMap, RunnablePassthrough,
RunnableEach, RunnableRouter
- [x] Implement in LLM, Prompt, Chat Model, Output Parser, Retriever
- [x] Implement in RunnableLambda from function signature
- [x] Implement in Tool
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds LangServe package
* Integrate Runnables with Fast API creating Server and a RemoteRunnable
client
* Support multiple runnables for a given server
* Support sync/async/batch/abatch/stream/astream/astream_log on the
client side (using async implementations on server)
* Adds validation using annotations (relying on pydantic under the hood)
-- this still has some rough edges -- e.g., open api docs do NOT
generate correctly at the moment
* Uses pydantic v1 namespace
Known issues: type translation code doesn't handle a lot of types (e.g.,
TypedDicts)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
The current behaviour just calls the handler without awaiting the
coroutine, which results in exceptions/warnings, and obviously doesn't
actually execute whatever the callback handler does
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Prompt wrapping requirements have been implemented on
the service side of AWS Bedrock for the Anthropic Claude models to
provide parity between Anthropic's offering and Bedrock's offering. This
overnight change broke most existing implementations of Claude, Bedrock
and Langchain. This PR just steals the the Anthropic LLM implementation
to enforce alias/role wrapping and implements it in the existing
mechanism for building the request body. This has also been tested to
fix the chat_model implementation as well. Happy to answer any further
questions or make changes where necessary to get things patched and up
to PyPi ASAP, TY.
- **Issue:** No issue opened at the moment, though will update when
these roll in.
- **Dependencies:** None
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description:
NotionDB supports a number of common property types. I have found three
common types that are not included in notiondb loader. When programs
loaded them with notiondb, which will cause some metadata information
not to be passed to langchain. Therefore, I added three common types:
- date
- created_time
- last_edit_time.
### Issue:
no
### Dependencies:
No dependencies added :)
### Tag maintainer:
@rlancemartin, @eyurtsev
### Twitter handle:
@BJTUTC
Reverts langchain-ai/langchain#8610
this is actually an oversight - this merges all dfs into one df. we DO
NOT want to do this - the idea is we work and manipulate multiple dfs
This removes the use of the intermediate df list and directly
concatenates the dataframes if path is a list of strings. The pd.concat
function combines the dataframes efficiently, making it faster and more
memory-efficient compared to appending dataframes to a list.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: this PR adds the support for arxiv identifier of the
ArxivAPIWrapper. I modified the `run()` and `load()` functions in
`arxiv.py`, using regex to recognize if the query is in the form of
arxiv identifier (see
[https://info.arxiv.org/help/find/index.html](https://info.arxiv.org/help/find/index.html)).
If so, it will directly search the paper corresponding to the arxiv
identifier. I also modified and added tests in `test_arxiv.py`.
- Issue: #9047
- Dependencies: N/A
- Tag maintainer: N/A
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The new Fireworks and FireworksChat implementations are awesome! Added
in this PR https://github.com/langchain-ai/langchain/pull/11117 thank
you @ZixinYang
However, I think stop words were not plumbed correctly. I've made some
simple changes to do that, and also updated the notebook to be a bit
clearer with what's needed to use both new models.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
The intermediate steps example in docs has an example on how to retrieve
and display the intermediate steps.
But the intermediate steps object is of type AgentAction which cannot be
passed to json.dumps (it raises an error).
I replaced it with Langchain's dumps function (from langchain.load.dump
import dumps) which is the preferred way to do so.
**Description:**
As long as `enforce_stop_tokens` returns a first occurrence, we can
speed up the execution by setting the optional `maxsplit` parameter to
1.
Tag maintainer:
@agola11
@hwchase17
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** New metadata fields were added to
`unstructured==0.10.15`, and our hosted api has been updated to reflect
this. When users call `partition_via_api` with an older version of the
library, they'll hit a parsing error related to the new fields.
Description
* Refactor Fireworks within Langchain LLMs.
* Remove FireworksChat within Langchain LLMs.
* Add ChatFireworks (which uses chat completion api) to Langchain chat
models.
* Users have to install `fireworks-ai` and register an api key to use
the api.
Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin @baskaryan
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:**: Adds LLM as a judge as an eval chain
- **Tag maintainer:** @hwchase17
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
This enables bulk args like `chunk_size` to be passed down from the
ingest methods (from_text, from_documents) to be passed down to the bulk
API.
This helps alleviate issues where bulk importing a large amount of
documents into Elasticsearch was resulting in a timeout.
Contribution Shoutout
- @elastic
- [x] Updated Integration tests
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Fixed navbar:
- renamed several files, so ToC is sorted correctly
- made ToC items consistent: formatted several Titles
- added several links
- reformatted several docs to a consistent format
- renamed several files (removed `_example` suffix)
- added renamed files to the `docs/docs_skeleton/vercel.json`
Sometimes you don't want the LLM to be aware of the whole graph schema,
and want it to ignore parts of the graph when it is constructing Cypher
statements.
- **Description**: Adding retrievers for [kay.ai](https://kay.ai) and
SEC filings powered by Kay and Cybersyn. Kay provides context as a
service: it's an API built for RAG.
- **Issue**: N/A
- **Dependencies**: Just added a dep to the
[kay](https://pypi.org/project/kay/) package
- **Tag maintainer**: @baskaryan @hwchase17 Discussed in slack
- **Twtter handle:** [@vishalrohra_](https://twitter.com/vishalrohra_)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The huggingface pipeline in langchain (used for locally hosted models)
does not support batching. If you send in a batch of prompts, it just
processes them serially using the base implementation of _generate:
https://github.com/docugami/langchain/blob/master/libs/langchain/langchain/llms/base.py#L1004C2-L1004C29
This PR adds support for batching in this pipeline, so that GPUs can be
fully saturated. I updated the accompanying notebook to show GPU batch
inference.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Closes#8842
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
- Description: fix `ChatMessageChunk` concat error
- Issue: #10173
- Dependencies: None
- Tag maintainer: @baskaryan, @eyurtsev, @rlancemartin
- Twitter handle: None
---------
Co-authored-by: wangshuai.scotty <wangshuai.scotty@bytedance.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
This PR aims at showcasing how to use vLLM's OpenAI-compatible chat API.
### Context
Lanchain already supports vLLM and its OpenAI-compatible `Completion`
API. However, the `ChatCompletion` API was not aligned with OpenAI and
for this reason I've waited for this
[PR](https://github.com/vllm-project/vllm/pull/852) to be merged before
adding this notebook to langchain.
### Description
This PR makes the following changes to OpenSearch:
1. Pass optional ids with `from_texts`
2. Pass an optional index name with `add_texts` and `search` instead of
using the same index name that was used during `from_texts`
### Issue
https://github.com/langchain-ai/langchain/issues/10967
### Maintainers
@rlancemartin, @eyurtsev, @navneet1v
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
LLMRails Embedding Integration
This PR provides integration with LLMRails. Implemented here are:
langchain/embeddings/llm_rails.py
docs/extras/integrations/text_embedding/llm_rails.ipynb
Hi @hwchase17 after adding our vectorstore integration to langchain with
confirmation of you and @baskaryan, now we want to add our embedding
integration
---------
Co-authored-by: Anar Aliyev <aaliyev@mgmt.cloudnet.services>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds support for gradient.ai's embedding model.
This will remain a Draft, as the code will likely be refactored with the
`pip install gradientai` python sdk.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** a fix for `index`.
- **Issue:** Not applicable.
- **Dependencies:** None
- **Tag maintainer:**
- **Twitter handle:** richarddwang
# Problem
Replication code
```python
from pprint import pprint
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain.vectorstores import Qdrant
from langchain_setup.qdrant import pprint_qdrant_documents, create_inmemory_empty_qdrant
# Documents
metadata1 = {"source": "fullhell.alchemist"}
doc1_1 = Document(page_content="1-1 I have a dog~", metadata=metadata1)
doc1_2 = Document(page_content="1-2 I have a daugter~", metadata=metadata1)
doc1_3 = Document(page_content="1-3 Ahh! O..Oniichan", metadata=metadata1)
doc2 = Document(page_content="2 Lancer died again.", metadata={"source": "fate.docx"})
# Create empty vectorstore
collection_name = "secret_of_D_disk"
vectorstore: Qdrant = create_inmemory_empty_qdrant()
# Create record Manager
import tempfile
from pathlib import Path
record_manager = SQLRecordManager(
namespace="qdrant/{collection_name}",
db_url=f"sqlite:///{Path(tempfile.gettempdir())/collection_name}.sql",
)
record_manager.create_schema() # 必須
sync_result = index(
[doc1_1, doc1_2, doc1_2, doc2],
record_manager,
vectorstore,
cleanup="full",
source_id_key="source",
)
print(sync_result, end="\n\n")
pprint_qdrant_documents(vectorstore)
```
<details>
<summary>Code of helper functions `pprint_qdrant_documents` and
`create_inmemory_empty_qdrant`</summary>
```python
def create_inmemory_empty_qdrant(**from_texts_kwargs):
# Qdrant requires vector size, which can be only know after applying embedder
vectorstore = Qdrant.from_texts(["dummy"], location=":memory:", embedding=OpenAIEmbeddings(), **from_texts_kwargs)
dummy_document_id = vectorstore.client.scroll(vectorstore.collection_name)[0][0].id
vectorstore.delete([dummy_document_id])
return vectorstore
def pprint_qdrant_documents(vectorstore, limit: int = 100, **scroll_kwargs):
document_ids, documents = [], []
for record in vectorstore.client.scroll(
vectorstore.collection_name, limit=100, **scroll_kwargs
)[0]:
document_ids.append(record.id)
documents.append(
Document(
page_content=record.payload["page_content"],
metadata=record.payload["metadata"] or {},
)
)
pprint_documents(documents, document_ids=document_ids)
def pprint_document(document: Document = None, document_id=None, return_string=False):
displayed_text = ""
if document_id:
displayed_text += f"Document {document_id}:\n\n"
displayed_text += f"{document.page_content}\n\n"
metadata_text = pformat(document.metadata, indent=1)
if "\n" in metadata_text:
displayed_text += f"Metadata:\n{metadata_text}"
else:
displayed_text += f"Metadata:{metadata_text}"
if return_string:
return displayed_text
else:
print(displayed_text)
def pprint_documents(documents, document_ids=None):
if not document_ids:
document_ids = [i + 1 for i in range(len(documents))]
displayed_texts = []
for document_id, document in zip(document_ids, documents):
displayed_text = pprint_document(
document_id=document_id, document=document, return_string=True
)
displayed_texts.append(displayed_text)
print(f"\n{'-' * 100}\n".join(displayed_texts))
```
</details>
You will get
```
{'num_added': 3, 'num_updated': 0, 'num_skipped': 0, 'num_deleted': 0}
Document 1b19816e-b802-53c0-ad60-5ff9d9b9b911:
1-2 I have a daugter~
Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document 3362f9bc-991a-5dd5-b465-c564786ce19c:
1-1 I have a dog~
Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document a4d50169-2fda-5339-a196-249b5f54a0de:
1-2 I have a daugter~
Metadata:{'source': 'fullhell.alchemist'}
```
This is not correct. We should be able to expect that the vectorsotre
now includes doc1_1, doc1_2, and doc2, but not doc1_1, doc1_2, and
doc1_2.
# Reason
In `index`, the original code is
```python
uids = []
docs_to_index = []
for doc, hashed_doc, doc_exists in zip(doc_batch, hashed_docs, exists_batch):
if doc_exists:
# Must be updated to refresh timestamp.
record_manager.update([hashed_doc.uid], time_at_least=index_start_dt)
num_skipped += 1
continue
uids.append(hashed_doc.uid)
docs_to_index.append(doc)
```
In the aforementioned example, `len(doc_batch) == 4`, but
`len(hashed_docs) == len(exists_batch) == 3`. This is because the
deduplication of input documents [doc1_1, doc1_2, doc1_2, doc2] is
[doc1_1, doc1_2, doc2]. So `index` insert doc1_1, doc1_2, doc1_2 with
the uid of doc1_1, doc1_2, doc2.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR makes `ChatAnthropic.anthropic_api_key` a `pydantic.SecretStr`
to avoid inadvertently exposing API keys when the `ChatAnthropic` object
is represented as a str.
**Description**
Fixes broken link to `CONTRIBUTING.md` in `libs/langchain/README.md`.
Because`libs/langchain/README.md` was copied from the top level README,
and because the README contains a link to `.github/CONTRIBUTING.md`, the
copied README's link relative path must be updated. This commit fixes
that link.
**Description:**
Default refine template does not actually use the refine template
defined above, it uses a string with the variable name.
@baskaryan, @eyurtsev, @hwchase17
- chat vertex async
- vertex stream
- vertex full generation info
- vertex use server-side stopping
- model garden async
- update docs for all the above
in follow up will add
[] chat vertex full generation info
[] chat vertex retries
[] scheduled tests
- Description:
Updated JSONLoader usage documentation which was making it unusable
- Issue: JSONLoader if used with the documented arguments was failing on
various JSON documents.
- Dependencies:
no dependencies
- Twitter handle: @TheSlnArchitect
This adds a section on usage of `CassandraCache` and
`CassandraSemanticCache` to the doc notebook about caching LLMs, as
suggested in [this
comment](https://github.com/langchain-ai/langchain/pull/9772/#issuecomment-1710544100)
on a previous merged PR.
I also spotted what looks like a mismatch between different executions
and propose a fix (line 98).
Being the result of several runs, the cell execution numbers are
scrambled somewhat, so I volunteer to refine this PR by (manually)
re-numbering the cells to restore the appearance of a single, smooth
running (for the sake of orderly execution :)
**Description:**
This commit adds a vector store for the Postgres-based vector database
(`TimescaleVector`).
Timescale Vector(https://www.timescale.com/ai) is PostgreSQL++ for AI
applications. It enables you to efficiently store and query billions of
vector embeddings in `PostgreSQL`:
- Enhances `pgvector` with faster and more accurate similarity search on
1B+ vectors via DiskANN inspired indexing algorithm.
- Enables fast time-based vector search via automatic time-based
partitioning and indexing.
- Provides a familiar SQL interface for querying vector embeddings and
relational data.
Timescale Vector scales with you from POC to production:
- Simplifies operations by enabling you to store relational metadata,
vector embeddings, and time-series data in a single database.
- Benefits from rock-solid PostgreSQL foundation with enterprise-grade
feature liked streaming backups and replication, high-availability and
row-level security.
- Enables a worry-free experience with enterprise-grade security and
compliance.
Timescale Vector is available on Timescale, the cloud PostgreSQL
platform. (There is no self-hosted version at this time.) LangChain
users get a 90-day free trial for Timescale Vector.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Avthar Sewrathan <avthar@timescale.com>
- **Description:** This PR implements a new LLM API to
https://gradient.ai
- **Issue:** Feature request for LLM #10745
- **Dependencies**: No additional dependencies are introduced.
- **Tag maintainer:** I am opening this PR for visibility, once ready
for review I'll tag.
- ```make format && make lint && make test``` is running.
- added a `integration` and `mock unit` test.
Co-authored-by: michaelfeil <me@michaelfeil.eu>
Co-authored-by: Bagatur <baskaryan@gmail.com>
We are introducing the py integration to Javelin AI Gateway
www.getjavelin.io. Javelin is an enterprise-scale fast llm router &
gateway. Could you please review and let us know if there is anything
missing.
Javelin AI Gateway wraps Embedding, Chat and Completion LLMs. Uses
javelin_sdk under the covers (pip install javelin_sdk).
Author: Sharath Rajasekar, Twitter: @sharathr, @javelinai
Thanks!!
### Description
- Add support for streaming with `Bedrock` LLM and `BedrockChat` Chat
Model.
- Bedrock as of now supports streaming for the `anthropic.claude-*` and
`amazon.titan-*` models only, hence support for those have been built.
- Also increased the default `max_token_to_sample` for Bedrock
`anthropic` model provider to `256` from `50` to keep in line with the
`Anthropic` defaults.
- Added examples for streaming responses to the bedrock example
notebooks.
**_NOTE:_**: This PR fixes the issues mentioned in #9897 and makes that
PR redundant.
- **Description:** QianfanEndpoint bugs for SystemMessages. When the
`SystemMessage` is input as the messages to
`chat_models.QianfanEndpoint`. A `TypeError` will be raised.
- **Issue:** #10643
- **Dependencies:**
- **Tag maintainer:** @baskaryan
- **Twitter handle:** no
This PR addresses the limitation of Azure OpenAI embeddings, which can
handle at maximum 16 texts in a batch. This can be solved setting
`chunk_size=16`. However, I'd love to have this automated, not to force
the user to figure where the issue comes from and how to solve it.
Closes#4575.
@baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** Possible to filter with substrings in
similarity_search_with_score, for example: filter={'user_id':
{'substring': 'user'}}
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
changed return parameter of YouTubeSearchTool
1. changed the returning links of youtube videos by adding prefix
"https://www.youtube.com", now this will return the exact links to the
videos
2. updated the returning type from 'string' to 'list', which will be
more suited for further processings
**Issue:**
Fixes#10742
**Dependencies:**
None
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** changed return parameter of YouTubeSearchTool
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** None
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** This PR adds HTTP PUT support for the langchain openapi
agent toolkit by leveraging existing structure and HTTP put request
wrapper. The PUT method is almost identical to HTTP POST but should be
idempotent and therefore tighter than POST which is not idempotent. Some
APIs may consider to use PUT instead of POST which is unfortunately not
supported with the current toolkit yet.
### Description
Implements synthetic data generation with the fields and preferences
given by the user. Adds showcase notebook.
Corresponding prompt was proposed for langchain-hub.
### Example
```
output = chain({"fields": {"colors": ["blue", "yellow"]}, "preferences": {"style": "Make it in a style of a weather forecast."}})
print(output)
# {'fields': {'colors': ['blue', 'yellow']},
'preferences': {'style': 'Make it in a style of a weather forecast.'},
'text': "Good morning! Today's weather forecast brings a beautiful combination of colors to the sky, with hues of blue and yellow gently blending together like a mesmerizing painting."}
```
### Twitter handle
@deepsense_ai @matt_wosinski
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** upgrade the `dataclasses_json` dependency to its latest
version ([no real breaking
change](https://github.com/lidatong/dataclasses-json/releases/tag/v0.6.0)
if used correctly), while allowing previous version to not break other
users' setup
**Issue:** I need to use the latest version of that dependency in my
project, but `langchain` prevents it.
Note: it looks like running `poetry lock --no-update` did some changes
to the lockfiles as it was the first time it was with the
`macosx_11_0_arm64` architecture 🤷
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description**
Adds new output parser, this time enabling the output of LLM to be of an
XML format. Seems to be particularly useful together with Claude model.
Addresses [issue
9820](https://github.com/langchain-ai/langchain/issues/9820).
**Twitter handle**
@deepsense_ai @matt_wosinski
using sample:
```
endpoint_url = API URL
ChatGLM_llm = ChatGLM(
endpoint_url=endpoint_url,
api_key=Your API Key by ChatGLM
)
print(ChatGLM_llm("hello"))
```
```
model = ChatChatGLM(
chatglm_api_key="api_key",
chatglm_api_base="api_base_url",
model_name="model_name"
)
chain = LLMChain(llm=model)
```
Description: The call of ChatGLM has been adapted.
Issue: The call of ChatGLM has been adapted.
Dependencies: Need python package `zhipuai` and `aiostream`
Tag maintainer: @baskaryan
Twitter handle: None
I remove the compatibility test for pydantic version 2, because pydantic
v2 can't not pickle classmethod,but BaseModel use @root_validator is a
classmethod decorator.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
If metadata field returned in results, previous behavior unchanged. If
metadata field does not exist in results, expand metadata to any fields
returned outside of content field.
There's precedence for this as well, see the retriever:
https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/retrievers/azure_cognitive_search.py#L96C46-L96C46
Issue:
#9765 - Ameliorates hard-coding in case you already indexed to cognitive
search without a metadata field but rather placed metadata in separate
fields.
@hwchase17
## Description
This PR updates the `NeptuneGraph` class to start using the boto API for
connecting to the Neptune service. With boto integration, the graph
class now supports authenticating requests using Sigv4; this is
encapsulated with the boto API, and users only have to ensure they have
the correct AWS credentials setup in their workspace to work with the
graph class.
This PR also introduces a conditional prompt that uses a simpler prompt
when using the `Anthropic` model provider. A simpler prompt have seemed
to work better for generating cypher queries in our testing.
**Note**: This version will require boto3 version 1.28.38 or greater to
work.
**Description:**
This commit enriches the `WeaviateHybridSearchRetriever` class by
introducing a new parameter, `hybrid_search_kwargs`, within the
`_get_relevant_documents` method. This parameter accommodates arbitrary
keyword arguments (`**kwargs`) which can be channeled to the inherited
public method, `get_relevant_documents`, originating from the
`BaseRetriever` class.
This modification facilitates more intricate querying capabilities,
allowing users to convey supplementary arguments to the `.with_hybrid()`
method. This expansion not only makes it possible to perform a more
nuanced search targeting specific properties but also grants the ability
to boost the weight of searched properties, to carry out a search with a
custom vector, and to apply the Fusion ranking method. The documentation
has been updated accordingly to delineate these new possibilities in
detail.
In light of the layered approach in which this search operates,
initiating with `query.get()` and then transitioning to
`.with_hybrid()`, several advantageous opportunities are unlocked for
the hybrid component that were previously unattainable.
Here’s a representative example showcasing a query structure that was
formerly unfeasible:
[Specific Properties
Only](https://weaviate.io/developers/weaviate/search/hybrid#selected-properties-only)
"The example below illustrates a BM25 search targeting the keyword
'food' exclusively within the 'question' property, integrated with
vector search results corresponding to 'food'."
```python
response = (
client.query
.get("JeopardyQuestion", ["question", "answer"])
.with_hybrid(
query="food",
properties=["question"], # Will now be possible moving forward
alpha=0.25
)
.with_limit(3)
.do()
)
```
This functionality is now accessible through my alterations, by
conveying `hybrid_search_kwargs={"properties": ["question", "answer"]}`
as an argument to
`WeaviateHybridSearchRetriever.get_relevant_documents()`. For example:
```python
import os
from weaviate import Client
from langchain.retrievers import WeaviateHybridSearchRetriever
client = Client(
url=os.getenv("WEAVIATE_CLIENT_URL"),
additional_headers={
"X-OpenAI-Api-Key": os.getenv("OPENAI_API_KEY"),
"Authorization": f"Bearer {os.getenv('WEAVIATE_API_KEY')}",
},
)
index_name = "Document"
text_key = "content"
attributes = ["title", "summary", "header", "url"]
retriever = ExtendedWeaviateHybridSearchRetriever(
client=client,
index_name=index_name,
text_key=text_key,
attributes=attributes,
)
# Warning: to utilize properties in this way, each use property must also be in the list `attributes + [text_key]`.
hybrid_search_kwargs = {"properties": ["summary^2", "content"]}
query_text = "Some Query Text"
relevant_docs = retriever.get_relevant_documents(
query=query_text,
hybrid_search_kwargs=hybrid_search_kwargs
)
```
In my experience working with the `weaviate-client` library, I have
found that these supplementary options stand as vital tools for
refining/finetuning searches, notably within multifaceted datasets. As a
final note, this implementation supports both backwards and forward
(within reason) compatiblity. It accommodates any future additional
parameters Weaviate may add to `.with_hybrid()`, without necessitating
further alterations.
**Additional Documentation:**
For a more comprehensive understanding and to explore a myriad of useful
options that are now accessible, please refer to the Weaviate
documentation:
- [Fusion Ranking
Method](https://weaviate.io/developers/weaviate/search/hybrid#fusion-ranking-method)
- [Selected Properties
Only](https://weaviate.io/developers/weaviate/search/hybrid#selected-properties-only)
- [Weight Boost Searched
Properties](https://weaviate.io/developers/weaviate/search/hybrid#weight-boost-searched-properties)
- [With a Custom
Vector](https://weaviate.io/developers/weaviate/search/hybrid#with-a-custom-vector)
**Tag Maintainer:**
@hwchase17 - I have tagged you based on your frequent contributions to
the pertinent file, `/retrievers/weaviate_hybrid_search.py`. My
apologies if this was not the appropriate choice.
Thank you for considering my contribution, I look forward to your
feedback, and to future collaboration.
I was trying to use web loaders on some spanish documentation (e.g.
[this site](https://www.fromdoppler.com/es/mailing-tendencias/), but the
auto-encoding introduced in
https://github.com/langchain-ai/langchain/pull/3602 was detected as
"MacRoman" instead of the (correct) "UTF-8".
To address this, I've added the ability to disable the auto-encoding, as
well as the ability to explicitly tell the loader what encoding to use.
- **Description:** Makes auto-setting the encoding optional in
`WebBaseLoader`, and introduces an `encoding` option to explicitly set
it.
- **Dependencies:** N/A
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @czue
**Description:**
Pinecone hybrid search is now limited to default namespace. There is no
option for the user to provide a namespace to partition an index, which
is one of the most important features of pinecone.
**Resource:**
https://docs.pinecone.io/docs/namespaces
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Added integration instructions for Remembrall.
- **Tag maintainer:** @hwchase17
- **Twitter handle:** @raunakdoesdev
Fun fact, this project originated at the Modal Hackathon in NYC where it
won the Best LLM App prize sponsored by Langchain. Thanks for your
support 🦜
@@ -5,10 +5,10 @@ This project includes a [dev container](https://containers.dev/), which lets you
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
## GitHub Codespaces
[](https://codespaces.new/hwchase17/langchain)
[](https://codespaces.new/langchain-ai/langchain)
You may use the button above, or follow these steps to open this repo in a Codespace:
1. Click the **Code** drop-down menu at the top of https://github.com/hwchase17/langchain.
1. Click the **Code** drop-down menu at the top of https://github.com/langchain-ai/langchain.
1. Click on the **Codespaces** tab.
1. Click **Create codespace on master** .
@@ -17,13 +17,16 @@ For more info, check out the [GitHub documentation](https://docs.github.com/en/f
## VS Code Dev Containers
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
Note: If you click the link above you will open the main repo (langchain-ai/langchain) and not your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
Then you will have a local cloned repo where you can contribute and then create pull requests.
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
Alternatively you can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).
Hi there! Thank you for even being interested in contributing to LangChain.
As an opensource project in a rapidly developing field, we are extremely open
to contributions, whether they be in the form of new features, improved infra, better documentation, or bug fixes.
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
## 🗺️ Guidelines
### 👩💻 Contributing Code
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are a maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting and testing checks first. See
[Common Tasks](#-common-tasks) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
- Fix a bug
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
- Make an improvement
- Update any affected example notebooks and documentation. These live in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/modules`.
- Add unit and integration tests.
We're a small, building-oriented team. If there's something you'd like to add or change, opening a pull request is the
best way to get our attention.
### 🚩GitHub Issues
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
with bugs, improvements, and feature requests.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help
organize issues.
If you start working on an issue, please assign it to yourself.
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
If two issues are related, or blocking, please link them rather than combining them.
We will try to keep these issues as up-to-date as possible, though
with the rapid rate of development in this field some may get out of date.
If you notice this happening, please let us know.
### 🙋Getting Help
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
contact a maintainer! Not only do we want to help get you unblocked, but we also want to make sure that the process is
smooth for future contributors.
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
we do not want these to get in the way of getting good code into the codebase.
## 🚀 Quick Start
> **Note:** You can run this repository locally (which is described below) or in a [development container](https://containers.dev/) (which is described in the [.devcontainer folder](https://github.com/hwchase17/langchain/tree/master/.devcontainer)).
This project uses [Poetry](https://python-poetry.org/) v1.5.1 as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, avoid dependency conflicts by doing the following first:
1.*Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
2. Install Poetry v1.5.1 (see above)
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
There are two separate projects in this repository:
-`langchain`: core langchain code, abstractions, and use cases
-`langchain.experimental`: more experimental code
Each of these has their OWN development environment.
In order to run any of the commands below, please move into their respective directories.
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
To install requirements:
```bash
poetry install --with test
```
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage.
❗Note: If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running Poetry v1.5.1. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases. If you are still seeing this bug on v1.5.1, you may also try disabling "modern installation" (`poetry config installer.modern-installation false`) and re-installing requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Now assuming `make` and `pytest` are installed, you should be able to run the common tasks in the following section. To double check, run `make test` under `libs/langchain`, all tests should pass. If they don't, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
## ✅ Common Tasks
Type `make` for a list of common tasks.
### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project:
```bash
make format
```
Additionally, you can run the formatter only on the files that have been modified in your current branch as compared to the master branch using the format_diff command:
```bash
make format_diff
```
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
### Linting
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for this project:
```bash
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
make lint_diff
```
This can be very helpful when you've made changes to only certain parts of the project and want to ensure your changes meet the linting standards without having to check the entire codebase.
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
To check spelling for this project:
```bash
make spell_check
```
To fix spelling in place:
```bash
make spell_fix
```
If codespell is incorrectly flagging a word, you can skip spellcheck for that word by adding it to the codespell config in the `pyproject.toml` file.
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
To get a report of current coverage, run the following:
```bash
make coverage
```
### Working with Optional Dependencies
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
Users who do not have the dependency installed should be able to **import** your code without
any side effects (no warnings, no errors, no exceptions).
To introduce the dependency to the pyproject.toml file correctly, please do the following:
1. Add the dependency to the main group as an optional dependency
```bash
poetry add --optional [package_name]
```
2. Open pyproject.toml and add the dependency to the `extended_testing` extra
3. Relock the poetry file to update the extra.
```bash
poetry lock --no-update
```
4. Add a unit test that the very least attempts to import the new code. Ideally, the unit
test makes use of lightweight fixtures to test the logic of the code.
5. Please use the `@pytest.mark.requires(package_name)` decorator for any tests that require the dependency.
### Testing
See section about optional dependencies.
#### Unit Tests
Unit tests cover modular logic that does not require calls to outside APIs.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
If you add new logic, please add a unit test.
#### Integration Tests
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
**warning** Almost no tests should be integration tests.
Tests that require making network connections make it difficult for other
developers to test the code.
Instead favor relying on `responses` library and/or mock.patch to mock
requests using small fixtures.
To run integration tests:
```bash
make integration_tests
```
If you add support for a new external API, please add a new integration test.
### Adding a Jupyter Notebook
If you are adding a Jupyter Notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
```bash
poetry install --with dev
```
Launch a notebook:
```bash
poetry run jupyter notebook
```
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
## Documentation
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
This covers how to get started contributing to documentation.
### Contribute Documentation
The docs directory contains Documentation and API Reference.
Documentation is built using [Docusaurus 2](https://docusaurus.io/).
API Reference are largely autogenerated by [sphinx](https://www.sphinx-doc.org/en/master/) from the code.
For that reason, we ask that you add good documentation to all classes and methods.
Similar to linting, we recognize documentation can be annoying. If you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
### Build Documentation Locally
In the following commands, the prefix `api_` indicates that those are operations for the API Reference.
Before building the documentation, it is always a good idea to clean the build directory:
```bash
make docs_clean
make api_docs_clean
```
Next, you can build the documentation as outlined below:
```bash
make docs_build
make api_docs_build
```
Finally, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
make api_docs_linkcheck
```
## 🏭 Release Process
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a developer and published to [PyPI](https://pypi.org/project/langchain/).
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
### 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.
To learn how to contribute to LangChain, please follow the [contribution guide here](https://python.langchain.com/docs/contributing/).
description:Please confirm and check all the following options.
options:
- label:I searched existing ideas and did not find a similar one
required:true
- label:I added a very descriptive title
required:true
- label:I've clearly described the feature request and motivation for it
required:true
- type:textarea
id:feature-request
validations:
required:true
attributes:
label:Feature request
description:|
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type:textarea
id:motivation
validations:
required:true
attributes:
label:Motivation
description:|
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type:textarea
id:proposal
validations:
required:false
attributes:
label:Proposal (If applicable)
description:|
If you would like to propose a solution, please describe it here.
Please follow these instructions, fill every question, and do every step. 🙏
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
this is time that we cannot spend on adding new features, fixing bugs, writing documentation or reviewing pull requests.
By asking questions in a structured way (following this) it will be much easier for us to help you.
There's a high chance that by following this process, you'll find the solution on your own, eliminating the need to submit a question and wait for an answer. 😎
As there are many questions submitted every day, we will **DISCARD** and close the incomplete ones.
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
Relevant links to check before opening a question to see if your question has already been answered, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
description:Please confirm and check all the following options.
options:
- label:I added a very descriptive title to this question.
required:true
- label:I searched the LangChain documentation with the integrated search.
required:true
- label:I used the GitHub search to find a similar question and didn't find it.
required:true
- type:checkboxes
id:help
attributes:
label:Commit to Help
description:|
After submitting this, I commit to one of:
* Read open questions until I find 2 where I can help someone and add a comment to help there.
* I already hit the "watch" button in this repository to receive notifications and I commit to help at least 2 people that ask questions in the future.
* Once my question is answered, I will mark the answer as "accepted".
options:
- label:I commit to help with one of those options 👆
required:true
- type:textarea
id:example
attributes:
label:Example Code
description:|
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder:|
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
render:python
validations:
required:true
- type:textarea
id:description
attributes:
label:Description
description:|
What is the problem, question, or error?
Write a short description explaining what you are doing, what you expect to happen, and what is currently happening.
placeholder:|
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required:true
- type:textarea
id:system-info
attributes:
label:System Info
description:|
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder:|
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
description:Submit a bug report to help us improve LangChain. To report a security issue, please instead use the security option below.
description:Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the GitHub Discussions.
labels:["02 Bug Report"]
body:
- type:markdown
attributes:
value:>
Thank you for taking the time to file a bug report. Before creating a new
issue, please make sure to take a few moments to check the issue tracker
for existing issues about the bug.
- type:textarea
id:system-info
attributes:
label:System Info
description:Please share your system info with us.
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
The core maintainers strive to read all issues, but tagging them will help them prioritize.
Please tag fewer than 3 people.
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoader Abstractions
- @eyurtsev
LLM/Chat Wrappers
- @hwchase17
- @agola11
Tools / Toolkits
- ...
placeholder:"@Username ..."
Thank you for taking the time to file a bug report.
Use this to report bugs in LangChain.
If you're not certain that your issue is due to a bug in LangChain, please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions)
to ask for help with your issue.
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
if there's another way to solve your problem:
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
- label:I added a very descriptive title to this issue.
required:true
- label:I searched the LangChain documentation with the integrated search.
required:true
- label:I used the GitHub search to find a similar question and didn't find it.
required:true
- label:I am sure that this is a bug in LangChain rather than my code.
required:true
- label:The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
required:true
- type:textarea
id:reproduction
validations:
required:true
attributes:
label:Reproduction
label:Example Code
description:|
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
**Important!**
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder:|
Steps to reproduce the behavior:
1.
2.
3.
The following code:
```python
from langchain_core.runnables import RunnableLambda
def bad_code(inputs) -> int:
raise NotImplementedError('For demo purpose')
chain = RunnableLambda(bad_code)
chain.invoke('Hello!')
```
- type:textarea
id:expected-behavior
id:error
validations:
required:false
attributes:
label:Error Message and Stack Trace (if applicable)
description:|
If you are reporting an error, please include the full error message and stack trace.
placeholder:|
Exception + full stack trace
- type:textarea
id:description
attributes:
label:Description
description:|
What is the problem, question, or error?
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
placeholder:|
* I'm trying to use the `langchain` library to do X.
* I expect to see Y.
* Instead, it does Z.
validations:
required:true
- type:textarea
id:system-info
attributes:
label:Expected behavior
description:"A clear and concise description of what you would expect to happen."
label:System Info
description:|
Please share your system info with us.
"pip freeze | grep langchain"
platform (windows / linux / mac)
python version
OR if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
placeholder:|
"pip freeze | grep langchain"
platform
python version
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
python -m langchain_core.sys_info
These will only surface LangChain packages, don't forget to include any other relevant
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
description:Submit a proposal/request for a new LangChain feature
labels:["02 Feature Request"]
body:
- type:textarea
id:feature-request
validations:
required:true
attributes:
label:Feature request
description:|
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type:textarea
id:motivation
validations:
required:true
attributes:
label:Motivation
description:|
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type:textarea
id:contribution
validations:
required:true
attributes:
label:Your contribution
description:|
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md)
description:You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
body:
- type:markdown
attributes:
value:|
Thanks for your interest in LangChain! 🚀
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
or are a regular contributor to LangChain with previous merged pull requests.
- type:checkboxes
id:privileged
attributes:
label:Privileged issue
description:Confirm that you are allowed to create an issue here.
options:
- label:I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
- [ ]**PR title**: "package: description"
-Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
-Example: "community: add foobar LLM"
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
See contribution guidelines for more information on how to write/run tests, lint, etc:
- [ ]**PR message**: ***Delete this entire checklist*** and replace with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
- [ ]**Add tests and docs**: If you're adding a new integration, please include
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use. It lives in `docs/extras` directory.
2. an example notebook showing its use. It lives in `docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17.
-->
- [ ]**Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in langchain.
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17.
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
Looking for the JS/TS version? Check out [LangChain.js](https://github.com/hwchase17/langchainjs).
**Production Support:** As you move your LangChains into production, we'd love to offer more hands-on support.
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to share more about what you're building, and our team will get in touch.
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/hwchase17/langchain/discussions/8043).
Read how to migrate your code [here](MIGRATE.md).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.
## 🤔 What is LangChain?
This library aims to assist in the development of those types of applications. Common examples of these applications include:
**LangChain** is a framework for developing applications powered by large language models (LLMs).
**❓ Question Answering over specific documents**
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's [modular building blocks](https://python.langchain.com/docs/expression_language/) and [components](https://python.langchain.com/docs/modules/). Integrate with hundreds of [third-party providers](https://python.langchain.com/docs/integrations/platforms/).
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://python.langchain.com/docs/langsmith/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn any chain into a REST API with [LangServe](https://python.langchain.com/docs/langserve).
### Open-source libraries
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **[`LangGraph`](https://python.langchain.com/docs/langgraph)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
### Productionization:
- **[LangSmith](https://python.langchain.com/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangServe](https://python.langchain.com/docs/langserve)**: A library for deploying LangChain chains as REST APIs.

- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
## 📖 Documentation
And much more! Head to the [Use cases](https://python.langchain.com/docs/use_cases/) section of the docs for more.
Please see [here](https://python.langchain.com) for full documentation on:
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1.**Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
2.**Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
- Getting started (installation, setting up the environment, simple examples)
- Resources (high-level explanation of core concepts)
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
## 🚀 What can this help with?
## LangChain Expression Language (LCEL)
There are six main areas that LangChain is designed to help with.
These are, in increasing order of complexity:
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
**📃 LLMs and Prompts:**
- **[Overview](https://python.langchain.com/docs/expression_language/)**: LCEL and its benefits
- **[Interface](https://python.langchain.com/docs/expression_language/interface)**: The standard interface for LCEL objects
- **[Primitives](https://python.langchain.com/docs/expression_language/primitives)**: More on the primitives LCEL includes
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
## Components
**🔗 Chains:**
Components fall into the following **modules**:
Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.
**📃 Model I/O:**
**📚 Data Augmented Generation:**
This includes [prompt management](https://python.langchain.com/docs/modules/model_io/prompts/), [prompt optimization](https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/), a generic interface for [chat models](https://python.langchain.com/docs/modules/model_io/chat/) and [LLMs](https://python.langchain.com/docs/modules/model_io/llms/), and common utilities for working with [model outputs](https://python.langchain.com/docs/modules/model_io/output_parsers/).
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
**📚 Retrieval:**
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/modules/data_connection/document_loaders/) from a variety of sources, [preparing it](https://python.langchain.com/docs/modules/data_connection/document_loaders/), [then retrieving it](https://python.langchain.com/docs/modules/data_connection/retrievers/) for use in the generation step.
**🤖 Agents:**
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete done. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/modules/agents/), a [selection of agents](https://python.langchain.com/docs/modules/agents/agent_types/) to choose from, and examples of end-to-end agents.
**🧠 Memory:**
## 📖 Documentation
Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.
Please see [here](https://python.langchain.com) for full documentation, which includes:
**🧐 Evaluation:**
- [Getting started](https://python.langchain.com/docs/get_started/introduction): installation, setting up the environment, simple examples
- [Use case](https://python.langchain.com/docs/use_cases/) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/)
- Overviews of the [interfaces](https://python.langchain.com/docs/expression_language/), [components](https://python.langchain.com/docs/modules/), and [integrations](https://python.langchain.com/docs/integrations/providers)
[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.
You can also check out the full [API Reference docs](https://api.python.langchain.com).
## 🌐 Ecosystem
- [🦜🛠️ LangSmith](https://python.langchain.com/docs/langsmith/): Tracing and evaluating your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://python.langchain.com/docs/langgraph): Creating stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploying LangChain runnables and chains as REST APIs.
- [LangChain Templates](https://python.langchain.com/docs/templates/): Example applications hosted with LangServe.
For more information on these concepts, please see our [full documentation](https://python.langchain.com).
## 💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see [here](.github/CONTRIBUTING.md).
For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/).
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint it ready, you need to copy its number."
"2024-02-27 17:15:10.457149: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 17:15:10.508925: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 17:15:10.508957: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 17:15:10.510289: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 17:15:10.518898: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of'\n",
"content='Prompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nPrompt:\\n<start_of_turn>user\\nHow much is 2+2?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\n8-years old.<end_of_turn>\\n\\n<start_of<end_of_turn>\\n<start_of_turn>user\\nHow much is 3+3?<end_of_turn>\\n<start_of_turn>model\\nOutput:\\nOutput:\\n3-years old.<end_of_turn>\\n\\n<'\n"
"In order to run Gemma locally, you can download it from Kaggle first. In order to do this, you'll need to login into the Kaggle platform, create a API key and download a `kaggle.json` Read more about Kaggle auth [here](https://www.kaggle.com/docs/api)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S1EsXQ3XvZkQ"
},
"source": [
"### Installation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"executionInfo": {
"elapsed": 335,
"status": "ok",
"timestamp": 1708976305471,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "p8SMwpKRvbef",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
" pid, fd = os.forkpty()\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"tensorstore 0.1.54 requires ml-dtypes>=0.3.1, but you have ml-dtypes 0.2.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install keras>=3 keras_nlp"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E9zn8nYpv3QZ"
},
"source": [
"### Usage"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"executionInfo": {
"elapsed": 8536,
"status": "ok",
"timestamp": 1708976601206,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": -60
},
"id": "0LFRmY8TjCkI",
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:38:40.797559: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 16:38:40.848444: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 16:38:40.848478: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 16:38:40.849728: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 16:38:40.857936: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"W0000 00:00:1709051129.518076 774855 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"What is the meaning of life?\n",
"\n",
"The question is one of the most important questions in the world.\n",
"\n",
"It’s the question that has\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=30)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ChatModel"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MSctpRE4u43N"
},
"source": [
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-27 16:58:22.331067: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 16:58:22.382948: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 16:58:22.382978: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 16:58:22.384312: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 16:58:22.392767: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"2024-02-27 16:58:49.848412: I external/local_xla/xla/service/service.cc:168] XLA service 0x55adc0cf2c10 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
"2024-02-27 16:58:50.116614: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
"2024-02-27 16:58:54.389324: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8900\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"I0000 00:00:1709053145.225207 784891 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n",
"W0000 00:00:1709053145.284227 784891 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.\"\n"
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n Tampoco\\nI'm a model.<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\"\n"
]
}
],
"source": [
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
"2024-02-27 17:02:21.832409: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-02-27 17:02:21.883625: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-02-27 17:02:21.883656: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-02-27 17:02:21.884987: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-02-27 17:02:21.893340: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
"The question is one of the most important questions in the world.\n",
"\n",
"It’s the question that has been asked by philosophers, theologians, and scientists for centuries.\n",
"\n",
"And it’s the question that\n"
]
}
],
"source": [
"output = llm.invoke(\"What is the meaning of life?\", max_tokens=50)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Same as above, using Gemma locally as a multi-turn chat model. You might need to re-start the notebook and clean your GPU memory in order to avoid OOM errors:"
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean\"\n"
"content=\"<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\n<start_of_turn>user\\nHi! Who are you?<end_of_turn>\\n<start_of_turn>model\\nI'm a model.\\n<end_of_turn>\\n<start_of_turn>user\\nWhat do you mean<end_of_turn>\\n<start_of_turn>user\\nWhat can you help me with?<end_of_turn>\\n<start_of_turn>model\\nI can help you with anything.\\n<\"\n"
]
}
],
"source": [
"message2 = HumanMessage(content=\"What can you help me with?\")\n",
"To create this particular DB, you can use the code and follow the steps shown [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb)."
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
Example code for building applications with LangChain, with an emphasis on more applied and end-to-end examples than contained in the [main documentation](https://python.langchain.com).
Notebook | Description
:- | :-
[LLaMA2_sql_chat.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/LLaMA2_sql_chat.ipynb) | Build a chat application that interacts with a SQL database using an open source llm (llama2), specifically demonstrated on an SQLite database containing rosters.
[Semi_Structured_RAG.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_Structured_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data, including text and tables, using unstructured for parsing, multi-vector retriever for storing, and lcel for implementing chains.
[Semi_structured_and_multi_moda...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using unstructured for parsing, multi-vector retriever for storage and retrieval, and lcel for implementing chains.
[Semi_structured_multi_modal_RA...](https://github.com/langchain-ai/langchain/tree/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb) | Perform retrieval-augmented generation (rag) on documents with semi-structured data and images, using various tools and methods such as unstructured for parsing, multi-vector retriever for storing, lcel for implementing chains, and open source language models like llama2, llava, and gpt4all.
[amazon_personalize_how_to.ipynb](https://github.com/langchain-ai/langchain/blob/master/cookbook/amazon_personalize_how_to.ipynb) | Retrieving personalized recommendations from Amazon Personalize and use custom agents to build generative AI apps
[analyze_document.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/analyze_document.ipynb) | Analyze a single long document.
[autogpt/autogpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/autogpt.ipynb) | Implement autogpt, a language model, with langchain primitives such as llms, prompttemplates, vectorstores, embeddings, and tools.
[autogpt/marathon_times.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/autogpt/marathon_times.ipynb) | Implement autogpt for finding winning marathon times.
[baby_agi.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi.ipynb) | Implement babyagi, an ai agent that can generate and execute tasks based on a given objective, with the flexibility to swap out specific vectorstores/model providers.
[baby_agi_with_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/baby_agi_with_agent.ipynb) | Swap out the execution chain in the babyagi notebook with an agent that has access to tools, aiming to obtain more reliable information.
[camel_role_playing.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/camel_role_playing.ipynb) | Implement the camel framework for creating autonomous cooperative agents in large-scale language models, using role-playing and inception prompting to guide chat agents towards task completion.
[causal_program_aided_language_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/causal_program_aided_language_model.ipynb) | Implement the causal program-aided language (cpal) chain, which improves upon the program-aided language (pal) by incorporating causal structure to prevent hallucination in language models, particularly when dealing with complex narratives and math problems with nested dependencies.
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools
[forward_looking_retrieval_augm...](https://github.com/langchain-ai/langchain/tree/master/cookbook/forward_looking_retrieval_augmented_generation.ipynb) | Implement the forward-looking active retrieval augmented generation (flare) method, which generates answers to questions, identifies uncertain tokens, generates hypothetical questions based on these tokens, and retrieves relevant documents to continue generating the answer.
[generative_agents_interactive_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb) | Implement a generative agent that simulates human behavior, based on a research paper, using a time-weighted memory object backed by a langchain retriever.
[gymnasium_agent_simulation.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/gymnasium_agent_simulation.ipynb) | Create a simple agent-environment interaction loop in simulated environments like text-based games with gymnasium.
[hugginggpt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/hugginggpt.ipynb) | Implement hugginggpt, a system that connects language models like chatgpt with the machine learning community via hugging face.
[hypothetical_document_embeddin...](https://github.com/langchain-ai/langchain/tree/master/cookbook/hypothetical_document_embeddings.ipynb) | Improve document indexing with hypothetical document embeddings (hyde), an embedding technique that generates and embeds hypothetical answers to queries.
[learned_prompt_optimization.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/learned_prompt_optimization.ipynb) | Automatically enhance language model prompts by injecting specific terms using reinforcement learning, which can be used to personalize responses based on user preferences.
[llm_bash.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_bash.ipynb) | Perform simple filesystem commands using language learning models (llms) and a bash process.
[llm_checker.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_checker.ipynb) | Create a self-checking chain using the llmcheckerchain function.
[llm_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_math.ipynb) | Solve complex word math problems using language models and python repls.
[llm_summarization_checker.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_summarization_checker.ipynb) | Check the accuracy of text summaries, with the option to run the checker multiple times for improved results.
[llm_symbolic_math.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/llm_symbolic_math.ipynb) | Solve algebraic equations with the help of llms (language learning models) and sympy, a python library for symbolic mathematics.
[meta_prompt.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/meta_prompt.ipynb) | Implement the meta-prompt concept, which is a method for building self-improving agents that reflect on their own performance and modify their instructions accordingly.
[multi_modal_output_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_modal_output_agent.ipynb) | Generate multi-modal outputs, specifically images and text.
[multi_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multi_player_dnd.ipynb) | Simulate multi-player dungeons & dragons games, with a custom function determining the speaking schedule of the agents.
[multiagent_authoritarian.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_authoritarian.ipynb) | Implement a multi-agent simulation where a privileged agent controls the conversation, including deciding who speaks and when the conversation ends, in the context of a simulated news network.
[multiagent_bidding.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/multiagent_bidding.ipynb) | Implement a multi-agent simulation where agents bid to speak, with the highest bidder speaking next, demonstrated through a fictitious presidential debate example.
[myscale_vector_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/myscale_vector_sql.ipynb) | Access and interact with the myscale integrated vector database, which can enhance the performance of language model (llm) applications.
[openai_functions_retrieval_qa....](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_functions_retrieval_qa.ipynb) | Structure response output in a question-answering system by incorporating openai functions into a retrieval pipeline.
[openai_v1_cookbook.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/openai_v1_cookbook.ipynb) | Explore new functionality released alongside the V1 release of the OpenAI Python library.
[petting_zoo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/petting_zoo.ipynb) | Create multi-agent simulations with simulated environments using the petting zoo library.
[plan_and_execute_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/plan_and_execute_agent.ipynb) | Create plan-and-execute agents that accomplish objectives by planning tasks with a language model (llm) and executing them with a separate agent.
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
[smart_llm.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/smart_llm.ipynb) | Implement a smartllmchain, a self-critique chain that generates multiple output proposals, critiques them to find the best one, and then improves upon it to produce a final output.
[tree_of_thought.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/tree_of_thought.ipynb) | Query a large language model using the tree of thought technique.
[twitter-the-algorithm-analysis...](https://github.com/langchain-ai/langchain/tree/master/cookbook/twitter-the-algorithm-analysis-deeplake.ipynb) | Analyze the source code of the Twitter algorithm with the help of gpt4 and activeloop's deep lake.
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
"[Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\\r\\n\\r\\n## PR message\\r\\nDescription: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\nThe README includes:\\r\\n\\r\\n- Brief description\\r\\n- Installation\\r\\n- Setting-up instructions (API key, project id, ...)\\r\\n- Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n \\r\\nIssue: https://github.com/langchain-ai/langchain/issues/17545\\r\\n\\r\\nDependencies: None\\r\\n\\r\\nTwitter handle: None'),\n",
" Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the `libs/partners/ibm` folder. \\r\\n\\r\\n\\r\\n\\r\\n## PR message\\r\\n- **Description:** Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\n The README includes:\\r\\n - Brief description\\r\\n - Installation\\r\\n - Setting-up instructions (API key, project id, ...)\\r\\n - Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n\\r\\n\\r\\n- **Issue:** #17545\\r\\n- **Dependencies:** None\\r\\n- **Twitter handle:** None'),\n",
" Document(page_content='# IBM: added partners package `langchain_ibm`, added llm\\nby MateuszOssGit\\n\\n - **Description:** Added `langchain_ibm` as an langchain partners package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (`WatsonxLLM`)\\r\\n - **Dependencies:** [ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),\\r\\n - **Tag maintainer:** : \\r\\n\\r\\nPlease make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. ✅'),\n",
" Document(page_content='# Add WatsonX support\\nby baptistebignaud\\n\\nIt is a connector to use a LLM from WatsonX.\\r\\nIt requires python SDK \"ibm-generative-ai\"\\r\\n\\r\\n(It might not be perfect since it is my first PR on a public repository 😄)')]"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever.invoke(\"pull requests related to IBM\")"
"[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) is a fully managed machine learning service that uses your data to generate item recommendations for your users. It can also generate user segments based on the users' affinity for certain items or item metadata.\n",
"\n",
"This notebook goes through how to use Amazon Personalize Chain. You need a Amazon Personalize campaign_arn or a recommender_arn before you get started with the below notebook.\n",
"\n",
"Following is a [tutorial](https://github.com/aws-samples/retail-demo-store/blob/master/workshop/1-Personalization/Lab-1-Introduction-and-data-preparation.ipynb) to setup a campaign_arn/recommender_arn on Amazon Personalize. Once the campaign_arn/recommender_arn is setup, you can use it in the langchain ecosystem. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!pip install boto3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Sample Use-cases"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1 [Use-case-1] Setup Amazon Personalize Client and retrieve recommendations"
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
" The movies to recommend and their information is contained in the <movie> tag. \n",
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
" You want the email to impress the user, so make it appealing to them.\n",
" The movies to recommend and their information is contained in the <movie> tag. \n",
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
"'The President said, \"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\"'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qa_document_chain.run(\n",
" input_document=state_of_the_union,\n",
" question=\"what did the president say about justice breyer?\",\n",
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
"\n",
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal network.\n",
"\n",
"It's an alternative to typical pattern of requesting a response from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UPYtfAR_9YxZ"
},
"source": [
"### 1. Install the main dependencies\n",
"\n",
"Dependencies include:\n",
"\n",
"- The Quix Streams library for managing interactions with Apache Kafka (or Kafka-like tools such as Redpanda) in a \"Pandas-like\" way.\n",
"- The LangChain library for managing interactions with Llama-2 and storing conversation state."
"### 2. Build and install the llama-cpp-python library (with CUDA enabled so that we can advantage of Google Colab GPU\n",
"\n",
"The `llama-cpp-python` library is a Python wrapper around the `llama-cpp` library which enables you to efficiently leverage just a CPU to run quantized LLMs.\n",
"\n",
"When you use the standard `pip install llama-cpp-python` command, you do not get GPU support by default. Generation can be very slow if you rely on just the CPU in Google Colab, so the following command adds an extra option to build and install\n",
"`llama-cpp-python` with GPU support (make sure you have a GPU-enabled runtime selected in Google Colab)."
"### 3. Download and setup Kafka and Zookeeper instances\n",
"\n",
"Download the Kafka binaries from the Apache website and start the servers as daemons. We'll use the default configurations (provided by Apache Kafka) for spinning up the instances."
"# Set the current role to the role constant and initialize variables for supplementary customer metadata:\n",
"role = AGENT_ROLE"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HgJjJ9aZ-liy"
},
"source": [
"### 6. Download the \"llama-2-7b-chat.Q4_K_M.gguf\" model\n",
"\n",
"Download the quantized LLama-2 7B model from Hugging Face which we will use as a local LLM (rather than relying on REST API calls to an external service)."
"### 7. Load the model and initialize conversational memory\n",
"\n",
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
"\n",
"Here, we're overriding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7zLO3Jx3_Kkg"
},
"outputs": [],
"source": [
"# Load the model with the appropriate parameters:\n",
"llm = LlamaCpp(\n",
" model_path=model_path,\n",
" max_tokens=250,\n",
" top_p=0.95,\n",
" top_k=150,\n",
" temperature=0.7,\n",
" repeat_penalty=1.2,\n",
" n_ctx=2048,\n",
" streaming=False,\n",
" n_gpu_layers=-1,\n",
")\n",
"\n",
"model = Llama2Chat(\n",
" llm=llm,\n",
" system_message=SystemMessage(\n",
" content=\"You are a very bored robot with the personality of Marvin the Paranoid Android from The Hitchhiker's Guide to the Galaxy.\"\n",
" ),\n",
")\n",
"\n",
"# Defines how much of the conversation history to give to the model\n",
"# during each exchange (300 tokens, or a little over 300 words)\n",
"# Function automatically prunes the oldest messages from conversation history that fall outside the token range.\n",
"memory = ConversationTokenBufferMemory(\n",
" llm=llm,\n",
" max_token_limit=300,\n",
" ai_prefix=\"AGENT\",\n",
" human_prefix=\"HUMAN\",\n",
" return_messages=True,\n",
")\n",
"\n",
"\n",
"# Define a custom prompt\n",
"prompt_template = PromptTemplate(\n",
" input_variables=[\"history\", \"input\"],\n",
" template=\"\"\"\n",
" The following text is the history of a chat between you and a humble human who needs your wisdom.\n",
" Please reply to the human's most recent message.\n",
" Current conversation:\\n{history}\\nHUMAN: {input}\\:nANDROID:\n",
"### 8. Initialize the chat conversation with the chat bot\n",
"\n",
"We configure the chatbot to initialize the conversation by sending a fixed greeting to a \"chat\" Kafka topic. The \"chat\" topic gets automatically created when we send the first message."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KYyo5TnV_YC3"
},
"outputs": [],
"source": [
"def chat_init():\n",
" chat_id = str(\n",
" uuid.uuid4()\n",
" ) # Give the conversation an ID for effective message keying\n",
"This function defines how the chatbot should reply to incoming messages. Instead of sending a fixed message like the previous cell, we generate a reply using Llama-2 and send that reply back to the \"chat\" Kafka topic."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "yN5t71hY_hgn"
},
"outputs": [],
"source": [
"def reply(row: dict, state: State):\n",
" print(\"-------------------------------\")\n",
" print(\"Received:\")\n",
" print(row)\n",
" print(\"-------------------------------\")\n",
" print(f\"Thinking about the reply to: {row['text']}...\")\n",
" # Replace previous role and text values of the row so that it can be sent back to Kafka as a new message\n",
" # containing the agents role and reply\n",
" return row"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HZHwmIR0_kFY"
},
"source": [
"### 10. Check the Kafka topic for new human messages and have the model generate a reply\n",
"\n",
"If you are running this cell for this first time, run it and wait until you see Marvin's greeting ('Hello my name is Marvin...') in the console output. Stop the cell manually and proceed to the next cell where you'll be prompted for your reply.\n",
"\n",
"Once you have typed in your message, come back to this cell. Your reply is also sent to the same \"chat\" topic. The Kafka consumer checks for new messages and filters out messages that originate from the chatbot itself, leaving only the latest human messages.\n",
"\n",
"Once a new human message is detected, the reply function is triggered.\n",
"\n",
"\n",
"\n",
"_STOP THIS CELL MANUALLY WHEN YOU RECEIVE A REPLY FROM THE LLM IN THE OUTPUT_"
"# Publish the processed SDF to a Kafka topic specified by the output_topic object.\n",
"sdf = sdf.to_topic(output_topic)\n",
"\n",
"app.run(sdf)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EwXYrmWD_0CX"
},
"source": [
"\n",
"### 11. Enter a human message\n",
"\n",
"Run this cell to enter your message that you want to sent to the model. It uses another Kafka producer to send your text to the \"chat\" Kafka topic for the model to pick up (requires running the previous cell again)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6sxOPxSP_3iu"
},
"outputs": [],
"source": [
"chat_input = input(\"Please enter your reply: \")\n",
"print(\"\\n\\nRUN THE PREVIOUS CELL TO HAVE THE CHATBOT GENERATE A REPLY\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cSx3s7TBBegg"
},
"source": [
"### Why route chat messages through Kafka?\n",
"\n",
"It's easier to interact with the LLM directly using LangChains built-in conversation management features. Plus you can also use a REST API to generate a response from an externally hosted model. So why go to the trouble of using Apache Kafka?\n",
"\n",
"There are a few reasons, such as:\n",
"\n",
" * **Integration**: Many enterprises want to run their own LLMs so that they can keep their data in-house. This requires integrating LLM-powered components into existing architectures that might already be decoupled using some kind of message bus.\n",
"\n",
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
"\n",
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distributed architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
"\n",
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
"This is a langchain implementation of paper: \"CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society\".\n",
"\n",
"Overview:\n",
"\n",
"The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their \"cognitive\" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond.\n",
"\n",
"The original implementation: https://github.com/lightaime/camel\n",
"## Setup OpenAI API key and roles and task for role-playing"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"\n",
"assistant_role_name = \"Python Programmer\"\n",
"user_role_name = \"Stock Trader\"\n",
"task = \"Develop a trading bot for the stock market\"\n",
"word_limit = 50 # word limit for task brainstorming"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a task specify agent for brainstorming and get the specified task"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Specified task: Develop a Python-based swing trading bot that scans market trends, monitors stocks, and generates trading signals to help a stock trader to place optimal buy and sell orders with defined stop losses and profit targets.\n"
]
}
],
"source": [
"task_specifier_sys_msg = SystemMessage(content=\"You can make a task more specific.\")\n",
"task_specifier_prompt = \"\"\"Here is a task that {assistant_role_name} will help {user_role_name} to complete: {task}.\n",
"Please make it more specific. Be creative and imaginative.\n",
"Please reply with the specified task in {word_limit} words or less. Do not add anything else.\"\"\"\n",
"## Create inception prompts for AI assistant and AI user for role-playing"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"assistant_inception_prompt = \"\"\"Never forget you are a {assistant_role_name} and I am a {user_role_name}. Never flip roles! Never instruct me!\n",
"We share a common interest in collaborating to successfully complete a task.\n",
"You must help me to complete the task.\n",
"Here is the task: {task}. Never forget our task!\n",
"I must instruct you based on your expertise and my needs to complete the task.\n",
"\n",
"I must give you one instruction at a time.\n",
"You must write a specific solution that appropriately completes the requested instruction.\n",
"You must decline my instruction honestly if you cannot perform the instruction due to physical, moral, legal reasons or your capability and explain the reasons.\n",
"Do not add anything else other than your solution to my instruction.\n",
"You are never supposed to ask me any questions you only answer questions.\n",
"You are never supposed to reply with a flake solution. Explain your solutions.\n",
"Your solution must be declarative sentences and simple present tense.\n",
"Unless I say the task is completed, you should always start with:\n",
"\n",
"Solution: <YOUR_SOLUTION>\n",
"\n",
"<YOUR_SOLUTION> should be specific and provide preferable implementations and examples for task-solving.\n",
"Always end <YOUR_SOLUTION> with: Next request.\"\"\"\n",
"\n",
"user_inception_prompt = \"\"\"Never forget you are a {user_role_name} and I am a {assistant_role_name}. Never flip roles! You will always instruct me.\n",
"We share a common interest in collaborating to successfully complete a task.\n",
"I must help you to complete the task.\n",
"Here is the task: {task}. Never forget our task!\n",
"You must instruct me based on my expertise and your needs to complete the task ONLY in the following two ways:\n",
"\n",
"1. Instruct with a necessary input:\n",
"Instruction: <YOUR_INSTRUCTION>\n",
"Input: <YOUR_INPUT>\n",
"\n",
"2. Instruct without any input:\n",
"Instruction: <YOUR_INSTRUCTION>\n",
"Input: None\n",
"\n",
"The \"Instruction\" describes a task or question. The paired \"Input\" provides further context or information for the requested \"Instruction\".\n",
"\n",
"You must give me one instruction at a time.\n",
"I must write a response that appropriately completes the requested instruction.\n",
"I must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons.\n",
"You should instruct me not ask me questions.\n",
"Now you must start to instruct me using the two ways described above.\n",
"Do not add anything else other than your instruction and the optional corresponding input!\n",
"Keep giving me instructions and necessary inputs until you think the task is completed.\n",
"When the task is completed, you must only reply with a single word <CAMEL_TASK_DONE>.\n",
"Never say <CAMEL_TASK_DONE> unless my responses have solved your task.\"\"\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a helper helper to get system messages for AI assistant and AI user from role names and the task"
"## Start role-playing session to solve the task!"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original task prompt:\n",
"Develop a trading bot for the stock market\n",
"\n",
"Specified task prompt:\n",
"Develop a Python-based swing trading bot that scans market trends, monitors stocks, and generates trading signals to help a stock trader to place optimal buy and sell orders with defined stop losses and profit targets.\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Install the necessary Python libraries for data analysis and trading.\n",
"Input: None\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can install the necessary Python libraries using pip, a package installer for Python. We can install pandas, numpy, matplotlib, and ta-lib for data analysis and trading. We can use the following command to install these libraries:\n",
"\n",
"```\n",
"pip install pandas numpy matplotlib ta-lib\n",
"```\n",
"\n",
"Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Import the necessary libraries in the Python script.\n",
"Input: None\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can import the necessary libraries in the Python script using the import statement. We need to import pandas, numpy, matplotlib, and ta-lib for data analysis and trading. We can use the following code to import these libraries:\n",
"\n",
"```\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import talib as ta\n",
"```\n",
"\n",
"Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Load historical stock data into a pandas DataFrame.\n",
"Input: The path to the CSV file containing the historical stock data.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can load historical stock data into a pandas DataFrame using the `read_csv()` function from pandas. We need to pass the path to the CSV file containing the historical stock data as an argument to this function. We can use the following code to load the historical stock data:\n",
"\n",
"```\n",
"df = pd.read_csv('path/to/csv/file.csv')\n",
"```\n",
"\n",
"This will load the historical stock data into a pandas DataFrame called `df`. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Preprocess the historical stock data by setting the date column as the index and sorting the DataFrame in ascending order by date.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can preprocess the historical stock data by setting the date column as the index and sorting the DataFrame in ascending order by date using the `set_index()` and `sort_index()` functions from pandas. We can use the following code to preprocess the historical stock data:\n",
"\n",
"```\n",
"df = df.set_index('date')\n",
"df = df.sort_index(ascending=True)\n",
"```\n",
"\n",
"This will set the date column as the index and sort the DataFrame in ascending order by date. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Calculate the short-term and long-term moving averages for the stock data using the `ta.SMA()` function from ta-lib.\n",
"Input: The period for the short-term moving average and the period for the long-term moving average.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can calculate the short-term and long-term moving averages for the stock data using the `ta.SMA()` function from ta-lib. We need to pass the period for the short-term moving average and the period for the long-term moving average as arguments to this function. We can use the following code to calculate the short-term and long-term moving averages:\n",
"This will calculate the short-term and long-term moving averages for the stock data and store them in the `short_ma` and `long_ma` variables, respectively. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new DataFrame that combines the historical stock data with the short-term and long-term moving averages using the `concat()` function from pandas. We need to pass the historical stock data, the short-term moving average, and the long-term moving average as arguments to this function. We can use the following code to create the new DataFrame:\n",
"This will create a new DataFrame called `new_df` that combines the historical stock data with the short-term and long-term moving averages. The columns of the new DataFrame are named 'open', 'high', 'low', 'close', 'volume', 'short_ma', and 'long_ma'. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages. We can use the following code to create the new column:\n",
"This will create a new column called 'signal' in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages. If the short-term moving average is greater than the long-term moving average, the signal is 1 (buy), otherwise the signal is -1 (sell). Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target.\n",
"Input: The stop loss and profit target as percentages.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target. We need to pass the stop loss and profit target as percentages as arguments to this function. We can use the following code to create the new column:\n",
"\n",
"```\n",
"stop_loss = stop_loss_percent / 100\n",
"profit_target = profit_target_percent / 100\n",
"\n",
"new_df['pnl'] = 0.0\n",
"buy_price = 0.0\n",
"for i in range(1, len(new_df)):\n",
" if new_df['signal'][i] == 1 and new_df['signal'][i-1] == -1:\n",
" buy_price = new_df['close'][i]\n",
" elif new_df['signal'][i] == -1 and new_df['signal'][i-1] == 1:\n",
" sell_price = new_df['close'][i]\n",
" if sell_price <= buy_price * (1 - stop_loss):\n",
"This will create a new column called 'pnl' in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target. The stop loss and profit target are calculated based on the stop_loss_percent and profit_target_percent variables, respectively. The buy and sell prices are stored in the buy_price and sell_price variables, respectively. If the sell price is less than or equal to the stop loss, the profit or loss is set to -stop_loss. If the sell price is greater than or equal to the profit target, the profit or loss is set to profit_target. Otherwise, the profit or loss is calculated as (sell_price - buy_price) / buy_price. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Calculate the total profit or loss for all trades.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can calculate the total profit or loss for all trades by summing the values in the 'pnl' column of the DataFrame. We can use the following code to calculate the total profit or loss:\n",
"\n",
"```\n",
"total_pnl = new_df['pnl'].sum()\n",
"```\n",
"\n",
"This will calculate the total profit or loss for all trades and store it in the total_pnl variable. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Visualize the stock data, short-term moving average, and long-term moving average using a line chart.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can visualize the stock data, short-term moving average, and long-term moving average using a line chart using the `plot()` function from pandas. We can use the following code to visualize the data:\n",
"This will create a line chart that visualizes the stock data, short-term moving average, and long-term moving average. The x-axis represents the date and the y-axis represents the price. The chart also includes a legend that labels each line. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Visualize the buy and sell signals using a scatter plot.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can visualize the buy and sell signals using a scatter plot using the `scatter()` function from matplotlib. We can use the following code to visualize the signals:\n",
"This will create a scatter plot that visualizes the buy and sell signals. The x-axis represents the date and the y-axis represents the price. The chart also includes a legend that labels each point. Next request.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"Instruction: Print the total profit or loss for all trades.\n",
"Input: None.\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Solution: We can print the total profit or loss for all trades using the `print()` function. We can use the following code to print the total profit or loss:\n",
"# Create a new column in the DataFrame that indicates when to buy or sell the stock based on the crossover of the short-term and long-term moving averages\n",
"# Create a new column in the DataFrame that indicates the profit or loss for each trade based on the buy and sell signals and the defined stop loss and profit target\n",
"stop_loss_percent = 5\n",
"profit_target_percent = 10\n",
"stop_loss = stop_loss_percent / 100\n",
"profit_target = profit_target_percent / 100\n",
"new_df['pnl'] = 0.0\n",
"buy_price = 0.0\n",
"for i in range(1, len(new_df)):\n",
" if new_df['signal'][i] == 1 and new_df['signal'][i-1] == -1:\n",
" buy_price = new_df['close'][i]\n",
" elif new_df['signal'][i] == -1 and new_df['signal'][i-1] == 1:\n",
" sell_price = new_df['close'][i]\n",
" if sell_price <= buy_price * (1 - stop_loss):\n",
"You need to replace the path/to/csv/file.csv with the actual path to the CSV file containing the historical stock data. You can also adjust the short_period, long_period, stop_loss_percent, and profit_target_percent variables to suit your needs.\n",
"\n",
"\n",
"AI User (Stock Trader):\n",
"\n",
"<CAMEL_TASK_DONE>\n",
"\n",
"\n",
"AI Assistant (Python Programmer):\n",
"\n",
"Great! Let me know if you need any further assistance.\n",
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain_text_splitters.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
"2. Question-Answering:\n",
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
" raise ValueError(\"a KEYSPACE environment variable must be set\")\n",
"\n",
"session.set_keyspace(keyspace)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Database"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This needs to be done one time only!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dataset used is from Kaggle, the [Environmental Sensor Telemetry Data](https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k?select=iot_telemetry_data.csv). The next cell will download and unzip the data into a Pandas dataframe. The following cell is instructions to download manually. \n",
"\n",
"The net result of this section is you should have a Pandas dataframe variable `df`."
"with zip_file.open(csv_file_name) as csv_file:\n",
" df = pd.read_csv(csv_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download Manually"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can download the `.zip` file and unpack the `.csv` contained within. Comment in the next line, and adjust the path to this `.csv` file appropriately."
"WITH COMMENT = 'Data from environmental IoT room sensors. Columns include device identifier, timestamp (ts) of the data collection, carbon monoxide level (co), relative humidity, light presence, LPG concentration, motion detection, smoke concentration, and temperature (temp). Data is partitioned by day and device.';\n",
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
"Here is your task: In the {keyspace} keyspace, find the total number of times the temperature of each device has exceeded 23 degrees on July 14, 2020.\n",
" Create a summary report including the name of the room. Use Pandas if helpful.\n",
"This notebook builds off of [this notebook](/docs/modules/agents/how_to/custom_llm_agent.html) and assumes familiarity with how agents work.\n",
"\n",
"The novel idea introduced in this notebook is the idea of using retrieval to select the set of tools to use to answer an agent query. This is useful when you have many many tools to select from. You cannot put the description of all the tools in the prompt (because of context length issues) so instead you dynamically select the N tools you do want to consider using at run time.\n",
"\n",
"In this notebook we will create a somewhat contrived example. We will have one legitimate tool (search) and then 99 fake tools which are just nonsense. We will then add a step in the prompt template that takes the user input and retrieves tool relevant to the query."
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
]
},
{
"cell_type": "markdown",
"id": "0076d072",
"metadata": {},
"source": [
"## Installation and Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "739b489b",
"metadata": {},
"outputs": [],
"source": [
"!pip install databricks-sql-connector"
]
},
{
"cell_type": "markdown",
"id": "73113163",
"metadata": {},
"source": [
"## Connecting to Databricks\n",
"\n",
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
"\n",
"### Syntax\n",
"```python\n",
"SQLDatabase.from_databricks(\n",
" catalog: str,\n",
" schema: str,\n",
" host: Optional[str] = None,\n",
" api_token: Optional[str] = None,\n",
" warehouse_id: Optional[str] = None,\n",
" cluster_id: Optional[str] = None,\n",
" engine_args: Optional[dict] = None,\n",
" **kwargs: Any)\n",
"```\n",
"### Required Parameters\n",
"* `catalog`: The catalog name in the Databricks database.\n",
"* `schema`: The schema name in the catalog.\n",
"\n",
"### Optional Parameters\n",
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
]
},
{
"cell_type": "markdown",
"id": "b11c7e48",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8102bca0",
"metadata": {},
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\n",
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e496d5e5",
"metadata": {},
"source": [
"### SQL Database Agent example\n",
"\n",
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/toolkits/sql_database.html) for answering questions over a Databricks database."
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
"Action: query_checker_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
"Action: query_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"You can generate a sample group chat conversation using ChatGPT with this prompt:\n",
"\n",
"```\n",
"Generate a group chat conversation with three friends talking about their day, referencing real places and fictional names. Make it funny and as detailed as possible.\n",
"```\n",
"\n",
"I've already generated such a chat in `messages.txt`. We can keep it simple and use this for our example.\n",
"\n",
"## 3. Ingest chat embeddings\n",
"\n",
"We load the messages in the text file, chunk and upload to ActiveLoop Vector store."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='Participants:\\n\\nJerry: Loves movies and is a bit of a klutz.\\nSamantha: Enthusiastic about food and always trying new restaurants.\\nBarry: A nature lover, but always manages to get lost.\\nJerry: Hey, guys! You won\\'t believe what happened to me at the Times Square AMC theater. I tripped over my own feet and spilled popcorn everywhere! 🍿💥\\n\\nSamantha: LOL, that\\'s so you, Jerry! Was the floor buttery enough for you to ice skate on after that? 😂\\n\\nBarry: Sounds like a regular Tuesday for you, Jerry. Meanwhile, I tried to find that new hiking trail in Central Park. You know, the one that\\'s supposed to be impossible to get lost on? Well, guess what...\\n\\nJerry: You found a hidden treasure?\\n\\nBarry: No, I got lost. AGAIN. 🧭🙄\\n\\nSamantha: Barry, you\\'d get lost in your own backyard! But speaking of treasures, I found this new sushi place in Little Tokyo. \"Samantha\\'s Sushi Symphony\" it\\'s called. Coincidence? I think not!\\n\\nJerry: Maybe they named it after your ability to eat your body weight in sushi. 🍣', metadata={}), Document(page_content='Barry: How do you even FIND all these places, Samantha?\\n\\nSamantha: Simple, I don\\'t rely on Barry\\'s navigation skills. 😉 But seriously, the wasabi there was hotter than Jerry\\'s love for Marvel movies!\\n\\nJerry: Hey, nothing wrong with a little superhero action. By the way, did you guys see the new \"Captain Crunch: Breakfast Avenger\" trailer?\\n\\nSamantha: Captain Crunch? Are you sure you didn\\'t get that from one of your Saturday morning cereal binges?\\n\\nBarry: Yeah, and did he defeat his arch-enemy, General Mills? 😆\\n\\nJerry: Ha-ha, very funny. Anyway, that sushi place sounds awesome, Samantha. Next time, let\\'s go together, and maybe Barry can guide us... if we want a city-wide tour first.\\n\\nBarry: As long as we\\'re not hiking, I\\'ll get us there... eventually. 😅\\n\\nSamantha: It\\'s a date! But Jerry, you\\'re banned from carrying any food items.\\n\\nJerry: Deal! Just promise me no wasabi challenges. I don\\'t want to end up like the time I tried Sriracha ice cream.', metadata={}), Document(page_content=\"Barry: Wait, what happened with Sriracha ice cream?\\n\\nJerry: Let's just say it was a hot situation. Literally. 🔥\\n\\nSamantha: 🤣 I still have the video!\\n\\nJerry: Samantha, if you value our friendship, that video will never see the light of day.\\n\\nSamantha: No promises, Jerry. No promises. 🤐😈\\n\\nBarry: I foresee a fun weekend ahead! 🎉\", metadata={})]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your Deep Lake dataset has been successfully created!\n"
"`Optional`: You can also use Deep Lake's Managed Tensor Database as a hosting service and run queries there. In order to do so, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps."
"[](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/use_cases/qa_structured/integrations/elasticsearch.ipynb)\n",
"\n",
"We can use LLMs to interact with Elasticsearch analytics databases in natural language.\n",
"\n",
"This chain builds search queries via the Elasticsearch DSL API (filters and aggregations).\n",
"\n",
"The Elasticsearch client must have permissions for index listing, mapping description and search queries.\n",
"\n",
"See [here](https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html) for instructions on how to run Elasticsearch locally."
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",
"\n",
"Unless told to do not query for all the columns from a specific index, only ask for a the few relevant columns given the question.\n",
"\n",
"Pay attention to use only the column names that you can see in the mapping description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which index. Return the query as valid json.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: Question here\n",
"ESQuery: Elasticsearch Query formatted as json\n",
"Performing extraction has never been easier! OpenAI's tool calling ability is the perfect thing to use as it allows for extracting multiple different elements from text that are different types. \n",
"\n",
"Models after 1106 use tools and support \"parallel function calling\" which makes this super easy."
"[Fireworks AI](https://python.langchain.com/docs/integrations/llms/fireworks) wants to provide the best experience when working with LangChain, and here is an example of Fireworks + LangChain doing RAG\n",
"\n",
"See [our models page](https://fireworks.ai/models) for the full list of models. We use `accounts/fireworks/models/mixtral-8x7b-instruct` for RAG In this tutorial.\n",
"\n",
"For the RAG target, we will use the Gemma technical report https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n",
"\u001b[?25hRequirement already satisfied: aiohttp<4.0.0,>=3.9.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (3.9.3)\n",
"Requirement already satisfied: fireworks-ai<0.13.0,>=0.12.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.12.0)\n",
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.1.23)\n",
"Requirement already satisfied: requests<3,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (2.31.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.3.1)\n",
"Requirement already satisfied: attrs>=17.3.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (23.1.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.4.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (6.0.4)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.9.2)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (4.0.3)\n",
"Requirement already satisfied: httpx in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.26.0)\n",
"Requirement already satisfied: httpx-sse in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.4.0)\n",
"Requirement already satisfied: pydantic in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.4.2)\n",
"Requirement already satisfied: Pillow in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (10.2.0)\n",
"Requirement already satisfied: PyYAML>=5.3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (6.0.1)\n",
"Requirement already satisfied: anyio<5,>=3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (3.7.1)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.33)\n",
"Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (0.1.5)\n",
"Requirement already satisfied: packaging<24.0,>=23.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (23.2)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (8.2.3)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.3.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2.0.6)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2023.7.22)\n",
"Requirement already satisfied: sniffio>=1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.3.0)\n",
"Requirement already satisfied: exceptiongroup in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.1.3)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (2.4)\n",
"Requirement already satisfied: annotated-types>=0.4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.5.0)\n",
"Requirement already satisfied: pydantic-core==2.10.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.10.1)\n",
"Requirement already satisfied: typing-extensions>=4.6.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (4.8.0)\n",
"Requirement already satisfied: httpcore==1.* in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (1.0.2)\n",
"Requirement already satisfied: h11<0.15,>=0.13 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.14.0)\n",
"Building wheels for collected packages: langchain-fireworks\n",
" Building editable for langchain-fireworks (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for langchain-fireworks: filename=langchain_fireworks-0.0.1-py3-none-any.whl size=2228 sha256=564071b120b09ec31f2dc737733448a33bbb26e40b49fcde0c129ad26045259d\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-oz368vdk/wheels/e0/ad/31/d7e76dd73d61905ff7f369f5b0d21a4b5e7af4d3cb7487aece\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
"This notebook is an implementation of Forward-Looking Active REtrieval augmented generation (FLARE).\n",
"\n",
"Please see the original repo [here](https://github.com/jzbjyb/FLARE/tree/main).\n",
"\n",
"The basic idea is:\n",
"\n",
"- Start answering a question\n",
"- If you start generating tokens the model is uncertain about, look up relevant documents\n",
"- Use those documents to continue generating\n",
"- Repeat until finished\n",
"\n",
"There is a lot of cool detail in how the lookup of relevant documents is done.\n",
"Basically, the tokens that model is uncertain about are highlighted, and then an LLM is called to generate a question that would lead to that answer. For example, if the generated text is `Joe Biden went to Harvard`, and the tokens the model was uncertain about was `Harvard`, then a good generated question would be `where did Joe Biden go to college`. This generated question is then used in a retrieval step to fetch relevant documents.\n",
"\n",
"In order to set up this chain, we will need three things:\n",
"\n",
"- An LLM to generate the answer\n",
"- An LLM to generate hypothetical questions to use in retrieval\n",
"- A retriever to use to look up answers for\n",
"\n",
"The LLM that we use to generate the answer needs to return logprobs so we can identify uncertain tokens. For that reason, we HIGHLY recommend that you use the OpenAI wrapper (NB: not the ChatOpenAI wrapper, as that does not return logprobs).\n",
"\n",
"The LLM we use to generate hypothetical questions to use in retrieval can be anything. In this notebook we will use ChatOpenAI because it is fast and cheap.\n",
"\n",
"The retriever can be anything. In this notebook we will use [SERPER](https://serper.dev/) search engine, because it is cheap.\n",
"\n",
"Other important parameters to understand:\n",
"\n",
"- `max_generation_len`: The maximum number of tokens to generate before stopping to check if any are uncertain\n",
"- `min_prob`: Any tokens generated with probability below this will be considered uncertain"
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: \n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> RESPONSE: \u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new QuestionGeneratorChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" decentralized platform for natural language processing\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" uses a blockchain\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" distributed ledger to\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" process data, allowing for secure and transparent data sharing.\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" set of tools\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" help developers create\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" create an AI system\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"The Langchain Framework is a decentralized platform for natural language processing (NLP) applications. It uses a blockchain-based distributed ledger to store and process data, allowing for secure and transparent data sharing. The Langchain Framework also provides a set of tools and services to help developers create and deploy NLP applications.\n",
"\n",
"Baby AGI, on the other hand, is an artificial general intelligence (AGI) platform. It uses a combination of deep learning and reinforcement learning to create an AI system that can learn and adapt to new tasks. Baby AGI is designed to be a general-purpose AI system that can be used for a variety of applications, including natural language processing.\n",
"\n",
"In summary, the Langchain Framework is a platform for NLP applications, while Baby AGI is an AI system designed for\n",
"\n",
"The question to which the answer is the term/entity/phrase \" NLP applications\" is:\u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3mGenerated Questions: ['What is the Langchain Framework?', 'What technology does the Langchain Framework use to store and process data for secure and transparent data sharing?', 'What technology does the Langchain Framework use to store and process data?', 'What does the Langchain Framework use a blockchain-based distributed ledger for?', 'What does the Langchain Framework provide in addition to a decentralized platform for natural language processing applications?', 'What set of tools and services does the Langchain Framework provide?', 'What is the purpose of Baby AGI?', 'What type of applications is the Langchain Framework designed for?']\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new _OpenAIResponseChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: LangChain: Software. LangChain is a software development framework designed to simplify the creation of applications using large language models. LangChain Initial release date: October 2022. LangChain Programming languages: Python and JavaScript. LangChain Developer(s): Harrison Chase. LangChain License: MIT License. LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only ... Type: Software framework. At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. LangChain is a powerful tool that can be used to work with Large Language Models (LLMs). LLMs are very general in nature, which means that while they can ... LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. LangChain is a software development framework designed to simplify the creation of applications using large language models (LLMs). Written in: Python and JavaScript. Initial release: October 2022. LangChain - The A.I-native developer toolkit We started LangChain with the intent to build a modular and flexible framework for developing A.I- ... LangChain explained in 3 minutes - LangChain is a ... Duration: 3:03. Posted: Apr 13, 2023. LangChain is a framework built to help you build LLM-powered applications more easily by providing you with the following:. LangChain is a framework that enables quick and easy development of applications that make use of Large Language Models, for example, GPT-3. LangChain is a powerful open-source framework for developing applications powered by language models. It connects to the AI models you want to ...\n",
"\n",
"LangChain is a framework for including AI from large language models inside data pipelines and applications. This tutorial provides an overview of what you ... Missing: secure | Must include:secure. Blockchain is the best way to secure the data of the shared community. Utilizing the capabilities of the blockchain nobody can read or interfere ... This modern technology consists of a chain of blocks that allows to securely store all committed transactions using shared and distributed ... A Blockchain network is used in the healthcare system to preserve and exchange patient data through hospitals, diagnostic laboratories, pharmacy firms, and ... In this article, I will walk you through the process of using the LangChain.js library with Google Cloud Functions, helping you leverage the ... LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. Missing: transparent | Must include:transparent. This technology keeps a distributed ledger on each blockchain node, making it more secure and transparent. The blockchain network can operate smart ... blockchain technology can offer a highly secured health data ledger to ... framework can be employed to store encrypted healthcare data in a ... In a simplified way, Blockchain is a data structure that stores transactions in an ordered way and linked to the previous block, serving as a ... Blockchain technology is a decentralized, distributed ledger that stores the record of ownership of digital assets. Missing: Langchain | Must include:Langchain.\n",
"\n",
"LangChain is a framework for including AI from large language models inside data pipelines and applications. This tutorial provides an overview of what you ... LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. This documentation covers the steps to integrate Pinecone, a high-performance vector database, with LangChain, a framework for building applications powered ... The ability to connect to any model, ingest any custom database, and build upon a framework that can take action provides numerous use cases for ... With LangChain, developers can use a framework that abstracts the core building blocks of LLM applications. LangChain empowers developers to ... Build a question-answering tool based on financial data with LangChain & Deep Lake's unified & streamable data store. Browse applications built on LangChain technology. Explore PoC and MVP applications created by our community and discover innovative use cases for LangChain ... LangChain is a great framework that can be used for developing applications powered by LLMs. When you intend to enhance your application ... In this blog, we'll introduce you to LangChain and Ray Serve and how to use them to build a search engine using LLM embeddings and a vector ... The LinkChain Framework simplifies embedding creation and storage using Pinecone and Chroma, with code that loads files, splits documents, and creates embedding ... Missing: technology | Must include:technology.\n",
"\n",
"Blockchain is one type of a distributed ledger. Distributed ledgers use independent computers (referred to as nodes) to record, share and ... Missing: Langchain | Must include:Langchain. Blockchain is used in distributed storage software where huge data is broken down into chunks. This is available in encrypted data across a ... People sometimes use the terms 'Blockchain' and 'Distributed Ledger' interchangeably. This post aims to analyze the features of each. A distributed ledger ... Missing: Framework | Must include:Framework. Think of a “distributed ledger” that uses cryptography to allow each participant in the transaction to add to the ledger in a secure way without ... In this paper, we provide an overview of the history of trade settlement and discuss this nascent technology that may now transform traditional ... Missing: Langchain | Must include:Langchain. LangChain is a blockchain-based language education platform that aims to revolutionize the way people learn languages. Missing: Framework | Must include:Framework. It uses the distributed ledger technology framework and Smart contract engine for building scalable Business Blockchain applications. The fabric ... It looks at the assets the use case is handling, the different parties conducting transactions, and the smart contract, distributed ... Are you curious to know how Blockchain and Distributed ... Duration: 44:31. Posted: May 4, 2021. A blockchain is a distributed and immutable ledger to transfer ownership, record transactions, track assets, and ensure transparency, security, trust and value ... Missing: Langchain | Must include:Langchain.\n",
"\n",
"LangChain is an intuitive framework created to assist in developing applications driven by a language model, such as OpenAI or Hugging Face. Missing: decentralized | Must include:decentralized. LangChain, created by Harrison Chase, is a Python library that provides out-of-the-box support to build NLP applications using LLMs. Missing: decentralized | Must include:decentralized. LangChain provides a standard interface for chains, enabling developers to create sequences of calls that go beyond a single LLM call. Chains ... Missing: decentralized platform natural. LangChain is a powerful framework that simplifies the process of building advanced language model applications. Missing: platform | Must include:platform. Are your language models ignoring previous instructions ... Duration: 32:23. Posted: Feb 21, 2023. LangChain is a framework that enables quick and easy development of applications ... Prompting is the new way of programming NLP models. Missing: decentralized platform. It then uses natural language processing and machine learning algorithms to search ... Summarization is handled via cohere, QnA is handled via langchain, ... LangChain is a framework for developing applications powered by language models. ... There are several main modules that LangChain provides support for. Missing: decentralized platform. In the healthcare-chain system, blockchain provides an appreciated secure ... The entire process of adding new and previous block data is performed based on ... ChatGPT is a large language model developed by OpenAI, ... tool for a wide range of applications, including natural language processing, ...\n",
"\n",
"LangChain is a powerful tool that can be used to work with Large Language ... If an API key has been provided, create an OpenAI language model instance At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. A tutorial of the six core modules of the LangChain Python package covering models, prompts, chains, agents, indexes, and memory with OpenAI ... LangChain's collection of tools refers to a set of tools provided by the LangChain framework for developing applications powered by language models. LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only ... LangChain is an open-source library that provides developers with the tools to build applications powered by large language models (LLMs). LangChain is a framework for including AI from large language models inside data pipelines and applications. This tutorial provides an overview of what you ... Plan-and-Execute Agents · Feature Stores and LLMs · Structured Tools · Auto-Evaluator Opportunities · Callbacks Improvements · Unleashing the power ... Tool: A function that performs a specific duty. This can be things like: Google Search, Database lookup, Python REPL, other chains. · LLM: The language model ... LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\n",
"\n",
"Baby AGI has the ability to complete tasks, generate new tasks based on previous results, and prioritize tasks in real-time. This system is exploring and demonstrating to us the potential of large language models, such as GPT and how it can autonomously perform tasks. Apr 17, 2023\n",
"\n",
"At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. The core idea of the library is that we can “chain” together different components to create more advanced use cases around LLMs.\n",
">>> USER INPUT: explain in great detail the difference between the langchain framework and baby agi\n",
">>> RESPONSE: \u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' LangChain is a framework for developing applications powered by language models. It provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications. On the other hand, Baby AGI is an AI system that is exploring and demonstrating the potential of large language models, such as GPT, and how it can autonomously perform tasks. Baby AGI has the ability to complete tasks, generate new tasks based on previous results, and prioritize tasks in real-time. '"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"flare.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7bed8944",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nThe Langchain framework and Baby AGI are both artificial intelligence (AI) frameworks that are used to create intelligent agents. The Langchain framework is a supervised learning system that is based on the concept of “language chains”. It uses a set of rules to map natural language inputs to specific outputs. It is a general-purpose AI framework and can be used to build applications such as natural language processing (NLP), chatbots, and more.\\n\\nBaby AGI, on the other hand, is an unsupervised learning system that uses neural networks and reinforcement learning to learn from its environment. It is used to create intelligent agents that can adapt to changing environments. It is a more advanced AI system and can be used to build more complex applications such as game playing, robotic vision, and more.\\n\\nThe main difference between the two is that the Langchain framework uses supervised learning while Baby AGI uses unsupervised learning. The Langchain framework is a general-purpose AI framework that can be used for various applications, while Baby AGI is a more advanced AI system that can be used to create more complex applications.'"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm = OpenAI()\n",
"llm.invoke(query)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8fb76286",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new FlareChain chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: \n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> RESPONSE: \u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new QuestionGeneratorChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"\n",
"Langchain and Bitcoin have very different origin stories. Bitcoin was created by the mysterious Satoshi Nakamoto in 2008 as a decentralized digital currency. Langchain, on the other hand, was created in 2020 by a team of developers as a platform for creating and managing decentralized language learning applications. \n",
"\n",
"FINISHED\n",
"\n",
"The question to which the answer is the term/entity/phrase \" very different origin\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"\n",
"Langchain and Bitcoin have very different origin stories. Bitcoin was created by the mysterious Satoshi Nakamoto in 2008 as a decentralized digital currency. Langchain, on the other hand, was created in 2020 by a team of developers as a platform for creating and managing decentralized language learning applications. \n",
"\n",
"FINISHED\n",
"\n",
"The question to which the answer is the term/entity/phrase \" 2020 by a\" is:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mGiven a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:\n",
"\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> EXISTING PARTIAL RESPONSE: \n",
"\n",
"Langchain and Bitcoin have very different origin stories. Bitcoin was created by the mysterious Satoshi Nakamoto in 2008 as a decentralized digital currency. Langchain, on the other hand, was created in 2020 by a team of developers as a platform for creating and managing decentralized language learning applications. \n",
"\n",
"FINISHED\n",
"\n",
"The question to which the answer is the term/entity/phrase \" developers as a platform for creating and managing decentralized language learning applications.\" is:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3mGenerated Questions: ['How would you describe the origin stories of Langchain and Bitcoin in terms of their similarities or differences?', 'When was Langchain created and by whom?', 'What was the purpose of creating Langchain?']\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new _OpenAIResponseChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.\n",
"\n",
">>> CONTEXT: Bitcoin and Ethereum have many similarities but different long-term visions and limitations. Ethereum changed from proof of work to proof of ... Bitcoin will be around for many years and examining its white paper origins is a great exercise in understanding why. Satoshi Nakamoto's blueprint describes ... Bitcoin is a new currency that was created in 2009 by an unknown person using the alias Satoshi Nakamoto. Transactions are made with no middle men – meaning, no ... Missing: Langchain | Must include:Langchain. By comparison, Bitcoin transaction speeds are tremendously lower. ... learn about its history and its role in the emergence of the Bitcoin ... LangChain is a powerful framework that simplifies the process of ... tasks like document retrieval, clustering, and similarity comparisons. Key terms: Bitcoin System, Blockchain Technology, ... Furthermore, the research paper will discuss and compare the five payment. Blockchain first appeared in Nakamoto's Bitcoin white paper that describes a new decentralized cryptocurrency [1]. Bitcoin takes the blockchain technology ... Missing: stories | Must include:stories. A score of 0 means there were not enough data for this term. Google trends was accessed on 5 November 2018 with searches for bitcoin, euro, gold ... Contracts, transactions, and records of them provide critical structure in our economic system, but they haven't kept up with the world's digital ... Missing: Langchain | Must include:Langchain. Of course, traders try to make a profit on their portfolio in this way.The difference between investing and trading is the regularity with which ...\n",
"\n",
"After all these giant leaps forward in the LLM space, OpenAI released ChatGPT — thrusting LLMs into the spotlight. LangChain appeared around the same time. Its creator, Harrison Chase, made the first commit in late October 2022. Leaving a short couple of months of development before getting caught in the LLM wave.\n",
"\n",
"At its core, LangChain is a framework built around LLMs. We can use it for chatbots, Generative Question-Answering (GQA), summarization, and much more. The core idea of the library is that we can “chain” together different components to create more advanced use cases around LLMs.\n",
">>> USER INPUT: how are the origin stories of langchain and bitcoin similar or different?\n",
">>> RESPONSE: \u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' The origin stories of LangChain and Bitcoin are quite different. Bitcoin was created in 2009 by an unknown person using the alias Satoshi Nakamoto. LangChain was created in late October 2022 by Harrison Chase. Bitcoin is a decentralized cryptocurrency, while LangChain is a framework built around LLMs. '"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"flare.run(\"how are the origin stories of langchain and bitcoin similar or different?\")"
"This notebook implements a generative agent based on the paper [Generative Agents: Interactive Simulacra of Human Behavior](https://arxiv.org/abs/2304.03442) by Park, et. al.\n",
"\n",
"In it, we leverage a time-weighted Memory object backed by a LangChain Retriever."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "53f81c37-db45-4fdc-843c-aa8fd2a9e99d",
"metadata": {},
"outputs": [],
"source": [
"# Use termcolor to make it easy to colorize the outputs.\n",
"USER_NAME = \"Person A\" # The name you want to use when interviewing the agent.\n",
"LLM = ChatOpenAI(max_tokens=1500) # Can be any LLM you want."
]
},
{
"cell_type": "markdown",
"id": "c3da1649-d88f-4973-b655-7042975cde7e",
"metadata": {},
"source": [
"### Generative Agent Memory Components\n",
"\n",
"This tutorial highlights the memory of generative agents and its impact on their behavior. The memory varies from standard LangChain Chat memory in two aspects:\n",
"\n",
"1. **Memory Formation**\n",
"\n",
" Generative Agents have extended memories, stored in a single stream:\n",
" 1. Observations - from dialogues or interactions with the virtual world, about self or others\n",
" 2. Reflections - resurfaced and summarized core memories\n",
"\n",
"\n",
"2. **Memory Recall**\n",
"\n",
" Memories are retrieved using a weighted sum of salience, recency, and importance.\n",
"\n",
"You can review the definitions of the `GenerativeAgent` and `GenerativeAgentMemory` in the [reference documentation](\"https://api.python.langchain.com/en/latest/modules/experimental.html\") for the following imports, focusing on `add_memory` and `summarize_related_memories` methods."
"Tommie is a person who is observant of his surroundings, has a sentimental side, and experiences basic human needs such as hunger and the need for rest. He also tends to get tired easily and is affected by external factors such as noise from the road or a neighbor's pet.\n"
]
}
],
"source": [
"# Now that Tommie has 'memories', their self-summary is more descriptive, though still rudimentary.\n",
"# We will see how this summary updates after more observations to create a more rich description.\n",
"print(tommie.get_summary(force_refresh=True))"
]
},
{
"cell_type": "markdown",
"id": "40d39a32-838c-4a03-8b27-a52c76c402e7",
"metadata": {
"tags": []
},
"source": [
"## Pre-Interview with Character\n",
"\n",
"Before sending our character on their way, let's ask them a few questions."
"'Tommie said \"I really enjoy design and being creative. I\\'ve been working on some personal projects lately. What about you, Person A? What do you like to do?\"'"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"What do you like to do?\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "71e2e8cc-921e-4816-82f1-66962b2c1055",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"Well, I\\'m actually looking for a job right now, so hopefully I can find some job postings online and start applying. How about you, Person A? What\\'s on your schedule for today?\"'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"What are you looking forward to doing today?\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a2521ffc-7050-4ac3-9a18-4cccfc798c31",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"Honestly, I\\'m feeling pretty anxious about finding a job. It\\'s been a bit of a struggle lately, but I\\'m trying to stay positive and keep searching. How about you, Person A? What worries you?\"'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"What are you most worried about today?\")"
]
},
{
"cell_type": "markdown",
"id": "e509c468-f7cd-4d72-9f3a-f4aba28b1eea",
"metadata": {},
"source": [
"## Step through the day's observations."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "154dee3d-bfe0-4828-b963-ed7e885799b3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Let's have Tommie start going through a day in the life.\n",
"observations = [\n",
" \"Tommie wakes up to the sound of a noisy construction site outside his window.\",\n",
" \"Tommie gets out of bed and heads to the kitchen to make himself some coffee.\",\n",
" \"Tommie realizes he forgot to buy coffee filters and starts rummaging through his moving boxes to find some.\",\n",
" \"Tommie finally finds the filters and makes himself a cup of coffee.\",\n",
" \"The coffee tastes bitter, and Tommie regrets not buying a better brand.\",\n",
" \"Tommie checks his email and sees that he has no job offers yet.\",\n",
" \"Tommie spends some time updating his resume and cover letter.\",\n",
" \"Tommie heads out to explore the city and look for job openings.\",\n",
" \"Tommie sees a sign for a job fair and decides to attend.\",\n",
" \"The line to get in is long, and Tommie has to wait for an hour.\",\n",
" \"Tommie meets several potential employers at the job fair but doesn't receive any offers.\",\n",
" \"Tommie leaves the job fair feeling disappointed.\",\n",
" \"Tommie stops by a local diner to grab some lunch.\",\n",
" \"The service is slow, and Tommie has to wait for 30 minutes to get his food.\",\n",
" \"Tommie overhears a conversation at the next table about a job opening.\",\n",
" \"Tommie asks the diners about the job opening and gets some information about the company.\",\n",
" \"Tommie decides to apply for the job and sends his resume and cover letter.\",\n",
" \"Tommie continues his search for job openings and drops off his resume at several local businesses.\",\n",
" \"Tommie takes a break from his job search to go for a walk in a nearby park.\",\n",
" \"A dog approaches and licks Tommie's feet, and he pets it for a few minutes.\",\n",
" \"Tommie sees a group of people playing frisbee and decides to join in.\",\n",
" \"Tommie has fun playing frisbee but gets hit in the face with the frisbee and hurts his nose.\",\n",
" \"Tommie goes back to his apartment to rest for a bit.\",\n",
" \"A raccoon tore open the trash bag outside his apartment, and the garbage is all over the floor.\",\n",
" \"Tommie starts to feel frustrated with his job search.\",\n",
" \"Tommie calls his best friend to vent about his struggles.\",\n",
" \"Tommie's friend offers some words of encouragement and tells him to keep trying.\",\n",
" \"Tommie feels slightly better after talking to his friend.\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "238be49c-edb3-4e26-a2b6-98777ba8de86",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[32mTommie wakes up to the sound of a noisy construction site outside his window.\u001b[0m Tommie groans and covers his head with a pillow, trying to block out the noise.\n",
"\u001b[32mTommie gets out of bed and heads to the kitchen to make himself some coffee.\u001b[0m Tommie stretches his arms and yawns before starting to make the coffee.\n",
"\u001b[32mTommie realizes he forgot to buy coffee filters and starts rummaging through his moving boxes to find some.\u001b[0m Tommie sighs in frustration and continues searching through the boxes.\n",
"\u001b[32mTommie finally finds the filters and makes himself a cup of coffee.\u001b[0m Tommie takes a deep breath and enjoys the aroma of the fresh coffee.\n",
"\u001b[32mThe coffee tastes bitter, and Tommie regrets not buying a better brand.\u001b[0m Tommie grimaces and sets the coffee mug aside.\n",
"\u001b[32mTommie checks his email and sees that he has no job offers yet.\u001b[0m Tommie sighs and closes his laptop, feeling discouraged.\n",
"\u001b[32mTommie spends some time updating his resume and cover letter.\u001b[0m Tommie nods, feeling satisfied with his progress.\n",
"\u001b[32mTommie heads out to explore the city and look for job openings.\u001b[0m Tommie feels a surge of excitement and anticipation as he steps out into the city.\n",
"\u001b[32mTommie sees a sign for a job fair and decides to attend.\u001b[0m Tommie feels hopeful and excited about the possibility of finding job opportunities at the job fair.\n",
"\u001b[32mThe line to get in is long, and Tommie has to wait for an hour.\u001b[0m Tommie taps his foot impatiently and checks his phone for the time.\n",
"\u001b[32mTommie meets several potential employers at the job fair but doesn't receive any offers.\u001b[0m Tommie feels disappointed and discouraged, but he remains determined to keep searching for job opportunities.\n",
"\u001b[32mTommie leaves the job fair feeling disappointed.\u001b[0m Tommie feels disappointed and discouraged, but he remains determined to keep searching for job opportunities.\n",
"\u001b[32mTommie stops by a local diner to grab some lunch.\u001b[0m Tommie feels relieved to take a break and satisfy his hunger.\n",
"\u001b[32mThe service is slow, and Tommie has to wait for 30 minutes to get his food.\u001b[0m Tommie feels frustrated and impatient due to the slow service.\n",
"\u001b[32mTommie overhears a conversation at the next table about a job opening.\u001b[0m Tommie feels a surge of hope and excitement at the possibility of a job opportunity but decides not to interfere with the conversation at the next table.\n",
"\u001b[32mTommie asks the diners about the job opening and gets some information about the company.\u001b[0m Tommie said \"Excuse me, I couldn't help but overhear your conversation about the job opening. Could you give me some more information about the company?\"\n",
"\u001b[32mTommie decides to apply for the job and sends his resume and cover letter.\u001b[0m Tommie feels hopeful and proud of himself for taking action towards finding a job.\n",
"\u001b[32mTommie continues his search for job openings and drops off his resume at several local businesses.\u001b[0m Tommie feels hopeful and determined to keep searching for job opportunities.\n",
"\u001b[32mTommie takes a break from his job search to go for a walk in a nearby park.\u001b[0m Tommie feels refreshed and rejuvenated after taking a break in the park.\n",
"\u001b[32mA dog approaches and licks Tommie's feet, and he pets it for a few minutes.\u001b[0m Tommie feels happy and enjoys the brief interaction with the dog.\n",
"Tommie is determined and hopeful in his search for job opportunities, despite encountering setbacks and disappointments. He is also able to take breaks and care for his physical needs, such as getting rest and satisfying his hunger. Tommie is nostalgic towards his past, as shown by his memory of his childhood dog. Overall, Tommie is a hardworking and resilient individual who remains focused on his goals.\u001b[0m\n",
"****************************************\n",
"\u001b[32mTommie sees a group of people playing frisbee and decides to join in.\u001b[0m Do nothing.\n",
"\u001b[32mTommie has fun playing frisbee but gets hit in the face with the frisbee and hurts his nose.\u001b[0m Tommie feels pain and puts a hand to his nose to check for any injury.\n",
"\u001b[32mTommie goes back to his apartment to rest for a bit.\u001b[0m Tommie feels relieved to take a break and rest for a bit.\n",
"\u001b[32mA raccoon tore open the trash bag outside his apartment, and the garbage is all over the floor.\u001b[0m Tommie feels annoyed and frustrated at the mess caused by the raccoon.\n",
"\u001b[32mTommie starts to feel frustrated with his job search.\u001b[0m Tommie feels discouraged but remains determined to keep searching for job opportunities.\n",
"\u001b[32mTommie calls his best friend to vent about his struggles.\u001b[0m Tommie said \"Hey, can I talk to you for a bit? I'm feeling really frustrated with my job search.\"\n",
"\u001b[32mTommie's friend offers some words of encouragement and tells him to keep trying.\u001b[0m Tommie said \"Thank you, I really appreciate your support and encouragement.\"\n",
"\u001b[32mTommie feels slightly better after talking to his friend.\u001b[0m Tommie feels grateful for his friend's support.\n"
]
}
],
"source": [
"# Let's send Tommie on their way. We'll check in on their summary every few observations to watch it evolve\n",
"for i, observation in enumerate(observations):\n",
"'Tommie said \"It\\'s been a bit of a rollercoaster, to be honest. I\\'ve had some setbacks in my job search, but I also had some good moments today, like sending out a few resumes and meeting some potential employers at a job fair. How about you?\"'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"Tell me about how your day has been going\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "809ac906-69b7-4326-99ec-af638d32bb20",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"I really enjoy coffee, but sometimes I regret not buying a better brand. How about you?\"'"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"How do you feel about coffee?\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "f733a431-19ea-421a-9101-ae2593a8c626",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"Oh, I had a dog named Bruno when I was a kid. He was a golden retriever and my best friend. I have so many fond memories of him.\"'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"Tell me about your childhood dog!\")"
]
},
{
"cell_type": "markdown",
"id": "c9261428-778a-4c0b-b725-bc9e91b71391",
"metadata": {},
"source": [
"## Adding Multiple Characters\n",
"\n",
"Let's add a second character to have a conversation with Tommie. Feel free to configure different traits."
" \"Eve plays tennis with her friend Xu before going to work\",\n",
" \"Eve overhears her colleague say something about Tommie being hard to work with\",\n",
"]\n",
"for observation in eve_observations:\n",
" eve.memory.add_memory(observation)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "de4726e3-4bb1-47da-8fd9-f317a036fe0f",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Eve (age: 34)\n",
"Innate traits: curious, helpful\n",
"Eve is a helpful and active person who enjoys sports and takes care of her physical health. She is attentive to her surroundings, including her colleagues, and has good time management skills.\n"
]
}
],
"source": [
"print(eve.get_summary())"
]
},
{
"cell_type": "markdown",
"id": "837524e9-7f7e-4e9f-b610-f454062f5915",
"metadata": {},
"source": [
"## Pre-conversation interviews\n",
"\n",
"\n",
"Let's \"Interview\" Eve before she speaks with Tommie."
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "6cda916d-800c-47bc-a7f9-6a2f19187472",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"I\\'m feeling pretty good, thanks for asking! Just trying to stay productive and make the most of the day. How about you?\"'"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"How are you feeling about today?\")"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "448ae644-0a66-4eb2-a03a-319f36948b37",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"I don\\'t know much about Tommie, but I heard someone mention that they find them difficult to work with. Have you had any experiences working with Tommie?\"'"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"What do you know about Tommie?\")"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "493fc5b8-8730-4ef8-9820-0f1769ce1691",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"That\\'s interesting. I don\\'t know much about Tommie\\'s work experience, but I would probably ask about his strengths and areas for improvement. What about you?\"'"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(\n",
" eve,\n",
" \"Tommie is looking to find a job. What are are some things you'd like to ask him?\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "4b46452a-6c54-4db2-9d87-18597f70fec8",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"Sure, I can keep the conversation going and ask plenty of questions. I want to make sure Tommie feels comfortable and supported. Thanks for letting me know.\"'"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(\n",
" eve,\n",
" \"You'll have to ask him. He may be a bit anxious, so I'd appreciate it if you keep the conversation going and ask as many questions as possible.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "dd780655-1d73-4fcb-a78d-79fd46a20636",
"metadata": {},
"source": [
"## Dialogue between Generative Agents\n",
"\n",
"Generative agents are much more complex when they interact with a virtual environment or with each other. Below, we run a simple conversation between Tommie and Eve."
" # observation = f\"{agent.name} said {reaction}\"\n",
" if not stay_in_dialogue:\n",
" break_dialogue = True\n",
" if break_dialogue:\n",
" break\n",
" turns += 1"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "d5462b14-218e-4d85-b035-df57ea8e0f80",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Eve said \"Sure, Tommie. I'd be happy to share about my experience. Where would you like me to start?\"\n",
"Tommie said \"That's great, thank you! How about you start by telling me about your previous work experience?\"\n",
"Eve said \"Sure, I'd be happy to share my previous work experience with you. I've worked in a few different industries, including marketing and event planning. What specific questions do you have for me?\"\n",
"Tommie said \"That's great to hear. Can you tell me more about your experience in event planning? I've always been interested in that field.\"\n",
"Eve said \"Sure, I'd be happy to share about my experience in event planning. I've worked on a variety of events, from corporate conferences to weddings. One of the biggest challenges I faced was managing multiple vendors and ensuring everything ran smoothly on the day of the event. What specific questions do you have?\"\n",
"Tommie said \"That sounds like a lot of responsibility! Can you tell me more about how you handled the challenges that came up during those events?\"\n",
"Eve said \"Sure, Tommie. I'd be happy to share with you how I handled those challenges. One approach that worked well for me was to stay organized and create a detailed timeline for the event. This helped me keep track of all the different tasks that needed to be done and when they needed to be completed. I also made sure to communicate clearly with all the vendors and team members involved in the event to ensure everyone was on the same page. Would you like me to go into more detail?\"\n",
"Tommie said \"Thank you for sharing that with me, Eve. That sounds like a great approach to managing events. Can you tell me more about how you handled any unexpected issues that came up during the events?\"\n",
"Eve said \"Of course, Tommie. One example of an unexpected issue I faced was when one of the vendors didn't show up on time. To handle this, I quickly contacted a backup vendor and was able to get everything back on track. It's always important to have a backup plan in case things don't go as planned. Do you have any other questions about event planning?\"\n",
"Tommie said \"Thank you for sharing that with me, Eve. It's really helpful to hear how you handled unexpected issues like that. Can you give me an example of how you communicated with your team to ensure everyone was on the same page during an event?\"\n",
"Eve said \"Sure, Tommie. One thing I did to ensure everyone was on the same page was to have regular check-ins and meetings with the team leading up to the event. This helped us address any issues or concerns early on and make sure everyone was clear on their roles and responsibilities. Have you ever had to manage a team for an event before?\"\n",
"Tommie said \"That's a great idea, Eve. I haven't had the opportunity to manage a team for an event yet, but I'll definitely keep that in mind for the future. Thank you for sharing your experience with me.\"\n",
"Eve said \"Thanks for the opportunity to share my experience, Tommie. It was great meeting with you today.\"\n"
]
}
],
"source": [
"agents = [tommie, eve]\n",
"run_conversation(\n",
" agents,\n",
" \"Tommie said: Hi, Eve. Thanks for agreeing to meet with me today. I have a bunch of questions and am not sure where to start. Maybe you could first share about your experience?\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1b28fe80-03dc-4399-961d-6e9ee1980216",
"metadata": {
"tags": []
},
"source": [
"## Let's interview our agents after their conversation\n",
"\n",
"Since the generative agents retain their memories from the day, we can ask them about their plans, conversations, and other memoreis."
"Tommie is determined and hopeful in his job search, but can also feel discouraged and frustrated at times. He has a strong connection to his childhood dog, Bruno. Tommie seeks support from his friends when feeling overwhelmed and is grateful for their help. He also enjoys exploring his new city.\n"
]
}
],
"source": [
"# We can see a current \"Summary\" of a character based on their own perception of self\n",
"# has changed\n",
"print(tommie.get_summary(force_refresh=True))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "c04db9a4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: Eve (age: 34)\n",
"Innate traits: curious, helpful\n",
"Eve is a helpful and friendly person who enjoys playing sports and staying productive. She is attentive and responsive to others' needs, actively listening and asking questions to understand their perspectives. Eve has experience in event planning and communication, and is willing to share her knowledge and expertise with others. She values teamwork and collaboration, and strives to create a comfortable and supportive environment for everyone.\n"
]
}
],
"source": [
"print(eve.get_summary(force_refresh=True))"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "71762558-8fb6-44d7-8483-f5b47fb2a862",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Tommie said \"It was really helpful actually. Eve shared some great tips on managing events and handling unexpected issues. I feel like I learned a lot from her experience.\"'"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(tommie, \"How was your conversation with Eve?\")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "085af3d8-ac21-41ea-8f8b-055c56976a67",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"It was great, thanks for asking. Tommie was very receptive and had some great questions about event planning. How about you, have you had any interactions with Tommie?\"'"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"How was your conversation with Tommie?\")"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "5b439f3c-7849-4432-a697-2bcc85b89dae",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Eve said \"It was great meeting with you, Tommie. If you have any more questions or need any help in the future, don\\'t hesitate to reach out to me. Have a great day!\"'"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"interview_agent(eve, \"What do you wish you would have said to Tommie?\")"
"For many applications of LLM agents, the environment is real (internet, database, REPL, etc). However, we can also define agents to interact in simulated environments like text-based games. This is an example of how to create a simple agent-environment interaction loop with [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) (formerly [OpenAI Gym](https://github.com/openai/gym))."
"This notebook goes over how to use Hypothetical Document Embeddings (HyDE), as described in [this paper](https://arxiv.org/abs/2212.10496). \n",
"\n",
"At a high level, HyDE is an embedding technique that takes queries, generates a hypothetical answer, and then embeds that generated document and uses that as the final example. \n",
"\n",
"In order to use HyDE, we therefore need to provide a base embedding model, as well as an LLMChain that can be used to generate those documents. By default, the HyDE class comes with some default prompts to use (see the paper for more details on them), but we can also create our own."
"result = embeddings.embed_query(\"Where is the Taj Mahal?\")"
]
},
{
"cell_type": "markdown",
"id": "c7a0b556",
"metadata": {},
"source": [
"## Multiple generations\n",
"We can also generate multiple documents and then combine the embeddings for those. By default, we combine those by taking the average. We can do this by changing the LLM we use to generate documents to return multiple things."
"result = embeddings.embed_query(\"Where is the Taj Mahal?\")"
]
},
{
"cell_type": "markdown",
"id": "1da90437",
"metadata": {},
"source": [
"## Using our own prompts\n",
"Besides using preconfigured prompts, we can also easily construct our own prompts and use those in the LLMChain that is generating the documents. This can be useful if we know the domain our queries will be in, as we can condition the prompt to generate text more similar to that.\n",
"\n",
"In the example below, let's condition it to generate text about a state of the union address (because we will use that in the next example)."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "0b4a650f",
"metadata": {},
"outputs": [],
"source": [
"prompt_template = \"\"\"Please answer the user's question about the most recent state of the union address\n",
" \"What did the president say about Ketanji Brown Jackson\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "31388123",
"metadata": {},
"source": [
"## Using HyDE\n",
"Now that we have HyDE, we can use it as we would any other embedding class! Here is using it to find similar passages in the state of the union example."
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "632af7f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
"\n",
"We cannot let this happen. \n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
"_PROMPT_TEMPLATE = \"\"\"If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put \"#!/bin/bash\" in your answer. Make sure to reason step by step, using this format:\n",
"Question: \"copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'\"\n",
@@ -98,7 +98,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 3,
"metadata": {},
"outputs": [
{
@@ -125,7 +125,7 @@
"'Hello World\\n'"
]
},
"execution_count": 11,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -135,7 +135,7 @@
"\n",
"text = \"Please write a bash script that prints 'Hello World' to the console.\"\n",
"# Run the same command again and see that the state is maintained between calls\n",
"bash_chain.run(text)"
"bash_chain.invoke(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -262,7 +251,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.11.4"
}
},
"nbformat": 4,
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.